REAL - TIME DATA ACQUISITION
FOR
SURFACE MEASUREMENT

RESEARCH PROJECT # 1997-F

PROJECT TITLE:
IMPLEMENTATION OF INTELLIGENT BUS SYSTEM
FOR DISTRESS MEASUREMENTS

THE UNIVERSITY OF TEXAS AT ARLINGTON
TRANSPORTATION INSTRUMENTATION
LABORATORY

Research Supervisor: Roger S. Walker, Ph.D., P.E.
Serial No. 3154

November 1997

Notice - The United States Government and the state of Texas do not endorse
products or manufacturers. Trade or manufacturers' names appear solely
because they are considered essential to the object of the report.

Technical Report Documentation Page

1. Report No. 2. Government Accession No.

TX-97/1997-12

3. Recipient's Catalog No.

4. Tileand Sublitle pp A} TIME DATA ACQUISITION FOR
SURFACE MEASUREMENT/IMPLEMENTATION OF INTELLIGENT

BUS SYTEMS FOR DISTRESS MEASUREMENTS

5. Report Date
November 97

6. Performing Organization Code

7. Author(s)
Roger S. Walker

8. Performing Organization Report No.
Research Report 1997-F

9. Performing Organization Name and Address

The University of Texas at Arlington
Arlington, TX 76019

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
Project No. 7-1997

12. Sponsoring Agency Name and Addres
Texas Department of Transportation
Research and Technology Transfer Office
P. O. Box 5080, Austin, TX 78763-5080

13. Type of Report and Period Covered
Final:

September 93-August 97

14. Sponsoring Agency Code

15. Supplementary Notes

Research perfomed in cooperation with the Texas Department of Transportation.

16. Abstract

personnel in using and maintaining this equipment.

This report provides specific details on much of the work done on a project for the Texas
Department of Transportation for providing the capability for making pavement distress
measurements. The report primarily contains hardware and design procedures used to
implement the Texas Profiler/Rut-Bar systems and which will be useful for TxDOT

17. Key Word 1 B. Distribution Statement

No restrictions. This document is available to the
T’_(DOT Profiler, R}n Measurements, Real- public through the National Technical Information
time, Pavement Distress Measurements Service, Springfield, Virginia 22161.

19. Security ClassiF. (of this report) 20. Security Classif. (of this page)
Unclassified Unclassified

21. No. of Page 22. Price

232

Form DOT F 1700.7 18-72)

IMPLEMENTATION STATEMENT

The Pavement Section of the Texas Department of Transportation has recently
constructed and is currently implementing a number of profiler/rut bar vans. Much of the
technology and procedures for these systems are a direct result of the research performed in
this project. The system concepts developed during this implementation phase were
designed so each vehicle will be capable of collecting a variety of pavement surface distress
data. The successful completion of this project has provided a more accurate and quicker
method of obtaining various distress information for the State's PES data base and for project
specific applications.

DISCLAIMERC(S)

The contents of this report reflect the views of the author(s), who is (are) responsible for
the facts and the accuracy of the data presented herein. The contents do not necessarily reflect
the official view or policies of the Texas Department of Transportation. This report does not
constitute a standard, specification, or regulation.

There was no invention or discovery conceived or first actually reduced to practice in the
course of or under this contract, including any art, method, process, machine, manufacture,
design or composition of matter, or any new useful improvement thereof, or any variety of
plant, which is or may be patentable under the patent laws of the United States of America or
any foreign country.

i

ACKNOWLEDGMENTS

This work was a team effort with Wen-Ming Kuo, Brian Burgess, and as a graduate
student, Guor-Chaur Jung, was especially instrumental in the team effort as well as other
graduate students who worked on the project at various times.

Acknowledgement should be given to Carl Bertrand, Project Director, of the Texas
Department of Transportation. His vision of an up-to-date fleet of surface measuring
equipment has provided TxDOT with the latest advances in measurement technology. Also,
acknowledgement should be given to Mr. Robert Light who provided valuable input into the
measurement equipment and processes.

iii

TABLE OF CONTENTS

IMPLEMENTATION STATEMENT 1
DISCLAIMER(S) II
ACKNOWLEDGMENTS 111
TABLE OF CONTENTS v
TABLE OF FIGURES VI
CHAPTER 1 1
INTRODUCTIONcoteireerireeeiniuieerisensessissesisessssssssssseserarsassssssesessssssssssessssssnssssssssssassassessnsssessssssssssneeseemnsenasessssssnen 1
L0 REPOTI CORIERLS ...ttt e st te e e e e b e e tb e bs s et s st sttt e eneneneeetnansaaas 2
CHAPTER 2 3
SYSTEMS CONCEPTSovveeieierrreeiecineessrresssssseresesassessessssessasesssessasessessnsasessesantressssentesssesesensnnssssssssasmesssssssssasns 3
2.0. MeASUTEMENE SYSIEM..................cooooviiieieiieiieec ettt sa e s s e e sb e e seeaa e e e sreesanenae 3

2.1 Reflective Memory OVerviewo.ovcevieeeoinieiieeueeireretesesesssesieseasssstseesetssesseassasessnenes 3

2.1.1 Reflective Memory Boardovicvneiiniiaiarisneisiresssssesseessasessessesessenmosmessasassensaes 4
CHAPTER 3 7
PC-68020 MODULE COMMUNICATION.......oceeeetiirerissresesneesssnsesonesssessssssesansesosssssssnsesiosstssssssnessasaeessesssssssssonesssss 7
3.0 PrOCEUUTESoneeeeeeeeeeeeer e eet vt eseesren e e ess s taseesessnanntteeaasssasssnnearessaannnes 7

3.1 General 68020 K board Firmware FURCHORS.........................ccooovvceeeeeeeeeeeeeeeecueseeeeeeeresseeeseosasens 7

3.2 K Board PC COMMURICAEION.........................ooooeeereveeeireenneoieeiiiresieeiseeeassesessssessssssneesasesssssssnseesns 7

3.2 OVEIVIEW............oooaeeeeeeeeeeeeeeeeeeeee et e ettt e e et et e st e e e e sttt e e e eea et e rietesarrnntaeesanaeeeaans 8

322 DefiMIIONS................occooeeieiiiiiiriieeet ettt ettt e st et e a e e ra s e rb e e e re e st anbaarsaerains 8

3.23 Starting APPlICAtioNnccooieivimvineeiiirirceetece ettt sttt ee 9

3.2.4 Sending Data Collection OPUIONSccccovuivumvenresresrererresiesienieseeseeeieseaseessassssesseans 10
3.2.5 Starting Data ColleCtion.............................cooouecevoeeeeunreieieeeieiseseesanneeieeiseetestestesrassssessessaeseanes 11

3.2.6 Reading K Processor QUIPULc.cconeiemrimreriveieeseeeesastesteseseteseeseesesssesseneenes 11
3.2.7 Terminating Data ColleCtioncccoucimiciiuinereeeieerenseaerseessesteacessessssesssssssenee 13

3.3 RUEMeaSure PrOCOAUTeSoooeeeeeeieeeiieeieeeeeieeeeeeeetieesesrsteenesassssssssnesssssenreasaseas 13

33,1 String Line Generalocooeveeinciserieiienienesiesierississeseessessessssesssassssssessessssssssesaeseenes 13
CHAPTER 4 15
IMATIN CHASSIS MODULE........evtviieereieeeeiiisissessseetiesesssssssssrassssesersssissessessstessessssnssnsassssssstestsssssesssersessrsessssmesnsenes 15
4.0 OWERIVICW ... eeeeeeets e ette e st eeeeses e et aatesatesesssseennse s sasaesasssesassbesaaansesssassseessssesannss 15

4.1. FURNCHONGL.....................eoeeeeeeeeeeeeeeeeeeeeeee e eeeee s eeeeeeeesesaae e e seaat e e s sesenaessesesssssnreeeseensesentreeen 15

4.2 Power Wiring Flow.................coccooriiiiiiiiiiiiineneiemeccetitee e cseere e ses et as s s e saesesnesbronens 22

4.3 SUGRALFIOWccocoonoeeineienieciiieceit ettt ettt s st st eaa st s et ese e bas s e e e e e se s esenssennensensen 23
CHAPTERS 34
LASER POWER MODULEouveveeeiieieirectierreseisiiesssssssenessersssssssssensenscssasssssssnsssssssossssssnssssesssssssssssssesssnssssssnsnssssns 34
5.0 OWBIVICWcococeeeeeeevveeeeeeieee e esteetasastttesaasrseesststsasaasssesssnaeessessstasassssssae st eesanssstsnresssansnressraaas 34

5.1 PoWer CONSIAEIALIONSoooeeeeeeeeieeeiirereeeriiaeeecsreeeeeesssaassessseeeeessssranreeasassssssssnrereeeaans 34

5.1.1 EXIernal COMMECHONSccuuoeeeueeeeeeeseeeeeieesiveesiseeeessreeessesessssesssssasssnssassnssssessnnresnssasesas 34

5.1.2 Input Power COMNECHIONSc.ccoooerueceiceiraeriunnenneesireseesasasieseeseesae s e seessestaaessassanssenee 35

5.1.3 Laser Power Supply Board Parts LiStoooneoinivrcireiacieeieetesnesereesssesesesessee e s 35
CHAPTER 6 43
SIGNAL INTERFACE BOARDcccocviitttmeiiieciiessssetereeesseresesssssestsessasssssssnstaseseseessassssssasnsssnssnessssssssssssssrssassmnnssans 43
6.1 OWEEVIEW ... eeeeeeeee st eeeeeesereseesnsesssastessssssatessassbaneeseetaaessassesseeeseeannnnnnases saeeanseaeeasasssns 43

6.2 Detailed Design\SIB Signalscccocoviiniiiiiniiinininsiniestiisie et saene et e sease s 43

iv

6.2.1 Left and Right AccelerOmEIersocoiemieieeiiieieeeiee ettt 43

6.2.2 SIARISUGRAL..............cccoiiiiiiiiiiiiiie ittt e ettt e e e 43

6.2.3 Distance SiNal....................ccooooiiiiiimieiiiiiiei ettt 43

6.3 Hardware INSIQUALONccocoovenoiioieieieeee ettt ene s 44
6.3.1 Configuration External CORRECHONSc.cccccomioimiiniiiiiiae it 44

6.3.2 Accelerometer Input and Output Signal CORNECHiONSc....ocovericiioriverrevnreirennee. 45

6.3.3 Laser Input and Output Signal CORRECHONSccocccovuariieinnnainieciiaeieieeeeneeeens 45

6.3.4 Start Signal Input and Output CORNECHIONccccccovemmmrererivnceneirereaieeaieaeeaeee e 45

6.4 Signal Interface Board LapouL..........................cccooviiivnininiiesiiiaeieieieeeeeeesisiaene e seeae e 45
CHAPTER 7 49
LASER INTERFACE MODULE.........occiirrettniniceenieresensreeeseessasstesescoassassessessasessassassesssssnesassesassenses 49
7.0 OVEFPVIEW...........cceeeeeeeirireicitite sttt sttt bt st e st e st ot e st e a e se et e e setes e e e sbe s eaeesatensesnases 49

7.1 Laser Interface Module LApouL................................eeeeeoeeueeeetiecreerecasenteeeeeeeseeeits e seesnessseseeenneens 49

7.2 FURCHONQLIY.................c.coooiiieiiiiiiiiitie ettt et e et e ettt e s be st e e te e e besmean e aseenaaneans 50
CHAPTER 8 58
SMART A TOD MODULE......oooitiemrnierrncesesissmenmecestsinsessnresesscssstnssssssssesssssssssestsassssasesessessessasasssssssssasess 58
8.0 SAZD OVErViewcoeoiciecccinieiereeeeineeseat et s ss e serass st sensesense s ssat et essaneansnasesesans 58

8.1 Detailed Design\Design COMPONENLS...................ccceeeurireeeneeecrivisasiesiesessesssssessessessasssansssesenns 58

8.2 Stale MACHINE DESIBN.................coocorvvioeniiceniiriecteeseseeecreessteseesseseasessse st ssassasassestessesseatessansensasin 59

8.2.1 State Diagram DeSCRIDUON.....................cwcvereccreerarseeiirieesenesesesisrasssesesssesssasesesssssessesseasansassasn 60

8.3 Hardware INSIQlIALIONoooeeececeieiieiecerieiseniesee e b eessestee s esastesas e s sse s e s e st eteans 63
CHAPTER 9 74
THE 68020 MODULE (K PROCESSOR).....ccvnmurermvensisirisisssssssearacscossisasassesesssmasststensassessesensscssasssesesassensocstssesens 74
9.0 OVEIVIEH...........cooneteeeeeiieceeeetse ettt et st it e s e s e rae b e st e e s seentare erteabe s baansest et e s eansanteereentn 74
APPENDIX A 96

TABLE OF FIGURES

Figure 2.1 Reflective MemOry CONCEPLccccovvevemerereeeeeeieeieceecee et eeveeres e v 5
Figure 3.1 Texas Five Sensor System Rut Bar.........co.ooouveeeeeiieieieee e 13
Figure 3.2 String Line General..........ccooouiecieiiieiiiieeeceeee ettt esat e s ssvesesaessaaeeenneas 14
Figure 4.1 Basic System LayOuL.........coeoueeeieoieiiieieeieieeeee ettt st e s eee e senae s 24
Figure 4.2 Profile Measurement System-Front Panelccccceveervvenncrvernennneceiennes 25
Figure 4.3 Profile Measurement System-Rear Panelc.ccoooeevvvieiieveeinreeiececeieee 26
Figure 4.4 Profile Sensors Signal FIOW........cc.coevieieiiniiniiienieceeee et e 27
Figure 4.5 Wiring 1/45, +12,+15, and —15 Power Connectionsc.ccecceeveerecvenieneneennen 28
Figure 4.6 Wiring 2/420, +18, -18, 424, -24 Power Connectionscecceeeurreeseerecrennns 29
Figure 4.7 WIirNZ 3-AC POWETcoueiieiiiirieceinteseert et srte st e sve s seeesnassaese e see e snesanassas 30
Figure 4.8 Wiring 4-Wiring 4-Groundsccceccreeneienennineneneesieeeteserssereseeeseeesaesssasanes 31
Figure 4.9 Signal Wiring 1-Laser/Accelerometer/A\D Interface..........cccecceeenveencrienvnnnnne. 32
Figure 4.10 Signal Wiring 2-Acoustic/Start/Distance/Reset...........coeevvuereeviiuennivernrerernenncns 33
Figure 5.1 Laser Power Supply SChematicc.c.cceovevervierreecininineie e e 36
Figure 5.2 Power Supply PC Board Bottom VieW.........cccoceieicriininienccnneneneeseerre e 37
Figure 5.3 Power Supply PC Board Solder Mask............cccooieeenirieenincecieeiereeneccreseene 38
Figure 5.4 Power Supply PC Board TOP VIEWccoocoiiriricireerecenicnereenseeseereeeeseeeessrens 39
Figure 5.5 Power Supply PC Board Silk SCreen.........cccccverreeeecerieeninieneneceeeeesreeee e eenee 40
Figure 5.6 Power Supply PC Board Drill Schematic...........ccccoerueverercrnieecinirieeierecreceenen 41
Figure 5.7 Laser POWer Board.........ccccoiiiicoeninciiine ettt 42
Figure 6.1 Signal Interface Boardcccceceminininieiiiniree et s e e sesesseennens 46
Figure 6.2 Schematic of Signal Interface Boardccccoeeveveeieeceecreecieceeceeere e 47
Figure 7.1 Laser Interface Board SchematiC.......ccccecuvieviiecirieieiccieeccteectreseeeeee s rereeeeeennes 52
Figure 7.2 Laser Interface Board...........ccoceeoeeeeeeieiececceececcecrecte e s e sesse e 53
Figure 8.1 Smart A to D State Diagramc.cccoceeeeeeeeeiceiceececcceeeere e eeeeeseenees 62
Figure 8.2 A/D Board Layout........ccccceourirvieriericrerieiieriiresiereresesteseeseseneesssessssnesnesasssessenaes 70
Figure 8.3 Schematic Smart A/D Board 1.........ccoceemeriieiiieieceee et 71
Figure 8.4 Schematic Smart A/D Board 2..........ooooiieeeeeieeeeieceecceee e e 72
Figure 8.5 Schematic Smart A/D Cableccovieiiieiiiiiiereecireeeereeeeetreereeessereeessaeesseeeenes 73
Figure 9.1 Detail VIEWooviieiieieeetesieet ettt es s eestae e e e ssaa et s s besaaennaenes 85
Figure 9.2 OVerall VIEW.....cccouiviiiiiiiiiciiictciiii sttt ses et s ae e en e 86
Figure 9.3 K Board LayouL........coceeoeeciiiiiiiieiecececieeteeceseacseseesseessee st essessenesssavansssenseas 87
Figure 9.4 Schematics K PrOCESSOT = L......ciiiviiiceecieieeceeererreeieceieesneeesseseseeeessressseesseesnns 88
Figure 9.5 Schematic K PrOCESSOT = 2......cuiviioiieieieieiierieieeeeeesieesveensesneessessnsessesnsessnenses 89
Figure 9.6 Schematic K Processor - 3ccoeeoimririeeceireceeeseseeeeteete s eesaseesreaeseveseneeenens 90
Figure 9.7 Schematic K PrOCESSOT = 4ooiceieieeieiteereeieicteereerceese e seseesseeessneessseesseessssenns 91
FigUre 9.8 K PrOCESSOT = 5...ocveiieiieeeteeeneecierecstreesteasteressesessseesseessssessssssesesssesssassanssseessansens 92
Figure 9.9 Schematic NK ProCESSOT - 1 ..icicvirverrrerreeneiseennneeseesisenensnsssensessessesseesseesssssessees 93
Figure 9.10 Schematic NK ProCessor - 2ccevevennienininnnennerrcsersenesseseessessassnseseessessenne 94
Figure 9.11 Schematic NK Processor — 3.........cuoieireiireiieeieeieeeeee e eeeeeene s seseeeesseaeenns 95

vi

Table 2.1
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 5.1
Table 5.2
Table 6.1
Table 6.2
Table 7.1
Table 7.2
Table 8.1
Table 8.2
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Table 9.6
Table 9.7
Table 9.8

List of Tables

RMB SigNal LiSt ...ueeiiiirireeieieniercetecenre ettt e e s et e ae e sre e aete e se e saneene 4
General Specifications — 24 Volt SOLA Supplyccccocoveevienieciiniieiieeieceeene 17
Condor - GPC55 Series (Multi-voltage Switching Supply)ccccocveeeicnnennnnne. 18
Condor CONNECHIONS.......coceneecrerresersenieeiesreeresatsssesteesassnentesssssessassesssonsesssasassssnses 18
J1 - VMEDbus Signal DescriPtions.........coceeceermreerieruerienricinieicnceniencrecssaeeeeeenens 19
LaSer CONMMNECHIONS. ...c.ueeeerrureueeenierrtesieessensesasnaeseesnassesssessmsesssesasesrasseessnsasssassannas 21
Accelerometer CONNECLIONScccceetrreecrerreerictrrrrreesrerestennsessaeeessesserssesssseessaeseses 21
Acoustic Connections - Channels 1-5.........coovciiiminiieieieneeenceeseeereeeees 21
Acoustic Connections- Channels 6-10...........cccceeeeiriiciveenieerreereeeeieerre e 22
PC Serial CONNECLIONSeeeeeeeeeriirtieitieteeciesietreeesesteseeeseaeeses s srerecesseessnseranerenans 22
OULPUL VOIAZEScveeieieiieeierereieeeienreste e et e e sess st e seeemeesaas e e s e besrnessaasasasaansenes 34
Parts List Laser Supply Boardcccoouriieoencncenieineincceeeenenneecceeeenenenas 35
JUMPET BIOCK ...ttt ettt ceve e 44
SIB Parts LiSt......cceeuereeiruenerneierisrernercsrentestesesnerteessesssessssssesessessessessesssessesassasses 48
LSBT ettt ettt ettt st see e et s e s s e s e a et e e st e e e ne e eaa e st enean 50
Laser Interface Module PALASM Design Description and HC11 Program........ 54
State Machine I/Ocoeeorieiiniiiinieenenecerctereetnrcstestess s renesee st s se e sensaesnaeas 59
Pal EQUALIONSccoeviieiieeeeriieeeeeererieetestestesre e sseteeneesresaesse s sesssesnessaessensansnnennensens 64
MEMOTY MaP ...ttt e st sar s a et eesse s s s ene e ssensnnanneas 75
Interrupt ASSIZNMENTcovvrieereeereeeinerrerrteetesaeetertessreessresseasssessessssesssssssassnes 76
PAL Ul3 EQUALIONSccovieveeseeeeiireneeieeneeenseesestsnesnessesssesssnesssassessssssessarsnesaenes 76
PAL Ul4 EQUALIONSovuiereeeireerieeitrseniertesteseeresesaesesaneseessessssssessesssesssesssessesssssases 77
PAL U5 EQUALIONS ...ceevvirirurieieniiririeestesesseetseeeses st s ssesesssessseesssssesssessasssessessaens 78
PAL U33 EQUALIONScovivieiiieierneriinienenieseesieseestessessesseessessaesseasssssesssesssessassenns 79
PAL U34 EQUAtIONScovvveeetruerereisreenseentaestnssssesassessresssssessesessessesssserssssessseses 81
PAL U301 EQUALIONS ...coccevemtiuiirecrereeetreescsierenteenseesesesessseseecasssessessessssseessansenens 83

CHAPTER 1
Introduction

This report provides specific details on much of the work done on a project for the
Texas Department of Transportation for providing the capability for making pavement
distress measurements. The original objective of the project was stated as:

The Texas Department of Transportation must collect different
types of data for both project and network level applications. The data is
obtained from several different instruments and sensor types which are
often housed in different vehicles. The data collection process thus
involves the use of many different operators in different vehicles. Because
of the different equipment types multiple passes over the same surface are
often required. The data collection and processing procedures involve the
Surface Dynamics Profilometer, the Siometer, and the Automated Road
Analyzer or ARAN vehicles. The ARAN vehicle has been converted and
updated from its’ original configuration and soon will provide not only
video logs of pavement surfaces, rutting information, and ride data, but
also, surface profile and pavement cracking.

With so many different applications in the pavements' field, it is
becoming more and more desirable to integrate all of these operations into
one data collection system. The system needs to handle not only today's
real-time requirements, but also those of future applications and needs.

In the project, “Real-Time Bus System for Interface of Surface
Measuring Instruments”, Study No. 1932, a real-time bus design has been
developed which can provide such interface. A project is now needed for
the implementation of this bus system and its usage in the Department's
distress measurement vans, which are being developed by the Pavement
Section.

A common task in this and other projects of a similar nature is to work with the rapid
changes in technology used in implementing the concepts developed during this project.
Since the first introduction of the PC by IBM in 1981 there has been an explosion in the
development of PC compatible systems, first in desk top and notebook PC's and now in small
modular boards running DOS or Windows CE. This technology is now being used in many
instrumentation applications. Thus, much of the equipment initially considered for
implementing this research is already outdated. The project has attempted to work with these
rapid changes by developing modular concepts “when possible” which will permit system
upgrade and still work within the original project objectives.

1.0 Report Contents

The report primarily contains hardware and design procedures used to implement the
Texas Profiler/Rut-Bar systems and which will be useful for TxXDOT personnel in using and
maintaining this equipment. The next chapter provides details on the overall system concept,
followed by details on the hardware modules used in the measuring system. Schematics,
hardware design criteria, pal equations, and other design details are provided.
Documentation of TALK, the Siometer Rut Bar communication program is provided in the

Appendix.

CHAPTER 2
Systems Concepts

2.0 Measurement System

As noted in the previous chapter, the initial project objective was to develop and then
implement a system for distress measurements which could be integrated with other systems,
such as the video recording and data base system (developed by C Map Systems). As also
noted, because of the rapidly changing technology, a modular approach was desired.
Although initially, pavement profile, rutting, IRI and PSI measurements were desired, the
system needed to be expandable to include other future measurements. Texture, for instance,
is planned for implementation in 1998. The original plan included the use of the existing
Siometers which computed SI and rut, in conjunction with general purpose 68020 boards
linked using the VME bus. Based on this plan, the project personnel developed a reflective
memory concept which could interface with various and different modules. Later, it was
decided to simply use an existing 68020 board (sometimes referred to as a 'K' board) which
had much of the initial desired processing capability. With the success in using the 68020
board, the Siometers were phased out. The project then developed specific boards, such as
the Smart A/D, etc,, which could then easily work with either this board or ones
implementing the reflective memory concept. The reflective memory concept is described in
the next section as it may yet be useful in later implementations. A ‘wire wrap version of the
board was done and initial printed circuit board (PCB) considered.

The description of the reflective memory board, and the other modules included in
this report, are useful so that the Department can easily use these modules, or obtain
additional modules as new requirements occur.

The complete measurement system described in this report include the following
modules: two laser interface modules, a signal interface module, a laser power module, a
smart A/D module, and the 68020 module. The reflective memory will be described in this
section. The other modules are described in the chapters which follow.

2.1 Reflective Memory Overview

This section provides operating instructions and general information for the use of the
Reflective Memory Board (RMB). The purpose of the RMB is to provide high speed data
transfers between the VME type modules and Siometer Computer boards The original
Siometer was a self-contained processing module, with no need to communicate with other
processing units.

A previous solution to integrating various 68020 modules with the Siometer utilized a
parallel interface. This parallel interface was implemented with a Motorola 680230 Parallel
Interface/Timer on each. The ideal solution would be to have all required processors on the
same board. The processors could then communicate with each other via a multi-ported
RAM. In this way, the processors would not be required to be interrupt driven. With a
simple message passing scheme, large amounts of data may be passed between any of the
processors. One processor could read the data from a sensor, and then pass this data to all of

the other processors simultaneously. This, of course, is the ideal solution, but is not feasible
for two reasons. First, is board space. The board to implement all of the processors would
be much too large. Furthermore, where would one get say, quad-ported RAM? This idea
does help, because it gives the best possible throughput. Each processor could communicate
over a shared memory space. Communication is handled just like any read or write to
memory.

The idea of using multiple dual-port RAMs, with an additional processor handling the
traffic between them evolved into the reflective memory board concept. In this way, any
data written into one would be “reflected” in the others. The reflective memory concept is
illustrated in Figure 2.1.

2.1.1 Reflective Memory Board

The RMB provides 1024 bytes of reflective memory (one Kilo-byte). The RMB may
interface up to four (4) processing boards. Table 2.1 lists all of the signals required by RMB.

Signal Name 10
AQ0-A9 Input
DO0-D7 Both
CS* Input
R/W* Input
DTACK Output

Table 2.1 RMB Signal List

The RMB consists of eight (8) FIFOs, two for each processor interface. Each FIFO is
nine (9) bits wide. This allows the capture of the ten (10) address lines and eight (8) data
lines. The ten (10) data lines allow the addressing of one Kilo-byte of memory. The chip
select signal (CS*) is active low, and indicates that the processor interface is requesting a bus
cycle to the RMB. The read signal (R/W*) indicates the direction of the transfer. If the
transfer is a write, then the RMB writes both the address and data lines into the two (2)
associated FIFOs. After writing the address and data into the FIFOs, the RMB asserts
DTACK until the chip select is negated. If the bus cycle is a read, then the RMB reads the
data from the dual-ports address, as specified by the address lines. The data from the dual-
port is then placed on the processor’s data lines, and DTACK is asserted to indicate that the
data is valid. When the processor negates the chip select, the RMB tristates the data lines,
and negates DTACK. It should be noted that the MACH 130 monitors and controls all of the
FIFO and dual-port memory control signals. The RMB as a whole, appears just like a
memory device to the processor board.

The following is an example of the steps taken by the RMB for each of the possible
bus cycles. For the first case, assume that a processor board wants to write data to the RMB.
It will set the R/W* signal to a logic low, to indicate a bus write. It then asserts its’ chip
select signal. The RMB detects the chip select and examines the direction of the bus cycle,
which is a write in this case. It then ensures that the associated FIFOs are not already full. If
the FIFOs are not full, it performs a write to both simultaneously. This write to the FIFOs,

—ws FIFO E
| r 1 :
L Dual Port
R680 2 | Ram ———
gggs ! FIFO gT_ — !
g
ress)5 FIFO 3
- L 1T
wo| Dual Fore (,
S S— —
TS o1
i - I e I FIFO | —
k|
T,m>s Fn:‘[o T H
JK2 —j Dual Port

T

e
Ram <—1
—)

Il 97
Data Bus

Address Bus

Figure 2.1 Reflective Memory Concept

5

? 4 3
= FIFO H =
o)J 8
adire— = FIFO H
“ Tt
JK3 _:> Dual Port
Ra
5 f— : ®
:> § = FIFO g[
AT NP oy e B
555555555885 ¢
MACH 130

captures both the address being written to, as well as the data. DTACK is then asserted to
indicate that the bus write has been finished. All of the steps taken so far have been handled
by one of the four (4) state machines (one for each possible processor board) that monitors
the chip select signals from the processor boards. It is now ready for another bus cycle from
the processor. At the point where the data was written into the FIFO, another state machine
detected that the FIFO was not empty. This state machine now performs a read on the RMB
side of both FIFOs. The address that was written is placed on the RMB’s address bus, which
is routed to the RMB’s side of all the dual-ports (examine the diagram in Appendix A). At
the same time, the data (as written by the processor board) is routed to the data lines on all
the dual-port RAM. After the appropriate set time has been met, the RMB performs a write
to all of the dual-port RAMs simultaneously. The data that was written by the one processor
board has now been placed in the appropriate address in all of the dual-port RAMs.

Now, the other case is examined. Assume that the data just written by the one
processor board is to be read by another. This processor board performs a bus read. The new
processor board sets the R/W* signal to a logic one, and asserts its’ chip select. The state
machine in RMB again detects the chip select, and examines the state of the R/'W* signal.
This time, it is read. Note that the address and data lines from the processor board are
connected to both of the FIFOs, as well as the processor boards side of its’ associated dual-
port RAM . The state machine now performs a read from the processor boards side of the
dual-port RAM. The correct data is read from the dual-port RAM, and placed on the
processors data bus. DTACK is again asserted to signify the completion of the bus cycle.

The above example is simplified somewhat. Other conditions that the different state
machines must account for are the busy signals from the dual-port RAMs, full signals from
the FIFOs, which FIFO to read from if more than one has data (not empty), and the timing of
the DTACK signal when a bus cycle is extended for one of the above conditions.

A brief description will now be given for each of the different state machines on the
RMB. The first state machine is the interface state machine. It simply waits for the chip
select signal from its’ associated processor board. When the chip select is asserted, the state
machine either writes the data and address into the two associated FIFOs, or reads data from
that processors dual-port . This depends on the direction of the bus cycle as indicated by the
R/W* signal. The interface state machine is implemented four (4) times in the MACH 130.
Each one runs independently of the others, and is dedicated to a particular processor board.

The other state machine, has the responsibility to read the data from all of the FIFOs,
and place it concurrently into all of the dual-port RAMs. This state machine is termed “RMB
Controller State Machine”. The RMB state machine is really a combination of two state
machines. The combination comes from the fact that more than one FIFO may contain data
that needs to be routed to the dual-ports. Because of this possibility, some sort of scheduling
is required. The scheme implemented on the RMB is a simple Round Robin technique. This
guarantees that all of the FIFOs will be read, even if they all contain data. To implement the
scheduling, a small state machine called the scheduling state machine, keeps track of which
FIFOs contain data, and which FIFO was previously read. Using this information, the
scheduling state machine indicates to the RMB controller state machine which FIFO to read.

CHAPTER 3
PC-68020 Module Communication

3.0 Procedures

Three types of programs are used for making pavement distress measurements with
the measurement system described in this report. The 68020 module is also often referred to
as the K board. One is the basic K board program (JKXROM). This firmware program is in
EPROM and used to interface with the PC. It can be thought of a program similar to BIOS in
a PC, as it is initiated when power on or a reset is applied to the K processing board and
begins the initialization procedures. It also provides the I/O drivers for the various sensors
which interface with the K board, as well as, performs all real-time profile and rut processing
done in the K board. The second program, TK, runs on the PC and is used to communicate
with the K board program JKROM, and the PC. The third class consists of various post
processing software for computing PSI, IRI, and Rut, and to display the data obtained from
TK. This chapter will discuss the communication protocols which are used by TK for
communicating with the K board via JKROM. This information is necessary for
communication with the K board system.

3.1 General 68020 K board Firmware Functions

The 68020 processor module provides a wide selection of data collection and
measuring options. The board or module, when inserted in a suitable environment, such as
described in this report provides profile and rut for pavement management. The board uses
an RS232 compatible serial interface for communication with and data storage to an IBM
compatible PC (desktop, laptop or notebook), where profile or other roughness information
can be sent in real-time for data storage and later analysis. The system can be installed in
most automobiles or vans for various surface measurements.

Profile measurements are accomplished by using a modified form of the South
Dakota method with an accelerometer and acoustic or laser sensor. In this method, an
accelerometer (sampled and integrated with respect to time) and laser sensor are used for
measuring body and road-body displacements. Road profile measurements are obtained by
summing the twice integrated acceleration measurements with the appropriate body-road
displacements. The R68020 board in conjunction with the PC can provide profile and rut
measurements using the European string line method. Real-time IRI can be provided by
using a second board, although it is no longer needed with the speeds of the PC. PC software
can compute IRI in real-time from the profile data which is being sent from the 68020
module. The next section describes details on the K board to PC communications. The last
section describes the real-time rut capability.

3.2 K Board PC Communication

The K board - PC Communications details which follow, reference the J processor
board. In the initial systems, real-time data acquisition and processing was done by two

independent processors, the J and K processors. Later, it was determined that the needed
processing capability for the data measurement process could be accomplished by a single
processor (K Board) and PC. The communication protocol descriptions in this section
include communications with both the J and K board processors.

3.2.1 Overview

The PC, the J processor, and the K processor are the computing units of the system.
The PC controls J and K in the data collection session and provides storage for programs,
configuration data, and acquired road data. The PC can be used to compute IRI in real time
by using the profile data from K. The K processor reads the sensors, computes profile and rut
and sends the data to the PC. The K processor may also send sensor data or profile to the J
Processor, receive the IRI data from J, and relay the IRI data to the PC. The J processor
receives sensor data or profile data from K, computes IRI and sends it to K. The serial port A
of K is connected to the COM1 or COM2 of the PC. The serial port A of the J processor is
connected to the serial port B of the K processor. All the communications between J and the
PC must go through K.

3.2.2 Definitions

The J and K operate in two modes: the monitor mode and the application mode. After
power-up or reset, they are in the monitor mode. The monitor mode is only used to download
the application program to the RAM and start running it. Program download is not necessary
if the current program resides in the ROM. Once the application program starts running, J/K
will be in the application mode until a hardware reset.

The commands sent to J/K will be expressed as

a quoted string: if the command is composed of all displayable characters,
a symbol: if the command is a non-displayable character.

The carriage return is expressed as <CR>, and the escape character as <ESC>. A
symbol is usually followed by its hexadecimal value in parentheses. The hexadecimal
number is preceded with Ox. The plus sign + is used to concatenate commands. No plus signs
or quotes should be sent as part of the commands.

When J/K is in the monitor mode, each command is a string followed by a carriage
return. When K is in the application mode, the PC sends a one-byte command to K to specify
an option, to initiate a sequence of actions, or to terminate an action.

There are various types of data packets passing between K and PC and between J and
K. The data packet always begins with a control byte followed by a number of data bytes.
The most significant bit (#7) is always one in the control byte and is always zero in the data
bytes so that the beginning of the packet can be easily identified.

Since we are using only seven bits in a data byte, the binary data that takes more than
seven bits needs to be encoded for transmission.

A four-byte floating point number is encoded into five bytes:
Ist byte: bits 0-6 of the floating point number,

2nd byte: bits 7-13 of the floating point number,

3rd byte: bits 14-20 of the floating point number,

4th byte: bits 21-27 of the floating point number,

5th byte: bits 28-31 of the floating point number.

The symbol GetFloat will be used in this document to specify the procedure of
reading five bytes from the serial port to construct a floating point number.

Similarly, GetLong will be used to denote reading five bytes to construct a 32-bit
integer, GetByte for a 7-bit integer; Getl4 for a 14-bit integer, Ger2] for a 21-bit integer.
The receiver of the data should interpret the integer as signed or unsigned as implied by the
packet. For example, the time between acceleration samples is unsigned, while the profile is
signed.

A string will be sent as is with a null character at the end. The symbol GetString will
be used for the procedure of reading a string from the serial port until a null character is
encountered.

The scale factor and offset are used to convert A/D converter reading to real units.
laser data in mm = laser A/D value * laser scale factor + laser offset
acceleration in mm/sec? = acceleration A/D value * acceleration scale +
acceleration offset.

The time between acceleration samples received from K is in the unit of the timer
ticks used in the system. This value should be multiplied by the time scale factor to give time
in seconds. The scale factors and offsets will be sent to the PC when the PC initiates data
collection.

3.2.3 Starting Application

To download the K application program to the RAM,
1. make sure K is in monitor mode;
2. send “L<RET>* to enter S-record download mode;
3. send the S-record of the K application program.

To run the K application program,
1. send “g 7000<CR>“, if the program is in ROM; or
2. send “g 80002000<CR>“, if the program is in RAM.

To initialize K
1. send JKC_INI300 (0xD5) to initiate data transfer;
2. send the entire content of the file K3000000.INI;
3. send JKC_ENDINI (0xC4) to terminate data transfer.

3.24

To download J application program to the RAM,
1. make sure K is in application mode and J is in monitor mode;
2. send JKC_TOGMONITOR (0xD0) , so that the subsequent data will be
passed on toJ
3. end “L<RET>“ to enter S-record download mode
4. send the J program S-record
5. send JKC_TOGMONITOR (0xDO) to stop passing data to J.

To run the J application program,
1. make sure K is in application mode and J is in monitor mode;
2. send JKC_TOGMONITOR (0xD0) , so that the subsequent data will be
passed on to J;
4. send “g DO00<CR>“, if the program is in ROM; or send
“g 80002000<CR>*, if the program is in RAM;
5. send JKC_TOGMONITOR (0xD0) to stop K from passing data to J

To initialize J,
1. make sure both J and K are in application mode;
2. send JKC_TOGMONITOR (0xD0) , so that the subsequent data will be
passed on to J;

send JKC INI (0xC3) to initiate data transfer;

send the entire content of the file J0000000.INI;

send JKC_ENDINI (0xC4) terminate data transfer;

send JKC_TOGMONITOR (0xD0) to stop K from passing data to J.

AN

Sending Data Collection Options

All data collection options must be sent to K before starting data collection:

To collect string-line rut,
send JKC_WANTRUT (0xCA).

To collect vertical displacement data (raw rut data),
send JKC_WANTRUTRAW (0xCD).

To get the list of active lasers,
send ‘a’ or JKD_ACTIVE (0x8C).

The string-line and raw-data options are mutually exclusive. It is recommended to get

the list of the active lasers when collecting raw data.

To collect raw profile data (acceleration, vertical displacement, and time between

samples),

send JKC_WANTACC (0xC9).

To collect profile,
send JKC_WANTKLEFT (0xCC) for left profile only;
send JKC_WANTKRIGHT (0xCF) for right profile only;
or send JKC_WANKLEFT + JKC WANTKRIGHT for both left and right

profiles.

10

To collect one-wheel-path IR1,
send JKC_WANTIRI (0xCB).

To collect two-wheel-path IRI,
send JKC_WANT2IRI (0xD1).

The above four profile options, raw data, profiles, one-wheel-path-IRI, and two-
wheel-path-IR1, are mutually exclusive.

To specify timer frequency (only useful when the time/distance switch is switched to
time), send JKD SIMUSPEED + frequency in Hz in the ASCII-encoded real number
format + null character.

3.2.5 Starting Data Collection

To enable serial output,
send JKC_SERIAL (0xC7) or ‘s’.

To start pre-section (always),
send ‘p’ or ‘P’.

To arm the section mark detector,
send JKC_ARMREALMARK (0xD4).

To start real section,
send ‘r’ or ‘R’.

Arming the section mark detector allows the K processor to send JKC_REAL (0xC1)
to the PC. The PC shall always inform K to start real section. In the case where pre-section
data is not needed, the PC shall send ‘r’ immediately after ‘p’.

3.2.6 Reading K Processor Output

Upon receiving JKC _INI (0xC3, as a result of starting the presection),

1. call GetByte to receive the flag that indicates the unit system;
(Currently the value is always non-zero, indicating the metric system.)
call GetFloat to get the acceleration sampling interval in meter;
call GetFloat to get the average rut distance in meters;
call GetFloat to get the laser scale factor;
call GetFloat to get the laser offset;
call GetFloat to get the acceleration scale factor,
call GetFloat to get the acceleration offset;
call GetFloat to get the time scale factor.

NN WN

Upon receiving JKD_ACTIVE (0x8C), as a result of requesting active lasers,
call GetByte 16 times to construct an array of 16 flags.

11

Each byte indicates whether the corresponding laser channel is active (0: not active,
non-0: active). The total number of active lasers shall be used in controlling the number of
repetition in reading raw rut data.

Upon receiving KD_PROFILE (0x83), as a result of requesting one-wheel-path
profile,
call Get21 to get the one-wheel-path, signed profile value.

The unit of profile is entered via the configuration program before the data collection.
If the profile value is 0x100000 before the sign-extension operation, it’s a bad profile value.
This also applies to two-wheel-path profile too.

Upon receiving JKD_KPROFL (0x90), as a result of requesting two-wheel-path
profile,
1. call Get21 to get the left profile;
2. for K program dated before 02/96, read one byte JKD KPROFR (0x91)
before reading right profile;
3. call Get21 to get the right profile.

Upon receiving JKD ACCEL16 (0xA4), as a result of using 16-bit A/D converter
and requesting raw profile data,

call GetLong to get a 4-byte integer;

get the signed A/D value for the accelerometer from the upper 16-bits;
get the signed A/D value for the laser from the lower 16-bits.

call Get21 to get the unsigned time value between samples.

. If the time value is TF21_TOOLONG, the time between samples is too
long.

6. If the time value is TF21_NOACC, the acceleration is invalid.

7. If the time value is TF21 _NOLASER, the laser value is invalid.

N =

Upon receiving JKD_ACCEL (0x85), as a result of using 12-bit A/D converter and
requesting raw profile data,

call Getl4 to get the unsigned accelerometer A/D data;

call Get14 to get the unsigned accelerometer A/D data;

call Get21 to get the unsigned time value between samples.
check time value following the previous rules.

B

When collecting one-wheel-path IRI, upon receiving JKXD IRI (0x81),

1. call GetFloat to get the IRI;
2. call GetFloat to get the average speed in km/hr;
3. call GetFloat to get distance since data collection in km.
Upon receiving JKC_REAL (0xC1),
K has detected the section marker; it’s time to send ‘r’ to K to start real section.

Upon receiving JKD_ERROR (0x8F),
call GetString to get an error message from K.

12

3.2.7 Terminating Data Collection
Send <ESC> to terminate data collection.
33 Rut Measure Procedures

A description of the rut bar procedures developed for the Siometer/rutbar was
developed and discussed in Research Report 1290-1F 6-1995. The PC computes the rutting
statistics that are used for PMIS. The 68020 module described in this report, can directly
compute the general string line rut statistics in real-time for laser sensors. This section will
discuss the general string line method which is computed in real-time for the 68020 module.

The string line method is based on five displacement measuring sensors placed on the
front of the automobile as illustrated in Figure 3.2.1. The Texas DOT has developed rut bars
for each of the vans used for rut and roughness measurements using acoustic sensors.
TxDOT is currently constructing a five laser rut bar for evaluation in replacing the five
acoustic sensors with lasers. Two of the lasers will be used jointly for both rut and profile
calculation.

Rux Bar

4
=

Figure 3.1 Texas Five Sensor System Rut Bar
3.3.1 String Line General

The various rut methods used by TxDOT may be considered variations of the general
string line procedure which is illustrated in the Figure 3.2. This general method is outlined as
follows:

If we lay a hypothetical string along the cross section of the surface of road, all the
straight or convex portions of the road will contact the string, and all the concave portions of
the cross section, the ruts, will be under the string. The position of the deepest rut is found
where the surface of the road is farthest from the string. This maximum depth is defined as
the rut depth of the cross section. Practically, we use distance sensors to measure the depths
of a number of nodes on the cross section with respect to a horizontal rutbar. The measured
cross section of the pavement is simplified to a polyline. The hypothetical string also
becomes a polyline. Thus the nodes on the cross-section polyline that do not touch the string
are the rut candidates. An algorithm was developed for the computer to construct this string
and find the nodes that are ruts. The general method is illustrated in the figures following.

13

2. String Line
General

h=m*x+c

m (slope) = (h10 - h5) / (x10-x5)
¢ =h10 - (m * x10)
R=h7-(m*x7+c¢)

12

11 10 7 5 3 2 1

h12

1

h=mx+c

m (slope) = (h5 - h2)/ (x5-x2)
¢ =h5-(m * x5)
R=h3-(m*x3 +c¢)

Figure 3.2 String Line General

14

CHAPTER 4
Main Chassis Module

4.0 Overview

The main chassis module contains the various system components for computing
profile and rut. It interfaces with the PC and system sensors. Either real-time or post
processed profile can be obtained for two independent wheel paths. The rut measuring
system, likewise can provide rut data for using up to 10 acoustic channels, or 5 channels
using the real-time Texas Rut procedure as noted in Chapter 3. The Texas rut method uses
the PC for the real-time rut computations. The raw read readings may optionally be saved
and later post processed. The 68020 processor module has the capability for computing real-
time laser rut for up to 11 lasers using the string line method, also described in Chapter 3.
However, in order to facilitate laser rut, the main chassis module would need to be modified
to interface with the additional lasers. A functional description of each module follows:

4.1 Functional

A basic layout of main chassis unit is illustrated in Figure 4.1. As illustrated in the
figure, the unit consists of the 68020 module or K board, three power supplies, two laser
interface modules, a signal interface module, a laser power module, and a smart A/D module.
The unit receives signals from two accelerometers, two Selcom lasers, a distance sensor and
an event or infrared start sensor. The front control panel, Figure 4.2, provides controls for
turning on the unit, resetting the processor, and for selecting either the distance signal for
normal operations of a simulated distance signal (time/distance switch) for testing. The back
panel, Figure 4.3, provides the connectors for the various sensors, interface to the PC, power
and fuse connectors.

The three power modules provide power for the interface and processor boards, as
well as the two Selcom lasers. Two 24 volt power supplies provide positive and negative
voltages to the laser power modules (Chapter 5). This module then provides the necessary
voltages for the lasers, signal interface module, smart A/D module, and laser interface
modules. There have been two slightly different versions of the main chassis module. In the
first one, the third power supply provides a +5, and * 12 voltage. The 5 volt is used for the
digital logic. The +12 volts are used primarily for the operational amplifiers as will be
illustrated in the following power wiring diagrams. Twelve volts are also sent to the cooling
fan and for power to the two lasers. In the second version, a single linear +12 volts is
provided. The required digital +5 volts is supplied by two three amp five volt regulators, one
for the 68020 processor module, which draws the most current (1.5 amps), and the second for
the remaining 5 volt requirements. Twelve volts is also sent to the cooling fan and for power
to the two lasers. In this second version, the 15 volts from the laser power module are used
for providing power to the operational amplifiers. The specifications for the 24 volt SOLA
supply is given in Table 4.1 and the multi-voltage switching Condor power supply used for
first version, in Table 4.2. The 12 volt single SOLA supply used in the second version is
similar to Table 4.1, except the 12 volts is rated at 5 amps.

15

The processor module, which is further described in Chapter 9, provides the
computational capability for the profile and rut calculations, controls the overall system
operation and provides communication with the PC and operator. The processor module is
wire wrapped on a standard VME compatible Euro card and connects to the other modules
via the two 96 pin connectors, J1 and J2. The specific pin assignments are provided in
Chapter 10. Compatibility with signals (power and ground) were made for the J1 and J2
connectors on the VME bus. The VME bus J1 pin outs are specified in Table 4.3 for
reference. The J2 rows A and C are available for general use as will be illustrated in Chapter
9.

The two accelerometer signals are received via two BNC connectors (Table 4.6),
where the center pin is used for the x5 volt signal. Each of the analog accelerometer
voltages, which are proportional to the vehicle acceleration as sensed by the two
accelerometers located next to each of the two lasers, are received by two independent low
pass filters. The 400 hertz filters are used to prevent aliasing as the signals are sampled via
the smart A/D module at 1000 hertz. This is shown in Figure 4.4 (a).

The two lasers, which are used to provide the road body displacement, connect to the
unit via two Amphenol 10 pin connectors. Table 4.5 provides the pin out used. The
connections provide for both signal input as well as power for the lasers. Each laser has a
separate laser interface module (Chapter 7) which converts the serial data stream (differential
data and clock signals) from the Selcom laser to an analog signal. The modules convert the
serial data to a positive 0 to 10 volt signal, whose amplitude is proportional to the distance
from the laser to the object to be measured. The analog laser signal is sent to a buffer on the
signal interface module and then on to the smart A/D module. This is shown in Figure 4.4

(b).

The signal interface module also receives signals from the distance sensor and
infrared start signals via two BNC connectors (center pin). Each signal is first optically
isolated. The distance signal, is passed through a one shot and optionally, a divide circuit,
and then sent on to the time/distance switch on the front control panel. The switch is used to
select either the actual distance signal or a simulated distance signal. Either this signal, or the
simulated distance signal generated by one of the timers on the processor module is then sent
to the distance input on the processor module. The start signal, after it is isolated, is
converted to a TTL signal for input to the processor module for initiating the profile and
and/or rut measuring process. These two signals are shown in Figure 4.4 (c).

Rut measurements are obtained through the acoustic sensors. The displacement of
the rut bar with respect to the pavement is accomplished with a signal pulse, where the signal
width is proportional to the distance. Two separate Amphenol 7 pin connectors are used for
the acoustic sensors one to five, (Table 4.7) and sensors six to ten, (Table 4.8). The five
Texas rut system uses sensors one to five.

The personal computer or PC interface is connected via a three wire serial (RS232
compatible) 25 pin DIM connector. The unit is in the DTE mode, thus direct connection to
the PC (DTE mode) should be made. This connection is given in Table 4.8. Figure 4.4
illustrates the overall signal processing scheme.

16

Table 4.1 General Specifications — 24 Volt SOLA Supply
Voltage/Current Ratings:
Model Number Output
SLS-05-060-1 +5V/6.0A
SLS-12-034 +12V/3.4A
| SLS-24-024 | +24V2.4A \

Operating Temperature Range:

0 to +50°C (Derate to 40% at +70°C)

Temperature Coefficient (Typical): +/-0.01%/-C

Stability:
Vibration:
Shock:

EMI/RFI:

Cooling:

Input Specifications:

Multi Input (all units):

Frequency Range:

Transient Response Time:

Fuse Requirements:

Within +/-0.05%(For 24 hours after warm up)
Per MIL-STD-810C, Method 514
Per MIL-STD 810C, Method 516

Linear power supplies have inherently low conducted
and radiated noise levels. For most system
applications, these power supplies will meet the
requirements of FCC Class “B” and VCE 0871 for
Class “B” equipment without additional noise filtering.

Forced air @20 CFM

100/120/220/230/240 VAC selectable +/- 10% except
230 is +15%, -6%

47-63Hz. (Typical is 60Hz. Derate output 10% at
50Hz.)

50 uSEC at 50% load changes for outputs rated

up to 6A

100 »SEC at 50% load changes for outputs rated 6 A
and over.

Units are not fused internally. For safe operation, user

must provide input line fuse as per values given in
table.

17

Table 4.1 General Specifications — 24 Volt SOLA Supply(continued)

Output Specifications:

Line Regulation: 0.05% for 10% change

Load Regulation: 0.05% for 50% change

Ripple: 3.0 mV maximum peak to peak

DC Output Adjustment Range: +/-5% minimum

Overvoltage Protection: All 5 volt outputs include built-in OVP as standard

(setting is 6.2V +/-0/4 V). OVP is optionally available
on other outputs.

Remote Sensing: All units listed have remote sensing capability.
Overload Protection: 125 to 150% foldback current limit

Dielectric Withstand Voltage

(Min.): 3750 VAC input/output

1250 VAC input/safety ground
500 VAC output/safety ground

Table 4.2 Condor - GPC55 Series (Multi-voltage Switching Supply)

Ratings
Input: 100-240 VAC, 1.7 A, 47-63Hz
Outputs: 55 Watts Maximum Continuous Power — Total of all Outputs

Model Watts | Output #1 Isc Output #2 Isc Output #3 Isc | Outputi#4

Isc

GPC55A 55 +5VDC6A 4A | +12VDC3A 4A | +12VDCIA 3A | -12VDCI1A

3A

Table 4.3 Condor Connections
(Related to Table 4.2)
J1 AC Input J2 Multi-Output Models (Reference Table 4.2)

1) Ground 1) Output 2 (+) 6) Common
2 Neutral 2) Output 2 (+) 7) Common
3) Line 3) Output 1 (+) 8) Output 4 (-)

4) Output 1 (+) 9)Output 3 (+/-)

5) Common

18

Table 4.4 J1 - VMEDbus Signal Descriptions
Connector
Signal Mnemonic And Signal Name and Description
Pin Number
ACFAIL* IB: 3 ACFAILURE
IACKIN* 1A: 21 INTERRUPT
ACKNOWLEDGE IN
IACKOUT* 1A: 22 INTERRUPT
ACKNOWLEDGE OUT
AMO-AMS5 1A: 23 ADDRESS MODIFIER
1B: 16, 17, 18,19 (BITS 0-5)
1C: 14
AS* 1A: 18 ADDRESS STROBE
A01-A23 1A: 24-30 ADDRESS bus (bits 1-23)
1C: 15-30
A24-A31 2B: 4-11 ADDRESS bus (bits 24-31)
BBSY* 1B: 1 BUS BUSY
BCLR* 1B: 2 BUS CLEAR
BERR* 1C: 11 BUS ERROR
BGOIN*-BG3IN* 1B: 4,6,8, 10 BUS GRANT (0-3)
BGOOUT*-BG30OUT* 1B: 5,7,9,11 BUS GRANT (0-3)
BRO*-BR3* I1B: 12-15 BUS REQUEST (0-3)
DSO* 1A: 13 DATA STROBE 0
DS1* 1A: 12 DATA STROBE 1
DTACK* 1A: 16 DATA TRANSFER
ACKNOWLEDGE
D00-D15 1A: 1-8, 1C: 1-8 DATA BUS (bits 0-15)
D16-D31 2B: 14-21 DATA BUS (BITS 16-31)
2B: 23-30
GND 1A: 9,11,15,17,19 GROUND
1B: 20, 23
1C: 9
2B: 2,12, 22,31
IACK* 1A: 20 INTERRUPT
ACKNOWLEDGE
IRQ1*-IRQ7* 1B: 24-30 INTERRUPT REQUEST (1-
7)
LWORD* 1C: 13 LONGWORD
[RESERVED] 2B: 3 RESERVED
SERCLK 1B: 21
SERDAT 1B: 22
SYSCLK 1A: 10 SYSTEM CLOCK
SYSFAIL* 1C: 10 SYSTEM FAIL
SYSRESET* 1C: 12 SYSTEM RESET

19

Table 4.4 VMEDbus Signal Descriptions (continued)

Signal Mnemonic Connector and Pin Signal Name and Description
Number
WRITE* 1A: 14 WRITE
+5V STDBY 1B: 31 +5 Vdc STANDBY
+5v 1A: 32,1B: 32,1C: 32 +5Vdc STANDBY
2B: 1,13,32
+12V 1C: 31 +12 Vdc Power
-12V 1A: 31 -12 Vdc Power
GND A-10, A 17-A19, A24, GROUND (Logic)
A25, A31, A32,Cl1,
C20, C25,C31,C32
All All ADDRESS bus (bit 11)
Al0 Al2 ADDRESS bus (bit 10)
A8 Al3 ADDRESS bus (bit 8)
A6 Al4 ADDRESS bus (bit 6)
A4 AlS ADDRESS bus (bit 4)
A2 Al6 ADDRESS bus (bit 2)
D7 A20 DATA bus (bit 7)
D6 A21 DATA bus (bit 6)
D4 A22 DATA bus (bit 4)
D2 A23 DATA bus (bit 2)
-12v A26, C26 -12 Vdc Power
(Reserved) A27, C8-C10, C27 Not connected.
+12V A28, C28 +12 Vdc Power
+5V A29, A30, C29, C30 +5 Vdc Power
INT4* Cl1 INTERRUPT REQUEST 4
INT3* C2 INTERRUPT REQUEST 3
INT2* C3 INTERRUPT REQUEST 2
INT1* C4 INTERRUPT REQUEST 1
IORES* CS INPUT/OUTPUT RESET
XACK* Cé6 TRANSFER
ACKNOWLEDGE
CLK C7 CLOCK
A9 C12 ADDRESS bus (bit 9)
A7 C13 ADDRESS bus (bit 7)
A5 Cl4 ADDRESS bus (5 bit)
A3 CI5 ADDRESS bus (bit 3)
Al C16 ADDRESS bus (bit 1)
A0 C17 ADDRESS bus (bit 0)
STB* C18 STROBE - An input signal.
WT* C19 WRITE
D5 C21 DATA bus (bit 5)
D3 C22 DATA bus (bit 3)
D1 C23 DATA bus (bit 1)
DO C24 DATA bus (bit 0)

20

SIGNAL

+20

+18

-18

+12

Gnd

Gnd

DATA
DATA NOT
CLK

CLOCK NOT

SIGNAL

Table 4.5 Laser Connections

|"U
Z

“—TrmaoaTmmgaow»

Table 4.6 Accelerometer Connections

PIN

Right (Left) Accelerometer In Center

Ground

SIGNAL

Acoustic Channel 1
Acoustic Channel 2
Acoustic Channel 3
Acoustic Channel 4
Acoustic Channel 5
START

GND

Shield

Table 4.7 Acoustic Connections - Channels 1-5

g
Z

Qammgoaowy

21

Table 4.8 Acoustic Connections - Channels 6-10

SIGNAL

|"U
Z

Acoustic Channel 6
Acoustic Channel 7
Acoustic Channel] 8
Acoustic Channel 9
Acoustic Channel 10
START

GND

QEUmoaOw»

Table 4.9 PC Serial Connections

SIGNAL PIN

TxD
ReD
Gnd 7

w N

42 Power Wiring Flow

DC power wiring is indicated in Figures 4.5 and 4.6. Figure 4.5 provides power
wiring for the £24, 15, +5 and +12 volts. The Power modules 0 and 1 provide the +24 and -
24 volts to the laser power module that, via regulators, provide the 15 volts. As will be seen
in Figure 4.6, the laser power module also provides power to the Selcom lasers. The %15
volts are used to power the two laser interface modules, signal interface module, and the
smart A/D module. The 12 volt supply is sent to three places; the two five volt regulars for
digital power, the two laser connectors and the 12 volt fan. In the earlier version which used
the Condor power supply, the 5 volt requirement was obtained from the Condor switching
supply. As discussed above, two separate 5 volt regulators are used, both powered by the 5
amp 12 volt supply. The first is used to power the K processor module. The second 5 volt
regulator is used for the two laser interface modules, the signal interface module, and the
smart A/D module.

Figure 4.6 illustrates the main laser power (except for the 12 volts) wiring. As
indicated in this figure, the laser power module also provides (via regulators) +20 volts, and
+18 volts. There are two independent sets of regulators providing these three voltages.
Table 4.3 provides the pin outs for these voltages. The voltages are sent to the Selcom laser
through this connector. Also illustrated in the Figure 4.6 is the -24 volt input from the power
modulel to the laser power supply module.

22

Figure 4.7 illustrates the 110 volt AC power wiring. The 110 volt primary is first sent
to the on/off power switch. It is then sent to a 5 amp fuse and then directly to the three power
supplies. The secondary is sent to the other coil side on the transformers of the power
supplies. Figure 4.8 illustrates the system grounds. Ground lug 1 is attached to the 110 volt
AC power grounds and the three power supplies. Ground lug 2 is primarily the digital and
signal grounds. Both lugs one and two are attached to each other.

4.3 Signal Flow

Signal flow is illustrated in Figures 4.9 and 4.10. Figure 4.9 provides the wiring for
the laser and accelerometer signals. As noted, the data and data not signals, along with the
clock and clock not signals are sent from the laser 10 pin connector to the laser interface
module. As previously discussed, the laser interface module converts this signal to an analog
signal which is sent directly to the signal interface module. This module sends the signal on
to the A/D converter of the smart A/D module. The accelerometer signals are sent, via the
BNC connector to the 400 hertz filter on the signal interface module and then to the A/D

module.

Figure 4.10 illustrates the signal wiring for the acoustic channels, start and distance
signal and the reset signal. As noted, the acoustic signals are sent directly to the system
processor where they are connected directly to the gate input of each timer. The distance
signal, after connecting to the signal interface module is sent to the time/distance switch.
From this point, either the distance input signal or a separate time signal (with a user
programmable period) is selected. The monetary reset switch is used to initialize the
processor module.

23

144

noke] urasg diseq [y am3ig

Time/Distance

On/Off Switch Switch

Reset

-

[92]
«
wn
R
=] 5
«
+ 23 & g
SE 2 Processor Module 1 7 v
) Q J2 ' ' J1 [¢/] w
N K board i B
2 d
Smart A\D Module o
Power Power
Module 0 Module 1
-24v +24v

5v regulator
('K Board')

Laser Interface
Module 0 (right)

Laser Interface
Module 1 (left)

aoepau|
|eubig

5v Regulator

§ |
toy | | [Fuse] | |]] [

Accelerometer gy | aser In Acoustic Distance Start Acoustic | ¢ Laserln Fan Accelerometer
Right 1-5 6-10 ' Left

Y4

[sued Juolj 7'y am3ig

Laser
Right

ONON®

Laser
Left

O O O

Reset Reset

O O

Processor 2 Prosessor 1

(not used)
Power Time
Mode
On
af O
Distance
Mode

110V /60 HZ

[oue{ JUOIL] - WISAS JUSWIMSEIA] 3[1JOId

[oued Yoeq ¢'{ aIm3ig

Right Laser Accelerometer- Rt.

Accelerometer-Lt.
Fuse Left Laser

Q ©

© © Q

Acoustic 1 Acoustic 6 -

Serial

[——]

-5

10
Dist I
istance In AC
Start In 7‘
;use 1/
(5A) 60

CHZ

[oued Yoeg - WIISAS JUSWINSEIIA 3[1J01]

LT
SUONOAUUOD) JIMOJ §1- PUE ST+ ‘T[+ G+

[Suiyy pp amBiyg

Time/Distance
On/Off Switch Switch

Reset

Laser Interface

Laser Interface

Module 0 (right) Module 1 (left) o
+5]-1 +15 +15 +5[-15 %é
n L
.15 £
+5
+15
. Processor Module 1
[°3 L]]
23w J2 K board 1 .
D? 8 + v % >
= N Processor Module +15 o §
Smart A\D 7
+5 3
-15
Power Power
Module 0 Module 1
-24v +24v
Sv regulator
('K Board) *+12 5v Regulator
110v Fuse 110v ‘
Accelerometer Rt. Laser In Accoustic Distance Start Accoustic Lft Laserin Fan Accelerometer

Right

6-10

Left

[Suup - INOAET WINSAS

8¢C

Z3uuip ¢ am3iyg

SUONPAUUOD) IaMOd $T- ‘T ‘817 ‘81+ 0T+

Time/Distance
On/Off Switch Switch

Reset

1]

Laser Interface
Module 0 (right)

Laser Interface
Module 1 (left)

aoeua|
jeubis

£
+ Ao +24 r—
SEZ Processor Module 1 0 §
o 'K board! 28
-18 +18 o J
Processor Module =< =
Smart A\D -
+24
18 &
18
+20 —
Power Power
Module 0 Module 1
-24v +24y
5v regulator
(K Board') lL_I__ +20 5v Reguiator
110 v Fuse| | | | o] |
Accelerometer gy | aser In Accoustic Distance Start Acoustic Lft Laserin Fan Accelerometer

Right

1-5

6-10

Left

Z Buuip - Inoke waisAs

6C

Time/Distance
On/Off Switch Switch Reset

Laser Interface Laser Interface
Module 0 (right) Module 1 (left)
3
- 8
o
=
& |+8¢ _
& SE 2 Processor Module 1 3
P ° K White 'K board' 3
v o —Black g
g £ - Smart A\D Module @
=)
= _Black EEE—
W
Black |
Power White Power
Module 0 —Black | , Module 1
-24v White +24v
Sv regulator White White
L (K Board') e ‘ [5V Regulator !
-] J Black I
— 11
T N R 7 7 O B L2 D

Accelerometer Rt. Laser In Acoustic Distance Start Acoustic Lft LaserIn Fan Accelerometer

¢ Suunp - InoAeT wASAS

0¢
Spunoln) - § JuLrm

L'y sm31yg

Time/Distance
On/Off Switch Switch

Reset

:

-

Laser Interface
Module 0 (right)

Laser Interface
Module 1 (left)

aoepuaju|
|leubig

z Processor Module 1
+8¢ 'K board' =
553 ® 8
o (32 T £
<2
Processor Module e
ﬁ Smart A\D
Power GN LG 2 Power
Module O Module 1
-24v - — +24v
5v regulator L
('K Board') 5v Regulator
GND LUG 1
| o] [| [Fuse] | O I T L e
Accelerometer Rt. Laser Acoustic Distance Start Acoustic Lft. Laser Fan Accelerometer
Right g] 1-5 6-10 In Left

SpunoJo) - BULIAA - IN0AeT] WBISAS

I¢

o] /V

1910WO0I9[900V//1ase] §'y amBig

Time/Distance
On/Off Switch Switch Reset

=

|

B Laser Interface

il: Module 0 (right)

Laser Interface
Module 1 (left)

A >——1 2 0
N S < 39
7z Z & 2o
ST—1 @ | ¢
VY P - 4
3
A\D - K Board /] "
<
@]
+ g ;DU) Y 1. %
SE 2 N Processor Module 1 \ A 2 || @
° S 'K board' ™V o || B
o
z £
Smart A\D Module L ® 5.
Channel A ~ m
> |
Accelerometer Rt. e
Power P ~ Power
Module 0 ~ Module 1
-24v A +24y
A >
5v regulator \
(K Board) A /N 1 5v Regulator
I N i}
[| lmov Fuse| [LT e [
Accelerometer gy | aser In Acoustic Distance Start Acoustic | ¢ Laserln Fan Accelerometer
Right 1-5 6-10 ' Left

0B (J/V 19)3WI0ID[I0V\IISE]

LI
N

JOSNY\IUBISI(N\MERIS\OISNOdY ¢ 231

Time/Distance

On/Off Switch Switch Reset
AY
de A NO \ Laser Interface Laser Interface
E é C,\?CM Module 0 (right) Module 1 (left)
5 2 o
o pd i < 35
- < >3
oL
o
Z WV
o U —
+ Q
SE 2 \'(Processor Module 1 o
® 0 J2 ' ' J1 X
N AN K board 5=
2g
N Processor Module =~z
Smart A\D -
N
>-
Ny
Power P 7 Power
Module 0 ~ Module 1
-24v +24v
5v regulator
(K Board') 5v Regulator
[1104] Fuse | e
Accelerometer gt | aser In Acoustic Distance ~ Start Acoustic | g | asern Fan Accelerometer
Right 1-5 6-10 Left

Z 3uuip [eusig - 1noke WaISAS

Profile Sensors Signal Flow

Filtered
+/- Volt +/- Volt 16 Bit
Analog 400 HzLow Analog Digital
Data Pass Filter Data_ Data
! Accelerometer ‘_)*‘ s
' (Left) Signal | Analog-to- K
Interface ! Digital (A/D) @)
Accelerometer Module ‘ Board H Board
(Right) | o
(a) Accelerometer Signal Flow N\///
To PC
32 kHZ x 32 0to 10
' BITS . Volt Buffered 16 Bit
Digital Serial Analog Analog Digital
Data Data Data Data
Laser (Left) Laser Signal Analog-to-_i
Interface Interface Digital ! K-Board
. Module Module (AD) by
Laser (Right) | (LIM) Board | |
B
. !\J l-/;
(b) Laser Profile Sensor Signal Flow ~_
To PC
| Si j :
. gnal
Distance Pulses ’—) Interface] =y K-Board To PC
Module
—> ¢ ‘ Time Pulses }

(c) Distance Sensor/Simulation

Distance /Time Switch

Figure 4.10 Profile Sensors Signal Flow

33

CHAPTERS
Laser Power Module

5.0 Overview

This section provides technical information related to the laser power supply module.
Also included in this section is a complete description of the printed circuit board (PCB)
design used for implementing this module. Although this and the next four chapters discuss
design modules which have been implemented as a PCB, only this chapter will include the
complete PCB design. The designs of the other boards are available to TxDOT, and are also
kept at one of the local PCB board construction facilities.

The laser power supply board is designed to supply regulated power to two (2)
Selcom optocator units. Each optocator requires power of various DC amplitudes. The laser
power supply board utilizes multiple voltage regulators to produce the differing voltages
required by the Selcom optocators. The board also provides +/- 15 volts for the smart A/D
module, which is described in a later chapter. Design concepts are provided in the schematic
at the end of the chapter.

5.1 Power Considerations

The laser power supply derives its power from an external +/-24VDC power supply.
The laser power supply generates the output voltages defined in Table 5-1. A separate
voltage regulator is utilized to generate each output.

Max Number of
Output Voltage Current Outputs

(Amps DC) tp
+20 VDC 0.25 2
+18 VDC 0.13 2
- 18 VDC 0.13 2
+15VDC 0.11 1
-15VDC 0.11 1

Table 5.1 Output Voltages

5.1.1 External Connections

Input and output power connections are made at terminal blocks J1 —J5.

34

5.1.2 Input Power Connections

An external +/-24VDC power supply is connected to the laser power supply board at
terminal block J1. Make connections as marked on the board.
External Power Connections: The laser power supply board supplies power to two (2)
independent Selcom optocators. Each optocator requires power of the following magnitudes:
20VDC, +/-18VDC and 12-15VDC. The 20VDC, and +/-18VDC supplies are made
available to each laser at terminal blocks J3 and J4. A common grounding block is provided
at terminal block J2. Routing of the 15VDC supply depends on the configuration of the
overall system. In some systems, an external 12VDC supply is used to power the 12-15VDC
supply. In this configuration, the laser power supply board’s +/-15VDC outputs are utilized
to power other analog boards. If an external 12VDC supply is not available, the 15VDC
supply may be used. Be careful not to exceed the current limitations defined in Table 5.1.
Figure 5.1 provides a schematic of laser power module. Figures 5.2 through 5.6 illustrate the
PC Board design criteria. Figure 5.7 provides a plot of the board layout and signal interface.

5.1.3 Laser Power Supply Board Parts List

Quantity | Part# Description Reference Designator(s)
2 MC78M20CT | +20VDC Voltage Regulator | U1, U2

2 MC7818CT +18VDC Voltage Regulator | U3, U4

2 MC7918CT -18VDC Voltage Regulator | U5, U6

1 MC7815CT +15VDC Voltage Regulator | U7

1 MC7915CT -15VDC Voltage Regulator | U8

8 Cap. 0.33 pF Tantalum C1-C8

8 Cap. 10 pF Tantalum C9-Cl6

3 3 Position Terminal Block J1,J)3,and J4
1 7 Position Terminal Block J2

1 2 Position Terminal Block J5

Table 5.2 Parts List Laser Supply Board

35

9¢

A B D
Ut u2
MC78M20CT Ja: MC78M20CT 1
4. C1 2 A co L2 2 cio
0.33uF 10uF 0.33uF 10uF
+24V u ul 33u Ou
%: I J
— GND — GND
e -24V -
n ua ua
S J1.2 1 I_I vcl 3 H =1 1 L__l‘;] b 2 =
a GND MC7818CT J3:2 MC7818CT 2
£ 3 == : 2C1 = &4 ! =12 :_71
L= 0.393uF 10uF 0.33uF 100F i)
Ji:3 =
-
o
= GND — GND b
—_
—
[
cs Jd ce &
Toawr |, ok |, —
us |° mcrasct us |© mcreteCT o
1 vl o 1o Vw2 X
h | @]
=1 133 ! e <
J2:1 Jdcen | C14 P
T 10uF *F 10uF
He= -
J2:2 %
x s L=
[T ey = | _|GND GND g
o J23 = = =B
[47]
s e <
c J2:4 %
2
o r+eEx4 a
(D J2:5
= Lo Sk E
s2:6 1 |—|U7,,c 2 2 T us [P mcrerscT =
: e e 5
=43 MC7815CT ; N
cr 2 c15 51
J2:7 E 3 == C16
0.33uF 10uF = J0uF
GND
= GND J GND
Tale Laser Power Supply
Size Number Rev
B 1
Date 14.ut96 [orawnty g pugess |
Filename PWRSUP S01 [sheet + of 1
A B D

L

MITA wonog preoq Dd Ajddng 1omog ¢'g amSig

Tite Power Supply PCB

Size Number Rev
A Bottom 1

Date 14098 Drawnby B.Burgess

Filename PWRSUP.PCB Sheet ' of !

D

8¢

[
Hee = 1
oQ
] e =
=e me o
® Ne ® Ne [] :
] (%]
[.
° mE e [¢
(1]
-
| L L u wn
L J O. ® _g
(] o 3
<
me ue me o o
e O
) [|) [| g:!
| | L u g.
® ® [] w
o ® o <3
- 5
me me me [| -
<
25}
wn
7
Tite Power Supply PCB
Size Number Rev
A Solder Mask 1
Date 14Jul96 Drawn by 8 Burgess
Filename PWRASUP PCB Sheet 1 of 4
B | D

6t

maip doj preog Dd Addng 1amod ¢ amSiy

Title

Power Supply PCB
Size Number Rev
A Top 1
Date 14008 Drawnby 8Burgess
Fllename PWRSUP.PCB Sheet ! of 1

114

B D
> » 2
O %33 : O
g B B
1 J5 ry
g g &
Power in
15 18 P rEn
eyea b + +O & v
10uF 100F ‘5 W
c2 C4 ce G} v]
Q
0.33F U2 0.33F U4 03%F U8 rin
-
. 4
a3
c1o c12 ci4 g
MCT8M20CT MC7818CT MC7918CT . 2.
O e O .o E
18V g}
C1 10 C3 10vF C5 10uF A
s20v o
03%F U1 03%F U3 033F US - o
]
-8V [=W
~ 42
+18V
€9 mcramzocT O “mcrerscr C18 T ucrarect ! o
0 O O 2
O 1o Power Supply o o - O ﬁ
Pres Version 1.0 BN - g
Title
Power Supply PCB
Size Number Rev
A Silk Screen 1
Date 143U Drawn by B.Burgess
Filename PWRSUP.PCB Sheet 1 of
B | D

| o | ™ <
Figure 5.6 Power Supply PC Board Drill Schematic 2™ B
a a3
m 2
€l =
£ 5 2
- o|w
a
a
@
5| E |4
a
z| A iz
1.7 I3
Fe)
E
F F z
[
E
> > > > > > > > > > > > > —2<%§
F |@ o|&
>
>
F F
+ o+ +
+ + +
X X+ X X +
X X
F X o+ +
X
+ o+
F F
+
+
+ +
X + +
b X X X + X X +
X X
+ +
+ o+
F F
>
> + +
+ +
> X X+ X X +
+ +
F F
(in mills)
Y =50
X =46
+=38
T=150
o | ™ <

41

LASER POWER BOARD

+20
LEFT
LASER ..o —
POWER
-18 —3—
PROVIDES REGULATED POWER
+20 > FOR
arr +18 —1 s LASERS AND SENSOR MODULES
POWER
18 —
L
GND <—>
S
T —
+15 -15 GND -24 +24

POWER FOR LASER, SIGNAL

AND A/D BOARDS VOLTAGE IN

Figure 5.7 Laser Power Board

42

CHAPTER 6
Signal Interface Board

6.1 Overview

This section details the design of and serves as a reference for the Signal Interface
Board (SIB), hereafter referred to as the SIB. The SIB performs signal conditioning for
specified K processor board inputs. The SIB provides two (2) low pass filters, two (2) single
ended analog buffers, and optical isolation for two (2) discrete signals. One (1) of the
discrete signal interfaces is equipped with a “divide down” capability. This function is user
selectable and intended to allow high frequency distance pulses to be scaled into a lower
frequency range. A light emitting diode (LED) provides visual representation of the logic
level on the remaining discrete signal.

6.2 Detailed Design\SIB Signals

This section provides the detailed design of the SIB. The SIB interfaces to four (4)
types of signals. The following paragraphs identify the different signal types and the
corresponding conditioning performed for each.

6.2.1 Left and Right Accelerometers

The SIB interfaces with the left and right accelerometers. Each accelerometer signal
is passed through a low pass filter (400 Hz). The filter outputs are accessible on the J3
connector. These signals may then be routed to an A/D converter for processing by the K
processor board. The low pass filters remove any high frequency components that may be
introduced as a result of vehicle vibration and electromagnetic interference (EMI).

6.2.2 Start Signal

The start signal indicates the beginning of a section of road. A device generates the
signal as the unit passes over a white stripe. This is accomplished by emitting a beam of
light and detecting its reflection off of a bright object (the pavement itself does not reflect the
light). The start signal is electrically grounded during the presence of the stripe, otherwise it
is electrically open. The signal is optically isolated and buffered. The output is available on
connector J4 such that it can be routed to the K processor board. The SIB is equipped with
an LED such that the current state of the start signal can be easily determined. The LED
illuminates when the sensor detects reflected light, as when it passes over the white strip.
The LED allows for quick alignment and operational checkout of the sensor.

6.2.3 Distance Signal

The distance signal is generated by a sensor that generates pulses at a frequency
proportional to the speed of the vehicle. By counting the number of pulses during a period of

43

time, the distance traveled may be determined. This signal is optically isolated and buffered.
Additionally, jumper block JP1 allows the user to “divide down” the pulses. The “divide
down” function allows high frequency ranges to be mapped into a lower range thus
generating fewer processor interruptions. This function also allows the outputs of different
sensors that produce different frequencies for the same speed, to be mapped into the same
range.

6.3 Hardware Installation

This section provides the installation instruction for the SIB. Installation consists of
configuring JP1 and connecting external wiring. The following paragraphs detail these steps.

Jumper Configuration: Jumper block JP1 must be configured for the required scaling
of the distance signal. Table 6-1 defines the configuration settings for JP1.

Jumper Pins Corresponding Output Frequency

1-2 Fout=Fin

3-4 Fout=Fin/2

5-6 Fout=Fin/4

7-8 Fout=Fin/8

9-10 Fout=Fin /16

11-12 Fout=Fin /32

13-14 Fout =Fin / 64

15-16 Fout=Fin/ 128

Table 6.1 Jumper Block

6.3.1 Configuration External Connections
Power, input signals, and output signals are all connected to the SIB via terminal

blocks J1, J2, J3, J4, and J5. The following paragraphs define the connections for each
signal.

44

Power to the SIB is applied at terminal block J1. The board requires +5V DC and +/-
12V DC supplies. The grounds of +5V and +/- 15V supplies are assumed to be common.
This ground is connected to the GND connector of J1. If the supplies do not have a common
ground, they must be connected together either externally, or at the GND input of J1. When
connecting supply grounds together, be aware of the employed grounding system. Use a
scheme that prevents ground loops.

6.3.2 Accelerometer Input and Output Signal Connections

The accelerometer inputs are connected to terminal J2. The left and right
accelerometer inputs connect to terminals LAl and RAI respectively. The filtered
accelerometer outputs are connected terminal block J3. The left and right outputs connect to
terminals LAO and RAO respectively.

6.3.3 Laser Input and Output Signal Connections

The laser inputs are connected to terminal J2. The left and right laser inputs connect
to terminals LLI and RLI respectively. The laser outputs are connected to terminal block J3.
The left and right laser outputs connect to terminals LLO and RLO respectively: Distance
Signal Input and Output Connections

The distance input and output signals are connected to the SIB at terminal block J4.
The two terminals are labeled “Dist”, with an “I” and “O” identifying the input and output
terminals respectively.

6.3.4 Start Signal Input and Output Connection

The start input and output signals are connected to the SIB at terminal block J4. The
two terminals are labeled “Start”, with an “I” and “O” identifying the input and output
terminals respectively.

6.4 Signal Interface Board Layout

Figure 6.1 and Figure 6.2 provides a plot of the board layout, and a schematic of the
board.

45

SIGNAL INTERFACE BOARD

RT/LT LASER &
ACCELEROMETER IN Gl‘l\lD +5 -1|5 +1|5
[] ‘
. . Vol ol
RT/LT
LASER &
ACCELER- DISTANCE/START/
OMETER ACCELEROMETER/LASER
ouT SIGNAL INTERFACE BOARD

START/DISTANCE
SENSOR IN/OUT

Figure 6.1 Signal Interface Board

46

Ly

A B C D
L Accel In
c J2:1 ut
e Ce= ! — - M oul| 3
Distance In zle wEld-
x] I b L Accel Out)
S X oI onof 2
J4:4 xS ® ali? |7 , 43
L I x N EX 1
ﬁgg -12v D7eLBL +12v
R1 T c5 R A I In T
— AW — ¥ Power cce U2 T
330 o.tuF l U6:A J2:2) , ,
< il]
v ke +12v == ! & °§§ H R Accel Ou
DT e o B L el
= GND 0o X o SN A J1 —|: & | B é . , 32
4 PR R R R
837 vee e WL R = HE P
. T SN74LS221N —12v D70LBL T
Distance Out R N2 T 50 GND L UEQ
Ja:3 1 — 2. e i
s B L oo =] =3 a
o _ S vce €2 (o))
)f +12v N
l J1:3 s T) J5:2 T
oo L ‘ § = =3
=) oy
- e 2 3% I L
& o) — =
% ‘;?—1;* l GND L R Loser Out &
& s L enp R Laser In usA 94 3
A 1]
& 2 =0 8
ot == LM1458N o
' =N
SN74HC4Q40N
{ -12v z)
vee 10uF T (=)
c7 2
w€e e — ¥ =R
H L @.1uF 5
- uB "o ® GND L 8
Start In RS l GND= | [, 534 5
Ja:2 - AN a L L Out 8
10K \ ETHE oser Ou
Nou oo . u3:8 N
t 2 7 P’ L Loser In - > , 933 o
— M “D vce 23 . =1 g
¢ i i T = 4 LM1458N B
. _ — - [o9)
SN74LS54 1N w lu
- 5 = 3
J U ® U —: Tovl..;”" R 1 1.8 '“E T
- (-] h ev - 10 1.0 ¥
Stort OUt GND = TQ Cut I.rocya belween UG- 14 and A8 S)/Stem Boor_g S,
R jumper between UG- (95 Size m v
J4:1 = GND J. ::: l-‘:»m‘:.-'::lal“ﬂﬂ. Scrape eisling Size Number Re1
—43 1 I S L GND polarily indication (*+°) fram C5 and B]
- ramork opposile of the ariginal marking
: Date 20-0ct 1997 | Drown by B8urgens
Instolt C8 per new morking. n‘;‘enume svstiuscn smeet 1 of 1
A T B C b _

1

Table 6.2

SIB Parts List

Quantity Part # Description Reference Designator(s)
2 D70L8L 400 Hz Filter U1, U2
1 LM1458 Operational Amplifier U3
2 ECG3093 Opto-Isolator U4, U5
1 SN74LS221N U6
1 SN74HC4040N | Binary Counter U7
1 SN74LS541N | Buffer Us
1 Red LED D1
3 Res. 330 Q, 5% R1,R2,R3
2 Res. 10 KQ, 5% R4, R5
2 Res. 4.7 KQ, 5% Ré6,R7
1 Res. 30 KQ, 5% R8
3 Cap. 10 pF Tantalum C1,C2,C3
4 Cap. 0.1 uF Tantalum C4, C5, C6, C7
3 8 Position Jumper JP1
lock
4 Four Terminal Block J1,]2,]3,J4
1 Two Terminal Block J5
Assembly Notes:

To convert revision — board to revision 1.0:

1. Cut trace between U6-14 and R8.
2. Add jumper between U6-15 and same side of R8.

3. Reverse the polarity marking of C5 by scraping off the original and
remarking.
4. Install C5 per the new marking.

48

CHAPTER 7
LASER INTERFACE MODULE

7.0 Overview

This section provides operating instructions and general information for the use of the
Laser Interface Module (LIM). The purpose of the Laser Interface Module is to interface with a
Selcom Optocator Laser. A Selcom Optocator is used to measure distances with a high degree of
accuracy. The Optocator outputs the distance that it is measuring in a serial format. The Laser
Interface Module reads this data, performs some averaging, and then sends the averaged values to
a digital to analog converter. The output of the Laser Interface Module is a DC voltage (0 - 10
volts) that corresponds to the distance being measure by the Optocator.

7.1. Laser Interface Module Layout

This board uses the Motorola M68HC11. Following is a list of major components and their
location on the LIM:

o XC68HC711E9FS — This is an inexpensive 16-bit micro controller. It is packaged in a 52 pin
plce, and is located in the center left portion of the board.

e MACHI130 - This is a large scale erasable/programmable logic device. The MACH130 is
packaged in an 84 pin plcc, and is located to the right of the 68HC11.

o SPDACS7 - This is the digital to analog converter. Itis located below the MACH 130.

e P1 - This connector supplies the 5 volts to the board. It is located on the upper right corner of
the LIM.

e J1 — This connector provided the power to the A/D converter, and is also the interface to the
Selcom Optocator. This connector is located on the lower right corner of the LIM.

e Bargraph — The bargraph provides a rough visual representation of the distance that is
currently being measured by the Optocator. The larger the distance being measured, the larger
the bargraph will read. The bargraph is located to the right of the MACH130.

e L1 - This green LED is lit when 5 volts is applied to LIM.

e L2 - This red LED is lit when power is applied to the LIM and not the Optocator. It is also lit
if the LIM is not connected to an Optocator.

e L3 -This red LED is lit when the data being sent to the LIM from the Optocator is invalid.

49

e L1-L3 located in the upper-right comer above the bargraph display gives the connections.

The Laser Interface Module connections are provided in Table 7.1.

Signal Name | Connector Pin

Ground P1-1
+5 Volts P1-2
+12 Volts J1-1
-12 Volts J1-2
Vout J1-3
CLOCKN J1-5
CLOCK J1-6
DATAn J1-7
DATA J1-8

Table 7.1 Laser
7.2. Functionality

The Laser Interface Module uses a MACH130 to read the serial data from the Selcom
Optocator. The MACH determines if the data is valid, and sends this data in a parallel form to the
HC11 which performs the averaging. If the data is not valid, then the MACH130 lights LED L3,
and does not send the data to the HC11. After the HC11 averages the data, it sends the averaged
value to a digital to analog converter. The output of the digital to analog converter is a range from
0 to 10 volts.

Sixteen (16) bit data words are sent to the LIM from the Optocator in a serial format. This
is accomplished with two (2) twisted pair lines. One (1) twisted pair carries the data, while the
other carries a clock. Every time the clock line shifts from a logic low to a logic high, a new bit is
ready to be received on the data lines. The clock has a frequency of one (1) Megahertz. After all
sixteen bits are sent from the Optocator, the clock signal remains at a logic low for sixteen cycles.
This allows external logic to determine the location between serial words.

The serial data sent from the Optocator has the following format. It is the sixteen (16) bit
word, with the most significant bit sent first. This word is divided, with the twelve (12) most
significant bits representing the current distance being measured by the Optocator. The three (3)
least significant bits are ‘invalid’ bits, and the distance bits have no meaning.

50

The MACHI130 acts as a simple shift register in reading the data from the Optocator.
Every time the clock transitions from a logic low to a logic high, the MACH shifts in another bit
from the data line. The MACH utilizes two internal counters. The first counter is used to
determine when the shift register is full. The other counter is used to determine if an Optocator is
connected. The clock output of the Optocator clears this counter. If the counter becomes full
without being cleared, then the Optocator is either not connected or not powered.

The transfer mechanism between the 68HC11 and the MACHI130 consists of the twelve
(12) data lines and a control line. The control line (README), is active low. Every time
README transitions from a logic high to a logic low, new data valid on the data lines. The
HC11 polls README, and when it is a logic low reads the new data from the MACH130.

Table 7.2 provides the Pal equation, and HC11 program used for the board. Figure 7.1 is
the board schematic while Figure 7.2 provides a plot of the board.

51

A [B C I D
c7
U3 _I—l(—
AVGDATA1Y 24 O1uF
/AVGDATAID L Y i i)
AopaTs 2 o w2y
T C
AVGPAIA l: SUMMING ,&_"173’.." 20
g I 20v AANGE —0— C|9
A s BPOLAR OFFaET N
/_‘_V@A_:u 1 A OFFSET 1w , s
kI T
A&g: A 1o vour £] vout vee
m) &T12 (158} NCF—— _12v ——
SPDACA?
{3 RP1 10k Ohms G5
[o0] Prpan)
vee % 1WF c9 c10 c Jer
-~ /= = <
' uav 29935 0.1uF JOuF JOAuF [0 wF
t2]3 a5 |0
- N
A — GND
= GND
SWY pasear JP1]oo JP2|oo
c1 ct o < 12 12
TR 024 m i v7
N ouT| y025 i
vwo® — GND 22 pfF
L] = e] :
SN75182N bt ox [MC34064P R
e vou [Ul
. o ‘
c4 T o 5= g a4 Al Cxi
| ; EXTAL oM 8 MHz = GND
2.200pF MACH130 H '|'
, 12v
— R mopevstey |4 . | ¥ .
—_—]vRL WODN LIR c2 '&QDF 1
P 4 n)
3 — oavncs e xax
H 0 PA2ACY)
Laser Failure oo —stcisesn | 12y
vee AVGDAT. :uocwx: smmwd: 2
Bargraph T 7 s
RP2 220 Ohms 1] AVGDATAM :' PBoiAB POORD ;? AxX vee
g) /4 10 ﬁr—""” PDVTAD h
P o e R—hie—a e oo
L2] 18 = A PBUAI2 ryvysg) B CE—
I . AL PRIAI O3/ 35
| 1 1o 10 PROAIL
Red - . a; ', - N AVGDATAN 3 o000
N AJERDAT, " ASEADATAQ
Power : [0 _oer 4 R T gy ey T
el . 7] 15 swns N L) 202 Feana z
2 = A R Y oros i I
Gréen b2y wa0n PEgANe w—ﬁ‘n‘gmr\ -
= GND o Loyl e wne XCGBHCTTTESFS Laser Interface Board
10 % 0 AR N J Size Number Rev
B 1A
Dale ¥6/93 lwanby 8 Burgess
Filenama LASERINT SO1 | Sheel 1 of 1
A B C | D

ONBWAYDS pleoq doejIauf Iase] [/ amBig

LASER INTERFACE BOARD

*TlpATA &
TIME
CONVERTS SERIAL FROM
DATA STREAM LASER
FROM PROBE
LASER PROBE ¢
TO
ANALOG DISPLACEMENT <« ANALOG LASER
SIGNAL ouT
<1 GND
—1r +5
«—1— -15
T +15

Figure 7.2 Laser Interface Board

53

Table 7.2 Laser Interface Module PALASM Design Description and HC11 Program

PALASM Design Description
This section contains the listing of the program used in the MACH130.

e et Declaration Segment -----=-=———-—-
TITLE Laser Interface Module

PATTERN 1-a

REVISION 1-a

AUTHOR Brian Burgess

COMPANY UTA

DATE 10/23/92

CHIP laser MACH130

ettty PIN Declarations -----------—--—-

PIN 20 EXTCLOCK COMBINATORIAL ; INPUT
PIN 23 SCLOCK COMBINATORIAL ; INPUT
PIN 24 SDATA COMBINATORIAL ; INPUT
NODE 18..33 SHIFTREG[O0..15] REGISTERED ; INT
PIN 7..10,12..19 DATAOUT([O0..11] COMBINATORIAL ; OUTPUT
NODE 34..36 CTR1[0..2] REGISTERED ; INT
NODE 37..42 CTR2[0..5] REGISTERED ; INT
NODE 43 CTR2([6] PATIR LASEROFF COMBINATORIAL ; OUTPUT
PIN 55 /LASEROFF COMBINATORIAL ; OUTPUT
PIN 56,57,59 /LED[1..3] COMBINATORIAL ; OUTPUT
PIN 66,68,70 /LED[4..6] COMBINATORIAL ; OUTPUT
PIN 72,75,77 /LED[7..9] COMBINATORIAL ; OUTPUT
PIN 78 /LED[10] COMBINATORIAL ; OUTPUT
PIN 3 / INV COMBINATORIAL ; OUTPUT
PIN 4 /README COMBINATORIAL ; OUTPUT

GROUP MACH_SEG_B SHIFTREG[O..15]

Jemmme e e e ees e Boolean Equation Segment ------
EQUATIONS

SHIFTREG([0] = SDATA

SHIFTREG[1..15] = SHIFTREG[O0..14]

SHIFTREG[0..15] .CLKF = SCLOCK
SHIFTREG[0..15] .RSTF = GND
SHIFTREG([0..15] .SETF = GND

INV = CTR2[6] + (SHIFTREG[O] + SHIFTREG[1] + SHIFTREG([2]) * CTR1l[2]
README = /SHIFTREG[O] * /SHIFTREG[1l] * /SHIFTREG[2] * CTR1[2] * /CTR2][6]

DATAOUT[0..11] = SHIFTREG[4..15] * README

CTR1[0].T = /CTR1[2]

CTR1[1].T = CTR1[0] * /CTR1[2]

CTR1[2].T = CTR1[1] * CTR1[0] * /CTR1([2]
CTR1[0..2].CLKF = EXTCLOCK

CTR1[0..2] .RSTF = SCLOCK
CTR1[0..2].SETF = GND

54

Table7.2 (continued)

HC11 Program Listin

This

section contains the code used in the HC1ll1. This versiocn

averages sixteen data values.

;Program
;Revision
;Programer

;Date

14

SUM
INA
TEMP

NUMAVG
PORTA
PORTC
PORTB
PORTE
DDRC
PACTL

WMo WMo Ne N Ne N Ne N N N

START

AVGle

WTLOW

Laser Interface Module
1.0
Brian Burgess

November 14, 1992

org $0000 ;This section contains RAM storage
JMP START ;Jump to program in EPROM

DB 2 ;Storage for the sum

DB 2 ;Storage for porta

DB 1 ; Temporary Storage

EQU $10 ;Number of values to average

EQU $1000 ;Address of PORTA

EQU $1003 ;Address of PORTC

EQU $1004 ;Address of PORTB

EQU $100A ;Address of PORTE

EQU $1007 ;Data Direction Register for PORTC
EQU $1026 ;PORTA Control Register

A data value is ready to be read, when bit 4 of Port C is low.
The data is 12 bits wide, with the most significant nibble in
bits 3-0 of Port C and the least significant byte in Port E.
This code polls Port C, when bit 4 is low, then the 4 least
significant bits of PortC already have the most significant
nibble of the data value to be read. Next, the least
significant byte from PortE is read. This value is now added to
a sum. If the sum has the number of values to be averaged, then
the sum is shifted to the right the correct number of places

to produce the average of the values read.

org $SE000 ; EPROM

LDAA #SEO

STAA DDRC ;Set up PortC for input
LDAA #0 ;Clear Accumulator A

STAA PORTC ;Clear upper bits of PortC
LDAA #$3C

STAA DDRD ;Set up PortD for output
LDAA PACTL ; 4 cycles set Port A bit 7 for output
ORAA #80 H

STAA PACTL ;

LDD #0 ; 3 cycles

STD SUM ; 5 cycles

LDX #NUMAVG ; 3 cycles

LDAA PORTC 7 4 cycles

BITA #$10 ; 2 cycles

BEQ WTLOW ; 3 cycles

55

Table 7.2 (continued)

CTR2[0].T = /CTR2[6]

CTR2[1].T = CTR2[0] * /CTR2[6]

CTR2[2].T = CTR2[1] * CTR2[0] * /CTR2[6]

CTR2[3].T = CTR2[2] * CTR2[1] * CTR2[0] * /CTR2[6]

CTR2[4].T = CTR2[3] * CTR2[2] * CTR2[1] * CTR2[0] * /CTR2[6]

CTR2[5].T = CTR2([4] * CTR2[3] * CTR2[2] * CTR2[1] * CTR2[0O] * /CTR2[6]

CTR2[6].T = CTR2[5] * CTR2[4] * CTR2[3] * CTR2[2] * CTR2[1] * CTR2[O0] *

/CTR2[6]

CTR2[0..6] .CLKF = EXTCLOCK

CTR2[0..6] .RSTF = SCLOCK

CTR2[0..6] .SETF = GND

LED[1] = /INV

LED[2] = /INV * (LED[3] + DATAOUT[S] + DATAOUT[8] * DATAOUTI[7] *
(DATAQUT[6] + DATAOUT[5] + DATAOUT[4] * DATAOUT[3] *
(DATAOUT[2] + DATAOQOUTI[1])))

LED[3] = /INV * (DATAOUT[11] + DATAOUT[10] + DATAQOUT[S9] * DATAOUTI[8] *

(DATAOUT([7] + DATAOUT([6] + DATAOUT([5] * DATAQOUT[4] *
(DATAOUT([3] + DATAOUT([2])))

LED[4] = /INV * (DATAOUT[11] + DATAOUT[10] *(DATAQOUT([S] + DATAOUT[8] *
DATAQUT[7] * DATAOUT[6] * (DATAOUT[S5] + DATAOUT[4] +
DATAQOUT[3] * DATAOUT[2] * DATAOUTI[1])))

LED[5] = /INV * (DATAOUT[11l] + DATAOUT[10] * DATAOUT[S9] * (DATAOQOUTI[8]
DATAQOUT[7] + DATAOUT[6] * DATAOUT[S5] * (DATAOUT[4] +

+

DATAOUT[3])))

LED[6] = /INV * DATAOUTI[11]

LED[7] = /INV * (DATAOUT[11l] * (DATAOUT[10] + DATAOUT[S9] + DATAOUT[8] *
DATAQUT[7] * (DATAQOUT[6] + DATAOUTI[S5] + DATAOUTI[4] *
DATAOUT[3] * DATAOUTI[2])))

LED[8] = /INV * (DATAOUT[11] * (DATAOUT[10] + DATAOUT[S] * DATAOUT[8] *
(DATAOUT[7] + DATAOUT([6] + DATAOUT[S5] * DATAQUTI[4] *
(DATAQOUT[3] + DATAOUT[2] * DATAOUTI[1]))))

LED[S9] = /INV * (DATAOUT[11] * DATAOUT[10] * (DATAOUT[S] + DATAOQOUTI[8] <+

DATAOUT[7] * DATAOUT[6] * (DATAOQOUT[5] + DATAOUTI[4]))) ,
LED[10] = /INV * (DATAOUT[11l] * DATAOUT[10] * DATAOUT[S] * (DATAOUT[8] -
DATAOUT[7] + DATAOUT[6] * DATAOUT[5] * (DATAOUT([4] + DATAQUT([3]
(DATAQUT[2] + DATAOUTI[1]1))))

56

POLL

Table 7.2 (continued)

LDAR
BITA
BNE

LDAB
ADDD
STD
DEX
BNE
EORA
EORB
STAA
STAB
LDX
LDD
STD
BRA
org
DW
END

PORTC
#3510
POLL

PORTE
SUM
SUM

POLL
#SFF
#SFF
PORTB
PORTA
#NUMAVG
#0

SUM
POLL

SFFFE

START

’

we Na N2 N N

we N Na “a W

w N

W WU b

wWoOowws b

cycles
cycles
cycles

cycles
cycles
cycles
cycles
cycles

cycles
cycles
cycles
cycles
cycles
cycles

57

these 3 instruction wait

for README to be low.

port C already contains high
nibble, so don't re-read 1it.
now read low byte from portE.
add it to the sum.

is it time to average?
if not, read next number.

output to port B, and now
reset sum for next average.

start reading numbers again.

Set up Reset Vector

CHAPTER 8
SMART A to D MODULE

8.0 SA2D Overview

This section details the design of and serves as a reference for the Smart Analog to
Digital (SA2D) converter board. The SA2D board allows multiple analog signals to be
sampled at high frequencies by moving a significant portion of software control into
hardware. The SA2D board replaces the normal software steps of sequencing a multiplexer
through a set of analog signals and performing an A/D conversion on each. A write to the
SA2D board automatically initiates the conversion of all analog inputs. The SA2D board
returns a “complete” signal to the software to indicate when all conversions are complete.
The software can then read the results of all A/D conversions.

The SA2D board is equipped with a bicolor Light Emitting Diode (LED) to indicate
that the board is functioning. The LED alternates between the colors of red and green when
the board is in operation.

8.1 Detailed Design\Design Components

This section provides the detailed design of the SA2D board. The following elements
are implemented in the SA2 D board.

First In First Out (FIFO) Buffer - Provides software burst reads of previous A/D
conversions while allowing the results of current A/D conversions to be stored. The
result of each analog signal’s A/D conversion is stored in the FIFO. The FIFO is eight
(8) bits wide, so the results of each A/D conversion (16 bits) are stored by first writing
the most significant byte then the least significant byte into the FIFO. The actual device
used is an IDT7201. Reference the IDT Specialized Memories & Modules data book for
details relating to this device.

A/D Converter — This device converts the magnitude of an analog signal to its
equivalent digital form. The device used is a Burr Brown ADS7805P, providing sixteen (16)
bits of resolution. Reference the Burr Brown IC Data Book — Data Conversion Products, for
details relating to this device.

Analog Multiplexer — Routes one (1) of sixteen (16) different analog signals to the
A/D converter. Two (2) Burr Brown MPC507 eight (8) channel, differential, multiplexers
are cascaded to implement this function. Reference the Burr Brown IC Data Book — Data
Conversion Products, for details relating to this device.

Instrumentation Amplifier — The differential outputs of the multiplexers are routed
through an instrumentation amplifier to provide a single ended input to the A/D converter.
The actual device used is a Burr Brown INA111BP. Reference the Burr Brown IC Data
Book — Linear Products, for details relating to this device.

58

State Machine — The state machine is the heart of the SA2D board. It is responsible
for the proper sequencing of the hardware. When the state machine recognizes a start
indication, it sequences through the following steps for each analog signal: 1) select analog
signal from the multiplexer, 2) perform A/D conversion, 3) Wait for conversion to complete,
4) store results of the conversion into the FIFO (MSB first then LSB). Once these steps are
complete for all analog signals, the state machine returns a “complete” signal and waits for
the next start indication. The state machine is implemented in an AMD PALCE610H-15
device. Reference the AMD PAL Devices data book for details relating to this device.

e Bicolor LED - The LED is provided to indicate that the SA2D board is operating.
The LED alternates between the colors of red and green every time a sequence of
conversions completes. One side of the LED is driven with the EOC signal while
the other side is driven with the negated EOC signal.

8.2 State Machine Design

The SA2D state machine is responsible for the following steps:

1.
2.

Select Each Analog Channel of the Multiplexer

Wait for the multiplexer to settle

Start an A/D Conversion on the Selected Channel

Wait for A/D Conversion to Complete

Store the Conversion into the FIFO (MSB First, then LSB)

After the Last Channel is Converted then Return a “Complete” Indication.

The table lists the inputs and outputs of the SA2D state machine.

Table 8.1 State Machine I/O

Inputs Outputs
RESET : ADDR :
SA2D Board Reset Selects Multiplexer Channel to Convert
START LATCH: CONVERT :
Latch Indicating the SA2D Board Should Initiates A/D Conversion
Start Converting All Channels
ADBUSY : FIFOW :
Output of the A/D Converter Indicating Write Selected Byte of the A/D Conversion
That a Conversion is in Progress Into the FIFO

59

Inputs Outputs
ADDR: BYTE:
Four Bit Counter Indicating Last Multiplexer Selects MSB or LSB of A/D Converted
Channel Converted Data
MAXADDR : EOC:
Hard Coded Number Indicating the Last Indicates the SA2D Board Has Completed
Channel to Convert the Conversion of All Channels

Table 8.1 (continued) State Machine I/0

The state diagram, Figure 8.1, defines the steps used in the design of the SA2D state
machine. Since twelve (12) steps are used, a four (4) bit register must be used to store the
current step. Steps 9, B, and D are omitted to minimize the number of bits that must be
evaluated in the resulting equations.

For instance, by skipping these steps, evaluation of the least significant bit of the state
register is not necessary when the most significant bit has a value of one (1) (true).

8.2.1 State Diagram Description

In the State Diagram of Figure 8.1 the text next to each state transition (arrow)
provides an input expression that must be true for the transition to occur, followed by any
synchronous output events. The required input expression is separated by the outputs by a
colon (). A forward slash (/) preceding a signal name indicates that the signal is negated
(logic 0), while the absence of the slash indicates the signal is asserted. For instance, the
transition from step 0 to step 1 occurs when the value of the START LATCH is true. When
this occurs, a logic one (1) is stored in a flip flop named CONVERT and the state machine
transitions from state 0 to state 1. The transition from step 1 to step 2 occurs when inputs
RESET and ADBUSY both have a value of logic zero (0). There are no corresponding
outputs that are set during this transition.

Step 0: This is the beginning step of the state machine. The state machine waits in
this step until a start signal is received. Once a start signal is received the first conversion is
started on the A/D converter and control transitions to state 1. It should be noted here that a
four (4) bit register named ADDR selects the current analog channel from the multiplexer.
The ADDR register is cleared at reset and after converting the last channel, so it is safe to
assume at this point that the correct (first) channel is already routed to the A/D converter.

Step 1: This step waits for the A/D converter to complete the conversion initiated
during the transition from state 0. This is accomplished by monitoring the busy signal,
named ADBUSY, from the A/D converter.

Step 2: When transitioning from this step to step 3, the address register is incremented

to select the next signal on the multiplexer, and the MSB of the A/D converted data is written
into the FIFO. The rational for incrementing the address register here rather than in the

60

transition from state 1 is to avoid the possibility of having the CONVERT signal
momentarily asserted while selecting a new signal (although the probability is remote, the
timing diagrams for the A/D converter do not guarantee it). Note that after incrementing the
address register to select the next analog signal that the A/D should not be initiated for
another 3.5 uSeconds to allow the signal to settle through the multiplexer and
instrumentation amplifier. This time is computed for an accuracy of 0.01%. Since the
frequency of the state machine’s clock is 2.457 MHz this results in a delay of 9 states (must
round up from 8.6). For this reason, the address is incremented as early as possible. States 3
through E provide the 9 state settling time delay. The remaining non-time critical
functionality is spread across these remaining steps for clarity.

Step 3: During the transition from this step to step 4, the address register is checked to
determine if all channels have already been converted. If so, the address register is reset such
that the first analog channel is already selected upon entering state 0. Note that the diagram
does not transition back to state 0 immediately after recognizing that all channels have been
converted. This ensures that the first channel has settled prior to entering state 0, just in case
another sequence has already been initiated.

Step 4: When transitioning from this step to step 5, the LSB is selected from the A/D
converter and routed to the FIFO. Asserting the BYTE signal to the A/D converter selects
the LSB.

Step 5: When transitioning from this step to step 6, the LSB of the converted data is
written into the FIFO (follows the MSB). The BYTE signal is maintained in the asserted
state during this write.

Step 6 and 7: During the transitions from step 6 through step 7 and into step 8, the
BYTE signal is maintained in the asserted state. The BYTE signal must be asserted as long
as the FIFOW signal is asserted and is maintained asserted for an additional state to avoid a
race condition (do not want to negate BYTE and FIFOW concurrently). The BYTE signal
remains asserted into step 8 simply to minimize the logic required in the generation of the
signal.

Step 8: During the transition from step 8 to step 9, the address register is evaluated to
determine if all channels have been converted. If so, the EOC signal is toggled to provide an
indication to the host processor that the entire conversion process is complete. Since it is
possible that the host processor could recognize the completion flag (EOC) and initiate
another sequence of conversions before transitioning back to state 0, the START_LATCH
signal is latched.

Steps A and C: These steps only exist to provide the required settling time (see the
description in step 2).

Step E: Transition from this step back to step 0 occurs if all channels have been

converted (ADDR==0). If all channels have not been converted, then a transition back to
step 1 occurs and an A/D conversion is immediately initiated on the selected analog channel.

61

Smart A to D State Diagram

RESET + (ADDR == 0)

RESET
/RESET * (ADDR > 0) :
START_LATCH CONVERT=1 /RESET
RESET CONVERT=1
JRESET *
ADBUSY RESET
/RESET
RESET /RESET * JADBUSY
/RESET : RESET
IF (ADDR==0) THEN
/RESET : EQC = /EOC
ADDR=ADDR+1
RESET FIFOW
RESET
IRESET :
IF ADDR>MAXADDR
RESET THEN ADDR=0
JRESET : RESET
BYTE = 1
/RESET :
RESET BYTE = 1
/RESET :
BYTE=1

FIFOW

Figure 8.1 Smart A to D State Diagram

62

8.3 Hardware Installation
Power Connections

Power to the SA2D board is applied at terminal block J3. The board requires 5V DC
and +/- 15V DC supplies. The ground of the 5V supply is connected to DGND (digital
ground). The ground for the +/- 15V supply is connected to AGND (analog ground). These
two grounds must be connected externally at a single point. If this point does not already
exist in the system then adding a wire between AGND and DGND can connect the two
grounds.

Analog Signals

Analog signals are connected to the SA2D board at terminal block J1. The
connection for each analog signal is differential. The high side of the signal should be
connected to the terminal labeled + while the low side is connected to the — terminal. The
connection for channel 1 is labeled Chl, channel 2 as Ch2, etc. When reading the converted
values from the FIFO, channel 1 is read first while the last channel is read last. The number
of channels that are converted depends on the hard coded value in the state machine (PAL).

Processor Interface

The host processor is connected to the SA2D board with a 26-pin DIN connector at
J2. The schematic in the attached appendix defines the pin-out of this connector.

Following this page Table 8.2 gives the Pal equations, and then Figures 8.2 through
Figures 8.5 show the board schematics.

63

Table 8.2

Pal Equations

; PALASM Design Description

TITLE
PATTERN

CHIP _SMARTA2D

OUTPUT
PIN 7
OUTPUT
PIN 8
PIN 9
PIN

PIN

INPUT
; PIN
PIN

INPUT
PIN 15
OUTPUT

PIN 16.
PIN 20
PIN 21
PIN 22
OUTPUT

PIN 23
INPUT

10
11

12
14

.19

PALCE610

CLK2
/RESET

ST[0..2]
START_LATCH

EOC_INV

EOC
ST[3]
BYTE
/A2DCS

GROUND
READ

A3_INV
ADDR[3..0]
/ CONVERT
/FIFOW
/FIFOR

/ADBUSY

Declaration Segment
Smart Analog to Digital Board Controller

COMBINATORIAL ;

COMBINATORIAL ;

COMBINATORIAL ;

REGISTERED ; OUTPUT
COMBINATORIAL ;

COMBINATORIAL ;
REGISTERED ; OUTPUT
REGISTERED

REGISTERED ; OUTPUT
COMBINATORIAL ;

COMBINATORIAL ;

COMBINATORIAL ;

REGISTERED ; OUTPUT

REGISTERED ; OUTPUT
REGISTERED ; OUTPUT
COMBINATORIAL ;

COMBINATORIAL ;

STRING RESTART ' (/ADDR[3]*/ADDR[2]*/ADDR[1]*/ADDR[0])"

STRING MAXCNT
counter

EQUATIONS

CASE STI[3..0]
BEGIN

' (ADDR[3])"

0:
BEGIN

IF /START_LATCH THEN

BEGIN
ST[3..0]=0

END

ELSE
BEGIN

7

; After 0-7 conversions count=8,

64

Boolean Equation Segment

SO reset

ST[3..0]=1
END
END

1:
BEGIN
IF RESET THEN
BEGIN
ST[3..0]1=0
END
IF (ADBUSY * /RESET) THEN
BEGIN
ST[3..0]=1
END
IF (/ADBUSY * /RESET) THEN
BEGIN
ST[3..0]=2
END
END

2:
BEGIN
IF /RESET THEN
BEGIN
ST[3..0]=3
END
ELSE
BEGIN
ST[3..0]=0
END
END

3:
BEGIN
IF /RESET THEN
BEGIN
ST[3..0]=4
END
ELSE
BEGIN
ST[3..0]=0
END
END

4:
BEGIN
IF /RESET THEN
BEGIN
ST[3..0]=5
END
ELSE
BEGIN
ST[3..0]=0
END
END

5:
BEGIN
IF /RESET THEN

BEGIN
ST[3..

END

ELSE

BEGIN
ST[3..

END

END

6:
BEGIN
IF /RESET
BEGIN
STI[3..
END
ELSE
BEGIN
ST[3..
END
END

7:
BEGIN
IF /RESET
BEGIN
ST[3..
END
ELSE
BEGIN
ST[3..
END
END

B:
BEGIN
IF /RESET
BEGIN
ST[3..
END
ELSE
BEGIN
STI[3..
END
END

10:
BEGIN
IF /RESET
BEGIN
ST[3..
END
ELSE
BEGIN
STI[3..
END
END

0]=6
0]1=0
THEN
0]=7
0]=0
THEN
0]=8
0]=0
THEN
0]=10
0]=0
THEN
0]=12
0]=0

12:

BEGIN
IF /RESET THEN
BEGIN
ST[3..0]=14
END
ELSE
BEGIN
ST[3..0]=0
END
END

14:
BEGIN
IF RESTART + RESET THEN
BEGIN
ST[3..0]=0
END
IF /RESET * /RESTART THEN
BEGIN
ST[3..0]=1
END
END

OTHERWISE:
BEGIN
ST[3..0]=0
END

END
ST[3..0].CLKF=CLK1
ST[3..0].RSTF=GND

START_LATCH=/RESET* (A2DCS*/READ+START_LATCH*/ST[0])

FIFOR = A2DCS * READ

CONVERT=/RESET* (/ST[3]*/ST[2]*/ST[1]*/ST[0] *START LATCH+
ST[3]1*ST[2}*ST[1}*/ST[O]*/(RESTART))

CONVERT.CLKF=CLK2

CONVERT .RSTF=GND

EOC.T=/RESET*ST[3]*/ST[2]1*/ST[1]1*/ST[0]* (RESTART)

EOC.CLKF=CLK1

EOC.RSTF=GND

BYTE=/RESET*/ST[3]*ST[2]

BYTE.CLKF=CLK1

BYTE.RSTF=GND

FIFOW=/RESET* (/ST[3]*/ST[2]*ST[1]*/ST[O0] + /ST[3]*ST[2]*/ST[1]*ST[0])

67

FIFOW.CLKF=CLKZ2
FIFOW.RSTF=GND

; The following equations had to be derived manually, due to a bug in

; PALASM. The equations for the address signals remain in the case
statement

; of the state machine, but are commented out. The following equations
; are derived from those comments.

; Each address signal is derived as follows:

The first line of the equation basically resets the address signal to
0 if reset is asserted or an invalid state is detected.

; The second term resets the address to 0 if the maximum count is
exceeded

; (see the commented equation in state 4).

; The final term increments the address after state 3.

’

.
’

ADDR[3] . T=RESET*ADDR[3]

+ /ST[3]*/ST[2]*ST[1]*ST[0]* (MAXCNT) *ADDR[3]

+ /ST[3]*/ST[2]*ST[1]*/ST[0]*ADDR[2] *ADDR[1]*ADDR[O]
ADDR[2] .T=RESET*ADDR[2]

+ /ST[3)*/ST[2]*ST[1]*ST[0]* (MAXCNT) *ADDR{2]

+ /ST[3]1*/ST[2]*ST[1]*/ST[0]*ADDR[1]*ADDR[0]
ADDR[1] .T=RESET*ADDR[1]

+ /ST[3]*/ST[2]*ST[1]*ST[0]* (MAXCNT) *ADDR[1]

+ /ST[3]*/ST[2]*ST[1]*/ST[0]*ADDR[O]
ADDR[O] . T=RESET*ADDR (0]

+ /ST[3]*/ST[2]1*ST[1]*ST[0]* (MAXCNT) *ADDR[0]

+ /ST[3]*/ST[2]*ST[1]*/ST[0]

A3 INV = /ADDR[3]

ADDR[3..0].CLKF=CLK2
ADDR[3..0].RSTF=GND

EOC_INV=/EOC

bt Simulation Segment -----=--—---
SIMULATION

TRACE_ON /EOC /RESET CLK1 CLK2 /ADBUSY ST[3..0] ADDR[3..0] START_LATCH
/B2DCS READ BYTE /FIFOW /CONVERT
SETF A2DCS /READ

SETF /A2DCS

SETF /ADBUSY RESET

CLOCKF CLK1 CLK2

SETF /RESET

CLOCKF CLK1 CLK2

SETF A2DCS /READ

CLOCKF CLK1 CLK2

SETF /A2DCS

CLOCKF CLK1 CLKZ2

CLOCKF CLK1 CLK2

CLOCKF CLK1 CLK2

CLOCKF CLK1 CLK2

CLOCKF CLK1 CLK2

CLOCKF CLK1 CLK2

CLOCKF CLK1l CLK2

CLOCKF CLK1 CLK2

68

CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF
CLOCKF

CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1
CLK1

CLK2
CLK2
CLKZ2
CLKZ2
CLK2
CLK2
CLK2
CLKZ2
CLKZ2
CLK2
CLK2
CLK2
CLKZ2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLKZ2
CLK2
CLK2
CLK2
CLK2
CLKZ2
CLK2
CLK2
CLK2
CLK2
CLKZ2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLK2
CLKZ2
CLK2
CLK2

69

A/D BOARD

ANALOG INPUT

l l

CONVERTS ANALOG SENSOR
SIGNALS TO DIGITAL VALUES
AND SENDS TO 68020
PROCESSOR BOARD

]

- Agnd

- -15

—+15

-Dgnd

L +5

68020
PROCESSOR
BOARD
INTERFACE

Figure 8.2 A/D Board Layout

70

[B [c | D

IL

To Convert V1.0 PCB to V1.1 : Replace INA105 with INA111.
1) Cut trace from pad 5 on top of PCB.

¢'g 231

[PIeOg (0/V MewWS 211eWaydS

(trace should still go to pad 6).
+15V
¢y 2) Add jumper between pad 1 and pad 5 on bottom of PCB.
—_
v WP 3) Cut pin 1 off of device INA111 before installing.
" ;
T F
Al A/D Data
E o] o GNDANALOG w +18v W
o oum|2 cs |
oas ov I GNDANALOG
o - 1uF vCC
.l
. % B 20
e “ R2 uB
) hiend o %5 VWV VANA -] —1:*
22 gL MPC507A) A3 332 Voo :;-1-—,,
2y Lt ISV tuF AAA— T o
24 [/|) N s B il E
\ 0
NS 1t — v | o
N 1 S asv WF p va - S I cr] el [uz st
421 gL/ T o 2 vour|-1 220F | 22uF , oo E::
Y [T
2 L] ve i INAT11BP T o
1A o~ 1uF J W o
R -1tk /] ~ v v o
soo GNDANALOG
Jao [y k] e vmer | _J ADS 7805
. s | a GND =
Jan et o fod T GNDANALOG
J2:12 -t/ [y
2 o=t AN s omtdt
Jad = me - E -
J2:18 50— me /] wr : %
218 g 1w N rJ- \ P Control
MPC507A
vGe vee
i E—L]—| 1_.. ovo Y ey T
432 -|_ Lo [cro Jent ez fenn Jeu fois e ci?
: —2 b 3 3 = =
J3:3 E . 0 1uF 01uF | 0.1uF | O1uF | O1uF | O 1uF | 0.1uF | O.1uF 10uF
O e
Ja:s . l Smart A/D Board
Bypass Capacitors GND Site [Nurter
GNDANALOG = B .
Dot Apri 17, 1098 [prawnty o pupe
Fleneme _ SMARTA20 503 [sheot 2 o 2

A I 8 | C] CE

L

Internal Data Bus

U3
J4:1]
OL"I'—““!'%"—§
/]
Al
e w J / x1
- /
" . /] 0 1MHz N\
] ~ A .
i M 4 "/ u2 vCC
S am 74F245 i
1DC2X13M U1 3
[P CLK1 !
= GND o) ND
/ﬁx' oL ; [
U4 vos | :;
w2 e o o e -
1 £ vorz |18 O
13 /g wos vo13 -—i{! o
e L/ :: n \ % “.: YO14 1 Fs
i Z rRR o T s
—u ; Y4 \J gy Sm— 7C420-30CP1S
& 5 n PALCEB10H-15 J_G_ ND
:— ’ n :I -
& 74F841
B —
10C2X13M / A\ /
=GND J
Dt
Y 0 t AD
A utput o)
Thle
Sman A/D Board
Slize Number Aev
B 1.1
Oate il rawn 8 Buges
Filenama SMARTA2D.501 Sheet | of 2
A c D

Z preog (/v Wews dnewayds g am3g

tL

4 N N N
P1RA:N P1RC:1 P2RC:1
oNDY N___omp2
Ja:1 2
I\ OND)
—]

J

NN

IDC2X13M

Jé:2

LU

TOOCCCOOO:
FFEPPFFFFFFFFF

F{PFFFFFFFFFFF=~F=-Fr-h
|UERUYRRONNNENRINNIN

DIN2X32F DIN2X32F DIN2X32F

T

EEFFFFP
B4

1DC2X13M

31qe) (I/V WeWS dWeWsyds ¢'g am3l

This

Smart A/D Cable
Size Number Rev
B 1.0
Date Aprt 17, 1998 [Orawnby 8 s
Flensme SCABLE S0t [shest 1 of

A B c D

CHAPTER 9
The 68020 MODULE (K Processor)

9.0 Overview

This section provides a description of the 68020 Processor module or K Processor
board. This board is used to obtain the data from the various sensors and either process this
data in real-time or sends it to the PC. The communication protocol between this board and
the PC is provided in an earlier chapter. The processor will permit the interface of up to 16
analog devices, or nine acoustic sensors which are designed to interface with the on board
Intel 83C54 timers. The processor, when in the real-time computation mode, will compute
profile and/or rut from either laser using the 'string line method', raw readings from acoustic
sensors. An overall block diagram of the basic board is illustrated in Figure 9.1, 9.2, and
9.3. The board provides 64K bytes of EPROM and 32 K bytes of static RAM. Provisions
are included for 2 12 bit A/D converters, although they are no longer used with the smart
A/D module. The smart A/D and other smart boards designed by project personnel can
access the board via a direct linkage to the upper lines of the 32 bit data bus. The board
contains four 82C54 timers which provide direct interface for up to ten acoustic sensors.
Two counters are used to control the A/D sampling, for implementing the South Dakota
profiling procedure, and one for a simulated distance signal (see time/distance simulation
switch in chapter 4). Two MC68230 parallel ports are included for general parallel and
interrupt interface.

The memory map for the various modules is provided in Table 9.1. Table 9.2
provides the interrupt assignments. Tables 9.3 to 9.8 provide the basic pal equations for the 6
Pals used for address decoding and other control circuitry. Table 9.10 and 9.11 provide a pin
out of the back plane connections to the 68020 module. Figure 9.4 to 9.11 show the
schematics of the board.

One additional comment should be noted regarding the connections of the acoustic to
the Amphenol connections on the main chassis module in Chapter 4. The two 82C54 IC
timers at U36 and U37 (Figure 9.8) are used for the acoustic timers. Each IC has 3 timers, IC
timer O thru 2. The signals on each timer are sent to the P2RA (P2 connector, A row, see
Figure 9.11) on the K board. Each P1 and P2 connector on the board plugs into the J1 and J2
female connectors.

Pin 11, 14 and 16 on U36 (top timer) and U37, second timer.
IC Timer 0 is used for the distance simulation. IC Timer 1 and 2 on U36 are used for
acoustics 2 and 3. IC Timer 0 and 1 on U37 are used for acoustic timer 4 and 5. IC timer 2

on U37. is used for acoustic timer 1

The appropriate pins on the P2RA connector for each of the acoustic timers are
connected to the connector on the back panel (see Tables 4.7 and 4.8 in Chapter 4).

74

The IC to P2RA pin outs are given as follows:

acoustic 1 - U37 pin 16 P2RA - 24
acoustic 2 - U36 pin 14 P2RA - 20
acoustic 3 - U36 pin 16 P2RA -21
acoustic4 - U37 pin 11 P2RA - 22
acoustic 5 - U37 pin 14 P2RA - 23

Table 9.1 Memory Map
DEVICE TYPE DESCRIPTION ADDRESS RANGE
From To

ROM 0 ROM AREA $ 0000 : 0000 §$ 0000 : FFFF
ROM 1 ROM AREA $ 0001 : 0000 $ 0001 : FFFF
ROM 2 ROM AREA $ 0002 : 0000 $ 0002 : FFFF
ROM 3 ROM AREA §$ 0003 : 0000 $ 0003 : FFFF
NOT USED EXPANSION AREA $ 0004 : 0000 3 FFF : FFFF
68681 DUART 68681 DUART (16 Bytes) | $ 4000 : 0000 $ 4000 : 000F

$ 0004 : 0010 $ 0004 : 7FFF
NOT USED EXPANSION AREA
68230_1 PI/T 68230 PI/T (32 BYTES) | $4000 : 8000 $ 4000 : 801F
68230 2 PI/T 68230 PI/T (32 BYTES) | $4001 : 0000 $4001 : 001F
HS 9412 _1 $ 4001 : 8000
HS 9412 2 $ 4002 : 0000
8254 TIMER _1 8254 TIMER _1 $ 4002 : 8000 $ 4002 : 8003
8254 TIMER 2 8254 TIMER 2 $ 4003 : 0000 $ 4003 : 0003
8254 TIMER 3 8254 TIMER_3 $ 4003 : D000 $ 4003 : D3FF
8254 TIMER _4 8254 TIMER _4 $ 4003 : D400 $ 4003 : D7FF
SMART A/D SMART A/D $ 4003 : C000 $ 4003 : COLE
NOT USED EXPANSION AREA $ 4003 : 8004 7FFF : FFFF
RAM 0 RAM AREA §$ 8000 : 0000 $ 8000 : 7FFF
RAM 1 RAM AREA $ 8000 : 8000 $ 8000 : FFFF
RAM 2 RAM AREA $ 8001 : 0000 $ 8001 : 7FFF
RAM 3 RAM AREA $ 8001 : 8000 $ 8001 : FFFF

75

Table 9.2 Interrupt Assignment

. Interrupt Level Source Devices IRQ Type
1
2
3 PUT 68230 2 Timer (TIMOUT signal) Autovector Interrupt
4 DUART 68681 IRQ 4
5 PI/T 68230 1 IRQ5
6 PI/T 68230 2 IRQ6

O

Table 9.3 PAL U13 Equations

; PALASM Design Description

EMCPAL1.PDS

TITLE

PATTERN A
REVISION 1.0
CHIP EMCPAL1
PIN 1

PIN 2

PIN 3

PIN 4

PIN 5

PIN 6

PIN 7

PIN 8

PIN 9

PIN 10
PIN 11
PIN 12
PIN 13
PIN 14
PIN 15
PIN 16
PIN 17
PIN 18
PIN 19
PIN 20
PIN 21
PIN 22
PIN 23
PIN 24

PAL22V10
----------------------------------- PIN Declarations

A00 COMBINATORIAL
A0l COMBINATORIAL
Al7 COMBINATORIAL
A30 COMBINATORIAL
A31 COMBINATORIAL
SEG1 COMBINATORIAL
CPUSP COMBINATORIAL
/AS COMBINATORIAL
WAIT2 COMBINATORIAL
R COMBINATORIAL
SIZO COMBINATORIAL
GND

SIZ1 COMBINATORIAL
MDSACK1 COMBINATORIAL
MDSACKO COMBINATORIAL
/ROM3 COMBINATORIAL
/ROM2 COMBINATORIAL
/ROM1 COMBINATORIAL
/ROMO COMBINATORIAL
/RAM3 COMBINATORIAL
/RAM2 COMBINATORIAL
/RAM1 COMBINATORIAL
/RAMO COMBINATORIAL
vce

76

; INPUT

; OUTPUT
; OUTPUT
; OUTPUT
; OUTPUT
; OUTPUT
; OUTPUT
; OUTPUT
; OUTPUT
; OUTPUT
; OUTPUT
; INPUT

;OUTPUT EQUATIONS-======mmm=mmmmmm e o
EQUATIONS

RAMO = AS * /CPUSP * SEGl1 * A31 * /A30 * /Al7 * /A0l * /AOO

RAM1 = AS * /CPUSP * SEGl * A31 * /A30 * /Al7 *
(/A0l * AOO + /AOl * SIZ1 + /A0l * /SIZO)

RAM2 = AS * /CPUSP * SEGl * A31 * /A30 * /Al7 *
(AOC1 * /AOO + /A0l * /SIZ1 * /SIZO + /AOl1l * SIZ1 * SIZO0 +
/A0l * AOO * SIZ1)

RAM3 = AS * /CPUSP * SEGl1 * A31 * /A30 * /Al7 *
(A0l * AOO + /SIZ1 * /SIZO0 + AOl * SIZ1 + AOO * SIZ1 * SIZO)

ROMO = R * AS * /CPUSP * SEGl * /A31 * /A30 * /Al7 * /A0l * /AOQO

ROMl = R * AS * /CPUSP * SEGl1 * /A31 * /A30 * /Al7 *
(/A01 * AOO + /AO1 * SIZ1 + /AO1 * /SIZO)

ROM2 = R * AS * /CPUSP * SEGl * /A31 * /A30 * /Al7 *
(A0l * /AOO + /AO01 * /SIZ1 * /SIZ0 + /AOl * SIZ1l * SIZO +
/A0l * AOO * SIZ1)

R * AS * /CPUSP * SEG1 * /A31 * /A30 * /Al7 *
(A0O1 * AOO + /SIZ1 * /SIZO + AOl1 * SIZ1l + AOO * SIZ1l * SIZO)

ROM3

MDSACKO = AS * /CPUSP * SEGl1 * (/Al17 * A31 * /A30 + R * WAIT2 * /A3l *
/A30)
MDSACK1 AS * /CPUSP * SEGl * (/Al7 * A31 * /A30 + R * WAIT2 * /A3l *
/A30)

Table 9.4 PAL U14 Equations

; PALASM Design Description

bttt Declaration Segment --—-——-—--—=-—-

TITLE K processor peripheral decoder
a

PATTERN A

a

REVISION 1.0

O

CHIP KPALU14 PAL22V10

O

77

PIN 1
;PIN 2
PIN 3
PIN 4
PIN 5
PIN 6
PIN 7
PIN 8
PIN O
PIN 10
PIN 11
PIN 12
PIN 13
PIN 14
PIN 15
PIN 16
PIN 17
PIN 18
PIN 19
PIN 20
PIN 21
PIN 22
PIN 23
PIN 24

;OUTPUT EQUATIONS

EQUATION
681CS =
230_1CS
230_2CS

AD CS =

S

Al4
/SMADCS

Al7

A30

A31

SEG1

CPUSP

/RS

/DS

R

S120

GND

S1z1

Al6

Al5

AD CS

AD1_NAD2

/8254 _1CS

/8254 2CS

/SMADCS

/230_2CS

/230_1CS

/681CS

vee

PIN Declarations —----—--==—------

COMBINATORIAL ; INPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; INPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
COMBINATORIAL ; OUTPUT
; INPUT

AS * /CPUSP * SEG1 * /A31 * A30 * /Al7 * /Alé * /Al5

R

DS * AS * /CPUSP * SEGl * /A31 * A30 * /Al7 * /Alé * AlS5S
DS * AS * /CPUSP * SEGl * /A31 * A30 * /Al7 * Al6 * /Al5

* DS * AS * /CPUSP * SEGl * /A31 * A30 *

(/A17 * Alé6 * Al5 + Al7 * /Al6 * /AlS5)

AD1_NAD2
8254_1CS
8254_2CS

SMADCS =

C

; PALASM Design Description

SEGMENT DECODER PAL

TITLE

R * DS * AS * /CPUSP * SEGl1 * /A31 * A30 * /Al7 * Alé * AlS

DS * AS * /CPUSP * SEG1l *

/BA31 * A30 * Al7 * /Alé * AlS

DS * AS * /CPUSP * SEGl * /A31 * A30 * Al7 * Alé6é * /AlS

DS * AS * /CPUSP * SEGl * /A31 * A30 * Al7 * Alé6 * Al5 * Al4

Table 9.5

PAL U15 Equations

Declaration Segment ------————--

78

PATTERN A
REVISION 1.0

CHIP KPALU15 PAL22V1O
PIN 1 A13

PIN 2 Al4

PIN 3 Al5

PIN 4 Al6

PIN 5 Al7

PIN 6 Al8

PIN 7 Al9

PIN 8 X

PIN 9 Y

PIN 10 FCO

PIN 11 FC1

PIN 12 GND

PIN 13 FC2

PIN 14 /AS

PIN 15 WAIT2

PIN 16 /8254_1CS
PIN 17 /8254_2CS
;PIN 18 /8254_3CS
PIN 19 8254_DSACK
PIN 20 IACK

PIN 21 /COP1CS
PIN 22 CPUSP

PIN 23 SEG1

PIN 24 vee

; OUTPUT EQUATIONS=---~—-========—==-

EQUATIONS

PIN Declarations

COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL

COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL

IACK = FC2 * FC1 * FCO * Al9 * Al8 * Al7 * Al6 * AS

COP1CS = FC2 * FC1 * FCO * /Al9 * /Al8 * Al7 * /Al6 *

/Al15 * /Al4 * Al3 * AS

CPUSP FC2 * FC1 * FCO

SEGl = X * Y * /Al9 * /Al8

8254 DSACK = WAIT2 * (8254_1CS + 8254_2CS)

O

Table 9.6

; PALASM Design Description

PAL U33 Equations

79

; OUTPUT
; OUTPUT
; OUTPUT
; OUTPUT
; OUTPUT
; INPUT

TITLE K processor U33
PATTERN 1l-a
REVISION a

CHIP kpal u33 PALCE26V12

PIN 1 CLK1l6 COMBINATORIAL
INPUT

PIN 4 SEG1 COMBINATORIAL
INPUT

PIN 5 CPUSP COMBINATORIAL
INPUT

PIN 6 READ COMBINATORIAL
INPUT

PIN 7 VCC

INPUT

PIN 8 /DS COMBINATORIAL
INPOT

PIN 9 AD Cs COMBINATORIAL
INPUT

PIN 10 AD1 NADZ2 COMBINATORIAL
INPUT

PIN 11 ATOD1DO COMBINATORIAL
INPUT

PIN 12 ATODZ2DO COMBINATORIAL
INPUT

PIN 13 ATOD1D1 COMBINATORIAL
INPUT

PIN 14 ATODZ2D1 COMBINATORIAL
INPUT

PIN 15 D17 COMBINATORIAL
OUTPUT

PIN 16 D16 COMBINATORIAL
OUTPUT

PIN 17 DSACK1 COMBINATORIAL
OUTPUT

PIN 18 CK8M REGISTERED
OUTPUT

PIN 19 /ACHW COMBINATORIAL
OUTPUT

PIN 20 /ACR COMBINATORIAL
OUTPUT

PIN 21 GND

INPUT

PIN 22 CK128K REGISTERED
OUTPUT

PIN 23 CK256K REGISTERED
OUTPUT

PIN 24 CK512K REGISTERED
OUTPUT

PIN 25 CK1M . REGISTERED
OUTPUT

PIN 26 CK2M REGISTERED
OUTPUT

PIN 27 CK4M REGISTERED
OUTPUT

80

EQUATIONS

CK8M = /CK8M

CK4M = /CK4M * CK8M + CK4M * /CK8M

CK2M = /CK2M * CK8M * CK4M + CKZ2M * /(CK8M * CK4M)

CK1M = /CK1M * CK8M * CK4M * CK2M + CK1M * /(CK8M * CK4M * CK2M)

CK512K = /CK512K * CK8M * CK4M * CK2M * CKIM +
CK512K * /(CK8M * CK4M * CK2M * CK1M)
CK256K = /CK256K * CK8M * CK4M * CK2M * CKIM * CK512K +
CK256K * /(CK8M * CK4M * CK2M * CK1M * CK512K)
CK128K = /CK128K * CK8M * CK4M * CK2M * CKIM * CK512K * CK256K +

CK128K * /(CK8M * CK4M * CK2M * CKIM * CK512K * CK256K)

CKBM.CLKF = CLK1lé6
CK4M.CLKF CLK1lé6
CK2M.CLKF = CLK16
CK1M.CLKF = CLK1lé6
CK512K.CLKF = CLK1é6
CK256K.CLKF CLKle
CK128K.CLKF CLK1le6

ACW = DS * /READ * SEGl1 * /CPUSP
ACR = DS * READ * SEGl * /CPUSP

DSACK1 = AD_CS

D16 = AD CS * AD1 _NAD2 * ATOD1DO + AD CS * /AD1 _NAD2 * ATOD2DO
D16.TRST = AD CS
D17 = AD_CS * ADl_NAD2 * ATOD1D1 + AD CS * /AD1 NAD2 * ATOD2D1
D17.TRST = AD_CS

Table 9.7 PAL U34 Equations

; PALASM Design Description
O

F ittt Declaration Segment -----------—-

TITLE K processor A/D bus driver and timer interupt
a

PATTERN 1l-a

0

CHIP kpal u34 PALCE26V12

PIN 1 KTIME COMBINATORIAL ;
INPUT
PIN 2 AD CS COMBINATORIAL ;
INPUT

81

PIN 3 AD]1 NADZ COMBINATORIAL
INPUT

PIN 4 ATOD1 D[Z2] COMBINATORIAL
INPUT

PIN 5 ATOD2 D[Z2] COMBINATORIAL
INPUT

PIN 6 ATOD1_D[3] COMBINATORIAL
INPUT

PIN 7 VCC

INPUT

PIN 8 ATOD2 DI[3] COMBINATORIAL
INPUT

PIN 9 ATOD1 D[4] COMBINATORIAL
INPUT

PIN 10 ATOD2 DI[4] COMBINATORIAL
INPUT

PIN 11 ATOD1_D[5] COMBINATORIAL
INPUT

PIN 12 ATODZ D[5] COMBINATORIAL
INPUT

PIN 13 ATOD1 D[6] COMBINATORIAL
INPUT

PIN 14 ATODZ_DJ[6] COMBINATORIAL
INPUT

PIN 15..20,22 D[24..18] COMBINATORIAL
OUTPUT

PIN 21 GND

INPUT

PIN 23 ATOD2 D[8] COMBINATORIAL
INPUT

PIN 24 ATOD]1 _D[8] COMBINATORIAL
INPUT

PIN 25 ATOD2_D[7] COMBINATORIAL
INPUT

PIN 26 ATOD1 D[7] COMBINATORIAL
INPUT

PIN 27 /IRQ3 REGISTERED
OUTPUT

PIN 28 KPC1 COMBINATORIAL
INPUT

NODE 1 GLOBAL

e ikt Boolean Equation Segment ------
EQUATIONS

D[18..24] = AD _CS * ADl_NAD2 * ATODl_D[2..8] +
AD CS * /AD1 NAD2 * ATODZ_D[2..8]
D[18..24] .TRST = AD_CS

IRQ3 = VCC

IRQ3.CLKF = KTIME
GLOBAL.RSTF = KPC1
GLOBAL.SETF = GND

82

O

(3~ D~ O1~

3~

SEGMENT DECODER PAL
PATTERN A
REVISION 1.0

CHIP

PIN 1
PIN 2
PIN 3
PIN 9
PIN 10
PIN 11
PIN 12
PIN 13
PIN 14
PIN 15
PIN 16
PIN 17
PIN 1B
PIN 19
PIN 21
PIN 22
PIN 23
PIN 24

;OUTPUT EQUATIONS

EQUATIONS

RD
SCAN

SMCs1 =

KPALU301

Table 9.8

; PALASM Design Description

Revision History

Addresses SMCS1

SMCSs2
Kacz21
KACZ22

PAL22V10

RNW
/SMCSIN
WAIT2
Al0

All

Al2

GND

Al3
/SMCS2
/SMCs1
/KAC22
/KAC21

/ SMBUFFEN
SMDSACKQ
SMDSACK1
/SCAN
RD

VCC

PAL U301 Equations

%$X40
$X40
$X40
$X40

83

03C000
03C400
03D000
03D400

PIN Declarations

COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL

COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL
COMBINATORIAL

RNW * SMCSIN * /Al3 * /Al2 * /All * /Al0
= /RNW * SMCSIN * /Al13 * /Al2 * /All * /R1Q

SMCSIN * /Al3 * /Al2 * /All * /R1O

SMDSACKO Generated
NO SMDSACK Generated
SMDSACKO Generated
SMDSACKO Generated

!’

’

INPUT

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

OUTPUT

INPUT

SMCS52 = SMCSIN * /AR13 * /Al2 * /All * AlO
KAC21 = SMCSIN * /Al3 * Al2 * /All * /AlO
KAC22 = SMCSIN * /Al3 * Al2 * /All * AlOQ

SMBUFFEN = SMCS1 + SMCS2 + SCAN + RD

; Of the following two dsacks, only one should be enabled.

; If using the smart A/D board, enable SMDSACKO

; If using the 16-Bit A/D, enable SMDSACK1

; Disable a DSACK by setting it equal to GND

; (Either comment out the two middle or two outer equations)
SMDSACKO = WAIT2 * (SMCS1 + KAC21 + KAC22)

; SMDSACKO = GND

; SMDSACK1 = SCAN * WAIT2

SMDSACK1 = GND

84

Detail View CPU 68020

DUART MAX =
Ram || Ram || Ram || Ram 68681 235 | E
32Kx8 | | 32Kx8 | | 32Kx8 | | 32Kx8 3
-
CPU =
PI/T68230 | 2%
<3
o a.
68020 <
k=
>
ROM ROM ROM ROM 2
64Kx8 | | 64Kx8 | | 64Kx8 | | 64Kx8 a0
1 AD | 2
=
<
PI/T68230 =
. L ap §
16MHz 5
Clock -
PAL PAL PAL 8254
22v10 | | 22vi0 | | 22vi0 :
MPU Timer .§
68882 >
)
0
8254 5
PAL PAL Timer | <
24v16 | | 24vie E
g
<
Q
8254 | <
Timer
Smart
Port
8254
Timer

Figure 9.1 Detail View-CPU 68020

85

Address Bus

Overall View CPU 68020

ntrol Bus

CPU
68020

MPU 68882

Control
Circuit

ROM
4x 27¢512

RAM
4x 60L256

Peripherals-

PUT, DUART,

Timers, Smart
Port

Figure 9.2 Over all View-CPU 68020

86

P1 Connector

K BOARD LAYOUT

{ Indicators

on/off

}

P2 Connector

I
I
I
I
J

O O

©
]
(]
[0 4

TIMER
cPU RAM 3 0
RAM 2 TIN1|ER
Co-Processor
RAM 1
RAM O

R
>
[y
7]

Figure 9.3 K Board Layout

Control

Data

Address

88

To PC RCD (P1RA 29)

To PC TXD (P1RA-30}

To IRI K U18 (MAX 235) PIN 10 (SERIAL 2 TXD P1RC-29)

S
”’ TO IR K U18(MAX 235)PIN HSERIAL 2 RCD P1AC 30)
—é——un o [—2
poed I /1 C4
e j::_: X1CLK q K JT— GND
cs x2 J_ 5:‘ 15pF
MC688681 ;D!
1 -I-g
7 a @
/ N
SpF L
= GND

| - 105532014) SONBWAYIS H'6 oMB1]

e K Processor

Size Numbar Rev
B

Date Aug v Jorawn by aew

Filename _ NK S§01 [sheet o

Control

Address

c
(L]

ai
S

oLz o

Data

tEXRRRZR22

68

:

N

o4
44

F(;EEE:

=

H

>

LR|LERC
RegRRERC

MRERRRERS

A0
AN
A2
A3
Al4
A1S
Do
5 03
1

poed D)

Q8 19 /
27C512

C - 108539014 3 SUBWSYIS §'¢ am3B1

Tile K Processor
Size Number Rev
B
ODate]Duwn by INw
Filaname NK Sn2 |Shoo! 2 o f
D

@
(@]
o

06

Control
vCC
T u2 u1
" A po AR: ‘ Fco
] (I s 0o 5 - Ldeen Fool-£
At] o — N =+
o] b+ *—y) sl Fe2 o
a o —— o] i Fenop——
06 1
b s — Cirm: T
o7~ 3 AVEC
o0 X
ef’ \ F
. o ‘;—:m/ cos 21 o
SEnGE Ou ,-. {34
vee B 2 Y S o
D14 W E
D18 n'_ 3
o1 1y ! L dosacxi A o
N 1T — T 1 \O
D18 _n,’ O .
o 6701 o
o :{g \.gLxte BeENp-2L Address
N o o b beiA cur UJ
D2 :‘{;’ o0 " o
o2 < Al D1 Al =2
o2 52 =] / 3 toe aal-pt [¢]
LT W o m— n N #1 Data 8
o g b o pod 8T =1
copics: 3 d= ot . S— T pof 5
Ko" (I ‘A:—ET%_E/:
S LU 2 - s 1o aro [g W
D11 Al
. i EH Az g = v)
\NEOF™ D!\ gmeser 013 A —
D14 Ale o
D18 ::: (o]
MC68881 b A o
,”" o1 ale 1A
o g
2 021 an =
o an !
024 Az (P8
D2 an
vCcC vCcC g;; :
D2 Iy
pant 2 " Tt 325 T 2 o pr
s | L] VT cem 1 Ay
PAY —lz- KCTIME [MCB8020
BAL 1 Y I NS U\ :
PAS” W N N vg;. T
e v N v
4.7k 47
Tite K Processor
Size Number Rev

B

Date I Orawn sl
Fresrs KA [sneet 5 o 8]
D

16

8 D
s o]
Ldd
E
uze:A U28:0 s o
L Nel
BAD L] i —rN —] L] [] PAY g_ .
pr—i ~
740505 74LS05 Ej e 72]
U28:8 U28:E — 3
PAY k] D‘: 4 PAL* PA4 i1l D“rm [T (Bp
74,505 740505 =%
Lo
u28:C U28:F 3]
Pz 8 Dc ' pay] : 1 L) vee ~
LED s~
74LS05 741505 A3, —PoweR a
330 72 8
D1 b
7]
U29:A e LED 741504 8
PAA ! > 2 PAA® MT HALT T
330 V)
740505 b2 uteD »
u29:8 LED 741504
. PAT® RS RESET 10 11 RESET
330 2
741505 0 U1eE
— GND

Ttte K Processor

Size Number Rev
Date | Drawn by wee
Filename _ NK S04 [shee ¢ ot g

D

c6

A B C D
+15V +15V
Termmal 4
+5V
o 8 ! TR
15V Uit ME-DI0AZ oEe”
Aoz0a 810082 Oseue |28 AD2E m‘:; R102
A207 D811082 086080 -
SHET TREHE w N R Y
U0 e Dot |2 s0am — Black i N2
. 23 anoro 222A H
15V Auna B0 1 :ﬂg: 084 Teiminal 6 Tetrwnal 7
ADunz oe11/08a 0BMDB0 £P142 Ec181 "g““: ﬂ__ -
KP1AY _ o7 PrIvel ofFser|—2 1 = GND
v C DBe KB140 VPR(a18) :
cee +15V prem .] ey e LigM o6 Low
VEE(18) STATUS| -—l'-m— Chisg gm CHIS :
:f o ;;;;4 ﬁ CH12 M cHe CHA J
T wor18) nS9412 = GND Light on High
Go " o] s
LHd e e Ll
o MY cHr LHL GND
He cre = GND =
HS9412
OAC1e u29:c
: vz .
n2e
741505 o o o o UEQ
DA [os
Real-Time Distancse KPAD o 2t o
oivf U29:E APAL 50 r24
ot : KPA2 B Vo]
o1 p— N f 1 MEAD D%-EL DSACKY -
oz b= il XPAL “é—;‘: X20Ca7 o0
1 o1 s KPAS K - Ll
12 o 741.505 KeAL : A8 AEseTp-2—BENFI m
PALCE26V12H-15 oC1 TRER
5V . VAL PC8/ PIICK IACKZ v
i I 2o gl pey PiRg aoz: ~
| 0 o 2 3 PC4s OMAREQ] RLCK [«
U , TIMEDIST xes AL S
- . B0 OUTH pendde XPR1 8 PCH MPC1
_19_5 Gl 113 3 —f2 W lpg; peofp2 1A
v 8254 J—T S Y4 I I Y S, @
I vo1o ; —pha 2! lpg, naz tﬁ: o
-) Tim ingut S — o] e A
e B e BE——
vos W
wos v MC68230
Vo4
1 (k]
priod U3z U3 o - —
1 w1 H L b7 Ll A o7 A m—w
00 % : z’ r 3 -gg t 1 8 i? %_E_}j_if‘j
PALCE26V12H-15 D4 Ar 5 + D4 At 3 4 aof "
D2 cua grigsk ax KigsK oy p“
—k2 o outz [— oge ot porgerd D2 oura |-
i O ci o v g v G - 124 7
L 1 —_—
crom _—i—oum aarer Xicre cyom —Jouto aare €3 oo TSR, OO ™ K Processor
Gates ouTi (1 our |13
8254 8254 8254 Size Number Rev
Dsts [Orawn by Waker
Friename NK S06 | Sheat R ol f
A | B [D

€6

u13 U4 SEE PAGE 7 FOR P 484
L0 CLKAD ﬁ
; == : - i e
: = - b B "
! : RAC " A
(Lo (Lo X AL
o oo Shics: Fas
s el — The :
o HE—Fn T e i T
! th ! 2 {n ﬂ_:i_
2v10 22v10 1 —
[T}
7
U19:A 1 T 4
1]
u1s MOSACKO 1 K0 0
e] =t -
i ig U198 uq
0 RACS
' HE= ' q
: o : o
- . o o 741505 ©
1 : m 18 u18.C O
111 .
2v10 [7¢]
¥ g
741504 =
! o
v29:0 g
X | am/ u17 u3s 5
U20:A |_ U208 a3 Yy =,
741505 = o - o oo G o
14
x1 U1B:A — . ; -t WAITY %
— [:]
16Mh2 1 74LS74 Tas7a] ac—S—] o WA, o
d b 0f —9—
¢ clock 741504 VG o vC o1 o
u18:8 i 8
2 . o A 7415184 74LS 164 A
X ! w27 74L504 741504 =
ggg 533 \ utgc - .-_‘
—
v umeaF
" A out 74505
o swi uv19:0
1
w w 1 2 1]]
S 1o 'S S
A3 25 273 AB-15
- - LMSS55JA
o ° ° 741505
=L GND
J_ GND 74L500 e NK Processor
- RASTY] Size | Number Rev
{connecied 10 pullup resisters) Ast2 / B
Date |Drnwn by AW
Filename NK SN§ |sheet & o g

A B [C D

v6

A B D
Y42
G:L N SMBUFEN
]
TOP107 - A .
TO P1 08 TO PAL UADY
TosazaozPe00 X o » TOPY05 &2
4 M o
3 :: vy A9 _ BRW E
M 87 N & U301 P~
4
7415245 TO RW ON BUS _ cuoo et
u TO SMART A/D CHIP S . —_
43 r o swosacxi_ For 16 bit A/ID U19E o
_—EL-,“—i- . Voo EXDBACKD n 19 L
o ol P k 741505 w
o 82 I =i et Y U29:F o
TO DATA LINES g;: 4 o4 o j TO Pt CONNECTOR 12 1 voreo f ’ ACK1 g
.7 B
06 A T
bay 3. 20 pry =
8 A7 | PAL22v10 741505 g
74LS245 .(..";
(122 z
c':’L-“— 741505 ~
fox)
Ay T2 =]
82 a o
TO DATA LINES I o TO Pt CONNECTOR o
06 A a
o o sV w
a = SV = GND Q
74L.5245 F Should go to 68230U4-05 ’
Should go lo 88230U4-04 'S}
U44s U446
o2 5p*
81 Ay L!l wwr g 81 A1
B] = o
B a - A Title
o0 - gl' “ ™ NK PROCESSOR
o7 ar z A7
Size Numbar Rev
7415245 7415245 B A
= GND = GND Date AUG 1995 [Drewn by WALRER
Fiienama K.508 [sheet 7 o
A B D

$6

A C D
P2RA:1 P2RC:1 P1RA:1 P1RC:1
CH1 1 a5V P1RB:1 1 GND ya GND
3 : CH2) 2 .5y 3 2 SMAQL] 2 SMADR
3 CHa) 3 GND) 3 3 SMAM p) 3 SMAGA
> 4 CHa > 4 GND))] 4 RAN 3 4 GND
) CHE) RTVE p) 4 2__5_ausx_ 3 5 NISTANCE IN (H3)
> CHE > -16V > § 8 BD* 4 8 START IN (H1)
) cH7) PAQ*)]] SCAN- 2 7 GND
) CcHA) B PA1* > >] KPAR 2 1 TIMER QUT (TEST)
4 CH9 4 PAD" 2] 4 9 KPAY 4 BAS
> 0 CHI0 > {1 PA3* >) > 10 GND > 10 RAR
) CH11 4 PAS®) 0) KPBO) 1 BAZ
2 CH12 4 2 PAS® 4 p) P KPR1 3 12 BAR
) £H13 4 1 PAR®))] KPRD > 1 fAq o o}
> 4 CHid > 4 PAZ* >)) 4 KPAA > 14 SMAFSFT* 0-5 .
3 15 CHig 3 PR) 3 4 e 5 KpR4 > 15 ASMCS)e c
) 16 CHIS » PR1 > > 16 KPRS > 18 ASMCS2* [}
> 7 GND > PA2 > > 1 KPBR& > 17 EMPTIY-AD* o
3 1 GND > PA3 > > 18 KPA7 pi 18 EAC \D
) CA-CH1) PB4)) 19 aNn p3 19 SMNSACKD —_
3 20 C1-CH2 > 20 PBR5 > 1 3 20 SMADON > 20 SMANOA —
> 21 C1-CH3) 21 PRA > 20 > 21 SMANOT > 21 SMANNG
y 22___IC2CHI) 2 7 y 21) 22 suanoo) 22 SMADI0 4
3 23 C2-CH2) 23) 2 > 23 SMADO]) 23 SMADI1 =
> 24 C2-CH3) 24 ATOK y 23 3 24 SMASOL 3 24 SMAD1D o
y 25 IC3-CH1) 25 px) 24 3 25 sMANos 3 25 suap1a 3
> 26 C3-CH2 > 26 DK) 25 > 26 SMANOA > 26]
> 27 C3-CH3 > GND) 26 > 27 SMARDT > 27 .
>) 28 wTMOT) 21 > 26 SFRIA 1 GND $ 28 mw ©
> 29 \C4-CH? 3 29 BAK > 28) 29 cD > 9 SERIAL 2 ACD z
4 30 piNTOY 0 4 29 4 30 SFAIAL1TXD 4 0 SFAIAI 2 TXD =
) N BRIOU > 1 BGK > 30 > a1 EQC-AN 3 1 EQC
> 32) > 32 BUSY 3 31 > 32 > 32 oy
3 32 (o]
DIN3X32M DIN3X32M DIN3X32M DIN3X32M o]
DIN3X32M 14
17}
(=}
1
|
w
NOTE: EOC-AD® WAS MOVED FROM
P1RB 16 NO RESET P1RC-32 TO P1RA-31
17 CENTER RESET
18 NC RESET
Title
' NK Processor
Size Number Rev
Date Drawn by Walker
Filename NK SO8 Sheet g of g

D

APPENDIX A

96

APPENDIX A

TALK INTRODUCTION

This documentation is for the program talk70.exe.
Talk70.exe uses the following files:

TALK70.H - shared include file

TALK70.C - main program, mode 1, mode 2, mode 4, and general purpose functions
BT.C - serial port communication and display functions
Mode3.C - mode 3 rut/si

SD1.C - mode 5

MODES6.C - mode 6

MODE7.C - mode 7

RTRUT.C - real-time rut

SERQS.ASM - serial port functions, supporting 3 ports
SERIALS.ASM - serial port functions, supporting 2 ports

The make file .tall 70.mak is used for creating the executable talk70.exe.

This document gives the description of each function in each of the files.

This description of each function is called function header. Partial structure

charts are drawn to explain which function calls which function.

Some flowcharts are drawn to ease the understanding of some of the harder

functions. We have also explained some of the global variables and what role

they play in the program. The program talk70.exe uses some files which it writes to and

reads from. This is also taken care of.

A Warnier Orr diagram is drawn which gives us the over all picture of the whole program. This
diagram is also provided on disk. This can be loaded into any ascii editor and you can follow the
flow of the program. The Warnier Orr diagram is useful in providing the function hierarchy
indicating which function is calling which function(s). This helps in identifying the leaf
functions (the functions that do not call any other function) which can provide a starting point for
documentation.

A-1

Structure Charts

A-2

Main

InitSi

MonitorMode

L

ReadRutCorr

SetCursor

/

ReadRutCorr

Level 1

MonitorMode

OpenComm

Process
function

—

ScrollWin

readkey sersend

DisplayHelp }

ReadRutCorr

serrecv

serclose

serclose_q

Level 2

A-3

ProcessFunction

DisplayCommParamf

Upload \
FlushPort KeyPadMode ScrolWin OpenComm
CommParam
serrecv EscapeHit sersend serclose_g setcursor
‘ F
T Pre 2 DisplayHelp IRI_RUTMode Mode6 SDProfile1 ProfileMode3
I
Level 3
IRI_RUTMode -
GetDi . . DisplayStatus :] .
istance | | stopColiect | | EndMessage | | DispiayPoints Form SetParam time WaitForFirst GetFioat
IRI_RUTMode Level 4

A4

—_—m—m—

IRI_RUTMode
i — |
\
Border SeiCursor GetFilename GetAcousiic SelAcUnit } SendCommand ’ SetMem GetSPF
IRI_RUTMode Level 4
IRI_RUTMode
ScrollWin GetMsg sersend serrecv Checkcomm SaveOrNot
Level 4
IRI_RUTMode

A-5

KeyPadMode

SendCommand
‘ | -
FlushPort SetCursor J Border Sersend
KeypadMode Level 4
LoadedCor |5
ReadRutCorr DispCorr TestMode readkey SaveRutCor DispCorr SetCursor sersend
Level 4

LoadedCorr

A-6

Mode6 -

|

|

!

|

|

‘ |
ClearRows Border (SetCursor DistanceMode| | SetSdMode GetFileName SetAcUnit GetSPF GetDistance

Mode6 Level 4
Mode6
Py
StopCollect | | EndMessage | | DisplayPoints Disp’lragnsﬂtatus SetParam SaveOrNot WaitForFirst serecv | | MasterOutput
‘ L
SendCommand CheckComm
Mode6 Level 4

A-7

ProfileMode2

SetFilter ClearRows Border SetCursor DistanceMode | | SetSdMode GetFilename GetAcoustic SetAcUnit
ProfileMode?2
Level 4
ProﬁIeModeZ;;Z
- =
SetFilter ClearRows Border SetCursor DistanceMode | | SetSdMode GetFilename GetAcoustic SetAcUnit

ProfileMode2

Level 4

A-8

ProfileMode2r-

GetDistance | | StopCollect EndMessage | |DispiayPoints Disp’I:g:ntatus SetParam Se&REax;ro'act Sen:g:mm time
ProfileMode2 Level 4
ProfileMode2'-
WaitForFirst CheckTime SaveOrNot semecv CheckComm‘ MasterOutpT.ut‘
ProfileMode2 Level 4

ProﬁIeMode3;

—

1
!‘
|

GetMem ClearRows Border SetCursor GetFilename| | GetAcoustic GetSPF GetDistance DisplayPoints
ProfileMode3 Level 4
ProfileMode3 ‘
meﬁx
|

| W
MF'L:" us s’;mb SetAcUnit InitRut Setlsn;;mal c:::‘:n " sersend FlushPort readkey
ProfileMode3 Level 4

A-10

ProfileMode3

\
WaitForFirst time ScroliWin DistManage serrecv ‘ WriteSlT‘ ‘ GetRut PostRut PutRoadlnfo‘
| J
ProfileMode3 Level 4
Level 4
SDProfiie1
= === ‘
- |
\ ! \ ‘ ‘ |
ClearRows Border SetCursor | | SetSdMode SetMem GetFileName { GetAcoustic SetAcUnit GetSPF
SDProfile1
SDProfile1
L 5 / ‘ ‘ Send | ‘
StopColiect | | EndMessage | | DisplayPoints |sp'|:a::ntatus SetPararn‘ Command WaitForFirst serrecy CheckComm
SDProfie1

Level 4

A-11

TestMode

ClearRows Border SetCursor SetSdMode | | SendCommand FlushPort SelectAcoustic SetAcUnit SetParam
TestMode Level 4
TestMode -
WaitForFirst serrecv sersend readkey Delay

TestMode

Level 4

A-12

SetExtractratio SetFilter

SendCommand

Level 5§

SetParam
SetinteraniSPF SetExtractRatio
GetFilename
ClearRows SetCursor
Level 5

GetMem

GetString

Border

SetCursor

N

Writech

ClearRows

FlushPort

GetAcoustic

SetCursor

I

SelectAcoustic

SetAcUnit

T

SendCommand

Level 5

A-14

GetString

sersend

Delay

checktime

clock

SetCursor

EscapeHit

kbhit

PauseRut

Level 5

Border

SendString

FlushPort

serrecv

SetinternalSPF

PostRut

ScroliWn

SetCursor

SendCommand

Delay

PutRoadinfo

Level 5

DistManage
sersend
PutRoadinfo
Border SetCursor

A-16

WaitForFirst

Level 5

—— —

CheckComm .

SaveOrNot ‘

SerialPortStatus SetCursor ‘
]]

Level 5

GetFloat

GetMsg

NS

semecv

GetSPF

ZN

DisplayPoints

N

ClearRows

SetCursor

StopColiect

N

sersend

Level 5

ClearRows

ClearRows SetCursor
GetDistance
SetCursor ClearRows
Level 5

I

FlushPort

DisplayStatusForm

SetCursor

EscapeHit

GetString

/ SendCommand \

;
/

SO

|
FlushPort }
J

WaitChar

!
!
SendCommand |

sersend

sersend
|
SetMem
sersend FlushPort
Level 5
EndMessage
SetCursor Border
Level 5

A-19

ClearRows

OPenComm

serinit_q

DisplayHelp

serinit

Level 5

A-20

DisplayCommParam

Function Headers
Description of Talk Functions sorted alphabetically

A-21

Function name: Border

Input Parameters:

int Ir Upper left row
Used

int Ic Upper left column
Used

intrr Lower right row
Used

int rc Lower right column
Used

Return Value:

None

Global Variables Set and Used:

None.

Description:
This routine draws a border on the screen. It uses the horizontal, vertical, corner characters to draw the border.

Functions Called:

SetCursor
WriteCh.

Called by:

GetDistance
IRI_RUTMode
ProfileMode3
ProfileMode2
KeyPadMode
TestMode
PauseRut
SDProfile
EndMessage
PutRoadInfo

Example Calls:
Border(21, 2, 23, 14).

Function name: CheckComm

Input Parameters:

None.

A-22

Return Value:

None

Global variables set and used:

PortNo Used

iOverrun Set
Used

iFrame Set
Used

Description:
This function calls the function SerialPortStatus. The function SerialPortStatus returns two bytes which describe the

status of the port.
The Overrun error is checked with the help of this 16 bit information and the FrameError is checked with the help of

this 16 byte information. There is a counter iFrame which is incremented if there has been a Frame Error. There is a
counter iOverRun which is incremented if there is an Overrun error.

Functions Called:
SerialPortStatus, SetCursor.

Called by:
ProfileMode2, ProfileMode3, IRI_RUTMode and SDProfilel

Example Call:
CheckComm()

Function name: CheckTime

Input Parameters:
bReset Used

Return Value:
0 | bdiff bdiff is an unsigned integer.

Global variables set and used:

None

Description:

CheckTime(TRUE) indicates that the clock is reset and 0 is returned as the return value.
The variable CurrClock indicates the time when the most recent call to this routine is made.
The variable OldClock indicates the (last but one) most recent call to this routine is made.
CheckTime(FALSE) checks the difference between CurrClock and OldClock.

If the difference is greater that 1000 then this routine returns the difference (diff).

If the difference is lower that 1000, then a 0 is returned.

A-23

By default, the old clock is set equal to the current clock i.e. OldClock = CurrClock.
1000 indicates 1 second because the value returned by clock() is in milliseconds.
Observe that OldClock is defined as static.

Functions Called:
clock () - C function

Called by:
ProfileMode2

Example Call

checkTime(True)
checkTime(False)

Function name: CloseRut

Input Parameters:

None

Return Value:

None

Global variables set and used:

fRut Used
fSI Used
fwWSV Used
iRutCnt Used
iSICnt Used
iAFirst Used
iALast Used
iBadAcou Used
i Set
Used
Description:

This routine checks if the files for Rut, SI, WSV are open...that is 3 files. It writes Rut and all the bad acoustics to
the file for Rut. It writes SI to the file for SI. It writes WSV to the file for WSV.

It closes all the files.

Functions Called: fprintf

fclose

Called:
None

Called by:
ProfileMode3

A-24

Example Call
CloseRut()

Function Name: CommParam

Input Parameters:

None.

Return Value:
None.

Global Variables Set and Used:

BaudRate Set
SupportedBaudRate Used
Parity Set
DataBits Set
StopBit Set
PortNo Set
Description:

This function allows the user to select the communication parameters. It allows the user to select the communication
parameter Baud Rate from any of the following Baud Rate, like { 9600, 4800, 2400, 1200, 600, 300, 150, 19200 }.
The user is allowed to select the -parity, the parity can be either No Parity, Odd Parity or Even Parity. The user is
also allowed to select the number of stop bits either 1 or 2. The user is also allowed to select the number of databits

7/8.
The user can also select the ports, either COM! or COM2.

Functions Called:
readkey

Called by:

ProcessFunctions

Example Calls:
CommParam()

Function name: Delay

Input Parameters :

ms Time in milliseconds
Used

A-25

Return Value:

one

Global variables set and used:

None
Description:
It just waits for time specified in (ms), time in milliseconds and returns.

Functions Called:
clock () - C function

Called by:
SetInternal SPF and TestMode

Example Call:
Delay(10L)

Function name: DispCorr

Input Parameters:
None

Return Value:
None

Global variables set and used:

SMountCorr used
RuttCorr.Mounting used
RuttCorrLoading used
SLoadCorr used
STotalCorr used
Description:

It displays the variables SMountCorr, RuttCorr.Mounting, RuttCorrLoading, SLoadCorr & STotalCorr.

where

char sMountCorr[]="\nCurrent mounting corrections (inch):\n";

char sLoadCorr[] ="\nCurrent field loaded/loaded corrections (inch):\n";

char sTotalCorr[]="\nTotal corrections (counts):\n";

It displays the values of RuttCorr.Loading and RuttCottMounting for all the 5 acoustic devices. Then the program
displays the RuttCorrMounting + RuttCorrLoading for all the 5 acoustic devices which is the total

Rutt Correlation for the 5 devices. The loading correlation is added to the mounting correlation.

Refer to datadic.doc for definitions of RutCorr.Mounting, RutCorrLoading, StotalCorr

A-26

Functions Called:
printf DOS

Called by:
LoadedCorr()

Example Call:
DispCorr();

Function name: DisplayCommParam

Input Parameters:
None

Return Value:
None

Global Variables Set and Used:.

PortNo Used
BaudRate Used
Parity Used
Databits Used
StopBits Used
Description:

This function displays info. about the communication parameters. It displays the parity; whether the parity is
ODDPARITY, EVENPARITY or NOPARITY along with the number of databits and the number of stopbits.

Functions Called:
None

Called by:
ProcessFunctions, DisplayHelp

Example Calls:
DisplayCommParam()

A-27

Function name: DisplayHelp

Input Parameters:
None

Return Value:
None

Global variables set and used:
None

Description:

It gives us the option of which keys need to be pressed to change communication parameters, Toggle between hex
and ascii mode, select data collection mode, Metric/English, Test Acoustic devices, Siometer Panel, Profile Mode
and to exit. The existing communication parameters are displayed by the call to the function DisplayCommParam.
This helps the use to see the existing parameters and decide what he/she needs to do next and change which
parameters.

Functions Called:
printf
DisplayCommParam

Called by:

main

Example Call:
DisplayHelp

Function name: DisplayPoints

Input Parameters:

int iRow The rows are used as a parameter for clearing the screen and setting the cursor
Used
long nPts Used
double dist Distance
Set
Used
double sample Samples
Used

A-28

Return Value:

None

Global variables set and used:
bMetric Used

Description:

This function clears the rows and sets the cursor. If the variable bMetric is set the distance is printed in kilometers
otherwise the distance is printed in miles and feet. Also the number of points and samples are also printed.

Functions Called:

ClearRows
SetCursor

Called by:
ProfileMode2

Example Call:
DisplayPoints(11, nPts, dist, sample);

Function name: DisplayStatusForm

Input Parameters:

int iRow Row
Used

Return Value:
None

Global Variables Set and Used:

bMetric Used. It is a Boolean variable. If the basic metric is KM then it is TRUE else if it is FEET
then it is FALSE. [set/used and What is the significance of the variable]

Description:

It clears the screen and prints the distance traveled in KM if the bMetric is TRUE else it prints in FEET or in
MILES if bMetric is FALSE.
This function prints a form for the Time Elapsed and Distance traveled. It prints the literal strings

“Busy = /1000”. Observe the blank space between “Busy” and the “/1000”. This space is conserved
for the cursor to be set later on and some data to be printed in the position between “Busy *
and “/1000”. Also the cursor is set and the strings “ Time Elapsed= and “
Distance Traveled = “, “ km”, “ feet (miles)” are printed. The variable bMetric is checked. If this
variable is TRUE then the “km” literal string is printed otherwise the “ feet (miles)” literal string is printed.

”»

A-29

Functions Called:

ClearRows
SetCursor.

Called by:

IRI_RUTMode
ProfileMode2
ProfileMode3
SDProfile.

Example Calls:
DisplayStatusForm(int iRow).

Function name: DistanceMode

Input Parameters:

bDisplay It is of the Boolean type. So it can take values of TRUE | FALSE
Used.

Return Value:

int IsDistance This tell us whether it is DistanceMode or TimeMode
If IsDistance is TRUE then it is DistanceMode else it is TimeMode.

IsDistance = TRUE | FALSE

Global Variables Set and Used:

None

Description:

This routine sends the command “D 42EE” using the SendCommand function. The routine then gets a string from
the port which is either TRUE or FALSE. The routine determines whether IsDistance is TRUE | FALSE. If
IsDistance is TRUE then it prints “DistanceMode “ otherwise it prints “TimeMode”.

Functions Called:
SendCommand, GetString, sscanf, SetCursor, printf

Called by:

ProfileMode2
DistanceMode

A-30

Example Calls:
DistanceMode(TRUE), DistanceMode(FALSE).

Function name: DistManage

Input Parameters:

int iFunc where iFunc ¢ { DM_RUT, DM_SI, DM_INIT }
Used

Return Value:
DISTTYPE DistR

Global Variables Set and Used:

nRutsPerDMI Used
bExtraComm Used

RutDist Used
SIDist Used
Description:

This routine first finds out the value of iFunc. The value of iFunc is determined. iFunc is either DM_RUT,
DM_SI, DM_INIT. Depending upon the value of iFunc a certain steps of functions is performed.

Why do you need this function ?

The mode3 obtains the value of SI every 0.1/0.2 mile, that is every 1056 feet or 528 feet depending upon the
setting. The mode3 also obtains the value of the acoustic data every 4 feet. The program running on the PC gets the
acoustic data as well as the SI from the siometer.

In this program we need to send Distance Signals to the mission manager if COM3 is connected.

Since the acoustic data comes in every 4 feet we can send a distance signal every 4 feet. But the acoustic data is not
a true representative of how much distance is covered. The SI is a true representative of how much distance is
covered. But the acoustic data comes in every 4 feet whereas the SI comes in every 1056 feet. Whenever acoustic
data comes in a distance signal is sent to the mission manager.But you know that this acoustic data arrival does not
really allow you to send a distance signal after exactly 4 feet. Therefore you could have sent either more or less
distance signals. Therefore you need to do some corrections. The SI comes in every 1056 feet. Therefore when the
SI signal comes in you now whether you need to send some more distance signals or lesser.

Whenever this routine is called using DM_INIT it means that this routine is being called for the first time by mode3
Whenever this routine is called using DM_SI i.e. DistManage(DM_SI) it means that a value of SI has come in and

we need to adjust the sending of distance signals.
Whenever this routine is called using DM_RUT i.e. DistManage(DM_RUT) it means that a value of RUT , acoustic
data has come in and we need to adjust the sending of the distance signals

Lets see how we do it in this routine.

e This routine is called with DM_INIT whenever it is called for the first time to initialize the values of the
variables used in this routine.
The following initializations are done in this routine if it is called with DM_INIT.
DistR =0;
DistR is the cumulative of the total distance covered so when this routine is initially called, DistR is set to
zero.

A-3]

iDCnt = 0;

iDChnt is the number of times the routine has got acoustic data so it is initially set to zero.
DistBalance = S1Dist

SIDist is either 1056 or 528. this value is in feet.

o This routine is called with DM_RUT whenever mode3 gets a RUT i.e. (acoustic data).

Whenever a RUT comes in that is acoustic data comes in the value of iDCnt is incremented.

Observe that the type of iDCnt is static. Once it is initialized, it remains the same no matter what the
value of iDChnt is.

When the value of iDCnt reaches nRutsPerDMI (3), then if DistBalance = 0 and bExtraComm is

1, a command “D” is sent to the serial port COM3. The RUT comes in every 4 feet. So 4 * 3 =12

feet. Every 12 feet a “D” command is sent to COM3. Also the adjustment of the distance signals is

done. DistR is the cumulative of all the distance covered. (DistBalance is initially set to SIDist by the
initialization routine.)

DistBalance is decremented by the amount of total distance covered since the last SI signal.

e This routine is called with DM_SI whenever mode3 gets an Sl i.e. (This routine is called with DM_SI
whenever mode3 gets an Sl i.e. (Serviceability index).

Whenever an S] value comes in, that is every 1056, 528 feet, if lesser number of distance signals have been
sent the correction is made and the exact amount of distance signals which were supposed to be sent
depending the distance covered are sent. This correction is made here because SI gives us an indication of
the exact distance covered.

Observe the while loop below. Until DistBalance does not become zero, a correction is made, that is the
distance signal is sent. After the DistBalance becomes zero, the exact number of distance signals have been sent.
The DistBalance is initialized to SIDist which has to be decremented every time a RUT ...DM_RUT comes
in.
// control for tow few samples
while (DistBalance > 0) {
// Send out extra D's to COM3
if (bExtraComm) sersend(COM3, 'D");
DistR += RutDist*nRutsPerDMI;
DistBalance -= RutDist*nRutsPerDMI;

}
DistBalance += SIDist;

Functions Called:
Sersend

Called by:
ProfileMode3

Example Calls:
DistManage(DM_INIT)

A-32

Function name: EndMessage

Input Parameters:

None.

Return Value:

None.

Global Variables Set and Used:

PortNo Used
bAbort Used
Description:

It prints the end message. If sending has been aborted then the it prints as ‘ABORTED”’ else if sending has been
completed then it prints ‘COMPLETED’ and asks you to press any key to proceed. It finally clears the screen.

Functions Called:

sersend
SetCursor
ClearRows
Border
Readkey

Called by:

IRl RUTMode
ProfileMode2
ProfileMode3
SDProfile.

Example Calls:
EndMessage().

Function name: EscapeHit

Input Parameters:

None

Return Value:

BOOLEAN TRUE | FALSE (TRUE is returned when the ESCAPE key is hit. FALSE is returned
when the ESCAPE key is not hit)

Global variables set and used:
None

A-33

Description:

Checks whether an Escape key has been hit on the Keyboard. If Escape key has been hit it will return TRUE else it
return FALSE to the calling function.

Functions Called:
kbhit

Called by:

Upload
SendCommand
GetString
ProcessFunction

Function name: FlushPort

Input Parameters:
int PortNo PortNumber

Return Value:

None

Global variables set and used:

None

Description:

The function call to serrecv is made again and again until a word FFFF (hex) is received.
The event of receiving a word FFFF indicates that the port has been flushed...cleared.

Functions Called:
SE€ITecy

Called by:

SetSdMode, SendCommand, GetString, Upload, ProcessFunctions, KeyPadMode, TestMode, SetAcUnit,
StopCollect, ProfileMode3, SetMem

Example Calls:
FlushPort(COM1)

A-34

Function name: GetAcoustic

Input Parameters:

int Row Used
int *acunit Used

Return Value:

None

Global Variables Set and Used:

szDefAc Set
Used
szActiveAcoustic Used

Description: The function ‘GetAcoustic’ asks the user enter the selected acoustic devices. It first clears the rows
and sets the cursor in a particular position on the screen. It prints a statement “Enter selected acoustic device(s):”
Here the user is supposed to enter the numbers of the acoustic devices that should collect the data. The acoustic
devices are numbered 1 through 5 with an optional laser that can be set and given the number 6 to select. It prints
on the screen the numbers of the acoustic devices that have been selected for the collection of the data.

Functions Called:

ClearRows
SetCursor
SelectAcoustic

Called by:

ProfileMode3
ProfileMode2
IRI_RUTMode
SDProfilel

Example Calls:
GetAcoustic(10, &acunit)

Function name: GetCursor

Input Parameters:

int *r The rows position
Set

int *c The column position
Set

Return Value:
None

Global variables set and used:

None

A-35

Description:

Reads the current cursor position for a specific display page and the current cursor size. 1t uses INTERRUPT 0x10h
- Function 03h (GET CURSOR POSITION AND SIZE). For this AH is 03, BH is page number, DH is the row(00h
is top), DL is Column (00h is left).

Functions Called:
int8¢ INTERRUPT 0x10h - Function 03h

Called by:

[Need to find which functions are calling this function]
At present we did not find any function calling this function.

Example Calls:
Obviously None

Function name: GetDistance

Input Parameters:

int Rows Used

char *unit Used
Set

double *dist Set
Used

Return Value:

None

Global Variables Set and Used:

bMetric Used
str Set This is a buffer.

Description: This function basically gets distance from the user. This function asks the user to enter the distance.
As long as the distance is 0 or less it sets the cursor and clears the rows. Then it prints a statement ‘Enter distance’.
Here the user has to enter the distance. This function has to get the distance from the user. If the distance is not
entered it prompts again and again the user to enter the distance.

Functions Called:

SetCursor
ClearRows

Called by:

Mode6
IRI_RUTMode
ProfileMode3
ProfileMode2

A-36

Example Calls:
GetDistance(12, &unit, &distance)

Function name: GetFileName

Input Parameters:

iRow Int type
Set
Used

Return Value:
A pointer to the file

Global Variables Set and Used:

bSysGenFileName Used
str Set
Used
Datfile Set
Used
bComment Used
Header Used
Set
SI_PACK Used
DataCollectMode Used
SI_ AVGSPD Used

Description: It asks the user to enter the name of the output file. If the user does not enter a name of the file then
the program itself generates a name of a file using the system time. It uses the localtime function that is supported
by the ‘C’ library to get the local time[actually localtime function converts calendar time into local time] to
generate the name of the file. The name of the output file name is stored in the variable ‘DatFile’. To verify
whether the file by the name aiready exits we try to open the file in the read mode. If it aiready exits then the
‘fopen’ function returns a non-null value. If it is so then we close the file and tells the user “ File already exists.
Replace?[N)/Y:” to give another name for the file. Then it prints the name of the output file on the screen. It prints
the header and allows the user to enter 1 or 2 lines of comment.

Functions Called:

ClearRows
SetCursor

Called by:

IRI_RUTMode
ProfileMode2
ProfileMode3
SDProfilel
Mode6

ExampleCalls:
GetFileName(6)

A-37

Function name: GetFloat

Input Parameters:

None

Return Value:
float

Global Variables Set and Used:
PortNo Used

Description: This function uses serrecv to receive data from the serial port denoted by PortNo. The data
received for first time is stored in a variable. Then the port is read for 4 more times. Each time the serial port is
read zeros are introduced into the lower order bits of data in multiples of 7 and same number of highest order bits
are lost by shifting to left. For the data received fist 7 higher order bits are shifted out and 7 zeros are shifted into
lower bits. Then this data is bitwise ‘OR’ed with data that is stored in the variable and the result is stored in the
variable. Next time the data received will be 14 higher order bits are shifted out introducing 14 zeros into the lower
order bits. Again this is bitwise ‘OR’ed with the data stored in the variable ad the result is again stored in the
variable. This process is followed for the 3rd and 4th time with 21 and 28 zeros respectively introduced into the
data that is received on 3rd and 4th time. Then the value in the variable is returned.

Functions Called:

serrecy

Called by:
RutMode

Example Calls:
GetFloat

Function name: Get Header(char *Filename)

Input Parameters:

Filename That is a pointer to a char array containing the filename . The function prototype is
defines as shown. [char *GetHeader(char *FileName)]
Used

Return Value:

char * Pointer to a character

Global variables set and used:
None

A-38

Description:
It gets the 80 character header from the filename provided as input and adds a \Q character to the end of the header
string. It returns the 80 character header.

Functions Called:

fopen
malloc
free
fclose
fgets

Called by:
InitSi

Example Call:
GetHeader(value)

Function name: GetinternalSPF

Input Parameters:

None

Return Value:
SPF An integer

Global Variables Set and Used:

None

Description: This function sends “D4E3E” to the siometer. Then it reads the siometer by using the GetString
function. As already explained in SetMem the format of the siometer is “Prompt <address> <word value in Hex>"
The word value in Hex starts in 9 th byte. This value (that is data at the 9th byte and after) is copied into the buffer
that is returned when this function is called.

Functions Called:

SendCommand
GetString

Called by:
ProfileMode2

Example Calls:
GetlnternalSPF()

A-39

Function name: Get/RQ

Input Parameters:

PortNo Port number
Used

Return Value:
Integer Interrupt Number

Global variables set and used:

iCOM3IRQ Used.
PortNo Used.
Description:

Depending on the port number it returns an integer. If port number = COM1 it returns 4, if it is COM2 it returns 3, if
it is COM3 it returns iCOM3IRQ else if it is COM4 it returns 2.

After the program has executed the ports accessed by the interrupt’s are fixed. The number which is returned is an
integer which is the interrupt number of the port . The port number is given as an input parameter.

Functions Called:

None

Called by:

serinit_q
serclose-q.

Example Calls:

GetIRQ(COM2)
GetIRQ(COM3)

Function name: GetMem

Input Parameters:

long 1Addr It is an address
Used

Return Value:
int iValue It contains an address .

Global Variables Set and Used:

None.

A-40

Description:

It accepts even addresses only. This function copies the given input parameter “lAddr” to the buffer “s” using the
sprintf command. Therefore, if the example call to GetMem is GetMem (0x10529¢L)

Then the sprintf statement will cause the buffer “ s “ to have the contents “10529E”.

The function SendCommand sends the string “10529E” to the global port PortNo.

The function GetString then receives a string on the same port.

The address of the 10th character is copied into iValue.

The iValue is returned.

Functions Called:

SendCommand
GetString.

Called by:
ProfileMode3.

Example Calls:
GetMem(long 1Addr)

Function name: GetMsg

Input Parameters:

char *s Set

Return Value:

None

Global Variables Set and Used:
PortNo Used

Description: The function ‘GetMsg’ receives the message on the serial port denoted by port PortNo.

Functions Called:

serrecv

Called by:
IRI_RUTMode

Example Calls:
GetMsg(str)

A-4]

Function name: GetRut

Input Parameters:

rl Pointer to a floating type
Set

2 Pointer to a floating type
Set

acou Array of short integer
Used

Return Value:
None

Global Variables Set and Used:

iRutMethod Used
SOUTH_DAKOTA Used
CENTER Used
STRIGLINE_R Used
RIGHTRUT Used
STRINGLINE_L Used
wl Used
w2 Used
w3 Used
wd Used

COUNTS_PER_INCH Used

Description: Different methods of rut measurement use different data collected to measure the rut. Depending
on the type of the Rutmethod employed, certain calculations are performed. The different types of rut measuring
methods are SOUTH_DAKOTA method, STRINGLINE_R (String line Right) method, STRINGLINE_L(String
line Left) method, RIGHTRUT(Absolute right) method and stringline method.

Functions Called:
COUNT_TO_INCH

Called by:
ProfileMode3

Example Calls:
GetRut(&r1, &r12, iAcou)

Function name: GetSCKPMI

Input Parameters:
None

A-42

Return Value:

Integer

Global Variables Set and Used:

None

Description: This Function sends a string “D 4E3C” to the siometer. It reads a string from the siometer. In the
sscanf function it has been offset by 9 as the first eight bytes is made up of prompt and the address. From the 9th
byte we have the word value in Hex. This is returned.

Functions Called:

SendCommand
GetString

Called by:

Need to find out which functions are calling this function.

Example Calls:

None

Function name: GetShort

Input Parameters:
None

Return Value:

integer

Global Variables Set and Used:
PortNo Used

Description:

This function ‘GetShort’ reads the serial port twice. The data received from the serial second time is shifted 7 times
to left introducing 7 zeros in to the lower order bits. In this process 7 highest order bits of data are removed and
each bit in the data shifts 7 positions to its left. Then bitwise ‘OR’ is applied on the data that was received first and
the one that has been shifted (i.e. one that is received second) The truth table of bitwise ‘OR’ operation is as
follows

A B T
0 0 0
1 0 1
0 1 1
1 1 1

From this table we see that if one of it or both of them is 1 then the truth value is 1. Another important thing to
notice is that when the value of B is 0 then the truth value is same as the value of A. So ‘OR’ing data say A with
another data B that has all 0’s in the bits does not change the value of A.

So here by introducing 7 zeros in to the word that is received second we are not changing the 7 lower order bits of
the data that is received first. This value is returned to the calling function.

A-43

Functions Called:

serrecv

Called by:
RutMode

Example Calls:
GetShort()

Function name: GetSPF

Input Parameters:

iRow int type
Used

Mode int type
Used

*f pointer to a file (FILE type)
Used

Return Value:
double

Global Variables Set and Used:

ACOUSTIC Used
ACCELERATION Used
SI_AVGSPD Used
iSIModeFPS Used
SI_ PACK Used
str Used
Set
bCountAcoustic Used
Description:

This function clears the rows and sets the cursor every time. If the mode is SI_AVGSPD then it prints the distance
between the samples else it asks the user to enter the it. To exit this function the user has to enter a value less than or
equal to zero.

Functions Called:
Called by:

Example Calls:

A-44

Function name: GetString

Input:

char *s The address of the buffer where the string is to be received
Set

int iLen The length of the string to be received
Used

Return Value:
None

Global Variables Set and Used:

bAbort Set
PortNo Used
Description:

This routine gets a string of length iLen in the specified buffer s. The address of the buffer is provided to the
routine as an input parameter *s. The parameter iLen is the number of characters to be read into the buffer s.
The routine WaitChar waits for a character and times out if a character does not come in . This routine used the
routine WaitChar for waiting on every character of the string coming in.

After the whole string of the specified length iLen has come in, then the character \0 is attached to the end of the
sting to make it a proper string....end of string.

Functions Called:
WaitChar, EscapeHit and FlushPort.

Called by:
SetMem, GetMem, SetSdMode, SetAcUnit and DistanceMode.

Example Calls:
GetString(s , sizeof(s)-1)

Function name: InitRut

Input Parameters:

None

Return Value:

None

Global Variables Set and Used:

iBadAcou Set iRutMethod Used
SOUTH_DAKOTA Used 1AFirst Set

A-45

L1 Used iALast Set

R1 Used CENTER Used

R2 Used L2 Used
STRINGLINE_R Used STRINGLINE_L Used
STRINGLINE_RL Used RIGHTRUT Used
NEWAVERAGE Used cROADINFO Set
iDistance Set iRutCnt Set
iRutLine Set iSICnt Set
iSILine Set Range Used
iSum Set nSamples Used
bExtraComm Used fRut Set , Used
fSI Set,Used fwsv Set, Used
ilnterval Set,Used iSIModeFPS Used
RangeLimits Set iRutSecLen Used

Description: This function initializes the variables. Depending on various rut methods like
SOUTH_DAKOTA, STRINGLINE etc., it sets the variables like iAFirst, iALast differently. It basically sets the
variables that are used in for measuring the Rut.

Functions Called:

None

Called by:
PriofileMode3

Example Calls:

InitRut()

Function name: InitSi

Input Parameters:

fn Pointer to character
Used

Return Value: None

Global Variables Set and Used:

iCOM3IRQ Set iRutSecLen Set
Used

iRutMethod Set bExtractComm Set
Used

Header Set bSysGenFileName Set
Used

iSIModeFPS Set DataCollectMode Set

szDefAc Set

A-46

Used

Param Set str Set
Used
value Set bF5 Set
Used
bF2 Set BaudRate Set
iMode6FPS Set RutCorr.Mounting Set
fn Used
[This is a file]

Description: This function opens the file whose name is stored in variable called ‘fn’ in read mode. Then it
reads each token and compares the token for various predefined tokens. Each time two tokens are read, the first
token is read into variable called ‘param’ and the next one into variable called ‘value’. The tokens stored in the
variable ‘param’ are compared to predefined tokens and when the token read is same as any predefined token then a
particular variable is set. For instance if the token read from the file is “FPS” then the variable iSIModeFPS is set to
the integer value of the value stored in the variable ‘value’. This process of reading tokens from the file continues
until the whole file has been read. The initialization file is read. This filename is supplied as a command parameter

to talk70.exe. Example: Declarations in the initialization file are:

CollectMode = 3
header = select.hdr
acoustic=12345
fps=4
gen_filename =Y
comment = N
F5=N

F2=N

baud = 9600
port=2

Functions Called:
GetHeader

Called by:
Main

Example Calls:

InitSI(argv(1])
InitSi(* <)

Function name: KeypadMode

Input Parameters:
None

Return Value:
None

A47

Global Variables Set and Used:

PortNo Used
_GCLEARSCREEN Used
_TEXTBW40 Used
GCLAKEY Used
CALIBKEY Used
KEYS Used
STOPKEY Used
RUNKEY Used
TESTKEY Used

Description: This function sends “J3FF0” on a given port. Then it flushes the port, and calls _clearscreen and
_setvideomode. Then it sets the cursor and prints ‘1 G Cal’, ‘2 Caliberate’, ‘3 Speed’, ¢ 4 Stop’, one below the
other. Then next to these ‘S Run’, ‘6 Test’ and ‘ESC Exit’ are printed. Then the keyboard is read constantly until
an escape character(ASCII value 27) has been hit. For each key that has been hit on the keyboard, its ASCII value is
stored in the variable key.ascii where key is of the scancode type. Depending on the key that has been hit on the
keyboard the variable ‘iKey’ is assigned a particular value. If the value of the character that has been hit on the
keyboard is in between ‘6’ and ‘1’ then it means that we wish to perform one of the above procedures namely Run,
Test, Speed etc. This is sent to the siometer. Then the port that has been used for sending is read to receive a
character from the siometer and it is stored in the variable called ‘wTemp’. Then it sends escape character whose
ASCII value is ‘27" and ASCII value ‘13’ to the siometer. Then the function _setvideomode is called in the
_DEFAULTMODE.

Functions Called:

SendCommand
FlushPort
_clearscreen
_setvideomode
SetCursror
Border
readkey
sersend
_setvideomode

Called by:
ProcessFunction

Example Calls:
KeypadMode

Function name: LoadedCorr

Input Parameters:
None

Return Value:
Int

A-48

Global Variables Set and Used:

RutCorr.Mounting Used
PortNo Used

Description: This function reads the rut correction by calling the procedure ReadRutCorr. Then it displays it by
calling the procedure DispCorr. It prompts on the standard output (normally the console) “Press [F7] to do the
unloaded condition.” If the key F7 is pressed then it goes ahead and does the for unloaded condition. At this point of
time all the occupants including the driver should get out of the vehicle. This is done because the rut bar’s
inclination should be known at the exact time of the acoustic data sampling. Then it would be possible to correct
acoustic readings so that they match the accurate readings. To abort this press escape, to repeat press function key 6
(F6) or press function key 7 (F7) to accept the collected data. Then again the statement “press [F7] to do loaded
condition” is printed. If we press the key F7 then it goes ahead and collects the data for the loaded condition. Then it
prints on the standard output “ESC- Abort [F6]- Repeat [F7] - Accept. This statement tells the user to press escape
key to abort F6 key to repeat the collection of the data and F7 to accept the collected data. If F7 is pressed on the
keyboard then the collected data is saved in file by calling the procedure SaveRutCorr.

Functions Called:

ReadRutCorr
DispCorr
readkey
TestMode
SaveRutCorr
SetCursor
sersend

Called by:

ProcessFunction

Example Calls:
LoadedCorr()

Function name.: Main

Input Parameters:

argc int type It is basically the number of arguments in the command line.
argv pointer to an array of pointer

Return Value:

int type

Global Variables Set and Used:
ASCIIMODE Used
DisplayMode Set

PortNo Set
BaudRate Set

Parity Set

A-49

Databits Set

StopBits Set
szMode Set
Header Used
COM1 Used

Description: This function sets the parameters like the baud rate, port number, number of data bits, number of
stop bits parity.

Functions Called:

InitSI
ReadRutCorr
DisplayHelp
MonitorMode
_clearscreen

Called by:

None

Example Calls:

None

Function name: MasterOutput

Input Parameters:

szFormat Char
Used

wVal unsigned
Used

bPreSection Bool
Used

Return Value:

None

Global Variables Set and Used:

ninLine Set
fData Set
mph Used
fps Used
TWOCH Used
cRoadlInfo Set
Used
DataCollectMode Used
CONSTR Used
SI_AVGSPD Used

A-50

Description: This function basically uses the file opened by the file pointer fData. It prints the speed. (If mph is
not equal to -1 then the speed is in miles per hour. Else if fps is not equal to -1 then speed is in feet per second) Then
values stored in the variables ‘szFormat’ and ‘wVal’ are stored in the file. The value stored in the variable
‘cRoadlInfo’ is also copied into the file. At the end a “\n’ character is copied into the file. This file has a particular
format. It has 16 values per line.

Functions Called:

None

Called by:
ProfileMode2

Example Calls:

MasterOutput(“%04X”, aVal, bPresection)
MasterOutput(“Y%:03X", aVal, bPresection)

Function name: MonitorMode

Input Parameters: None
Return Value: None

Global Variables Set and Used:

PortNo Set
Used
Parity Used
DataBits Used
StopBits Used
COM1 Used
COM2 Used
BaudRate Used
DisplayMode Used
PF4 Used

Description: This function sets the port No. variable to COM1 serial port. Then it opens the ports ‘COM2’ and
‘COM3’ for communication at the baud rate of 9600. It opens the ‘COM1’ port at the selected baud rate, parity,
databits and stopbits. Then it prints the statement “Connect the Siometer to COM1”. This function makes use of
the structure Scancode type. It is defined as follows.

typedef struct {
unsigned char ascii;
unsigned char scan;
} SCANCODE;
See Appendix A for more info on Scancodes
The variables ascii is used to store ascii value of the character and the variable ‘scan’ is used to store number of the
key that generated the ascii character. When a key is pressed on the keyboard an electric impulse is generated

A-51

indicating the position of the key pressed. This impulse is handled by the keyboard processor which converts the
impulse into number called scan code. This scan code stored in the variable scan that is defined in the structure
above. As long as scan code is not PF4 read the key board by calling the procedure “readkey()”. If the ASCII value
is not equal to zero then send it serially to the siometer on the COM1. If the ASCII value is ‘zero’ then procedure
“ProcessFunction()” is called and the window is scrolled up. Then a word is read from the serial port COM1 using
the procedure “serrecv”. If the word is ‘Oxffff’ then nothing is done. If it is ‘10’ and the DisplayMode is
ASCIIMODE then window is scrolled up by 1 line. If the received word is ‘13’ and the DISPLAYMODE is
ASCIIMODE then cursor is placed on line 23 and 0 column. If the received word is none of the above then the
received word is printed on the screen. The above process will continue until key.scan is PF4.

Functions Called:

OpenComm
readkey

sersend

kbhit
ProcessFunction
ScrolWin
Serrecv
SetCursor
serclose_q
serclose.

Called by: Main

Example Calls: Monitor Mode().

Function name: OpenComm

Input Parameters:

PortNo int type
Used
BaudRate int type
Used
Parity int type
Used
DataBits int type
Used
StopBits int type
Used

Return Value:
Integer

Global Variables Set and Used:
uComAddr Used

A-52

Description: This function sets the various elements of the structure defined below:

unoin{

unsigned char c;

struct {
unsigned char databits :2;
unsigned char stopbits : 1;
unsigned char parity :2;
unsigned char baudrate :3;

}b;
} SERCONFIG

If the value in variable ‘Databits’ is 7 then databits variable in the above structure is set to 2. If the value stored is 8
then databits variable is set to 3. If it is none then variable ‘Error’ is set to -1. Similarly if the number of stopbits
stored in the variable ‘Stopbits’ is 1 then the variable stopbits in structure above is set to ‘0’ else if it is 2 then it is
set to ‘1°. Similarly the baud rate and the parity are set.

This is a asynchronous serial communication. We need to send start and stop bits for each character that we send.
The number of stop bits are normally 1, 1.5 or 2. The number of stop bits required normally depends on the extra
time that the receiving device may require before it can start processing next character. The stop bits force a
minimum gap between the successive frames. When two devices are set for communication they should agree on
baud rate, #of stopbits, parity etc..

Functions Called:

Serinit

Called by:
MonitorMode

Example Calls:

OpenComm(COMS3, 9600, Parity, DataBits, StopBits)
OpenComm(COM3, 9600, Parity, DataBits, StopBits)

Function name: PauseRut

Input Parameters:
None

Return Value:

None

Global Variables Set and Used:

bPause Set
Used

Description:

This function prints ‘pause’ and draws a border on the screen if bPause is true. If bPause is false then it just prints a
blank.

A-53

Functions Called:

SetCursor
Border

Called by:
ProfileMode3

Example Calls:
PauseRut()

Function name: PostRut

Input Parameters:
None

Return Value:
None

Global Variables Set and Used:

1AFirst Used iALast Used
iAcouHigh Used iAcouLow Used
iBadAcou Set bBadISection Set
nSamples Set RangeLimits Used
iSum Set iDistance Set, Used
iInterval Used iRutSecLen Used
SRINGLINE_RL Used NEWAVERAGE Used
bExtraComm Used COM2 Used
Range Used iStatus Used
fBug Used r2 Used
Description:

This function determines whether the data that is collected is good or bad. If the raw data stored iniRaw is greater
than iAcouHigh or lesser than iAcouLow then it is considered to be bad data. The value in iSum[1] are incremented
if variable is lesser than RangeLimits[0]. If value stored in variable rl is lesser than RangeLimits[2] then iSum[2] is
incremented. If none of the above is satisfied then iSum[3] is incremented. Similarly if the value in variable ‘r2’ is
lesser than RangeLimits[1] then iSum[1] is incremented. If it is lesser than RangeLimits[2] then iSum[2] is
incremented. If noneof the above conditions are satisfied then iSum[3] are incremented. If the number of samples is
zero then all the values in the elements of the array iSum are made ‘Zero’. Then the values stored in iSum[1] and
iSum|[2] are copied into the buffer ‘s’ and sent on COM2.

Functions Called:

SendString
ScrollWin
SetCursor
PutRoadInfo

A-54

Called by:
ProfileMode3

Example Calls:
PostRut()

Function name: ProcessFunctions

Input Parameters:
scan unsigned char type

Return Value:

None

Global Variables Set and Used:

DisplayMode Used

Set
ASCIIMODE Used
HEXMODE Used
bMetric Used

Set
NMODES Used
DatacollectMode Used
szMode Used
CONSTR Used
iConstrPreLen Used
SDK Used
iStaticAcou Used

Set
ACCONLY Used
ACC_ACOUST Used
SI_AVGSPD Used
iRutMethod Used
CONSTR Used
Description:

This function performs different functions depending on the value of the variable that is being passed to it namely
scan. If the value of the variable ‘scan’ is ‘PGUP’ then it calls the routine Upload which sends a file. Similarly if the
value of the variable is ‘0x51” then it asks for a file name then and then it open it and then it is sent using the

A-55

sersend function and so on. This function does different activities depending on the value that is being passed as a
parameter to this function.

Functions Called:

Upload FlushPort
serrecv EscapeHit
sersend serclose_q
SERCLOSE SetCursor
CommParam OpenComm
DisplayCommParam ScrollWin
readkey KeypadMode
LoadedCorr TestMode
ProfileMode2 ProfileMode3
SDProfilel Mode6
IRI_RUTMode DisplayHelp
Called by: MonitorMode

Example Calls: ProcessFunction(key.scan);

Function name: ProfileMode2

Input Parameters:
acunit int type
Set

Return Value:
None

Global Variables Set and Used:

bAbort Set fData Set
iOverrun Set iFrame Set
bDistMode Set bCountA coustic Set
DataCollectMode Used SDK Used
iConstrPreLen Set ninline Set
fps Set mph Set
mask Set CONSTR Used
str Set PortNo Used

Description: First the filter is set if the filter is not set. It then clears the rows, draws the border and sets the
cursor. It then prints in which mode (data collect mode) it is in. Then it gets the name of the file that should be used
for storing the collected data. If there is no file name then it means that we are not interested in collecting the data
and so the global variable bAbort is set to TRUE. If the global variable bAbort is set to false then it means that we
are interested in collecting the data. So the acoustic devices are selected by calling the function ‘GetAcoustic’ which

A-56

gets the numbers of the acoustic devices that should be used for the collection of the acoustic data. Then these
numbers that correspond to the acoustic devices should be sent to the siometer. This is done by calling the
procedure SetAcUnit. If an escape key has been hit then the collection of data is aborted. Then the file into which
the collected data is being written is closed. Then it prints ‘ABORTED” on the screen. If escape key is not hit on the
screen then it continues for the collection of the data. The siometer is sent ‘p’ which tells the siometer to collect the
data.

The vehicle on which the siometer is mounted and run for some distance before the actual section
begins so as to initialize. The section on which the vehicle is run for initialization is called ‘presection’. Then at the
beginning of the correct section the procedure ‘WaitForFirst’ is called. The lower order 4 bits are masked. This is
done for comparison purpose. The various cases are ‘acceleration’ , ‘speed in mph’, ‘feet per second’ etc. For each
of the above we read again from the siometer to know the value. If it is ‘OxeQ’ then it means that the reading is in
miles per hour. So the next time we read the siometer we get the value of speed in miles per hour. In the default
case if we are running the vehicle in a presection, we open the file and print the collected data in a file and 16
values in per line. To abort the collection of the data just press ‘escape’. Then the file that is being used for storing
the collected data is closed.

Functions Called:

SetFilter ClearRows Border
SetCursor DistanceMode SetSdMode
GetFileName GetAcoustic SetAcUnit
GetSPF GetDistance StopCollect
EndMessage Displaypoints DisplayStatusForm
SetParam SendCommand time
WaitForFirst CheckTime MasterOutput
serrecv kbhit readkey
CheckComm SaveOrNot

Called by:

ProcessFunction

Example Calls:

ProfileMode(0)

ProfileMode(1)

Function name: ProfileMode3

Input Parameters: None
Return Value: None

Global Variables Set and Used:

szMode Used
RutCorr.Mounting Used
RutCorrloading Used
iRutMethod Used
bAbort Set
Used
sample Used
bExtraComm Used
szActiveAcoustic Set
fData Used

A-57

Description: This function asks the user to enter the a file name for storing the output. Then it will ask the user to
enter two lines of comment. If the variable Comment is set to ‘N’ then no comment is asked. Then the acoustic
devices are selected by calling the function “GetAcoustic’. The user can select the acoustic devices that should be

used to collect the data. The devices are numbered 1 through 5 (left to right). The user can select these by just typing
in the numbers. Similarly the distance between samples in feet need to be entered. The distance is also entered
followed by ‘f* or ‘F’ for feet or ‘m’ or ‘M’ for miles. Then it prompts “Hit any key to start SI”. While the data
collection is in progress we may hit any number between 0 and 9 to mark Pavement Management Information
systems comment codes for that section. Then number will be displayed until the beginning of the next section.
When then target distance is reached the collection of data is terminated. Data that is collected is saved
automatically. Then user can terminate the program by pressing the ‘escape key’ on the keyboard in which case it
asks the user whether to save the data that was collected till that point or not. The user is prompted to enter ‘Y’ or
‘N’ . If the user enters ‘Y’ then it will be saved else it will be discarded. This is only for the data collection that has

been terminated abruptly.

Functions Called:

GetMem ClearRows
SetCursor DistanceMode
GetFileName GetAcoustic
GetSPF GetDistance
DisplayPoints DisplayStatusForm
SetExtractRatio SetAcUnit
InitRut SetInternal SPF
SendCommand sersend
FlushPort WaitForFirst
DistManage serrecv
WriteSi ScrollWin
GetRut readkey
PutRoadInfo PauseRut
CheckComm StopCollect
SaveOrNot CloseRut
EndMessage

Called by:

ProcessFunction

Example Calls:

ProfileMode3()

Function name: PutRoadinfo

Input Parameters:
char ¢ Used

Return Value:
None

Global Variables Set and Used:

cRoadlnfo Set
Used

A-58

Description: It puts the road information on the screen. It draws the border and the sets the position of the
cursor on the screen.

Functions Called:

Border
SetCursor

Called by:

ProfileMode3
PostRut

Example Calls:
PutRoadlInfo(key)

Function name: readkey

Input Parameters:
None

Return Value:
SCANCODE scancode The scancode is of type SCANCODE.
where
typedef struct {
unsigned char ascii;
unsigned char scan;
} SCANCODE;

Global Variables Set and Used:

None

Description:

It reads a character from the keyboard buffer. If the buffer does not contain a character, the function waits until a
character is entered. Then the character is read and removed from the keyboard buffer. It uses the INTERRUPT
0x16 - Function Oh.

The keyboard buffer stores the ASCII code and then the scancode which is the number of the key that generated the
ASCII character.

The ASCII code is stored in scancode.ascii and the scancode is stored in scancode.scan.

Scancode is the number of the key that generated the ascii charecter. (For more info on Scancodes, please refer to

Appendix A
The keyboard processor converts the electrical impulse indicating the key position into a number called scancode

Functions Called:
int86 INTERRUPT 0x16h Function Oh

A-59

Called by:

CommParam
ProfileMode3
TestMode
WaitForFirst
KeypadMode
LoadedCorr
MonitorMode

Example Calls:

readkey()

Function name: ReadRutCorr

Input Parameters:
None

Return Value:
None

Global Variables Set and Used:

RutCorr.Loading Set
Used
sRutCorr Used

Description: It opens a file called “RUTCORR.INI” in read mode. The variable sRutCorr contains the name of
this file. It reads file into the array called RutCorr.Loading if the file exits, else the array is filled with zeros.

Functions Called:
None

Called by:

LoadedCorr
Main

Example Calls:
ReadRutCorr()

Function name: SaveRutCorr

Input Parameters:
None

A-60

Return Value:

None

Global Variables Set and Used:
sRutCorr Set

Description: This function is used to save the rut correction (that has been read into the array RutCorr.Loading)
in to the file whose name is stored in the variable called “sRutCorr” and the file is closed.

Functions Called:

None

Called by:
LoadedCorr

Example Calls:
SaveRutCorr()

Function name: ScrollWin

Input Parameters:

intn Number of lines to scroll
Set and Used

int Ir Upper left row
Used

int lc Upper left column
Used

intrr Lower right row
Used

int rc Lower right column
Used

Return Value:
None.

Global Variables Set and Used:

None

Description:

It scrolls the window up or down by a specified number of lines. If the value of ‘n’ greater than 0 then it scrolls the
Window up by lines ‘n’. It writes blank lines at the bottom of the screen. If the value of ‘n’ is less than 0 it scrolls
the window down by n lines writing n blank lines at the top of the screen.

The register AH is loaded with “6” if it has to scroll up otherwise it will be loaded with “7” if it has to scroll down.
The variables ‘Ir’ and ‘Ic’ correspond to row column of upper left corner and ‘rr’ and ‘rc’ correspond to lower right
corner. It uses the INTERRUPT 10h - Function 06h for scroll up, and INTERRUPT 10h - Function 07h for scroll
down.

A-61

Functions Called:

int86 INTERRUPT 0x10h - Function 06h For Scroll Up
INTERRUPT 0x10h - Function 07h For Scroll Down

Called by:

ProcessFunctions
PostRut
ProfileMode3
IRI_RUTMode

Example Calls:
ScrollWin(1,0,0,23,79)

Function name: SelectAcoustic

Input Parameters:

] char array
Used

acunit Pointer to int
Set

Return Value:

Integer

Global Variables Set and Used:

szActiveAcoustic Set
AcousticMask Set
DataCollectMode Used
SDK Used
CONSTR Used
bDistMode Used

Description: The function SelectAcoustic is used to select the acoustic data. If the contents of the array are
between value 1 and value 6 then they are copied into szActiveAcoustic. These represent the numbers of the
acoustic devices. Else they are discarded.

Functions Called:
None

Called by:

TestMode
GetAcoustic

Example Calls:

SelectAcoustic(str, acunit)
SelectAcoustic(*12345”, &acunit)

A-62

Function name: SendCommand

Input:

char *s Set
Used

Return Value:
None.

Global Variables Set and Used:

bAbort Set
PAUSE Used
PortNo Used
Description:

This function sends the given character string on the given port number.
First copy the string to be send into space pointed by variable called command. The pointer to character

set to command.

(19 }]
S

is also

Send one character to the given port no. Wait for the same character to come back on the same port. If the
character comes back within a given time limit then go ahead and send the next character in the string. If the
character does not come back we need to send the same character over again.

‘When the character sent over to a port does not come back after a given amount of time,
the character 0x08 is sent over to the port and then the port is flushed and then the same character is sent over
again. The character 0x08 is the back space character. If a wrong character was sent it needs to be erased from the

port.
After the full string has been sent, the carriage return character is sent over the same port.

Functions Called:

FlushPort, EscapeHit, sersend and WaitChar.

Called by:

ProfileMode2, SetFilter, SetExtractRatio, GetMem, ProfileMode3, SetSdMode, SetMem, SetAcUnit,
DistanceMode, IRI_RUTMode, SDProfile, KeyPadMode and TestMode.

Example Calls:
SendCommand(s), SendCommand(sVal).

Function name: SendString

Input Parameters:

int iP Port number on which a string is sent.
Used

char *s String that needed to be sent.
Set
Used

A-63

Return Value:
None

Global Variables Set and Used:

None

Description:
This function is used to send a string pointed by the character pointer *s on the port whose number iP.

Functions Called:

sersend

Called by:

WriteSI
PostRut

Example Calls:
SendString(COM2, s)

Function name: SerialPortStatus

Input Parameters:

PortNo Port number.
Used

Return Value:
The status of the port which is a unsigned integer.

Global Variables Set and Used:
PortNo Used.

Description:

This function returns the status of the serial port whose number is PortNo. It uses the INTERRUPT 14h - Function
03h. For this AH is 03 and DX is the port number.

Functions Called:
int86 INTERRUPT 0x14h - Function 03h.

Called by:
CheckComm.

Example Calls:
SerialPortStatus(int PortNo).

Function name: SetAcUnit

Input Parameters:

acunit Int type
Used

Return Value:

None

Global Variables Set and Used:

PortNo Used
AcousticMask Used

Description: This function copies the acunit into the buffer ‘s’ along with “S 4E16”. Then this is sent to
siometer using the SendCommand function. Then “S 4E58” is sent to siometer to mask the siometer. Then the
siometer is read. Then AcousticMask and odd byte of the word value is copied into the buffer and sent to siometer.
The acoustic mask contains the acoustic device numbers that have been selected for the collection of the data. Then
escape character is sent to indicate the completion of sending.

Functions Called:

SendCommand
sersend
FlushPort
GetString

Called by:

IRI_RUTMode
ProfileMode2
ProfileMode3
Mode6
SDProfilel

Example Calls:
SetAcUnit(acunit)

Function name: SetCursor

Input Parameters: r and ¢

r Row
Used

c Column
Used

Return Value:

None

Global variables set and used

None

A-65

Description: Positions the cursor on the screen on the specified page number. It positions the cursor on the
screen where the row number is ‘r’ and column number is ‘c’. It uses INTERRUPT 10h- Function 02h.

For this AH = 02, BH is the page number , DH is row (00h is the most top row) and DL is column(00h is left most
column of the page).

Functions Called:
int86 INTERRUPT10h- Function 02h

Called by:

Modeé6 IRI_RUTMode
DistanceMode SaveOrNot
ProfileMode3 GetSPF
DisplayPoints GetDistance
PauseRut ProcessFunctions
Border DispalyStatusForm
PostRut ProfileMode2
GetAcoustic TestMode
KeypadMode LoadedCorr
GetFileName MonitorMode
EndMessage SDProfile
PutRoadInfo WaitForFirst
CheckComm

Example Call:

SetCursor(23, 0)

Function name: SetExtractRatio

Input Parameters:
er int type

Return Value:

None

Global Variables Set and Used:

None

Description:

This function copies “ S 4E50” along with the value of er in to the buffer ‘s’. Then the contents are sent to the
siometer.

Functions Called:
SendCommnad

Called by:

A-66

Example Calls:

Function name: SetFilter

Input Parameters:

b unsigned char type
Used

Return Value:

None

Global Variables Set and Used:

None

Description: It sends ‘F’ using SendCommand and pauses for 100 milliseconds by calling the Delay routine.
The value in character ‘b’ is copied into the buffer ‘str’ and it is sent to the siometer using the SendCommand.
Then it prints “Filter set to “ on the screen. This acts as a low pass filter which passes up to a particular value and
lower.

Functions Called:

Delay
SendCommand

Called by:
ProfileMode2

Example Calls:
SetFilter(0x2c)

Function name: SetinternalSPF

Input Parameters:

iSioSPF An integer
Used

Return Value:

None

Global Variables Set and Used:

None

Description: This function sends “A” first to the siometer. Then it waits or pauses for 100 milliseconds. Then it
copies the iSioSPF in to the buffer ‘s’ and this buffer is sent to the siometer.

A-67

Functions Called:

SendCommand
Delay

Called by:

SetParam
ProfileM0ode3

Example Calls:
SetInternal SPF(ilnternal SPF)

Function name: SetMem

Input Parameters:

long lAddr This contains an address
Used
int iVal It is also an address (*) . Example values are 0x100, 1 etc.
Used
BOOL bWord This can have the value of 0|1 cause it is BOOLEAN,
Generally used are CHANGEWORD = 1
CHANGEBYTE =0
Used

Return Value:
None

Global Variables Set and Used:
PortNo Used

Description:

This function uses the input parameters in the following manner. It uses the value of the input parameter

IAddr which is anded with Oxfffffffel to ensure that the last bit is set to 0 and the number is even. The result is
copied to the “s” buffer using sprintf . The value of iVal is copied into “sval” buffer using sprintf. The string
contained in buffer “s” is sent to PortNo using the function SendCommand. The string is obtained using GetString

function.
If bWord = CHANGEBYTE then it changes the odd byte and keeps the even byte. If bWord = CHANGEWORD

then it changes the even byte and keeps the odd byte.
It sends the value of “sVal” to the PortNo using the SendCommand. It then sends the escape character and flushes

the port.

Functions Called:

SendCommand
FlushPort
sersend
GetString.

Called by:

SDProfile
IRI_RUTMode.

A-68

Example Calls:
SetMem(long 1Addr, int iVal, BOOL bWord)

Function name: SetParam

Input Parameters:

sample double type
Used
speed double type

Return Value:

None

Global Variables Set and Used:

None

Description:

This function sets the parameters ilnternalSPf and iExtractratio and then sends them to the siometer by calling the
procedures SetInternalSPF and SetExtractRatio

Functions Called:

SetInternal SPF
SetExtractRatio

Called by:

Example Calls:

Function name: SetSdMode

Input Parameters:
DataCollectMode int type

Return Value:
None

Global Variables Set and Used:

SDK Used
ODD START Used
PortNo Used
Description:

This function sends the siometer first “S 10510A”. Then it reads the buffer using the function GetString. IF the

A-69

DataCollectMode is SouthDakota Mode then the variable ‘cFlag’ is set to 1 else it is set to 0. Then the cFlag value
along with the buffer contents from the 11th cell to the end of the buffer. All these are copied into the buffer ‘s’ and
sent to the siometer on the port number 27 and the port is flushed.

Functions Called:

SendCommand
GetString
sersend
FlushPort

Called by:

Example Calls:

Function name: StopCollect

Input Parameters:
None.

Return Value:
None

Global Variables Set and Used:

None

Description:

It sends an Escape character and then flushes the port and once again sends the Escape charecter on the port
referred by the PortNo.

Functions Called:

sersend
FlushPort.

Called by:

ProfileMode3
ProfileMode2
IRI_RUTMode
SDProfile.

Example Calls:
StopCollect()

A-70

Function name: TestMode

Input Parameters:

iMode int type
Avg floating point array of five elements

Return Value:
None

Global Variables Set and Used:

DatacollectMode Set
Used
ACC_ACOUST Used
bDistMode Set
Used
bAbort Set
Used
TM_TEST Used
acunit Used
bCountAcoustic Used
PortNo Used
mph Set
fps Set

Description: The variable bAbort is set to FALSE if execution is not to be aborted. If it is so then rows are
cleared and cursor is set by calling the procedures Clear Rows and SetCursor. Then it prints “Testing.. “ on the
screen. ‘Z’ is sent to the siometer and pauses for 100 millisecond by calling Delay function. Then it sends “25” on
the siometer and flushes the port. Then bit number 6 is made sure to set to 1 by bitwise ‘OR’ing with 0x40 which is
represented in the binary as 100000. The truth table of bitwise ‘OR’ is

TRUTH TABLE
A B TruthValue
0 0 0
1 0 1
0 1 1
1 1 1

Sample variable, which is the number of samples is set to 1. Then by calling the SendCommand character “p” is
sent to the siometer. Then the four lower order bits are set to ‘0’ by bitwise ‘AND’ing with 0xf0. When a byte is
received from the siometer then the lower 4 bits are masked and the Most significant 4 bits are kept in the variable
called mask. If the value in the variable is equal to the hexadecimal value 80 then the original value received from
the siometer is shifted to left by eight bits introducing 8 zeros in the least significant bits position and this value is
stored in variable called wVal. Then the siometer is read again and the received value added to the value stored in
wVal. This is done until the value that has been received is not ‘ffff". Then the byte that has been received from the
siometer is printed on the screen. If the escape key has been hit then the variable ‘Comm_err’ is set to 1. Then 27’
is sent to the siometer to indicate that communication has been aborted. If any of the variables Comm_err or
iOverrun or iFrame is set then the comment ‘Communication Error ! Try again’ is printed on the screen, If
bDistMode is set then the comment ‘Set to Time mode first’ is printed on the screen.

Functions Called:

ClearRows Border
SetCursor SetSdMode
SendCommand SetAcUnit
SelectA coustic WaitForFirst

A-71

serrecv CheckComm

EscapeHit sersend
Delay FlushPort
Called by:

Loaded Corr

ProcessFunction

Example Calls:
TestMode(TM_TEST,AvgDisp)

Function name: Upload

Input Parameters:

fname Name of the file.
Used

Return Value:

None.

Global Variables Set and Used:
PortNo Used.

Description:
This function sends the complete file on the port that is specified in PortNo. We can abort sending the file at any
time by pressing the Escape key on the keyboard.

Functions Called:

EscapeHit
sersend
serrecv
FlushPort

Called by:
ProfileMode3

Example Calls:
WriteSl(sival, wsv);

Function name: WaitChar

Input Parameters:

int Port No Port Number
Used

long ms Amount of time the function has to wait for a character to come in on the port
Used

A-72

Return Value:
unsigned wTemp The character obtained from the specified port.

Global variables set and used:

None

Description:

A port is specified from where we need to receive a character. We keep on waiting on the port for the specified
amount of time (variable ms) until a character comes in.

Functions Called:

serrecv
clock

Called by:
SendCommand, GetString

Example Call:
WaitChar(PortNo, 500L)

Function name: WaitForFirst

Input Parameters:

unsigned int *wFirst The address of character obtained from keyboard
set

BOOL bDisp printf statements are displayed if it is set
used

Return Value:
TRUE| FALSE

Global Variables Set and Used:
PortNo Used.

Description:

If bDisp is true then it prints “ Waiting for the first point. Hit any key to abort”.

It waits for a character to be read from the PortNo. If a valid character comes in or if the user hits any key to abort,
the routine comes out of the do loop which is waiting for the character.

The pointer to an unsigned integer is assigned

*wFirst = wTemp

If bDisp is true then some rows are cleared.

If the keyboard is hit again then the statement “ Function Aborted......Hit [ESC] “ is printed and another key is
read and FALSE is returned , otherwise TRUE is returned.

Functions Called:

readkey
kbhit

A-73

SetCursor
serrecv
ClearRows

Called by:
TestMode
ProfileMode3
ProfileMode2
IRI_RUTMode
SDProfilel

Example Calls:

WaitForFirst(&wTemp, TRUE)
WaitForFirst(&wTemp, FALSE)

Function name: WriteCh

Input Parameters:

char ch Character to be displayed on the screen
Used

char attr Attribute of the character
Used

Return Value:
None

Global Variables Set and Used:

None

Description:

This function writes a specified character and attribute to display at the current cursor position. The value of
‘regs.x.cx’ represents the number of times the character to be displayed. It uses interrupt 10 , function 09.

Functions Called:
int8¢6 INTERRUPT 0x10h - Function 09

Called by:

Border

Example Calls:
WriteCh(186, 7), WriteCh(205, 7).

Function name: WriteS!

Input Parameters:
si unsigned int type
A-74

Used
wsv unsigned long type.
Used

Return Value:
None.

Global Variables Set and Used:

fSI Used.

fwsv Used.
iSILine Set.

iSICnt Used and Set.
bExtraComm Used.

com2 Used.
Description:

fSI and fWSV are file pointers to the files namely RTRIDE.DAT and RTWSV.DAT respectively. This function
prints 10 SI's per line including the line number into the file RTRIDE.DAT. Similarly it prints 10 WSV’s per line
including the line number into file named RTWSV.DAT.

Functions Called:
SendString.

Called by:
ProfileMode3.

Example Calls:
WriteSI(sival, wsv)

A-75

DOCUMENTATION FOR FUNCTIONS IN OTHER FUNCTIONS FOR TALK.EXE 78

Function name: serinit_q(port, config, irq) 78
Function name: intserv 78

Function name: serclose_q(port no, irq) 79
Function name: sersend(port, char) 80
Function name: serrecv(port) 80

Function name: CheckTime 23

Function name: Get_Header(char *Filename)
Function name: DispCorr 26

Function name: FlushPort 34

Function name: CheckComm 22

Function name: CloseRut 24

Function name: DisplayHelp 28

Function name: DisplayPoints 28

Function name: WaitChar 72

Function name: SendCommand 63
Function name: GetString 45

Function name: DistanceMode 30

Function name: DistManage 31

Function name: Delay

Function name: EscapeHit

Function name: SetCursor

Function name: GetCursor

Function name: GetIRQ

Function name: SaveOrNot

Function name: ScrollWin

A-76

Function name: WriteCh
Function name: Border
Function name: CommParam 25
Function name: DisplayStatusForm
Function name: StopCollect
Function name: WaitForFirst
Function name: GetMem
Function name: SetMem
Function name: EndMessage
Function name:SerialPortStatus
Function name: MonitorMode
Function name: WriteSI
Function name: Upload

Function name: readkey

A-TT

Documentation for functions in other Functions for talk.exe

Function name: serinit_q(port, config, irq)

Input:

port Port Number to be accessed when the given (irq) interrupt comes in

config config is a byte. config contains data given below which is composed in a byte.
int PortNo, int BaudRate, int Parity
int DataBits, int StopBits

irq Port driver to be initiated by the (irq) level.

Output:
None

Global variables set and used:
_bufaddr, bufin, _bufout, _intsav

Description:

This procedure should have the port number, irq number and config as input. This procedure can only initialize
COM1, COM2 and COM3. You can setup the interrupt for COM3 by giving it the initialization files talk.ini. This
procedure sets up the communication parameters for the port like PortNo, BaudRate, Parity, DataBits and StopBits-
this information is given in config. This procedure also initializes the circular buffer where we can write incoming
data for the port. It also sets up another routine (Interrupt Service routine)
for the given interrupt which initiates the port driver.

COMI uses IRQ4

COM2 uses IRQ3

and COM3 can be setup for IRQ2 or IRQ5 (*)

Functions Called:

intserv (asm , sergs.asm)

Called by:

OpenComm

Example Call:
serinit_g(PortNo, serconfig, GetIRQ(PortNo));

Function name: intserv

Input:
None

Output:
None

A-78

Global variables set and used:

Not sure

Description:

This routine is the ISR routine which is called when the port needs to be accessed. This routine is used by the
serinit_q procedure. This routine is called when the interrupts set up for COM1, COM2 and COM3 interrupt the
processor. This routine calls the ports driver for the respective ports set up for the interrupts.

Functions Called:
putb

Called by:

serinit_q (asm, sergs.asm)

Function name: serclose_gq(port no, irq)

Input:

port The port to be closed
irq The interrupt used for the port given above

Output

Global variables set and used; _intsav

Description:

This is used for closing the serial port. Here the interrupt is specified for the port. This routine can be used only
after serinit_q has been used for initialize the same port for the given interrupt. You must have noticed that, in
serinit_q the interrupt service routine (ISR) for the given interrupt was changed to another ISR which calls the port
driver of the given port. After we close the port we need to change the interrupt service routine of the interrupt back
to the old interrupt service routine. The address of the old interrupt service routine has already been saved
previously. The interrupt is disabled during the change of the ISR.

Functions Called:
None

Called by:

MonitorMode (C, bt.c)
ProcessFunctions (C, talk70.c)

Example Call
serclose_q(PortNo,GetIRQ(PortNo));

A-79

Function name:sersend(port, char)

Input:

port
char

Output:

None

Global variables set and used:

None

Description:
This routine is used to send a byte of data on a given port number.

Functions Called:
None

Called by:

Process Functions (C, talk70.c)
Upload (C, bt.c)
KeyPadMode (C, talk70.c)
WaitChar (C, bt.c)
SetSdMode (C, talk70.c)
SetAcUnit (C, talk70.c)
TestMode (C, talk70.c)
LoadedCorr (C, talk70.c)
DistanceMode (C, talk70.c)
StopCollect (C, bt.c)
EndMesage (C, bt.c)
ProfileMode3 (C, mode3.c)
DistManage (C, mode3.c)
SendString (C, rtrut.c)
SdProfilel (C, sdl.c)
IRI_RutMode (C, mode7.c)
MonitorMode (C, bt.c)

Example Calls
sersend(PortNo, Char)

Function name: serrecv(port)

Input:
port Port number on which a data byte is received

Output:

None

A-80

Global variables set and used:

None

Description:

This is used to receive data from the serial port. This procedure receives a byte of data.
If the value returned is FFFF, then the buffer is empty.

Functions Called:

getb(asm, serqs.asm)

Called by:

Process Functions (C, talk70.c)
Upload (C, bt.c)
KeyPadMode (C, talk70.c)
WaitChar (C, bt.c)
SetSdMode (C, talk70.c)
SetAcUnit (C, talk70.c)
TestMode (C, talk70.c)
ProfileMode3 (C, mode3.c)
SdProfilel (C, sdl.c)
IRI_RutMode (C, mode7.c)
MonitorMode (C, bt.c)
WaitForFirst (C, bt.c)
ProfileMode2 (C, talk70.c)
Mode6 (C, modeé6.c)
GetFloat (C, mode7.c)
GetMsg (C, mode7.c)

Example Calls
serrecv(PortNo)

Tips:
ISR - Interrupt service routine.

You need to have knowledge of ISR and how the ISR can be changed for an
interrupt.

A-81

FlowCharts

Numbner of RUT sigrats = 0

i

Send & D charscter 1o COM3

Accurrists the detance coversd.(DistR)
Decrement the ammurt of deatance required
for wn S| sagnai 1o come in (DistBalance)

Diathtanage iFunc)

DM_tNT

initialize the cumistve drstance (
RDuat)

Initmize the emount of dstance
requred for an S| signe! 1 come in B

SIDist.
{DistBaisnce)

l

initiaiize the number of RUTs Tl
fave come in0 0
(iDera)

3

Send & D charcter o COMI

required for an S| wyrwl 10 come in (
DestBaiance)

A-83

FlowChart for DistManage

CheckTime

input boolean bReset
define oldClock
define CurrClock
define diff

CurrClock = clock()

NOT

diff = OldClock -
CurrClock

Yes

l

OldClock = CurrClock

diff > 1000

No

Yes

OldClock =CurrClock

retum diff

CloseRut

{ file id fSl.. this checks
whether the file for Sl is

(file id WSV.. this checks
whether the file for WSV is

(file id fRut.. this checks
whether the file for Rut is

open)
Yes yes
yes
iRutCnt
Yes Yhs
8 Yes
Write all the 5 Ruts of r——‘———
the 5 acoustic devices . No
to the Rut file write fSI to file write WSV to file No
No l l
Write all the bad
acoustics to the
Rut file close Sl file close fWSV file

—J close Rut file

— 4

Terminator <

A-85

DisplayPoints

C BEGIN

)

Yes

No

and miles

Print distance in feet

Print data
points and
samples

/

Print distance in
kilometers

C End

/
)

A-86

List of Functions Sorted

A-87

Sorted.doc:
This file gives the list of functions. The file where the functions occur are specified in this file . The notation
[termina]] indicates that the function does not call any more user-defined functions.

Border(int Ir, int Ic, int 1T, int rc) -bt.c

CheckComm()- bt.c

CheckTime(BOOL bReset) - talk70.c [terminal]
CloseRut() - rtrut.c [terminal]

CommParam() - bt.c

COUNT_TO_INCH(i) - rtrut.c[terminal]

Delay(long ms) - bt.c [terminal]

DispCorr() - talk70.c [terminal]
DisplayCommParam()- bt.c[terminal]

DisplayHelp() - talk70.c

DisplayPoints(int iRow, long nPts, double dist, double sample) - talk70.c
DisplayStatusForm(int iRow) - bt.c
DistanceMode(BOOL bDisplay) - talk70.c
DistManage(int iFunc) - mode3.c

EndMessage()- bt.c

EscapeHit()- bt.c

FlushPort(int PortNo) - bt.c [terminal]
GetAcoustic(int iRow, int *acunit) - talk70.c
GetCursor(int *r, int *c) - bt.c [terminal]
GetDistance(int iRow, char *unit, double *dist) - talk70.c
GetFileName(int iRow) - talk70.c

GetFloat() - mode7.c

GetHeader(char *FileName) - talk70.c [terminal]
GetInternal SPF() - talk70.c

GetIRQ(int PortNo) - bt.c[terminal]

GetMem(long 1Addr) - bt.c

GetMsg(char *s) - mode7.c

GetRut() - rtrut.c

GetSCKPMI() - talk70.c

GetShort() - mode7.c

GetSPF(int iRow, int Mode, FILE *f) - talk70.c
GetString(char *s, int iLen) - bt.c

InitRut() - rtrut.c [terminal]

InitSi(char *fn) - talk70.c

IRI_RUTMode() - mode7.c

KeyPadMode() - talk70.c

LoadedCorr() - talk70.c

main(int argc, char *argv[]) - talk70.c
MasterOutput(char szFormat[], unsigned wVal, BOOL bPreSection) - talk70.c
Mode6() - mode6.c

MonitorMode()- bt.c

OpenComm(int PortNo, int BaudRate, int Parity, int DataBits, int StopBits) - bt.c
PauseRut() - rtrut.c

PostRut() - rtrut.c

ProcessFunctions(unsigned char scan) - talk70.c
ProfileMode2(int acunit) - talk70.c

ProfileMode3() - mode3.c

PutRoadInfo(char ¢) - mode3.c

readkey() - bt.c [terminal]

A-88

ReadRutCorr() - talk70.c

SaveOrNot()- bt.c [terminal |

SaveRutCorr() - talk70.c

ScrollWin(int n, int Ir, int lc, int rr, int rc) - bt.c [terminal]
SDProfile1(int acunit) - sd1.c

SelectAcoustic(char s[], int *acunit) -talk70.c [terminal]
SendCommand(char *s) - bt.c [terminal]

SendString(int iP, char *s) - rtrut.c

SerialPortStatus(int PortNo) - bt.c

SetAcUnit(int acunit) - talk70.c

SetCursor(int r, int c) - bt.c [terminal]
SetExtractRatio(int er) - talk70.c

SetFilter(unsigned charb) - talk70.c

SetInternal SPF(int iSioSPF) - talk70.c

SetMem(long 1Addr, int iVal, BOOL bWord) - bt.c
SetParam(double sample, double speed) - talk70.c
SetSdMode(int DataCollectMode) - talk70.c

StopCollect()- bt.c

TestMode(int iMode, float Avg[5]) - talk70.c

Upload(char *fname) - bt.c

WaitChar(int PortNo, long ms){ //[60] - bt.c
WaitForFirst(unsigned int *wFirst, BOOL bDisp) //[60] - bt.c
WriteCh(char ch, char attr) - bt.c

WriteSI(unsigned int si, unsigned long wsv) - rtrut.c [terminal]
serinit_q - sergs.asm [terminal]

intserv - serqs.asm [terminal]

serclose_q - serqs.asm [terminal]

sersend - sergs.asm [terminal]

serrecv - sergs.asm [terminal]

A-89

List of Functions for Each File

A-90

List of Functions in bt.c / Filename: bt.doc

int GetIRQ(int PortNo)

SCANCODE readkey()

int OpenComm(int PortNo, int BaudRate, int Parity,
int DataBits, int StopBits)

unsigned int SerialPortStatus(int PortNo)

void CommParam()

void DisplayCommParam()

void SendCommand(char *s)

unsigned int WaitChar(int PortNo, long ms){ //[60]

void ScrollWin(int n, int Ir, int Ic, int rT, int rc)

void SetCursor(int r, int ¢)

void GetCursor(int *r, int *c)

void WriteCh(char ch, char attr)

void Border(int Ir, int Ic, int rT, int rc)

void FlushPort(int PortNo)

void MonitorMode()

void Delay(long ms)

void GetString(char *s, int iLen)

void DisplayStatusForm(int iRow)

void CheckComm()

void EndMessage()

void StopCollect()

void SaveOrNot()

BOOL WaitForFirst(unsigned int *wFirst, BOOL bDisp) //[60]

BOOL EscapeHit()

void Upload(char *fname)

void SetMem(long 1Addr, int iVal, BOOL bWord)

int GetMem(long lAddr)
A-91

Functions related to file bt.c for talk70.exe

1. Function name: GetIRQ
Calls: None
2. Function name: readkey
Calls: int86
3. Function name: OpenComm
Calls: *serinit_q
*serinit
outp
inp

4. Function name: SerialPortStatus
Calls: int86

5. Function name: CommParam
Calls: printf
*readkey
6. Function name: DisplayCommParam
Calls: printf
7. Function name: SendCommand
Calls: strcpy
*FlushPort
printf
*EscapeHit
*sersend
*WaitChar
8. Function name: WaitChar
Calis: *clock
*serrecy
9. Function name: ScrollWin
Calls: int86
10. Function name: SetCursor
Calls: int86
11. Function name: GetCursor
Calls: int86
12. Function name: WriteCh
Calls: int86
13. Function name: Border
Calis: *SetCursor
*WriteCh
14. Function name: FlushPort
Calls: printf
*serrecy
15. Function name: MonitorMode
Calls: *SetCursor
*OpenComm
kbhit
*sersend
*ProcessFunction
*ScrollWin
*serrecv
putch
printf
*serclose_q

A-92

*serclose
*readkey
16. Function name: Delay
Calls: *clock
17. Function name: GetString
Calls: *WaitChar
*EscapeHit
*FlushPort
18. Function name: DisplayStatusForm
Calls: *ClearRows
*SetCursor
printf
19. Function name: CheckComm
Calls: *SerialPortStatus
*SetCursor
printf
20. Function name: EndMessage
Calls: *sersend
*SetCursor
printf
*Border
*readkey
*ClearRows
21. Function name: StopCollect
Calls: *sersend
*FlushPort
22. Function name: SaveOrNot
Calls: *ClearRows
*SetCursor
printf
gets
strtok
remove
23 Function name: WaitForFirst
Calls: kbhit
*readkey
*SetCursor
printf
*serrecv
*ClearRows
24 Function name: EscapeHit
Calls: kbhit
25. Function name: Upload
Calls: printf
gets
strepy
fopen
*EscapeHit
fgetc
feof
*sersend
*serrecv
putch
fclose
*FlushPort

A-93

26. Function name: SetMem
Calls: sprintf
*SendCommand
*GetString
*sersend
*FlushPort
27. Function name: GetMem
Calls: sprintf
*SendCommand
*GetString
sscanf

Filename: mode3.doc \ List of functions in mode3.c

DISTTYPE DistManage(int iFunc)
void ProfileMode3()
void PutRoadInfo(char c)

List of functions for mode3.c for talk70.exe

1. Function name: DistManage
Calls: *sersend
2. Function name: ProfileMode3

Calls: *GetMem
*ClearRows
*Border
*SetCursor
printf
*GetFilename
*GetAcoustic
*GetSPF
*GetDistance
*DisplayPoints
*DisplayStatusForm
*SetExtractRatio
*SetAcUnit
*InitRut
*SetInternalSPF
fputc
*SendCommand
*sersend
*FlushPort
kbhit
*readkey
*WaitForFirst
*time
*ScrollWin
*DistManage
*serrecv
fputc
putchar
*WriteSI
*GetRut

A-94

*PostRut
*PutRoadInfo
*PauseRut
*CheckComm
*StopCollect
fclose
*SaveOrNot
*CloseRut
*EndMessage
3. Function name: PutRoadinfo
Calls: *Border
*SetCursor
putchar

List of functions in mode6.c
Filename: mode6.doc

void Modeé6()

Functions related in mode6.c for talk 70.exe

Function name: Mode6
Calls: *ClearRows

*Border
*SetCursor
strlen
printf
*DistanceMode
*SetSdMode
*GetFileName
*SetAcUnit
*GetSPF
*GetDistance
*StopColiect
fclose
*EndMessage
*DisplayPoints
*DisplayStatusForm
*SetParam
*SendCommand
time
*WaitForFirst
*serrecv
*MasterOutput
fprintf
kbhit
putchar
*CheckComm
*SaveOrNot

A-95

List of functions for mode7.c for talk70.exe

1. Function name: IRI_RUTMode
Calls: *SendCommand
*SetMem
2. Function name: /RI_RUTMode
Calls: *ClearRows
*Border
*SetCursor
printf
*GetFilename
*GetAcoustic
*SetAcUnit
*SendCommand
*SetMem
*GetSPF
*GetDistance
*StopCollect
*EndMessage
fclose
*DisplayPoints
*DisplayStatusForm
*SetParam
*time
*WaitForFirst
*GetFloat
*ScrollWin
*GetMsg
kbhit
*sersend
*serrecv
*CheckComm
*SaveOrNot
3. Function name: GetFloat
Calls: *serrecv
4. Function name: GetShort
Calls: *serrecv
5. Function name: GetMsg
Calls: *serrecv

List of functions in rtrut.c
Filename: rtrut.doc

void InitRut()

void CloseRut()

COUNT_TO_INCH(i)

void GetRut()

void PauseRut()

void PostRut()

void WriteSI(unsigned int si, unsigned long wsv)
void SendString(int iP, char *s)

A-96

List of related functions for rtrut.c for talk70.exe

1. Function name: /nitRUT
Calls: fopen
fprintf
strcpy
sprintf
2. Function name: CloseRUT
Calls: fprintf
fclose
3. Function name:COUNT _TO_INCH
Calls: None
4. Function name: GetRUT
Calls: *COUNT_TO_INCH
5. Function name: PauseRUT
Calls: *SetCursor
printf
*Border
6. Function name: PostRut
Calls: fopen
fprintf
sprintf
*SendString
*ScrollWin
*SetCursor
putchar
*PutRoadlnfo
printf
7. Function name: WriteS{
Calls: fprintf
sprintf
8. Function name: SendString
Calls: *sersend

List of functions in sdl.c
Filename: sdl.doc

void SDProfile1(int acunit)

List of related functions for sdl1.c for talk70.exe

1. Function name: SDPrafile
Calls: *ClearRows
*Border

*SetCursor
printf
*SetSdMode

A-97

*SetMem
*GetFileName
*GetAcoustic
*SetAcUnit
*GetSPF
*StopCollect
fclose
*EndMessage
*DisplayPoints
*DisplayStatusForm
*SetParam
*SendCommand
*WaitForFirst
*serrecv
fprintf

*time

printf

kbhit

*sersend
*CheckComm
*StopCollect
fclose
*SaveOrNot
*EndMessage

List of functions in talk70.c
Filename: talk70.doc

1. List of Functions in talk70.c

void InitSI(char *fn)

char *GetHeader(char *FileName)

main(int argc, char *argv([])

void ProcessFunctions(unsigned char scan)

void DisplayHelp()

int DistanceMode(BOOL bDisplay)

int GetlnternalSPF()

int GetSCKPMI()

void SetlnternalSPF(int iSioSPF)

void SetAcUnit(int acunit)

void SetSdMode(int DataCollectMode)

void SetExtractRatio(int er)

void SetParam(double sample, double speed)

void GetAcoustic(int iRow, int *acunit)

int SelectAcoustic(char s[], int *acunit)

FILE *GetFileName(int iRow)

double GetSPF(int iRow, int Mode, FILE *f)

void GetDistance(int iRow, char *unit, double *dist)
void DisplayPoints(int iRow, long nPts, double dist, double sample)
void ProfileMode2(int acunit)

void MasterOutput(char szFormat[], unsigned wVal, BOOL bPreSection)
unsigned CheckTime(BOOL bReset)

void KeyPadMode()

A-98

void TestMode(int iMode, float Avg[5])
void SetFilter(unsigned char b)

void ReadRutCorr()

void SaveRutCorr()

void DispCorr()

Related functions for talk70.c

1. Functions name: /nitSI(char *fn)
Calls : fopen
fgets
feof
strupr
strtok
strcmp
strncpy
atoi
* GetHeader
atof
fgets
fclose
2. Function name: GetHeader(char *Filename)
Calls: fopen
malloc
fgets
free
fclose
3. Function name: main(int argv, char *argv(])
Calls:
* InitSI
* ReadRutCorr
* DisplayHelp
* MonitorMode
_clearscreen
printf
free
4. Function name: ProcessFunctions(unsigned char scan)
Calls:
*Upload
*FlushPort
fopen
*serrecv
fputc
*EscapeHit
fclose
*sersend
*serclose_q

A-99

*SERCLOSE
*SetCursor
*CommParam
*OpenComm
*DisplayCommParam
* ScrollWin
printf
gets
sscanf
*KeyPadMode
*].oadedCorr
*TestMode
*ProfileMode2
*ProfileMode3
*SDProfilel
*Mode6
*[RI_RUTMode
*DisplayHelp
5. Function Name: DisplayHelp
Calls:
printf
*DisplayCommParam
6. Function Name: DistanceMode
Calls:
*SendCommand
*GetString
sscanf
*SetCursor
printf
7. Function name: GetInternalSPF
Calls:
*SendCommand
*GetString
sscanf
8. Function name: GetSCKPM]
Calls:
*SendCommand
*GetString
sscanf
9. Function name: SetInternalSPF
Calls:
*SendCommand
*Delay
sprintf
10. Function name: Set4cUnit
Calls:
sprintf
*SendCommand
*GetString
*sersend
*FlushPort

A-100

11. Function name: SetSdMode
Calls: *SendCommand
*GetString
sprintf
*sersend
*FlushPort
12. Function name: SetExtractRatio
Calls: sprintf
*SendCommand

13. Function name: SetParam
Calls: *SetlnternlSPF
*SetExtractRatio
14. Function name: GetAcoustic
Calls: *ClearRows
*SetCursor
printf
gets
strcpy
*SelectAcoustic
15. Function name: SelectAcoustic
Calls: None
16. Function name: GetFileName
Calls: *time
*ClearRows
*SetCursor
printf
gets
getch
sprintf
fclose
fopen
strepy
fprintf
17. Function name: GetSPF
Calls: *ClearRows
*SetCursor
printf
gets
fprintf
18. Function name: GetDistance
Calls: *SetCursor
*ClearRows
printf
gets
sscanf

A-101

19. Function name: DisplayPoints
Calls: *ClearRows
*SetCursor
printf
20. Function name: ProfileMode?2
Calls: *SetFilter
*ClearRows
*Border
*SetCursor
printf
*DistanceMode
*SetSdMode
*GetFileName
*GetAcoustic
*SetAcUnit
*GetDistance
*StopCollect
fclose
*EndMessage
gets
sscanf
*DisplayPoints
*DisplayStatusForm
*SetParam
*SetExtractRatio
*SendCommand
*time
*WaitForFirst
*CheckTime
strcpy
*MasterQOutput
*serrecv
fprintf
kbhit
*CheckComm
*SaveOrNot
21. Function name: MasterQutput
Calls: fprintf
22. Function name: Ckecktime
Calls: clock
23. Function name: KeyPadMode
Calls: *SendCommand
*FlushPort
_ClearScreen
_setvideomode
*SetCursor
*Border
kbhit
*readkey
*sersend
printf

A-102

*serrecv
putch
_setvideomode
24. Function name: TestMode
Calls: *ClearRows
*Border
*SetCursor
printf
*SetSdMode
*SendCommand
*Flushport
*SelectAcoustic
*SetAcUnit
*SetParam
*SendCommand
*WaitForFirst
*serrecv
*sersend
*readkey
*Delay
25. Function name: SetFilter
Calls: *SendCommand
sprintf
printf
26. Function name: ReadRutCorr
Calls: fopen
fscanf
fclose
27. Function name: SaveRurCorr
Calls: fopen
fprintf
fclose
28. Function name: LoadedCorr
Calls: *ReadRutCorr
*DispCorr
printf
*readkey
*TestMode
*SaveRutCorr
*DispCorr
*SetCursor
*sersend
29. Function name: LoadedCorr
Calls: ReadRutCorr
DispCorr
TestMode
readkey
SaveRutCorr
DispCorr
SetCursor
sersend
29. Function name: DispCorr
Calls: printf

A-103

Warnier orr Diagram

A-104

InitSi
GetHeader |
MonitorMode
SetCursor |
OpenComm
serinit_q |
serinit |
ProcessFunctions
Upload
EscapeHit
kbhit |
sersend |
serrecv |
FlushPort
sersend |
FlushPort
sersend |
serrecy |
EscapeHit
sersend |
serclose_q |
SetCursor |
CommParam |
OpenComm
serinti_q |
serinit |
DisplayCommParam |
ScrollWin |
KeyPadMode
SendCommand
FlushPort
sersend |
EscapeHit
kbhit |
WaitChar
serrecv |
FlushPort
sersend |
SetCursor |
Border
SetCursor |
WriteCh |
readkey |
sersend |
serrecy |
LoadedCorr
ReadRutCorr |
DispCorr |
TestMode
ClearRows |
Border

A-105

SetCursor |
WriteCh |
SetCursor |
SetSdMode
SendCommand
FlushPort
serrecy |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecv |
sersend |
FlushPort
serrecy |
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
FlushPort
serrecv |
SelectAcoustic |
SetAcUnit
SendCommand
FlushPort
serrecv
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecv |
sersend |
FlushPort
serrecv |
SetParam
SetInternal SPF
SendCommand
FlushPort
serrecv |
EscapeHit

A-106

kbhit |
WaitChar
sersend |
delay |
SetExtractRatio
SendCommand
FlushPort
serrecy |
EscapeHit
kbhit |
WaitChar
sersend |

WaitForFirst
readkey |
SetCursor |
serrecv |
ClearRows |

serTecy |

sersend |

readkey |

delay |

readkey |
SaveRutCorr |
SetCursor |
sersend |
TestMode
ClearRows |
Border
SetCursor |
WriteCh |
SetCursor |
SetSdMode
SendCommand
FlushPort
SeITecv |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecy |
sersend |
FlushPort
serrecy |
SendCommand
FlushPort
serrecv |
EscapeHit

A-107

kbhit |
WaitChar
sersend |
FlushPort
serrecv |
SelectAcoustic |
SetAcUnit
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecy |
sersend |
FlushPort
serrecv |
SetParam
SetlnternalSPF
SendCommand
FlushPort
serrecy |
EscapeHit
kbhit |
WaitChar
sersend |
delay |
SetExtractRatio
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
WaitForFirst
readkey |
SetCursor |
serrecyv |
ClearRows |
serrecv |
sersend |
ProfileMode2
SetFilter
SendCommand
FlushPort
serrecv

A-108

EscapeHit
kbhit |
WaitChar
sersend |
ClearRows |
Border
SetCursor |
WriteCh |
SetCursor |
DistanceMode
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecv |
SetCursor |
SetSdMode
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |

GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecv |
sersend |
FlushPort
serrecv |
GetFileName
ClearRows |
SetCursor |
GetAcoustic
ClearRows |
SetCursor |
SelectAcoustic |
SetAcUnit
SendCommand
FlushPort
serrecy |

A-109

EscapeHit

kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecv |
sersend |
FlushPort
serrecy |
GetDistance
SetCursor |
ClearRows |
StopCollect
sersend |
FlushPort
serrecy |
EndMessage
sersend |
SetCursor |
Border
SetCursor |
WriteCh |
ClearRows |
DisplayPoints
ClearRows |
SetCursor |
DisplayStatusForm
ClearRows |
SetCursor |
SetParam
Setlnternal SPF
SendCommand
FlushPort
serrecV |
EscapeHit
kbhit |
WaitChar
sersend |
delay |
SetExtractRatio
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
SetExtractRatio

A-110

SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |

SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
WaitForFirst
readkey |
SetCursor |
serrecv |
ClearRows |
Checktime |
MasterOutput |
serrecv |
CheckComm
SerialPortStatus |
SetCursor |
SaveOrNot
ClearRows |
SetCursor |
ProfileMode3
GetMem
SendCommand
FlushPort
serrecv
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecv
ClearRows |
Border
SetCursor |
WriteCh |
SetCursor |
GetFileName
ClearRows |
SetCursor |
GetAcoustic

A-111

ClearRows |
SetCursor |
SelectAcoustic |
GetSPF
ClearRows |
SetCursor |
GetDistance
SetCursor |
ClearRows |
DisplayPoints
ClearRows |
SetCursor |
DisplayStatusForm
ClearRows |
SetCursor |
SetExtractRatio
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
SetAcUnit
SendCommand
FlushPort
serTecv |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecv |
sersend |
FlushPort
serrecv
InitRut |
SetInternal SPF
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
delay |

A-112

SendCommand
FlushPort
serrecy |
EscapeHit
kbhit |
WaitChar
sersend |
sersend |
FlushPort
serrecv |
readkey |
WaitForFirst
readkey |
SetCursor |
serrecy |
ClearRows |

ScrollWin |
DistManage
sersend |
serrecv |
WriteSI |
GetRut
COUNT_TO_INCH |
PostRut
SendString
sersend |
ScrollWin |
SetCursor |
PutRoadInfo
Border
SetCursor |
WriteCh |
SetCursor |
PutRoadInfo
Border
SetCursor |
WriteCh |
SetCursor |
PauseRut
SetCursor |
Border |
CheckComm
SerialPortStatus |
SetCursor |
.StopCollect
sersend |
FlushPort
serrecy |
SaveOrNot
ClearRows |
SetCursor |

A-113

CloseRut |
EndMessage
sersend |
SetCursor |
Border
SetCursor |
WriteCh |

ClearRows |
SDProfilel
ClearRows |
Border
SetCursor |
WriteCh |
SetCursor |
SetSdMode
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecy |
sersend |
FlushPort
serrecv |
SetMem
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecv |
GetFileName
ClearRows |
SetCursor |

A-114

GetAcoustic

ClearRows |
SetCursor |
SelectAcoustic |
SetAcUnit
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecy |
sersend |
FlushPort
SerTecy |
GetSPF
ClearRows |
SetCursor |
StopCollect
sersend |
FlushPort
SEITECV |
DisplayPoints
ClearRows |
SetCursor |
DisplayStatusForm
ClearRows |
SetCursor |
SetParam
Setinternal SPF
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
delay |
SetExtractRatio
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar

A-115

SendCommand
FlushPort
serrecyv |
EscapeHit
kbhit |
WaitChar
sersend |
WaitForFirst
readkey |
SetCursor |
serrecv |
ClearRows |
serrecv |
sersend
CheckComm
SerialPortStatus |
SetCursor |
SaveOrNot
ClearRows |
SetCursor |
EndMessage
sersend |
SetCursor |
Border
SetCursor |
WriteCh |
ClearRows |
Mode6
ClearRows |
Border
SetCursor |
WriteCh |
SetCursor |
DistanceMode
SendCommand
FlushPort
SerTecv |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort

A-116

sersend |

serrecv
SetCursor |
SetSdMode
SendCommand
FlushPort
serrecv |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
serrecy |
sersend|
GetFileName
ClearRows |
SetCursor |
SetAcUnit
SendCommand
FlushPort
sersend |
EscapeHit

kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
sersend |
sersend |
FlushPort
sersend |
GetSPF
ClearRows |
SetCursor |
GetDistance
SetCursor |
ClearRows |
StopCollect
sersend |
FlushPort
sersend |
EndMessage
sersend |
SetCursor |

A-117

Border
SetCursor |
WriteCh |
ClearRows |
DisplayPoints
ClearRows |
SetCursor |
DisplayStatusForm
ClearRows |
SetCursor |
SetParam
SetInternal SPF
SendCommand
FlushPort
sersend |
EscapeHit
kbhit |
WaitChar
sersend |
delay |
SetExtractRatio
SendCommand
FlushPort
sersend |
EscapeHit
kbhit |
WaitChar
sersend |
SendCommand
FlushPort
sersend |

EscapeHit
kbhit |
WaitChar
sersend |
WaitForFirst
readkey |
SetCursor |
serrecv |
ClearRows |
serrecv |
MasterOutput |
CheckComm
SerialPortStatus |
SetCursor |
SaveOrNot
ClearRows |
SetCursor |
IRI_RUTMode
ClearRows |

A-118

Border
SetCursor |
WriteCh |
SetCursor |
GetFileName
ClearRows |
SetCursor |
GetAcoustic
ClearRows |
SetCursor |
SelectAcoustic |
SetAcUnit
SendCommand
FlushPort
sersend |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
sersend |
sersend |
FlushPort
sersend |
SendCommand
FlushPort
sersend |
EscapeHit
kbhit |
WaitChar
sersend |
SetMem
SendCommand
FlushPort
sersend |
EscapeHit
kbhit |
WaitChar
sersend |
GetString
WaitChar
sersend |
EscapeHit
kbhit |
FlushPort
sersend |
FlushPort
sersend |

A-119

GetSPF
ClearRows |
SetCursor |
GetDistance
SetCursor |
ClearRows |
StopCollect
sersend |
FlushPort
sersend |
EndMessage
sersend |
SetCursor |
Border
SetCursor |
WriteCh |
ClearRows |
DisplayPoints
ClearRows |
SetCursor |
DisplayStatusForm
ClearRows |
SetCursor |
SetParam
SetInternalSPF

SendCommand

FlushPort

sersend |

EscapeHit

kbhit |

WaitChar

delay |
SetExtractRatio

SendCommand

sersend |

FlushPort

sersend |

EscapeHit

kbhit |

WaitChar

WaitForFirst
readkey |
SetCursor |
serrecv |
ClearRows |

GetFloat
serrecv |

ScroliWin |

GetMsg
serrecv |

A-120

sersend |

sersend |

serrecyv |
CheckComm
SerialPortStatus |
SetCursor |
SaveOrNot
ClearRows |
SetCursor |
DisplayHelp
DisplayCommParam |
ScrollWin |
readkey |
sersend |
serclose |
serclose_q |
serrecy |
ReadRutCorr |
DisplayHelp
DisplayCommParam |

A-121

Notes on Variables

A-122

Filename: Notes.doc

e typedef SERIAL STATUS
typedef union {
unsigned int w;
struct {
/* modem */
unsigned int RLSD:1;
unsigned int RI:1;
unsigned int DSR:1;
unsigned int CTS:1;
unsigned int DRLSD:1;
unsigned int TERD:1;
unsigned int DDSR:1;
unsigned int DCTS:1;

/* line */
unsigned int DataReady 1
unsigned int OverrunError :1
unsigned int ParityError .1
unsigned int FrameError :1
unsigned int BreakDetect :1
unsigned int THREmpty 1
unsigned int TSREmpty :1
unsigned int TimeOut :1;
}b;

} SERIALSTATUS;

The above typedef is used when you need to use intl4 function 03. This function is used to read the serial port
status. Refer to the Function SerialPortStatus. A 16 bit value is returned when a call is made to SerialPortStatus.
The above data structure SERIALSTATUS is returned.

The status of the port which is a unsigned integer. When this interrupt is called a value is returned an register ax.
The upper byte register ah contains.

Bit 0: Data Ready

Bit1: OverrunError

Bit2: Parity Error

Bit3: Framing Error

Bit4: Break discovered

Bit5: Transmission hold register empty

Bit 6: Transmission shift register empty

The lower byte register al contains

Bit0: Modem ready to send status change
Bitl: Modem on status change

Bit2:. Telephone ringing status change
Bit3: Connection to receiver status change
Bit4: Modem ready to send

Bit5: Modem on

Bit6: Telephone ringing

Bit7: Connection to receiver modem

A-123

e intiFrame
This variable indicates that there has been some Frame error. iFrame is incremented whenever there is a Frame
error.

¢ intiOverrun
This variable indicates that there has been some Overrun error. iOverrun is incremented whenever there is an

Overrun error.

¢ File *fRut
It is a file descriptor which is used to write the Rut.

e File *fSI
It is a file descriptor which is used to write the serviceability index

¢ File *fWSV;
It is a file descriptor which is used to write the Walker slope variable.

¢ iRutCnt
This is the Rut count....not very sure about this variable. It is used and modified in PostRut.

¢ iRutMethod
This is a value of the Rutmethod which is either

0 Do not do real time rut

1 South Dakota

2 String-Line Right

4 String-Line Left

6 String-Line Right & Left

8 Right Rut

12 New Average (String-Line Left & Right Rut)
28 Method 12; output to serial ports; does not write to disk.

* % % X X ¥ ® ¥

e bExtraComm
bExtraComm is the value of iRutMethod &0x10
bExtraComm is true only if the iRutMethod is 28....that is Method 12 mentioned above

o SIDist

SIDist is the value of the distance in feet when every value of SI comes in from the SIOMETER
SIDist = GetMem(0x10529eL)/3; //either 1056 or 528; This is given in mode3.c

After every SIDist, an SI signal comes in.

e nRutsPerDMI

The nRutsPerDMI is 3. A Rut signal , that is acoustic data comes in every 4 feet. A distance signal is sent every 12
feet. Therefore 3*14 = 12. After 3 Rut signals a distance signal is sent. Therefore the variable nRutsPerDMi is the
value 3.

e PortNo

This variable is defined in file talk.h. This is used to define the port number. This is the port number that is used for
communication. For sending or receiving(reading) we need a port to so.

¢ Databits
This specifies the number of databits required for forming the frame
It stores the number of databits that are being used for transmission. It is typically either 7 or 8.

e Stopbits
This specifies the number of stopbits required for forming the frame
A-124

Stopbits 1t is the number of stop bits that are being used. 1t is typically 1 or 2.

e SupportedBaudRate
This is an array which gives all the supported baud rates

e DisplayMode
This variable is used to define whether the program is in ASCIIMODE or DISPLAYMODE

e DataCollectMode
1t is a variable that indicates what types of rut measuring methods is bring used. Different types of rut measuring
methods are South Dakota Method, Construction Mode etc.

e char *szMode[NMODES]
This is just a character array used for printing. It has a character string used for printing for all rhw 7 modes.

szMode[ACC_ACOUST] = "Acceleration and acoustic data";
szMode[ACCONLY] = "Acceleration only";

szMode[S]_AVGSPD] = "SI values, acoustic data, and average speeds";
szMode[CONSTR] = "Construction”;

szMode[SDK] = "South Dakota";

szMode[TWOCH] = "Acceleration and Laser”

szMode[IRI_RUT] = "IRI and RUT"; //[70]

e szActiveAcoustic

This variable is an array that is used to store the acoustic devices that are active i.e. are being used. The acoustic
devices are mounted on the rut bar that is attached to the vehicle that is being used for this purpose. These acoustic
devices are numbered | through 5. So the variable szActiveAcoustic is used to store the number that corresponds to
the acoustic device that is being used for the data collection purpose.

e char str[80]
This is used as a temporary character buffer. Whenever we need to send something to the siometer we first copy it
into this buffer and then send it to the siometer.

e unsigned char AcousticMask

This is a variable that stores the numbers of the acoustic devices that have been selected to collect the data. 1f the
value in binary is 00011111 then the acoustic devices |, 2, 3, 4 and 5 have been selected for the collection of the
data. The acoustic devices are numbered 1 through 5 from left to right. A laser can also be used and be numbered as
6.

s bCountAcoustic
If bCountAcoustic is true then count acoustic instead of acceleration.

s bDistMode

bDistMode gets the value of IsDistance. IsDistance = TRUE indicates that it is distance mode. IsDistance = FALSE
indicates that it is timemode.

Example calls.

bDistMode = DistanceMode(TRUE);

bDistMode = DistanceMode(FALSE);

* *fData
It is a pointer to a file

s bAbort
bAbort is used to know if any process is aborted. If any process like sending a file is aborted then it is set to TRUE,
else it is set to false. A way of setting bAbort is by pressing the escape key on the keyboard.

A-125

e DatFile
This is a variable that is used to store the name of a file.

¢ BaudRate
It stores the baud rate that has been selected for the communication. Baudrate is normally specified in number of
bits per second.

e Parity

This variable is used to store the type of parity that is being used for communication. It can be either ODD parity or
EVEN parity or No parity. Basically parity bits are check bits that are used to see if the received data is correct or
not.

e bPause
This variable is used to print “ Pause” on the standard input.

e bMaetric

This variable is to know whether the metric that we are using to measure the distance is Kilometers or feet. If this
variable is set to 1(TRUE) then distance is printed in Kilometers else if it is false then it is reset to zero(FALSE)
then the distance is printed in feet.

e szDefAc
This variable is used to store the numbers of acoustic devices that are being used.

¢ RutCorr.Loading

This array is used to store the differences in acoustic readings for the loaded and unloaded conditions. An unloaded
condition is one in which all the persons in the vehicle get out of the vehicle and the acoustic readings are collected.
A loaded condition is one in which all the members get in to the vehicle and the acoustic readings are collected.

e sRutCorr
This variable is used to store the name of the file called "RUTCORR.INI". The name stands for RUT
CORRECTION INITIALISATION.

e nlnline

This is the number of the values in a line. When the number of values in a line becomes 16 then it is setto 0. This is
because the format of a file is so described that it contains 16 values in a line. So after reading 16 value we go to
the next line and set nInline to 0.

e TWOCH
"Acceleration and Laser"

e CONSTR
"Construction" This is one of the modes for the collection of the data. Others include SoutDakota Mode,
Acceleration and Laser mode etc..

o SI_AVGSPD
"SI values, acoustic data, and average speeds";

* bSysGenFileName

This is a variable that tells whether the name of file to store the data collected is entered by the user. If the user does not
enter the name of the file then the program generates a filename which constitutes of system time in month, day,
hours, minutes and seconds.

A-126

e bComment
This variable if set asks for comment to be entered. Depending on the variable header it asks the user to enter one or two

lines of comment. If header is set to 1 then it asks the user to enter two lines of comment else if the header is reset to
0 then it asks the user to enter just | line of comment. If comment is set to ‘N’ then the user is not asked to enter any
comment.

e Header
It gets the value of the header from a file. The header is stored in the beginning of the file.

e RangeLimits
This is an array storing the maximum value of each range of value that can be received.

¢ jRutSecLen

This specifies the rut report interval in feet. The options are 528 feet and 1056 feet.

e Param

This is a variable used to store the tokens read from the file whose name is stored in the variable called ‘fn’. The
tokens are that are stored in this variable are predefined tokens.

e value
This variable stores the value to which is used to set another variable.

e RutCorr.Mounting
This contains the mounting offsets of the five acoustic devices in inches. We need this because the bar on which the
acoustic devices are mounted may not be horizontal and the devices may have different offsets.

e DisplayMode
This variable is used to define whether the program is in ASCIIMODE or DISPLAYMODE

e bDistMode

bDistMode gets the value of IsDistance. [sDistance = TRUE indicates that it is distance mode. IsDistance = FALSE
indicates that it is timemode.

Example calls.

bDistMode = DistanceMode(TRUE);

bDistMode = DistanceMode(FALSE);

e bAbort

bAbort is used to know if any process is aborted. If any process like sending a file is aborted then it is set to TRUE,
else it is set to false. A way of setting bAbort is by pressing the escape key on the keyboard.

¢ SDK
SouthDakotaMode

e F5
If this is set to ‘N’ then mode changing is disabled

e F2
If this is set to ‘N’ then changing communication parameters is disabled.

A-127

e RUT_SEC_LEN
This represents the rut section length over which the rut is reported. If this is set to say, 528 feet then rut report

interval is 528 feet.

e COMS3IRQ
This is used to store an integer. If this is set to 2 then it means that use IRQ2 for COM3.

A-]128

Scancodes

Some Info on Scan codes.

When the user presses any key on the keyboard, an electrical impulse, which identifies the location of the key is
generated. This signal is handled by the Keyboard processor, which is located inside the Keyboad itself. Generally
this processor is an Intel 8084 chip. If you are using an AT class of computer then the communication is handled by
an Intel 8042 chip. This allows bi-directional communication between CPU and Keyboard. Earlier PC’s and XT’s
do not have this capability.

Converting the scancode

The Keyboard processor converts the electrical impulse indicating the position into a number called scancode. This
scan code is passed to the computer. The transfer is done serially, since the cable that connects the Keyboard to the
computer has only one data line. The communication is synchronous.

Scan code are also generated when the key is released. This is important because the computer needs to know if the
key has been released or still pressed. This helps to differentiate the situations like typing the capital letters and
also trying to reboot the computer. For rebooting the computer needs to know that all the three keys namely
<Ctrl><Alt><Delete> are pressed together.

Each time the keyboard is pressed a hardware interrupt IRQ1 is executed. The keyboard handler receives these
scancodes one when a key is pressed and one when key is released and converts these into corresponding ASCII
character codes, which can be read by application that is currently running,

Different keyboards use different sets of scancodes. So they by themselves are unusable. So these scan codes are
converted into ASCII codes, which are standard on all computers.

A-129

	Front Matter

	Technical Report Documentation Page

	Implementation Statement

	Disclaimer(s)

	Acknowledgements

	Table of Contents

	Table of Figures

	List of Tables

	Ch 1. Introduction

	1.0 Report Contents

	Ch 2. Systems Concepts

	2.0 Measurement System

	2.1 Reflective Memory Overview

	Ch 3. PC-68020 Module Communication

	3.0 Procedures

	3.1 General 68020 K board Firmware Functions

	3.2 K Board PC Communication

	3.3 Rut Measure Procedures

	Ch 4. Main Chassis Module

	4.0 Overview

	4.1 Functional

	4.2 Power Wiring Flow

	4.3 Signal Flow

	Ch 5. Laser Power Module

	5.0 Overview

	5.1 Power Considerations

	Ch 6. Signal Interface Board

	6.1 Overview

	6.2 Detailed Design/SIB Signals

	6.3 Hardware Installation

	6.4 Signal Interface Board Layout

	Ch 7. Laser Interface Module

	7.0 Overview

	7.1 Laser Interface Modudule Layout

	7.2 Functionality

	Ch 8. SMART A to D MODULE

	8.0 SA2D Overview
	8.1 Detailed Design\Design Components

	8.2 State Machine Design

	8.3 Hardware Installation

	Ch 9. The 68020 MODULE (K Processor)

	Appendices

	Appendix A

	Structure Charts

	Function Headers

	FlowCharts

	List of Functions Sorted

	List of Functions for Each File

	Warnier orr Diagram

	Notes on Variables

	Scancodes

