
REAL- TIME DATA ACQUISITION
FOR

SURFACE MEASUREMENT
RESEARCH PROJECT # 1997-F

PROJECT TITLE:
IMPLEMENTATION OF INTELLIGENT BUS SYSTEM

FOR DISTRESS MEASUREMENTS

THE UNIVERSITY OF TEXAS AT ARLINGTON
TRANSPORTATION INSTRUMENTATION

LABORATORY

Research Supervisor: RogerS. Walker, Ph.D., P.E.
Serial No. 3154

November 1997

Notice- The United States Government and the state of Texas do not endorse
products or manufacturers. Trade or manufacturers' names appear solely
because they are considered essential to the object of the report.

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

TX-97/1997-12

4. Title and Subtitle REAL-TIME DATA ACQUISITION FOR 5. Report Date

November97
SURFACE MEASUREMENT/IMPLEMENTATION OF INTELLIGENT 6. Perfonning Organization Code
BUS SYTEMS FOR DISTRESS MEASUREMENTS

7. Author(s) 8. Perfonning Organization Report No.

RogerS. Walker Research Report 1997 -F

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

The University of Texas at Arlington
Arlington, TX 7 6019 11. Contract or Grant No.

ProjectNo. 7-1997
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Addres Final:
Texas Department of Transportation September 93-August 97
Research and Technology Transfer Office

14. Sponsoring Agency Code
P. 0. Box 5080, Austin, TX 78763-5080

15. Supplementary Notes

Research perfomed in cooperation with the Texas Department of Transportation. .

16. Abstract

This report provides specific details on much of the work done on a project for the Texas
Department of Transportation for providing the capability for making pavement distress
measurements. The report primarily contains hardware and design procedures used to
implement the Texas Profiler/Rut-Bar systems and which will be useful for TxDOT
personnel in using and maintaining this equipment.

17. KeyWord 1 B. Distribution Statement

TxDOT Profiler, Rut Measurements, Real- No restrictions. This document is available to the
public through the National Technical Information

time, Pavement Distress Measurements Service, Springfield, Virginia 22161.

19. Security ClassiF. (of this report) 20. Security Classif. (of this page) 21. No. of Page 22. Price

Unclassified Unclassified 232
Fonn DOT F 1700.7 18-72}

IMPLEMENTATION STATEMENT

The Pavement Section of the Texas Department of Transportation has recently
constructed and is currently implementing a number of profiler/rut bar vans. Much of the
technology and procedures for these systems are a direct result of the research performed in
this project. The system concepts developed during this implementation phase were
designed so each vehicle will be capable of collecting a variety of pavement surface distress
data. The successful completion of this project has provided a more accurate and quicker
method of obtaining various distress information for the State's PES data base and for project
specific applications.

DISCLAIMER(S)
The contents of this report reflect the views of the author(s), who is (are) responsible for

the facts and the accuracy of the data presented herein. The contents do not necessarily reflect
the official view or policies of the Texas Department of Transportation. This report does not
constitute a standard, specification, or regulation.

There was no invention or discovery conceived or first actually reduced to practice in the
course of or under this contract, including any art, method, process, machine, manufacture,
design or composition of matter, or any new useful improvement thereof, or any variety of
plant, which is or may be patentable under the patent laws of the United States of America or
any foreign country.

11

ACKNOWLEDGl\IIENTS

This work was a team effort with Wen"Ming Kuo, Brian Burgess, and as a graduate
student, Guor-Chaur Jung, was especially instrumental in the team effort as well as other
graduate students who worked on the project at various times.

Acknowledgement should be given to Carl Bertrand, Project Director, of the Texas
Department of Transportation. His vision of an up"to"date fleet of surface measuring
equipment has provided TxDOT with the latest advances in measurement technology. Also,
acknowledgement should be given to Mr. Robert Light who provided valuable input into the
measurement equipment and processes.

Ill

TABLE OF CONTENTS

IMPLEMENTATION STATEMENT .. I

DISCLAIMER(S) ... II

ACKNOWLEDGMENTS ... III

TABLE OF CONTENTS .. IV

TABLE OF FIGURES .. VI

CHAPTER 1 ... 1

INTRODUCTION .. l
1.0 Report Contents .. 2

CHAPTER::! ... 3

SYSTEMS CONCEPTS .. 3
2.0. Measurement System .. 3
2.1. Reflective Memory Overview .. 3
2.1.1 Reflective Memory Board ... 4

CHAPTER 3 ... 7

PC-68020 MODULE COMMUNICATION .. 7
3. 0 Procedures 7
3.1 General68020 K board Firmware Functions ... 7
3.2 K Board PC Communication ... 7
3.2.1 Overview .. 8
3.2.2 Defmitions ... 8
3.2.3 Starting Application .. 9
3.2.4 Sending Data Collection Options ... 10
3.2.5 Starting Data Collection ... 11
3.2.6 Reading K Processor Output .. 11
3.2. 7 Terminating Data Collection .. 13
3.3 Rut Measure Procedures .. 13
3.3.1 String Line General .. 13

CHAPTER 4 ... 15

MAIN CHASSIS MODULE .. 1 s
4.0 Overview ... 15
4. I. Functional.. 15
4.2 Power Wiring Flow .. 22
4.3 Signal Flow ... 23

CHAPTER 5 .. 34

LASERPOWERMODULE .. 34
5.0 Overview .. 34
5.1 Power Considerations ... 34
5.1.1 External Connections ... 34
5.1.2 Input Power Connections ... 35
5.1.3 Laser Power Supply Board Parts List .. 35

CHAPTER 6 .. ,.. ... 43

SIGNAL INTERFACE BOARD ... 43
6.1 Overview ... 43
6.2 DetaUed Design \SIB Signals ... 43

IV

6.2.1 Left and Right Accelerometers ... 43
6.2.2 Start Signal .. 43
6.2.3 Distance Signal... 4 3
6.3 Hardware Installation .. 44
6.3.1 Configuration External Connections ... 44
6.3.2 Accelerometer Input and Output Signal Connections ... 45
6.3.3 Laser Input and Output Signal Connections ... 45
6.3.4 Start Signal Input and Output Connection .. 45
6.4 Signal Inter.face Board Layout ... 45

CHAPTER 7 ... 49

LASER INTERFACE MODULE ... 49
7.0 Overview .. 49
7.1 Laser Interj'ace Module Layout .. 49
7.2 Functionality .. 50

CHAPTER 8 ... 58

SMART A roD MODULE .. 58
8.0 SA2D Overview .. 58
8.1 Detailed Design\Design Components ... 58
8.2 State Machine Design ... 59
8.2.1 State Diagram Description .. 60
8.3 Hardware Installation ... 63

CHAPTER 9 ... 7 4

THE 68020 MODULE (K PROCESSOR) ... 74
9.0 Overview ... 74

APPENDIX A ... 96

TABLE OF FIGURES

Figure 2.1 Reflective Memory Concept.. ... 5
Figure 3.1 Texas Five Sensor System Rut Bar ... 13
Figure 3.2 String Line General ... 14
Figure 4.1 Basic System Layout. .. 24
Figure 4.2 Profile Measurement System-Front Panel .. 25
Figure 4.3 Profile Measurement System-Rear Panel ... 26
Figure 4.4 Profile Sensors Signal Flow .. 27
Figure 4.5 Wiring 11+5, +12,+15, and -15 Power Connections .. 28
Figure 4.6 Wiring 2/+20, +18, -18, +24, -24 Power Connections 29
Figure 4.7 Wiring 3-AC Power .. 30
Figure 4.8 Wiring 4-Wiring 4-Grounds ... 31
Figure 4.9 Signal Wiring 1-Laser/Accelerometer/A\D Interface ... 32
Figure 4.10 Signal Wiring 2-Acoustic/Start/Distance/Reset.. .. 33
Figure 5.1 Laser Power Supply Schematic .. 36
Figure 5.2 Power Supply PC Board Bottom View ... 37
Figure 5.3 Power Supply PC Board Solder Mask .. 38
Figure 5.4 Power Supply PC Board Top View .. 39
Figure 5.5 Power Supply PC Board Silk Screen .. 40
Figure 5.6 Power Supply PC Board Drill Schematic ... 41
Figure 5. 7 Laser Power Board .. 42
Figure 6.1 Signal Interface Board .. 46
Figure 6.2 Schematic of Signal Interface Board .. 4 7
Figure 7.1 Laser Interface Board Schematic .. 52
Figure 7.2 Laser Interface Board .. 53
Figure 8.1 Smart A to D State Diagram ... 62
Figure 8.2 AID Board Layout ... 70
Figure 8.3 Schematic Smart AID Board 1 .. 71
Figure 8.4 Schematic Smart AID Board 2 .. 72
Figure 8.5 Schematic Smart AID Cable ... 73
Figure 9.1 Detail View ... 85
Figure 9.2 Overall View ... 86
Figure 9.3 K Board Layout. .. 87
Figure 9.4 Schematics K Processor- ! ... 88
Figure 9.5 Schematic K Processor- 2 .. 89
Figure 9.6 Schematic K Processor- 3 .. 90
Figure 9.7 Schematic K Processor- 4 .. 91
Figure 9.8 K Processor- 5 .. 92
Figure 9.9 Schematic NK Processor- 1 ... 93
Figure 9.10 Schematic NK Processor- 2 ... 94
Figure 9.11 Schematic NK Processor- 3 ... 95

vi

List of Tables

Table 2.1 RMB Signal List ... 4
Table 4.1 General Specifications- 24 Volt SOLA Supply .. 17
Table 4.2 Condor- GPC55 Series (Multi-voltage Switching Supply) 18
Table 4.3 Condor Connections .. 18
Table 4.4 J1 - VMEbus Signal Descriptions ... 19
Table 4.5 Laser Connections ... * 21
Table 4.6 Accelerometer Connections .. 21
Table 4.7 Acoustic Connections- Channels 1-5 ... 21
Table 4.8 Acoustic Connections- Channels 6-10 .. 22
Table 4.9 PC Serial Connections .. 22
Table 5.1 Output Voltages .. 34
Table 5.2 Parts List Laser Supply Board .. 35
Table 6.1 Jumper Block .. 44
Table 6.2 SIB Parts List .. 48
Table7.1 Laser .. 50
Table 7.2 Laser Interface Module PALASM Design Description and HC11 Program 54
Table 8.1 State Machine l/0 ... 59
Table 8.2 Pal Equations .. 64
Table 9.1 Memory Map .. 75
Table 9.2 Interrupt Assignment .. 76
Table 9.3 PAL U13 Equations .. 76
Table 9.4 PAL U14 Equations .. 77
Table 9.5 PAL U 15 Equations .. 78
Table 9.6 PAL U33 Equations .. 79
Table 9. 7 PAL U34 Equations .. 81
Table 9.8 PAL U301 Equations .. 83

CHAPTER!
Introduction

This report provides specific details on much of the work done on a project for the
Texas Department of Transportation for providing the capability for making pavement
distress measurements. The original objective of the project was stated as:

The Texas Department of Transportation must collect different
types of data for both project and network level applications. The data is
obtained from several different instruments and sensor types which are
often housed in different vehicles. The data collection process thus
involves the use of many different operators in different vehicles. Because
of the different equipment types multiple passes over the same surface are
often required. The data collection and processing procedures involve the
Surface Dynamics Profilometer, the Siometer, and the Automated Road
Analyzer or ARAN vehicles. The ARAN vehicle has been converted and
updated from its' original configuration and soon will provide not only
video logs of pavement surfaces, rutting information, and ride data, but
also, surface profile and pavement cracking.

With so many different applications in the pavements' field, it is
becoming more and more desirable to integrate all of these operations into
one data collection system. The system needs to handle not only today's
real-time requirements, but also those of future applications and needs.

In the project, "Real-Time Bus System for Interface of Surface
Measuring Instruments", Study No. 1932, a real-time bus design has been
developed which can provide such interface. A project is now needed for
the implementation of this bus system and its usage in the Department's
distress measurement vans, which are being developed by the Pavement
Section.

A common task in this and other projects of a similar nature is to work with the rapid
changes in technology used in implementing the concepts developed during this project.
Since the first introduction of the PC by IBM in 1981 there has been an explosion in the
development of PC compatible systems, first in desk top and notebook PC's and now in small
modular boards running DOS or Windows CE. This technology is now being used in many
instrumentation applications. Thus, much of the equipment initially considered for
implementing this research is already outdated. The project has attempted to work with these
rapid changes by developing modular concepts "when possible" which will permit system
upgrade and still work within the original project objectives.

1

1.0 Report Contents

The report primarily contains hardware and design procedures used to implement the
Texas Profiler/Rut-Bar systems and which will be useful for TxDOT personnel in using and
maintaining this equipment. The next chapter provides details on the overall system concept,
followed by details on the hardware modules used in the measuring system. Schematics,
hardware design criteria, pal equations, and other design details are provided.
Documentation of TALK, the Siometer Rut Bar communication program is provided in the
Appendix.

2

2.0 Measurement System

CHAPTER2
Systems Concepts

As noted in the previous chapter, the initial project objective was to develop and then
implement a system for distress measurements which could be integrated with other systems,
such as the video recording and data base system (developed by C Map Systems). As also
noted, because of the rapidly changing technology, a modular approach was desired.
Although initially, pavement profile, rutting, IRl and PSI measurements were desired, the
system needed to be expandable to include other future measurements. Texture, for instance,
is planned for implementation in 1998. The original plan included the use of the existing
Siometers which computed SI and rut, in conjunction with general purpose 68020 boards
linked using the VME bus. Based on this plan, the project personnel developed a reflective
memory concept which could interface with various and different modules. Later, it was
decided to simply use an existing 68020 board (sometimes referred to as a 'K' board) which
had much of the initial desired processing capability. With the success in using the 68020
board, the Siometers were phased out. The project then developed specific boards, such as
the Smart AID, etc., which could then easily work with either this board or ones
implementing the reflective memory concept. The reflective memory concept is described in
the next section as it may yet be useful in later implementations. A wire wrap version of the
board was done and initial printed circuit board (PCB) considered.

The description of the reflective memory board, and the other modules included in
this report, are useful so that the Department can easily use these modules, or obtain
additional modules as new requirements occur.

The complete measurement system described in this report include the following
modules: two laser interface modules, a signal interface module, a laser power module, a
smart AID module, and the 68020 module. The reflective memory will be described in this
section. The other modules are described in the chapters which follow.

2.1 Reflective Memory Overview

This section provides operating instructions and general information for the use of the
Reflective Memory Board (RMB). The purpose of the RMB is to provide high speed data
transfers between the VME type modules and Siometer Computer boards The original
Siometer was a self-contained processing module, with no need to communicate with other
processing units.

A previous solution to integrating various 68020 modules with the Siometer utilized a
parallel interface. This parallel interface was implemented with a Motorola 680230 Parallel
Interfacetrimer on each. The ideal solution would be to have all required processors on the
same board. The processors could then communicate with each other via a multi-ported
RAM. In this way, the processors would not be required to be interrupt driven. With a
simple message passing scheme, large amounts of data may be passed between any of the
processors. One processor could read the data from a sensor, and then pass this data to all of

3

the other processors simultaneously. This, of course, is the ideal solution, but is not feasible
for two reasons. First, is board space. The board to implement all of the processors would
be much too large. Furthermore, where would one get say, quad-ported RAM? This idea
does help, because it gives the best possible throughput. Each processor could communicate
over a shared memory space. Communication is handled just like any read or write to
memory.

The idea of using multiple dual-port RAMs, with an additional processor handling the
traffic between them evolved into the reflective memory board concept. In this way, any
data written into one would be "reflected" in the others. The reflective memory concept is
illustrated in Figure 2.1.

2.1.1 Reflective Memory Board

The RMB provides 1024 bytes of reflective memory (one Kilo-byte). The RMB may
interface up to four (4) processing boards. Table 2.1lists all of the signals required by RMB.

Signal Name
AO-A9 Input
DO-D7 Both
CS* Input
RIW* Input
DTACK Output

Table 2.1 RMB Signal List

The RMB consists of eight (8) FIFOs, two for each processor interface. Each FIFO is
nine (9) bits wide. This allows the capture of the ten (1 0) address lines and eight (8) data
lines. The ten (1 0) data lines allow the addressing of one Kilo-byte of memory. The chip
select signal (CS*) is active low, and indicates that the processor interface is requesting a bus
cycle to the RMB. The read signal (RIW*) indicates the direction of the transfer. If the
transfer is a write, then the RMB writes both the address and data lines into the two (2)
associated FIFOs. After writing the address and data into the FIFOs, the RMB asserts
DT ACK until the chip select is negated. If the bus cycle is a read, then the RMB reads the
data from the dual-ports address, as specified by the address lines. The data from the dual
port is then placed on the processor's data lines, and DTACK is asserted to indicate that the
data is valid. When the processor negates the chip select, the RMB tristates the data lines,
and negates DT ACK. It should be noted that the MACH 130 monitors and controls all of the
FIFO and dual-port memory control signals. The RMB as a whole, appears just like a
memory device to the processor board.

The following is an example of the steps taken by the RMB for each of the possible
bus cycles. For the first case, assume that a processor board wants to write data to the RMB.
It will set the RIW* signal to a logic low, to indicate a bus write. It then asserts its' chip
select signal. The RMB detects the chip select and examines the direction of the bus cycle,
which is a write in this case. It then ensures that the associated FIFOs are not already full. If
the FIFOs are not full, it performs a write to both simultaneously. This write to the FIFOs,

4

•

R680

FIFO ~

i T
Dual Port r

fl-.~ ' r Ram K--------,
r ~ ~~--~-i~----~--~-----i~

~ ~ .= FIFO -IL_ L..__ __

~I v y

j J

JKl

I

JK2

JK3

-FIFO c51

"" r ~ l\r-v---'----~1-.-1 i,..--,---,.1--r-1-r--1 -.---
~ ~ : c -~ .S FIFO

L_ I II II JS
~~

I llt
i:&!~z ... N..,.,..,.N..,.,.Ao
~~~~~~~~====~ 

MACH 130 

Figure 2.1 Reflective Memory Concept 

5 

• 

-



captures both the address being written to, as well as the data. DTACK is then asserted to 
indicate that the bus write has been finished. All of the steps taken so far have been handled 
by one of the four (4) state machines (one for each possible processor board) that monitors 
the chip select signals from the processor boards. It is now ready for another bus cycle from 
the processor. At the point where the data was written into the FIFO, another state machine 
detected that the FIFO was not empty. This state machine now performs a read on the RMB 
side of both FIFOs. The address that was written is placed on the RMB 's address bus, which 
is routed to the RMB's side of all the dual-ports (examine the diagram in Appendix A). At 
the same time, the data (as written by the processor board) is routed to the data lines on all 
the dual-port RAM. After the appropriate set time has been met, the RMB performs a write 
to all of the dual-port RAMs simultaneously. The data that was written by the one processor 
board has now been placed in the appropriate address in all of the dual-port RAMs. 

Now, the other case is examined. Assume that the data just written by the one 
processor board is to be read by another. This processor board performs a bus read. The new 
processor board sets the RIW* signal to a logic one, and asserts its' chip select. The state 
machine in RMB again detects the chip select, and examines the state of the RJW* signal. 
This time, it is read. Note that the address and data lines from the processor board are 
connected to both of the FIFOs, as well as the processor boards side of its' associated dual
port RAM . The state machine now performs a read from the processor boards side of the 
dual-port RAM. The correct data is read from the dual-port RAM, and placed on the 
processors data bus. DT ACK is again asserted to signify the completion of the bus cycle. 

The above example is simplified somewhat. Other conditions that the different state 
machines must account for are the busy signals from the dual-port RAMs, full signals from 
the FIFOs, which FIFO to read from if more than one has data (not empty), and the timing of 
the DTACK signal when a bus cycle is extended for one of the above conditions. 

A brief description will now be given for each of the different state machines on the 
RMB. The first state machine is the interface state machine. It simply waits for the chip 
select signal from its' associated processor board. When the chip select is asserted, the state 
machine either writes the data and address into the two associated FIFOs, or reads data from 
that processors dual-port . This depends on the direction of the bus cycle as indicated by the 
RIW* signal. The interface state machine is implemented four (4) times in the MACH 130. 
Each one runs independently of the others, and is dedicated to a particular processor board. 

The other state machine, has the responsibility to read the data from all of the FIFOs, 
and place it concurrently into all of the dual-port RAMs. This state machine is termed "RMB 
Controller State Machine". The RMB state machine is really a combination of two state 
machines. The combination comes from the fact that more than one FIFO may contain data 
that needs to be routed to the dual-ports. Because of this possibility, some sort of scheduling 
is required. The scheme implemented on the RMB is a simple Round Robin technique. This 
guarantees that all of the FIFOs will be read, even if they all contain data. To implement the 
scheduling, a small state machine called the scheduling state machine, keeps track of which 
FIFOs contain data, and which FIFO was previously read. Using this information, the 
scheduling state machine indicates to the RMB controller state machine which FIFO to read. 

6 



CHAPTER3 
PC-68020 Module Communication 

3.0 Procedures 

Three types of programs are used for making pavement distress measurements with 
the measurement system described in this report. The 68020 module is also often referred to 
as the K board. One is the basic K board program (JKROM). This firmware program is in 
EPROM and used to interface with the PC. It can be thought of a program similar to BIOS in 
a PC, as it is initiated when power on or a reset is applied to the K processing board and 
begins the initialization procedures. It also provides the I/0 drivers for the various sensors 
which interface with the K board, as well as, performs all real-time profile and rut processing 
done in the K board. The second program, TK, runs on the PC and is used to communicate 
with the K board program JKROM, and the PC. The third class consists of various post 
processing software for computing PSI, IRI, and Rut, and to display the data obtained from 
TK. This chapter will discuss the communication protocols which are used by TK for 
communicating with the K board via JKROM. This information is necessary for 
communication with the K board system. 

3.1 General 68020 K board Firmware Functions 

The 68020 processor module provides a wide selection of data collection and 
measuring options. The board or module, when inserted in a suitable environment, such as 
described in this report provides profile and rut for pavement management. The board uses 
an RS232 compatible serial interface for communication with and data storage to an IBM 
compatible PC (desktop, laptop or notebook), where profile or other roughness information 
can be sent in real-time for data storage and later analysis. The system can be installed in 
most automobiles or vans for various surface measurements. 

Profile measurements are accomplished by using a modified form of the South 
Dakota method with an accelerometer and acoustic or laser sensor. In this method, an 
accelerometer (sampled and integrated with respect to time) and laser sensor are used for 
measuring body and road-body displacements. Road profile measurements are obtained by 
summing the twice integrated acceleration measurements with the appropriate body-road 
displacements. The R68020 board in conjunction with the PC can provide profile and rut 
measurements using the European string line method. Real-time IRI can be provided by 
using a second board, although it is no longer needed with the speeds of the PC. PC software 
can compute IRI in real-time from the profile data which is being sent from the 68020 
module. The next section describes details on the K board to PC communications. The last 
section describes the real-time rut capability. 

3.2 K Board PC Communication 

The K board - PC Communications details which follow, reference the J processor 
board. In the initial systems, real-time data acquisition and processing was done by two 

7 



independent processors, the J and K processors. Later, it was determined that the needed 
processing capability for the data measurement process could be accomplished by a single 
processor (K Board) and PC. The communication protocol descriptions in this section 
include communications with both the J and K board processors. 

3.2.1 Overview 

The PC, the J processor, and the K processor are the computing units of the system. 
The PC controls J and K in the data collection session and provides storage for programs, 
configuration data, and acquired road data. The PC can be used to compute IRI in real time 
by using the profile data from K. The K processor reads the sensors, computes profile and rut 
and sends the data to the PC. The K processor may also send sensor data or profile to the J 
Processor, receive the IRI data from J, and relay the IRI data to the PC. The J processor 
receives sensor data or profile data from K, computes IRI and sends it to K. The serial port A 
of K is connected to the COM! or COM2 of the PC. The serial port A of the J processor is 
connected to the serial port B of the K processor. All the communications between J and the 
PC must go through K. 

3.2.2 Definitions 

The J and K operate in two modes: the monitor mode and the application mode. After 
power-up or reset, they are in the monitor mode. The monitor mode is only used to download 
the application program to the RAM and start running it. Program download is not necessary 
if the current program resides in the ROM. Once the application program starts running, J/K 
will be in the application mode until a hardware reset. 

The commands sent to J/K will be expressed as 

a quoted string: if the command is composed of all displayable characters, 
a symbol: if the command is a non-displayable character. 

The carriage return is expressed as <CR>, and the escape character as <ESC>. A 
symbol is usually followed by its hexadecimal value in parentheses. The hexadecimal 
number is preceded with Ox. The plus sign+ is used to concatenate commands. No plus signs 
or quotes should be sent as part of the commands. 

When J/K is in the monitor mode, each command is a string followed by a carriage 
return. When K is in the application mode, the PC sends a one-byte command to K to specify 
an option, to initiate a sequence of actions, or to terminate an action. 

There are various types of data packets passing between K and PC and between J and 
K. The data packet always begins with a control byte followed by a number of data bytes. 
The most significant bit (#7) is always one in the control byte and is always zero in the data 
bytes so that the beginning of the packet can be easily identified. 

Since we are using only seven bits in a data byte, the binary data that takes more than 
seven bits needs to be encoded for transmission. 

8 



A four-byte floating point number is encoded into five bytes: 
1st byte: bits 0-6 of the floating point number, 
2nd byte: bits 7-13 of the floating point number, 
3rd byte: bits 14-20 of the floating point number, 
4th byte: bits 21-27 of the floating point number, 
5th byte: bits 28-31 of the floating point number. 

The symbol GetFloat will be used in this document to specify the procedure of 
reading five bytes from the serial port to construct a floating point number. 

Similarly, GetLong will be used to denote reading five bytes to construct a 32-bit 
integer, GetByte for a 7-bit integer; Get14 for a 14-bit integer, Get21 for a 21-bit integer. 
The receiver of the data should interpret the integer as signed or unsigned as implied by the 
packet. For example, the time between acceleration samples is unsigned, while the profile is 
signed. 

A string will be sent as is with a null character at the end. The symbol GetString will 
be used for the procedure of reading a string from the serial port until a null character is 
encountered. 

The scale factor and offiet are used to convert AID converter reading to real units. 
laser data in mm = laser AID value * laser scale factor + laser offset 
acceleration in mm/sec2 = acceleration AID value * acceleration scale + 
acceleration offset. 

The time between acceleration samples received from K is in the unit of the timer 
ticks used in the system. This value should be multiplied by the time scale factor to give time 
in seconds. The scale factors and offsets will be sent to the PC when the PC initiates data 
collection. 

3.2.3 Starting Application 

To download the K application program to the RAM, 
1. make sure K is in monitor mode; 
2. send "L<RET>" to enter S-record download mode; 
3. send the S-record of the K application program. 

To run the K application program, 
1. send "g 7000<CR>", if the program is in ROM; or 
2. send "g 80002000<CR>", if the program is in RAM. 

To initialize K 
1. send JKC_INI300 (OxDS) to initiate data transfer; 
2. send the entire content of the file K3000000.INI; 
3. send JKC_ENDINI {OxC4) to terminate data transfer. 

9 



To download J application program to the RAM, 
1. make sure K is in application mode and J is in monitor mode; 
2. send JKC_TOGMONITOR (OxDO) , so that the subsequent data will be 
passed on to J 
3. end "L<RET>" to enterS-record download mode 
4. send the J programS-record 
5. send JKC_TOGMONITOR (OxDO) to stop passing data to J. 

To run the J application program, 
1. make sure K is in application mode and J is in monitor mode; 
2. send JKC _TOG MONITOR (OxDO) , so that the subsequent data will be 
passed on to J; 
4. send "g DOOO<CR>", if the program is in ROM; or send 
"g 80002000<CR>", if the program is in RAM; 
5. send JKC_TOGMONITOR (OxDO) to stop K from passing data to J 

To initialize J, 
1. make sure both J and K are in application mode; 
2. send JKC _TOG MONITOR (OxDO) , so that the subsequent data will be 
passed on to J; 
3. send JKC INI (OxC3) to initiate data transfer; 
4. send the entire content of the file JOOOOOOO.INI; 
5. send JKC ENDINI (OxC4) terminate data transfer; 
6. send JKC_TOGMONITOR (OxDO) to stop K from passing data to J. 

3.2.4 Sending Data Collection Options 

All data collection options must be sent to K before starting data collection: 

To collect string-line rut, 
send JKC W ANTRUT (OxCA). 

To collect vertical displacement data (raw rut data), 
send JKC _ W ANTRUTRA W (OxCD). 

To get the list of active lasers, 
send 'a' or JKD _ACTIVE (Ox8C). 

The string-line and raw-data options are mutually exclusive. It is recommended to get 
the list of the active lasers when collecting raw data. 

To collect raw profile data (acceleration, vertical displacement, and time between 
samples), 

send JKC _ W ANTACC (OxC9). 

To collect profile, 
send JKC _ W ANTKLEFT (OxCC) for left profile only; 
send JKC_ WANTKRIGHT (OxCF) for right profile only; 
or send JKC _ W ANKLEFT + JKC _ W ANTKRlGHT for both left and right 
profiles. 

10 



To collect one-wheel-path IRI, 
send JKC _ W ANTIRI (OxCB). 

To collect two-wheel-path IRI, 
send JKC _ W ANT2IRI (OxD 1 ). 

The above four profile options, raw data, profiles, one-wheel-path-IRI, and two
wheel-path-IRI, are mutually exclusive. 

To specify timer frequency (only useful when the time/distance switch is switched to 
time), send JKD_SIMUSPEED +frequency in Hz in the ASCII-encoded real number 
format+ null character. 

3.2.5 Starting Data Collection 

To enable serial output, 
send JKC_SERIAL (OxC7) or's'. 

To start pre-section (always), 
send 'p' or 'P'. 

To arm the section mark detector, 
send JKC_ARMREALMARK (OxD4). 

To start real section, 
send 'r' or 'R'. 

Arming the section mark detector allows the K processor to send JKC_REAL (OxCl) 
to the PC. The PC shall always inform K to start real section. In the case where pre-section 
data is not needed, the PC shall send 'r' immediately after 'p'. 

3.2.6 Reading K Processor Output 

Upon receiving JKC_INI (OxC3, as a result of starting the presection), 
1. call GetByte to receive the flag that indicates the unit system; 

(Currently the value is always non-zero, indicating the metric system.) 
2. call GetFloat to get the acceleration sampling interval in meter; 
3. call GetFloat to get the average rut distance in meters; 
4. call GetFloat to get the laser scale factor; 
5. call GetFloat to get the laser offset; 
6. call GetFloat to get the acceleration scale factor; 
7. call GetFloat to get the acceleration offset; 
8. call GetFloat to get the time scale factor. 

Upon receiving JKD _ACTIVE (Ox8C), as a result of requesting active lasers, 
call GetByte 16 times to construct an array of 16 flags. 

11 



Each byte indicates whether the corresponding laser channel is active (0: not active, 
non-0: active). The total number of active lasers shall be used in controlling the number of 
repetition in reading raw rut data. 

Upon receiving KD _PROFILE (Ox83), as a result of requesting one-wheel-path 
profile, 

call Get21 to get the one-wheel-path, signed profile value. 

The unit of profile is entered via the configuration program before the data collection. 
If the profile value is OxlOOOOO before the sign-extension operation, it's a bad profile value. 
This also applies to two-wheel-path profile too. 

profile, 
Upon receiving JKD_KPROFL (Ox90), as a result of requesting two-wheel-path 

1. call Get21 to get the left profile; 
2. forK program dated before 02/96, read one byte JKD_KPROFR (Ox91) 
before reading right profile; 
3. call Get21 to get the right profile. 

Upon receiving JKD _ ACCEL 16 (OxA4 ), as a result of using 16-bit AID converter 
and requesting raw profile data, 

1. call GetLong to get a 4-byte integer; 
2. get the signed AID value for the accelerometer from the upper 16-bits; 
3. get the signed AID value for the laser from the lower 16-bits. 
4. call Get21 to get the unsigned time value between samples. 
5. If the time value is TF21_TOOLONG, the time between samples is too 
long. 
6. If the time value is TF21_NOACC, the acceleration is invalid. 
7. If the time value is TF21_NOLASER, the laser value is invalid. 

Upon receiving JKD _ ACCEL (Ox85), as a result of using 12-bit AID converter and 
requesting raw profile data, 

1. call Get14 to get the unsigned accelerometer AID data; 
2. call Get14 to get the unsigned accelerometer AID data; 
3. call Get21 to get the unsigned time value between samples. 
4. check time value following the previous rules. 

When collecting one-wheel-path IRI, upon receiving JKD _IRI (Ox81 ), 

1. call GetFloat to get the IRI; 
2. call GetFloat to get the averagt? speed in kmlhr; 
3. call GetFloat to get distance since data collection in km. 

Upon receiving JKC_REAL (OxCl), 
K has detected the section marker; it's time to send 'r' to K to start real section. 

Upon receiving JKD _ERROR (Ox8F), 
call GetString to get an error message from K. 

12 



3.2.7 Terminating Data Collection 

Send <ESC> to tenninate data collection. 

3.3 Rut Measure Procedures 

A description of the rut bar procedures developed for the Siometer/rutbar was 
developed and discussed in Research Report 1290-lF 6-1995. The PC computes the rutting 
statistics that are used for PMIS. The 68020 module described in this report, can directly 
compute the general string line rut statistics in real-time for laser sensors. This section will 
discuss the general string line method which is computed in real-time for the 68020 module. 

The string line method is based on five displacement measuring sensors placed on the 
front of the automobile as illustrated in Figure 3.2.1. The Texas DOT has developed rut bars 
for each of the vans used for rut and roughness measurements using acoustic sensors. 
TxDOT is currently constructing a five laser rut bar for evaluation in replacing the five 
acoustic sensors with lasers. Two of the lasers will be used jointly for both rut and profile 
calculation. 

~ - ---
~-::;..:,:::::c---

Figure 3.1 Texas Five Sensor System Rut Bar 

3.3.1 String Line General 

The various rut methods used by TxDOT may be considered variations of the general 
string line procedure which is illustrated in the Figure 3.2. This general method is outlined as 
follows: 

If we lay a hypothetical string along the cross section of the surface of road, all the 
straight or convex portions of the road will contact the string, and all the concave portions of 
the cross section, the ruts, will be under the string. The position of the deepest rut is found 
where the surface of the road is farthest from the string. This maximum depth is defined as 
the rut depth of the cross section. Practically, we use distance sensors to measure the depths 
of a number of nodes on the cross section with respect to a horizontal rutbar. The measured 
cross section of the pavement is simplified to a polyline. The hypothetical string also 
becomes a polyline. Thus the nodes on the cross-section polyline that do not touch the string 
are the rut candidates. An algorithm was developed for the computer to construct this string 
and find the nodes that are ruts. The general method is illustrated in the figures following. 

13 



2. String Line 
General I 12 10 1 

r.· = rhl~ = r 5 1 I 
L:J c;::J L:J L:J L:J L.J 

: --------. ~ h12 : ••••••• . 
"'" ...... 

........ h11 .... 
~ 

• 

bl1 
11 10 

h=m*x+c 

m (slope) = (hlO - h5) I (x10-x5) 
c = hlO - (m * xlO) 
R = h7 - (m * x7 + c) 

7 5 

1:.: ~ ~=h;r 
. --

; .,,' 

L:OJ c:::J 

h51 
.......... : ---

h=mx+c 

m (slope) = (h5 - h2) I (x5-x2) 

c = h5 - (m * x5) 

R = hS - (m * xS + c) 

Figure 3.2 String Line General 

14 

.... ... .... 

3 

.. , ...... 

2 

... , : .. : 

1 

hl 



4.0 Overview 

CHAPTER4 
Main Chassis Module 

The main chassis module contains the various system components for computing 
profile and rut. It interfaces with the PC and system sensors. Either real-time or post 
processed profile can be obtained for two independent wheel paths. The rut measuring 
system, likewise can provide rut data . for using up to 1 0 acoustic channels, or 5 channels 
using the real-time Texas Rut procedure as noted in Chapter 3. The Texas rut method uses 
the PC for the real-time rut computations. The raw read readings may optionally be saved 
and later post processed. The 68020 processor module has the capability for computing real
time laser rut for up to 11 lasers using the string line method, also described in Chapter 3. 
However, in order to facilitate laser rut, the main chassis module would need to be modified 
to interface with the additional lasers. A functional description of each module follows: 

4.1 Functional 

A basic layout of main chassis unit is illustrated in Figure 4.1. As illustrated in the 
figure, the unit consists of the 68020 module or K board, three power supplies, two laser 
interface modules, a signal interface module, a laser power module, and a smart AID module. 
The unit receives signals from two accelerometers, two Selcom lasers, a distance sensor and 
an event or infrared start sensor. The front control panel, Figure 4.2, provides controls for 
turning on the unit, resetting the processor, and for selecting either the distance signal for 
normal operations of a simulated distance signal (time/distance switch) for testing. The back 
panel, Figure 4.3, provides the connectors for the various sensors, interface to the PC, power 
and fuse connectors. 

The three power modules provide power for the interface and processor boards, as 
well as the two Selcom lasers. Two 24 volt power supplies provide positive and negative 
voltages to the laser power modules (Chapter 5). This module then provides the necessary 
voltages for the lasers, signal interface module, smart AID module, and laser interface 
modules. There have been two slightly different versions of the main chassis module. In the 
first one, the third power supply provides a +5, and± 12 voltage. The 5 volt is used for the 
digital logic. The ±12 volts are used primarily for the operational amplifiers as will be 
illustrated in the following power wiring diagrams. Twelve volts are also sent to the cooling 
fan and for power to the two lasers. In the second version, a single linear + 12 volts is 
provided. The required digital +5 volts is supplied by two three amp five volt regulators, one 
for the 68020 processor module, which draws the most current (1.5 amps), and the second for 
the remaining 5 volt requirements. Twelve volts is also sent to the cooling fan and for power 
to the two lasers. In this second version, the ±15 volts from the laser power module are used 
for providing power to the operational amplifiers. The specifications for the 24 volt SOLA 
supply is given in Table 4.1 and the multi-voltage switching Condor power supply used for 
first version, in Table 4.2. The 12 volt single SOLA supply used in the second version is 
similar to Table 4.1, except the 12 volts is rated at 5 amps. 

15 



The processor module, which is further described in Chapter 9, provides the 
computational capability for the profile and rut calculations, controls the overall system 
operation and provides communication with the PC and operator. The processor module is 
wire wrapped on a standard VME compatible Euro card and connects to the other modules 
via the two 96 pin connectors, J1 and J2. The specific pin assignments are provided in 
Chapter 1 0. Compatibility with signals (power and ground) were made for the J1 and J2 
connectors on the VME bus. The VME bus J1 pin outs are specified in Table 4.3 for 
reference. The J2 rows A and C are available for general use as will be illustrated in Chapter 
9. 

The two accelerometer signals are received via two BNC connectors (Table 4.6), 
where the center pin is used for the ±5 volt signal. Each of the analog accelerometer 
voltages, which are proportional to the vehicle acceleration as sensed by the two 
accelerometers located next to each of the two lasers, are received by two independent low 
pass filters. The 400 hertz filters are used to prevent aliasing as the signals are sampled via 
the smart AID module at 1000 hertz. This is shown in Figure 4.4 (a). 

The two lasers, which are used to provide the road body displacement, connect to the 
unit via two Amphenol 10 pin connectors. Table 4.5 provides the pin out used. The 
connections provide for both signal input as well as power for the lasers. Each laser has a 
separate laser interface module (Chapter 7) which converts the serial data stream (differential 
data and clock signals) from the Selcom laser to an analog signal. The modules convert the 
serial data to a positive 0 to 10 volt signal, whose amplitude is proportional to the distance 
from the laser to the object to be measured. The analog laser signal is sent to a buffer on the 
signal interface module and then on to the smart AID module. This is shown in Figure 4.4 
(b). 

The signal interface module also receives signals from the distance sensor and 
infrared start signals via two BNC connectors (center pin). Each signal is first optically 
isolated. The distance signal, is passed through a one shot and optionally, a divide circuit, 
and then sent on to the time/distance switch on the front control panel. The switch is used to 
select either the actual distance signal or a simulated distance signal. Either this signal, or the 
simulated distance signal generated by one of the timers on the processor module is then sent 
to the distance input on the processor module. The start signal, after it is isolated, is 
converted to a TIL signal for input to the processor module for initiating the profile and 
and/or rut measuring process. These two signals are shown in Figure 4.4 (c). 

Rut measurements are obtained through the acoustic sensors. The displacement of 
the rut bar with respect to the pavement is accomplished with a signal pulse, where the signal 
width is proportional to the distance. Two separate Amphenol 7 pin connectors are used for 
the acoustic sensors one to five, (Table 4.7) and sensors six to ten, (Table 4.8). The five 
Texas rut system uses sensors one to five. 

The personal computer or PC interface is connected via a three wire serial (RS232 
compatible) 25 pin DIM connector. The unit is in the DTE mode, thus direct connection to 
the PC (DTE mode) should be made. This connection is given in Table 4.8. Figure 4.4 
illustrates the overall signal processing scheme. 

16 



Table 4.1 General Specifications - 24 Volt SOLA Supply 

Voltage/Current Ratings: 
Model Number 
SLS-05-060-1 
SLS-12-034 

I SLS-24-024 

Output 
+5V/6.0A 
+12V/3.4A 

I +24V/2.4A 

Operating Temperature Range: 0 to +5()oC (Derate to 40% at +70oC) 

Temperature Coefficient (Typical): +/-0.01 %/•C 

Stability: 

Vibration: 

Shock: 

EMIIRFI: 

Cooling: 

Input Specifications: 

Multi Input (all units): 

Frequency Range: 

Transient Response Time: 

Fuse Requirements: 

Within +/-0.05%(For 24 hours after warm up) 

Per MIL-STD-81 OC, Method 514 

Per MIL-STD 810C, Method 516 

Linear power supplies have inherently low conducted 
and radiated noise levels. For most system 
applications, these power supplies will meet the 
requirements of FCC Class "B" and VCE 0871 for 
Class "B" equipment without additional noise filtering. 

Forced air @20 CFM 

100/120/220/230/240 V AC selectable+/- 10% except 
230 is + 15%, -6% 

47-63Hz. (Typical is 60Hz. Derate output 10% at 
50Hz.) 

50 uSEC at 50% load changes for outputs rated 
up to 6A 
100 uSEC at 50% load changes for outputs rated 6 A 
and over. 

Units are not fused internally. For safe operation, user 
must provide input line fuse as per values given in 
table. 

17 



Table 4.1 General Specifications - 24 Volt SOLA Supply( continued) 

Output Specifications: 

Line Regulation: 

Load Regulation: 

Ripple: 

DC Output Adjustment Range: 

Overvoltage Protection: 

Remote Sensing: 

Overload Protection: 

Dielectric Withstand Voltage 
(Min.): 

0.05% for 10% change 

0.05% for 50% change 

3.0 m V maximum peak to peak 

+/-5% minimum 

All 5 volt outputs include built-in OVP as standard 
(setting is 6.2V +/-0/4 V). OVP is optionally available 
on other outputs. 

All units listed have remote sensing capability. 

125 to 150% foldback current limit 

3750 VAC input/output 
1250 VAC input/safety ground 
500 V AC output/safety ground 

Table 4.2 Condor- GPC55 Series (Multi-voltage Switching Supply) 

Ratings 
Input: 100-240 VAC, 1.7 A, 47-63Hz 
Outputs: 55 Watts Maximum Continuous Power- Total of all Outputs 

Output#4 
-l2VDC1A 

Table 4.3 Condor Connections 
(Related to Table 4.2) 

Jl AC Input J2 Multi-Output Models (Reference Table 4.2) 
1) Ground 1) Output 2 (+) 6) Common 
2 Neutral 2) Output 2 (+) 7) Common 
3) Line 3) Output 1 (+) 8) Output 4 (-) 

4) Output 1 (+) 9)0utput 3 (+/-) 
5) Common 

18 



Table 4.4 J 1 - VMEbus Signal Descriptions 

Connector 
Signal Mnemonic And Signal Name and Description 

Pin Number 
ACFAIL* IB: 3 ACFAILURE 
IACKIN* 1A: 21 INTERRUPT 

ACKNOWLEDGE IN 
IACKOUT* 1A: 22 INTERRUPT 

ACKNOWLEDGE OUT 
AMO-AM5 1A: 23 ADDRESS MODIFIER 

1B: 16,17,18,19 (BITS 0-5) 
1C: 14 

AS* 1A: 18 ADDRESS STROBE 
AOI-A23 1A: 24-30 ADDRESS bus (bits 1-23) 

IC: 15-30 
A24-A31 2B: 4-11 ADDRESS bus (bits 24-31) 
BBSY* 1B: I BUS BUSY 
BCLR* IB: 2 BUS CLEAR 
BERR* 1C: 11 BUS ERROR 
BGOIN*-BG3IN* IB: 4, 6, 8, 10 BUS GRANT (0-3) 
BGOOUT*-BG30UT* 1B: 5, 7, 9, 11 BUS GRANT (0-3) 
BRO*-BR3* 1B: 12- 15 BUS REQUEST (0-3) 
DSO* IA: 13 DATA STROBE 0 
DSI* 1A: 12 DATA STROBE 1 
DTACK* 1A: 16 DATA TRANSFER 

ACKNOWLEDGE 
DOO-D15 1A: 1-8, 1C: 1-8 DATA BUS (bits 0-15) 
D16-D31 2B: 14-21 DATA BUS (BITS 16-31) 

2B: 23-30 
GND 1A: 9, 11, 15, 17, 19 GROUND 

1B: 20,23 
1C: 9 
2B: 2, 12, 22, 31 

lACK* 1A: 20 INTERRUPT 
ACKNOWLEDGE 

IRQ1 *-IRQ7* 1B: 24-30 INTERRUPT REQUEST (1-
7) 

LWORD* 1C: 13 LONG WORD 
[RESERVED] 2B: 3 RESERVED 
SERCLK 1B: 21 
SERDAT lB: 22 
SYSCLK 1A: 10 SYSTEM CLOCK 
SYSFAIL* lC: 10 SYSTEM FAIL 
SYSRESET* 1C: 12 SYSTEM RESET 

19 



Table 4.4 VMEbus Signal Descriptions (continued) 
Signal Mnemonic Connector and Pin Signal Name and Description 

WRlTE* 
+5VSTDBY 
+5v 

+12V 
-12V 
GND 

All 
A10 
A8 
A6 
A4 
A2 
D7 
D6 
D4 
D2 
-12V 
(Reserved) 
+12V 
+5V 
INT4* 
INT3* 
INT2* 
INTI* 
I ORES* 
XACK* 

CLK 
A9 
A7 
A5 
A3 
AI 
AO 
STB* 
WT* 
D5 
D3 
Dl 
DO 

lA: 14 
1B: 31 

Number 

1A: 32, IB: 32, lC: 32 
2B: 1, 13, 32 
IC: 31 
IA: 31 
A-10, A 17-A19, A24, 
A25, A31, A32, Cll, 
C20, C25, C31,C32 
All 
A12 
Al3 
A14 
A15 
A16 
A20 
A21 
A22 
A23 
A26, C26 
A27, C8-C10, C27 
A28, C28 
A29, A30, C29, C30 
C1 
C2 
C3 
C4 
C5 
C6 

C7 
C12 
C13 
C14 
Cl5 
C16 
C17 
C18 
Cl9 
C21 
C22 
C23 
C24 

20 

WRlTE 
+5 Vdc STANDBY 
+5 Vdc STANDBY 

+12 Vdc Power 
-12 Vdc Power 
GROUND (Logic) 

ADDRESS bus (bit 11) 
ADDRESS bus (bit 1 0) 
ADDRESS bus (bit 8) 
ADDRESS bus (bit 6) 
ADDRESS bus (bit 4) 
ADDRESS bus (bit 2) 
DATA bus (bit 7) 
DATA bus (bit 6) 
DATA bus (bit 4) 
DATA bus (bit 2) 
-12 Vdc Power 
Not connected. 
+12 Vdc Power 
+5 VdcPower 
INTERRUPT REQUEST 4 
INTERRUPT REQUEST 3 
INTERRUPT REQUEST 2 
INTERRUPT REQUEST 1 
INPUT/OUTPUT RESET 
TRANSFER 
ACKNOWLEDGE 
CLOCK 
ADDRESS bus (bit 9) 
ADDRESS bus (bit 7) 
ADDRESS bus (5 bit) 
ADDRESS bus (bit 3) 
ADDRESS bus (bit 1) 
ADDRESS bus (bit 0) 
STROBE - An input signal. 
WRlTE 
DATA bus (bit 5) 
DATA bus (bit 3) 
DATA bus (bit 1) 
DATA bus (bit 0) 



Table 4.5 Laser Connections 

SIGNAL PIN 

+20 A 
+18 B 
-18 c 
+12 D 
Gnd E 
Gnd F 
DATA G 
DATA NOT H 
CLK I 
CLOCK NOT J 

Table 4.6 Accelerometer Connections 

SIGNAL 

Right (Left) Accelerometer In 
Ground 

PIN 

Center 
Shield 

Table 4.7 Acoustic Connections- Channels 1-5 

SIGNAL PIN 

Acoustic Channel 1 A 
Acoustic Channel 2 B 
Acoustic Channel 3 C 
Acoustic Channel 4 D 
Acoustic Channel 5 E 
ST~T F 
GND G 

21 



Table 4.8 Acoustic Connections - Channels 6-10 

SIGNAL PIN 

Acoustic Channel 6 A 
Acoustic Channel 7 B 
Acoustic Channel 8 C 
Acoustic Channel 9 D 
Acoustic Channel I 0 E 
START F 
GND G 

SIGNAL 

TxD 
ReD 
Gnd 

2 
3 
7 

Table 4.9 

4.2 Power Wiring Flow 

PC Serial Connections 

DC power wiring is indicated in Figures 4.5 and 4.6. Figure 4.5 provides power 
wiring for the ±24, ± 15, +5 and + 12 volts. The Power modules 0 and 1 provide the + 24 and -
24 volts to the laser power module that, via regulators, provide the ±15 volts. As will be seen 
in Figure 4.6, the laser power module also provides power to the Selcom lasers. The ±15 
volts are used to power the two laser interface modules, signal interface module, and the 
smart AID module. The 12 volt supply is sent to three places; the two five volt regulars for 
digital power, the two laser connectors and the 12 volt fan. In the earlier version which used 
the Condor power supply, the 5 volt requirement was obtained from the Condor switching 
supply. As discussed above, two separate 5 volt regulators are used, both powered by the 5 
amp 12 volt supply. The first is used to power the K processor module. The second 5 volt 
regulator is used for the two laser interface modules, the signal interface module, and the 
smart AID module. 

Figure 4.6 illustrates the main laser power (except for the 12 volts) wiring. As 
indicated in this figure, the laser power module also provides (via regulators) +20 volts, and 
±18 volts. There are two independent sets of regulators providing these three voltages. 
Table 4.3 provides the pin outs for these voltages. The voltages are sent to the Selcom laser 
through this connector. Also illustrated in the Figure 4.6 is the -24 volt input from the power 
module I to the laser power supply module. 

22 



Figure 4. 7 illustrates the 110 volt AC power wiring. The 110 volt primary is first sent 
to the on/off power switch. It is then sent to a 5 amp fuse and then directly to the three power 
supplies. The secondary is sent to the other coil side on the transformers of the power 
supplies. Figure 4.8 illustrates the system grounds. Ground lug 1 is attached to the 110 volt 
AC power grounds and the three power supplies. Ground lug 2 is primarily the digital and 
signal grounds. Both lugs one and two are attached to each other. 

4.3 Signal Flow 

Signal flow is illustrated in Figures 4.9 and 4.1 0. Figure 4.9 provides the wiring for 
the laser and accelerometer signals. As noted, the data and data not signals, along with the 
clock and clock not signals are sent from the laser 1 0 pin connector to the laser interface 
module. As previously discussed, the laser interface module converts this signal to an analog 
signal which is sent directly to the signal interface module. This module sends the signal on 
to the AJD converter of the smart AJD module. The accelerometer signals are sent, via the 
BNC connector to the 400 hertz filter on the signal interface module and then to the AJD 
module. 

Figure 4.10 illustrates the signal wiring for the acoustic channels, start and distance 
signal and the reset signal. As noted, the acoustic signals are sent directly to the system 
processor where they are connected directly to the gate input of each timer. The distance 
signal, after connecting to the signal interface module is sent to the time/distance switch. 
From this point, either the distance input signal or a separate time signal (with a user 
programmable period) is selected. The monetary reset switch is used to initialize the 
processor module. 

23 



'"'11 -· 
~ 
~ -
IJj 

1: -· n 
N 00 
~ '< 

~ 
8 
t""" 
~ 
0 s 

Time/Distance 
On/Off Switch Switch Reset 

J I I 

~-o 

J 

Laser Interface 
Module 0 (right) 

.--------------, 
Laser Interface 
Module 1 (left) 

-aoo 
CD -· co 
if'::::J 
oe!. 
CD 

..----

r +C..O 
~c ~ 
N-CD 

CD ""' 
1\) 

Processor Module 1 
'K board' 

l» 
VI 
CD 
""' -o 

Smart A \D Module 

Power 
Module 0 

-24v 

5v regulator 
('K Board') 

U D b1o\lll_] ~ 
Accelerometer Rt. laser In Acoustic 

R~M 1~ 
Distance Start 

~ 
""' 

------------, 

Power 
Module 1 

+24v 
___ c.._···-~-~----

5v Regulator 

~~--~-

Acoustic lft. laser In Fan Accelerometer 
6~10 left 

00 
'< 
!4 n 
8 
t""" 
~ 
0 
c: .... 
IJj 

1: .... 
n 



.... 
Q)= 
f/) Q) 
C:O...J 

...J 

.... _ 
Q).C: 
f/)C) 

c:o ·-
...JO::: 

-Q) 
f/) 
Q) 

0::: 

-Q) 
f/) 
Q) 

0::: 

0 
0 

0 

0 
0 
0 

Profile Measurement System • Front Panel 

..-
.... 

Q) 0 
Q) Q) 

0 
f/) () Q) 
f/) 

E-c© C::-c 
Q) ~~ 0 .Bo 
f/)-O-c .!!! ::E 
"'-Q) c N a.f/) 

::J J: - c::t: 0 NO CD 

0 
.._c:: .... 00 -o-
f/) ~ 

© 
> 

f/) 0 Q) 0 
() a. 

..-
0 ..-.... 
a. 

Figure 4.2 Front Panel 

25 



Right Laser Accelerometer- Rt. 
Fuse 

Accelerometer-Lt. Left Laser 

D © © © D 
""0 
"'1 
0 

'"r1 ~ --· (l) 
OQ 

D D ~ c 
"'1 
(l) (l) 

.$:::>.. ~ 
til 

w c 
"'1 
(l) 

t:Jj Acoustic I Acoustic 6- 3 
(l) 

~ 
-5 ::J 

lv 
(') 10 ....... 

0\ ~ 

© r.n 
""0 '-< 
§ Distance In til ....... 

© AC (l) 
(l) 

Serial 3 -
I ' I I Start In Power 

<W 
t:Jj 

Q 
~ 
(') 

~ 

""0 110 V/ ~ 

(SA) 60 
::J 
(l) -

CHZ 



+ 
Y' 
+ ...... 
JV 
+'Tj - -· 
§~ 
0.." 
•-lloo ..... 

Vl-lloo 

1--> d'=e 
-.....1 ~ -· ~ 6· -(')OQ 

0 ...... 

R 
(') 
~:t. 
0 a 

TimeiOistance 
On/Off Switch Switch Reset 

I l 
laser Interface laser Interface 
Module 0 (right) Module 1 (left) _Q) 

+5 -1f +15 +15 +51-15 
m o 
§,~ 
·- Q) en-

-15 .5 

r-- +5 
+15 

Processor Module 1 
N 

fJ2l ---.... Q) 'K board' J1 I .... ~-N I ::::1..-
O"'C+ a.o 

::::E r--

r 

Power 
Module 0 

-24v 

I 5v regulator i 
I ('K Board') 

u 
Accelerometer Rt. laser In 

Right 

5\ ~vI o>-
~ Processor Module +15 o._a. 

a. 

SmartA\D 
.... ::s 

~ ~en 
+5 m 

....I 

-15 

I -

Power 
Module 1 

+24v 

1 
Sv Regulator I +12 

I 
I 

"' wu ~ LJ u LJ LJ ~~~J l_ _ _j 
Accoustic 

1-5 
Distance Start Accoustic lft. laser In Fan Accelerometer 

6-10 left 

Cll 

1 
f 
s. 
I 

...... 



Time/Distance 

On/Off Switch Switch 

I l 

~-o 

Reset 

J 
Laser Interface 
Module 0 (right) 

Laser Interface 
Module 1 (left) 

-3.en 
(1) -· 
~(Q 
Q) ::::1 
0~ 
(1) 

r-+24 +a.O 
...... c: :e Processor Module 1 Q) ,..,_m en(/) 

(1)..., I J2 I 'K board' I J1 N 

Processor Module 
Smart A\D 

+24 

-18 
+lH 

+20 
Power 

Module 0 
-24v 

Sv regulator 
('K Board') fir 

J L_j~LJ ~l_l l_l 
Accelerometer Rt. Laser In 

Right 
Accoustic 

1-5 
Distance Start 

I c: ~ 
-18 "'0-o 

+18 "'2.o 
'< :e 

(1) ..., 
r---

'¢" 
N 

I 

-
Power 

Module 1 
+24v 

F Sv Regulator r 
Lf l_r l:~~~l l __ j 
Acoustic Lft. Laser In Fan Accelerometer 

6-10 Left 

en 
'< 
(/) ar 
3 
r
Q) 

~ s. 
I 

~ ..., 
:r 

(Q 

N 



Time/Distance 
On/Off Switch Switch Reset 

Laser Interface 
Module 0 (right) 

Laser Interface 
Module 1 (left) 

r 
Processor Module 1 Q) 

(/) 

Power 
Module 0 

-24v 

V\lhite 

5v regulator 
('K Board') 

Accelerometer Rt. Laser In 
Right 

J2 'K board' J1 

Smart A\D Module 

V\lhite 

Black 

Power 
Module 1 

+24v 

CD ..., 
-o 
~ 
CD ..., 

[ S~R:gularor 
~----------------~ 

Acoustic 
1~5 

Distance Start Acoustic Lft. Laser In Fan Accelerometer 
6~10 Left 

C/l 
'< 
VI -n 
3 
t""' 
~ 
0 
s 
I 

~ s: 
0 

(10 

w 



Time/Distance 
On/Off Switch Switch 

I I 

~-u 
+a.O 
..... c: :E "'-ro (I) .... 

1'.) 

-= 
Power 

Module 0 
-24v 

-

5v regulator 
('K Board') 

Reset 

I 
Laser Interface 
Module 0 (right) 

I 

r--

Processor Module 1 
'K board' 

I J2 I 

Processor Module 
Smart A\0 

I 
I I 

Laser Interface 
Module 1 (left) 

-;a. en 
--- (I) -· co 

~::s 
(") ~ 
(I) 

!--"---

r 
Q) 

en(/) 
I J1 I c: ~ 

"U-u 
~0 
'< :E 

(I) 
r-- ..... 

GNL 2 Power 
Module 1 

+24v 

- -~------- ... 5v Regulator 

GND LUG 1 
··------, 

LJ -o- Eo~ --[~~J --T~~ --o J-T L -J L~ ---- LJ _ [110v [ I j 
Accelerometer Rt. Laser 

Right In 
Acoustic 

1~5 

Distance Start Acoustic Lft. Laser 
6-10 In 

Fan Accelerometer 
Left 

en 

l 
3 
r 
Q) 

~ 
c: ,.... 
I 

(j) 
..... 
0 
c: 
::s 
a. 
(/) 



Time/Distance 
On/Off Switch Switch Reset 

Power 
Module 0 

-24v 

5v regulator 
('K Board') 

Right 

Laser Interface 
Module 0 (right) 

Laser Interface 
Module 1 (left) 

Processor Module 1 
'K board' 

Smart A\D Module 

Power 
Module 1 

+24v 

3-(J) 
CD -· =+.(C 
w :::J 
0 w 
CD 

rw 
(/) 

CD ..., 
-o 

~ ..., 

5v Regulator 



""r1 -· fJQ 

5 
.J;o. 

\.o 

> 0 
0 
6i 
ct. 

l..J 9-tv 00 

~ -· g 
0 

~ 
Ill 
0 -

Time/Distance 
On/Off Switch Switch Reset 

J l I I 
I 

~ 
\ 
c 1\ 

NO--I 
II\ Laser Interface Laser Interface 

~ COM- Module 0 {right) Module 1 {left) 
NC- ~ E -

0 3.oo (,) / / / C'O -· 

"' "' ....... - (Q 

ii}:::J 
@ Q) 

-

~"0 ' I 

+a.O I' I r 
.... c: =E Processor Module 1 Q) 

N-C'O I J2 I J1 oow 
C'O ..., 'K board' c: ~ 
1\.) 

I ' 
II "0"0 
II "S!.o 

I\ Processor Module '< =E 
C'O 

Smart A\D 
..., 

I' 
/ 

' Power 
/~ 

, Power 
Module 0 ...... Module 1 

-24v +24v 

Sv regulator Sv Regulator 
('K Board') 

I 
LJ u ~l~J ~ L_j ~~J [__ f 1110v[ L __ _j 

Accelerometer Rt. laser 1 n 
Right 

Acoustic 
1-5 

Distance Start Acoustic Lft. Laser In Fan Accelerometer 
6-10 Left 

00 
'< 
Ill .... 
0 

3 
l' 

~ s 
I 



Profile Sensors Signal Flow 

Accelerometer 
(Left) 

Accelerometer 
(Right) 

+/-Volt 
Analog 400 Hz Low 

Data Pass Filter 

Signal 
Interface 
Module 

(a) Accelerometer Signal Flow 

Filtered 
+!-Volt 
Analog 

Data 
I 
I 

~ 
I 

H 

32 kHZ x 32 0 to 10 

16 Bit 
Digital 
Data 

~ 

Analog-to-
K-

Digital (AID) 
i Board 

Board ~ 

"""- ./' 

~/ 

To PC 

BITS Volt Buffered 16 Bit 
Digital 
Data 

Digital Serial Analog Analog 
,..---------, Data,.--_____ Data.,--______ Data 

Laser (Left) 

Laser (Right) 

Laser 
Interface 
Module 
(LIM) 

(b) Laser Profile Sensor Signal Flow 

Signal 
Interface 
Module 

r-------

Analog-to
Digital 
(AID) 
Board 

I K-Board 
I 

I 
i 

""'-.J /": 

~ 
To PC 

Distance Pulses 
Signal 

Interface 
Module 

, K-Board · To PC 

Time Pulses 
Distance ffime Switch 

(c) Distance Sensor/Simulation 

Figure 4.10 Profile Sensors Signal Flow 

33 



S.O Overview 

CHAPTERS 
Laser Power Module 

This section provides technical information related to the laser power supply module. 
Also included in this section is a complete description of the printed circuit board (PCB) 
design used for implementing this module. Although this and the next four chapters discuss 
design modules which have been implemented as a PCB, only this chapter will include the 
complete PCB design. The designs of the other boards. are available to TxDOT, and are also 
kept at one of the local PCB board construction facilities. 

The laser power supply board is designed to supply regulated power to two (2) 
Selcom optocator units. Each optocator requires power of various DC amplitudes. The laser 
power supply board utilizes multiple voltage regulators to produce the differing voltages 
required by the Selcom optocators. The board also provides+/- 15 volts for the smart AID 
module, which is described in a later chapter. Design concepts are provided in the schematic 
at the end of the chapter. 

S.l Power Considerations 

The laser power supply derives its power from an external +/-24VDC power supply. 
The laser power supply generates the output voltages defined in Table 5-1. A separate 
voltage regulator is utilized to generate each output. 

Max 
Number of 

Output Voltage Current 
Outputs 

(Amps DC) 
+20 VDC 0.25 2 

+18 VDC 0.13 2 

- 18 VDC 0.13 2 

+ 15 VDC 0.11 1 

- 15 VDC 0.11 1 

Table 5.1 Output Voltages 

S.l.l External Connections 

Input and output power connections are made at terminal blocks J1- J5. 

34 



5.1.2 Input Power Connections 

An external +/-24VDC power supply is connected to the laser power supply board at 
terminal block Jl. Make connections as marked on the board. 
External Power Connections: The laser power supply board supplies power to two (2) 
independent Selcom optocators. Each optocator requires power of the following magnitudes: 
20VDC, +/-18VDC and 12-15VDC. The 20VDC, and +/-18VDC supplies are made 
available to each laser at terminal blocks J3 and 14. A common grounding block is provided 
at terminal block 12. Routing of the 15VDC supply depends on the configuration of the 
overall system. In some systems, an external12VDC supply is used to power the 12-15VDC 
supply. In this configuration, the laser power supply board's +/-15VDC outputs are utilized 
to power other analog boards. If an external 12VDC supply is not available, the 15VDC 
supply may be used. Be careful not to exceed the current limitations defined in Table 5.1. 
Figure 5.1 provides a schematic of laser power module. Figures 5.2 through 5.6 illustrate the 
PC Board design criteria. Figure 5.7 provides a plot of the board layout and signal interface. 

5.1.3 Laser Power Supply Board Parts List 

Quantity Part# Description Reference Designator( s) 

2 MC78M20CT +20VDC Voltage Regulator Ul, U2 

2 MC7818CT + 18VDC Voltage Regulator U3, U4 

2 MC7918CT -18VDC Voltage Regulator US, U6 

1 MC7815CT + 15VDC Voltage Regulator U7 

1 MC7915CT -15VDC Voltage Regulator U8 

8 Cap. 0.33 J.lF Tantalum C1-C8 

8 Cap. 10 J.lF Tantalum C9- C16 

3 3 Position Terminal Block J1, 13, and 14 

1 7 Position Terminal Block 12 

1 2 Position Terminal Block 15 

Table 5.2 Parts List Laser Supply Board 

35 



A I B 1 c I 0 



A 8 c D 

1 1 

'Tl 
tiQ' 

~ 
1.1\ 

t-J 

2 '"a 2 0 

~ .., 
Cll 
c 
"0 
"0 
'< 
'"a 
(J 

w O:J -..J 0 a. 
O:J 

3 0 3 := 
0 
3 
~ n;· 
~ 

Tille Power Supply PCB 
4 Size Number Rev 4 

A Bottom 1 
Date 1u.l98 B.Burgees 

Filename PWRSUP.PCB t of 

A 8 c 



A I B I c D 

1 1 

r-- ••• •• • "Tj r--

• ciQ . 

• • • ~ • • • • • •• • •• • Vl 

• • w 

2 • '"'=' 2 
• • • • • • • 0 

~ • '"1 

• • • en • • • .§ • • • "1:'J 
r-- • q r--•• •• •• • '"'=' 

(') 

• • • • • • • to 
0 

• • • • a. • • • en 
3 • • • • 0 3 0:: 

•• •• • • • ~ 
'"1 

3: 
~ 
VI 
::-;-' 

,....- I--

Tille Power Supply PCB 

4 Size Number Rev 4 

A Solder Mask 1 
Date 14Jul96 _l Drawn by a Burgess 

Filename PWRSUPPCB I Sheet 1 of l 

A I B I c D 



0 

<( 

C\1 

Figure 5.4 Power Supply PC Board Top View 

0 
aaaa 

9 

a 
0 

0 D 

0 
D 

39 

·EB 
0 

0 D 
0 

0 

0 

>~ 
G) 

cr 

m 

<( 



A I B I c D 

1 1 

0 
Jl 

J5 

Power In 

IOUF 
2 2 C2 C4 C6 

(L] IE] IE] 
0.33uf 112 0.33uf IJ4 0.33uF U6 

[]IJ []IJ 
CIO MC78WOCT Cl2 MC7818CT 

·0 ·0 
[]IJ 

CIA MC7918CT 

·0 
·IIV -

Cl 10UF C3 1 OUF C5 10UF 

(L] IE] IE] •20V 

0.33uf Ul 0.33uf U3 0.33uF us 

[]IJ []IJ 
Cll MC78M20CT Cll MC7818CT 

0 •Q Power Supply_•Q 
IIIII ¥- t o BIN 

... DD +0 MC71118CT 

10UF 

·IIV 

3 3 
•20V 

0 
-

Title Power Supply PCB 
4 Size Number Rev 4 

A Silk Screen 1 
Date 14Ju!H I Drawnbv a.aurv-
Filename PWRSUP.PCB I Sheet 1 of 1 

A I B I c D 



..... l C\J I C') I v 

Figure 5.6 Power Supply PC Board Drill Schematic ii..- J-
a:: IIi 0 

-
CD ]) 
(.) i 'CD 

0 a.. as ID 0 ... .r; 
>. OCil 

a. 1-I-

a. 
;:::, 
(/) - e -.... ·c Q. 

CD ! ~ 3: 0 
0 - I a.. lD Q. 

1-- .c ,....-

1- 1-
§ 
z 

II) 

E 

c~< 
as 

>- >- >- >- >- >- >- >- >- >- >- >- >- ~ 
CD C: 
ii.!! ou: 

>-
(.) (.) 

>-
1- 1-

+ + + 
+ + + 

X X + X X + 
X X X 

1- X + + 
X 

i-- 1--

+ + 

1- 1-

+ 
+ 

+ + 
X + + 

1- X X X + X X + 
CD X X X m 

+ + 
+ + 

1- 1-

>-
>- + + 

+ + ...__ >- X X + X X + 1--
X X 

+ + 
1- 1-

(in mills) 

< Y=50 < 
X=46 
+=38 
T= 150 

..... I C\J I C') I v 

41 



+20 
LEFT 

LASER +18 
POWER 

-18 

+20 
RIGHT 
LASER +18 
POWER 

-18 

GND / 
~ 

LASER POWER BOARD 

" 

' , 

... , 

PROVIDES REGULATED POWER 
FOR 

.... LASERS AND SENSOR MODULES 

... , 

~ 
... , 

["::.! 

I I I I I I 
T i i T 

I I I I 

+15 -15 GND ~4 +24 

POWER FOR LASER, SIGNAL 
AND AID BOARDS 

Figure 5. 7 Laser Power Board 

42 

VOLTAGE IN 

I 



6.1 Overview 

CHAPTER6 
Signal Interface Board 

This section details the design of and serves as a reference for the Signal Interface 
Board (SIB), hereafter referred to as the SIB. The SIB performs signal conditioning for 
specified K processor board inputs. The SIB provides two (2) low pass filters, two (2) single 
ended analog buffers, and optical isolation for two (2) discrete signals. One (1) of the 
discrete signal interfaces is equipped with a "divide down" capability. This function is user 
selectable and intended to allow high frequency distance pulses to be scaled into a lower 
frequency range. A light emitting diode (LED) provides visual representation of the logic 
level on the remaining discrete signal. 

6.2 Detailed Design\SIB Signals 

This section provides the detailed design of the SIB. The SIB interfaces to four (4) 
types of signals. The following paragraphs identify the different signal types and the 
corresponding conditioning performed for each. 

6.2.1 Left and Right Accelerometers 

The SIB interfaces with the left and right accelerometers. Each accelerometer signal 
is passed through a low pass filter ( 400 Hz). The filter outputs are accessible on the J3 
connector. These signals may then be routed to an AID converter for processing by the K 
processor board. The low pass filters remove any high frequency components that may be 
introduced as a result of vehicle vibration and electromagnetic interference (EMI). 

6.2.2 Start Signal 

The start signal indicates the beginning of a section of road. A device generates the 
signal as the unit passes over a white stripe. This is accomplished by emitting a beam of 
light and detecting its reflection off of a bright object (the pavement itself does not reflect the 
light). The start signal is electrically grounded during the presence of the stripe, otherwise it 
is electrically open. The signal is optically isolated and buffered. The output is available on 
connector J4 such that it can be routed to the K processor board. The SIB is equipped with 
an LED such that the current state of the start signal can be easily determined. The LED 
illuminates when the sensor detects reflected light, as when it passes over the white strip. 
The LED allows for quick alignment and operational checkout of the sensor. 

6.2.3 Distance Signal 

The distance signal is generated by a sensor that generates pulses at a frequency 
proportional to the speed of the vehicle. By counting the number of pulses during a period of 

43 



time, the distance traveled may be determined. This signal is optically isolated and buffered. 
Additionally, jumper block JPI allows the user to "divide down" the pulses. The "divide 
down" function allows high frequency ranges to be mapped into a lower range thus 
generating fewer processor interruptions. This function also allows the outputs of different 
sensors that produce different frequencies for the same speed, to be mapped into the same 
range. 

6.3 Hardware Installation 

This section provides the installation instruction for the SIB. Installation consists of 
configuring JP 1 and connecting external wiring. The following paragraphs detail these steps. 

Jumper Configuration: Jumper block JP1 must be configured for the required scaling 
of the distance signal. Table 6-1 defines the configuration settings for JPl. 

Jumper Pins Corresponding Output Frequency 

1-2 Fout=Fin 

3-4 Fout=Fin/2 

5-6 Fout=Fin/4 

7-8 Fout= Fin/8 

9-10 Fout =Fin 116 

11-12 Fout = Fin /32 

13-14 Fout =Fin /64 

15-16 Fout =Fin I 128 

Table 6.1 Jumper Block 

6.3.1 Configuration External Connections 

Power, input signals, and output signals are all connected to the SIB via terminal 
blocks Jl, J2, J3, J4, and J5. The following paragraphs define the connections for each 
signal. 

44 



Power to the SIB is applied at terminal block Jl. The board requires +SV DC and +/-
12V DC supplies. The grounds of +SV and+/- 15V supplies are assumed to be common. 
This ground is connected to the GND connector of Jl. If the supplies do not have a common 
ground, they must be connected together either externally, or at the GND input of 11. When 
connecting supply grounds together, be aware of the employed grounding system. Use a 
scheme that prevents ground loops. 

6.3.2 Accelerometer Input and Output Signal Connections 

The accelerometer inputs are connected to terminal 12. The left and right 
accelerometer inputs connect to terminals LAI and RAI respectively. The filtered 
accelerometer outputs are connected terminal block 13. The left and right outputs connect to 
terminals LAO and RAO respectively. 

6.3.3 Laser Input and Output Signal Connections 

The laser inputs are connected to terminal 12. The left and right laser inputs connect 
to terminals LLI and RLI respectively. The laser outputs are connected to terminal block J3. 
The left and right laser outputs connect to terminals LLO and RLO respectively: Distance 
Signal Input and Output Connections 

The distance input and output signals are connected to the SIB at terminal block 14. 
The two terminals are labeled "Dist", with an "I" and "0" identifying the input and output 
terminals respectively. 

6.3.4 Start Signal Input and Output Connection 

The start input and output signals are connected to the SIB at terminal block J4. The 
two terminals are labeled "Start", with an "I" and "0" identifying the input and output 
terminals respectively. 

6.4 Signal Interface Board Layout 

Figure 6.1 and Figure 6.2 provides a plot of the board layout, and a schematic of the 
board. 

45 



RT/LT 
LASER & 

ACCELER
OMETER 

OUT 

SIGNAL INTERFACE BOARD 

RT /L T LASER & 
ACCELEROMETER IN GND +5 -15 +15 

• 
I 

I 

I I I 

• J, l -1 

I I I I I I I 

DISTANCE/START/ 
ACCELEROMETER/LASER 

SIGNAL INTERFACE BOARD 

I I I I 
4 • 

START/DISTANCE 
SENSOR IN/OUT 

Figure 6.1 Signal Interface Board 

46 

I 
J, 

I I 



2 

3 

4 

A 

Distance In 

J4:4 
CE3 ~---- ---- -

R1 

1
-~-

-,- CND 

Distance Out 
J4:J c:::a.J ____ _ 

Start In 
J4:2 

Start Out 
J4;1 

c:::a' 

R2 

3.30 

A 

vee 

VCIO 

ECCJ09.3 

" a: 

\ICC 

&1 ~ 
C5 

e.
1L. L 

\ICC 

T 

_] 

"' ,.... 
..j 

GNO 
-::- CNO 

B 

U6:A 

SN74LS221N 

Power 

J1:1 
c:::a-~ 

J1:4 

+12V 

-12V 

\ICC 

vee 

c 
L Accel In 

J2:1 
CE3'· 

R Accel In 
J2:2 

c:::a> 

J5:1 
·' E'C:J 

J5:2 
2 E'C:J 

R Laser In 
J2:4 

c:::a• 

L Loser In 
J2:.3 

c:::aJ 

-12V 

T 

Ul 

070LBL 

070LBL 

C2 
1~ 

C6 
)I i 

10uF 

GND-:- 10.1uF 

~J 
CJ 

* 10uF' 
C7 
1f 

0.1uF 

GNO 

+12V 

T 

12V 

T 

·~uJ:B l 
~~L~1458N 

D 

L Accel Ou 
JJ:l 

+12V 
1 E'C:J 

T 
R Accel Ou 

JJ:2 
2 E'C:J 

R Laser Out 
JJ:4 

• E'C:J 

Laser Out 
JJ:J 

l E'L:J 



Table 6.2 SIB Parts List 

Quantity Part# Description Reference Designator(s) 

2 D70L8L 400 Hz Filter U1, U2 

1 LM1458 Operational Amplifier U3 

2 ECG3093 Opto-lsolator U4, US 

1 SN74LS221N U6 

1 SN74HC4040N Binary Counter U7 

1 SN74LS541N Buffer us 

1 Red. LED D1 

3 Res. 330 !l, 5% R1, R2, R3 

2 Res. 10 Kn, 5% R4,RS 

2 Res. 4.7 Kn, 5% R6,R7 

1 Res. 30 Kn, 5% RS 

3 Cap. 10 ~ Tantalum C1, C2, C3 

4 Cap. 0.1 ~Tantalum C4, CS, C6, C7 

3 8 Position Jumper JP1 
lock 

4 Four Terminal Block J1,J2,J3,J4 

1 Two Terminal Block JS 

Assembly Notes: 
To convert revision- board to revision 1.0: 

I. Cut trace between U6-14 and R8. 
2. Addjwnperbetween U6-15 and same side ofR8. 
3. Reverse the polarity marking of CS by scraping off the original and 
remarking. 
4. Install CS per the new marking. 

48 



CHAPTER 7 
LASER INTERFACE MODULE 

7.0 Overview 

This section provides operating instructions and general infonnation for the use of the 
Laser Interface Module (LIM). The purpose of the Laser Interface Module is to interface with a 
Selcom Optocator Laser. A Selcom Optocator is used to measure distances with a high degree of 
accuracy. The Optocator outputs the distance that it is measuring in a serial format. The Laser 
Interface Module reads this data, performs some averaging, and then sends the averaged values to 
a digital to analog converter. The output of the Laser Interface Module is a DC voltage (0 - 10 
volts) that corresponds to the distance being measure by the Optocator. 

7.1. Laser Interface Module Layout 

This board uses the Motorola M68HC 11. Folio wing is a list of major components and their 
location on the LIM: 

• XC68HC711E9FS- This is an inexpensive 16-bit micro controller. It is packaged in a 52 pin 
pice, and is located in the center left portion of the board. 

• MACH130 - This is a large scale erasable/programmable logic device. The MACH130 is 
packaged in an 84 pin pice, and is located to the right of the 68HC11. 

• SPDAC87- This is the digital to analog converter. It is located below the MACH 130. 

• PI -This connector supplies the 5 volts to the board. It is located on the upper right corner of 
the LIM. 

• Jl - This connector provided the power to the AiD converter, and is also the interface to the 
Selcom Optocator. This connector is located on the lower right corner of the LIM. 

• Bargraph - The bargraph provides a rough visual representation of the distance that is 
currently being measured by the Optocator. The larger the distance being measured, the larger 
the bargraph will read. The bargraph is located to the right of the MACH130. 

• Ll -This green LED is lit when 5 volts is applied to LIM. 

• L2 -This red LED is lit when power is applied to the LIM and not the Optocator. It is also lit 
if the LIM is not connected to an Optocator. 

• L3 -This red LED is lit when the data being sent to the LIM from the Optocator is invalid. 

49 



• L l -L3 located in the upper-right comer above the bargraph display gives the connections. 

The Laser Interface Module connections are provided in Table 7 .1. 

Signal Name Connector Pin 

Ground P1-1 
+5 Volts P1-2 

+12 Volts Jl-1 
-12 Volts Jl-2 

Vout Jl-3 
CLOCKN Jl-5 
CLOCK Jl-6 
DATAn Jl-7 
DATA Jl-8 

Table 7.1 Laser 

7.2. Functionality 

The Laser Interface Module uses a MACH130 to read the serial data from the Selcom 
Optocator. The MACH determines if the data is valid, and sends this data in a parallel form to the 
HC11 which performs the averaging. If the data is not valid, then the MACH130 lights LED L3, 
and does not send the data to the HC11. After the HCll averages the data, it sends the averaged 
value to a digital to analog converter. The output of the digital to analog converter is a range from 
0 to 10 volts. 

Sixteen (16) bit data words are sent to the LIM from the Optocator in a serial format. This 
is accomplished with two (2) twisted pair lines. One (1) twisted pair carries the data, while the 
other carries a clock. Every time the clock line shifts from a logic low to a logic high, a new bit is 
ready to be received on the data lines. The clock has a frequency of one (1) Megahertz. After all 
sixteen bits are sent from the Optocator, the clock signal remains at a logic low for sixteen cycles. 
This allows external logic to determine the location between serial words. 

The serial data sent from the Optocator has the following format. It is the sixteen (16) bit 
word, with the most significant bit sent first. This word is divided, with the twelve (12) most 
significant bits representing the current distance being measured by the Optocator. The three (3) 
least significant bits are 'invalid' bits, and the distance bits have no meaning. 

50 



The MACH130 acts as a simple shift register in reading the data from the Optocator. 
Every time the clock transitions from a logic low to a logic high, the MACH shifts in another bit 
from the data line. The MACH utilizes two internal cowtters. The first cowtter is used to 
determine when the shift register is full. The other cowtter is used to determine if an Optocator is 
connected. The clock output of the Optocator clears this cowtter. If the cowtter becomes full 
without being cleared, then the Optocator is either not connected or not powered. 

The transfer mechanism between the 68HC11 and the MACH130 consists of the twelve 
(12) data lines and a control line. The control line (README), is active low. Every time 
README transitions from a logic high to a logic low, new data valid on the data lines. The 
HCll polls README, and when it is a logic low reads the new data from the MACH130. 

Table 7.2 provides the Pal equation, and HCll program used for the board. Figure 7.1 is 
the board schematic while Figure 7.2 provides a plot of the board. 

51 



A c D 

2 2 

GND 

3 ·12V 
3 

~ 

ca~vcc 
10UF 

7 GND 

4[ ____________ _:~~--,-------~:::::-:;:;;::;:;:;:;:;:;;::;~~~:;:;:;::::::~:;~~~~~~::::::::::::::J;::::::::::::::::::::JC:::::!~~~==~LA·~SE'R~I=NT~[:S01====S=h~e~el==~~=":: Ftlename 

c 

--------~~~--~4 
T"'" Laser Interface Board 

Number Rev 

1A 
············· 3161113 

Drawnb 



LASER INTERFACE BOARD 

CONVERTS SERIAL 
DATA STREAM 

FROM 
LASER PROBE 

TO 
ANALOG DISPLACEMENT 

SIGNAL 

Figure 7.2 Laser Interface Board 

53 

.... 

~ -

~ -

~ -

~ -
~ -

DATA& 
TIME 
FROM 
LASER 
PROBE 

ANALOG LASER 
OUT 

GND 

+5 

-15 

+15 



Table 7.2 Laser Interface Module PALASM Design Description and HCll Program 

PALASM Design DescriPtion 
This section contains the listing of the program used in the MACH130. 

;---------------------------------- Declaration Segment ------------
TITLE Laser Interface Module 
PATTERN 1-a 
REVISION 1-a 
AUTHOR Brian Burgess 
COMPANY UTA 
DATE 10/23/92 

CHIP laser MACH130 

·----------------------------------' 
PIN 20 EXTCLOCK 
PIN 23 SCLOCK 
PIN 24 SDATA 
NODE 18 .. 33 SHIFTREG[0 .. 15] 
PIN 7 .. 10,12 .. 19 DATAOUT[0 .. 11] 
NODE 34 .. 36 CTR1[0 .. 2] 
NODE 37 .. 42 CTR2[0 •. 5] 

PIN Declarations --------------
COMBINATORIAL ; INPUT 
COMBINATORIAL ; INPUT 
COMBINATORIAL ; INPUT 
REGISTERED ; INT 
COMBINATORIAL ; OUTPUT 
REGISTERED ; INT 
REGISTERED ; INT 

NODE 43 CTR2[6] PAIR LASEROFF COMBINATORIAL ; OUTPUT 
COMBINATORIAL ; OUTPUT 
COMBINATORIAL ; OUTPUT 
COMBINATORIAL ; OUTPUT 
COMBINATORIAL ; OUTPUT 
COMBINATORIAL ; OUTPUT 
COMBINATORIAL ; OUTPUT 
COMBINATORIAL ; OUTPUT 

PIN 55 /LASEROFF 
PIN 56,57,59 /LED[1 .. 3] 
PIN 66,68,70 /LED[4 .. 6] 
PIN 72,75,77 /LED[7 .. 9] 
PIN 78 /LED[10] 
PIN 3 /INV 
PIN 4 /README 
GROUP MACH SEG_B SHIFTREG[0 .. 15] 
·-----------------------------------' 
EQUATIONS 
SHIFTREG[O] = SDATA 
SHIFTREG[1 .. 15] = SHIFTREG[0 .. 14] 
SHIFTREG[0 .. 15] .CLKF = SCLOCK 
SHIFTREG[0 .. 15] .RSTF = GND 
SHIFTREG[0 .. 15] .SETF = GND 

Boolean Equation Segment ------

INV = CTR2[6] + (SHIFTREG[O] + SHIFTREG[l] + SHIFTREG[2]) * CTR1[2] 

README= /SHIFTREG[O] * /SHIFTREG[1] * /SHIFTREG[2] * CTR1[2] * /CTR2[6] 

DATAOUT[0 .. 11] = SHIFTREG[4 .. 15] *README 

CTR1[0] .T = /CTR1[2] 
CTR1[1] .T = CTR1[0] * /CTR1[2) 
CTR1[2].T = CTR1[1] * CTR1[0] * /CTR1[2] 
CTR1[0 •. 2] .CLKF = EXTCLOCK 
CTR1[0 •• 2] .RSTF = SCLOCK 
CTR1[0 .. 2] .SETF = GND 

54 



Table7.2 (continued) 

68HC1 1 Program Listing 
This section contains the code used in the HC11. 

averages sixteen data values. 
This versior:. 

;Program 
;Revision 
;Programer 
;Date 

Laser Interface Module 
1.0 
Brian Burgess 
November 14, 1992 

; 

SUM 
INA 
TEMP 

NUMA.VG 
PORTA 
PORTC 
PORTB 
PORTE 
DDRC 
PACTL 

. , . , . , . , . , . , . , . , . , . , 

START 

; 
AVG16 

WTLOW 

org 
JMP 
DB 
DB 
DB 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

$0000 
START 
2 
2 
1 

$10 
$1000 
$1003 
$1004 
$100A 
$1007 
$1026 

;This section contains RAM storage 
;Jump to program in EPROM 
;Storage for the sum 
;Storage for portA 
; T.emporary Storage 

;Number of values to average 
;Address of PORTA 
;Address of PORTC 
;Address of PORTB 
;Address of PORTE 
;Data Direction Register for PORTC 
;PORTA Control Register 

A data value is ready to be read, when bit 4 of Port C is low . 
The data is 12 bits wide, with the most significant nibble in 
bits 3-0 of Port C and the least significant byte in Port E . 
This code polls Port C, when bit 4 is low, then the 4 least 
significant bits of Porte already have the most significant 
nibble of the data value to be read. Next, the least 
significant byte from PortE is read. This value is now added to 
a sum. If the sum has the number of values to be averaged, then 
the sum is shifted to the right the correct number of places 
to produce the average of the values read . 
org $EOOO ;EPROM 
LDAA #$EO 
STAA DDRC 
LDAA #0 
STAA PORTC 
LDAA #$3C 
STAA DDRD 

LDAA PACTL 
ORAA #80 
STAA PACTL 
LDD #0 
STD SUM 
LDX #NUMAVG 
LDAA PORTC 
BITA #$10 
BEQ WTLOW 

;Set up Porte for input 
;Clear Accumulator A 
;Clear upper bits of Porte 

;Set up PortD for output 

; 4 cycles set Port A bit 
; 
i . 3 cycles , 
; 5 cycles 
; 3 cycles . 4 cycles , . 2 cycles , . 3 cycles , 

55 

7 for output 



Table 7.2 (continued) 

= /CTR2[6] 
= CTR2[0] * /CTR2[6] 

CTR2[0] .T 
CTR2[1] .T 
CTR2[2] .T 
CTR2[3] .T 
CTR2[4] .T 
CTR2 [ 5] . T 
CTR2[6] .T 

= CTR2[1] * CTR2[0] * /CTR2[6] 
= CTR2[2] * CTR2[1] * CTR2[0] * /CTR2[6] 
= CTR2[3] * CTR2[2] * CTR2[1] * CTR2[0] * /CTR2[6] 
= CTR2[4] * CTR2[3] * CTR2[2] * CTR2[1] * CTR2[0] * /CTR2[6] 
= CTR2[5] * CTR2[4] * CTR2[3] * CTR2[2] * CTR2[1] * CTR2[0] * 

/CTR2[6] 
CTR2[0 .. 6] .CLKF = EXTCLOCK 
CTR2[0 .. 6] .RSTF = SCLOCK 
CTR2[0 .. 6] .SETF = GND 

LED[1] = /!NV 
LED[2] = /!NV * (LED[3] + DATAOUT[9] + DATAOUT[B] * DATAOUT[7] * 

(DATAOUT[6] + DATAOUT[5] + DATAOUT[4] * DATAOUT[3] * 
(DATAOUT[2] + DATAOUT[l]) )) 

LED[3] = /!NV* (DATAOUT[11] + DATAOUT[10] + DATAOUT[9] * DATAOUT[B] * 
(DATAOUT[7] + DATAOUT[6] + DATAOUT[5] * DATAOUT[4] * 
(DATAOUT[3] + DATAOUT[2]))) 

LED[4] =/!NV* (DATAOUT[11] + DATAOUT[lO] *(DATAOUT(9] + DATAOUT[8] * 
DATAOUT[7] * DATAOUT[6] * (DATAOUT[5] + DATAOUT[4) + 
DATAOUT[3] * DATAOUT[2] * DATAOUT[1]))) 

LED[5] = /!NV * (DATAOUT[11] + DATAOUT[lO] * DATAOUT[9] * (DATAOUT[B] + 
DATAOUT[7] + DATAOUT[6] * DATAOUT[5] * (DATAOUT[4] + 

DATAOUT[3]) )) 
LED[6] = /!NV * DATAOUT[11] 
LED[7] = /INV * (DATAOUT[ll] * (DATAOUT[lO] + DATAOUT[9] + DATAOUT[B] * 

DATAOUT[7] * {DATAOUT[6] + DATAOUT[5] + DATAOUT[4] * 
DATAOUT[3] * DATAOUT[2]) )) 

LED{B] = /!NV * (DATAOUT[ll] * (DATAOUT[lO] + DATAOUT[9] * DATAOUT[B] * 
(DATAOUT[7] + DATAOUT[6] + DATAOUT[5] * DATAOUT[4] * 
(DATAOUT[3] + DATAOUT{2] * DATAOUT[l])) )) 

LED [ 9] = I INV * ( DATAOUT [ 11] * DATAOUT [ 10] * ( DATAOUT [ 9] + DATAOUT [ 8] ~· 
DATAOUT[7] * DATAOUT[6] * (DATAOUT[5] + DATAOUT[4]) )) 

LED[lO] = /!NV * (DATAOUT[ll] * DATAOUT[lO] * DATAOUT[9] * (DATAOUT[B] T 

DATAOUT[7] + DATAOUT[6] * DATAOUT[5] * (DATAOUT[4] + DATAOUT[3] 
(DATAOUT[2] + DATAOUT[l])))) 

56 



Table 7.2 (continued) 

POLL LDAA PORTC ; 4 cycles these 3 instruction wait 
BITA #$10 i 2 cycles for README to be low. 
BNE POLL i 3 cycles port C already contains high 

nibble, so don't re-read it. 
LDAB PORTE i 4 cycles now read low byte from portE. 
ADDD SUM i 6 cycles add it to the sum. 
STD SUM i 5 cycles 
DEX . 3 cycles is it time to average? I 

BNE POLL . 3 cycles if not, read next number. I 

EORA #$FF 
EORB #$FF 
STAA PORTB ; 4 cycles 
STAB PORTA 4 cycles 
LDX #NUMAVG 3 cycles output to port B, and now 
LDD #0 . 3 cycles reset sum for next average. I 

STD SUM ; 5 cycles 
BRA POLL . 3 cycles start reading numbers again. I 

org $FFFE ;Set up Reset Vector 
DW START 
END 

57 



8.0 SA2D Overview 

CHAPTERS 
SMART A to D MODULE 

This section details the design of and serves as a reference for the Smart Analog to 
Digital (SA2D) converter board. The SA2D board allows multiple analog signals to be 
sampled at high frequencies by moving a significant portion of software control into 
hardware. The SA2D board replaces the normal software steps of sequencing a multiplexer 
through a set of analog signals and performing an AID conversion on each. A write to the 
SA2D board automatically initiates the conversion of all analog inputs. The SA2D board 
returns a "complete" signal to the software to indicate when all conversions are complete. 
The software can then read the results of all AID conversions. 

The SA2D board is equipped with a bicolor Light Emitting Diode (LED) to indicate 
that the board is functioning. The LED alternates between the colors of red and green when 
the board is in operation. 

8.1 Detailed Design\Design Components 

This section provides the detailed design of the SA2D board. The following elements 
are implemented in the SA2 D board. 

First In First Out (FIFO) Buffer - Provides software burst reads of previous AID 
conversions while allowing the results of current AID conversions to be stored. The 
result of each analog signal's AID conversion is stored in the FIFO. The FIFO is eight 
(8) bits wide, so the results of each AID conversion (16 bits) are stored by first writing 
the most significant byte then the least significant byte into the FIFO. The actual device 
used is an IDT7201. Reference the IDT Specialized Memories & Modules data book for 
details relating to this device. 

AID Converter - This device converts the magnitude of an analog signal to its 
equivalent digital form. The device used is a Burr Brown ADS7805P, providing sixteen (16) 
bits of resolution. Reference the Burr Brown IC Data Book- Data Conversion Products, for 
details relating to this device. 

Analog Multiplexer- Routes one (1) of sixteen (16) different analog signals to the 
AID converter. Two (2) Burr Brown MPC507 eight (8) channel, differential, multiplexers 
are cascaded to implement this function. Reference the Burr Brown IC Data Book- Data 
Conversion Products, for details relating to this device. 

Instrumentation Amplifier - The differential outputs of the multiplexers are routed 
through an instrumentation amplifier to provide a single ended input to the AID converter. 
The actual device used is a Burr Brown INA111BP. Reference the Burr Brown IC Data 
Book - Linear Products, for details relating to this device. 

58 



State Machine - The state machine is the heart of the SA2D board. It is responsible 
for the proper sequencing of the hardware. When the state machine recognizes a start 
indication, it sequences through the following steps for each analog signal: 1) select analog 
signal from the multiplexer, 2) perform AID conversion, 3) Wait for conversion to complete, 
4) store results of the conversion into the FIFO (MSB first then LSB). Once these steps are 
complete for all analog signals, the state machine returns a "complete" signal and waits for 
the next start indication. The state machine is implemented in an AMD PALCE610H-15 
device. Reference the AMD PAL Devices data book for details relating to this device. 

• Bicolor LED - The LED is provided to indicate that the SA2D board is operating. 
The LED alternates between the colors of red and green every time a sequence of 
conversions completes. One side of the LED is driven with the EOC signal while 
the other side is driven with the negated EOC signal. 

8.2 State Machine Design 

The SA2D state machine is responsible for the following steps: 

1. Select Each Analog Channel of the Multiplexer 

2. Wait for the multiplexer to settle 

3. Start an AID Conversion on the Selected Channel 

4. Wait for AID Conversion to Complete 

5. Store the Conversion into the FIFO (MSB First, then LSB) 

6. After the Last Channel is Converted then Return a "Complete" Indication. 

The table lists the inputs and outputs of the SA2D state machine. 

Table 8.1 State Machine 110 

Inputs Outputs 

RESET: ADDR: 

SA2D Board Reset Selects Multiplexer Channel to Convert 

START_LATCH: CONVERT: 

Latch Indicating the SA2D Board Should Initiates AID Conversion 

Start Converting All Channels 

ADBUSY: FIFOW: 

Output of the AID Converter Indicating Write Selected Byte of the AID Conversion 

That a Conversion is in Progress Into the FIFO 

59 

' 
I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



Inputs 

ADDR: 

Four Bit Counter Indicating Last Multiplexer 

Channel Converted 

MAXADDR: 

Hard Coded Number Indicating the Last 

Channel to Convert 

Outputs 

BYTE: 

Selects MSB or LSB of AID Converted 

Data 

EOC: 

Indicates the SA2D Board Has Completed 

the Conversion of All Channels 

Table 8.1 (continued) State Machine 1/0 

The state diagram, Figure 8.1, defmes the steps used in the design of the SA2D state 
machine. Since twelve (12) steps are used, a four ( 4) bit register must be used to store the 
current step. Steps 9, B, and D are omitted to minimize the number of bits that must be 
evaluated in the resulting equations. 

For instance, by skipping these steps, evaluation of the least significant bit of the state 
register is not necessary when the most significant bit has a value of one (1) (true). 

8.2.1 State Diagram Description 

In the State Diagram of Figure 8.1 the text next to each state transition (arrow) 
provides an input expression that must be true for the transition to occur, followed by any 
synchronous output events. The required input expression is separated by the outputs by a 
colon (: ). A forward slash (/) preceding a signal name indicates that the signal is negated 
(logic 0), while the absence of the slash indicates the signal is asserted. For instance, the 
transition from step 0 to step 1 occurs when the value of the START_LATCH is true. When 
this occurs, a logic one (1) is stored in a flip flop named CONVERT and the state machine 
transitions from state 0 to state 1. The transition from step 1 to step 2 occurs when inputs 
RESET and ADBUSY both have a value of logic zero (0). There are no corresponding 
outputs that are set during this transition. 

Step 0: This is the beginning step of the state machine. The state machine waits in 
this step until a start signal is received. Once a start signal is received the first conversion is 
started on the AID converter and control transitions to state 1. It should be noted here that a 
four ( 4) bit register named ADDR selects the current analog channel from the multiplexer. 
The ADDR register is cleared at reset and after converting the last channel, so it is safe to 
assume at this point that the correct (first) channel is already routed to the AID converter. 

Step 1: This step waits for the AID converter to complete the conversion initiated 
during the transition from state 0. This is accomplished by monitoring the busy signal, 
named AD BUSY, from the AID converter. 

Step 2: When transitioning from this step to step 3, the address register is incremented 
to select the next signal on the multiplexer, and the MSB of the AID converted data is written 
into the FIFO. The rational for incrementing the address register here rather than in the 

60 

i 
I 



trans1t10n from state 1 is to avoid the possibility of having the CONVERT signal 
momentarily asserted while selecting a new signal (although the probability is remote, the 
timing diagrams for the AID converter do not guarantee it). Note that after incrementing the 
address register to select the next analog signal that the AID should not be initiated for 
another 3.5 J.LSeconds to allow the signal to settle through the multiplexer and 
instrumentation amplifier. This time is computed for an accuracy of 0.01 %. Since the 
frequency of the state machine's clock is 2.457 MHz this results in a delay of 9 states (must 
round up from 8.6). For this reason, the address is incremented as early as possible. States 3 
through E provide the 9 state settling time delay. The remaining non-time critical 
functionality is spread across these remaining steps for clarity. 

Step 3: During the transition from this step to step 4, the address register is checked to 
determine if all channels have already been converted. If so, the address register is reset such 
that the first analog channel is already selected upon entering state 0. Note that the diagram 
does not transition back to state 0 immediately after recognizing that all channels have been 
converted. This ensures that the first channel has settled prior to entering state 0, just in case 
another sequence has already been initiated. 

Step 4: When transitioning from this step to step 5, the LSB is selected from the AID 
converter and routed to the FIFO. Asserting the BYTE signal to the AID converter selects 
the LSB. 

Step 5: When transitioning from this step to step 6, the LSB of the converted data is 
written into the FIFO (follows the MSB). The BYTE signal is maintained in the asserted 
state during this write. 

Step 6 and 7: During the transitions from step 6 through step 7 and into step 8, the 
BYTE signal is maintained in the asserted state. The BYTE signal must be asserted as long 
as the FIFOW signal is asserted and is maintained asserted for an additional state to avoid a 
race condition (do not want to negate BYTE and FIFOW concurrently). The BYTE signal 
remains asserted into step 8 simply to minimize the logic required in the generation of the 
signal. 

Step 8: During the transition from step 8 to step 9, the address register is evaluated to 
determine if all channels have been converted. If so, the EOC signal is toggled to provide an 
indication to the host processor that the entire conversion process is complete. Since it is 
possible that the host processor could recognize the completion flag (EOC) and initiate 
another sequence of conversions before transitioning back to state 0, the START_LATCH 
signal is latched. 

Steps A and C: These steps only exist to provide the required settling time (see the 
description in step 2). 

Step E: Transition from this step back to step 0 occurs if all channels have been 
converted (ADDR=O). If all channels have not been converted, then a transition back to 
step 1 occurs and an AID conversion is immediately initiated on the selected analog channel. 

61 



RESET 

RESET 

RESET 

( 
RESET 

Smart A to D State Diagram 

Figure 8.1 

/RESET: 
BYTE==1 
FIFOW 

Smart A to D State Diagram 

62 



8.3 Hardware Installation 

Power Connections 

Power to the SA2D board is applied at terminal block J3. The board requires 5V DC 
and +/- 15V DC supplies. The ground of the 5V supply is connected to DGND (digital 
ground). The ground for the+/- 15V supply is connected to AGND (analog ground). These 
two grounds must be connected externally at a single point. If this point does not already 
exist in the system then adding a wire between AGND and DGND can connect the two 
grounds. 

Analog Signals 

Analog signals are connected to the SA2D board at terminal block Jl. The 
connection for each analog signal is differential. The high side of the signal should be 
connected to the terminal labeled + while the low side is connected to the - terminal. The 
connection for channel 1 is labeled Ch 1, channel 2 as Ch2, etc. When reading the converted 
values from the FIFO, channel 1 is read first while the last channel is read last. The number 
of channels that are converted depends on the hard coded value in the state machine (PAL). 

Processor Interface 

The host processor is connected to the SA2D board with a 26-pin DIN connector at 
J2. The schematic in the attached appendix defmes the pin-out of this connector. 

Following this page Table 8.2 gives the Pal equations, and then Figures 8.2 through 
Figures 8.5 show the board schematics. 

63 



Table 8.2 Pal Equations 

;PALASM Design Description 

;---------------------------------- Declaration Segment 
TITLE Smart Analog to Digital Board Controller 
PATTERN 

CHIP SMARTA2D PALCE610 

;---------------------------------- PIN Declarations ---------------
PIN 1 CLK1 COMBINATORIAL 
INPUT 
PIN 13 CLK2 COMBINATORIAL 
INPUT 
PIN 2 /RESET COMBINATORIAL 
INPUT 
PIN 3 .. 5 ST [ 0 .. 2] REGISTERED ; OUTPUT 
PIN 6 START LATCH COMBINATORIAL 
OUTPUT 
PIN 7 EOC INV COMBINATORIAL 
OUTPUT 
PIN 8 EOC REGISTERED OUTPUT 
PIN 9 ST [3] REGISTERED 
PIN 10 BYTE REGISTERED OUTPUT 
PIN 11 /A2DCS COMBINATORIAL ; 
INPUT 
; PIN 12 GROUND 
PIN 14 READ COMBINATORIAL 
INPUT 
PIN 15 A3 INV COMBINATORIAL 
OUTPUT 
PIN 16 .. 19 ADDR[3 .. 0] REGISTERED OUTPUT 
PIN 20 /CONVERT REGISTERED OUTPUT 
PIN 21 /FIFOW REGISTERED OUTPUT 
PIN 22 /FIFOR COMBINATORIAL 
OUTPUT 
PIN 23 /ADBUSY COMBINATORIAL 
INPUT 

STRING RESTART '(/ADDR[3]*/ADDR[2]*/ADDR[1]*/ADDR[0])' 
STRING MAXCNT '(ADDR[3])' ; After 0-7 conversions count=8, so reset 
counter 
;----------------------------------- Boolean Equation Segment -----
EQUATIONS 

CASE ST[3 .. 0] 
BEGIN 
0: 

BEGIN 
IF /START LATCH THEN 

BEGIN 
ST[3 .. 0]=0 

END 
ELSE 

BEGIN 

64 



1: 

2: 

3: 

4: 

5: 

END 

ST[3 .. 0]=1 
END 

BEGIN 
IF RESET THEN 

BEGIN 
ST[3 .. 0]=0 

END 
IF (ADBUSY * /RESET) THEN 

BEGIN 
ST[3 .. 0]=1 

END 
IF (/ADBUSY * /RESET) THEN 

BEGIN 

END 

ST [3 .. 0] =2 
END 

BEGIN 
IF /RESET THEN 

BEGIN 
ST[3 .. 0]=3 

END 
ELSE 

BEGIN 
ST[3 .. 0]=0 

END 
END 

BEGIN 
IF /RESET THEN 

BEGIN 
ST[3 .. 0]=4 

END 
ELSE 

BEGIN 
ST[3 .. 0]=0 

END 
END 

BEGIN 
IF /RESET THEN 

BEGIN 
ST[3 .. 0]=5 

END 
ELSE 

BEGIN 
ST [3 .. 0] =0 

END 
END 

BEGIN 
IF /RESET THEN 

65 



6: 

7: 

8: 

BEGIN 
ST[3 .. 0]=6 

END 
ELSE 

END 

BEGIN 
ST[3 .. 0]=0 

END 

BEGIN 
IF /RESET THEN 

BEGIN 
ST[3 .. 0]=7 

END 
ELSE 

END 

BEGIN 
ST[3 .. 0]=0 

END 

BEGIN 
IF /RESET THEN 

BEGIN 
ST[3 .. 0]=8 

END 
ELSE 

END 

BEGIN 
ST[3 .. 0]=0 

END 

BEGIN 
IF /RESET THEN 

BEGIN 
ST[3 .. 0]=10 

END 
ELSE 

END 

BEGIN 
ST[3 .. 0]=0 

END 

10: 
BEGIN 

IF /RESET THEN 
BEGIN 

ST [ 3 .. 0] =12 
END 

ELSE 

END 

BEGIN 
ST[3 .. 0]=0 

END 

66 



12: 

BEGIN 
IF /RESET THEN 

BEGIN 
ST[3 .. 0]=14 

END 
ELSE 

BEGIN 
ST[3 .. 0]=0 

END 
END 

14: 
BEGIN 

IF RESTART + RESET THEN 
BEGIN 

ST[3 .. 0]=0 
END 

IF /RESET * /RESTART THEN 
BEGIN 

ST[3 .. 0]=1 
END 

END 

OTHERWISE: 
BEGIN 

ST [ 3 .. 0] =0 
END 

END 
ST[3 .. 0] .CLKF=CLKl 
ST[3 .. 0] .RSTF=GND 

START LATCH=/RESET*(A2DCS*/READ+START_LATCH*/ST[O]) 

FIFOR = A2DCS * READ 

CONVERT=/RESET*(/ST[3]*/ST[2]*/ST[l]*/ST[O]*START_LATCH+ 
ST(3]*ST(2]*ST[1J*/ST(OJ*/(RESTART) ) 

CONVERT.CLKF=CLK2 
CONVERT.RSTF=GND 

EOC.T=/RESET*ST[3)*/ST[2J*/ST[l]*/ST[O]*(RESTART) 
EOC.CLKF=CLKl 
EOC.RSTF=GND 

BYTE=/RESET*/ST[3]*ST[2J 
BYTE.CLKF=CLKl 
BYTE.RSTF=GND 

FIFOW=/RESET*(/ST[3)*/ST[2]*ST[l)*/ST[O] + /ST[3]*ST[2]*/ST[l]*ST[O]) 

67 



FIFOW.CLKF=CLK2 
FIFOW.RSTF=GND 

; The following equations had to be derived manually, due to a bug in 
; PALASM. The equations for the address signals remain in the case 
statement 

of the state machine, but are commented out. The following equations 
are derived from those comments. 
Each address signal is derived as follows: 

The first line of the equation basically resets the address signal to 
0 if reset is asserted or an invalid state is detected. 
The second term resets the address to 0 if the maximum count is 

exceeded 
(see the commented equation in state 4). 
The final term increments the address after state 3. 

ADDR[3] .T=RESET*ADDR(3] 
+ /ST[3]*/ST(2]*ST(l]*ST(O]*(MAXCNT)*ADDR[3] 
+ /ST[3]*/ST(2]*ST(l]*/ST[O]*ADDR(2]*ADDR(l]*ADDR[O] 

ADDR[2] .T=RESET*ADDR(2] 
+ /ST[3]*/ST[2]*ST(l]*ST[O]*(MAXCNT)*ADDR[2] 
+ /ST[3J*/ST(2]*ST(l]*/ST[O]*ADDR[l]*ADDR[O] 

ADDR(l] .T=RESET*ADDR(l] 
+ /ST(3]*/ST[2]*ST[l]*ST[O]*(MAXCNT)*ADDR[l] 
+ /ST[3]*/ST[2]*ST(l]*/ST[O]*ADDR[O] 

ADDR[O].T=RESET*ADDR(O] 
+ /ST[3]*/ST[2]*ST[l]*ST[O]*(MAXCNT)*ADDR[O] 
+ /ST[3]*/ST(2]*ST[l]*/ST(O] 

A3 INV = /ADDR[3] 

ADDR[3 .. 0] .CLKF=CLK2 
ADDR[3 .. 0] .RSTF=GND 

EOC INV=/EOC 

;----------------------------------- Simulation Segment -----------
SIMULATION 
TRACE ON /EOC /RESET CLKl CLK2 /ADBUSY ST(3 .. 0] ADDR[3 .. 0] START LATCH 
/A2DCS READ BYTE /FIFOW /CONVERT 
SETF A2DCS /READ 
SETF /A2DCS 
SETF /ADBUSY RESET 
CLOCKF CLKl CLK2 
SETF /RESET 
CLOCKF CLKl CLK2 
SETF A2DCS /READ 
CLOCKF CLKl CLK2 
SETF /A2DCS 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 

68 



CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 
CLOCKF CLKl CLK2 

69 



AID BOARD 

ANALOG INPUT 

l l 

CONVERTS ANALOG SENSOR 
SIGNALS TO DIGITAL VALUES 

AND SENDS TO 68020 
PROCESSOR BOARD 

Figure 8.2 AID Board Layout 

70 

~-68020 
PROCESSOR 

BOARD 
INTERFACE 



2 

3 

4 

A 

Jl:l C9-L-:l~---.. 

Jl:2 oa....._--111'---...1 
J 1:3 r-:l!=i-..1,_-111:.._-..,l 

Jl:4 DB..J....-EIIIi:.---..,1 
J1:5 DB...I--11111...---..,1 
JU C:9f-L---11L--d 

Jt :7 c:a:..L-..~~-.. 

Jl:l DB...I--'---...1 
Jl:l C:9'-'----R--,. 

Jl:10 CEJ....IL...!!lt...-...._ 
Jl:ll ~~....U..-"""---..... 

Jl: 12 C:9.-li.---1L--, f"_..... 
J1:13 C:EJ.....II.-..IIf.t--,1'-

JI:U 

J1:15 
J1:18 

J2:1 ~~-1..-..111::---/ 

J2:2 CEJ.-'---!!lt...---"1 
J2:3 l"""'l~...L.-Ullll---"1 

J2:4 .....,~~-11::---"1 

JU CJEJ....L.-IIJI.l.:---"1 
J2:1 l"""'l~...L.-Ulll:.---"1 

J2: 7 r-:l~-'--Ul"'---"1 

B 

J2:e c~~;'~~:::~~=:-:"}:I:=::::J~::t"'--::1 
n.• r ..;:,l::fl:===--.::...-t 

J2: 10 C:J::3.-ll.-!!.lt..-"'l'-
J2:11 CE3....1.1..-IlW--" 

J2:12~JIIll~ J2:13 r-~....II.--1:~-'L'-

J2:14 

J2.15 
J2:18 

MPC507A 

c 

To Convert V1.0 PCB to V1.1 : Replace INA 105 with INA 111. 

1) Cut trace from pad 5 on top of PCB. 

(trace should still go to pad 6). 

2) Add jumper between pad 1 and pad 5 on bottom of PCB. 

3) Cut pin 1 off of device INA 111 before installing. 

GNOANALOG 

R2 

e1 
2 2uF 2 2uF 

INAI11BP 

GNOAriAtOG 

GND.,. 

vee 

___I 
*c' ~ f<:CIO , l':cu , f<:CI2 • 0 Cll ··' 

f<:CI4 . , f<:CI$., e16 
O.luF O.luF O.luF O.luF ~~.luF ' 

e11 
0 luF OluF O.luF IOuF 

Jl:S c::E31-'L----,l GNOANALOO Bypass Capacitors ~GNO 

A B c 

D 

AID Data "T1 -· lJQ 
£:; 
(1) 

00 
vee !,o.) 

2 

r:n 
n :::r 
(1) s 
~ 
r+ -· n 
r:n s 

AOS7805 !! 
3 ~ 

t::O 
0 

Control a. 

- 4 
Smart AID Board 



A B c D 

Internal Data Bus 

U3 
.M;1 

"T1 -· OQ 
2 U2 2 e; 74F245 

0 
IDC2X13M U1 00 

GND 
~ 

en 
0 
::r 

.....) 0 
N s a r;· 

PALCE81 en s 
3 3 ~ 

~ 
t:x1 
0 

Output of AID a. 
N 

4 rT~"~~.--------------------------14 
Smart ND Board 

Slzo 

B 

A B c 



A B c 0 

P1RA:1 

J4:1 

2 2 

OIN2X32F DIN2X32F OIN2X32F 

3 
IDC2X13M 

3 

4 TNio 
Smart AID Cable 

4 

Size 

B 
0111 Orawnb 

Sheet 

A B c 



CHAPTER9 
The 68020 MODULE (K Processor) 

9.0 Overview 

This section provides a description of the 68020 Processor module or K Processor 
board. This board is used to obtain the data from the various sensors and either process this 
data in real-time or sends it to the PC. The communication protocol between this board and 
the PC is provided in an earlier chapter. The processor will permit the interface of up to 16 
analog devices, or nine acoustic sensors which are designed to interface with the on board 
Intel 83C54 timers. The processor, when in the real-time computation mode, will compute 
profile and/or rut from either laser using the 'string line method', raw readings from acoustic 
sensors. An overall block diagram of the basic board is illustrated in Figure 9.1, 9.2, and 
9.3. The board provides 64K bytes of EPROM and 32 K bytes of static RAM. Provisions 
are included for 2 12 bit AID converters, although they are no longer used with the smart 
AID module. The smart AID and other smart boards designed by project personnel can 
access the board via a direct linkage to the upper lines of the 32 bit data bus. The board 
contains four 82C54 timers which provide direct interface for up to ten acoustic sensors. 
Two counters are used to control the AID sampling, for implementing the South Dakota 
profiling procedure, and one for a simulated distance signal (see time/distance simulation 
switch in chapter 4). Two MC68230 parallel ports are included for general parallel and 
interrupt interface. 

The memory map for the various modules is provided in Table 9.1. Table 9.2 
provides the interrupt assignments. Tables 9.3 to 9.8 provide the basic pal equations for the 6 
Pals used for address decoding and other control circuitry. Table 9.10 and 9.11 provide a pin 
out of the back plane connections to the 68020 module. Figure 9.4 to 9.11 show the 
schematics of the board. 

One additional comment should be noted regarding the connections of the acoustic to 
the Amphenol connections on the main chassis module in Chapter 4. The two 82C54 IC 
timers at U36 and U37 (Figure 9.8) are used for the acoustic timers. Each IC has 3 timers, IC 
timer 0 thru 2. The signals on each timer are sent to the P2RA (P2 connector, A row, see 
Figure 9.11) on the K board. Each P1 and P2 connector on the board plugs into the J1 and J2 
female connectors. 

Pin 11, 14 and 16 on U36 (top timer) and U37, second timer. 

IC Timer 0 is used for the distance simulation. IC Timer 1 and 2 on U36 are used for 
acoustics 2 and 3. IC Timer 0 and 1 on U37 are used for acoustic timer 4 and 5. IC timer 2 
on U3 7. is used for acoustic timer 1 

The appropriate pins on the P2RA connector for each of the acoustic timers are 
connected to the connector on the back panel (see Tables 4.7 and 4.8 in Chapter 4). 

74 



The IC to P2RA pin outs are given as follows: 

DEVICE TYPE 

ROMO 
ROM1 
ROM2 
ROM3 

NOT USED 

68681 DUART 

NOT USED 

68230 1 Plff 
68230 2 Plff 
HS 9412 1 
HS 9412 2 
8254 TIMER 1 
8254 TIMER 2 

1 Kl::>4 ·nMER 3 
8254 TIMER 4 
SMART AID 

I NOT USED 

RAMO 
RAMI 
RAM2 
RAM3 

acoustic 1 - U3 7 pin 16 P2RA - 24 
acoustic 2 - U36 pin 14 P2RA - 20 
acoustic 3- U36 pin 16 P2RA- 21 
acoustic 4 - U3 7 pin 11 P2RA - 22 
acoustic 5- U37 pin 14 P2RA- 23 

Table 9.1 Memory Map 

DESCRIPTION ADDRESS 
From 

ROM AREA $0000:0000 
ROM AREA $0001:0000 
ROM AREA $0002:0000 
ROM AREA $0003:0000 

EXPANSION AREA $0004:0000 

68681 DUART (16 Bytes) $4000:0000 
$0004:0010 

EXPANSION AREA 

68230 Plff (32 BYTES) $4000:8000 
68230 Plff (32 BYTES) $ 4001 : 0000 

$4001 : 8000 
$4002:0000 

8254 TIMER 1 $4002: 8000 
8254 TIMER 2 $4003: 0000 
8254 TIMER 3 $4003: DOOO 
8254 TIMER 4 $4003: D400 
SMART AID $4003: cooo 

EXPANSION AREA $4003: 8004 

RAM AREA $8000:0000 
RAM AREA $8000: 8000 

~AREA $8001 : 0000 
AREA $8001: 8000 

75 

RANGE 
To !! 0000 : FFFF 

$0001: FFFF 
$0002: FFFF 
$0003: FFFF 

3 FFF: FFFF 

$4000: OOOF 
$0004: 7FFF 

$4000: 801F 
$4001: OOIF 

$4002: 8003 
$4003:0003 
$4003: D3FF 
$4003: D7FF 
$4003: COlE 

7FFF: FFFF 

I ~ XllltQ : 7FFF 
$8000: FFFF 
$ 8001 : 7FFF 
$8001: FFFF 



Table 9.2 Interrupt Assignment 

Interrupt Level Source Devices IRQ Type 
I 
2 
3 PifT 68230 2 Timer {TIMOUT signal) Autovector Interrupt 
4 DUART68681 IRQ4 
5 PifT 68230 1 IRQ5 
6 PifT 68230 2 IRQ6 

Table 9.3 PAL U 13 Equations 
D 
;PALASM Design Description 

;---------------------------------- Declaration Segment ------------
TITLE EMCPAL1.PDS 
PATTERN A 
REVISION 1.0 
CHIP EMCPAL1 PAL22V10 

;---------------------------------- PIN Declarations ---------------
PIN 1 AOO COMBINATORIAL INPUT 
PIN 2 A01 COMBINATORIAL INPUT 
PIN 3 A17 COMBINATORIAL INPUT 
PIN 4 A30 COMBINATORIAL INPUT 
PIN 5 A31 COMBINATORIAL INPUT 
PIN 6 SEG1 COMBINATORIAL INPUT 
PIN 7 CPUSP COMBINATORIAL INPUT 
PIN 8 /AS COMBINATORIAL INPUT 
PIN 9 WAIT2 COMBINATORIAL INPUT 
PIN 10 R COMBINATORIAL INPUT 
PIN 11 SIZO COMBINATORIAL INPUT 
PIN 12 GND INPUT 
PIN 13 SIZl COMBINATORIAL INPUT 
PIN 14 MDSACK1 COMBINATORIAL OUTPUT 
PIN 15 MDSACKO COMBINATORIAL OUTPUT 
PIN 16 /ROM3 COMBINATORIAL OUTPUT 
PIN 17 /ROM2 COMBINATORIAL OUTPUT 
PIN 18 /ROM1 COMBINATORIAL OUTPUT 
PIN 19 /ROMO COMBINATORIAL OUTPUT 
PIN 20 /RAM3 COMBINATORIAL OUTPUT 
PIN 21 /RAM2 COMBINATORIAL OUTPUT 
PIN 22 /RAM1 COMBINATORIAL OUTPUT 
PIN 23 /RAMO COMBINATORIAL OUTPUT 
PIN 24 vee INPUT 

76 



;OUTPUT EQUATIONS---------------------
EQUATIONS 

RAMO =AS * /CPUSP * SEGl * A31 * /A30 * /A17 * /AOl * /AOO 

RAMl AS * /CPUSP * SEGl * A31 * /A30 * /A17 * 
( /AOl * AOO + /AOl * SIZl + /AOl * /SIZO 

RAM2 AS * /CPUSP * SEGl * A31 * /A30 * /A17 * 
AOl * /AOO + /AOl * /SIZl * /SIZO + /AOl * SIZl * SIZO + 
/AOl * AOO * SIZl ) 

RAM3 AS * /CPUSP * SEGl * A31 * /A30 * /A17 * 
( AOl * ADO + /SIZl * /SIZO + AOl * SIZl + ADO * SIZl * SIZO 

ROMO R * AS * /CPUSP * SEGl * /A31 * /A30 * /Al7 * /AOl * /AOO 

ROMl R *AS * /CPUSP * SEGl * /A31 * /A30 * /A17 * 
( /AOl * AOO + /AOl * SIZl + /AOl * /SIZO ) 

ROM2 R * AS * /CPUSP * SEGl * /A31 * /A30 * /Al7 * 
AOl * /ADO + /AOl * /SIZl * /SIZO + /AOl * SIZl * SIZO + 
/AOl * ADO * SIZl ) 

ROM3 R * AS * /CPUSP * SEGl * /A31 * /A30 * /Al7 * 
AOl * ADO + /SIZl * /SIZO + AOl * SIZl + AOO * SIZl * SIZO ) 

MDSACKO AS * /CPUSP * SEGl * (/Al7 * A31 * /A30 + R * WAIT2 * /A31 * 
/A30) 

MDSACKl AS * /CPUSP * SEGl * (/Al7 * A31 * /A30 + R * WAIT2 * /A31 * 
/A30 ) 

Table 9.4 

;PALASM Design Description 
D 

0 

PAL Ul4 Equations 

;---------------------------------- Declaration Segment ------------
D 
TITLE 
0 

K processor peripheral decoder 

PATTERN A 
IJ 
REVISION 1.0 
D 
CHIP 
0 

KPALU14 PAL22Vl0 

77 



c 
;---------------------------------- PIN Declarations 
PIN l A14 COMBINATORIAL 
;PIN 2 /SMADCS COMBINATORIAL 
PIN 3 A17 COMBINATORIAL 
PIN 4 A30 COMBINATORIAL 
PIN 5 A31 COMBINATORIAL 
PIN 6 SEG1 COMBINATORIAL 
PIN 7 CPUSP COMBINATORIAL 
PIN 8 /AS COMBINATORIAL 
PIN 9 IDS COMBINATORIAL 
PIN 10 R COMBINATORIAL 
PIN 11 SIZO COMBINATORIAL 
PIN 12 GND 
PIN 13 SIZ1 COMBINATORIAL 
PIN 14 A16 COMBINATORIAL 
PIN 15 A15 COMBINATORIAL 
PIN 16 AD CS COMBINATORIAL 
PIN 17 AD1 NAD2 COMBINATORIAL 
PIN 18 /8254 1CS COMBINATORIAL 
PIN 19 /8254 2CS COMBINATORIAL 
PIN 20 JsMAo'cs COMBINATORIAL 
PIN 21 /230 2CS COMBINATORIAL 
PIN 22 /230-1CS COMBINATORIAL 
PIN 23 /681CS COMBINATORIAL 
PIN 24 vee 

;OUTPUT EQUATIONS---------------------
EQUATIONS 

---------------
; INPUT 

; OUTPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
INPUT 

681CS =AS * /CPUSP * SEG1 * /A31 * A30 * /A17 * /A16 * /A15 

230 1CS DS * AS * /CPUSP * SEG1 * /A31 * A30 * /A17 * /A16 * A15 

230 2CS DS * AS * /CPUSP * SEG1 * /A31 * A30 * /A17 * A16 * /A15 

AD CS R * DS * AS * /CPUSP * SEG1 * /A31 * A30 * 
(/A17 * A16 * A15 + A17 * /A16 * /A15) 

AD1 NAD2 R * DS * AS * /CPUSP * SEG1 * /A31 * A30 * /A17 * A16 * A15 

8254 1CS DS *AS * /CPUSP * SEGl * /A31 * A30 * Al7 * /Al6 * AlS 

8254 2CS DS * AS * /CPUSP * SEG1 * /A31 * A30 * A17 * A16 * /A15 

SMADCS DS * AS * /CPUSP * SEG1 * /A31 * A30 * A17 * Al6 * A15 * A14 

Table 9.5 

0 
;PALASM Design Description 
[l 

0 

PAL Ul5 Equations 

;---------------------------------- Declaration Segment ------------
TITLE SEGMENT DECODER PAL 

78 



PATTERN A 
REVISION 1.0 

CHIP KPALU15 PAL22Vl0 

;---------------------------------- PIN Declarations 
PIN 1 A13 COMBINATORIAL 
PIN 2 A14 COMBINATORIAL 
PIN 3 A15 COMBINATORIAL 
PIN 4 A16 COMBINATORIAL 
PIN 5 A17 COMBINATORIAL 
PIN 6 AlB COMBINATORIAL 
PIN 7 Al9 COMBINATORIAL 
PIN B X COMBINATORIAL 
PIN 9 y COMBINATORIAL 
PIN 10 FCO COMBINATORIAL 
PIN 11 FCl COMBINATORIAL 
PIN 12 GND 
PIN 13 FC2 COMBINATORIAL 
PIN 14 /AS COMBINATORIAL 
PIN 15 WAIT2 COMBINATORIAL 
PIN 16 /B254 lCS COMBINATORIAL 
PIN 17 /8254 2CS COMBINATORIAL 
; PIN lB /8254 3CS COMBINATORIAL 
PIN 19 B254 DSACK COMBINATORIAL 
PIN 20 lACK COMBINATORIAL 
PIN 21 /COPlCS COMBINATORIAL 
PIN 22 CPUSP COMBINATORIAL 
PIN 23 SEGl COMBINATORIAL 
PIN 24 vee 

;OUTPUT EQUATIONS---------------------
EQUATIONS 

IACK = FC2 * FCl * FCO * Al9 * AlB * A17 * A16 * AS 

COPlCS FC2 * FCl * FCO * /A19 
/A15 * /A14 * A13 * AS 

CPUSP = FC2 * FCl * FCO 

SEGl = X * y * /A19 * /AlB 

B254 DSACK WAIT2 * {8254 lCS + -c 

Table 9.6 

;PALASM Design Description 
0 

0 

* /AlB * A17 * /A16 * 

B254_2CS) 

PAL U33 Equations 

---------------
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 

i INPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
INPUT 

;---------------------------------- Declaration Segment ------------

79 



TITLE K processor U33 
PATTERN 1-a 
REVISION a 

CHIP kpal u33 PALCE26V12 
;---------------------------------- PIN Declarations ---------------
PIN 1 CLK16 COMBINATORIAL 
INPUT 
PIN 4 SEG1 COMBINATORIAL 

INPUT 
PIN 5 CPUSP COMBINATORIAL 

INPUT 
PIN 6 READ COMBINATORIAL 

INPUT 
PIN 7 vee 
INPUT 
PIN 8 /OS COMBINATORIAL 
INPUT 
PIN 9 AD CS COMBINATORIAL 
INPUT 
PIN 10 AD1 NAD2 COMBINATORIAL 
INPUT 
PIN 11 ATOD1DO COMBINATORIAL 
INPUT 
PIN 12 ATOD2DO COMBINATORIAL 
INPUT 
PIN 13 ATOD1D1 COMBINATORIAL 
INPUT 
PIN 14 ATOD2D1 COMBINATORIAL 
INPUT 
PIN 15 017 COMBINATORIAL 
OUTPUT 
PIN 16 016 COMBINATORIAL 
OUTPUT 
PIN 17 DSACK1 COMBINATORIAL 
OUTPUT 
PIN 18 CK8M REGISTERED 
OUTPUT 
PIN 19 /ACW COMBINATORIAL 
OUTPUT 
PIN 20 /ACR COMBINATORIAL 
OUTPUT 
PIN 21 GND 
INPUT 
PIN 22 CK128K REGISTERED 
OUTPUT 
PIN 23 CK256K REGISTERED 
OUTPUT 
PIN 24 CK512K REGISTERED 
OUTPUT 
PIN 25 CK1M REGISTERED 
OUTPUT 
PIN 26 CK2M REGISTERED ; 
OUTPUT 
PIN 27 CK4M REGISTERED 
OUTPUT 

80 



;----------------------------------- Boolean Equation Segment ------
EQUATIONS 
CK8M /CK8M 
CK4M /CK4M * CK8M + CK4M * /CK8M 
CK2M /CK2M * CK8M * CK4M + CK2M * /(CK8M * CK4M) 
CK1M /CK1M * CK8M * CK4M * CK2M + CK1M * /(CK8M * CK4M * CK2M) 
CK512K /CK512K * CK8M * CK4M * CK2M * CK1M + 

CK512K * /(CK8M * CK4M * CK2M * CK1M) 
CK256K /CK256K * CK8M * CK4M * CK2M * CK1M * CK512K + 

CK256K * /(CK8M * CK4M * CK2M * CK1M * CK512K) 
CK128K /CK128K * CK8M * CK4M * CK2M * CK1M * CK512K * CK256K + 

CK128K * /(CKBM * CK4M * CK2M * CK1M * CK512K * CK256K) 

CK8M.CLKF 
CK4M.CLKF 
CK2M.CLKF 
CK1M.CLKF 
CK512K.CLKF 
CK256K.CLKF 
CK128K.CLKF 

CLK16 
CLK16 
CLK16 
CLK16 

CLK16 
CLK16 
CLK16 

ACW OS * /READ * SEG1 * /CPUSP 
ACR OS * READ * SEG1 * /CPUSP 

DSACK1 AD CS 

016 = AD CS * AD1 NAD2 * ATOD1DO + AD CS * /AD1 NAD2 * ATOD2DO 
D16.TRST =AD CS 
017 =AD CS * AD1 NAD2 * ATOD1D1 + AD CS * /AD1 NAD2 * ATOD2D1 
D17.TRST =AD CS 

Table 9.7 

;PALASM Design Description 
[ 

0 

PAL U34 Equations 

;---------------------------------- Declaration Segment ------------
!J 
TITLE K processor A/D bus driver and timer interupt 
D 
PATTERN 1-a 
:J 
CHIP kpal_u34 PALCE26V12 

;---------------------------------- PIN Declarations ---------------
PIN 1 
INPUT 
PIN 2 
INPUT 

KTIME 

AD CS 

COMBINATORIAL 

COMBINATORIAL 

81 



PIN 3 AD1 NAD2 COMBINATORIAL 
INPUT 
PIN 4 ATOD1 0[2] COMBINATORIAL 
INPUT 
PIN 5 ATOD2_D[2] COMBINATORIAL 
INPUT 
PIN 6 ATOD1_0[3] COMBINATORIAL 
INPUT 
PIN 7 vee 
INPUT 
PIN 8 ATOD2 D [ 3] COMBINATORIAL -
INPUT 
PIN 9 ATOD1_D[4] COMBINATORIAL 
INPUT 
PIN 10 ATOD2_D [ 4] COMBINATORIAL 
INPUT 
PIN 11 ATOD1_D[5] COMBINATORIAL 
INPUT 
PIN 12 ATOD2_D[5] COMBINATORIAL 
INPUT 
PIN 13 ATOD1 0(6] COMBINATORIAL 
INPUT 
PIN 14 ATOD2_D[6] COMBINATORIAL 
INPUT 
PIN 15 .. 20,22 0[24 .. 18] COMBINATORIAL 

OUTPUT 
PIN 21 GND 
INPUT 
PIN 23 ATOD2 0[8] COMBINATORIAL -
INPUT 
PIN 24 ATOD1_D[8] COMBINATORIAL 
INPUT 
PIN 25 ATOD2_D[7] COMBINATORIAL 
INPUT 
PIN 26 ATOD1_D[7] COMBINATORIAL 
INPUT 
PIN 27 /IRQ3 REGISTERED 
OUTPUT 
PIN 28 KPC1 COMBINATORIAL 
INPUT 
NODE 1 GLOBAL 

;----------------------------------- Boolean Equation Segment -----
EQUATIONS 
0[18 .. 24] = AD_CS * AD1_NAD2 * ATOD1_D[2 .. 8] + 

AD_CS * /AD1_NAD2 * ATOD2_D[2 .. 8] 
0[18 .. 24] .TRST AD CS 

IRQ3 vee 
IRQ3.CLKF = KTIME 
GLOBAL.RSTF KPC1 
GLOBAL.SETF = GND 

82 



Table 9.8 

[] 

;PALASM Design Description 
0 

0 
Revision History 

c 

0 

0 

PAL U301 Equations 

Addresses SMCSl %X4003C000 
SMCS2 %X4003C400 
KAC21 = %X4003DOOO 
KAC22 %X4003D400 

SMDSACKO Generated 
NO SMDSACK Generated 
SMDSACKO Generated 
SMDSACKO Generated 

;---------------------------------- Declaration Segment ------------
TITLE SEGMENT DECODER PAL 
PATTERN A 
REVISION 1.0 

CHIP KPALU301 PAL22Vl0 

;---------------------------------- PIN Declarations 
PIN 1 RNW COMBINATORIAL 
PIN 2 /SMCSIN COMBINATORIAL 
PIN 3 WAIT2 COMBINATORIAL 
PIN 9 AlO COMBINATORIAL 
PIN 10 All COMBINATORIAL 
PIN 11 Al2 COMBINATORIAL 
PIN 12 GND 
PIN 13 A13 COMBINATORIAL 
PIN 14 /SMCS2 COMBINATORIAL 
PIN 15 /SMCSl COMBINATORIAL 
PIN 16 /KAC22 COMBINATORIAL 
PIN 17 /KAC21 COMBINATORIAL 
PIN 18 /SMBUFFEN COMBINATORIAL 
PIN 19 SMDSACKO COMBINATORIAL 
PIN 21 SMDSACKl COMBINATORIAL 
PIN 22 /SCAN COMBINATORIAL 
PIN 23 RD COMBINATORIAL 
PIN 24 vee 

;OUTPUT EQUATIONS---------------------
EQUATIONS 

RD 
SCAN 

SMCSl 

RNW * SMCSIN * /Al3 * /Al2 * /All * /AlO 
/RNW * SMCSIN * /Al3 * /Al2 * /All * /AlO 

SMCSIN * /Al3 * /Al2 * /All * /AlO 

83 

---------------
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 

; OUTPUT 
; INPUT 



SMCS2 
KAC21 
KAC22 

SMCSIN * /Al3 * /Al2 * /All * AlO 
SMCSIN * /Al3 * Al2 * /All * /AlO 
SMCSIN * /Al3 * Al2 * /All * AlO 

SMBUFFEN = SMCSl + SMCS2 + SCAN + RD 

Of the following two dsacks, only one should be enabled. 
If using the smart A/D board, enable SMDSACKO 
If using the 16-Bit A/D, enable SMDSACKl 
Disable a DSACK by setting it equal to GND 
(Either comment out the two middle or two outer equations) 

SMDSACKO = WAIT2 * (SMCSl + KAC21 + KAC22) 
; SMDSACKO = GND 
; SMDSACKl = SCAN * WAIT2 
SMDSACKl = GND 

84 



CPU 

68020 

IIc6MHz ~-
lock 

MPU 
68882 

Ram 
32Kx8 

ROM 
64Kx8 

PAL 
22vl0 

Detail View CPU 68020 

Ram 
32Kx8 

ROM 
64Kx8 

PAL 
22vl0 

PAL 
24vl6 

Ram 
32Kx8 

ROM 
64Kx8 

PAL 
22vl0 

PAL 
24v16 

Ram 
32Kx8 

ROM 
64Kx8 

Smart 
Port 

Figure 9.1 Detail View-CPU 68020 

85 

DUART 
68681 

Plff68230 

...J 
u.J 
...JE
...JO::: 
<o 
O:::Q. 
< 
Q. 

(0 
u 
> 
(0 

,--------, 0 
00 

f- AID ..2 cc = <: 
r- PI!f68230 L.... ...---- ~ 

8254 
Timer 

8254 
Timer 

8254 
Timer 

8254 
Timer 

= ,__ AID c 
cc 

'-0 
\0 



CPU 
68020 

MPU 68882 

Control 
Circuit 

Overall View CPU 68020 

ROM 
4x 27c512 

RAM 
4x 60L256 

Figure 9.2 Over all View-CPU 68020 

86 

Peripherals
PIIf, DUART, 
Timers, Sman 

Port 



P 1 Connector 

r----..., 

IC 
LOGIC 

_____ _, 

K BOARD LAYOUT 

{:§ Indicators .•. J 
... Q) P2 Connector 

c::: 
0 

ro 1/) :c Q) 
0:: 

000 

CPU EJ I ROM31 

EJ8 
Co-Processor EJB 

EJ I ROMO I 

r------ ...... 
I I 
I I 
I PALS I 
I I 
I I _______ .J 

r---~ 
I 
I IC I 
I LOGIC I 
I I 

I L ___ _ 

Figure 9.3 K Board Layout 

87 

I TI~ER I 

I TI~ER I 



00 
00 

1 

-

2 

f-

3 

-

4 

A 

Control 

Data 

Address 

A 

I 

. 
1 

1 

1 

I 1 

I 

I . 
MICO• 

I 

I 

B I 

U3 

00 .... ....._,. 
1 

01 
02 :': Ol 
04 uT~ """ 01 
01 OP1 

1 

07 OP2 1 
ASI ""' ~ I 
A82 ""' li"--
AS3 OPI ... OPI 1 
IPO 01'1 LAliDA 
IPI AliDA 

I 

IP2 TliD 
1 

IPl """" IP4 """' 
11 

IPI XloiCUC 
cs .. 

MC88681 

B I 

c I D 

1 

-

"T1 OQ. 2 
U18 ~ • • 

TIIN ~ TIOUT ' . To PC ACO (PIAA 29) 
1 

T21N T20UT 

~ 
1.0 T31N T30UT 

T41N T40UT ~ TSIN T!iOUT --1 
AIOU RUN To PC TXO (PIAA-:10) 

=~ ===+ t/) 
0 -

4 fMOUT R4tN ~ ::r ~ W''- ·~· --i1 (1) r MAX235 3 ~,.____ To IAI K U18 (MAX 235) PIN 10 (SERIAl 2 TXO PIRC-29) 
L____ TO IAI K Ulft(MAX 23S)PIN ](SERIAL 2ACO PIAC :10) &:~) 

.-+ c:;· CJ 
-:- GNO r:n 

-~i 1sPF ~ 
'"tl 3 >T! .., 

q~ 0 
0 

5~}: (1) 
r:n 

-:- GND r:n 
0 .., 
I '----

TrUe K Processor 4 

Size I Number I Aov 

8 
Data AIXI .. Drawn by -F1lename tJI( c::n1 Shoo! 1 ol 8 

c I D 



A I B I c I D 

Control 
1 

~ 

~ 
~ ~ 

1 - .. A_. .. c- .. 
w 
a Q Q 

10 

"' 
10 

"" 
10 .. 

AI AI I .. .. .. .. .. .. ... .. 
f-

.. .. .. ., .. -. .. • .. • .. • .. .. .. .. .. 
I 

IJ •• "' AIO • • 
" 

.. 
Q· II .. 

" 
.. 

' ' 
M 1 1 

M A1l I M 'Tj A10 AIO ... 
I All ... 1 ., A1 ... -· 14 ... ••• . Al2 

... 
All (IQ 

AI 
I 1 

... ., .. • 
., 

" ' 
... E; ... 

010 II c: ... .. 
" lXlO 000 DO 1t CKlO 0 

2 Address ' OQI 

• 
OQI 

~~ :-o 2 
' OQa ' .., 

003 
II IJQO VI •• ' I 

' ""' • I ""' . OQ6 .. I DQO OQ6 (/} (lQt OQt DOt 
1 OQJ 1 1 • 0 

Data 601..256 601..256 I!OL256 ::r 
0 a 

r- ~ f--~ U10 .J:!.!.!_ U12 o· ..._.,.. 
r-

,._.. .. ...,..,.,. _r:--
~ L...lL( [ L...lL( •~\f'P ...... .... .. .... 

1 .. 10 .. "t1 
•• ., '"'I .. .. 0 .. ... 0 

• .. .. 0 .. • .. (ll 

3 .. .. (ll 3 • A7 
A1 •• .. 0 .. ... ' 

.. .. '"'I .. M .. 
AIO •• 1 • ... AIO I ... 1 

1 ... All N ... • .. . .. . .. 
I AIO ... ' ... ... 

A1 ' ... • .,. ., 7 ... . .. 
'\..4IL_L • 1. 11 I ... \..&L...L_ . .. 1 . .. 

- 01 II II • 01 " ,. ,fi -1 g;~f- 1 I 

"" I QO I I 

~r-!r-
Q3 • 

Ud 
Q3 

:-f Q4 

aor-1 I""" . 0< 

: 1 
011 I 

~ :: QJ I 
I I .. 

~ 27CS12 27C512 Vc512 

4 T"fe K Processor 4 

~·a ~~mbe· r1 0.11 D111wn1>11 
Filename NKSfl? ShMI? r:JA 

A I B c I D 



A B c 

2 

'-0 
0 

... 
All ... ., ... ... 

3 ... ., .,. 
••• ... .... .... ... ... .... .... -... .... .... 

4 

A B c 

Control 

Address 

Data 

D 

'Tj 
QQ. 

~ 2 

':0 
0.. 

en 
0 g-
3 
$:l.) ,.... -· 0 

~ 
"'1::1 .., 
0 n 
n 3 
Ill 
Ill 
0 .., 
w 

r.~~~~--~K~P~-------------------14 rocessor 



A B c 0 

'Tj -· vee (JQ 

U24 ~ 2 U28:A U28:0 2 
PM [>o· .... •N [>o· ur :.0 

EO I ....,] 

74LS05 74LSOS "" •• 
IZl 

U28:B U28:E 
0 

••• [>o· [>o·· 
::r 

PAJ" ..... II ,.,.. (II 

3 
'-0 74lS05 74LSOS a -- -· U28:e U28:F 0 

·~ [>o· •&: ·~ '! [>o·· PM" vee ~ 
R3 ""t' 

74LS05 74lSOS .... 
a30 0 

0 

3 
(II 
til 3 

U29:A til 

! [>o· A4 HALT 
0 

e• , .. ,. .... 
a30 

I 

74LS05 U18:0 .$:>. 

U29:B 74lS04 

eaz [>o· ,.,,. AS ,.. 
a30 

74LSOS U18:E 
.,. GND 

4 Tlll4t K Processor 4 

Size 

8 
Dale 

A B c 



A B c 0 

+SV 

·15V 
R102 

3.9K 

·15V Tltfmtnal8 

.,. GND 

HS9412 

GND 

2 2 

U32 'Tl -· 06 .. (JQ 
00 " ·~ 01 ... .. , :a ... . ., oc ... .. .. ~ AI 

3 " 
'"C a 3 ... 0 

L _________________ _.JTimolnpul 

... (.1) ••• (1.! ... (1.! ... 0 ... .., .. .. 
01 IJI 
MC682:J> 

4 .-------------------------~4 
r~ K Processor 
s ... 

B 
Dolt 
Filename 

A B c 



A B 

U13 

ClK/10 
I 

II """"' " loll8IIC!b 1 
I .. K>OI 

I 
~ 

I 

• " """" 
I 

I I ;:-.; I 
I " """"' I ~ I 

" """' ~ .. IIOIQO 

17 IIOIQO 

~ I .. """' R 

" 
.. """" 

I I 
110 """" I 

" 22V10 

U15 MOSACKO I 

2 

U21:A I 
ClK/10 ... A20 " II """"' 

14 
I 12 K>OI 

I 

• 1 • " """" 
I I" 

I I 

" """"' 
I 

R • MOSACKI S • I I 

" """' 74LS260 
I 

II """" 
I 

" """" I I .... • U21:B I " """" .. """" I " 110 """" 
I 

I 
Ill ... I I 

" 22V10 
74LS260 

U29:0 

tfiU.l.'-'M-I'Ofll ~ 
CF- 0 74LSOS , 

0 
0 X1 U18:A 

116Mh.z 
I • -::- GND 

I 

I r 74LS04 CLOCK 
3 

~ ! ii :I ~ 
f........t..- vee 

'--+ ... ., TRIO f-L-""' OJT 

L..._..L_ 
CONT SW1 
018 

I ... 
~::: ~::: N .-----!--- GNO 

AB-15 o-£! :I f:O F-o .... f-o LMSSSJA ... ci ci ci 
-::- GND 

4 
tGNO 

A B 

c D 

U4 
U14 1'"'"'''""'' ..... ,.. ""' I 

05 "' 
.. 

CUOIO 08 OS 
.. 7 

II IIOIQO " All 31 
07 0> .. ..,.,I I " PAD 01 

.. 
• " """" PAl 00 

.. . 
I • -• """"' I I" 7 

PA2 "' • KO" .. """' I K PM 
PAS DT 

" .. IIOIQO res· .. • PM cs .. , .. 
17 IIOIQO 

1 I 
PA5 ClK 

10 • """' •• " 
PM RESET 

" """" I 
PA7 37 .... 

I 
110 """" RTOK I PC71~ I K • 
Ill I 

HI p~~:~K .. I 

22V10 DOH I 
... ,. 
HS PC.tl --+ "' PC3/ nRO -U19:A 

. 2 OOACKO" 

74LSOS 

U19:B 

OSACKI" 

74LSOS 

U18:C .. .. 
74LS04 

~£ 
CU<II. 

_CCK 

~ U20:B 

±-c ~ ClKo • ±tk Q lh I 
~CLK 

ffis74 ~Q 

74LS74 

U18:B 

• POR" 

74LS04 

~ U19:C 

----i?sos • _~_J '- ' .... ,. 
74LSOO 

U19:0 

• • 
, U22:B 74LS05 

I '- • 
74LSOO 

RSTI 

(connocled 10 pullup 111111o1o111) R912 

c 

I I 
PBO PC>IliN 
POl PCI 

II P02 PCO 
PIS RSI 

I 
P84 ••• 
POl ... 
POl ... 

1 P07 ••• 
MC68230 

~ .. • erA •• CLK 

r· ::: :::t: 
vee • 

QC 

~ 00 .,. 
; Ht= cit f--1-<---

74LS164 

1274~ ...... 
U18:F 

I .. 
I 

'"r1 
M -· OQ 

~ 2 
\0 
\o 
(/) 
0 
::r' 
0 

AS I :::5 
~=-ClK 

3 
ll) ..... -· 0 r: QA+-

oa 
QC 
QD + .,. 
OF + ~ f---!.<--

74LS164 

z 
WAIT I ~ WI 

'1::1 
'"t 
0 3 0 
0 
{/l 
{/l 

0 
'"t 

....... 

fliNt NK Pro 
--------------44 
cessor 

sirS j Number 

Dale Drawn b 

F1lename Sheel 

D 



A B c D 

TO PI 07 
TOP1 011 

TOM230(2) PllOO ., .... 
(JQ 

2 0301 ~ 2 74LS245 
TOR/WON BUS ~ CL""" 

043 TO SMART A/0 CHIP """"' ..... 
1101<)0 For 16 bit AJO 019:E 0 11001 
1101<)0 

""""' 010 
..,... 

011 """" 74LS05 C/) ....... 029:F \0 010 
110'1:11 0 

~ TO DATA LINES 010 TO Pl CONNECTOR """"" if """ .. , .,.. PAI.22V10 a DO> 74LS05 
~ 74LS245 

019:F .... 
0 

U44 .... z 
74LS05 ~ 

3 Ill 
~ "'C 3 w 

a: "' a 
TO DATA LINES TO PI CONNECTOR 0 

(I) 
til 

+5V til 
+5V 7 GND 0 

74LS245 S-goloi8230U.0.05 "'1 

' N 

0445 0446 

81 
e• 
83 

4 .. .. I' M .. .. 
74lS245 74LS245 

.,. GNO _,. QND 

A B c 



1 
P2RA:1 

1 
2 
3 .. 
5 
6 
1 
II 
9 
10 
11 
12 
13 
14 

2 15 
16 
17 
18 
111 
20 
21 
22 
23 
24 
25 
26 
21 
26 
29 
30 
31 

3 
DIN3X32M 

32 

4 

A 

P2RC:1 ........ I 

"""" 2 
r .. ~ 3 
1"!1-U. 4 
I"!H!I 5 ....... 6 
I'H7 1 
1'-HII 8 
..-..... 9 
t"o.un 10 
i"Htt 11 
1"'0.11<) 12 
....... ~ 13 
i"HU. 14 
f'.HI!i 15 
r .. ,., 18 
ANn 17 
I' .NO 18 
,,.. ... ..r. 19 
ICI.CH2 20 
ICI.CH3 21 
IC2-cH1 22 
IC2.CH2 23 
IC2.CH3 24 
IC3-CHI 25 
IC3-CH2 26 
IC3-<:H3 27 
GNn 26 
fl'~:..ru-. 29 
niNTnl 30 
RTn. 31 
AI 32 

DIN3X32M 

P1RB 16 NO RESET 

A 

17 CENTER RESET 

18NC RESET 

B 

... v 

.~-
ANn 
ANn 
•1!iV 

-·~~ 
Pan• 

P&t• 

D&?• 

D&~ 

PU• 

D&~• 

p..., • 

P.t.7• 

Dan ..... 
PR~ 

""'"' ...... 
PR<; ...... 
PA7 

lllt.ITnot 

RTOK 

'"' OK 
nNn 
ICTI&M"'T 
BRK 
RAW" 

BGK 
BUSY 

B 

c 

P1RA:1 
P1RB:1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
18 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

K=B= 
I 31 
132 

DIN3X32M 
DIN3X32M 

NOTE: EOC-AD' WAS MOVED FROM 

P1 RC-32 TO P1 RA-31 

Tille 

Size 

A 
Date 
Filename 

c 

D 

P1RC:1 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
11 
16 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

DIN3X32M 

ANn 
SUAfl.'\ ...... ~ 
r.llln 

"T&OT I>J 

ANn 

I N(H3) 
HI) 

TIUI'RfWJ (TEST) ..... . ..... 
AA7 ...... 
R.AQ 

QUAI'QI'T• 

RQU('_QI' 

RQUI"'<:?• 

I'UPTV.&n• 

FAt' 

QU.AntlA 

.!WAfll'lQ 

"" lntl\ 

"u.an11 
.!WAnt~ 

"UAn1!\ 
.,. .. lr\1; 

""' .. "'"' lii'RI&I .,r.l NO 
co 
0 

SFRIAI ?RI 

SEBI.AL~ TX 
1'1"11"": 

..,_.., -· (JQ 

~ 
:-.o ...... ...... 
en 
0 
::r' 
0 
3 a -· 0 

z 
~ ., 
a 
0 
0 
{/) 
{/) 

0 .... 
I 

w 

NK Processor 
Number Rev 

1 

2 

3 

4 



APPENDIX A 

96 



APPENDIX A 

TALK INTRODUCTION 

This documentation is for the program talk70.exe. 
Talk70.exe uses the following files: 
TALK70.H- shared include file 
TALK70.C- main program, mode 1, mode 2, mode 4, and general purpose functions 
BT.C- serial port communication and display functions 
Mode3.C- mode 3 rut/si 
SDI.C- mode 5 
MODE6.C -mode 6 
MODE7.C- mode 7 
RTRUT.C - real-time rut 
SERQS.ASM - serial port functions, supporting 3 ports 
SERIALS.ASM - serial port functions, supporting 2 ports 

The make file .tall 70.mak is used for creating the executable talk70.exe. 
This document gives the description of each function in each of the files. 
This description of each function is called function header. Partial structure 
charts are drawn to explain which function calls which function. 
Some flowcharts are drawn to ease the understanding of some of the harder 
functions. We have also explained some of the global variables and what role 
they play in the program. The program talk70.exe uses some files which it writes to and 
reads from. This is also taken care of. 
A Warnier Orr diagram is drawn which gives us the over all picture of the whole program. This 
diagram is also provided on disk. This can be loaded into any ascii editor and you can follow the 
flow of the program. The Warnier Orr diagram is useful in providing the function hierarchy 
indicating which function is calling which function(s). This helps in identifying the leaf 
functions (the functions that do not call any other function) which can provide a starting point for 
documentation. 

A-1 



Structure Charts 

A-2 



lnitSi 

ReadRutCorr 

SetCursor 

OpenComm Process 
function 

Main 

ReadRutCorr Display Help 

ReadRutCorr 

Level1 

MonitorMode 

serclose_q 

Level2 

A-3 



ProcessFunction ' i 
Upload DisplayCommParami 

FlushPort. KeyPad Mode 

CommParam 

Escape Hit serclose_q 

Tes!Mode ProfileMO<Ie2 OisplayHelp IRI_RUTMode M0<1e6 SDProfile1 ProfileMO<Ie3 

Level3 

IRI_RUTMode 

IRI_RUTMode Level4 

A-4 



IRI_RUTMode 

IRI RUTMode Level4 

IRI RUTMode ~ -
d'~-".: 

IIWm GetMsg B serrecv Checkcomm Sa 

Level4 
IRI_RUTMode 

A-5 



KeyPadMode 

Send Command serrecv 

FlushPort SetCursor Sersend 

Keypad Mode Level4 

LoadedCorr Level4 

A-6 



Mode6 

I 

Mode6 Level4 

Mode6 

Mode6 Level4 

A-7 



ProfileMode2 

ProfileMode2 
Level4 

~ 

ProfileMode2 ~ 
~ 

I Iii 

i i 

Flner I Ctea~ows I I Botaer I l Se!Cursor I loistanceMode II SetSdMode I IGetFilename I I GetAcoustic II SetA cUnil 

ProfileMode2 Level4 

A-8 



.--------,---,------IProfileMode2r-.. -------,----...,...---~ 

ProfileMode2 Level4 

,-------.------lProfileMode2b-2--------------. 

i 

I CheckTime I 

ProfileMode2 Level4 

A-9 



:-----1ProfileMode3r::----------,----+----

ProfileMode3 Level4 

I 
ProfileMode3 ~1 ~-------~---,..--------, 

! 

ProfileMode3 Level4 

A-10 



ProfileMode3 

Level4 

I 

I 

SDProfile1 

SDProfie1 

Level4 

SDProllle1 

.. .. 
I 

I 
L, 

Level4 

A-ll 

I 

~ 
~ 

i 
l 

! 

i 

I 
I 

: 
! 

i 
I 
I 

I 
I 



TestMode Level4 

TestMode 

WaitForFirst serrecv sersend readkey Delay 

TestMode Level4 

A-12 



SetExtractratio SetFilter GetMem 

SendCommand Get String 

LevelS 

SetParam Border 

SetlnteraniSPF SetExlractRatio Set Cursor Writech 

GetFilename 

SetCursor 

LevelS 

A-13 



CJearRows SetCursor SelectAcoustlc 

FlushPol1 Send Command Get String sersend 

LevelS 

A-14 



checktime Escape Hit 

clock kbhit 

PauseRut 

LevelS 

A-15 



PostRut 

SendS !ling ScroiiWn 
SetCursor 

PutRoadlnfo 

Flush Port DisiManage 

serrecv LevelS sersend 

SetlntemaiSPF 

Send Command Delay Border SetCursor 

A-16 



WaiiForf'irst 

r--. "'------, 
i 

readkey Set Curser Clearows 

LevelS 

SeriaiPortStatus i~ 
i • 

LevelS 



GetMsg DisplayPoints 

serreev ClearRows Set Cursor 

GetSPF StopCollect 

SetCursor Flush Port 

LevelS 

DiSplayStatusForm 

SatCursor ClearRaws Set Cursor 

LevelS 

A-18 



Send Command 

Escape Hit sersend WaitChar 

GetString sersend FlushPort SendCommand 

Level5 

End Message 

sersend SetCursor Border Clear Rows 

Level5 

A-19 



l 
OPenComm DisplayHelp 

- ___! 

seriniLq ~ 

I l serinit 

DisplayCommParam 

LevelS 

A-20 



Function Headers 
Description of Talk Functions sorted alphabetically 

A-21 



Function name: Border 

Input Parameters: 
int lr 

int lc 

intrr 

int rc 

Return Value: 
None 

Upper left row 
Used 
Upper left column 
Used 
Lower right row 
Used 
Lower right column 
Used 

Global Variables Set and Used: 
None. 

Description: 
This routine draws a border on the screen. It uses the horizontal, vertical, comer characters to draw the border. 

Functions Called: 
SetCursor 
WriteCh. 

Called by: 
GetDistance 
IRI RUTMode 
ProfileMode3 
ProfileMode2 
KeyPadMode 
TestMode 
Pause Rut 
SO Profile 
EndMessage 
PutRoadlnfo 

Example Calls: 
Border(21, 2, 23, 14). 

Function name: CheckComm 

Input Parameters: 
None. 

A-22 



Return Value: 
None 

Global variables set and used: 
PortNo Used 
iOverrun Set 

Used 
iFrame Set 

Used 

Description: 
This function calls the function SerialPortStatus. The function SerialPortStatus returns two bytes which describe the 
status of the port. 
The Overrun error is checked with the help of this 16 bit infonnation and the FrameError is checked with the help of 
this 16 byte infonnation. There is a counter iFrame which is incremented if there has been a Frame Error. There is a 
counter iOverRun which is incremented if there is an Overrun error. 

Functions Called: 
SerialPortStatus, SetCursor. 

Called by: 
ProfileMode2, ProfileMode3, IRI_RUTMode and SDProfilel 

Example Call: 
CheckComm() 

Function name: CheckTime 

Input Parameters: 
bReset Used 

Return Value: 
0 I bdiff bdiff is an unsigned integer. 

Global variables set and used: 
None 

Description: 
CheckTime( TRUE) indicates that the clock is reset and 0 is returned as the return value. 
The variable CurrClock indicates the time when the most recent call to this routine is made. 
The variable OldCiock indicates the (last but one) most recent call to this routine is made. 
CheckTime( FALSE ) checks the difference between CurrCiock and OldClock. 
If the difference is greater that I 000 then this routine returns the difference ( diff ). 
If the difference is lower that 1000, then a 0 is returned. 

A-23 



By default, the old clock is set equal to the current clock i.e. OldClock = CurrClock. 
I 000 indicates 1 second because the value returned by clock( ) is in milliseconds. 
Observe that OldClock is defined as static. 

Functions Called: 
clock ( ) - C function 

Called by: 
ProfileMode2 

Example Call 
checkTime(True) 
checkTime( False) 

Function name: CloseRut 

Input Parameters: 
None 

Return Value: 
None 

Global variables set and used: 
fRut Used 
fSI Used 
fWSV Used 
iRutCnt Used 
iSICnt Used 
iAFirst Used 
iALast Used 
iBadAcou Used 

Set 
Used 

Description: 
This routine checks if the files for Rut, SI, WSV are open ... that is 3 tiles. It writes Rut and all the bad acoustics to 
the file for Rut. It writes SI to the file for Sl. It writes WSV to the file for WSV. 
It closes all the files. 
Functions Called: fprintf 
fclose 

Called: 
None 

Called by: 
ProfileMode3 

A-24 



Example Call 
CloseRut() 

Function Name: CommParam 

Input Parameters: 
None. 

Return Value: 
None. 

Global Variables Set and Used: 
BaudRate Set 
SupportedBaudRate Used 
Parity Set 
DataBits Set 
StopBit Set 
PortNo Set 

Description: 
This function allows the user to select the communication parameters. It allows the user to select the communication 
parameter Baud Rate from any of the following Baud Rate, like { 9600, 4800, 2400, 1200, 600, 300, 150, 19200 } . 
The user is allowed to select the-parity, the parity can be either No Parity, Odd Parity or Even Parity. The user is 
also allowed to select the number of stop bits either I or 2. The user is also allowed to select the number of databits 
7/8. 
The user can also select the ports, either COMI or COM2. 

Functions Called: 
readkey 

Called by: 
ProcessFunctions 

Example Calls: 
CommParam() 

Function name: Delay 

Input Parameters : 
ms Time in milliseconds 

Used 

A-25 



Return Value: 
one 

Global variables set and used: 
None 
Description: 
It just waits for time specified in (ms), time in milliseconds and returns. 

Functions Called: 
clock ( ) - C function 

Called by: 
SetlntemaiSPF and TestMode 

Example Call: 
Delay(lOL) 

Function name: DispCorr 

Input Parameters: 
None 

Return Value: 
None 

Global variables set and used: 
SMountCorr used 
RuttCorr.Mounting used 
RuttCorrLoading used 
SLoadCorr used 
STotalCorr used 

Description: 
It displays the variables SMountCorr, RuttCorr.Mounting, RuttCorrLoading, SLoadCorr & STotaiCorr. 
where 
char sMountCorr[]=''\nCurrent mounting corrections (inch):\n"; 
char sLoadCorr[] ="\nCurrent field loaded/loaded corrections (inch):\n"; 
char sTotaiCorr[]=''\nTotal corrections (counts):\n"; 
It displays the values of RuttCorr.Loading and RuttCottMounting for all the 5 acoustic devices. Then the program 
displays the RuttCorrMounting + RuttCorrLoading for all the 5 acoustic devices which is the total 
Rutt Correlation for the 5 devices. The loading correlation is added to the mounting correlation. 

Refer to datadic.doc for defmitions of RutCorr.Mounting, RutCorrLoading, StotalCorr 

A-26 



Functions Called: 
printf DOS 

Called by: 
LoadedCorr( ) 

Example Call: 
DispCorr( ); 

Function name: DisplayCommParam 

Input Parameters: 
None 

Return Value: 
None 

Global Variables Set and Used:. 
PortNo Used 
Baud.Rate Used 
Parity Used 
Databits Used 
StopBits Used 

Description: 
This function displays info. about the communication parameters. It displays the parity; whether the parity is 
ODDPARITY, EVENP ARITY or NO PARITY along with the number of databits and the number of stopbits. 

Functions Called: 
None 

Called by: 
ProcessFunctions, DisplayHelp 

Example Calls: 
DisplayCommParam() 

A-27 



Function name: DisplavHelp 

Input Parameters: 
None 

Return Value: 
None 

Global variables set and used: 
None 

Description: 
It gives us the option of which keys need to be pressed to change communication parameters, Toggle between hex 
and ascii mode, select data collection mode, Metric/English, Test Acoustic devices, Siometer Panel, Profile Mode 
and to exit. The existing communication parameters are displayed by the call to the function DisplayCommParam. 
This helps the use to see the existing parameters and decide what he/she needs to do next and change which 
parameters. 

Functions Called: 
printf 
DisplayCommParam 

Called by: 
main 

Example Call: 
Display Help 

Function name: DisplayPoints 

Input Parameters: 
int iRow The rows are used as a parameter for clearing the screen and setting the cursor 

Used 
long nPts 
double dist 

double sample 

Used 
Distance 
Set 
Used 
Samples 
Used 

A-28 



Return Value: 
None 

Global variables set and used: 
bMetric Used 

Description: 
This function clears the rows and sets the cursor. If the variable bMetric is set the distance is printed in kilometers 
otherwise the distance is printed in miles and feet. Also the number of points and samples are also printed. 

Functions Called: 
ClearRows 
SetCursor 

Called by: 
ProfileMode2 

Example Call: 
DisplayPoints(ll, nPts, dist, sample}; 

Function name: DisplayStatusForm 

Input Parameters: 
int iRow Row 

Used 

Return Value: 
None 

Global Variables Set and Used: 
bMetric Used. It is a Boolean variable. Ifthe basic metric is KM then it is TRUE else if it is FEET 

then it is FALSE. [set/used and What is the significance ofthe variable] 

Description: 
It clears the screen and prints the distance traveled in KM if the bMetric is TRUE else it prints in FEET or in 
MILES ifbMetric is FALSE. 
This function prints a form for the Time Elapsed and Distance traveled. It prints the literal strings 

"Busy= /1000". Observe the blank space between "Busy" and the "/1000". This space is conserved 
for the cursor to be set later on and some data to be printed in the position between "Busy " 
and "II 000". Also the cursor is set and the strings " Time Elapsed= " and " 
Distance Traveled = ", " km", " feet ( miles}" are printed. The variable bMetric is checked. If this 
variable is TRUE then the "km" literal string is printed otherwise the " feet ( miles )" literal string is printed. 

A-29 



Functions Called: 
ClearRows 
SetCursor. 

Called by: 
IRI_RUTMode 
ProfileMode2 
ProfileMode3 
SO Profile. 

Example Calls: 
DisplayStatusFonn(int iRow). 

Function name: DistanceMode 

Input Parameters: 
bDisplay It is of the Boolean type. So it can take values of TRUE 1 FALSE 

Used. 

Return Value: 
int IsDistance This tell us whether it is DistanceMode or TimeMode 

lflsDistance is TRUE then it is DistanceMode else it is TimeMode. 

IsDistance =TRUE I FALSE 

Global Variables Set and Used: 
None 

Description: 
This routine sends the command "D 42EE" using the SendCommand function. The routine then gets a string from 
the port which is either TRUE or FALSE. The routine detennines whether IsDistance is TRUE I FALSE. If 
IsDistance is TRUE then it prints "DistanceMode " otherwise it prints "TimeMode". 

Functions Called: 
SendCommand, GetString, sscanf, SetCursor, printf 

Called by: 
ProfileMode2 
DistanceMode 

A-30 



Example Calls: 
DistanceMode(TRUE), DistanceMode(F ALSE). 

Function name: DistManage 

Input Parameters: 

int iFunc where iFunc c { DM_RUT, DM_SI, DM_INIT} 
Used 

Return Value: 
DISTTYPE DistR 

Global Variables Set and Used: 
nRutsPerDMI Used 
bExtraComm Used 
RutDist Used 
SIDist Used 

Description: 
This routine first fmds out the value ofiFunc. The value ofiFunc is determined. iFunc is either DM_RUT, 
DM_Sl, DM_INIT. Depending upon the value ofiFunc a certain steps of functions is performed. 
Why do you need this function ? 
The mode3 obtains the value of SI every 0.1/0.2 mile, that is every 1056 feet or 528 feet depending upon the 
setting. The mode3 also obtains the value of the acoustic data every 4 feet. The program running on the PC gets the 
acoustic data as well as the Sl from the siometer. 
In this program we need to send Distance Signals to the mission manager if COM3 is connected. 
Since the acoustic data comes in every 4 feet we can send a distance signal every 4 feet. But the acoustic data is not 
a true representative of how much distance is covered. The SI is a true representative of how much distance is 
covered. But the acoustic data comes in every 4 feet whereas the SI comes in every 1056 feet. Whenever acoustic 
data comes in a distance signal is sent to the mission manager.But you know that this acoustic data arrival does not 
really allow you to send a distance signal after exactly 4 feet. Therefore you could have sent either more or less 
distance signals. Therefore you need to do some corrections. The SI comes in every 1056 feet. Therefore when the 
SI signal comes in you now whether you need to send some more distance signals or lesser. 

Whenever this routine is called using DM_INIT it means that this routine is being called for the frrst time by mode3 
Whenever this routine is called using DM_SI i.e. DistManage(DM_SI) it means that a value ofSI has come in and 
we need to adjust the sending of distance signals. 
Whenever this routine is called using DM_RUT i.e. DistManage(DM_RUT) it means that a value of RUT , acoustic 
data has come in and we need to adjust the sending of the distance signals 

Lets see how we do it in this routine. 

• This routine is called with DM _ INIT whenever it is called for the frrst time to initialize the values of the 
variables used in this routine. 

zero. 

The following initializations are done in this routine if it is called with DM_INIT. 
DistR = 0; 
DistR is the cumulative of the total distance covered so when this routine is initially called, DistR is set to 

A-31 



iDCnt= 0; 
iDCnt is the number of times the routine has got acoustic data so it is initially set to zero. 
DistBalance = SIDist 
SIDist is either 1056 or 528. this value is in feet. 

• This routine is called with DM_RUT whenever mode3 gets a RUT i.e. (acoustic data). 

Whenever a RUT comes in that is acoustic data comes in the value of iDCnt is incremented. 
Observe that the type of iDCnt is static. Once it is initialized, it remains the same no matter what the 

value of iDCnt is. 
When the value of iDCnt reaches nRutsPerDMI ( 3 ) , then if DistBalance = 0 and bExtraComm is 
1, a command "D" is sent to the serial port COM3. The RUT comes in every 4 feet. So 4 * 3 = 12 
feet. Every 12 feet a "D" command is sent to COM3. Also the adjustment of the distance signals is 
done. DistR is the cumulative of all the distance covered. ( DistBalance is initially set to SIDist by the 

initialization routine. ) 
DistBalance is decremented by the amount of total distance covered since the last SI signal. 

• This routine is called with DM_SI whenever mode3 gets anSI i.e. (This routine is called with DM_SI 
whenever mode3 gets an SI i.e. ( Serviceability index ). 

Whenever an SI value comes in, that is every I 056, 528 feet, if lesser number of distance signals have been 
sent the correction is made and the exact amount of distance signals which were supposed to be sent 
depending the distance covered are sent. This correction is made here because SI gives us an indication of 
the exact distance covered. 

Observe the while loop below. Until DistBalance does not become zero, a correction is made, that is the 
distance signal is sent. After the DistBalance becomes zero, the exact number of distance signals have been sent. 

The DistBalance is initialized to SIDist which has to be decremented every time a RUT ... DM_RUT comes 
in. 

II control for tow few samples 
while (DistBalance > 0) { 

} 

II Send out extra D's to COM3 
if (bExtraComm) sersend(COM3, 'D'); 
DistR += RutDist*nRutsPerDMI; 
DistBalance ~= RutDist*nRutsPerDMI; 

DistBalance += SIDist; 

Functions Called: 
Sersend 

Called by: 
ProfileMode3 

Example Calls: 
DistManage(DM_INin 

A-32 



Function name: EndMessage 

Input Parameters: 
None. 

Return Value: 
None. 

Global Variables Set and Used: 
PortNo Used 
bAbort Used 

Description: 
It prints the end message. If sending has been aborted then the it prints as 'ABORTED' else if sending has been 

completed then it prints 'COMPLETED' and asks you to press any key to proceed. It fmally clears the screen. 

Functions Called: 
sersend 
SetCursor 
ClearRows 
Border 
Readkey 

Called by: 
IRI RUTMode 

ProfileMode2 
ProfileMode3 
SDProfile. 

Example Calls: 
EndMessage(). 

Function name: EscapeHit 

Input Parameters: 
None 

Return Value: 
BOOLEAN TRUE I FALSE (TRUE is returned when the ESCAPE key is hit. FALSE is returned 

when the ESCAPE key is not hit ) 

Global variables set and used: 
None 

A-33 



Description: 
Checks whether an Escape key has been hit on the Keyboard. If Escape key has been hit it will return TRUE else it 
return FALSE to the calling function. 

Functions Called: 
kbhit 

Called by: 
Upload 
SendCommand 
GetString 
ProcessFunction 

Function name: FlushPort 

Input Parameters: 
int PortNo PortNumber 

Return Value: 
None 

Global variables set and used: 
None 

Description: 
The function call to serrecv is made again and again until a word FFFF ( hex ) is received. 
The event of receiving a word FFFF indicates that the port has been flushed ... cleared. 

Functions Called: 
serrecv 

Called by: 
SetSdMode, SendCommand, GetString, Upload, ProcessFunctions, KeyPadMode, TestMode, SetAcUnit, 
StopCollect, ProfileMode3, SetMem 

Example Calls: 
FlushPort(COMI) 

A-34 



Function name: GetAcoustic 

Input Parameters: 
int Row 
int *acunit 

Return Value: 
None 

Used 
Used 

Global Variables Set and Used: 
szDefAc Set 

Used 
szActiveAcoustic Used 

Description: The function 'GetAcoustic' asks the user enter the selected acoustic devices. It first clears the rows 
and sets the cursor in a particular position on the screen. It prints a statement "Enter selected acoustic device(s):" 
Here the user is supposed to enter the numbers of the acoustic devices that should collect the data. The acoustic 
devices are numbered 1 through 5 with an optional laser that can be set and given the number 6 to select. It prints 
on the screen the numbers of the acoustic devices that have been selected for the collection of the data. 

Functions Called: 
ClearRows 
SetCursor 
SelectAcoustic 

Called by: 
ProflleMode3 
ProflleMode2 
IRI_RUTMode 
SDProfllel 

Example Calls: 
GetAcoustic( 10, &acunit) 

Function name: GetCursor 

Input Parameters: 
int *r 

int *c 

Return Value: 
None 

The rows position 
Set 
The column position 
Set 

Global variables set and used: 
None 

A-35 



Description: 
Reads the current cursor position for a specific display page and the current cursor size. It uses INTERRUPT Ox 1 Oh 
- Function 03h ( GET CURSOR POSITION AND SIZE). For this AH is 03, BH is page number, DH is the row(OOh 
is top), DL is Column ( OOh is left). 

Functions Called: 
int86 INTERRUPT OxiOh- Function 03h 

Called by: 
[Need to fmd which functions are calling this function] 
At present we did not fmd any function calling this function. 

Example Calls: 
Obviously None 

Function name: GetDistance 

Input Parameters: 
intRows 
char *unit 

double *dist 

Return Value: 
None 

Used 
Used 
Set 
Set 
Used 

Global Variables Set and Used: 
bMetric 
str 

Used 
Set This is a buffer. 

Description: This function basically gets distance from the user. This function asks the user to enter the distance. 
As long as the distance is 0 or less it sets the cursor and clears the rows. Then it prints a statement 'Enter distance'. 
Here the user has to enter the distance. This function has to get the distance from the user. If the distance is not 
entered it prompts again and again the user to enter the distance. 

Functions Called: 
SetCursor 
Clear Rows 

Called by: 
Mode6 
IRJ_RUTMode 
ProfileMode3 
ProfileMode2 

A-36 



Example Calls: 
GetDistance(l2, &unit, &distance) 

Function name: GetFileName 

Input Parameters: 
iRow Int type 

Set 
Used 

Return Value: 
A pointer to the file 

Global Variables Set and Used: 
bSysGenFileName Used 
str Set 

Used 
Datfile Set 

Used 
bComment Used 
Header Used 

Set 
SI_PACK Used 
DataCollectMode Used 
SI AVGSPD Used 

Description: It asks the user to enter the name of the output file. If the user does not enter a name of the file then 
the program itself generates a name of a file using the system time. It uses the localtime function that is supported 
by the 'C' library to get the local time[ actually localtime function converts calendar time into local time] to 
generate the name of the file. The name of the output file name is stored in the variable 'DatFile'. To verify 
whether the file by the name already exits we try to open the file in the read mode. If it already exits then the 
'fopen' function returns a non-null value. If it is so then we close the file and tells the user " File already exists. 
Replace?[N]fY :" to give another name for the file. Then it prints the name of the output file on the screen. It prints 
the header and allows the user to enter I or 2 lines of comment. 

Functions Called: 
ClearRows 
SetCursor 

Called by: 
IRI_RUTMode 
ProfileMode2 
ProfileMode3 
SDProfilel 
Mode6 

ExampleCalls: 
GetFileName( 6) 

A-37 



Function name: GetFioat 

Input Parameters: 
None 

Return Value: 
float 

Global Variables Set and Used: 
PortNo Used 

Description: This function uses serrecv to receive data from the serial port denoted by PortNo. The data 
received for ftrst time is stored in a variable. Then the port is read for 4 more times. Each time the serial port is 
read zeros are introduced into the lower order bits of data in multiples of 7 and same number of highest order bits 
are lost by shifting to left. For the data received fist 7 higher order bits are shifted out and 7 zeros are shifted into 
lower bits. Then this data is bitwise 'OR'ed with data that is stored in the variable and the result is stored in the 
variable. Next time the data received will be 14 higher order bits are shifted out introducing 14 zeros into the lower 
order bits. Again this is bitwise 'OR'ed with the data stored in the variable ad the result is again stored in the 
variable. This process is followed for the 3rd and 4th time with 21 and 28 zeros respectively introduced into the 
data that is received on 3rd and 4th time. Then the value in the variable is returned. 

Functions Called: 
serrecv 

Called by: 
RutMode 

Example Calls: 
GetFloat 

Function name: Get Header( char *Filename J 

Input Parameters: 
Filename That is a pointer to a char array containing the filename . The function prototype is 

defmes as shown. [char *GetHeader(char *FileName)] 
Used 

Return Value: 
char * Pointer to a character 

Global variables set and used: 
None 

A-38 



Description: 
It gets the 80 character header from the filename provided as input and adds a \0 character to the end of the header 
string. It returns the 80 character header. 

Functions Called: 
fopen 
malloc 
free 
fclose 
fgets 

Called by: 
InitSi 

Example Call: 
GetHeader(value) 

Function name: GetlntemaiSPF 

Input Parameters: 
None 

Return Value: 
SPF An integer 

Global Variables Set and Used: 
None 

Description: This function sends "D4E3E" to the siometer. Then it reads the siometer by using the GetString 
function. As already explained in SetMem the format of the siometer is "Prompt <address> <word value in Hex>" 
The word value in Hex starts in 9 th byte. This value ( that is data at the 9th byte and after) is copied into the buffer 
that is returned when this function is called. 

Functions Called: 
SendCommand 
GetString 

Called by: 
ProfileMode2 

Example Calls: 
GetlnternalSPF() 

A-39 



Function name: GetiRQ 

Input Parameters: 
PortNo 

Return Value: 
Integer 

Port number 
Used 

Interrupt Number 

Global variables set and used: 
iCOM3IRQ Used. 
PortNo Used. 

Description: 
Depending on the port number it returns an integer. If port number= COMI it returns 4, if it is COM2 it returns 3, if 
it is COM3 it returns iCOM3IRQ else if it is COM4 it returns 2. 
After the program has executed the ports accessed by the interrupt's are fixed. The number which is returned is an 
integer which is the interrupt number of the port. The port number is given as an input parameter. 

Functions Called: 
None 

Called by: 
serinit_q 
serclose-q. 

Example Calls: 
GetiRQ(COM2) 
GetiRQ(COM3) 

Function name: GetMem 

Input Parameters: 
long lAddr It is an address 

Used 

Return Value: 
int iValue It contains an address . 

Global Variables Set and Used: 
None. 

A-40 



Description: 
It accepts even addresses only. This function copies the given input parameter "IAddr" to the buffer "s" using the 
sprintf command. Therefore, if the example call to GetMem is GetMem(Oxl0529eL) 
Then the sprintf statement will cause the buffer" s "to have the contents "l 0529E". 
The function SendCommand sends the string "I 0529E" to the global port PortNo. 
The function GetString then receives a string on the same port. 
The address ofthe lOth character is copied into iValue. 
The iValue is returned. 

Functions Called: 
SendCommand 

GetString. 

Called by: 
ProfileMode3. 

Example Calls: 
GetMem(long IAddr) 

Function name: GetMsg 

Input Parameters: 
char *s 

Return Value: 
None 

Set 

Global Variables Set and Used: 
PortNo Used 

Description: The function 'GetMsg' receives the message on the serial port denoted by port PortNo. 

Functions Called: 
serrecv 

Called by: 
IRI_RUTMode 

Example Calls: 
GetMsg( str) 

A-41 



Function name: GetRut 

Input Parameters: 
rl 

r2 

acou 

Pointer to a floating type 
Set 
Pointer to a floating type 
Set 
Array of short integer 
Used 

Return Value: 
None 

Global Variables Set and Used: 
iRutMethod Used 
SOUTH_DAKOTA Used 
CENTER Used 
STRIGLINE_R Used 
RIGHTRUT Used 
STRINGLINE_L Used 
wl Used 
w2 Used 
w3 Used 
w4 Used 
COUNTS_PER_INCH Used 

Description: Different methods of rut measurement use different data collected to measure the rut. Depending 
on the type of the Rutmethod employed, certain calculations are performed. The different types of rut measuring 
methods are SOUTH_DAKOTA method, STRINGLINE_R (String line Right) method, STRINGLINE_L(String 
line Left) method, RIGHTRUT(Absolute right) method and stringline method. 

Functions Called: 
COUNT_ TO _INCH 

Called by: 
ProfileMode3 

Example Calls: 
GetRut(&rl, &r2, iAcou) 

Function name: GetSCKPMI 

Input Parameters: 
None 

A-42 



Return Value: 
Integer 

Global Variables Set and Used: 
None 

Description: This Function sends a string "D 4E3C" to the siometer. It reads a string from the siometer. In the 
sscanf function it has been offset by 9 as the first eight bytes is made up of prompt and the address. From the 9th 
byte we have the word value in Hex. This is returned. 

Functions Called: 
Send Command 
GetString 

Called by: 
Need to fmd out which functions are calling this function. 

Example Calls: 
None 

Function name: GetShort 

Input Parameters: 
None 

Return Value: 
integer 

Global Variables Set and Used: 
PortNo Used 

Description: 
This function 'GetShort' reads the serial port twice. The data received from the serial second time is shifted 7 times 
to left introducing 7 zeros in to the lower order bits. In this process 7 highest order bits of data are removed and 
each bit in the data shifts 7 positions to its left. Then bitwise 'OR' is applied on the data that was received first and 
the one that has been shifted (i.e. one that is received second) The truth table of bitwise 'OR' operation is as 
follows 

A 
0 
1 
0 
1 

B 
0 
0 
1 
1 

T 
0 
1 

From this table we see that if one of it or both of them is I then the truth value is I. Another important thing to 
notice is that when the value ofB is 0 then the truth value is same as the value of A. So 'OR'ing data say A with 
another data B that has all O's in the bits does not change the value of A. 
So here by introducing 7 zeros in to the word that is received second we are not changing the 7 lower order bits of 
the data that is received first. This value is returned to the calling function. 

A-43 



Functions Called: 
serrecv 

Called by: 
RutMode 

Example Calls: 
GetShort() 

Function name: GetSPF 

Input Parameters: 
iRow int type 

Used 
Mode int type 

Used 
*f pointer to a file (FILE type) 

Used 

Return Value: 
double 

Global Variables Set and Used: 
ACOUSTIC Used 
ACCELERATION Used 
SI A VGSPD Used 
iSIModeFPS Used 
SI_PACK Used 
str Used 

Set 
bCountAcoustic Used 

Description: 
This function clears the rows and sets the cursor every time. If the mode is SI_AVGSPD then it prints the distance 
between the samples else it asks the user to enter the it. To exit this function the user has to enter a value less than or 
equal to zero. 

Functions Called: 

Called by: 

Example Calls: 

A-44 



Function name: GetString 

Input: 
char *s 

int iLen 

The address of the buffer where the string is to be received 
Set 
The length of the string to be received 
Used 

Return Value: 
None 

Global Variables Set and Used: 
bAbort Set 
PortNo Used 

Description: 
This routine gets a string of length iLen in the specified buffer s. The address of the buffer is provided to the 
routine as an input parameter *s. The parameter iLen is the number of characters to be read into the buffer s. 
The routine WaitChar waits for a character and times out if a character does not come in . This routine used the 
routine WaitChar for waiting on every character of the string coming in. 
After the whole string of the specified length iLen has come in, then the character \0 is attached to the end of the 
sting to make it a proper string .... end of string. 

Functions Called: 
WaitChar, EscapeHit and FlushPort. 

Called by: 
SetMem, GetMem, SetSdMode, SetAcUnit and DistanceMode. 

Example Calls: 
GetString(s, sizeof(s)-1) 

Function name: lnitRut 

Input Parameters: 
None 

Return Value: 
None 

Global Variables Set and Used: 
iBadAcou 
SOUTH_DAKOTA 

Set 
Used 

iRutMethod 
iAFirst 

A-45 

Used 
Set 



Ll Used iALast Set 
Rl Used CENTER Used 
R2 Used L2 Used 
STRINGLINE_R Used STRINGLINE_L Used 
STRINGLINE_RL Used RIGHTRUT Used 
NEWAVERAGE Used cROADINFO Set 
iDistance Set iRutCnt Set 
iRutLine Set iSICnt Set 
iSILine Set Range Used 
iSum Set nSamples Used 
bExtraComm Used fRut Set, Used 
fSI Set, Used fWSV Set, Used 
ilnterval Set, Used iSIModeFPS Used 
RangeLimits Set iRutSecLen Used 

Description: This function initializes the variables. Depending on various rut methods like 
SOUTH_DAKOTA, STRINGLINE etc., it sets the variables like iAFirst, iALast differently. It basically sets the 
variables that are used in for measuring the Rut. 

Functions Called: 
None 

Called by: 
PriofileMode3 

Example Calls: 

InitRut() 

Function name: lnitSi 

Input Parameters: 
fn Pointer to character 

Used 

Return Value: None 

Global Variables Set and Used: 
iCOM3IRQ Set 

Used 
iRutMethod Set 

Used 
Header Set 

Used 
iSIModeFPS Set 
szDefAc Set 

iRutSecLen Set 

bExtractComm Set 

bSysGenFileName Set 

DataCollectMode Set 

A-46 



Used 
Param Set str Set 

Used 
value Set bF5 Set 

Used 
bF2 Set BaudRate Set 
iMode6FPS Set RutCorr.Mounting Set 
fn Used 

[This is a file] 

Description: This function opens the file whose name is stored in variable called 'fn' in read mode. Then it 
reads each token and compares the token for various predefmed tokens. Each time two tokens are read, the first 
token is read into variable called 'param' and the next one into variable called 'value'. The tokens stored in the 
variable 'param' are compared to predefmed tokens and when the token read is same as any predefmed token then a 
particular variable is set. For instance if the token read from the file is "FPS" then the variable iSIModeFPS is set to 
the integer value of the value stored in the variable 'value'. This process of reading tokens from the file continues 
until the whole file has been read. The initialization file is read. This filename is supplied as a command parameter 
to talk70.exe. Example: Declarations in the initialization file are: 

CollectMode = 3 
header= select.hdr 
acoustic=l2345 
fpsoo4 
gen_filename = Y 
comment=N 
F5=N 
F2=N 
baud= 9600 
port= 2 

Functions Called: 
GetHeader 

Called by: 
Main 

Example Calls: 
InitSI(argv[l]) 
InitSi(" ") 

Function name: KeypadMode 

Input Parameters: 
None 

Return Value: 
None 

A-47 



Global Variables Set and Used: 
PortNo Used 
GCLEARSCREEN Used -
TEXTBW40 Used -

GCLAKEY Used 
CALIBKEY Used 
KEY9 Used 
STOPKEY Used 
RUNKEY Used 
TESTKEY Used 

Description: This function sends "J3FFO" on a given port. Then it flushes the port, and calls _clearscreen and 
_setvideomode. Then it sets the cursor and prints' I G Cal', '2 Caliberate', '3 Speed', ' 4 Stop', one below the 
other. Then next to these '5 Run', '6 Test' and 'ESC Exit' are printed. Then the keyboard is read constantly until 
an escape character( ASCII value 27) has been hit. For each key that has been hit on the keyboard, its ASCII value is 
stored in the variable key.ascii where key is of the scancode type. Depending on the key that has been hit on the 
keyboard the variable 'iKey' is assigned a particular value. If the value of the character that has been hit on the 
keyboard is in between '6' and 'I' then it means that we wish to perfonn one of the above procedures namely Run, 
Test, Speed etc. This is sent to the siometer. Then the port that has been used for sending is read to receive a 
character from the siometer and it is stored in the variable called 'wTemp'. Then it sends escape character whose 
ASCII value is '27' and ASCII value '13' to the siometer. Then the function _setvideomode is called in the 
_DEFAULTMODE. 

Functions Called: 
SendCommand 
FlushPort 
_ clearscreen 
_ setvideomode 
SetCursror 
Border 
readkey 
sersend 
_ setvideomode 

Called by: 

ProcessFunction 

Example Calls: 
KeypadMode 

Function name: LoadedCorr 

Input Parameten: 
None 

Return Value: 
Int 

A-48 



Global Variables Set and Used: 
RutCorr.Mounting Used 
PortNo Used 

Description: This function reads the rut correction by calling the procedure ReadRutCorr. Then it displays it by 
calling the procedure DispCorr. It prompts on the standard output (normally the console) "Press [F7] to do the 
unloaded condition." If the key F7 is pressed then it goes ahead and does the for unloaded condition. At this point of 
time all the occupants including the driver should get out of the vehicle. This is done because the rut bar's 
inclination should be known at the exact time of the acoustic data sampling. Then it would be possible to correct 
acoustic readings so that they match the accurate readings. To abort this press escape, to repeat press function key 6 
(F6) or press function key 7 (F7) to accept the collected data. Then again the statement "press [F7] to do loaded 
condition" is printed. If we press the key F7 then it goes ahead and collects the data for the loaded condition. Then it 
prints on the standard output "ESC- Abort [F6]- Repeat [F7] - Accept. This statement tells the user to press escape 
key to abort F6 key to repeat the collection of the data and F7 to accept the collected data. If F7 is pressed on the 
keyboard then the collected data is saved in file by calling the procedure SaveRutCorr. 

Functions Called: 
ReadRutCorr 
DispCorr 
readkey 
TestMode 
SaveRutCorr 
SetCursor 
sersend 

Called by: 
Process Function 

Example Calls: 
LoadedCorr() 

Function name: Main 

Input Parameters: 
argc 
argv 

Return Value: 
int type 

int type It is basically the number of arguments in the command line. 
pointer to an array of pointer 

Global Variables Set and Used: 
ASCIIMODE Used 
Display Mode Set 
PortNo Set 
BaudRate Set 
Parity Set 

A-49 



Databits 
Stop Bits 
szMode 
Header 
COM I 

Set 
Set 
Set 
Used 
Used 

Description: This function sets the parameters like the baud rate, port number, number of data bits, number of 
stop bits parity. 

Functions Called: 
I nitS I 
ReadRutCorr 
Display Help 
MonitorMode 
_ clearscreen 

Called by: 
None 

Example Calls: 
None 

Function name: MasterOutput 

Input Parameters: 
szFormat 

wVal 

bPreSection 

Return Value: 
None 

Char 
Used 
unsigned 
Used 
Bool 
Used 

Global Variables Set and Used: 
nlnLine Set 
fData Set 
mph Used 
fps Used 
TWOCH Used 
cRoadlnfo Set 

Used 
DataCollectMode Used 
CONSTR Used 
SI_AVGSPD Used 

A-50 



Description: This function basically uses the file opened by the file pointer fData. It prints the speed. (If mph is 
not equal to -1 then the speed is in miles per hour. Else if fps is not equal to -1 then speed is in feet per second) Then 
values stored in the variables 'szFormat' and 'wVal' are stored in the file. The value stored in the variable 
'cRoadlnfo' is also copied into the file. At the end a '\n' character is copied into the file. This file has a particular 
format. It has 16 values per line. 

Functions Called: 
None 

Called by: 
ProfileMode2 

Example Calls: 
Master0utput("%04X", a Val, bPresection) 
Master0utput("Y%03X", aVal, bPresection) 

Function name: MonitorMode 

Input Parameters: None 

Return Value: None 

Global Variables Set and Used: 
PortNo Set 

Used 
Parity Used 
DataBits Used 
StopBits Used 
COMl Used 
COM2 Used 
BaudRate Used 
Display Mode Used 
PF4 Used 

Description: This function sets the port No. variable to COM I serial port. Then it opens the ports 'COM2' and 
'COM3' for communication at the baud rate of 9600. It opens the 'COMI' port at the selected baud rate, parity, 
databits and stopbits. Then it prints the statement "Connect the Siometer to COM!". This function makes use of 
the structure Scancode type. It is defmed as follows. 

typedef struct { 
unsigned char ascii; 
unsigned char scan; 

} SCANCODE; 
See Appendix A for more info on Scancodes 
The variables ascii is used to store ascii value of the character and the variable 'scan' is used to store number of the 
key that generated the ascii character. When a key is pressed on the keyboard an electric impulse is generated 

A-51 



indicating the position of the key pressed. This impulse is handled by the keyboard processor which converts the 
impulse into number called scan code. This scan code stored in the variable scan that is defined in the structure 
above. As long as scan code is not PF4 read the key board by calling the procedure "readkey()". If the ASCII value 
is not equal to zero then send it serially to the siometer on the COM I. If the ASCII value is 'zero' then procedure 
"ProcessFunction()" is called and the window is scrolled up. Then a word is read from the serial port COM I using 
the procedure "serrecv". If the word is 'Oxffff' then nothing is done. If it is '1 0' and the Display Mode is 
ASCIIMODE then window is scrolled up by I line. If the received word is '13' and the DISPLAYMODE is 
ASCIIMODE then cursor is placed on line 23 and 0 column. If the received word is none of the above then the 
received word is printed on the screen. The above process will continue until key.scan is PF4. 

Functions Called: 
OpenComm 
readkey 
sersend 
kbhit 
ProcessFunction 
ScrolWin 
Serrecv 
SetCursor 
serclose_q 
serclose. 

Called by: Main 

Example Calls: Monitor Mode(). 

Function name: OpenComm 

Input Parameters: 
PortNo int type 

Used 
BaudRate inttype 

Used 
Parity inttype 

Used 
DataBits int type 

Used 
Stop Bits int type 

Used 

Return Value: 
Integer 

Global Variables Set and Used: 
uComAddr Used 

A-52 



Description: This function sets the various elements of the structure defined below: 

unoin{ 
unsigned char c; 
struct { 

unsigned char databits :2; 
unsigned char stop bits : I; 
unsigned char parity :2; 
unsigned char baudrate :3; 

}b; 
} SERCONFIG 

If the value in variable 'Databits' is 7 then databits variable in the above structure is set to 2. If the value stored is 8 
then databits variable is set to 3. If it is none then variable 'Error' is set to -I. Similarly if the number of stop bits 
stored in the variable 'Stopbits' is I then the variable stopbits in structure above is set to '0' else if it is 2 then it is 
set to '1 '. Similarly the baud rate and the parity are set. 
This is a asynchronous serial communication. We need to send start and stop bits for each character that we send. 
The number of stop bits are normally I, 1.5 or 2. The number of stop bits required normally depends on the extra 
time that the receiving device may require before it can start processing next character. The stop bits force a 
minimum gap between the successive frames. When two devices are set for communication they should agree on 
baud rate, #of stopbits, parity etc .. 

Functions Called: 
Serinit 

Called by: 
Monitor Mode 

Example Calls: 
OpenComm(COM3, 9600, Parity, DataBits, StopBits) 
OpenComm(COM3, 9600, Parity, DataBits, StopBits) 

Function name: PauseRut 

Input Parameters: 
None 

Return Value: 
None 

Global Variables Set and Used: 
bPause 

Description: 

Set 
Used 

This function prints 'pause' and draws a border on the screen ifbPause is true. IfbPause is false then it just prints a 
blank. 

A-53 



Functions Called: 
SetCursor 
Border 

Called by: 
ProfileMode3 

Example Calls: 
PauseRut() 

Function name: PostRut 

Input Parameters: 
None 

Return Value: 
None 

Global Variables Set and Used: 
iAFirst Used 
iAcouHigh Used 
iBadAcou Set 
nSamples Set 
iSum Set 
ilnterval Used 
SRINGLINE RL Used 
bExtraComm Used 
Range Used 
ffiug Used 

Description: 

iALast Used 
iAcouLow Used 
bBadiSection Set 
RangeLimits Used 
iDistance Set, Used 
iRutSecLen Used 
NEW AVERAGE Used 
COM2 Used 
iStatus Used 
r2 Used 

This function determines whether the data that is collected is good or bad. If the raw data stored iniRaw is greater 
than iAcouHigh or lesser than iAcouLow then it is considered to be bad data. The value in iSum[l] are incremented 
if variable is lesser than RangeLimits[O]. If value stored in variable rl is lesser than RangeLimits[2] then iSum[2] is 
incremented. If none of the above is satisfied then iSum[3] is incremented. Similarly if the value in variable 'r2' is 
lesser than RangeLimits[l] then iSum[l] is incremented. If it is lesser than RangeLimits[2] then iSum[2] is 
incremented. Ifnoneofthe above conditions are satisfied then iSum[3] are incremented. If the number of samples is 
zero then all the values in the elements of the array iS urn are made 'Zero'. Then the values stored in iSum[ I] and 
iSum[2] are copied into the buffer's' and sent on COM2. 

Functions Called: 
Send String 
Scroll Win 
SetCursor 
PutRoadlnfo 

A-54 



Called by: 
ProfileMode3 

Example Calls: 
Po stRut() 

Function name: ProcessFunctions 

Input Parameters: 
scan unsigned char type 

Return Value: 
None 

Global Variables Set and Used: 
Display Mode Used 

Set 
ASCIIMODE Used 
HEXMODE Used 
bMetric Used 

Set 
NMODES Used 
DatacollectMode Used 
szMode Used 
CONSTR Used 

iConstrPreLen Used 
SDK Used 
iStaticAcou Used 

Set 
ACCONLY Used 
ACC_ACOUST Used 
SI_AVGSPD Used 
iRutMethod Used 
CONSTR Used 

Description: 
This function perfonns different functions depending on the value of the variable that is being passed to it namely 
scan. If the value of the variable 'scan' is 'PGUP' then it calls the routine Upload which sends a file. Similarly if the 
value of the variable is 'Ox51' then it asks for a file name then and then it open it and then it is sent using the 

A-55 



sersend function and so on. This function does different activities depending on the value that is being passed as a 
parameter to this function. 

Functions Called: 
Upload 
serrecv 
sersend 
SERCLOSE 
CommParam 
DisplayCommParam 
readkey 
LoadedCorr 
ProfileMode2 
SDProfilel 
IRI RUTMode 

Flush Port 
Escape Hit 
serclose_q 
SetCursor 
OpenComm 
Scroll Win 
KeypadMode 
TestMode 
ProfileMode3 
Mode6 
Display Help 

Called by: MonitorMode 

Example Calls: ProcessFunction(key .scan); 

Function name: ProfileMode2 

Input Parameters: 
acunit int type 

Set 

Return Value: 
None 

Global Variables Set and Used: 
bAbort Set 
iOverrun Set 
bDistMode Set 
DataCollectMode Used 
iConstrPreLen Set 
fps Set 
mask Set 
str Set 

fData 
iFrame 
bCountAcoustic 
SDK 
nlnline 
mph 
CONSTR 
PortNo 

Set 
Set 
Set 
Used 
Set 
Set 
Used 
Used 

Description: First the filter is set if the filter is not set. It then clears the rows, draws the border and sets the 
cursor. It then prints in which mode (data collect mode) it is in. Then it gets the name of the file that should be used 
for storing the collected data. If there is no file name then it means that we are not interested in collecting the data 
and so the global variable bAbort is set to TRUE. If the global variable bAbort is set to false then it means that we 
are interested in collecting the data. So the acoustic devices are selected by calling the function 'GetAcoustic' which 

A-56 



gets the numbers of the acoustic devices that should be used for the collection of the acoustic data. Then these 
numbers that correspond to the acoustic devices should be sent to the siometer. This is done by calling the 
procedure SetAcUnit. If an escape key has been hit then the collection of data is aborted. Then the file into which 
the collected data is being written is closed. Then it prints 'ABORTED" on the screen. If escape key is not hit on the 
screen then it continues for the collection of the data. The siometer is sent 'p' which tells the siometer to collect the 
data. 

The vehicle on which the siometer is mounted and run for some distance before the actual section 
begins so as to initialize. The section on which the vehicle is run for initialization is called 'presection'. Then at the 
beginning of the correct section the procedure 'WaitForFirst' is called. The lower order 4 bits are masked. This is 
done for comparison purpose. The various cases are 'acceleration' , 'speed in mph', 'feet per second' etc. For each 
of the above we read again from the siometer to know the value. If it is 'OxeO' then it means that the reading is in 
miles per hour. So the next time we read the siometer we get the value of speed in miles per hour. In the default 
case if we are running the vehicle in a presection, we open the file and print the collected data in a file and 16 
values in per line. To abort the collection of the data just press 'escape'. Then the file that is being used for storing 
the collected data is closed. 

Functions Called: 
SetFilter 
SetCursor 
GetFileNarne 
GetSPF 
EndMessage 
SetPararn 
WaitForFirst 
serrecv 
CheckComm 

Called by: 
ProcessFunction 

Example Calls: 
ProfileMode(O) 
ProfileMode( I) 

ClearRows 
DistanceMode 
GetAcoustic 
GetDistance 
Displaypoints 
SendCommand 
Check Time 
kbhit 
SaveOrNot 

Function name: ProfileMode3 

Input Parameters: None 

Return Value: None 

Global Variables Set and Used: 
szMode Used 
RutCorr.Mounting Used 
RutCorrloading Used 
iRutMethod Used 
bAbort Set 

Used 
sample Used 
bExtraComm Used 
szActiveAcoustic Set 
tData Used 

Border 
SetSdMode 
SetAcUnit 
StopCollect 
DisplayStatusForm 
time 
MasterOutput 
readkey 

A-57 



Description: This function asks the user to enter the a file name for storing the output. Then it will ask the user to 
enter two lines of comment. If the variable Comment is set to 'N' then no comment is asked. Then the acoustic 
devices are selected by calling the function "GetAcoustic'. The user can select the acoustic devices that should be 

used to collect the data. The devices are numbered I through 5 (left to right). The user can select these by just typing 
in the numbers. Similarly the distance between samples in feet need to be entered. The distance is also entered 
followed by 'f or 'F' for feet or 'm' or 'M' for miles. Then it prompts "Hit any key to start SI". While the data 
collection is in progress we may hit any number between 0 and 9 to mark Pavement Management Information 
systems comment codes for that section. Then number will be displayed until the beginning of the next section. 
When then target distance is reached the collection of data is terminated. Data that is collected is saved 
automatically. Then user can terminate the program by pressing the 'escape key' on the keyboard in which case it 
asks the user whether to save the data that was collected till that point or not. The user is prompted to enter 'Y' or 
'N' . If the user enters 'Y' then it will be saved else it will be discarded. This is only for the data collection that has 
been terminated abruptly. 

Functions Called: 
GetMem 
SetCursor 
GetFileName 
GetSPF 
DisplayPoints 
SetExtractRatio 
InitRut 
SendCommand 
FlushPort 
DistManage 
WriteSi 
GetRut 
PutRoadlnfo 
CheckComm 
SaveOrNot 
EndMessage 

Called by: 
ProcessFunction 

Example Calls: 
ProfileMode3() 

ClearRows 
Distance Mode 
GetAcoustic 
GetDistance 
DisplayStatusForm 
SetAcUnit 
SetlntemalSPF 
sersend 
WaitForFirst 
serrecv 
Scroll Win 
readkey 
Pause Rut 
StopCollect 
Close Rut 

Function name: PutRoadlnfo 

Input Parameters: 
charc 

Return Value: 
None 

Used 

Global Variables Set and Used: 
cRoadlnfo Set 

Used 

A-58 



Description: It puts the road infonnation on the screen. It draws the border and the sets the position of the 

cursor on the screen. 

Functions Called: 
Border 
SetCursor 

Called by: 
ProfileMode3 
PostRut 

Example Calls: 
PutRoadlnfo(key) 

Function name: readkey 

Input Parameters: 
None 

Return Value: 
SCANCODE scancode The scancode is of type SCANCODE. 

where 
typedef struct { 

unsigned char ascii; 
unsigned char scan; 

} SCANCODE; 

Global Variables Set and Used: 
None 

Description: 
It reads a character from the keyboard buffer. If the buffer does not contain a character, the function waits until a 
character is entered. Then the character is read and removed from the keyboard buffer. It uses the INTERRUPT 
Oxl6- Function Oh. 
The keyboard buffer stores the ASCII code and then the scancode which is the number of the key that generated the 
ASCII character. 
The ASCII code is stored in scancode.ascii and the scancode is stored in scancode.scan. 

Scancode is the number of the key that generated the ascii charecter. {For more info on Scancodes, please refer to 
Appendix A 
The keyboard processor converts the electrical impulse indicating the key position into a number called scancode 

Functions Called: 
int86 INTERRUPT Ox 16h Function Oh 

A-59 



Called by: 
CommParam 
ProfileMode3 
TestMode 
WaitForFirst 
KeypadMode 
LoadedCorr 
Monitor Mode 

Example Calls: 

readkey() 

Function name: ReadRutCorr 

Input Parameters: 
None 

Return Value: 
None 

Global Variables Set and Used: 
RutCorr.Loading Set 

Used 
sRutCorr Used 

Description: It opens a file called "RUTCORR.INI'' in read mode. The variable sRutCorr contains the name of 
this file. It reads file into the array called RutCorr.Loading if the file exits, else the array is filled with zeros. 

Functions Called: 
None 

Called by: 
LoadedCorr 
Main 

Example Calls: 
ReadRutCorr() 

Function name: SaveRutCorr 

Input Parameters: 
None 

A-60 



Return Value: 
None 

Global Variables Set and Used: 
sRutCorr Set 

Description: This function is used to save the rut correction (that has been read into the array RutCorr.Loading) 
in to the file whose name is stored in the variable called "sRutCorr" and the file is closed. 

Functions Called: 
None 

Called by: 
LoadedCorr 

Example Calls: 
SaveRutCorr() 

Function name: Scroi/Win 

Input Parameters: 
int n 

intlr 

int lc 

intrr 

intrc 

Return Value: 
None. 

Number of lines to scroll 
Set and Used 
Upper left row 
Used 
Upper left column 
Used 
Lower right row 
Used 
Lower right column 
Used 

Global Variables Set and Used: 
None 

Description: 
It scrolls the window up or down by a specified number of lines. If the value of 'n' greater than 0 then it scrolls the 
Window up by lines 'n'. It writes blank lines at the bottom of the screen. If the value of 'n' is less than 0 it scrolls 
the window down by n lines writing n blank lines at the top of the screen. 
The register AH is loaded with "6" if it has to scroll up otherwise it will be loaded with "7" if it has to scroll down. 
The variables 'lr' and 'lc' correspond to row column of upper left corner and 'rr' and 'rc' correspond to lower right 
corner. It uses the INTERRUPT 1 Oh - Function 06h for scroll up, and INTERRUPT 1 Oh - Function 07h for scroll 
down. 

A-61 



Functions Called: 
int86 INTERRUPT Ox I Oh - Function 06h 

INTERRUPT OxlOh- Function 07h 

Called by: 
ProcessFunctions 
PostRut 
ProfileMode3 
IRI RUTMode 

Example Calls: 
Scroll Win( 1 ,0,0,23, 79) 

Function name: SelectAcoustic 

Input Parameters: 
s 

acunit 

Return Value: 
Integer 

char array 
Used 
Pointer to int 
Set 

Global Variables Set and Used: 
szActiveAcoustic 
Acoustic Mask 
DataCollectMode 
SDK 
CONSTR 
bDistMode 

Set 
Set 
Used 
Used 
Used 
Used 

For Scroll Up 
For Scroll Down 

Description: The function SelectAcoustic is used to select the acoustic data. If the contents of the array are 
between value 1 and value 6 then they are copied into szActiveAcoustic. These represent the numbers of the 
acoustic devices. Else they are discarded. 

Functions Called: 
None 

Called by: 
TestMode 
GetAcoustic 

Example Calls: 
SelectAcoustic{str, acunit) 
SelectAcoustic("12345", &acunit) 

A-62 



Function name: SendCommand 

Input: 
char *s Set 

Used 

Return Value: 
None. 

Global Variables Set and Used: 
bAbort Set 
PAUSE Used 
PortNo Used 

Description: 
This function sends the given character string on the given port number. 
First copy the string to be send into space pointed by variable called command. The pointer to character "s" is also 
set to command. 

Send one character to the given port no. Wait for the same character to come back on the same port. If the 
character comes back within a given time limit then go ahead and send the next character in the string. If the 
character does not come back we need to send the same character over again. 

When the character sent over to a port does not come back after a given amount of time, 
the character Ox08 is sent over to the port and then the port is flushed and then the same character is sent over 
again. The character Ox08 is the back space character. If a wrong character was sent it needs to be erased from the 
port. 
After the full string has been sent, the carriage return character is sent over the same port. 

Functions Called: 
FlushPort, EscapeHit, sersend and WaitChar. 

Called by: 
ProfileMode2, SetFilter, SetExtractRatio, GetMem, ProfileMode3, SetSdMode, SetMem, SetAcUnit, 
DistanceMode, IRI_RUTMode, SDProfile, KeyPadMode and TestMode. 

Example Calls: 
SendCommand(s ), SendCommand(sVal). 

Function name: SendString 

Input Parameters: 
int iP 

char *s 

Port number on which a string is sent. 
Used 
String that needed to be sent. 
Set 
Used 

A-63 



Return Value: 
None 

Global Variables Set and Used: 
None 

Description: 
This function is used to send a string pointed by the character pointer *son the port whose number iP. 

Functions Called: 
sersend 

Called by: 
WriteS I 
PostRut 

Example Calls: 
SendString(COM2, s) 

Function name: Seria/PortStatus 

Input Parameters: 
PortNo Port number. 

Used 

Return Value: 
The status of the port which is a unsigned integer. 

Global Variables Set and Used: 
PortNo Used. 

Description: 
This function returns the status of the serial port whose number is PortNo. It uses the INTERRUPT 14h- Function 
03h. For this AH is 03 and DX is the port number. 

Functions Called: 
int86 INTERRUPTOx14h- Function 03h. 

Called by: 
CheckComm. 

Example Calls: 
SerialPortStatus(int PortNo). 

A-64 



Function name: SetAcUnit 

Input Parameters: 
acunit 

Return Value: 
None 

Int type 
Used 

Global Variables Set and Used: 
PortNo 
AcousticMask 

Used 
Used 

Description: This function copies the acunit into the buffer 's' along with "S 4El6". Then this is sent to 
siometer using the SendCommand function. Then "S 4E58" is sent to siometer to mask the siometer. Then the 
siometer is read. Then AcousticMask and odd byte of the word value is copied into the buffer and sent to siometer. 
The acoustic mask contains the acoustic device numbers that have been selected for the collection of the data. Then 
escape character is sent to indicate the completion of sending. 

Functions Called: 
SendCommand 
sersend 
FlushPort 
GetString 

Called by: 
IRI_RUTMode 
ProfileMode2 
ProfileMode3 
Mode6 
SDProfilel 

Example Calls: 
SetAcUnit(acunit) 

Function name: SetCursor 

Input Parameters: r and c 

r 

c 

Row 
Used 
Column 
Used 

Return Value: 
None 

Global variables set and used 
None 

A-65 



Description: Positions the cursor on the screen on the specified page number. It positions the cursor on the 
screen where the row number is 'r' and column number is 'c'. It uses INTERRUPTIOh- Function 02h. 

For this AH = 02, BH is the page number , DH is row (OOh is the most top row ) and DL is column(OOh is left most 
column of the page ). 

Functions Called: 
int86 INTERRUPTIOh- Function 02h 

Called by: 
Mode6 IRI RUTMode 
Distance Mode SaveOrNot 
ProfileMode3 GetSPF 
Display Points GetDistance 
Pause Rut ProcessFunctions 
Border DispalyStatusF orm 
Po stRut ProfileMode2 
GetAcoustic TestMode 
KeypadMode LoadedCorr 
GetFileName MonitorMode 
EndMessage SO Profile 
PutRoadlnfo WaitForFirst 
CheckComm 

Example Call: 
SetCursor(23, 0) 

Function name: SetExtractRatio 

Input Parameters: 
er int type 

Return Value: 
None 

Global Variables Set and Used: 
None 

Description: 
This function copies " S 4E50" along with the value of er in to the buffer's'. Then the contents are sent to the 
siometer. 

Functions Called: 
SendCommnad 

Called by: 

A-66 



Example Calls: 

Function name: SetFilter 

Input Parameters: 
b 

Return Value: 
None 

unsigned char type 
Used 

Global Variables Set and Used: 
None 

Description: It sends 'F' using SendCommand and pauses for 100 milliseconds by calling the Delay routine. 
The value in character 'b' is copied into the buffer 'str' and it is sent to the siometer using the SendCommand. 
Then it prints "Filter set to " on the screen. This acts as a low pass filter which passes up to a particular value and 
lower. 

Functions Called: 
Delay 
Send Command 

Called by: 
ProfileMode2 

Example Calls: 
SetFilter(Ox2c) 

Function name: Set/nterna/SPF 

Input Parameters: 
iSioSPF 

Return Value: 
None 

An integer 
Used 

Global Variables Set and Used: 
None 

Description: This function sends "A" frrst to the siometer. Then it waits or pauses for 100 milliseconds. Then it 
copies the iSioSPF in to the buffer's' and this buffer is sent to the siometer. 

A-67 



Functions Called: 
Send Command 
Delay 

Called by: 
SetParam 
ProfileMOode3 

Example Calls: 
SetlnternalSPF(ilnternaiSPF) 

Function name: SetMem 

Input Parameters: 
long lAddr This contains an address 

Used 
int iVai It is also an address {*).Example values are OxlOO, I etc. 

Used 
BOOL bWord This can have the value of Oil cause it is BOOLEAN. 

Generally used are CHANGEWORD = I 
CHANGEBYTE = 0 

Used 

Return Value: 
None 

Global Variables Set and Used: 
PortNo Used 

Description: 
This function uses the input parameters in the following manner. It uses the value of the input parameter 
lAddr which is anded with OxfffffffeL to ensure that the last bit is set to 0 and the number is even. The result is 
copied to the "s" buffer using sprintf. The value of iVai is copied into "sval" buffer using sprintf. The string 
contained in buffer "s" is sent to PortNo using the function SendCommand. The string is obtained using GetString 
function. 
If bWord = CHANGEBYTE then it changes the odd byte and keeps the even byte. If bWord = CHANGEWORD 
then it changes the even byte and keeps the odd byte. 
It sends the value of "sVal" to the PortNo using the SendCommand. It then sends the escape character and flushes 
the port. 

Functions Called: 
SendCommand 

FlushPort 
sersend 
GetString. 

Called by: 
SO Profile 

IRI_RUTMode. 

A-68 



Example Calls: 
SetMem(long lAddr, int iVai, BOOL bWord) 

Function name: SetParam 

Input Parameters: 
sample 

speed 

double type 
Used 
double type 

Return Value: 
None 

Global Variables Set and Used: 
None 

Description: 
This function sets the parameters ilntemalSPf and iExtractratio and then sends them to the siometer by calling the 
procedures SetlntemalSPF and SetExtractRatio 

Functions Called: 
Setlntema!SPF 
SetExtractRatio 

Called by: 

Example Calls: 

Function name: SetSdMode 

Input Parameters: 
DataCollectMode inttype 

Return Value: 
None 

Global Variables Set and Used: 
SDK Used 
ODD START Used 
PortNo Used 

Description: 
This function sends the siometer frrst "S I 05 I OA''. Then it reads the buffer using the function GetString. IF the 

A-69 



DataCollectMode is SouthDakota Mode then the variable 'cFiag' is set to I else it is set to 0. Then the cFlag value 
along with the buffer contents from the 11th cell to the end of the buffer. All these are copied into the buffer's' and 
sent to the siometer on the port number 27 and the port is flushed. 

Functions Called: 
Send Command 
GetString 
sersend 
FlushPort 

Called by: 

Example Calls: 

Function name: StopCollect 

Input Parameters: 
None. 

Return Value: 
None 

Global Variables Set and Used: 
None 

Description: 
It sends an Escape character and then flushes the port and once again sends the Escape charecter on the port 
referred by the PortNo. 

Functions Called: 
sersend 
F1ushPort. 

Called by: 
ProflleMode3 
ProflleMode2 
IRI_RUTMode 
SO Profile. 

Example Calls: 
StopCollect() 

A-70 



Function name: TestMode 

Input Parameters: 
iMode inttype 
Avg floating point array of five elements 

Return Value: 
None 

Global Variables Set and Used: 
DatacollectMode Set 

Used 
ACC ACOUST Used 
bDistMode Set 

Used 
bAbort Set 

Used 
TM TEST Used 
acunit Used 
bCountAcoustic Used 
PortNo Used 
mph Set 
fps Set 

Description: The variable bAbort is set to FALSE if execution is not to be aborted. If it is so then rows are 
cleared and cursor is set by calling the procedures Clear Rows and SetCursor. Then it prints "Testing .. " on the 
screen. 'Z' is sent to the siometer and pauses for 100 millisecond by calling Delay function. Then it sends "25" on 
the siometer and flushes the port. Then bit number 6 is made sure to set to 1 by bitwise 'OR'ing with Ox40 which is 
represented in the binary as 100000. The truth table of bitwise 'OR' is 

A 
0 
1 
0 
1 

TRUTH TABLE 

B 
0 
0 

Truth Value 
0 
1 

Sample variable, which is the number of samples is set to I. Then by calling the SendCommand character "p" is 
sent to the siometer. Then the four lower order bits are set to '0' by bitwise 'AND'ing with OxiD. When a byte is 
received from the siometer then the lower 4 bits are masked and the Most significant 4 bits are kept in the variable 
called mask. If the value in the variable is equal to the hexadecimal value 80 then the original value received from 
the siometer is shifted to left by eight bits introducing 8 zeros in the least significant bits position and this value is 
stored in variable called wVal. Then the siometer is read again and the received value added to the value stored in 
wVal. This is done until the value that has been received is not 'fffr. Then the byte that has been received from the 
siometer is printed on the screen. If the escape key has been hit then the variable 'Comm_err' is set to l. Then '27' 
is sent to the siometer to indicate that communication has been aborted. If any of the variables Comm_err or 
iOverrun or iFrame is set then the comment 'Communication Error ! Try again' is printed on the screen, If 
bDistMode is set then the comment 'Set to Time mode frrst' is printed on the screen. 

Functions Called: 
Clear Rows 
SetCursor 
SendCommand 
SelectAcoustic 

Border 
SetSdMode 
SetAcUnit 
WaitForFirst 

A-71 



serrecv 
Escape Hit 
Delay 

Called by: 
Loaded Corr 
ProcessFunction 

Example Calls: 
TestMode(TM _ TEST,AvgDisp) 

Function name: Upload 

Input Parameters: 
fname Name of the file. 

Used 

Return Value: 
None. 

CheckComm 
sersend 
FlushPort 

Global Variables Set and Used: 
PortNo Used. 

Description: 
This function sends the complete file on the port that is specified in PortNo. We can abort sending the file at any 
time by pressing the Escape key on the keyboard. 

Functions Called: 
Escape Hit 
sersend 
serrecv 
Flush Port 

Called by: 
ProfileMode3 

Example Calls: 
WriteSI(sival, wsv); 

Function name: WaitChar 

Input Parameters: 
intPortNo Port Number 

Used 
long ms Amount of time the function has to wait for a character to come in on the port 

Used 

A-72 



Return Value: 
unsigned wTemp The character obtained from the specified port. 

Global variables set and used: 
None 

Description: 
A port is specified from where we need to receive a character. We keep on waiting on the port for the specified 
amount of time (variable ms) until a character comes in. 

Functions Called: 
serrecv 
clock 

Called by: 
SendCommand, GetString 

Example Call: 
WaitChar(PortNo, 500L) 

Function name: WaitForFirst 

Input Parameters: 
unsigned int *wFirst The address of character obtained from keyboard 

set 
BOOL bDisp printf statements are displayed if it is set 

used 

Return Value: 
TRUEIFALSE 

Global Variables Set and Used: 
PortNo Used. 

Description: 
If bDisp is true then it prints " Waiting for the frrst point. Hit any key to abort". 
It waits for a character to be read from the PortNo. If a valid character comes in or if the user hits any key to abort, 
the routine comes out of the do loop which is waiting for the character. 
The pointer to an unsigned integer is assigned 
*wFirst = wTemp 
If bDisp is true then some rows are cleared. 
If the keyboard is hit again then the statement " Function Aborted ....... Hit [ ESC ] " is printed and another key is 
read and FALSE is returned , otherwise TRUE is returned. 

Functions Called: 
readkey 
kbhit 

A-73 



SetCursor 
serrecv 
Clear Rows 

Called by: 
TestMode 
ProfileMode3 
ProfileMode2 
IRI RUTMode 
SDProfilel 

Example Calls: 
WaitForFirst(&wTemp, TRUE) 
WaitForFirst(&wTemp, FALSE) 

Function name: WriteCh 

Input Parameters: 
char ch Character to be displayed on the screen 

Used 
char attr 

Return Value: 
None 

Attribute of the character 
Used 

Global Variables Set and Used: 
None 

Description: 
This function writes a specified character and attribute to display at the current cursor position. The value of 
'regs.x.cx' represents the number of times the character to be displayed. It uses interrupt 10, function 09. 

Functions Called: 
int86 INTERRUPT OxlOh- Function 09 

Called by: 
Border 

Example Calls: 
WriteCh(l86, 7), WriteCh(205, 7). 

Function name: WriteS/ 

Input Parameters: 
si unsigned int type 

A-74 



Used 
wsv unsigned long type. 

Used 

Return Value: 
None. 

Global Variables Set and Used: 
fSI 
fWSV 
iSILine 
iSICnt 
bExtraComm 
COM2 

Description: 

Used. 
Used. 
Set. 
Used and Set. 
Used. 
Used. 

fSI and fWSV are file pointers to the files namely RTRIDE.DAT and RTWSV.DAT respectively. This function 
prints 10 Sl's per line including the line number into the file RTRIDE.DAT. Similarly it prints 10 WSV's per line 
including the line number into file named RTWSV.DAT. 

Functions Called: 
SendString. 

Called by: 
ProfileMode3. 

Example Calls: 
WriteSI(sival, wsv) 

A-75 



DOCUMENTATION FOR FUNCTIONS IN OTHER FUNCTIONS FOR TALK.EXE 78 

Function name: serinit_q( port, config, irq) 78 

Function name: intserv 78 

Function name: serclose_q( port no, irq) 79 

Function name: sersend( port, char) 80 

Function name: serrecv( port) 80 

Function name: Check Time 23 

Function name: Get_Header( char *Filename) 

Function name: DispCorr 26 

Function name: F/ushPort 34 

Function name: CheckComm 22 

Function name: C/oseRut 24 

Function name: DisplayHelp 28 

Function name: Display Points 28 

Function name: WaitChar 72 

Function name: SendCommand 63 

Function name: GetString 45 

Function name: DistanceMode 30 

Function name: DistManage 31 

Function name: Delay 

Function name: EscapeHit 

Function name: SetCursor 

Function name: GetCursor 

Function name: GetlRQ 

Function name: SaveOrNot 

Function name: Scro/IWin 

A-76 



Function name: WriteCh 

Function name: Border 

Function name: CommParam 25 

Function name: DisplayStatusForm 

Function name: StopCollect 

Function name: WaitForFirst 

Function name: GetMem 

Function name: SetMem 

Function name: EndMessage 

Function name:Seria/PortStatus 

Function name: MonitorMode 

Function name: WriteS/ 

Function name: Upload 

Function name: readkey 

A-77 



Documentation for functions in other Functions for talk.exe 

Function name: serinit q( port, config, ira} 

Input: 
port 
con fig 

Port Number to be accessed when the given (irq) interrupt comes in 
config is a byte. config contains data given below which is composed in a byte. 
int PortNo, int BaudRate, int Parity 
int DataBits, int StopBits 

irq Port driver to be initiated by the (irq) level. 

Output: 
None 

Global variables set and used: 
_bufaddr, _bufm, _bufout, _intsav 

Description: 
This procedure should have the port number, irq number and config as input. This procedure can only initialize 
COMl, COM2 and COM3. You can setup the interrupt for COM3 by giving it the initialization files talk.ini. This 
procedure sets up the communication parameters for the port like PortNo, BaudRate, Parity, DataBits and StopBits
this information is given in config. This procedure also initializes the circular buffer where we can write incoming 
data for the port. It also sets up another routine ( Interrupt Service routine ) 
for the given interrupt which initiates the port driver. 

COMl uses IRQ4 
COM2 uses IRQ3 
and COM3 can be setup for IRQ2 or IRQ5 ( • ) 

Functions Called: 
intserv ( asm , serqs.asm ) 

Called by: 
OpenComm 

Example Call: 
serinit_q(PortNo, serconfig, GetiRQ(PortNo)); 

Function name: intserv 

Input: 
None 

Output: 
None 

A-78 



Global variables set and used: 
Not sure 

Description: 
This routine is the ISR routine which is called when the port needs to be accessed. This routine is used by the 

serinit_ q procedure. This routine is called when the intenupts set up for COM 1, COM2 and COM3 intenupt the 
processor. This routine calls the ports driver for the respective ports set up for the intenupts. 

Functions Called: 
putb 

Called by: 
serinit_q ( asm, serqs.asm) 

Function name: serclose q( port no, irq J 

Input: 
port The port to be closed 
irq The intenupt used for the port given above 

Output 
Global variables set and used: _intsav 

Description: 
This is used for closing the serial port. Here the intenupt is specified for the port. This routine can be used only 
after serinit_q has been used for initialize the same port for the given intenupt. You must have noticed that, in 
serinit_q the intenupt service routine ( ISR) for the given intenupt was changed to another ISR which calls the port 
driver of the given port. After we close the port we need to change the intenupt service routine of the intenupt back 
to the old intenupt service routine. The address of the old intenupt service routine has already been saved 
previously. The intenupt is disabled during the change of the ISR. 

Functions Called: 
None 

Called by: 
MonitorMode ( C, bt.c ) 
ProcessFunctions ( C, talk70.c ) 

Example Call 
serclose _ q(PortNo,GetiRQ(PortNo )); 

A-79 



Function name:sersend( port, char) 

Input: 
port 
char 

Output: 
None 

Global variables set and used: 
None 

Description: 
This routine is used to send a byte of data on a given port number. 

Functions Called: 
None 

Called by: 
Process Functions ( C, talk70.c) 
Upload ( C, bt.c ) 
KeyPadMode ( C, talk70.c) 
WaitChar ( C, bt.c ) 
SetSdMode ( C, talk70.c ) 
SetAcUnit ( C, talk70.c ) 
TestMode ( C, talk70.c) 
LoadedCorr ( C, talk70.c ) 
DistanceMode ( C, talk70.c ) 
StopCollect ( C, bt.c ) 
EndMesage ( C, bt.c ) 
ProfileMode3 ( C, mode3.c) 
DistManage ( C, mode3.c ) 
SendString ( C, rtrut.c ) 
SdProfilel ( C, sdl.c) 
IRI_RutMode ( C, mode7.c) 
MonitorMode ( C, bt.c ) 

Example Calls 
sersend(PortNo, Char) 

Function name: serrecv( port) 

Input: 
port Port number on which a data byte is received 

Output: 
None 

A-80 



Global variables set and used: 

None 

Description: 
This is used to receive data from the serial port. This procedure receives a byte of data. 
If the value returned is FFFF, then the buffer is empty. 

Functions Called: 
getb( asm, serqs.asm ) 

Called by: 
Process Functions ( C, talk70.c) 
Upload ( C, bt.c ) 
KeyPadMode ( C, talk70.c ) 
WaitChar ( C, bt.c ) 
SetSdMode ( C, talk70.c ) 
SetAcUnit ( C, talk70.c ) 
TestMode ( C, talk70.c) 
ProfileMode3 ( C, mode3.c ) 
SdProfile 1 ( C, sd I.e ) 
IRI_RutMode ( C, mode7.c) 
Monitor Mode ( C, bt.c ) 
WaitForFirst ( C, bt.c) 
ProfileMode2 ( C, talk70.c ) 
Mode6 ( C, mode6.c ) 
GetFioat ( C, mode7 .c ) 
GetMsg ( C, mode7.c) 

Example Calls 
serrecv(PortNo) 

Tips: 
ISR - Interrupt service routine. 
You need to have knowledge of ISR and how the ISR can be changed for an 
interrupt. 

A-81 



FlowCharts 

A-82 



-oiRUT-•0 

... 

~----00¥1Nd.~) 
~1NIImO(I'I(ol ..... ~ 
b.nSI .... tocom.in(~) 

~~ .. nun:.rof AUT a 1hM 
t.v. 0D11W in to D 

(iOm<) 

~ .. ~~-(Oi.-R) 
~-lllri"'CClrrlof~ ........... ,,_...tooan-~{ 

Dodlolonco) 

lrn.tiM .. MIIU!tof~ _ .... - ........ 
ClllrJWintoSio.t 
~·Sia.t 

FlowChart for DistManage 

A-83 



Check Time 

input boolean bReset 
define oldCiock 

define CurrCiock 
define diff 

Yes 

A-84 

diff = OldCiock -
CurrCiock 

No 

Y OldCiock =CurrCiock es 

return diff 



Close Rut 
begin 

Terminator 

fSI 
( file id fSL this checks 
whether the f~e for Sl is 

open) 

write fSI to fde 

closefSI file 

No 

No 

f'NSV 
( r~e id rwsv .. this checks 
whether the fde for WSV is 

open) 

write MISV to file 

close f'NSV fde 

No 



DisplayPoints 

BEGIN 

Yes 

Print distance in feet 
and miles 

Print data 
points and 
samples 

End 

A-86 

No 
Print distance in 

kilometers 



List of Functions Sorted 

A-87 



Sorted. doc: 
This file gives the list of functions. The file where the functions occur are specified in this file . The notation 
[terminal] indicates that the function does not call any more user-defmed functions. 

Border(int lr, int lc, int rr, int rc) -bt.c 
CheckComm()- bt.c 
CheckTime(BOOL bReset) - talk70.c [terminal] 
CloseRut() - rtrut.c [ terminal ] 
CommParam() - bt.c 
COUNT TO INCH(i)- rtrut.c[ terminal] 
Delay(long ms)- bt.c [terminal] 
DispCorr() - talk70.c [ terminal ] 
DisplayCommParam()- bt.c[ terminal ] 
DisplayHelp() - talk70.c 
DisplayPoints(int iRow, long nPts, double dist, double sample) - talk70.c 
DisplayStatusForm(int iRow)- bt.c 
DistanceMode(BOOL bDisplay) - talk70.c 
DistManage(int iFunc) - mode3.c 
EndMessage()- bt.c 
EscapeHit()- bt.c 
FlushPort(int PortNo)- bt.c [terminal] 
GetAcoustic(int iRow, int *acunit) - talk70.c 
GetCursor(int *r, int *c)- bt.c [terminal] 
GetDistance(int iRow, char *unit, double *dist) - talk70.c 
GetFileName(int iRow) - talk70.c 
GetFloat() - mode7 .c 
GetHeader(char *FileName) - talk70.c [terminal] 
GetlnternalSPF() - talk70.c 
GetiRQ(int PortNo) - bt.c [terminal] 
GetMem(long lAddr)- bt.c 
GetMsg(char *s) - mode7.c 
GetRut() - rtrut.c 
GetSCKPMI() - talk70.c 
GetShort() - mode7 .c 
GetSPF(int iRow, int Mode, FILE *f) - talk70.c 
GetString(char *s, int iLen)- bt.c 
lnitRut() - rtrut.c [terminal] 
InitSI(char *fn) - talk70.c 
IRI_RUTMode()- mode7.c 
KeyPadMode() - talk70.c 
LoadedCorr()- talk70.c 
main(int argc, char *argv[]) - talk70.c 
MasterOutput(char szFormat[], unsigned wVal, BOOL bPreSection) - talk70.c 
Mode6() - mode6.c 
MonitorMode()- bt.c 
OpenComm(int PortNo, int BaudRate, int Parity, int DataBits, int StopBits)- bt.c 
PauseRut() - rtrut.c 
PostRut() - rtrut.c 
ProcessFunctions( unsigned char scan ) - talk70.c 
ProfileMode2(int acunit) - talk70.c 
ProfileMode3()- mode3.c 
PutRoadlnfo( char c) - mode3 .c 
readkey() - bt.c [ terminal ] 

A-88 



ReadRutCorr() - talk70.c 
SaveOrNot()- bt.c [ terminal ] 
SaveRutCorr() - talk70.c 
ScrolJWin(int n, int lr, int lc, int rr, int rc)- bt.c [terminal] 
SO Profile I (int acunit) - sd I.e 
SelectAcoustic(char s[], int *acunit) - talk70.c [terminal] 
SendCommand(char *s)- bt.c [terminal] 
SendString(int iP, char *s) - rtrut.c 
SerialPortStatus(int PortNo)- bt.c 
SetAcUnit(int acunit) - talk70.c 
SetCursor(int r, int c)- bt.c [terminal] 
SetExtractRatio(int er) - talk70.c 
SetFilter(unsigned char b) - talk70.c 
SetlntemalSPF(int iSioSPF) - talk70.c 
SetMem(Jong IAddr, int iVai, BOOL bWord)- bt.c 
SetParam(double sample, double speed) - talk70.c 
SetSdMode(int DataCollectMode) - talk70.c 
StopCollect()- bt.c 
TestMode(int iMode, float Avg[S]) - talk70.c 
Upload( char *fname)- bt.c 
WaitChar(int PortNo, long ms){ //[60] - bt.c 
WaitForFirst(unsigned int *wFirst, BOOL bDisp) //[60]- bt.c 
WriteCh(char ch, char attr)- bt.c 
WriteSI(unsigned int si, unsigned long wsv) - rtrut.c [terminal] 
serinit_ q - serqs.asm [ terminal ] 
intserv - serqs.asm [ terminal ] 
serclose _ q - serqs.asm [ terminal ] 
sersend - serqs.asm [ terminal ] 
serrecv - serqs.asm [ terminal ] 

A-89 



List of Functions for Each File 

A-90 



List of Functions in bt.c I Filename: bt.doc 

int GetiRQ(int PortNo) 

SCANCODE readkey() 

int OpenComm(int PortNo, int BaudRate, int Parity, 

int DataBits, int StopBits) 

unsigned int SerialPortStatus(int PortNo) 

void CommParam() 

void DisplayCommParam() 

void SendCommand(char *s) 

unsigned int WaitChar(int PortNo, long ms){ //[60] 

void ScrollWin{int n, int lr, int lc, int rr, int rc) 

void SetCursor{int r, int c) 

void GetCursor{int •r, int •c) 

void WriteCh(char ch, char attr) 

void Border{int lr, int lc, int rr, int rc) 

void FlushPort{int PortNo) 

void MonitorMode() 

void Delay(long ms) 

void GetString( char •s, int iLen) 

void DisplayStatusForm(int iRow) 

void CheckComm() 

void EndMessage() 

void StopCollect{) 

void SaveOrNot() 

BOOL WaitForFirst(unsigned int *wFirst, BOOL bDisp) //[60] 

BOOL EscapeHit{) 

void Upload( char *fname) 

void SetMem(long IAddr, int iVai, BOOL bWord) 

int GetMem(long IAddr) 
A-91 



Functions related to file btc for talk70.exe 

1. Function name: GetiRQ 
Calls: None 

2. Function name: readkey 
Calls: int86 

3. Function name: OpenComm 
Calls: *serinit_q 

*serinit 
outp 
inp 

4. Function name: SerialPortStatus 
Calls: int86 

5. Function name: CommParam 
Calls: printf 

*readkey 
6. Function name: DisplayCommParam 

Calls: printf 
7. Function name: SendCommand 

Calls: strcpy 
*FlushPort 
printf 
*EscapeHit 
*sersend 
*WaitChar 

8. Function name: WaitChar 
Calls: *clock 

*serrecv 
9. Function name: Scro//Win 

Calls: int86 
I 0. Function name: SetCursor 

Calls: int86 
11. Function name: GetCursor 

Calls: int86 
12. Function name: WriteCh 

Calls: int86 
13. Function name: Border 

Calls: *SetCursor 
*WriteCh 

14. Function name: FlushPort 
Calls: printf 

*serrecv 
15. Function name: MonitorMode 

Calls: *SetCursor 
*OpenComm 
kbhit 
*sersend 
* ProcessFunction 
*Scroll Win 
*serrecv 
putch 
printf 
*serclose_q 

A-92 



•serclose 
•readkey 

16. Function name: Delay 
Calls: *clock 

17. Function name: GetString 
Calls: *WaitChar 

*EscapeHit 
*FlushPort 

18. Function name: DisplayStatusForm 
Calls: *CiearRows 

*SetCursor 
printf 

19. Function name: CheckComm 
Calls: *SeriaiPortStatus 

*SetCursor 
printf 

20. Function name: EndMessage 
Calls: •sersend 

*SetCursor 
printf 
*Border 
•readkey 
*Clear Rows 

21. Function name: StopCollect 
Calls: •sersend 

*FiushPort 
22. Function name: SaveOrNot 

Calls: *CiearRows 
*SetCursor 
printf 
gets 
strtok 
remove 

23 Function name: WaitForFirst 
Calls: kbhit 

*readkey 
*SetCursor 
printf 
•serrecv 
*ClearRows 

24 Function name: EscapeHit 
Calls: kbhit 

25. Function name: Upload 
Calls: printf 

gets 
strcpy 
fopen 
*EscapeHit 
fgetc 
feof 
•sersend 
•serrecv 
putch 
fclose 
*FiushPort 

A-93 



26. Function name: SetMem 
Calls: sprintf 

*SendCommand 
*GetString 
*sersend 
*FlushPort 

27. Function name: GetMem 
Calls: sprintf 

*SendCommand 
*GetString 
sscanf 

Filename: mode3.doc \ List of functions in mode3.c 

DISTIYPE DistManage(int iFunc) 
void ProfileMode3() 
void PutRoadlnfo(char c) 

List of functions for mode3 .c for talk70.exe 

1. Function name: DistManage 
Calls: *sersend 

2. Function name: ProfileMode3 
Calls: *GetMem 

*ClearRows 
*Border 
*SetCursor 
printf 
*GetFilename 
*GetAcoustic 
*GetSPF 
*GetDistance 
*DisplayPoints 
*DisplayStatusForm 
* SetExtractRatio 
*SetAe Unit 
*lnitRut 
*SetlntemalSPF 
fputc 
*SendCommand 
*sersend 
*Flush Port 
kbhit 
*readkey 
*WaitForFirst 
*time 
*ScrollWin 
*DistManage 
*serrecv 
fputc 
putchar 
*WriteSI 
*GetRut 

A-94 



*PostRut 
*PutRoadinfo 
*PauseRut 
*CheckComm 
*StopCollect 
fclose 
*SaveOrNot 
*CioseRut 
*End.Message 

3. Function name: PutRoadlnfo 
Calls: *Border 

*SetCursor 
putchar 

List of functions in mode6.c 
Filename: mode6.doc 

voidMode6() 

Functions related in mode6.c for talk 70.exe 

Function name: Mode6 
Calls: *ClearRows 

*Border 
*SetCursor 
strlen 
printf 
*DistanceMode 
*SetSdMode 
*GetFileName 
*SetAe Unit 
*GetSPF 
*GetDistance 
*StopCollect 
fclose 
*EndMessage 
*DisplayPoints 
*DisplayStatusForm 
*SetParam 
*SendCommand 
time 
*WaitForFirst 
*serrecv 
* MasterOutput 
fprintf 
kbhit 
putchar 
*CheckComm 
*SaveOrNot 

A-95 



List of functions for mode7.cfor talk70.exe 

1. Function name: IRJ_RUTMode 
Calls: *SendCommand 

*SetMem 
2. Function name: JRJ_RUTMode 

Calls: *ClearRows 
*Border 
*SetCursor 
printf 
*GetFilename 
*GetAcoustic 
*SetAcUnit 
• Send Command 
*SetMem 
*GetSPF 
*GetDistance 
*StopCollect 
• EndMessage 
fclose 
*DisplayPoints 
*DisplayStatusForm 
*SetParam 
*time 
*WaitForFirst 
*GetFioat 
*ScrollWin 
*GetMsg 

kbhit 
*sersend 
•serrecv 
*CheckConun 
*SaveOrNot 

3. Function name: GetF/oat 
Calls: *serrecv 

4. Function name: GetShort 
Calls: •serrecv 

5. Function name: GetMsg 
Calls: •serrecv 

List of functions in rtrut.c 
Filename: rtrut.doc 

void InitRut() 
void CloseRut() 
COUNT_TO_INCH(i) 
void GetRut() 
void PauseRut() 
void PostRut() 
void WriteSI(unsigned int si, unsigned long wsv) 
void SendString(int iP, char *s) 

A-96 



List of related functions for rtrut.c for talk70.exe 

I. Function name: InitRUT 
Calls: fopen 

fprintf 
strcpy 
sprintf 

2. Function name: CloseRUT 
Calls: fprintf 

fclose 
3. Function name:COUNT_TO _INCH 

Calls: None 
4. Function name: GetRUT 

Calls: *COUNT_TO_INCH 
5. Function name: PauseRUT 

Calls: *SetCursor 
printf 
*Border 

6. Function name: PostRut 
Calls: fopen 

fprintf 
sprintf 
*SendString 
*Scroll Win 
*SetCursor 
putchar 
*PutRoadlnfo 
printf 

7. Function name: WriteS/ 
Calls: fprintf 

sprintf 
8. Function name: SendString 

Calls: *sersend 

List of functions in sdl.c 
Filename: sdl.doc 

void SO Profile 1 (int acunit) 

List of related functions for sdl.c for talk70.exe 

L Function name: SDProfile 
Calls: *ClearRows 

*Border 
*SetCursor 
printf 
*SetSdMode 

A-97 



*SetMem 
*GetFileName 
*GetAcoustic 
*SetAe Unit 
*GetSPF 
* StopCollect 
fclose 
*EndMessage 
*DisplayPoints 
* DisplayStatusF onn 
*SetParam 
* SendCommand 
*WaitForFirst 
*serrecv 
fprintf 
*time 
printf 
kbhit 
*sersend 
*CheckComm 
*StopCollect 
fclose 
*SaveOrNot 
*EndMessage 

List of functions in talk70.c 
Filename: talk70.doc 

I. List of Functions in talk70.c 
void InitSI(char *fn) 
char *GetHeader(char *FileName) 
main(int argc, char *argv[]) 
void ProcessFunctions( unsigned char scan ) 
void DisplayHelp() 
int DistanceMode(BOOL bDisplay) 
int GetinternalSPF() 
int GetSCKPMI() 
void SetlnternalSPF(int iSioSPF) 
void SetAcUnit(int acunit) 
void SetSdMode(int DataCollectMode) 
void SetExtractRatio(int er) 
void SetParam(double sample, double speed) 
void GetAcoustic(int iRow, int *acunit) 
int SelectAcoustic(char s[], int *acunit) 
FILE *GetFileName(int iRow) 
double GetSPF(int iRow, int Mode, FILE *f) 
void GetDistance(int iRow, char *unit, double *dist) 
void DisplayPoints(int iRow, long nPts, double dist, double sample) 
void ProfileMode2(int acunit) 
void MasterOutput(char szFonnat[], unsigned wVal, BOOL bPreSection) 
unsigned CheckTime(BOOL bReset) 
void KeyPadMode() 

A-98 



void TestMode(int iMode, float Avg[5]) 
void SetFilter(unsigned char b) 
void ReadRutCorr() 
void SaveRutCorr() 
void DispCorr() 

Related functions for talk70.c 

1. Functions name: lnitSI( char *fn) 
Calls : fopen 

fgets 
feof 
strupr 
strtok 
strcmp 
strncpy 
atoi 

* GetHeader 
atof 
fgets 
fclose 

2. Function name: GetHeader( char *Filename) 
Calls: fopen 

malloc 
fgets 
free 
fclose 

3. Function name: main( int argv, char *argv{]) 
Calls: 

* InitSI 
* ReadRutCorr 
* DisplayHelp 
* MonitorMode 
_ clearscreen 
printf 
free 

4. Function name: ProcessFunctions( unsigned char scan) 
Calls: 

*Upload 
*FiushPort 
fopen 
*serrecv 
fputc 
*Escape Hit 
fclose 
*sersend 
*serclose_q 

A-99 



*SERCLOSE 
*SetCursor 
*CommParam 
*OpenComm 
*DisplayCommParam 
• ScrollWin 
printf 
gets 
sscanf 
*KeyPadMode 
*LoadedCorr 
*TestMode 
*ProfileMode2 
*ProfileMode3 
*SDProfilel 
*Mode6 
*IRI_RUTMode 
*DisplayHelp 

5. Function Name: Disp/ayHe/p 
Calls: 

printf 
*DisplayCommParam 

6. Function Name: DistanceMode 
Calls: 

*SendCommand 
*GetString 
sscanf 
*SetCursor 
printf 

7. Function name: Get/nterna/SPF 
Calls: 

*SendCommand 
*GetString 
sscanf 

8. Function name: GetSCKPM/ 
Calls: 

*Send Command 
*GetString 
sscanf 

9. Function name: Set/nterna/SPF 
Calls: 

*SendCommand 
*Delay 
sprintf 

I 0. Function name: SetAe Unit 
Calls: 

sprintf 
*SendCommand 
*GetString 
*sersend 
*FlushPort 

A-100 



11. Function name: SetSdMode 
Calls: *SendCommand 

*GetString 
sprintf 
•sersend 
*FlushPort 

12. Function name: SetExtractRatio 
Calls: sprintf 

*SendCommand 

13. Function name: SetParam 
Calls: *SetlntemlSPF 

• SetExtractRatio 
14. Function name: GetAcoustic 

Calls: *ClearRows 
*SetCursor 
printf 
gets 
strcpy 
• SelectAcoustic 

15. Function name: Se/ectAcoustic 
Calls: None 

16. Function name: GetFi/eName 
Calls: *time 

*Clear Rows 
*SetCursor 
printf 
gets 
getch 
sprintf 
fclose 
fopen 
strcpy 
fprintf 

17. Function name: GetSPF 
Calls: *CiearRows 

*SetCursor 
printf 
gets 
fprintf 

18. Function name: GetDistance 
Calls: *SetCursor 

*Clear Rows 
printf 
gets 
sscanf 

A-101 



19. Function name: DisplayPoints 
Calls: *ClearRows 

*SetCursor 
printf 

20. Function name: ProfileMode2 
Calls: *SetFilter 

*ClearRows 
*Border 
*SetCursor 
printf 
*DistanceMode 
*SetSdMode 
*GetFileName 
*GetAcoustic 
*SetAcUnit 
*GetDistance 
*StopCollect 
fclose 
*EndMessage 
gets 
sscanf 
*DisplayPoints 
* DisplayStatusF onn 
*SetParam 
* SetExtractRatio 
*SendCommand 
*time 
*WaitForFirst 
*Check Time 
strcpy 
*MasterOutput 
*serrecv 
fprintf 
kbhit 
*CheckComm 
*SaveOrNot 

21. Function name: MasterOutput 
Calls: fprintf 

22. Function name: Ckecklime 
Calls: clock 

23. Function name: KeyPadMode 
Calls: *Send Command 

*FlushPort 
ClearScreen 

_setvideomode 
*SetCursor 
*Border 
kbhit 
*readkey 
*sersend 
printf 

A-102 



*serrecv 
putch 

setvideomode 
24. Function name: TestMode 

Calls: *ClearRows 
*Border 
*SetCursor 
printf 
*SetSdMode 
*SendCommand 
*Flush port 
*SelectAcoustic 
*SetAe Unit 
*SetParam 
*SendCommand 
*WaitForFirst 
*serrecv 
*sersend 
*readkey 
*Delay 

25. Function name: SetFilter 
Calls: *SendCommand 

sprintf 
printf 

26. Function name: ReadRutCorr 
Calls: fopen 

fscanf 
fclose 

27. Function name: SaveRutCorr 
Calls: fopen 

fprintf 
fclose 

28. Function name: LoadedCorr 
Calls: *ReadRutCorr 

*DispCorr 
printf 
*readkey 
*TestMode 
*SaveRutCorr 
*DispCorr 
*SetCursor 
*sersend 

29. Function name: LoadedCorr 
Calls: ReadRutCorr 

DispCorr 
TestMode 
readkey 
SaveRutCorr 
DispCorr 
SetCursor 
sersend 

29. Function name: DispCorr 
Calls: printf 

A-103 



Warnier orr Diagram 

A-104 



2 
main 

3 4 5 6 7 8 9 10 

InitSi 
GetHeader I 

MonitorMode 
SetCursor I 
OpenComm 

serinit_q I 
serinit I 

ProcessFunctions 
Upload 

Escape Hit 
kbhit 1 

sersend I 
serrecv I 
FlushPort 

FlushPort 
sersend I 

serrecv I 
EscapeHit 
sersend I 
serclose_q I 
SetCursor I 
CommParam I 
OpenComm 

sersend I 

serinti_q 
serinit I 

DisplayCommParam I 
ScrollWin I 
KeyPadMode 

SendCommand 
FlushPort 

sersend I 
Escape Hit 

kbhit 1 

WaitChar 

FlushPort 
sersend I 

SetCursor I 
Border 

serrecv I 

SetCursor I 
WriteCh I 

readkey I 
sersend I 
serrecv I 

LoadedCorr 
ReadRutCorr I 
DispCorr I 
TestMode 

ClearRows I 
Border 



SetCursor I 
WriteCh I 

SetCursor I 
SetSdMode 

Send Command 
FlushPort 

serrecv I 
Escape Hit 

kbhit I 
WaitChar 

sersend I 
GetString 

WaitChar 
sersend I 

Escape Hit 
kbhitl 

FlushPort 
serrecv I 

sersend I 
FlushPort 

serrecv I 
SendCommand 

FlushPort 
serrecv 1 

EscapeHit 
kbhitl 

WaitChar 
sersend I 

FlushPort 
serrecv I 

SelectAcoustic I 
SetAe Unit 

Send Command 
FlushPort 

serrecv 
EscapeHit 

kbhit 1 

WaitChar 
sersend I 

GetString 
WaitChar 

sersend I 
EscapeHit 

kbhit 1 

FlushPort 
serrecv 1 

sersend I 
FlushPort 

serrecv I 
SetParam 

SetlntemalSPF 

A-106 

SendCommand 
FlushPort 

serrecv I 
EscapeHit 



delay I 
SetExtractRatio 

kbhit 1 

WaitChar 
sersend I 

SendCommand 

WaitForFirst 
readkey I 
SetCursor I 
serrecv I 
ClearRows I 

serrecv I 
sersend I 
readkey I 
delay I 

readkey I 
SaveRutCorr I 
SetCursor I 
sersend I 

TestMode 
ClearRows I 
Border 

SetCursor I 
WriteCh I 

SetCursor I 
SetSdMode 

Send Command 
Flush Port 

serrecv I 
Escape Hit 

kbhit I 
WaitChar 

sersend I 
Get String 

WaitChar 
sersend I 

EscapeHit 
kbhit I 

Flush Port 
serrecv I 

sersend I 
Flush Port 

serrecv I 
Send Command 

FlushPort 
serrecv I 

EscapeHit 

A-107 

Flush Port 
serrecv I 

Escape Hit 
kbhit 1 

WaitChar 
sersend I 



kbhit 1 

WaitChar 
sersend I 

FlushPort 
serrecv I 

SelectAcoustic I 
SetAe Unit 

SendCommand 
FlushPort 

serrecv I 
EscapeHit 

kbhit I 
WaitChar 

sersend I 
GetString 

WaitChar 
sersend I 

EscapeHit 
kbhit 1 

FlushPort 

sersend I 
FlushPort 

serrecv I 

serrecv I 

SetParam 
SetlntemalSPF 

SendCommand 

delay I 
SetExtractRatio 

FlushPort 
serrecv I 

Escape Hit 
kbhit 1 

WaitChar 
sersend I 

SendCommand 

WaitForFirst 
readkey I 
SetCursor I 
serrecv I 
ClearRows I 

serrecv I 
sersend I 

ProfileMode2 
SetFilter 

SendCommand 

FlushPort 
serrecv I 

Escape Hit 
kbhit I 

WaitChar 
sersend I 

FlushPort 
serrecv I 

A-108 



ClearRows I 
Border 

EscapeHit 
kbhit 1 

WaitChar 
sersend I 

SetCursor I 
WriteCh I 

SetCursor I 
DistanceMode 

SendCommand 
FlushPort 

serrecv I 
Escape Hit 

kbhit 1 

WaitChar 
sersend I 

GetString 
WaitChar 

sersend I 
Escape Hit 

kbhit 1 

FlushPort 
serrecv 1 

SetCursor I 
SetSdMode 

SendCommand 
FlushPort 

serrecv I 
Escape Hit 

kbhit 1 

WaitChar 
sersend I 

Get String 
WaitChar 

sersend I 
EscapeHit 

kbhit I 
Flush Port 

serrecv I 
sersend I 
FlushPort 

serrecv I 
GetFileName 

ClearRows I 
SetCursor I 

GetAcoustic 
ClearRows I 
SetCursor I 
SelectAcoustic I 

SetAe Unit 
SendCommand 

FlushPort 
serrecv I 

A-109 



Escape Hit 
kbhit 1 

WaitChar 
sersend I 

GetString 
WaitChar 

sersend I 
FlushPort 

serrecv I 
GetDistance 

SetCursor I 
ClearRows I 

StopCollect 
sersend I 
FlushPort 

serrecv I 
EndMessage 

sersend I 
SetCursor I 
Border 

sersend 1 

EscapeHit 
kbhit I 

FlushPort 
serrecv I 

SetCursor I 
WriteCh I 

ClearRows I 
Display Points 

ClearRows I 
SetCursor I 

Disp layStatusF onn 
ClearRows I 
SetCursor I 

SetParam 
SetlntemalSPF 

SendCommand 

delay I 
SetExtractRatio 

FlushPort 
serrecv I 

Escape Hit 
kbhit 1 

WaitChar 
sersend I 

SendCommand 

SetExtractRatio 

A-110 

FlushPort 
serrecv I 

EscapeHit 
kbhit I 

WaitChar 
sersend I 



SendCommand 
FlushPort 

serrecv I 
EscapeHit 

kbhit 1 

WaitChar 
sersend I 

SendCommand 
Flush Port 

serrecv I 
Escape Hit 

kbhit 1 

WaitChar 
sersend I 

WaitForFirst 
readkey I 
SetCursor I 
serrecv I 
ClearRows I 

Checktime I 
MasterOutput I 
serrecv I 
CheckComm 

SerialPortStatus I 
SetCursor I 

SaveOrNot 

ProfileMode3 
GetMem 

ClearRows I 
SetCursor I 

Send Command 
Flush Port 

serrecv 
Escape Hit 

kbhit 1 

WaitChar 
sersend I 

GetString 
WaitChar 

sersend I 
Escape Hit 

kbhit 1 

Flush Port 
serrecv 

ClearRows I 
Border 

SetCursor I 
WriteCh I 

SetCursor I 
GetFileName 

ClearRows I 
SetCursor I 

GetAcoustic 

A-11 1 



GetSPF 

ClearRows I 
SetCursor I 
SelectAcoustic I 

ClearRows I 
SetCursor I 

GetDistance 
SetCursor I 
ClearRows I 

Display Points 
ClearRows I 
SetCursor I 

DisplayStatusForm 
ClearRows I 
SetCursor I 

SetExtractRatio 
SendCommand 

SetAe Unit 

FlushPort 
serrecv I 

EscapeHit 
kbhit 1 

WaitChar 
sersend I 

Send Command 
FlushPort 

serrecv I 
EscapeHit 

kbhit I 
WaitChar 

sersend I 
GetString 

WaitChar 
sersend I 

Escape Hit 
kbhit 1 

FlushPort 
serrecv 1 

sersend I 
FlushPort 

serrecv 
InitRut I 
SetlntemalSPF 

Send Command 

delay I 

FlushPort 
serrecv I 

Escape Hit 
kbhit I 

WaitChar 
sersend I 

A-112 



Send Command 
FlushPort 

serrecv I 
Escape Hit 

kbhit I 
WaitChar 

sersend I 
sersend I 
FlushPort 

serrecv I 
readkey I 
WaitForFirst 

readkey I 
SetCursor I 
serrecv I 
ClearRows I 

Scrol!Win I 
DistManage 

sersend I 
serrecv I 
WriteS! I 
GetRut 

COUNT_TO_INCH I 
PostRut 

SendString 
sersend I 

ScrollWin I 
SetCursor I 
PutRoadlnfo 

PutRoadlnfo 
Border 

Border 
SetCursor I 
WriteCh I 

SetCursor I 

SetCursor I 
WriteCh I 

SetCursor I 
Pause Rut 

SetCursor I 
Border I 

CheckComm 
SerialPortStatus I 
SetCursor I 

.StopCollect 
sersend I 
FlushPort 

serrecv I 
SaveOrNot 

ClearRows I 
SetCursor I 

A-113 



CloseRut I 
EndMessage 

sersend I 
SetCursor I 
Border 

SetCursor I 
WriteCh I 

ClearRows I 
SDProfile1 

ClearRows I 
Border 

SetCursor I 
WriteCh I 

SetCursor I 
SetSdMode 

SetMem 

Send Command 
FlushPort 

serrecv I 
Escape Hit 

kbhit 1 

WaitChar 
sersend I 

GetString 
WaitChar 

sersend I 
Escape Hit 

kbhitl 
FlushPort 

serrecv I 
sersend I 
FlushPort 

serrecv I 

SendCommand 
FlushPort 

serrecv I 
EscapeHit 

kbhitl 
WaitChar 

sersend I 
GetString 

WaitChar 
sersend I 

Escape Hit 
kbhit 1 

FlushPort 
serrecv I 

GetFileName 
ClearRows I 
SetCursor I 

A-114 



GetAcoustic 
ClearRows I 
SetCursor I 
SelectAcoustic I 

SetAe Unit 

GetSPF 

SendCommand 
Flush Port 

serrecv I 
Escape Hit 

kbhit I 
WaitChar 

sersend I 
GetString 

sersend I 

WaitChar 
sersend I 

Escape Hit 
kbhit 1 

FlushPort 
serrecv I 

Flush Port 
serrecv I 

ClearRows I 
SetCursor I 

StopCollect 
sersend I 
Flush Port 

serrecv I 
Display Points 

ClearRows I 
SetCursor I 

DisplayStatusForm 
ClearRows I 
SetCursor I 

SetParam 
SetintemalSPF 

Send Command 

delay I 
SetExtractRatio 

FlushPort 
serrecv I 

EscapeHit 
kbhit 1 

WaitChar 
sersend I 

SendCommand 

A-115 

Flush Port 
serrecv I 

EscapeHit 
kbhit 1 

WaitChar 



sersend I 
Send Command 

FlushPort 
serrecv I 

Escape Hit 
kbhitl 

WaitChar 
sersend I 

WaitForFirst 
readkey I 
SetCursor I 
serrecv I 
ClearRows I 

serrecv I 
sersend 
CheckComm 

SeriaiPortStatus I 
SetCursor I 

SaveOrNot 
ClearRows I 
SetCursor I 

EndMessage 
sersend I 
SetCursor I 
Border 

SetCursor I 
WriteCh I 

ClearRows I 

Mode6 
ClearRows I 
Border 

SetCursor I 
WriteCh I 

SetCursor I 
Distance Mode 

SendCommand 
FlushPort 

serrecv I 
EscapeHit 

kbhit 1 

WaitChar 
sersend 1 

GetString 
WaitChar 

sersend I 
Escape Hit 

kbhit 1 

Flush Port 

A-116 



serrecv I 
SetCursor I 

SetSdMode 
SendCommand 

FlushPort 
serrecv I 

Escape Hit 
kbhit 1 

WaitChar 
sersend I 

GetString 

sersendl 

WaitChar 
sersend I 

EscapeHit 
kbhit I 

FlushPort 
serrecv I 

GetFileName 
ClearRows I 
SetCursor I 

SetAcUnit 
SendCommand 

FlushPort 
sersend I 

EscapeHit 

kbhit 1 

WaitChar 
sersend I 

GetString 
WaitChar 

sersend I 
EscapeHit 

GetSPF 

sersend I 
Flush Port 

sersend I 

ClearRows I 
SetCursor I 

GetDistance 
SetCursor I 
ClearRows I 

StopCollect 
sersend I 
Flush Port 

sersend I 
EndMessage 

sersend I 
SetCursor I 

A-117 

kbhitl 
sersend I 



Border 
SetCursor I 
WriteCh I 

ClearRows I 
Display Points 

ClearRows I 
SetCursor I 

DisplayStatusForm 
ClearRows I 
SetCursor I 

SetParam 
SetlnternalSPF 

SendCommand 

delay I 
SetExtractRatio 

FlushPort 
sersend I 

EscapeHit 
kbhit 1 

WaitChar 
sersend I 

SendCommand 

Send Command 
FlushPort 

sersend I 

Escape Hit 
kbhit 1 

WaitChar 
sersend I 

WaitF or First 
readkey I 
SetCursor I 
serrecv I 
ClearRows I 

serrecv I 
MasterOutput I 
CheckComm 

SerialPortStatus I 
SetCursor I 

SaveOrNot 
ClearRows I 
SetCursor I 

IRI RUTMode 
ClearRows I 

A-118 

FlushPort 
sersend I 

Escape Hit 
kbhit I 

WaitChar 
sersend I 



Border 
SetCursor I 
WriteCh I 

SetCursor I 
GetFileName 

ClearRows I 
SetCursor I 

GetAcoustic 
ClearRows I 
SetCursor I 
SelectAcoustic I 

SetAe Unit 
Send Command 

FlushPort 
sersend 

EscapeHit 
kbhit 1 

WaitChar 
sersend I 

GetString 
WaitChar 

sersend I 
Escape Hit 

kbhit I 
FlushPort 

sersend I 
sersend I 
FlushPort 

sersend I 
SendCommand 

SetMem 

FlushPort 
sersend I 

Escape Hit 
kbhit 1 

WaitChar 
sersend I 

Send Command 
FlushPort 

sersend I 
EscapeHit 

kbhit 1 

WaitChar 
sersend I 

GetString 
WaitChar 

sersend I 
Escape Hit 

kbhit 1 

FlushPort 
sersend I 

FlushPort 
sersend I 

A-119 



GetSPF 
ClearRows I 
SetCursor I 

GetDistance 
SetCursor I 
ClearRows I 

StopCollect 
sersend I 
FlushPort 

sersend I 
EndMessage 

sersend I 
SetCursor I 
Border 

SetCursor I 
WriteCh I 

ClearRows I 
Display Points 

ClearRows I 
SetCursor I 

DisplayStatusFonn 
ClearRows I 
SetCursor I 

SetPararn 
SetlnternalSPF 

SendCommand 

delay I 
SetExtractRatio 

FlushPort 
sersend I 

Escape Hit 
kbhit I 

WaitChar 
sersend I 

SendCommand 

WaitForFirst 
readkey I 
SetCursor I 
serrecv I 
ClearRows I 

GetFloat 
serrecv I 

ScrollWin I 
GetMsg 

serrecv I 

A-120 

FlushPort 
sersend I 

EscapeHit 
kbhit 1 

WaitChar 
sersend I 



sersend I 
serrecv I 
CheckComm 

SerialPortStatus I 
SetCursor I 

SaveOrNot 
ClearRows I 
SetCursor I 

DisplayHelp 
DisplayCommParam I 

ScroliWin I 
readkey I 
sersend I 
serclose I 
serclose_q I 
serrecv I 

ReadRutCorr I 
Display Help 

DisplayCommParam I 

A-121 



Notes on Variables 

A-122 



Filename: Notes.doc 

• typedef SERIAL STATUS 
typedef union { 

unsigned int w; 
struct { 

I* modem *I 
unsigned int RLSD: 1; 
unsigned int RI: I; 
unsigned int DSR: I; 
unsigned int CTS: 1; 
unsigned int DRLSD: I; 
unsigned int TERD: 1; 
unsigned int DDSR: 1; 
unsigned int DCTS: I; 

I* line *I 
unsigned int DataReady 
unsigned int OverrunError 
unsigned int ParityError 
unsigned int FrameError 
unsigned int BreakDetect 
unsigned int THREmpty 
unsigned int TSREmpty 
unsigned int TimeOut 
} b; 

} SERIALSTATUS; 

:1; 
:I; 
: 1; 
: 1; 
:I; 

: 1; 
:I; 
:1; 

The above typedef is used when you need to use intl4 function 03. This function is used to read the serial port 
status. Refer to the Function SerialPortStatus. A 16 bit value is returned when a call is made to SeriaiPortStatus. 
The above data structure SERIALST A TUS is returned. 

The status of the port which is a unsigned integer. When this interrupt is called a value is returned an register ax. 
The upper byte register ah contains. 
Bit 0: Data Ready 
Bit I : OverrunError 
Bit 2: Parity Error 
Bit 3: Framing Error 
Bit 4: Break discovered 
Bit 5: Transmission hold register empty 
Bit 6: Transmission shift register empty 

The lower byte register al contains 
Bit 0: Modem ready to send status change 
Bit I: Modem on status change 
Bit2: . Telephone ringing status change 
Bit3: Connection to receiver status change 
Bit4: Modem ready to send 
Bit5: Modem on 
Bit6: Telephone ringing 
Bit7: Connection to receiver modem 

A-123 



• int iFrame 
This variable indicates that there has been some Frame error. iFrame is incremented whenever there is a Frame 
error. 

• int iOverrun 
This variable indicates that there has been some Overrun error. iOverrun is incremented whenever there is an 
Overrun error. 

• File *fRut 
It is a file descriptor which is used to write the Rut. 

• File *fSI 
It is a file descriptor which is used to write the serviceability index 

• File *fWSV; 
It is a file descriptor which is used to write the Walker slope variable. 

• iRutCnt 
This is the Rut count.. .. not very sure about this variable. It is used and modified in PostRut. 

• iRutMethod 
This is a value of the Rutmethod which is either 
• 
• 
• 
• 
• 
• 
• 
• 

• 

0 Do not do real time rut 
I South Dakota 
2 String-Line Right 
4 String-Line Left 
6 String-Line Right & Left 
8 Right Rut 
12 New Average (String-Line Left & Right Rut) 
28 Method 12; output to serial ports; does not write to disk . 

bExtraComm 
bExtraComm is the value of iRutMethod &Ox I 0 
bExtraComm is true only if the iRutMethod is 28 .... that is Method 12 mentioned above 

• SIDist 
SIDist is the value of the distance in feet when every value of SI comes in from the SIOMETER 
SIDist = GetMem(Oxl0529eL)/3; //either 1056 or 528; This is given in mode3.c 
After every SIDist, an SI signal comes in. 

• nRutsPerDMI 
The nRutsPerDMI is 3. A Rut signal, that is acoustic data comes in every 4 feet. A distance signal is sent every 12 
feet. Therefore 3*14 = 12. After 3 Rut signals a distance signal is sent. Therefore the variable nRutsPerDMi is the 
value 3. 

• PortNo 
This variable is defmed in file talk.h. This is used to defme the port number. This is the port number that is used for 
communication. For sending or receiving(reading) we need a port to so. 

• Databits 
This specifies the number of databits required for forming the frame 
It stores the number of databits that are being used for transmission. It is typically either 7 or 8. 

• Stopbits 
This specifies the number of stopbits required for forming the frame 

A-124 



Stopbits It is the number of stop bits that are being used. It is typically I or 2. 

• SupportedBaudRate 
This is an array which gives all the supported baud rates 

• DisplayMode 
This variable is used to defme whether the program is in ASCIIMODE or DISPLA YMODE 

• DataCollectMode 
It is a variable that indicates what types of rut measuring methods is bring used. Different types of rut measuring 
methods are South Dakota Method, Construction Mode etc. 

• char *szMode(NMODES] 
This is just a character array used for printing. It has a character string used for printing for all rhw 7 modes. 

szMode(ACC_ACOUST] = "Acceleration and acoustic data"; 
szMode[ACCONL Y] "" "Acceleration only"; 
szMode(SI_AVGSPD] = "SI values, acoustic data, and average speeds"; 
szMode(CONSTR] "Construction"; 
szMode(SDK] = "South Dakota"; 
szMode[TWOCH] = "Acceleration and Laser" 
szMode[IRI_RUT] = "IRI and RUT"; //(70] 

• szActiveAcoustic 
This variable is an array that is used to store the acoustic devices that are active i.e. are being used. The acoustic 
devices are mounted on the rut bar that is attached to the vehicle that is being used for this purpose. These acoustic 
devices are numbered I through 5. So the variable szActiveAcoustic is used to store the number that corresponds to 
the acoustic device that is being used for the data collection purpose. 

• char str[SO] 
This is used as a temporary character buffer. Whenever we need to send something to the siometer we frrst copy it 
into this buffer and then send it to the siometer. 

• unsigned char AcousticMask 
This is a variable that stores the numbers ofthe acoustic devices that have been selected to collect the data. If the 
value in binary is 00011 I I I then the acoustic devices I, 2, 3, 4 and 5 have been selected for the collection of the 
data. The acoustic devices are numbered 1 through 5 from left to right. A laser can also be used and be numbered as 
6. 

• bCountAcoustic 
If bCountAcoustic is true then count acoustic instead of acceleration. 

• bDistMode 
bDistMode gets the value of IsDistance. IsDistance TRUE indicates that it is distance mode. IsDistance "" FALSE 
indicates that it is timemode. 
Example calls. 
bDistMode "" DistanceMode(TRUE); 
bDistMode = DistanceMode(F ALSE); 

• •mata 
It is a pointer to a file 

• bAbort 
bAbort is used to know if any process is aborted. If any process like sending a file is aborted then it is set to TRUE, 
else it is set to false. A way of setting bAbort is by pressing the escape key on the keyboard. 

A-125 



• DatFile 
This is a variable that is used to store the name of a file. 

• BaudRate 
It stores the baud rate that has been selected for the communication. Baudrate is normally specified in number of 
bits per second. 

• Parity 
This variable is used to store the type of parity that is being used for communication. It can be either ODD parity or 
EVEN parity or No parity. Basically parity bits are check bits that are used to see if the received data is correct or 
not. 

• bPause 
This variable is used to print " Pause" on the standard input. 

• bMetric 
This variable is to know whether the metric that we are using to measure the distance is Kilometers or feet. If this 
variable is set to 1 (TRUE) then distance is printed in Kilometers else if it is false then it is reset to zero(F ALSE) 
then the distance is printed in feet. 

• szDefAc 
This variable is used to store the numbers of acoustic devices that are being used. 

• RutCorr.Loading 
This array is used to store the differences in acoustic readings for the loaded and unloaded conditions. An unloaded 

condition is one in which all the persons in the vehicle get out of the vehicle and the acoustic readings are collected. 
A loaded condition is one in which all the members get in to the vehicle and the acoustic readings are collected. 

• sRutCorr 
This variable is used to store the name of the file called "RUTCORR.INI". The name stands for RUT 
CORRECTION INITIAL! SA TION. 

• nlnline 
This is the number of the values in a line. When the number of values in a line becomes 16 then it is set to 0. This is 

because the format of a file is so described that it contains 16 values in a line. So after reading 16 value we go to 
the next line and set nlnline to 0. 

• TWOCH 
"Acceleration and Laser" 

• CONSTR 
"Construction" This is one of the modes for the collection of the data. Others include SoutDakota Mode, 
Acceleration and Laser mode etc .. 

• SI_AVGSPD 
"SI values, acoustic data, and average speeds"; 

• bSysGenFileName 
This is a variable that tells whether the name of file to store the data collected is entered by the user. If the user does not 

enter the name of the file then the program generates a filename which constitutes of system time in month, day, 
hours, minutes and seconds. 

A-126 



• bComment 
This variable if set asks for comment to be entered. Depending on the variable header it asks the user to enter one or two 

lines of comment. If header is set to l then it asks the user to enter two lines of comment else if the header is reset to 
0 then it asks the user to enter just I line of comment. If comment is set to 'N' then the user is not asked to enter any 
comment. 

• Header 
It gets the value of the header from a file. The header is stored in the beginning of the file. 

• RangeLimits 
This is an array storing the maximum value of each range of value that can be received. 

• iRutSecLen 
This specifies the rut report interval in feet. The options are 528 feet and 1056 feet. 
• Param 
This is a variable used to store the tokens read from the file whose name is stored in the variable called 'fn'. The 
tokens are that are stored in this variable are predefmed tokens. 

• value 
This variable stores the value to which is used to set another variable. 

• RutCorr.Mounting 
This contains the mounting offsets of the five acoustic devices in inches. We need this because the bar on which the 
acoustic devices are mounted may not be horizontal and the devices may have different offsets. 

• DisplayMode 
This variable is used to defme whether the program is in ASCIIMODE or DISPLA YMODE 

• bDistMode 
bDistMode gets the value of IsDistance. lsDistance = TRUE indicates that it is distance mode. IsDistance = FALSE 
indicates that it is timemode. 
Example calls. 
bDistMode = DistanceMode(TRUE); 
bDistMode = DistanceMode(F ALSE); 

• bAbort 
bAbort is used to know if any process is aborted. If any process like sending a file is aborted then it is set to TRUE, 
else it is set to false. A way of setting bAbort is by pressing the escape key on the keyboard. 

• SDK 
SouthDakotaMode 

• FS 
If this is set to 'N' then mode changing is disabled 

• F2 
If this is set to 'N' then changing communication parameters is disabled. 

A-127 



• RUT_SEC_LEN 
This represents the rut section length over which the rut is reported. If this is set to say, 528 feet then rut report 
interval is 528 feet. 

• COMJIRQ 
This is used to store an integer. If this is set to 2 then it means that use IRQ2 for COM3. 

A-128 



Scan codes 

Some Info on Scan codes. 

When the user presses any key on the keyboard, an electrical impulse, which identifies the location of the key is 
generated. This signal is handled by the Keyboard processor, which is located inside the Keyboad itself. Generally 
this processor is an Intel 8084 chip. If you are using an AT class of computer then the communication is handled by 
an Intel8042 chip. This allows bi-directional communication between CPU and Keyboard. Earlier PC's and XT's 
do not have this capability. 

Converting the scancode 
The Keyboard processor converts the electrical impulse indicating the position into a number called scan code. This 

scan code is passed to the computer. The transfer is done serially, since the cable that connects the Keyboard to the 
computer has only one data line. The communication is synchronous. 

Scan code are also generated when the key is released. This is important because the computer needs to know if the 
key has been released or still pressed. This helps to differentiate the situations like typing the capital letters and 
also trying to reboot the computer. For rebooting the computer needs to know that all the three keys namely 
<Ctri><Alt><Delete> are pressed together. 

Each time the keyboard is pressed a hardware interrupt IRQ l is executed. The keyboard handler receives these 
scancodes one when a key is pressed and one when key is released and converts these into corresponding ASCII 
character codes, which can be read by application that is currently running. 
Different keyboards use different sets of scancodes. So they by themselves are unusable. So these scan codes are 
converted into ASCII codes, which are standard on all computers. 

A-129 


	REAL- TIME DATA ACQUISITIONFORSURFACE MEASUREMENT
	Technical Report Documentation Page
	TABLE OF CONTENTS
	TABLE OF FIGURES
	List of Tables
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	Chapter 7
	CHAPTER 8
	CHAPTER 9
	APPENDIX A
	Structure Charts
	Function Headers
	Documentation for functions in other Functions for talk.exe
	Flow Charts
	List of Functions Sorted
	List of Functions for Each File
	Warnier orr Diagram
	Notes on Variables



