CALCULATION OF THE ELASTIC MODULI

of a

TWO LAYER PAVEMENT SYSTEM

from

MEASURED SURFACE DEFLECTIONS

by

Frank H. Scrivner Chester H. Michalak William M. Moore

Research Report Number 123-6

A System Analysis of Pavement Design and Research Implementation Research Study Number 1-8-69-123

conducted

In Cooperation with the U. S. Department of Transportation Federal Highway Administration Bureau of Public Roads

by the

Highway Design Division Research Section Texas Highway Department

> Texas Transportation Institute Texas A&M University

Center for Highway Research The University of Texas at Austin

March, 1971

Preface

This is the sixth report issued under Research Study 1-8-69-123, A System Analysis of Pavement Design and Research Implementation. The study is being conducted jointly by principal investigators and their staffs in three agencies -- The Texas Highway Department, The Center for Highway Research at Austin and The Texas Transportation Institute -as a part of the cooperative research program with the Department of Transportation, Federal Highway Administration.

Previous reports emanating from Study 123 are the following:

Report No. 123-1, "A Systems Approach Applied to Pavement Design and Research," by W. Ronald Hudson, B. Frank McCullough, Frank H. Scrivner, and James L. Brown, describes a long-range comprehensive research program to develop a pavement systems analysis and presents a working systems model for the design of flexible pavements.

Report No. 123-2, "A Recommended Texas Highway Department Pavement Design System Users Manual," by James L. Brown, Larry J. Buttler, and Hugo E. Orellana, is a manual of instructions to Texas Highway Department personnel for obtaining and processing data for flexible pavement design system.

Report No. 123-3, "Characterization of the Swelling Clay Parameter Used in the Pavement Design System," by Arthur W. Witt, III, and B. Frank McCullough, describes the results of a study of the swelling clay parameter used in pavement design system.

Report No. 123-4, "Developing A Pavement Feedback Data System," by R. C. G. Haas, describes the initial planning and development of a pavement feedback data system.

Report No. 123-5, "A Systems Analysis of Rigid Pavement Design," by Ramesh K. Kher, W. R. Hudson, and B. F. McCullough, describes the development of a working systems model for the design of rigid pavements.

The authors are indebted to Messrs. Robert E. Long and James L. Brown, both of the Texas Highway Department, for furnishing the pavement deflection data used in the sample problems presented in Chapter 6.

i

The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation, Federal Highway Administration.

Abstract

This report gives the theoretical background and a description of a new computer program, ELASTIC MODULUS, capable of converting deflections measured by a Dynaflect on the surface of a highway pavementsubgrade (two-layer elastic) system, to the elastic moduli of the pavement and subgrade. Included with the report are instructions for the use of the program, a complete documentation of its operation, and the solutions of several example problems.

Summary

A sub-system of the flexible pavement design system described in the first report of Study 123 (see Preface), estimates the life of a trial design based solely on surface deflections computed from an empirical equation. In an attempt to improve the reliability of this sub-system (a primary objective of Study 123) it is intended, eventually, to base estimates of pavement life on stresses and strains computed from elasticity theory at critical points within the pavement structure. The use of elasticity theory, however, requires a knowledge of the in situ values of the elastic modulus, E, of each of the pavement materials in common use, as well as the subgrades, in the various Highway Department Districts.

According to elasticity theory, the moduli of a pavement and its subgrade can be estimated from surface deflections rather easily, provided the pavement structure above the subgrade is predominately a single material of known thickness, and the subgrade is reasonably uniform in stiffness to a considerable depth.

For determining the elastic moduli of the two materials composing such a pavement, a mathematical process has been developed, computerized, and is made available herewith to the Texas Highway Department. The method envisions the use of the Dynaflect for making the necessary measurements of surface deflections. The data collection and processing procedures, and the output format of the computer program, are exactly the same as those now employed in estimating the "stiffness coefficients"

iv

used in the present version of the flexible pavement design system, with the following exceptions:

- 1. The program described in this report prints elastic moduli in lieu of stiffness coefficients.
- 2. The program prints a verbal description of both pavement and subgrade, instead of the pavement alone.

The computer program has been given the name ELASTIC MODULUS. By a slight modification, it can be used to predict Dynaflect deflections, given the pavement thickness and the moduli of pavement and subgrade. In this form the predictions of ELASTIC MODULUS were compared with those of another program, BISTRO*. Agreement was excellent, except in the instance of a pavement with a modulus much smaller than that of its subgrade, a case not likely to arise often in practice.

To illustrate the results obtained when using ELASTIC MODULUS to estimate pavement and subgrade moduli, Dynaflect data taken at several points on seven short sections of flexible pavements near College Station, Texas, were processed by the program. The ordering of the resulting pavement moduli, as judged by the verbal descriptions of the materials and local knowledge of their service performance, appeared reasonable. In the case of the subgrade moduli, the range was too small to permit a judgement of the validity of the results.

When using the results of the program to characterize materials in a pavement design system based on elasticity theory, it is recommended that the values of the computer moduli be halved before use. This recommendation is based on extensive field correlation studies between deflections produced by the Dynaflect and those produced by heavily loaded vehicles.

* Used by courtesy of Koninklijke/Shell-Laboratorium, Amsterdam.

v

Implementation Statement

The program ELASTIC MODULUS was written in the expectation that eventually the Texas Highway Department's Flexible Pavement Design System will, in the prediction of pavement life, use the stresses, strains and displacements computed throughout the structure from the theory of linear elastic layered systems, instead of solely the surface deflections calculated by the present empirical equation. When such a change occurs in the design system, in situ values of elastic moduli will be needed. This need probably can be met, at least to some degree, by the computer program described herein.

The published version of this report may be obtained by addressing your request as follows:

R. L. Lewis, Chairman Research & Development Committee Texas Highway Department - File D-8 11th and Brazos Austin, Texas 78701 (Phone 512/475-2971)

Table of Contents

.

61.

-

٠

.

•

-

•

		Page
Lis	t of Figures	viii
Lis	t of Tables	ix
1.	Introduction	1
2.	Surface Deflection Equation for Two Layer Elastic System	3
	2.1 The Loading Device (Dynaflect)	3
	2.2 List of Symbols	3
	2.3 Development of the Equation	5
	2.4 An Approximation of the Equation	7
3.	Numerical Integration of Deflection Equation	10
4.	Accuracy Check	13
5.	Non-Unique Solutions	16
6.	Examples of Solutions Provided by the Program	20
7.	Adjustment of Solutions for Practical Use in Pavement Design	31
Lie	t of References	32
		A-1
	endix 1 - Computer Program Variables	
Арр	endix 2 - Description of Computer Program	B-1
Арро	endix 3 - Program Deck Layout	C-1
App	endix 4 - Data Card Layouts	D-1
Арр	endix 5 - Flow Chart	E-1
Арр	endix 6 - Program Listing and Sample Problems	F-1

List of Figures

•

.

-

4

•

•

-

.

Figure 1 -	Relative position of Dynaflect loads and sensors 4
Figure 2 -	Two-layer elastic system loaded at a point on the surface
Figure 3 -	Contours of pavement thickness, h, plotted as a function of the ratios E_1/E_2 and w_1r_1/w_2r_2 17

Page

List of Tables

Page

1

¥

#5

~

.

•

٠

•

.

Table 1 - Values of the function, V, corresponding to selected values of the parameter m and the modular ratio E_2/E_1 8	
Table 2 - Comparison of ELASTIC MODULUS with BISTRO	
Table 3 - Summary of information from Figure 3 used in the controlof the program, ELASTIC MODULUS0	
Table 4 - Average pavement modulus, E_1 , for seven 500-ft. sections 22	
Table 5 - Average pavement modulus, E_2 , for seven 500-ft. sections 23	
Table 6a through 6g - Computer print-outs	0

<u>1</u>. <u>Introduction</u>

Recently the Texas Highway Department began to implement, on a trial basis, a flexible pavement design system that characterizes each material in a proposed or existing pavement structure by a so-called "stiffness coefficient" (1, 2). The in situ coefficient for a material proposed for a new pavement is found from Dynaflect deflection data (3, 4) taken on existing highways that can be assumed to consist essentially of two layers -a subgrade layer (regarded in theory to be infinitely thick), and a pavement layer composed predominately of a single material (for example, a base material with a surface treatment). The Dynaflect data are then used in an empirical equation that yields a composite stiffness coefficient for the pavement material or materials, and another (usually smaller) coefficient for the subgrade or foundation (1, 5). The coefficients, which vary numerically from about 0.15 for a weak, wet clay to about 1.00 for asphaltic concrete, are calculated by means of a Texas Highway Department computer program, STIFFNESS COEFFICIENT (6). The coefficients, along with other pertinent data, are used in the design process to predict a certain characteristic -- the "surface curvature index" -- of the deflection basin of a trial design composed of the tested materials, and from this characteristic, to predict the life of the design.

This report gives the theoretical background and a description of a new computer program, given the name ELASTIC MODULUS, that accepts and prints the same Dynaflect and other data (identification, location,

-1-

special comments, etc.) as the program STIFFNESS COEFFICIENT, but computes and prints out the in situ values of Young's modulus of pavement and subgrade instead of their stiffness coefficients. Linear elastic theory, with Poisson's ratio set to 1/2 for both layers, is used in the computations.

The program ELASTIC MODULUS was written in the expectation that eventually the Texas Highway Department's Flexible Pavement Design System will, in the prediction of pavement life, use the stresses, strains and displacements computed throughout the structure from the theory of linear elastic layered systems, instead of solely the surface deflections calculated by the present empirical equation (7). When such a change occurs in the design system, in situ values of elastic moduli will be needed. This need probably can be met, at least to some degree, by the computer program described herein.

2. Surface Deflection Equation for Two Layer Elastic System

This chapter describes the geometry of the Dynaflect loading and develops the applicable equation for surface deflections due to a point load acting perpendicular to the horizontal surface of a half-space consisting of two horizontal layers of infinite lateral extent.

2.1 The Loading Device (Dynaflect)

Through two steel wheels the trailer-mounted Dynaflect exerts two vertical loads, separated by 20 inches and varying sinusoidally in phase at 8 Hz, as indicated in Figure 1. The total load, exerted by rotating weights, varies from 500 pounds upward to 500 pounds downward. The upward thrust is overcome by the dead weight of the trailer so that the load wheels are always in contact with the pavement. The loadpavement contact areas are small and are considered to be points, rather than areas, in order to simplify the mathematics.

From the symmetry of Figure 1 it can be seen that one load of 1000 pounds can be substituted for the two loads shown, without affecting the vertical motion at points along the line of sensors. For this reason, in what follows only one point load, P, of 1000 lbs., will be considered to be acting on the surface of the pavement.

2.2 List of Symbols

Following is a list of the mathematical symbols used in this report. A list of FORTRAN symbols used in ELASTIC MODULUS, together with their mathematical equivalents, will be found in Appendix 1.

> P = vertical force acting at a point in the horizontal surface of a two-layer elastic half space.

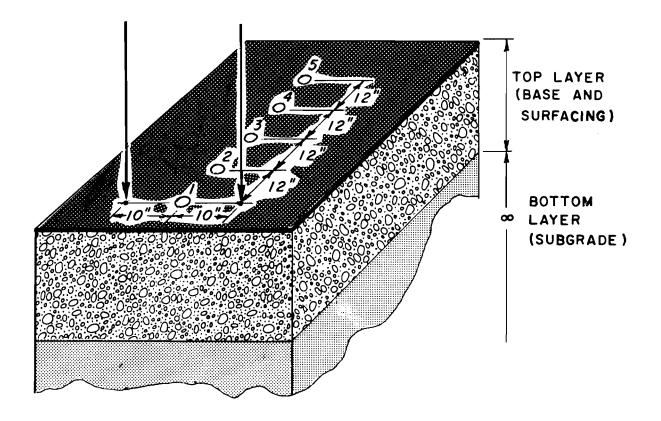
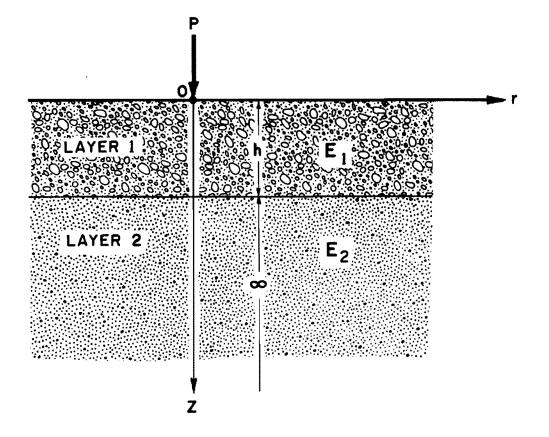


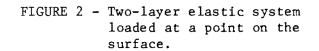
Figure 1: Relative position of Dynaflect loads and sensors. The sensors are usually placed in the outer wheel path, on a line paralleling the center line of the highway.

- h = thickness of upper layer.
- E_1 = Young's modulus of upper layer.
- E_2 = Young's modulus of lower layer.
- w = the vertical displacement of a point in the surface.
- r, z = cylindrical coordinates. (The tangential coordinate, 0, does not appear because only one load is used as explained on page 3, and the resulting vertical deflections are symmetrical about the z-axis.)

The load P acts downward at the point r = 0, z = 0. Positive z is measured downward.

- m = a parameter.
- x = mr/h.
- Jo(x) = Bessel Function of the first kind and zero order with
 argument x.
 - V = a function of m and N (see Equations (1) and (2)).
 - N = a function of E_1 and E_2 (see Equation (2a)).


2.3 Development of the Equation


A vertical load, P (Figure 2), is applied at the point, 0, in the horizontal, plane surface of a two-layer elastic system. The point of load application is the origin of cylindrical coordinates, r and z. Positive values of z are measured vertically downward.

The thickness of the upper layer is h and its elastic modulus is E_1 . The thickness of the lower layer is infinite, and its elastic modulus is E_2 . Poisson's ratio for both layers is taken as 1/2.

It can be shown from Burmister's early work in elastic layered systems (8) that the deflection, w, of a surface point at the horizontal distance, r, from the point, 0, is related to the constants, h, E_1 and E_2 by the equation

$$\frac{4\pi E_1}{3P} \operatorname{wr} = \int_{X=0}^{\infty} \operatorname{Jo}(x) dx, \qquad (1)$$

where x = mr/h,

(la)

m = a parameter,

$$V = \frac{1 + 4Nme^{-2m} - N^2 e^{-4m}}{1 - 2N(1 + 2m^2)e^{-2m} + N^2 e^{-4m}},$$
(2)

and

$$N = \frac{1 - E_2/E_1}{1 + E_2/E_1} = \frac{E_1 - E_2}{E_1 + E_2}$$
(2a)

2.4 An Approximation of the Deflection Equation

The integration indicated in Equation 1 must be performed by numerical means. This task is made easier by taking advantage of the fact that (1) as x varies from zero to infinity in the integration process, m varies over the same range, while r and h are held constant, (2) as m varies from zero to infinity, the function V varies monotonically from E_1/E_2 to 1.0 and (3) for practical ranges of the ratio E_2/E_1 , V approaches its limiting value of 1.0 at surprisingly low values of m. For example, it was found, as indicated in Table 1, that if m is set equal to 10, and E_2/E_1 is restricted to the range from zero to 1000, then $V = 1.0 \pm .000001$. Thus, we conclude that for practical purposes, when m is in the range from zero to 10, V is given by Equation 2, and when m is in the range from 10 to infinity, V = 1. This approximation can be expressed algebraically as follows:

$$\int_{V \cdot Jo(x) dx}^{\infty} \int_{V \cdot Jo(x) dx}^{10r/h} \int_{x=0}^{\infty} \int_{x=0}^{\infty} \int_{x=10r/h}^{\infty} \int_{x=10r/$$

The second integral on the right side of Equation 3 is equivalent to the difference of two integrals, as indicated below:

$$\int_{Jo}^{\infty} \int_{x=10r/h}^{\infty} \frac{10r/h}{\int Jo(x) dx} = \int_{Jo}^{\infty} \int_{x=10r/h}^{\infty} \frac{10r/h}{x=0} = \frac{10r/h}{x=0}$$
(4)

				E_2/E_1				
m	0	.001	.01	.1	1	10	100	1000
0.0	Infinite	1000	100	10	1	0.1	0.01	0.001
0.1	6012.	855.6	98.14	9.967	1	0.1006	0.01065	0.001655
0.5	50.49	47.94	32.98	8.056	1	0.1542	0.06727	0.05854
1.0	7.382	7.363	6.826	4.112	1	0.3250	0.2491	0.2414
3.0	1.137	1.137	1.134	1.110	1	0.9058	0.8888	0.8869
5.0	1.006	1.006	1.005	1.005	1	0,9955	0.9946	0.9945
10.0	1.000001	1.000001	1.000001	1.000001	1	0.9999993	0.9999991	0.9999991
Inf.	1.	1.	1.	1.	1	1.	1.	1.

•

•

ŧ.

.

3

Table 1: Values of the function, V, corresponding to selected values of the parameter m and the modular ratio E_2/E_1 .

.

.

By making the obvious substitution from Equation 4 in Equation 3

we have

Comparing the last approximation, above, with Equation 1, we arrive at the approximation,

$$\frac{4\pi E_1}{3P} \operatorname{wr}^{\approx} 1 + \int (V - 1) \operatorname{Jo}(\mathbf{x}) d\mathbf{x}$$

$$\mathbf{x} = 0$$
(5)

where all symbols are as previously defined.

It is of interest to note from Equation 2 that V = 1 when $E_2 = E_1$ (that is, when the layered system of Figure 1 degenerates into a homogeneous elastic half-space), and that for this case Equation 5 reduces to

$$\frac{4\pi E_1}{3P} \text{ wr } \approx 1.$$

The correct equation for this case, according to Timoshenko (9), is

$$\frac{4\pi E_1}{3P} wr = 1.$$

Thus, for the homogeneous case Equation 5 becomes exact.

3. <u>Numerical Integration of Deflection Equation</u>

To use Equation 5 it was necessary to employ some form of numerical integration process for evaluating the integral in that equation. The method known as Simpson's Rule was selected (11). This procedure required that a small but finite increment, Δx , be chosen, and that the integral be calculated at x = 0, $x = \Delta x$, $x = 2\Delta x$, etc. over the specified range of integration. The smaller the value assigned to Δx , the greater would be the accuracy of the result; on the other hand, the larger the value of Δx , the less would be the required computer time. Thus a compromise between computer time and accuracy had to be made.

Noting that the integral of Equation 5 is the product of the factor, V = 1, which is a function of m and N, and Jo(x), which is a function of x = mr/h (see Equation 1a), two safeguards against inaccurate results had to be incorporated into the program: (1) Δm had to be small enough to insure a sufficiently accurate numerical representation of the function V, and (2) Δx had to be small enough to insure an accurate numerical representation of the function Jo(x).

After some study of the numerical values of V given in Table 1, and of the values of Jo(x) available from numerous sources (see, for example, Reference 10), the following rules were incorporated into the computer program for solving Equation 5:

- (a) In the range m = 0 to m = 3, $\Delta m \leq 0.01$. (In FORTRAN, DELM1 .LE. XK1.)
- (b) In the range m = 3 to m = 10, $\Delta m \leq 0.10$. (In FORTRAN, DELM2 .LE. XK2.)

(c) In the entire range of x from 0 to 10r/h, not less than 61 values of Jo(x) are computed as x increases from any value x = c, to the value x = c + 3. This also insures that the number of values of Jo(x) computed between successive zeroes of that alternating function exceeds 61. (In FORTRAN, XNO = 61.)

Since Δx and Δm are interdependent according to Equation 1(a), that is,

$$\Delta \mathbf{x} = \Delta \mathbf{m} \cdot \mathbf{r} / \mathbf{h}, \tag{1b}$$

the computer program had to insure that the rules (a), (b) and (c) given above were consistent with Equation 1(b). The details of how this was done may be found in the accompanying listing of the computer program and its flow diagram. Suffice it to say here that the accuracy of the solutions obtained (or the computer time used) can be changed by altering the values assigned to the FORTRAN variables XK1, XK2 and XNO mentioned in (a), (b) and (c) above and further defined in Appendix 1.

To explain briefly how Equation 5 is used in ELASTIC MODULUS to find pavement and subgrade moduli, consider the following:

Suppose that w_1 has been measured on the surface of a pavement structure at the distance r_1 from either Dynaflect load, and w_2 at the distance r_2 . The thickness, h, of the pavement is known.

Now let F represent the function on the right side of Equation 5. We may then write two equations:

$$\frac{4\pi E_1}{3P} w_1 r_1 \approx F(E_2/E_1, r_1/h)$$
 (6a)

$$\frac{4\pi E_1}{3P} w_2 r_2 \approx F(E_2/E_1, r_2/h)$$
(6b)

-11-

By dividing Equation 6a by 6b we obtain

$$\frac{w_1 r_1}{w_2 r_2} = \frac{F(E_2/E_1, r_1/h)}{F(E_2/E_1, r_2/h)}, \qquad (7)$$

where ${\rm E}_2 \, / {\rm E}_1$ is the only unknown.

By a convergent process of trial and error, a value of E_2/E_1 usually can be found that satisfies Equation 7 to the desired degree of accuracy. After this has been done, E_1 is calculated from Equation (6a), and finally E_2 is found from the relation

$$E_2 = E_1(\frac{E_2}{E_1}).$$

4. Accuracy Check

As mentioned earlier (Section 2.1) a point load was substituted in ELASTIC MODULUS for the area loads exerted by the Dynaflect. To check the effect of this assumption on accuracy, as well as the effect of the approximations described in Chapters 2 and 3, the following procedure was followed.

The contact area of each load wheel was measured approximately by inserting light sensitive paper between each wheel and the pavement, running the Dynaflect for a short time in strong sunlight, then removing the paper and measuring the unexposed areas.

From these measurements it was concluded that each 500 lb. load could be represented by a uniform pressure of 80 psi acting on a circular area with a radius of 1.41 inches. Furthermore, because of the symmetry of the load-geophone configuration, it was reasoned that the effect of both loads could be represented by a pressure of 160 psi acting on one circular area of the radius given above (1.41 inches).

The surface deflections w_1 and w_2 (see Figure 1) occurring at the distances r = 10 inches and $r = \sqrt{10^2 + 12^2} = 15.62$ inches from the center of the circle, could then be calculated from the program BISTRO, written by Koninklijke/Shell-Laboratorium, Amsterdam, and compared with deflections obtained by the program ELASTIC MODULUS modified slightly to receive as inputs E_1 , E_2 , h and r and to print out w_1 and w_2 .

The two programs were compared as described above over a range of the ratio, E_1/E_2 , from 0.1 to 1000, and a range of the thickness, h, from 5 to 40 inches. The results are recorded in Table 2 in the same manner that Dynaflect deflections are recorded -- that is, in milli-inches to two decimal places.

-13-

The table shows near perfect agreement in the range $1 \le E_1/E_2 \le 1000$ for which the pavement is stiffer than the subgrade. On the other hand, with the subgrade much stiffer than the pavement ($E_1/E_2 = 0.1$ in Table 2), the agreement was not as good. In addition, up-heavals occurred, as indicated by the negative signs of some of the deflections. In these cases the deflected surface is very irregular and Dynaflect data from such a pavement would be difficult to interpret since this device is not equipped to distinguish phase differences between load and geophone.

Since most pavements of the type illustrated in Figure 1 are obviously intended to be stiffer than their subgrades, and in view of the fact that irregular basin shapes are seldom encountered in practice, it is concluded from the data presented in Table 2 that ELASTIC MODULUS represents the theory of elasticity with sufficient accuracy to accomplish the purpose for which it was designed.

Table 2: Comparison of ELASTIC MODULUS with BISTRO		Table 2	:	Comparison	of	ELASTIC	MODULUS	with	BISTRO	
--	--	---------	---	------------	----	---------	---------	------	--------	--

.

.

.

		Com	Computed Deflections (mils)						
				W	1	w ₂			
E _l (psi)	E ₂ (psi)	E_1/E_2	h (in.)	ELASTIC MODULUS	BISTRO	ELASTIC MODULUS	BISTRO		
10,000,000	10,000	1,000	5 10 20 40	0.99 0.52 0.26 0.13	0.99 0.52 0.26 0.13	0.93 0.51 0.26 0.13	0.93 0.51 0.26 0.13		
1,000,000	10,000	100	5 10 20 40	1.86 1.07 0.57 0.30	1.85 1.07 0.57 0.30	1.55 0.99 0.55 0.30	1.55 0.99 0.55 0.30		
100,000	10,000	10	5 10 20 40	2.65 1.94 1.20 0.74	2.65 1.93 1.20 0.74	1.77 1.56 1.06 0.64	1.77 1.56 1.06 0.64		
10,000	10,000	1	5 10 20 40	2.39 2.39 2.39 2.39	2.39 2.39 2.39 2.39	1.53 1.53 1.53 1.53	1.53 1.53 1.53 1.53		
1,000	10,000	0.1	5 10 20 40	-0.11 -0.15 7.45 14.9	-0.40 -0.06 7.52 14.9	0.85 -0.58 1.30 6.68	0.86 -0.57 1.32 6.69		

Note: ELASTIC MODULUS: Point load of 1000 lbs. BISTRO: Circular loaded area with radius of 1.41 in., pressure of 160 psi, load of 1000 lbs. Both programs: Vertical deflection computed at the points $r = 10^{"}$, z = 0 and $r = 15.62^{"}$, z = 0.

. .

5. <u>Non-Unique</u> Solutions

To investigate the possibility that the use of the program could lead to more than one solution -- that is, to more than one value of the ratio E_1/E_2 -- or perhaps to no solution at all in some cases, ELASTIC MODULUS was modified slightly to receive as inputs selected values of E_1/E_2 and the layer thickness h, and to compute the corresponding ratio, w_1r_1/w_2r_2 (see Equation 7). The results of these computations were plotted as contours of the layer thickness, h, in Figure 3. The range of input data was limited to the largest range that might be expected from field deflection tests made on real highways of the type illustrated in Figure 1.

To facilitate interpretation, Figure 3 has been divided into four quadrants as indicated on the graph. For example, by referring to quadrants I and II it can be seen that if the measured inputs to ELASTIC MODULUS satisfy the inequalities $w_1r_1/w_2r_2 > 1$ and $h \ge 9.2"$ (see the dashed contour), a unique solution satisfying the inequality $E_1/E_2 < 1$ exists, and in this case the program finds and prints the two moduli. If, on the other hand, $w_1r_1/w_2r_2 > 1$ (as before) but h < 9.2", the possibility of two solutions exists -- or of no solution at all if the measured ratio w_1r_1/w_2r_2 is sufficiently great. In this case, i.e. $w_1r_1/w_2r_2 > 1$ and h < 9.2", the program abandons the search for a solution and prints the message "NO UNIQUE SOLUTION".

By examining quadrants III and IV, it can be concluded that if w_1r_1/w_2r_2 < 1 and h \geq 9.2", a unique solution satisfying the inequality $E_1/E_2 > 1$ exists. In this case the program finds the solution and prints the two moduli. On the other hand if $w_1r_1/w_2r_2 < 1$ as before, but h < 9.2" there are two possible solutions, one in qudarant III for $E_1/E_2 > 1$, and another

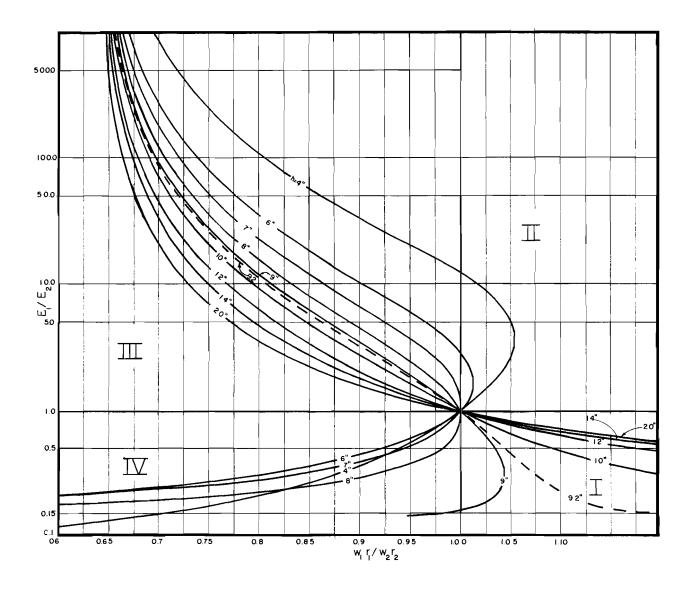


Figure 3: Contours of pavement thickness, h, plotted as a function of the ratios E_1/E_2 and w_1r_1/w_2r_2 .

in quadrant IV for $E_1/E_2 < 1$. Of these two solutions the one in quadrant III, representing a pavement whose elastic modulus is greater than that of the subgrade, is the more probable; therefore, the program seeks out the quadrant III solution, prints the corresponding moduli, and ignores the quadrant IV solution.

The information deduced above from Figure 3, and used in the control of the program ELASTIC MODULUS, is summarized in Table 3.

Table 3: Summary of Information from Figure 3 Used in the Control of the Program, ELASTIC MODULUS

• •

. J

¥

٠

Measure	d Input Data			
w_1r_1/w_2r_2	Thickness, h (in.)	Unique Solution	Layer Having The Greater Modulus	Program Printout
Greater than 1	Greater than 9.2	Yes	Subgrade	Subgrade and Pavement moduli
Greater than 1	Less than 9.2	No	May be either	"NO UNIQUE SOLUTION"*
Less than l	Greater than 9.2	Yes	Pavement	Subgrade and pavement moduli
Less than 1	Less than 9.2	No	May be either, but the more probable of two possible solu- tions is selected	Subgrade and pavement moduli for solution having $E_1/E_2 > 1$

* When the experimental data w_1r_1/w_2r_2 exceeds unity, and h is less than 9.2", some cases can arise for which no solution at all is possible.

(i

6. Examples of Solutions Obtained by ELASTIC MODULUS

In May, 1968, Dynaflect deflections were measured at ten points in the outer wheel path on each of several 500-ft. sections of highways in the vicinity of College Station, Texas, originally for the purpose of gaining experience in the determination of the "stiffness coefficient" mentioned in the Introduction of this report (page 1). Some of these data, including thicknesses obtained by coring at five points in each section, were used as inputs to the computer program discussed herein for the purpose of illustrating its use in obtaining the elastic moduli of pavements and subgrades. The results are summarized in Tables 4 and 5, while the computer print-outs -- in the standard format of the program -are shown in Tables 6a through 6g. In the latter group of tables the readings of each of the five geophones at each test station are given, although only the greatest deflections, w₁ and w₂, were actually used in estimating the moduli E₁ and E₂.

Tables 4 and 5 are arranged in descending order of the magnitude of the average modulus of pavement and subgrade, respectively. In comparing these two tables it is of interest to note that the variability of the pavement modulus, as indicated by the coefficient of variation in the last column, is generally greater than that of the subgrade. In addition it is apparent that the range of E_1 (13,900 psi to 283,200 psi) is much greater than the range of E_2 (11,700 psi to 20,000 psi). Finally, it should be pointed out that the pavement of Section 12, at the bottom of the list in Table 4, had an average modulus (13,900 psi) of approximately the same magnitude as that of its subgrade (14,400 psi).

-20-

The low pavement modulus found for Section 12 invites some discussion. The low value obtained may be due to the relatively poor quality of the major component of the pavement, a sandstone which, according to local engineers, has in some cases performed poorly. In any event the surfacing of this section had been overlayed -- because of map cracking -- shortly before it was tested in 1968, then again developed severe map cracking that required sealing in 1970. The seal coat failed to arrest the progress of surface deterioration, and at this writing (June, 1971) it is again being overlayed with one inch of hot-mix asphaltic concrete. In short, the contrast between the stiffness of the surfacing material and that of the base seems to be at the root of the trouble in this section.

Beyond these remarks concerning Section 12, and the additional fact that the ordering of the other materials appears reasonable, any other discussion of the ordering of the materials in Tables 3 and 4 is considered to be beyond the scope of this report.

Table 4: Average Pavement Modulus, E1, for Seven 500-ft. Sections of Highways near College Station, Texas

(Deflection measurements made May 21, 1968)

					vement kness, h	Pavement Modulus, E1				
Test		Pavement Materials and Thicknesses			Standard	No.*	Average Value	Standard	Coefficient of Variation	
5	Section Surfacing		Base	Value (In.)	Deviation	Solutions	(PSI)	Deviation	(percent)	
	15	1.2" Asph. Conc.	14.0" Cement stabilized limestone	15.2	1.2	10	283,200	76,100	27	
	4	0.5" Seal Coat	7.5" Asphalt stabilized gravel	8.0	0.4	2	78,900	8,200	10	
-22-	16	1.0" Asph. Conc.	6.5" Asph. emulsion stab. gravel	7.5	0.4	10	73,900	13,800	19	
	17	0.5" Seal Coat	7.8" Iron ore gravel	8.3	0.7	8	36 ,6 00	24,700	67	
	5	0.5" Seal Coat	11.5" Lime stabilized sandstone	12.0	2.8	10	32,300	15,100	47	
	3	0.5" Seal Coat	12.0" Red sandy grave1	12.5	1.0	10	24,700	6,000	24	
	12	3.7" Asph. Conc.	16.2" Sandstone	19.9	0.5	10	13,900	2,700	19	

* Measurements were made at 10 locations in each section. Less than 10 solutions occur in cases where $w_1r_1/w_2r_2 > 1$ and h < 9.2", as explained in Chapter 4.

.

*

1

1

• •

 \sim

r 1

Table 5: Average Subgrade Modulus, ${\tt E}_2,$ for Seven 500-ft. Sections

÷

٠

of Highways near College Station, Texas

(Deflection measurements made May 21, 1968)

à.

.

.

٠

					Subgrade Modulus, E ₂					
Thickness		Thickness	Subgrade Ma	 No.*	Average Value	Standard	Coefficient of Variation			
S	ection	Investigated	Description	Formation	Solutions	(PSI)	Deviation	(percent)		
	15	32''	Red sandy clay, some gravel	Stone City	10	20,000	900	5		
-23-	3	23"	Sand over clay	Spiller Sandstone Member of Cook Mountain Formation	10	19,000	1600	8		
μ	4	25''	Grey sandy clay	Spiller Sandstone Member of Cook Mountain Formation	2	14,900	800	5		
	5	24"	Tan sandy clay	Caddel1	10	14,500	1400	10		
	12	22"	Black stiff clay	Lagarto	10	14,400	900	6		
	17	21"	Grey sandy clay	Spiller Sandstone Member of Cook Mountain Formation	8	12,700	1700	13		
	16	18"	Brown clay	Alluvium deposit of Brazos River	10	11,700	700	6		

* Measurements were made at 10 locations in each section. Less than 10 solutions occur in cases where w₁r₁/w₂r₂ > 1 and h < 9.2", as explained in Chapter 4.</p>

, ,

TEXAS HIGHWAY DEPARTMENT

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULII

THIS PROGRAM WAS RUN - 06/21/71

DIST.	COUNTY
17	BRAZOS

 	•	HIGHWAY FM 1687	DATE 5-21-68	DYNAFLECT 1
		PAV. THIC	$K_{\bullet} = 12.50$	INCHES

SEAL COAT 0.50 RED SANDY GRAVEL 12.00

GREY & BRWN SAND SUB 0.0

STATION	W 1	W 2	w3	₩4	W5	SC I	**	ES	**	**	ΕP	**	REMARKS
1 - A	1.170	0.770	C•520	0.310	0.219	0.400		202	00.		235	00.	
1 — В	1.140	0.770	C.510	0.310	0.213	0.370		205	00.		282	00.	
2 – A	1.290	0.840	0.490	0.300	0.204	0.450		184	00.		203	00.	
2 – B	1.200	0.840	0.490	0.300	0.201	0.360		190	00.		333	00.	
3 - ۵	1.140	0.770	0.470	0.300	0.195	0.370		205	00.		282	00.	
	1.110	0.770	C.460	0.300	0.201	0.340		207	00.		339	00.	
4 - A	1.470	0.960	0.490	0.320	0.222	0.510		161	00.		181	00.	
4 - B		-	0.470					172	00.		190	00.	
5 - A	1.290	0.870	0.500	0.340	0.231	0.420		181	00.		246	00.	
5 - B	1.260	0.800	0.460	0.310	0.219	0.460		190	00.		181	00.	
AVERAGES	1.245	0.829	0.486	0.310	0.212	0.416		189	70.		247	20.	
STANDARD			-	-		0.057							
NUMBER DE	F POINT	FS IN #	VERAGE	=		10			10			10	
					1								
W1 W2			AT GEOF										
			AT GEOP										
W3			AT GEOF										
W4			AT GEOF At geof										
W5			ATURE										
SCI									n	2			
ES	CLASI		JLUS OF	145 3	DUDGRAL		• W.			2			

ES ELASTIC MODULUS OF THE SUBGRADE FROM WI AND W2 EP ELASTIC MODULUS OF THE PAVEMENT FROM WI AND W2

Table 6a: Computer print-out for Section 3.

TEXAS HIGHWAY DEPARTMENT

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULII

THIS PROGRAM WAS RUN - 06/21/71

DIST.	COUNTY
17	BRAZOS

 CONT.
 SECT.
 JOB
 HIGHWAY
 DATE
 DYNAFLECT

 2824
 2
 1
 FM 2776
 5-21-68
 1

 $PAV \bullet THICK \bullet = 8 \bullet 00 INCHES$

SEAL COAT 0.50 ASPHALT STAB. GRAVEL 7.50

GREY SANDY CLAY SUBG 0.0

STATION	W1	W2	W3	W4	W5	SCI	** ES **	** EP **	REMARKS
1 - A	1.650	1.200	6.870	0.660	0.500	0.450	14300.	84700.	
1 – B	1.560	1.110	0.810	0.610	0.490	0.450	15500.	73100.	
2 - A	2.310	1.470	0.930	0.710	0.530	0.840	NO UNIQUE	SOLUTION	
2 - B	2.310	1.410	0.900	0.670	0.510	0.900	NU UNIQUE	SOLUTION	
3 - A	2.430	1.500	0.930	0.670	0.490	0.930	NO UNIQUE	SOLUTION	
3 - B	2.490	1.530	0.930	0.670	0.500	0.960	NO UNIQUE	SOLUTION	
4 – A	2.490	1.470	0.900	0.640	0.480	1.020	NO UNIQUE	SOLUTION	
4 – B	2.430	1.410	0.840	0.610	0.470	1.020	NO UNIQUE	SOLUTION	
5 - A	2.340	1.440	0.870	0.620	0.450	0.900	NO UNIQUE	SOLUTION	
5 - B	2.430	1.470	0.930	0.650	0.470	0.960	NO UNIQUE	SOLUTION	
			0.891	0.651	0.489		14900.	78900.	
STANDARD						0.214		8202.	
NUMBER DI	F POINT	'S IN 4	AVERAGE	=		10	2	2	
-									
W1		CTION A							
₩2	DEFLEC	TION A	AT GEOF	PHONE 2	2				
W3	DEFLEC	TION A	AT GEOF	HONE 3	3				
Wi 4	DEFLEC	TION A	AT GEOF	HONE 4	+				
W 5	DEFLEC	TION A	AT GEOF	HONE 5	5				
SCI	SURFAC	E CURV	ATURE	INDEX	(W1 M	IINUS W	12)		
ES	FLASTI	C MODU	ILUS OF	THE S	SUBGRAD	E FROM	WI AND WZ	•	
ЕÞ	ELASTI	C MODU	ILUS OF	THE P	PAVEMEN	IT FROM	WI AND WE		

Table 6b: Computer print-out for Section 4.

TEXAS HIGHWAY DEPARTMENT

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULII

THIS PROGRAM WAS RUN - 06/21/71

DIST.	COUNTY
17	BURLESON

CONT.	SECT.	JOB	HIGHWAY	DATE	DYNAFLECT
1399	1	1	FM 1361	5-21-68	1

 $PAV \bullet THICK \bullet = 12 \bullet 00 INCHES$

SEAL COAT 0.50 LIME STAB. SANDSTONE 11.50

TAN SANDY CLAY SUBGR 0.0

STATION	W1	W2	W3	₩4	₩5	SCI	**	E S	**	**	EP	**	REMARKS
1 - 4	1.500	1.110	0.710	C.470	0.330	0.390		145	00.		416	00.	
1 – B			0.780					127			658	00.	
? - A	1.650	1.200	0.670	0.400	0.243	0.450		135	00.		331	00.	
2 - B	1.440	1.050	0.640	0.380	0.246	0.390		154	00.		385	00.	
3 - A	1.500	1.050	0.600	0.370	0.267	0.45C		1 53	•00		279	00.	
3 - 8	1.440	0.990	0.580	0.370	0.261	0•450		161	00.		258	00.	
4 – A	1.500	1.050	0.560	0.340	0.216	0.450		1,53	•00		279	00.	
4 – B	1.380	0.990	0.540	0.330	0.213	0.390		163	00.		359	00.	
5 - A	1.920	1.260	0.650	0.400	0.280	0.660		124	•00	1	144	00.	
5 - B	1.800	1.140	0.630	0.420	0.310	0.660		133	•00		125	00.	
AVERAGES	1.569	1.107	0.636	0.396	0.270	0.462		144	• 08		323	40.	
STANDARD	DEVIAT	TION				0.112		14	13.		151	08.	
NUMBER OF	F POINT	FS IN A	VERAGE	=		10			10			10	
W1			AT GEOP										
W2	DEFLEC	TION /	AT GEOP	HONE 2	2								
W 3	DEFLEC	TION A	AT GEOP	HONE 3	3								
W 4	DEFLEC	TION A	AT GEOP	HONE 4	+								
W 5	DEFLEC	TION A	AT GEOP	HONE 5	5								
SCI	SUFFAC	E CUPN	ATURE	INDEX	(W1 M	INUS V	(2)						
ES	ELASTI	C MODU	ILUS OF	THE S	SUBGRAD	E FROM	4 W3	L AN	D W2	2			
EP	ELASTI	IC MODU	JEUS OF	: ТНЕ P	AVEMEN	IT FROM	1 W)	I AN	D Wa	2			

Table 6c: Computer print-out for Section 5.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULII

THIS PROGRAM WAS RUN - 06/21/71

				DIST. 17		C O UN T WA SH I)N					
	CONT . 186		EC T • 5	JOB 1	HIGHW/ SH 36		DATE -21-				AFLE 1	ст	
					PAV.	гніск.	= 1	.9.91	יו ס	NCHE	E S		
	HOT MI	X ASPI	H. CON	C. 3	75	SAND	STON	١E				16.1	5
	BLACK (CLAY S	SUBGRAD	DE 0.	.0								
STATION	W1	W2	W3	₩4	₩5	SC I	**	ËS	**	**	ΕP	**	REMARKS
1 – A	1.680	1.020	0.610	0.420	0.300	0.660		1520	00.		124	00.	
1 - B	1.830	1.080	0.610	0.420	0.310	0.750		1440	00.		107	00.	
2 - A	1.740	1.080	0.670	0.470	0.360	0.660		143	•00		127	00.	
2 - B	1.950							1320	00.		104	00.	
3 – A	1.680							141(144	00.	
3 -	1.710							142(135	00.	
4 - A	1.680							1360			156		
4 - B											194		
5 - A								1590			159		
5 - B	1.590 (0.990	0.600	0.430	0.330	0.600		155(00.		140	00.	
AVERAGES			0.660	0.477	0.365								
STANDARD						0.091		86				61.	
NUMBER O	F POINTS	5 IN 4	V ERAGE	=		10		1	0			10	
W 1	DEFLECT	TION A	T GEOF	HONE 1	L								
W2	DE FLEC 1	FION A	T GEOP	PHONE 2	2								
W3	DEFLECT												
W 4	DEFLECT	FION 4	T GEOP	PHONE 4	+								
₩5	DEFLECT	TION 4	T GEOP	HONE 5	5								
SCI	SURFACE	E CURV	ATURE	INDEX	(W1 M	IINUS	W2)						
E S	ELASTIC	MODL	ILUS OF	THE S	SUBGRAD	DE FRO	M W1	ANE) W2	2			

EP ELASTIC MODULUS OF THE PAVEMENT FROM WI AND W2

Table 6d: Computer print-out for Section 12.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULII

THIS PROGRAM WAS RUN - 06/21/71

DIST.	COUNTY
17	ROBERTSON

CONT.	SECT.	JOB	HIGHWAY	DATE	DYNAFLECT
49	8	1	US 190	5-21-68	1

PAV. THICK. = 15.20 INCHES

HOT MIX ASPH. CONC. 1.25 CEM. STAB. LIMESTONE 13.95

RED SANDY CLAY SUBGR 0.0

STATION	W1	W2	W3	₩4	W5	SCI	**	ES **	** E	P **	REMARKS
1 - A	0.680	0.590	0.490	0.390	0.310	0.090		21000.	23	.0800	
1 - B	0.680	0.600	0.490	0.390	0.310	0.080		19500.	28	0500.	
2 - A	0.720	0.630	0.510	0.390	0.310	0.090		19100.	24	0900.	
2 — В	0.700	0.620	0.490	0.390	0.310	0.080		18600.	28	4100.	
3 - A	0.750	0.650	0.520	0.390	0.300	0.100		19000.	20	9200.	
3 - B	0.760	0.650	0.510	0.390	0.300	0.110		19800.	17	9000.	
4 – A	0.600	0.540	0.450	0.350	0.280	0.060		20100.	40	2600.	
4 - 3	0.580	0.520	0.430	0.330	0.880	0.060		21000.	40	5200.	
5 - A	0.620	0.550	0.450	0.350	0.910	0.070		20800.	32	7800.	
5 - 8	0.650	0.570	0.470	0.360	0.280	0.080		21000.	27	1700.	
AVERAGES	0.674	0.592	0.481	0.373	0.419	0.082		19990.	28	3180.	
STANDARD						0.016		926.			
NUMBER OF			AV ERAGE	=		10		10		10	
1.4	DECLE										
W1	-	TION A									
W 2		TION A									
W 3		TION A		HONE 3	-						
h 4		TION 4		HONE 4							
₩5		TION A									
SCI					(W1 M						
ES								L AND W2			
EP	ELASTI	IC MODU	ILUS OF	THE P	PAVEMEN	IT FROM	4 W]	L AND W			

Table 6e: Computer print-out for Section 15.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED ELASTIC MODULII

THIS PROGRAM WAS RUN - 06/21/71

DIST. COUNTY 17 BRAZOS

CONT. SECT. JOB HIGHWAY DATE DYNAFLECT 1560 1 1 FM 1687 5-21-68 1 PAV. THICK. = 7.50 INCHES

ASPHALT SURFACING 1.00 ASPH EMUL STAB GRAVE 6.50

BROWN CLAY SUBGRADE 0.0

.

STATION	W1	₩2	W3	₩4	₩5	SCI	**	ES	**	**	EP	**	REMARKS
1 - A	2.160	1.500	0.960	0.660	0.520	C.660		115	00.		497	00.	
1 - B					0.510			113	00.		7 02	00.	
? - A					0.490			123			943	00.	
2 - B					0.500			128			881	00.	
3 - A					0.490			118	00.		750	00.	
3 - B					0.500				00.		773	00.	
4 – A	2.220	1.620	1.020	0.670	0.490	0.600		107	00.		775	00.	
4 - B	2.220	1.590	1.020	0.650	0.490	0.630		1.09	00.		653	00.	
5 - A	1.980	1.380	0.900	0.610	0.470	0.600		125	00.		569	00.	
5 - B	1.980	1.440	0.930	0.610	0.460	0.540		120	00.		848	•00	
AVERAGES	2.058	1.479	0.951	0.640	0.492	0.579		117	40.		739	10.	
STANDARD	DEVIAT	ION				0.049		6	79.		1384	43.	
NUMBER OF	POINT	S IN A	VERAGE	=		10			10			10	
.		T • ON	T 0505										
W1		TICN A											
₩2		TION A											
W 3		TION A											
W4		TION A											
W5		TION A											
SCI	SURFAC	E CURV	ATURE	INDEX	(W1 M	INUS W	(2)						
ES	ELASTI	C MUDU	ILUS OF	THE S	SUBGRAD	E FROM	/ W1	. ANI	D W2	2			
EP	ELASTI	C MODU	ILUS OF	THE P	AVEMEN	T FROM	1 W 1	. ANI	D W2	2			

Table 6f: Computer print-out for Section 16.

DISTRICT 17 - DESIGN SECTION

DYNAFLECT DEFLECTIONS AND CALCULATED FLASTIC MODULII

THIS PROGRAM WAS RUN - 06/21/71

DIST.	COUNTY
17	BRAZOS

CONT. SECT. JOB HIGHWAY DATE DYNAFLECT 540 3 1 FM 974 5-21-68 1 PAV. THICK. = 8.30 INCHES

SEAL COAT 0.50 IRON DRE GRAVEL 7.80

GREY SANDY CLAY SUBG 0.0

STATION	w1	W2	W3	W 4	W5	SCI	** ES ** ;	** EP **	REMARKS
1 – A	2.400	1.530	0.960	0.680	0.500	0.870	NO UNIQUE	SOLUTION	
1. – B	2.250	1.44C	0.900	0.630	0.480	0.810	NC UNIQUE	SOLUTION	
2 - A	1.770	1.170	0.820	0.600	0.480	0.600	14000.	25600.	
2 – B	1.800	1.200	0.820	0.620	0.490	0.600	13800.	28000.	
3 - A	1.650	1.170	0.840	0.640	0.510	0.480	14600.	60100.	
3 - B	1.590	1.170	0.840	0.610	0.510	0.420	14600.	88300.	
4 - A	2.250	1.470	0.990	0.750	0.600	0.780	11000.	16700.	
4 - B	2.340	1.590	1.050	0.790	0.630	0.750	10600.	27000.	
5 - A	2.220	1.470	0.990	0.710	0.550	0.750	11200.	21000.	
5 - B	2.100	1.410	C•960	0.680	0.530	C. 690	11800.	26100.	
AVEDACES	2 027	1 267	0 017	0 471	0 570	0 475	12700.	36600.	
AVERAGES			0.91/	0.011	0.520				
STANDARD						0.146	1710. 8	2407.3.	
NUMBER DF	PUIN		AVERAG			10	0	0	
w 1	DEFLEC	TION A	AT GEOF	HONE 1	L				
		TION 4		HONE 2					
		TION A		HONE 3					
W4		TION A		HONE 4	 +				
W5		TION A							
SCI		CE CURV				INUS W	n2)		
E S	ELASTI	IC MODU	JLUS OF	THE S	SUBGRAD	E FROM	WI AND W2		

EP ELASTIC MODULUS OF THE PAVEMENT FROM WI AND W2

Table 6g: Computer print-out for Section 17.

7. Adjustment of Moduli for Practical Use in Pavement Design

As previously noted, the elastic moduli estimated by the computer program are based on deflections produced and measured by the Dynaflect system. Correlation studies of Dynaflect deflections with those produced by a 9000-1b. dual-tired wheel load and measured by means of the Benkelman Beam on highways in Illinois and Minnesota in 1967 (3) indicated that the 9000-1b. wheel load deflection could, with reasonable accuracy, be estimated from the Dynaflect deflection, w_1 , by multiplying w_1 by 20.

But the peak-to-peak load of the Dynaflect is 1000-lbs.; thus, one would expect that the multiplying factor would be about 9, rather than 20 as found by actual field experience.

Various explanations could be advanced to explain this discrepancy. However, they would not alter the fact, brought out by the correlation sutdy, that if one desires to use the values of E_1 and E_2 found from Dynaflect deflections to calculate the deflection of a linear elastic layered system acted on by a heavy vehicle, then he should approximately halve these moduli before using them in his calculations.

List of References

- Scrivner, F. H.; W. M. Moore; W. F. McFarland and G. R. Carey, "A Systems Approach to the Flexible Pavement Design Problem," Research Report 32-11, Texas Transportation Institute, Texas A&M University, College Station, Texas, 1968.
- Hudson, W. R.; B. F. McCullough; F. H. Scrivner and J. L. Brown, A Systems Approach to Pavement Design and Research," Research Report 1-123, Highway Design Division Research Section, Texas Highway Department; Texas Transportation Institute, Texas A&M University; Center for Highway Research, University of Texas at Austin, 1970.
- Scrivner, F. H.; Rudell Poehl, W. M. Moore and M. B. Phillips, NCHRP Report 76, "Detecting Seasonal Changes in Load-Carrying Capabilities of Flexible Pavements," Highway Research Board, 1969.
- 4. Poehl, Rudell and F. H. Scrivner, "Seasonal Variations of Pavement Deflections in Texas," Research Report 136-1 in Review, Texas Transportation Institute, Texas A&M University, College Station, Texas, 1971.
- Scrivner, F. H. and W. M. Moore, "An Empirical Equation for Predicting Pavement Deflections," Research Report 32-12, Texas Transportation Institute, Texas A&M University, College Station, Texas.
- "Part 1, Flexible Pavement Designer's Manual," Texas Highway Department, Highway Design Division, Austin, Texas, 1970 (pages 4.1 to 4.14).
- Scrivner, F. H. and Chester H. Michalak, "Flexible Pavement Performance Related to Deflections, Axle Applications, Temperatures and Foundation Movements," Research Report 32-13, Texas Transportation Institute, Texas A&M University, College Station, Texas, 1969.
- Burmister, D. M., "The Theory of Stresses and Displacements in Layered Systems and Applications to the Design of Airport Runways," Highway Research Board, 1943, page 130, Equation (N).
- 9. Timoshenko, S. and J. N. Goodier, "Theory of Elasticity," McGraw-Hill Book Company, Inc., New York, 1951, page 365, Equation 205.
- 10. "CRC Handbook of Tables for Mathematics," 3rd Edition, The Chemical Rubber Company, 18901 Cranwood Parkway, Cleveland, Ohio, 44128.

- 11. Eshback, Ovid W., "Handbook of Engineering Fundamentals," Second Edition, John Wiley & Sons, New York, New York, 1953, page 2-114.
- 12. "Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables," National Bureau of Standards Applied Mathematics Series 55, June, 1964, page 369, polynomial approximations 9.4.1 and 9.4.2.

<u>Appendix 1</u>

The variable names used in ELASTIC MODULUS are listed on the following pages. The variable names and their definitions are in alphabetical order in the following sequence:

> MAIN Program Variables Subroutine EMOD Variables Function BESJO Variables Function V Variables

MAIN Program Variables

- A Dummy array used with subroutine CORE to select the correct input format for each card read
- AAP2 Sum of pavement moduli
- AAS2 Sum of subgrade moduli
- AAP2V Average pavement modulus
- AAS2V Average subgrade modulus
- AP2 Elastic modulus of the pavement, rounded to nearest 100 (appears as EP on printout)
- AS2 Elastic modulus of the subgrade, rounded to nearest 100 (appears as ES on printout)
- ASC1 Sum of (W1 W2). W1 W2 = surface curvature index.
- ASC1V Average surface curvature index
- AW1 Sum of Geophone 1 deflections
- AW2 Sum of Geophone 2 deflections
- AW3 Sum of Geophone 3 deflections
- AW4 Sum of Geophone 4 deflections
- AW5 Sum of Geophone 5 deflections
- AW1V Average Geophone 1 deflection
- AW2V Average Geophone 2 deflection
- AW3V Average Geophone 3 deflection
- AW4V Average Geophone 4 deflection
- AW5V Average Geophone 5 deflection
- COMM Comments related to the project
- CORE Subroutine to re-read a card under format control
- CO1, CO2, CO3, CO4 County Name

- D1 Geophone 1 reading
- D2 Geophone 1 multiplier
- D3 Geophone 2 reading
- D4 Geophone 2 multiplier
- D5 Geophone 3 reading
- D6 Geophone 3 multiplier
- D7 Geophone 4 reading
- D8 Geophone 4 multiplier
- D9 Geophone 5 reading
- D10 Geophone 5 multiplier
- DAP Pavement elastic modulus (unrounded) as calculated in subroutine
 EMOD
- DAS Subgrade elastic modulus (unrounded) as calculated in subroutine
- DATE An IBM subroutine that returns the current month, day, & year
- DP Total pavement thickness
- EMOD Subroutine to calculate pavement & subgrade moduli

HWY1, HWY2 - Highway name & number

- I Pointer for data read into storage
- ICK Switch to indicate last data card
- ICONT Contract number for the highway
- IDAY Day the deflections were taken
- IDIST District number
- IDYNA Dynaflect number
- IJOB THD job number
- ISECT THD section number for the highway
- IXDATE Return arguments for subroutine DATE (month, day, year)
- IYEAR Year the deflections were taken

A-3

LA1	- Description of material in Layer 1
LA2	- Description of material in Layer 2
LA 3	- Description of material in Layer 3
LA4	- Description of material in Layer 4
LA5	- Description of material in Layer 5
LA6	- Description of material in Layer 6
М	- Month the deflections were taken
N	- Counter for number of error free data cards read
NO	- Counter for data cards omitted because of errors
NI	- Counter to control printing of 30 lines per page
NCARD	- Denotes card type
	100 = Project identification card
	200 = Existing pavement description card (layers 1, 2, & 3)
	300 = Existing pavement description card (layers 4, 5, & 6)
	400 = Data card (geophone readings and multipliers)
PN	- Number of test points to be used in the analysis
REM	- Any pertinent remarks related to any test point
ROUND	- Statement function to round a given value of El or E2 to the
	nearest 100 psi
SCI	- Surface curvature index, W1 - W2, in mils
SE1	- Standard deviation of surface curvature index
SE2	- Standard deviation of subgrade moduli
SE3	- Standard deviation of pavement moduli
SR1	- Variance of surface curvature index
SR2	- Variance of subgrade moduli
SR3	- Variance of pavement moduli
STA	- Station number

.

A-4

T2 - L	ayer 2 thickness
T3 - L	ayer 3 thickness
T4 - L	ayer 4 thickness
T5 – L	ayer 5 thickness
T6 - L	ayer 6 thickness
W1 - D	eflection at Geophone number 1
W2 - D	eflection at Geophone number 2
W3 - D	eflection at Geophone number 3
W4 – D	eflection at Geophone number 4
W5 - D	eflection at Geophone number 5
XLANE – T	raffic lane & direction
	5

.

-

•

Subroutine EMOD Variables

- ACC Test for convergence in iteration for finding E2/E1
- AREA1 Result of the integration from x = 0 to x = 3r/h
- AREA2 Result of the integration from X = 3r/h to X = 10r/h
- BESJO Function subroutine to return the Bessel Function Jo(x) for each x used
- DELM1 Increment of m used in interval from m = 0 to m = 3
- DELM2 Increment of m used in interval from m = 3 to m = 10
- DELTA Incremental value for E2/E1 (Subgrade modulus divided by Pavement modulus) used in iteration process
- DELX1 Increment of x in integration from x = 0 to x = 3r/h
- DELX2 Increment of x in integration from x = 3r/h to x = 10r/h
- E1 Pavement modulus(E1)
- E2 Subgrade modulus (E2)
- ER Input specifying the accuracy of the iteration in calculating the ratio E2E1
- E2E1 Ratio of subgrade modulus to pavement modulus (E2/E1)
- ERROR (F1F2 RATIO), where F1F2 is calculated and RATIO is observed

FF - Function defined as $\frac{4\pi E_1}{3P}$ wir₁ (See Eq. 5)

- F1F2 Ratio of FF with i = 1 to FF with i = 2
- H Pavement thickness, h
- ISW Switch used in iterating to find E2/E1, indicates first time through the iteration loop
- MINUS Switch used in iterating to find E2/E1, indicates a negative ERROR
- N1 Number of intervals used for integration from x = 0 to x = 3r/h

A-6

- N2 Number of intervals used for integration from x = 3r/h to x = 10r/h
- P Dynaflect load = 1000#
- PART1 Sum of interior ordinates of first integration
- PART2 Sum or end ordinates of first integration
- PART3 Sum of interior ordinates of second integration
- PART4 Sum of end ordinates of second integration
- PLUS Switch used in iterating to find E2/E1, indicates a positive ERROR
- RH Radius (distance of geophone from load wheel) divided by pavement thickness, (r/h)
- R1 Distance from load to Geophone 1
- R2 Distance from load to Geophone 2
- RATIO (W1R1/W2R2)
- SAVE Contains the previous ERROR calculated that is closest to the convergence criterion in iterating to find E2/E1
- V Function subroutine to return the value of V for each E2/E1 and XM1 values used
- W1 Geophone 1 deflection (mils)
- W2 Geophone 2 deflection (mils)
- X1 Value of any x in the interval x = 0 to x = 3r/h
- X2 Value of any x in the interval x = 3r/h to x = 10r/h
- XK1 Maximum value of ∆m in the interval m = 0 to m = 3 (now set at 0.01)
- XK2 Maximum value of ∆m in the interval m = 3 to m = 10 (now set at 0.10)
- XM1 Value of any m in the interval m = 0 to m = 3
- XM2 Value of any m in the interval m = 3 to m = 10

XN - (E1 - E2)/(E1 + E2)

Minimum number of values of Jo(x) calculated in the interval from x to x + 3, in the calculation by Simpson's Rule of AREA1 and AREA2. XNO must be an odd number and is now set at XNO = 61
 Y - Array to store ordinates to be used in integration from x = 0

to x = 10r/h

Function BESJO Variables

X	- Value x in the interval $x = 0$ to $x = 10r/h$
X3	- X/3, or $3/X$ if $X > 3$
X32	- X3 Squared
X33	- X3 Cubed
X34	- X3 to the Fourth Power
X35	- X3 to the Fifth Power
X36	- X3 to the Sixth Power

.

.

•

•

.

.

Function V Variables

EXPM2M - Exponential, e^{-2m}

EXPM4M - Exponential, e^{-4m}

- XM Value of any m in the interval m = 0 to m = 10
- XN (E1 E2)/(E1 + E2)

<u>Appendix 2</u>

.

A narrative of the procedure used by ELASTIC MODULUS to calculate pavement and subgrade elastic moduli is contained on the following pages.

Description of ELASTIC MODULUS Program

The ELASTIC MODULUS program consists of a main program, two subroutines, and two function subroutines. The main program reads the input data, performs certain data transformations, and outputs the results. Subroutine CORE is called by the main program and is used to allow the user to select the input format to be used to read a certain card. The elastic moduli of the pavement and subgrade for each test point are calculated in subroutine EMOD. The function subroutines BESJO and V are called by EMOD and are used in the numerical integration used in calculating the elastic moduli.

The main program reads each input data card into a storage area and uses subroutine CORE to select the read statement and data format to read each data card. Subroutine CORE allows a FORTRAN program to read under format control from a storage area which contains alphabetic character codes of a card image. Each data card has a code punched in the first three columns that designates the card type. If the code is 100 the card contains control information about the job, location, date, and total pavement thickness (see Appendix 4). Card code 200 indicates a card that contains word descriptions and thicknesses of the first three layers of the pavement (see Appendix 4). The word descriptions and thicknesses of layers 4, 5, and 6 (if present) are on cards with code 300 (see Appendix 4). If the card code is 400 or is blank, the card contains the station number and geophone readings and multipliers for each observation (see Appendix 4). Card code 100 also

indicates the beginning of data cards for each job (or set of observations) and all counters and sums are set to their initial values. The information on Data Cards 1 and 2 (and Data Card 3, if present) is read and printed in the heading of the output.

The deflections at each geophone are calculated from the geophone readings and multipliers on each Data Card 4. SCI = W1 - W2 is also calculated. If either W1 or W2 is zero, or if W1 is less than W2, an error message is printed, the observation is not included in the analysis, and the next card is read. If the quantity W1R1/W2R2 is greater than 1 and the total pavement thickness is less than 9.2" the observation is not included in the analysis, an error message is printed, and the next card is read. If W1 and W2 are valid observations they are converted to inches and are passed to Subroutine EMOD along with the total pavement thickness for the elastic moduli calculation.

The pavement and subgrade moduli returned from EMOD are rounded to the nearest 100, W1 and W2 are converted back to mils, the sums of the deflections, SCI, pavement modulus, and subgrade modulus are incremented by the individual observations of each of these variables. The counter N (the sum of the valid observations) is incremented and a line of output consisting of the station number, W1, W2, W3, W4, W5, SCI, subgrade modulus, pavement modulus, and remarks is printed. The program will then skip to a new page before going back to read the next card if 30 lines of output have been printed. If all the data cards have been read the program calculates and prints averages of all deflections, SCI, pavement modulus, and the subgrade modulus. The variances and standard deviations of SCI, pavement modulus and subgrade modulus are calculated and printed and the program reads Data Card 1 of the next set of observations or terminates normally if there is no more data.

Subroutine EMOD uses the W1, W2, and total pavement thickness from the main program in the integration process and iteration scheme used to calculate the pavement modulus, E1 and the subgrade modulus, E2. All calculations in EMOD and the function subroutines BESJO and V are done in double precision to preserve the accuracy of the numerical integration. The user has the option to change the following variables or leave them at their present values:

P = 1000, ER = 0.001, XNO = 61.0, XK1 = 0.01, XK2 = 0.10

All switches and counters are initialized, r/h ratios are calculated and the variable RATIO (used in determining the convergence criterion in iteration for finding E2/E1) is calculated.

DELM1 is calculated and tested against the maximum assigned value for this variable. DELM1 is then set to the maximum value or the calculated value (whichever is the smaller value) and is used in calculating DELX1. DELM2 is calculated and tested in the same manner. The starting values of DELTA and E2E1 are selected and XN for the first iteration is calculated. The iteration loop begins with the calculation of each XN value for each E2E1 value used.

The number of intervals for each integration, N1 and N2, are calculated. (Note -- N1 and N2 must be odd integers.) The ordinates for each x in each integration interval are calculated and stored in the vector Y. The area of each integration interval is calculated according to Simpson's Rule (See Reference 11) and the function FF(1) = AREA1 +AREA2 + 1 is calculated (See Equation 5). FF(2) is calculated as above except RH(2) is used in calculating DELM1 and DELM2.

ERROR is calculated and tested against the convergence criterion. If ERROR is < ACC, El and E2 are calculated and EMOD returns to the main program. Otherwise a new value of E2E1 is calculated and the iteration loop is repeated.

The iteration method consists of trying values of E2E1 until ERROR is within the convergence criterion. The ERROR for any trial value of E2E1 that is closest to the convergence criterion is saved so that E2E1 values for subsequent trials can be adjusted to "home in" on the convergence criterion in a minimum number of trials.

For the first trial value of E2E1, if ERROR is not within the convergence criterion, ERROR is stored in SAVE and ISW is set to 1. If ERROR > 0, PLUS is set to 1 and MINUS is set to 0. This indicates ERROR is positive since PLUS was set to 0 and minus was set to 1 initially. For each successive pass through the iteration loop the sign of ERROR determines the segment of code executed to adjust E2E1 for the next trial until the convergence criterion is met.

When ERROR is positive, E2El is adjusted for the next trial in the following manner. PLUS is set to 1 to indicate ERROR is positive. If ERROR from the previous trial was positive, E2El is decreased for the next trial and the iteration loop is repeated. If ERROR from the previous trial was negative, DELTA is decreased by 50%, and the test for SAVE < 0 is made. If SAVE is positive, ERROR is stored in SAVE, E2El is decreased for the next trial and the iteration loop is repeated. If SAVE is negative, the test for |SAVE| > ERROR is made. A true condition indicates the iteration method is approaching convergence on this trial from the positive direction so ERROR is stored in SAVE, E2El is decreased for the next trial and the iteration loop is repeated. A false condition indicates

ERROR is departing from convergence in the positive direction, so E2E1 is decreased for the next trial and the iteration loop is repeated.

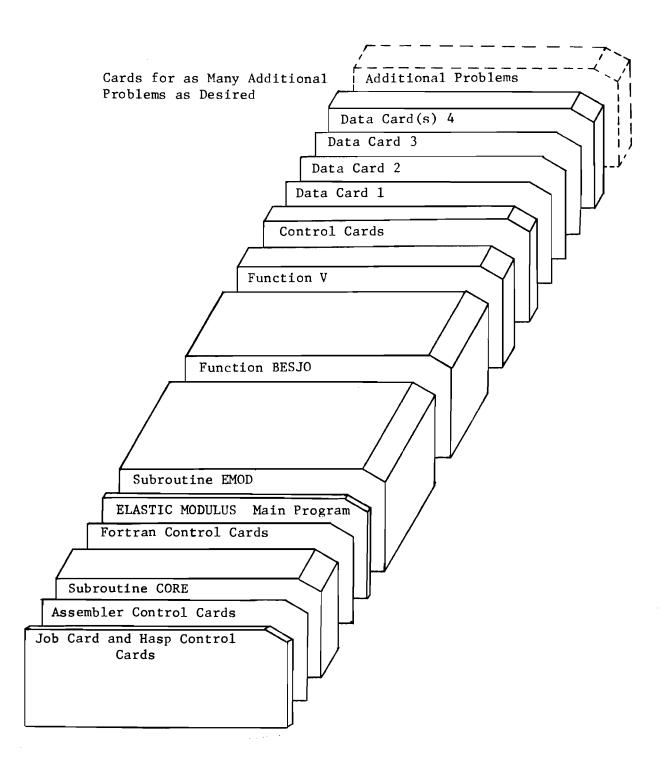
E2E1 is adjusted for the next trial in the following manner when ERROR is negative. MINUS is set to 1 to indicate ERROR is negative. If ERROR from the previous trial was negative the iteration method is approaching the convergence criterion from the negative direction, so E2E1 is increased for the next trial and the iteration loop is repeated. If ERROR from the previous trial was positive, DELTA is decreased by 50% and the test for SAVE > 0 is made. A false condition indicates the previous ERROR was negative also so the test for SAVE > ERROR is made. A true condition indicates the iteration method is closer to convergence on this trial than on the previous trial so ERROR is stored in SAVE, and E2E1 is increased for the next trial and the iteration loop is repeated. A false condition to the above test indicates the previous ERROR was closer to convergence so increase E2E1 for the next trial and repeat the iteration loop. If the test for SAVE > 0 is true, then the test for ERROR > SAVE is made. A false condition indicates the iteration method is closer to convergence on this trial on the negative side than the previous trial was on the positive side, so ERROR is stored in SAVE, E2E1 is increased for the next trial and the iteration loop is repeated. For a true condition to the test for |ERROR| > SAVE the steps following the test for |SAVE| > |ERROR| are repeated.

The function subroutine BESJO calculates the Bessel Function Jo(x) using polynomial approximation (See Reference 12) for each value of X in the integration interval X = 0 to X = 10r/h.

The function subroutine V calculates the value of V (See Equation 2) for each XN and XM1 or XM2 value used.

.

-


,ч

•

This appendix contains the ELASTIC MODULI program source deck set-up.

Deck Set-Up

The ELASTIC MODULUS program was written in FORTRAN IV, Version G. The user is advised to change the first read statement in the main program if the "END=" option of the FORTRAN read is not implemented at his installation. The user can also substitute any other "Re-read" routine for Subroutine CORE if this is desired. ELASTIC MODULUS requires approximately 100k of core storage and execution time is approximately 7 seconds per test point. The source deck set-up is shown on the following page.

<u>Appendix 4</u>

*

The input format for each data card type used by ELASTIC MODULUS is included on the following pages. The fields of each card are delineated and examples of typical data entries for each field are shown.

	-			
- 20				67 8 37 8
00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				5 5
02-	(COMM (I), I = 1,7)	FORMAT 7A4		67 g 67 g
02-		Ex. 8 FT. LT. OF	F CENTERLINE	57 A
0 2 -				6 A 67 A
0 2 -				60 g
03-				0 3
- = 0				67 G 67 S
03-				ភាដ្ ភាដ
- 20				66
				មាន ភូមិ
0 2 1				တာဦ
1 1 2 0	·			ອກ 5 ອາ 5
- 20	8			យាដ្ឋ សាដ្ឋ
- 20	•			00 J 01 J
		,		ec 2
- 20	IDYNA	FORMAT 12	Ex.	
0	IDYEAR			<u>ආ</u> න
01-	IDAY	FORMAT 12	<u> </u>	
	<u>M</u>	FORMAT 12	<u>Ex. 4</u>	
- + 0	DP	FORMAT F5.2	Ex. 15.0	S 7 6
og –			~~~~	55
				5 6
0 0 0 8 m m	XLANE	FORMAT A3	Ex. SBL	10 10
04-	HWY1, HWY2	FORMAT A4, A3	Ex. US 290	່ ດີ ອ
0 2 -	11m119 11m12	I UMIAL A4, AJ	Ex. 03 270	on ;
- 20				5
- 20 - 20 - 20				ອງ ອີງ
110	IJOB	FORMAT 12	Ex. 1	5 5
- 26	ISECT	FORMAT 12	Ex. 8	87 (67)
0000	· · · · ·			5.
- 20	ICONT	FORMAT 14	Ex. 114	8
02-				50 1
000	· · · · · · · · · · · · · · · · · · ·			្រួល
0 2 1				
0011				5
- 20	CO1, CO2, CO3, CO4	FORMAT 344 A2	Ex. WASHINGTON	57
1 20	001, 001, 000, 004	LOWAIT DUT , UT		. G
0				66
0.1		,		55
0.1			N 17	07
047	IDIST	FORMAT 12	Ex. <u>17</u>	
0	NCARD	FORMAT 13	Ex. 100	56
0	NCARD	TUNIMI I.)		<i>u</i> ,

CARD 1

D-2

0 0 0 73 79 60 1 1 1			ດ ຊື່ ເກັດ
1 1			6 6 6 7 6 7
000 8 4 6 1 1 1	т3	FORMAT F4.2 Ex. 6.0	5 5 5 5 5 5
120			52
			5 5 5 5
000			67 G
1 10			55
	(LA3(I), I = 1,5)	FORMAT 5A4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
000 111		Ex. LIME STAB. BASE	5
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			ດາງ ຫຼື
00			65 55 57
000			ດາງ ວ່າ 2 ດເງ
0 0 0 49 50 51 5	т2	FORMAT F4.2 Ex. 8.0	8 8 8 8
1 1 1	· · · · · · · · · · · · · · · · · · ·		
1 \$ 0			55
			555
000			57 S
1 8 0	LA2(I), I = 1,5)	FORMAT 5A4	ទី
000 111		Ex. IRON_ORE_BASE	6 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 0 0 2 2 4 2 4 1 1 1			
0 0 0 1 1			5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0 0 0 7 1 1	T1	FORMAT F4.2 Ex. 1.5	<u>ຕ</u> ເກ
1 1 23 23		FORMAT F4.2 Ex1.5	5 5 5
000 2223 111			666
00(11)			6 9 6 9
0 0 0 1 1 1	•		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0 0 0 1 1 1	(1.41(1) 1 - 1 5)		5
00	(LA1(I), I = 1,5)	FORMAT 5A4 Ex. ASPHALTIC CONCRETE	5 C
		EX. ASTRALILO CONCREIE	6 6 5
		•	5
0 0 0 5 6			5
			<u>ເ</u>
1 1 0	NCARD	FORMAT I3 Ex. 200	5

.

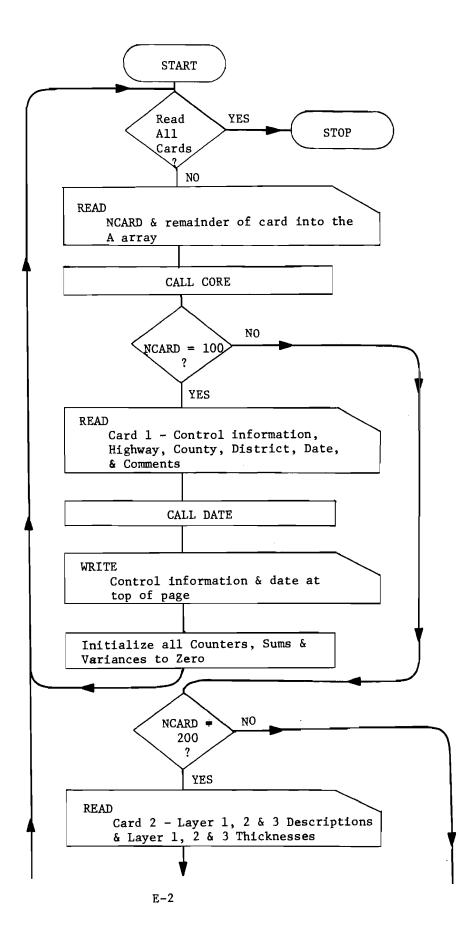
D-3

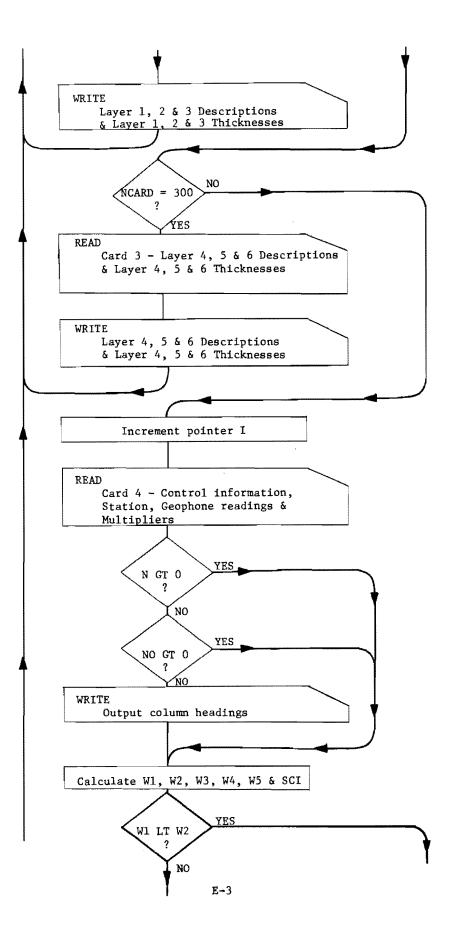
00000 5773 1111			0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0000 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Т6	FORMAT F4.2 Ex.	
00000000000000000000000 222345553456614254655657465727 11111111111111111111	(LA6(I), I = 1,5)	FORMAT 5A4 Ex. SUBGRADE	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0000	T5	FORMAT F4.2 Ex. <u>4.0</u>	0 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(LA5(I), I = 1, 5)	FORMAT 5A4 Ex. LIME STAB. SUBGRADE	27 49 27 49 49 49 49 49 49 49 49 49 49 49 49 49
0000	Τ4	FORMAT F4.2 Ex. <u>6.0</u>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(LA4(I), I = 1,5)	FORMAT 5A4 Ex. <u>CEMENT STAB. BASE</u>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 • -			

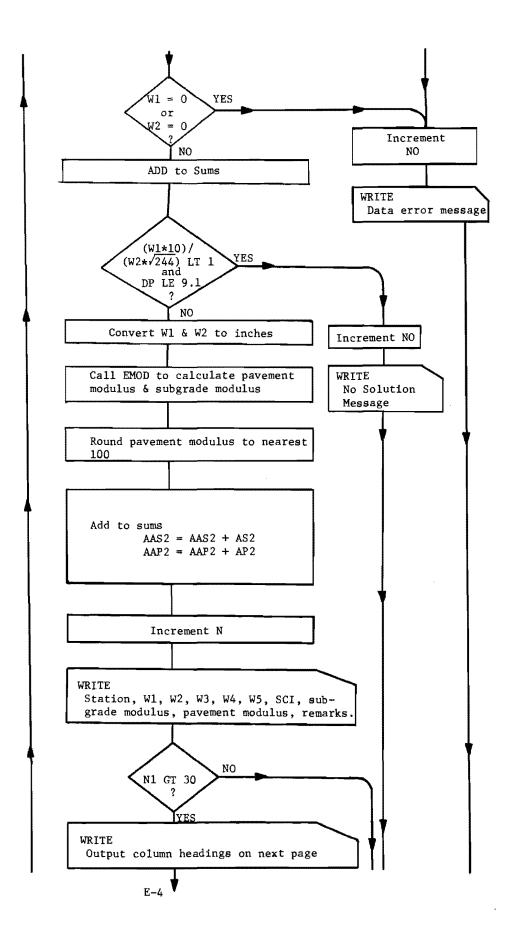
D-4

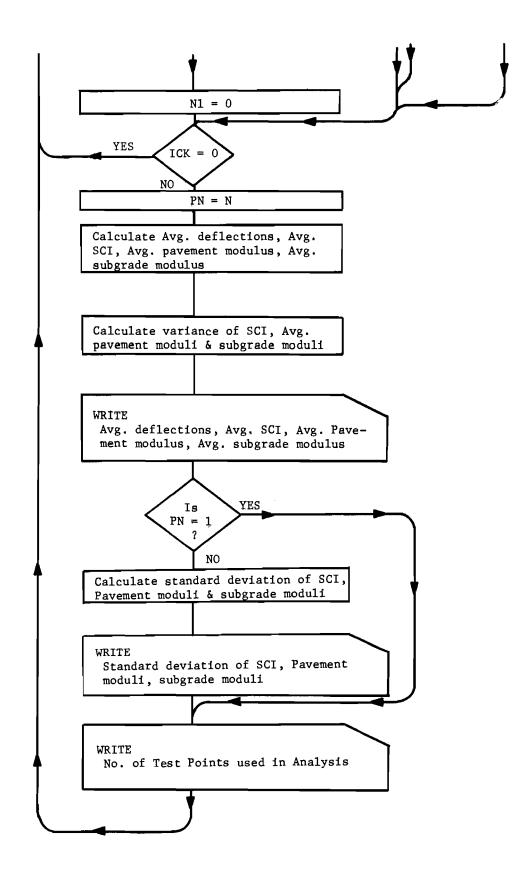
- 3				_
0 0 0 0 76 79 80 1 1 1				665
0				σ¢
0 0 2 2 2 1 1	ICK	FORMAT 12	Ex. 99	5 5 5 5
1 2 0				55
0 0 1 1				60 H
0 0 0 1 1				07 S
0 0 0 1 1				0 0
0 0 0	(REM(I), I = 1, 4)	FORMAT 4A4	Ex. WEST BOUND LANE	ອ ເຫຼ
0 3 1				5 S
1 1 2 2				ອງ ເກີ
1 1				07 (07 (
1 1 20				ດາ ວາ
0 0 0				ອງ ອາ
0 0 0				ດາ ອາ
0 0 1				6. 51
1 1 1 1	D10	FORMAT F3.2	Ex. 010	00 S
				ອງ ອາຊ
	D9	FORMAT F2.1	Ex. <u>37</u>	<u>ດ</u>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D8	FORMAT F3.2	Ex. 010	65
1 1 1 1 1	D7	FORMAT F2.1	Ex. <u>45</u>	57;
- 40	· · · · · · · · · · · · · · · · · · ·			5
0 0 1 1 1 1	D6	FORMAT F3.2	Ex. <u>010</u>	5 5 5
0 1 1 1 1 1 1	D5	FORMAT F2.1	Ex. 60	555
- 2 0	D4	FORMAT F3.2	Ex. 030	cn (
0 00 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D3	FORMAT F2.1	Ex. 30	6
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				5 6 6
1 1 1 2 2 5 5 1 1 1 1	D2	FORMAT F3.2	Ex. 030	5 6
382	D1	FORMAT F2.1	Ex. 42	5
- 20				99
				6 5
0 0 0 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				555
0 5 🕶	STA .	FORMAT A7	Ex. <u>248+00</u> _	6 6 1
- 2 C				6 6
1 1	IYEAR	FORMAT 12	Ex. 70	5
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IDAY	FORMAT 12	Ex. 70 Ex. 7	5 5
0 0 1 1	M	FORMAT 12	Ex	භ භ
0 0 0	ISECT	FORMAT 12	Ex. 8	6 6
	ICONT	FORMAT I4	Ex. 118	9 G
1 1 0	*00MT			5 5
0022	NCAPD		Ex. (00	66
	NCARD	FORMAT I3	Ex. <u>400</u>	5

CARD 4

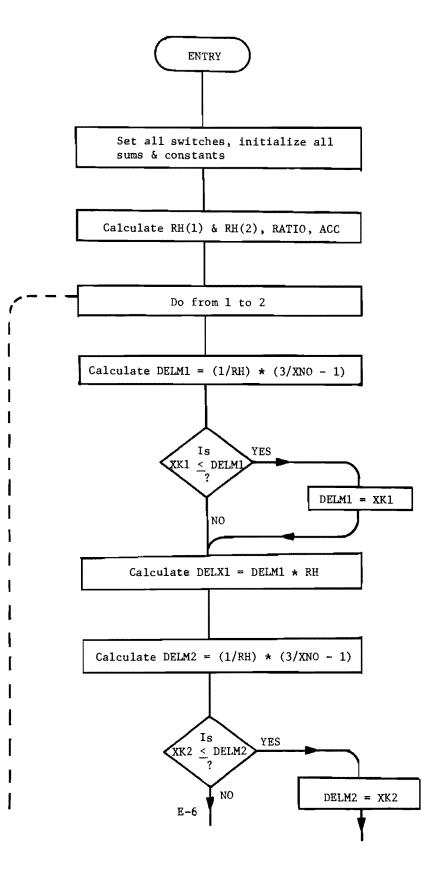

.

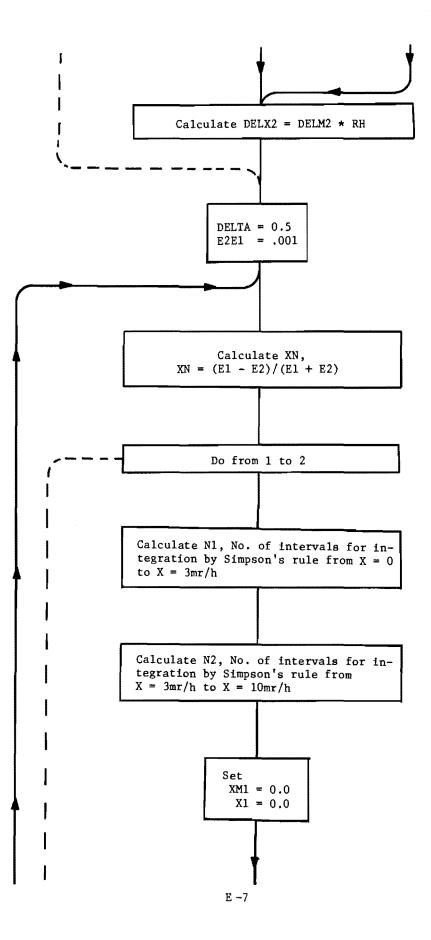

.

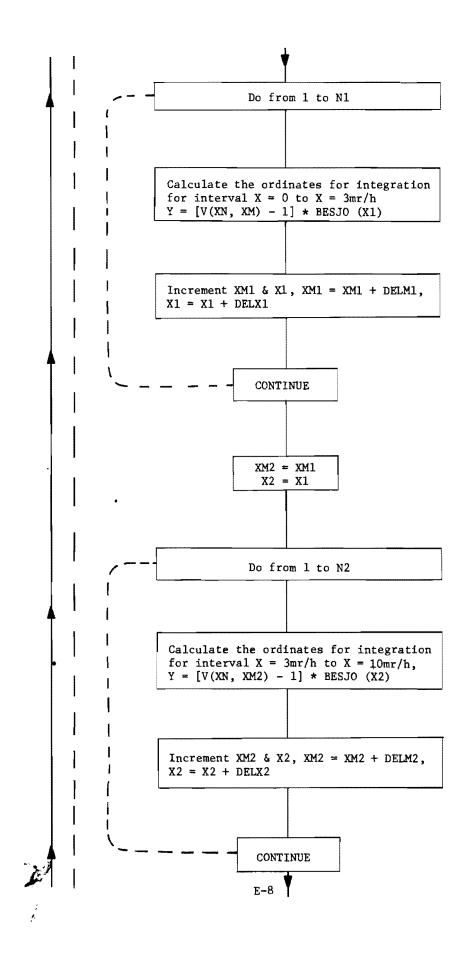

Appendix 5

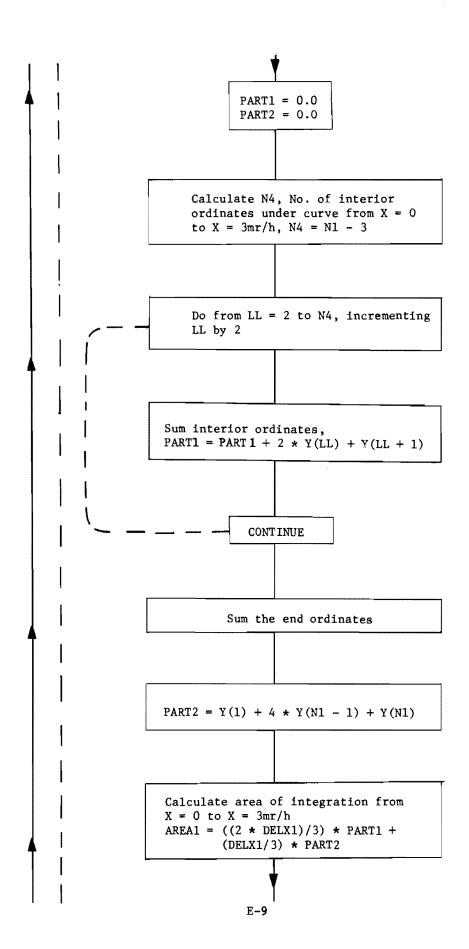

This appendix contains the flowchart of the procedure used in ELASTIC MODULUS to calculate a pavement or subgrade modulus.

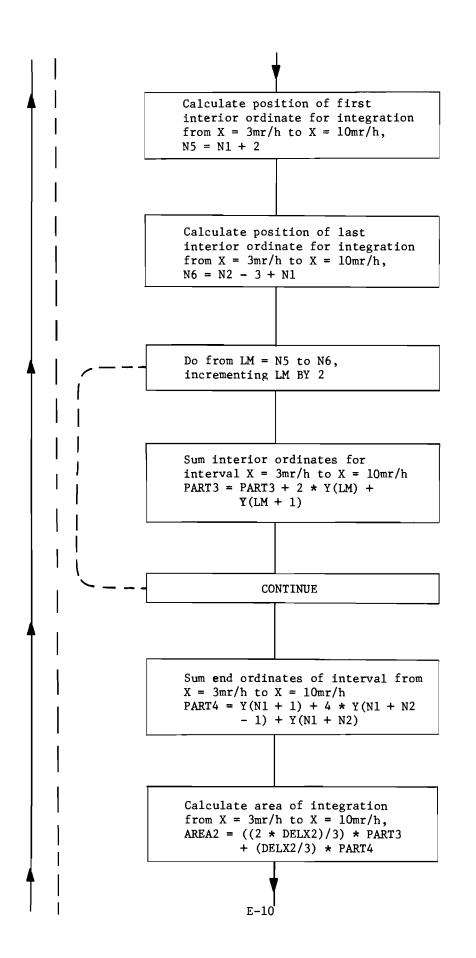
٠

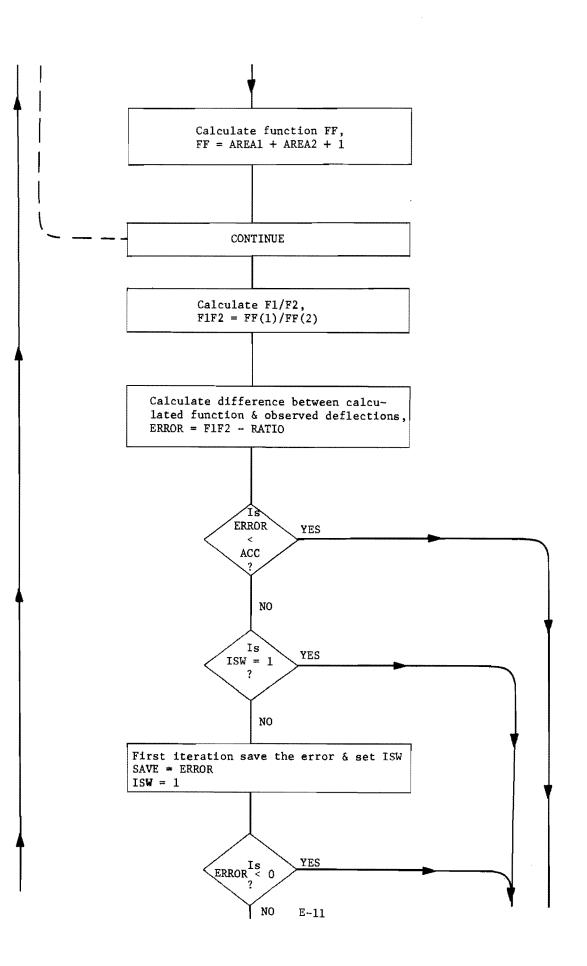


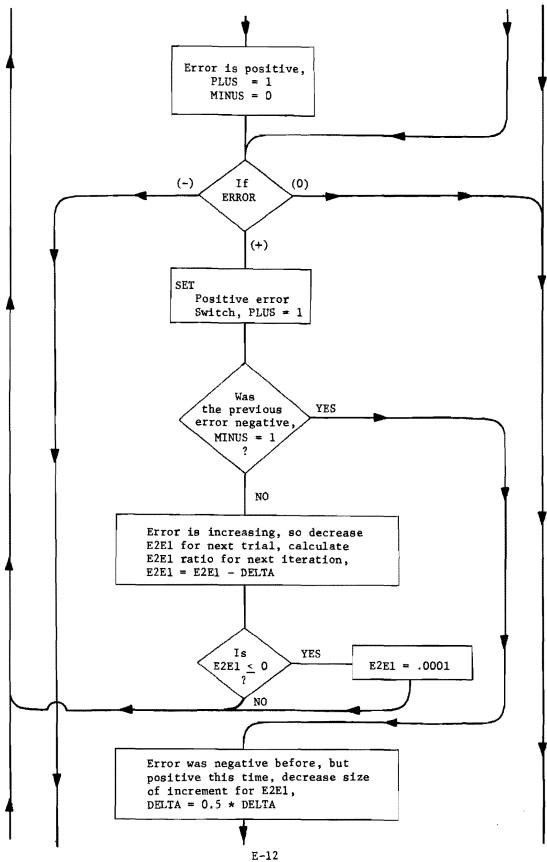


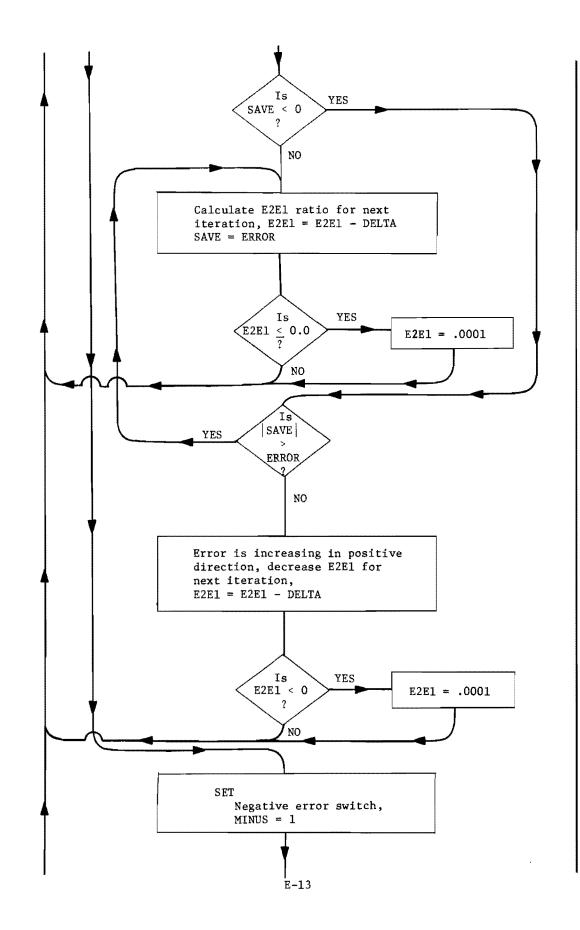


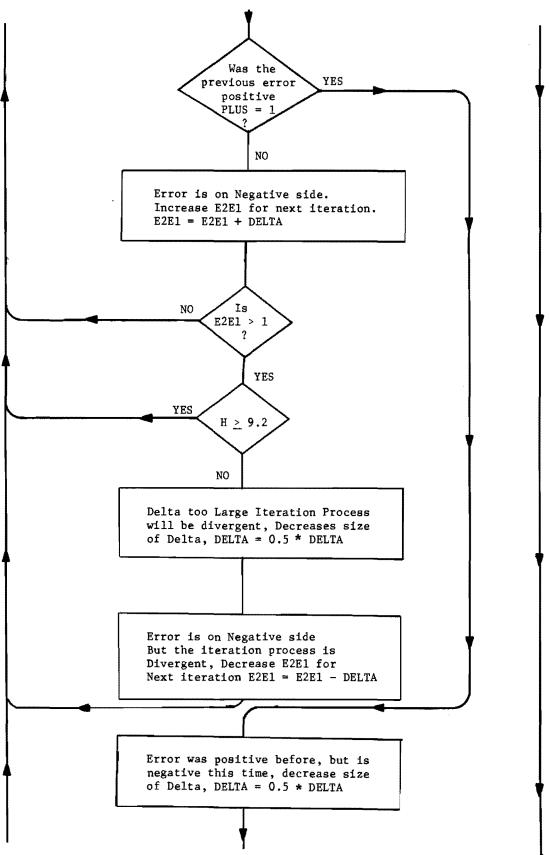

SUBROUTINE EMOD

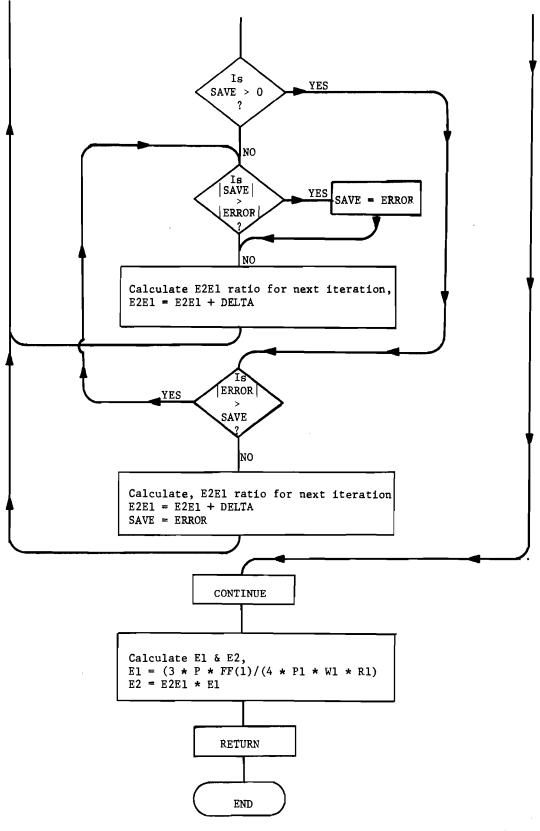



4

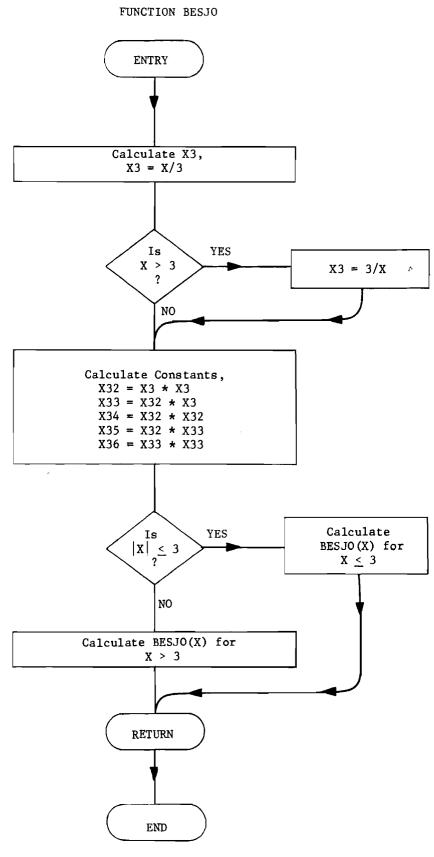


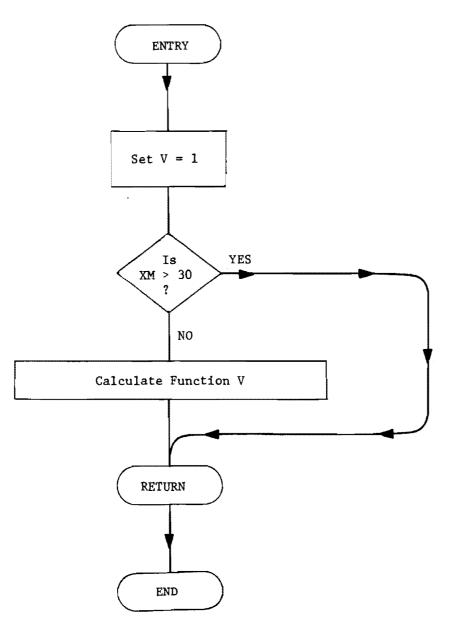






~




..

.

.

E-17

Appendix 6

On the following pages is a listing of ELASTIC MODULUS with the output from a sample problem. The input data cards for the sample problem are listed after the program output.

FORTRAN IN	VGLEVEL 18	l	MAIN	DATE = 71172	14/41
	C				
	C	ASTIC MODULII	MAIN PROGRA	м .	
0001				0],W3(200),W4(200), LA4(5),LA5(5),LA6(5),	
		(200), AS2(200), XDATE(3),COMM(7)		00),	
0002	REA	L * 8 STA, DAS ,			
	C C				
	C NOT	E THE PRINT &			
				OUTPUT ON 11 X 14 TEMENTS WITH "C" IN	
	C COL C	.UMN 1.			
	С				
		TEMENT FUNCTION	TO ROUND "X"	TO NEAREST "EVEN"	
0003		· · · ·	AINT((X +	EVEN * .5) / EVEN)	
	C T	EVEN			
0004	10 COM C	ITINUE			
	-	D CARD CODE & RE	MAINDER OF CA	RD INTO A - ARRAY	
0005		AD(5,1,END=1000)	NCARD, (A(I), I = 1 , 20)	
0006	1 FOF	MAT(13, 1944, A			
0007	C AL	L CORE (A, 8	0)		
	C TES	T FOR DATA CARD	1		
0008		NCARD.EQ.100) GD	TO 11		
		T FOR DATA CARD	2		
0009		NCARD.EQ.2001 GD	TO 12		
		T FOR DATA CARD	3		
0010		NCARD.EQ.300) GO	TO 13		
(C C C	S A POINTER TO D	ATA IN STORAG	E	
0011	14 I=N	i+1			

.

•

۲

,

FORTRAN	IV G LEVEL	18	MA	IN	DATE = 71172	14/41
	C C	READ DATA				
	c	READ DATA	CARD 4			
0012	4	⊧ D4, D5, D	ICONT,ISECT, D6, D7, D8, EM(J),J=1,4),	• • • •	EAR, STA(I),D1,D2,D3,	
0013	с с	FORMAT (I4,4I2,A7,3	X, 5(F2.1	F3.2),8X,4A4,I2)	
0014	L	TEC N.GT.	0) GO TO 55	5		
0015		• • • • • • • • •	D) GO TO 555	2		
	С					
	C C	PRINT DUTP	PUT COLUMN HE	ADINGS		
0016	v	PRINT 61				
	C 61		LX, STATION	W1 V	12 W3 W4 ',	
	-			** ** EP	<pre>** REMARKS /)</pre>	
0017	-		7X, STATION	W1 W2	W3 W4 W5',	
	C	SCI	** ES ** *	* EP **	REMARKS 1)	
	C C	CALCULATE	DEFLECTIONS	ε sci (de	FLECTIONS IN MILS)	
0018	•	W1(I)=D1*D	2			
0019		W2(I)=D3*D				
0020		W3(I)=D5*D)6			
0021		W4(I)=D7+D	-			
0022		W5(I)=D9*D	-			
0023	С	SCI(I)=W1([]-W2(])			
	č	TEST FOR W	1 DR W2 = 0,	AND W1 LE	SS THAN W2	
	č					
0024			EQ.0.DR.W2(I) TO 64	
0025	c .	IF(W1(I).L	.T.W2(I)) GO	TD 66		
0026	С	AW1 = AW1 +	W1 (T)			
0027		AW2 = AW2 +				
0028		AW3 = AW3 +	W3(I)			
0029		AW4 = AW4 +				
0030		AW5 = AW5 +				
0031 0032		ASCI=ASCI+ AS2(I) =				
0033		ASZ(I) = APZ(I) =	0.0			
	с					
	С					
0034					SQRT(244.0))	
	- -	•GT• 1•	O AND. DP	•LE• 9•	1) GO TO 60	
	C C					
	v					

FORTRAN IV G LEVE	L 18	MAIN	DATE = 71172	14/41
c c	CONVERT W1 & W2	TD INCHES		
0035	W1(I) = W1(I)			
0036 C	W2(I) = W2(I)	/ 1000.		
C C		OTAL PAVEMENT THE	CKNESS TO EMOD, Pavement & Subgrade	
с с	MODULII AS DAP &		PAVEMENT & SUBGRADE	
003 7 C	CALL EMOD (DBLE	(W1(I)), DBLE(W2(I)), DBLE(DP), DAP, DAS)	
C	CONVERT W1 & W2	TO MILS		
C 0038	W1(I) = W1(I) *	1000.		
0039 C	W2(I) = W2(I) *	1000.		
C				
C C				
C C	ROUND PAVEMENT &	SUBGRADE MODULII	TO NEAREST 100	
0040		AS, 100.)		
00 41 C	DAP = ROUND(D	AP, 100.)		
C C	PUT PAVEMENT & S	UBGRADE MODULII I	N STORAGE	
0042	AS2(I) = DAS			
0043 C	AP2(I) = DAP			
с с с	ADD TO THE SUMS AND SUBGRADE MOD		IS, SCI, PAVEMENT,	
0044	AAS2=AAS2+AS2(1)			
0045 C	AAP2=AAP2+AP2(1)			
C C	ADD TO N, THE NU	MBER OF VALID TES	T POINTS	
0046	N=N+1			
C C	PRINT A LINE OF	OUTPUT		
с с	PRINT 63.STA(1).	w1(I).w2(I).w3(I)	,W4(I),W5(I),SCI(I),	
C	= AS2(I), AP2(I),	(REM(J), J=1,4)		
C 4	PRINT 63,STA(I),	W1(I),W2(I),W3(I)	5.3,2F11.0,5X,4A4) ,W4(I),W5(I),SCI(I),	
0048	* AS2(I), AP2(I), 3 FORMAT(7X,A7,1X		2X. 2A4	
0049	N1 = N1 + 1			

٠

•

٠

•

FORTRAN	IV G LEVEL	18	MAIN	DATE = 71172	14/41
0050	с	IF(N1.LT.30)	GO TO 88		
	с с с	• • • • • • • • • • • • • • • • • • • •	PAGE & PRINT DUTPUT HAVE BEEN PRINTED	COLUMN HEADINGS IF	
0051	-	CONT INUE			
0052		PRINT 51			
	С	PRINT 56			
	Č	PRINT 57.IDIS	T.CO1.CO2.CO3.CO4.IC	ONT, ISECT, IJOB, HWY1,	
	-		M. IDAY. IYEAR. IDY	• • • • • • •	
0053	-		ST, CO1, CO2, CO3, C		
0054	56			T36, I2,9X, 3A4,A2 /)	
0055				HWY2, M, IDAY, IYEAR, IDYNA	
0056	57		CONT. SECT. JOB		
				X+A4+A3+I4+2(*-*+I2)+I9	/)
0057		PRINT 61			
0058		N1 = 0			
0059	88	CONTINUE			
00,7,7	c	CONTINUE			
	C C	CHECK FOR LAS	T DATA CARD 4		
0060		IF (ICK.EQ.0)	GO TO 10		
0061		GO TO 80			
	C C C	READ DATA CAR	D 1		
0062	11	•	ST,CO1,CO2,CO3,CO4,I DP.M.IDAY.IYEAR.IDY	CONT, ISECT, IJOB, HWY1, NA. (COMM(I), I=1.7)	
0063			344,42,14,212,44,43,	• • • • • • • • • • • • • • • • • • • •	
	C C	PRINT HEADING			
0064		PRINT 51			
0065	51 C	FORMAT(11)			
0066		PRINT 52			
	C 52	FORMAT(33X, T	EXAS HIGHWAY DEPARTM	ENT",/)	
0067	52	FORMAT(35X, 'T	EXAS HIGHWAY DEPARTM	ENT /)	
	С				
0068		PRINT 53, IDIS	т		
	C 53		ISTRICT ",I2," - DES	IGN SECTION ./)	
0069			ISTRICT +, 12, - DES		
	c				
0070	-	PRINT 54			
	C 54		YNAFLECT DEFLECTIONS	AND CALCULATED .	
		= "ELASTIC MOD		and topacting 1	
0071	•		YNAFLECT DEFLECTIONS	AND CALCULATED	
		+ 'ELASTIC MOD			

.

FORTRAN IN	G LEVEL	18	MAIN	DATE = 71172	14/4]
	С				
	c	GET CURREN	T DATE		
	С				
0072		CALL DATE	(IXDATE(1), IXDATE(2)	, IXDATE(3))	
	С				
0073		PRINT 55,I			
007/			, THIS PROGRAM WAS RUN	• • • •	
0074	C 55	FURMAL 32X	, THIS PROGRAM WAS RUN	- •, 2A3,A2 / J	
	с С	PRINT 56			
		FORMAT(1X	. DIST. COUNTY	CONT. SECT.'.	
	č	_	•	YNAFLECT*)	
0075	Ū		IDIST, CO1, CO2, CO3,		
	С				
	C	PRINT CONTI	ROL INFORMATION FROM D	ATA CARD 1	
	С				
	С	PRINT 57, I	DIST,CO1,CO2,CO3,CO4,I	CONT, ISECT, IJOB, HWY1,	
	С		NE, M, IDAY, IYEAR, ID		
			,I2,5X,3A4,A2,3X,I4,4X		
	С		2, '-', I2, '-', I2, 6	-	
0076	c	PRINT 57,	ICUNI, ISECI,IJUB,HWY1	,HWY2,M,IDAY,IYEAR,IDYNA	
0077	С	-	COMM(I),I=1,7),DP		
0078	5.6		,7A4,2X, PAV. THICK. =	1.65.2.1 INCHES1./)	
0070	c	TURNALLEON	FRATELY FATS THICKS -	THOMES THOMES	
	č	INITIALIZE	ALL SUMS & COUNTERS		
	č				
0079		N=0			
0080		N1 = 0			
0081		NC = 0			
0082		AW1= 0.			
0083		AW2=0.			
0084		AW3=0.			
0085		A₩4=0.			
0086 0087		AW5=0. ASCI=0.			
0088		AAS2=0.			
0089		AAP2=0.			
0090		SR1= 0.			
0091		SR2= 0.			
0092		SR3= 0.			
	С				
0093	•	GO TO 10		C100.2	
	C C	KEAU & PRI	NT INFORMATION ON DATA	LAKU Z	
0094	-	READ (5.3)	(LA1(I),I=1,5),T1,(LA2	(1),1=1,5),72,	
T C D D	14	* (LA3(I),I		*****=**>****	
0095	-	B FORMAT(544, F4. 2, 544, F4. 2, 544	+F4.2)	
	-				

FORTRAN	IV G LE	VEL 18	MAIN	DATE = 71172	14/41
	С	PRINT 59.0	LA1(I), I=1, 5), T1, (LA2	(I).I=1.5).T2.	
	Č	* (LA3(I),I			
	č			1X,F5.2,2X,5A4,1X,F5.2)	
0096	C		LA1(I), I=1, 5), T1, (LA2		
0098			(LA3(I), I=1,5), T3	(1/11-1/)//12	
			• 5A4• 1X• F5•2• 5X•	544. 1Y. E5.2/1	
0098			, 344, 14, FJ.2, 34,	JA44 1.A4 1.J+2/1	
0099	~	GO TO 10			
	C C	READ & PRI	NT INFORMATION ON DAT	A CARD 3, IF PRESENT	
	С		·····	AE/T) I-1 E) TE	
0100		13 READ(5,3) * (LA6(I),I	(LA4(I),I=1,5),T4,(L =1,5), T6	A)(1),1=1,),1>,	
	С	PRINT 59,	LA4(IJ,I=1,5),T4,(LA5	(I),I=1,5),T5,	
	С	* (LA6(I),I			
0101		PRINT 59,	LA4(I),I=1,5),T4,(LA5	(I),I=1,5),T5	
0102		PRINT 59,	(LA6(I), I=1,5), T6		
0103		GO TO 10			
0104		66 NO = NO+1			
	С				
	С	PRINT NEGA	TIVE SCI MESSAGE		
	C				
0105		PRINT 82,S	TA(I),W1(I),W2(I),(RE	M(J],J=1,4]	
0106		82 FORMAT(1X,	A7,3X,F5.3,2X,F5.3,2X	, NEGATIVE SCI OTHER ',	
		* CALCULAT	IONS OMITTED", 4X, 4A	4)	
	C				
0107		N1=N1+1			
01 08		IF(N1 .L	T. 30) GO TO 88		
0109		GO TO 84			
0110		64 NO = NO +	1		
	C				
	С	PRINT ERRO	R MESSAGE		
	С				
0111		PRINT 81.S	TA(I), (REM(J), J=1, 4)		
0112		81 FORMAT(1)	A7,3X, DATA ERROR AS	SUMED A ZERO VALUE RE',	
		* AD FOR W	1 OR W2", 5X, 4A4 J		
	C				
0113		N1 = N1 + 1			
0114		IF(N1 .L	T. 30) GO TO 88		
0115		GO TO 84			
	С				
	С				
0116		60 CONTINUE			
0117		N = N +	1		
0118		NO = NO	+ 1		
0119		PRINT 85,	STA(I), W1(I), W2(I)	, W3(I), W4(I),	
			SCI(I)		
0120			, A7, 1X, 6F6.3, 2X, UE SOLUTION •)		
			· -		

.

.

•

•

•

.

••

٠

FORTRAN	IV G LEVEL	18	MAIN	DATE = 71172	14/41
0121 0122 0123	c c c	N1 = N1 + 1 IF(N1 .LT. 30 GO TO 84) GC TO 88		
	c c c c		RAGE SCI, AVERAG	CALCULATE AVERAGE E PAVEMENT MODULUS,	
0124	80	PN=N			
0125		N1 = N - NO			
0126		IF(N1 .LE. 0) N1 = 1		
0127		AWIV= AWI/PN			
0128		AW2V= AW2/PN			
0129		AW3V= AW3/PN			
0130		AW4V= AW4/PN			
0131		AW5V= AW5/PN			
0132		ASCIV=ASCI/PN			
0133		AAS2V=AAS2/N1			
0134		AAP2V=AAP2/N1			
	С				
	C C C	CALCULATE VARIAN MENT MODULUS	ICE OF SCI, SUBGR	ADE MODULUS & PAVE-	
0135	C	DO 62 I=1,N			
0136			.w2(1).EQ.0) GD	TO 62	
0137		SR1 = SR1 + ((ASCIV)		10 32	
0138		IF(AS2(I) .EQ. (
0139		SR2= SR2+((AAS2)			
0140		SR3= SR3+(LAAP2)			
0141	62	CONTINUE			
	C C	PRINT AVERAGES			
01 42	С	DDINT 65.4014 AU	1211. A 1211. A 14 41. A 14 5	V,ASCIV,AAS2V,AAP2V	
0142	C 65		AGES", 6(2X, F5.	• • • •	
0143		-	/ERAGES", 6(F6.3)	-	
01 ()	c				
	c	CALCULATE STANDA	RD DEVIATION OF	SCI, SUBGRADE	
	C C	MODULUS, AND PAN	EMENT MODULUS		
0144) GO TO 90		
0145			P1/(PN-1))		
0146		IF(N1 .LE. 1) GO			
0147		SE2 = SQRT(SR2/(N1-			
0148		SE3 = SQRT(SR3/(N1))	-1))		
	С				-
	с	PRINT STANDARD DEVI	LATIONS		

•

.

.

FORTRAN	IV G	LEVEL	18		MAIN	DATE = 711	.72	14/41
		с						
0148			PRINT 71	, SE1, SE2,	SE 3			
		C 71	FORMAT(1X. STAND	ARD DEVIATI	ON',27X,F5.3, 2F11.0))	
0149						ION', 20X, F6.3, 2F10.		
•••		c						
0150		-	CONTINUE	:				
0151				EQ. 1)	N1 = 1			
0152				N, N1,				
V2 / L		r 99				IN AVERAGE = ",		
		-		9, 110)	u , urnis			
0153		•	-	-	EP OF POINT	S IN AVERAGE = •.		
01/5				9, I10)		S IN AVERAGE - V		
		c .		7. 110 /		•		
01 54		ι.						
01.54		c 01	PRINT 91	/,5X,'W1		N AT GEOPHONE 1")		
01 5 5								
0155			FURMATC	TOX*.MI	DEFLECTIO	N AT GEOPHONE 1.		
		С						
0156			PRINT 92					
			FORMAT(N AT GEOPHONE 2 ·)		
01 57			FORMAT(10X,"W2	DEFLECTIO	N AT GEOPHONE 21)		
		С						
0158			PRINT 93					
			FORMAT (5X, W3		ON AT GEOPHONE 3")		
0159		93	FORMAT(10X. W3	DEFLECTIO	N AT GEOPHONE 3")		
		С						
0160			PRINT 94					
		C 94	FORMAT(5X, W4	DEFLECTI	ON AT GEOPHONE 4")		
0161		94	FORMAT(10X,'W4	DEFLECTIO	N AT GEOPHONE 4")		
		C						
0162			PRINT 95					
		C 95	FORMAT (5X, W5	DEFLECTI	ON AT GEOPHONE 5")		
0163		95	FORMAT	10X,'W5	DEFLECTIO	N AT GEOPHONE 5")		
		С						
0164			PRINT 96	1				
		C 96	FORMAT(SURFACE	CURVATURE INDEX (W1	MIN'.	
			US W2)					
0165		-		10X. • SC I	SURFACE C	URVATURE INDEX (W1	MIN.	
		-	US W21					
		С		•				
0166		•	PRINT 97	,				
0100		C 97		5X,*ES	ELASTIC MO	DULUS OF THE SUBGRAD	E FRO!.	
				ND W2)				
0167		•		10X. ES		ODULUS OF THE SUBGRA	DE EROT.	
				ND W2)	CENOTIO IN			
		c						
0168		-	PRINT 98					
0100		C 98	FORMAT		FLASTIC MO	DULUS OF THE PAVEMEN	T FROM	
		÷ · -	W1 AN			COLUC ON THE PAYEMEN	T T GOM P	

•

.

*

.

.

F-9

FORTRAN	IV G LEVEL 18	MAIN	DATE = 71172	14/41
0169	98 FORMAT(10X, * °M W1 AND W		OF THE PAVEMENT FRO	*
	C			
	C			
0170	GO TO 10			
0171	1000 CONTINUE			
0172	END			

1

FORTRAN	IV G	LEVEL	18	EMOD	DATE = 71172	14/4]
0001		C C	SUBROUTINE EMOD (W1, W2, H, E1, E2)	
0002 0003		c	IMPLICIT REAL * 8 DIMENSION RH(2), DELM2(2), DELX1(2		ELM1(2),	
0004		v	DATA P / 1000.0D	0 / . FR / .001D0/		
0005		с	DATA XNO / 61.0D0 /			
		č	P, XNO, XK1, XK2, R	1 & R2 CAN BE CHAN	GED IF DESIRED	
0006		c	INTEGER PLUS			
		č	INITIALIZE SWITCHES	& SAVE		
0007		•	R1 = 10.000			
0008			R2 = DSQRT(244.0	DO)		
0009			MINUS = 1			
0010			PLUS = 0			
0011			ISW = 0			
0012		с	SAVE ≠ 0.0D0			
			CALCULATE R/H, RATI CRITERION)	0, & ACC (ACC IS '	THE CONVERGENCE	
0013		·	RH(1) = R1 / H			
0014			RH(2) = R2 / H			
0015) / (¥2 * R2)		
0016			ACC = ER * RATIO			
		C				
0017		С	DO 2 KL = 1 +	2		
OULI		с		£		
		Č C	CALCULATE AND TEST	DELM1		
0018		4	DELM1(KL) = { 1.0D0 { (XNO - 1.0D0))	/ RH(KL)) * (3.00	0 /	
0019		с с	IF(XK1 .LE. DELM	1(KL)) DELM1(KL)	= XK1	
		č	CALCULATE DELX1			
0020		c	DELX1(KL) = DELM1	(KL) * RH(KL)		
		C C	CALCULATE AND TEST	DELM2		
0021			DELM2(KL) = (1.000	/ RH(KL)) * (3.00	0 /	

FORTRAN	IV G LEVEL	18	EMOD	DATE = 71172
		* (XNC) - 1.000))	
0022	C	IF(XK	.LE. DELM2(KL)) DE	ELM2(KL) = XK2
	C C	CALCUL	TE DELX2	
0023	С	DELX2()	(L) = DELM2(KL) + RH	1(KL)
0024	С	CONTINU	JE	
	C C C	GET IN	TIAL VALUE OF E2/E1 AND	DELTA
0025	Ľ	DELTA	= 0.5D0	
0026	с	E2E1 =	• 0.001D0	
	Ċ			
	C	STAKT	TERATION LOOP FOR EACH	EZ/EL VALUE USED
0027 0028	4	CONTINU		
0028	С	XN =	(1.0D0 - E2E1) /	(1.000 + E2E1)
	С		ICTIONS FF(1) AND FF(2)	
	C ···	CALCUL	ATED IN THE FOLLOWING DO	J LUUP•
0029	-	DO 29	KK = 1 , 2	
	C C		ATE NO. OF INTERVALS FO	
	C C			T BE ODD INTEGERS.
0030	Ľ	N1 =	(3.0D0 * RH(KK)) / DE	ELX1(KK) + 1.0D0
0031	с	IF((N)	/ 2) * 2 .EQ. N1) N	N1 = N1 + 1
0032	Ū		(7.0D0 * RH(KK)) / DE	
0033	с	1+(()	12 /2) * 2 .EQ. N2) N2	= N2 + 1
	C	-	ATE ORDINATES FOR SIMPS	SON'S RULE FOR FIRST
	C C	INTEGRA	AT ION	
0034		XM1 =	0.0D0	
0035 0036		-	0.0D0 8 JJ = 1, N1	
0037		Y(JJ)		.0D0) * BESJO(X1)
0038		XM1		
0039	28	X1 CONTI		
0040	C 28	GUNII	NUE	
	С		ATE ORDINATES FOR SIMPS	SON'S RULE FOR SECOND
	C	INTEGRA	TION	

14/41

٠

•

٠

FORTRAN	IV G LEVEL	18	EMOD	DATE = 71172	14/41
0041 0042 0043 0044 0045 0046 0046	C 27	X2 = X DD 27 Y(N1 + KL) XM2 = XM X2 = X	KL = 1,N2 = (V(XN, XM2) - 2 + DELM2(KK)	1.0D0 } * BESJO{ X2)
	с с с с	SUM ORDINAT		UNDER THE CURVE OF FIRST	
0048 0049	С	PART3 = 0	• 0D 0 • 0D 0		
0050	с с с	N4 IS NG. D N4 = N1 -	F INTERIOR ORDINATES - 3	DF FIRST INTEGRATION	
0051	с с	SUM INTERIO	R ORDINATES L = 2 , N4, 2		
0052	C C		ART1 + { 2.0D0 + Y{	LL) + Y(LL+1) }	
0053	c c c		(1) + 4.0D0 * Y(N) Area of first integra	1-1) + Y(N1) Tion.	
0054	c c		•0D0 * DELX1(KK)) / 3. DELX1(KK) / 3.0D0) *		
		SUM ORDINA Second Inti	TES TO CALCULATE AREA Egration	UNDER THE CURVE OF	
	с с с с с с	-	DINATE OF THE FIRST IN THE FIRST ORDINATE ON		
0.055	0 0 0	INTERIOR OR	DSITION IN THE Y VECTO DINATE OF THE SECOND		
0055	C C		2 DSITION IN THE Y VECTO DINATE OF THE SECOND		

FORTRAN IV G LEVEL 18

.

•

DATE = 71172

-

٠

٠

0056	$C_{N6} = N2 - 3 + N1$
0070	
	C SUM INTERIOR ORDINATES C
0057	DO 25 LM = N5, N6, 2
0058	25 PART3 = PART3 + (2.000 * Y(LM) + Y(LM+1)) C
	C SUM END ORDINATES
0059	PART4 = Y(N1+1) + 4.0D0 * Y(N1 + N2 - 1) + Y(N1 + N2) C
	C CALCULATE AREA OF SECOND INTEGRATION.
0060	AREA2 = ((2.0D0 * DELX2(KK)) / 3.0D0) * PART3 + (DELX2(KK) / 3.0D0) * PART4
	C C CALCULATE THE FUNCTION. C
0061	FF(KK) = AREA1 + AREA2 + 1.000
0062	29 CONTINUE
	C C CALCULATE F1/F2 AND CHECK FOR CONVERGENCE C
0063	$f_{1F2} = FF(1) / FF(2)$
0064	ERROR = $F1F2 - RATIO$
0065	IF(DABS(ERROR) .LT. ACC) GO TO 31
	C C SET ISW AND SAVE ON FIRST TIME THROUGH ITERATION LOOP
	C SET ISW AND SAVE ON FIRST TIME THROUGH ITERATION LOOP C
0066	IF(ISW.NE.O) GO TO 6
0067	ISW = 1
0068	SAVE = ERROR IF(ERROR •LT• 0•0D0) G0 T0 6
0069	IF(ERROR •LT• 0•0D0) GO TO 6 C
	C SIGN OF FIRST ERROR IS "+" C
0070	PLUS = 1
0071	MINUS = 0
0072	6 CONTINUE
	C C TEST FOR SIGN OF ERROR C
0073	IF(ERROR) 30, 31, 32 C
	C SIGN OF ERROR IS "+" C
0074	32 PLUS = 1

FORTRAN	IV G LEVEL	18 EMOD) D	ATE = 71172	14/41
0075	с	IF(MINUS .NE. 0) GO	TO 40		
	C C	ERROR IS POSITIVE, DECRE	ASE E2E1 FOR NE	XT TRIAL	
0076 0077 0078	c c	E2E1 = E2E1 - DELTA IF(E2E1 .LE. 0.0D0) G0 T0 4	E2E1 = 0.000	100	
	C C	ERROR WAS NEGATIVE, NOW	POSITIVE, CHANG	EDELTA	
00 79 00 80	с	DELTA = 0.5D0 + DELT If(SAVE .LT. 0.0D0)	GO TO 42	T TATA.	
0081 0082 0083 0084	с С 41	SET SAVE = ERROR, DECREA SAVE = ERROR E2E1 = E2E1 - DELTA IF(E2E1 .LE. C.ODO) GO TO 4			
	с с с с	ERROR IS INCREASING IN F E2E1 FOR NEXT TRIAL	OSITIVE DIRECTI	UN, DECREASE	
0085 0086 0087 0088	-	IF(DABS(SAVE) .GT. ERR E2E1 = E2E1 - DELTA IF(E2E1 .LE. 0.0D0) G0 T0 4		-	
0089	C C 30	SIGN OF ERROR IS "-" MINUS = 1			
0090	c c	IF(PLUS .NE. 0) GO ERROR IS NEGATIVE, INCRE	TO 45 Ase e2e1 for Ne	XT TRIAL	
0091 0092 0093	c c c	E2E1 = E2E1 + DELTA IF(E2E1 .GT. 1.0D0) GO TO 4	GO TO 44		
0094 0095 0096 0097 0098	-	CONTINUE IF(H .GE. 9.2D0) GO DELTA = 0.5 * DELTA E2E1 = E2E1 - DELTA GO TO 4) TO 4		
	č	ERROR IS NEGATIVE NOW.	AS POSITIVE BEF	ORE, CHANGE	

×

FORTRAN IV G LEVEL	18 EMOD	DATE = 71172	14/41
с с	DELTA		
	DELTA = 0.5D0 * DELTA IF(SAVE .GT. 0.0D0) GO TO 4 TEST FOR ERROR LESS THAN SAVE	•7	
С		()) save = error	
C C C	INCREASE E2E1 FOR NEXT TRIAL	J JAVE - ERRUR	
01 02 01 03 01 04	E2E1 = E2E1 + DELTA IF(E2E1 •GT• 1•0D0) GO TO 4 GO TO 4	4	
с с с	TEST FOR ERROR GREATER THAN SAVE		
	IF(DABS (ERROR) .GT. SAVE) GO ERROR IS APPROACHING CONVERGENCE F SET SAVE = ERROR, INCREASE E2E1 FO	ROM NEGATIVE SIDE,	
01 06 01 07 01 08 01 09	SAVE = ERROR E2E1 = E2E1 + DELTA IF(E2E1 .GT. 1.0D0) GO TO 4 GO TO 4 CONTINUE	•4	
c c	CONVERGENCE CRITERION IS MET, CALC	CULATE E1 & E2	
0111 0112 C	E1 = (3.0D0 * P * FF(1))/ (4.0D0 * E2 = E2E1 * E1	* 3.14159D0 *W1*R1)	
0113 0114	RETURN END		

ł

• 7

FORTRAN IV	G LEVEL	18	BESJO	DATE = 71068	08
0001	C C	REAL FUNCTION BESJO	* 8 (X)		
	С С С	A FUNCTION TO CALCU Polynomial approxim Functions, bureau o	ATION - REFERENCE	HANDBOOK OF MATH.	
0002	c c	DOUBLE PRECISION X3 * DSQRT, DABS, X	, X32, X33, X34, X	35, X36,DCOS,	
	C C	CALCULATE X/3 OB 3/	x		
0003	•	$x_3 = x/3.0$			
9904	c	IF(X GT 3 0) X3 =	3.0/ X		
	C C C	CALCULATE POWERS OF	x		
0005		X32= X3*X3			
0006		X33=X32*X3			
0007		X34=X32*X32			
0008 0009		X35=X32*X33 X36=X33*X33			
0009	С	× 30 - × 33 + × 33			
0010		IF (DABS (X) .LE.	3.0D0) GO TO	3	
	C C	CALCULATE BESJO(X)	FOR VALUES OF X GR	EATER THAN 3	
0011		BESJO=((.79788456 * X329512E-04 * * .72805E-03 * X35 + * DCOS(X78539 * X32 + .262573D-0 * .29333E-03 * X35 +	X33 + .137237D-02 .14476E-03 * X36 81604166397 * 2 * X3354125D-	* X34 -) / DSQRT(X)) X3 - •3954E-04 03 * X34 -	
	С			,	
0012	с	RETURN			
	C C	CALCULATE BESJO(X)	FOR VALUES OF X LE	SS THAN 3	
0013		BES J0= 1.0 - 2.2 *3163866 * X36 + * .0039444 * (X35 *	•0444479 * (X34	* X34) -	
0014 0015	С	RETURN END			

.

.

•

FORTRAN	IV G	LEVEL	18	v	DATE = 71068
0001		C C	REAL FUNCTION V * 8	(XN , XM)	
0002			DOUBLE PRECISION X V - A FUNCTION OF " "E2E1" IS THE E2/E1 "M" TESTED USING VA 10 * (R/H) V APPROACHES 1 FOR	E2E1', AND 'M' RATIO, TESTED FRO LUES FROM 0.0 TO 1	M .001 TO 1000.
0003 0004			V = 1.0 IF(XM .GT. CALCULATE EXPONENTI		
0005 0006		C C C	EXPM2M = DEXP(- EXPM4M= EXPM2M*EXPM CALCULATE FUNCTION	-	OR XM2 VALUES
0007		: 1	V = (1.0D0 + (4 * (XN * XN * EXPM4M * * (1.0D0 + 2.0D0 * (XN * XN * EXPM4	* XM * XM) * EXP	{ 2.0D0 * XN
0008 0009		v	RETURN END		

.

,

.

.

.

.

08

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

.

.

.

٠

.

,

•

•

00000						1 2 3 4	CORE#		
0 00000 900000 000004 000008	07000	0000			00000	5 6 7 8	CORE	USING BC DC DC	*:15 15:*+12 XL4'07000000' CL4'CORE'
200000					0000C	9		STM	14,4,12(13)
000010					00000	10		LM	2,3,0(1)
000014					00000	11		Ĺ	3,0(3)
000018					00090	12		STM	2,3,BUFADR
000010					0002E	13		LA	1,CORE2
000020					00074	14		LA	3,CLOAD
000024						15		BALR	2,3
000026		0000			0000C	16		LM	14,4,12(13)
00002A		5000			•••••	17		SR	15,15
000020						18		BCR	15,14
000020	••••					19		DROP	15
00002E						20		USING	
00002E	5040	106F			00090	21	CORE2	ST	4, SAVE4
000032						22		LR	4,1
00002E						23		USING	
						24		DROP	1
000034	1810					25		LR	1,0
000036		1001		00001		26		ТМ	1(1),X*OF*
00003A					00050	27		BC	1, OUTPUT
00003E					000A4	28		L	1,VFIOCS
000042					00074	29		LA	3,CLOAD
000046						30		BALR	2,3
000048	9823	4062			00090	31		LM	2,3,BUFADR
00004C	47F0	4036			00064	32		BC	15, RETURN
000050	9823	4062			00090	33	OUTPUT	LM	2,3,BUFADR
000054	9240	2000		00000		34		MVI	0(2),X'40'
000058	0630					35		BCTR	3,0
00005A	0630					36		BCTR	3,0
00005C	4430	4040			0006E	37		EX	3, DMOVE
000060					00002	38		LA	3,2(3)
000064		406E			00090		RETURN	L	4 • S AV E4
000068	1810					40		LR	1,0
	•					41		DROP	4
00006A					00006	42	DUDUE	BC	15,6(1)
00006E	D200	20.01	2000	00001	00000	43	DMOVE	MVC	1(0,2),0(2)
000074		2004				44	CL 040	USING	
000074					00098		CLOAD	ST	15,SAVE
000078				000/4	00000	46			15,VIBCOM
00007C 000080				00044	00044	47 48		MVI	74(15),X'50'
				0004A	JUU4A	40		EX MVI	0,74(15) 74(15),X*58*
000084				0004A	00098	50		L	15, SAVE
000086		30 24			00070	50		BCR	15,3AVE
000090	UTFZ						BUFADR	DS	2F
000090							SAVE	DS	F
000098							SAVE4	D S	F ·
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0000					VIBCOM	DC	A(IBCOM#)
0.00040	00000						• • • • • • • •		

LOC	OBJECT CODE	ADDR1	ADDR 2	STMT	SOURCE	STATE	MENT
000044	0000000			56 57	VFIDCS	DC END	A(FIOCS#)

•

۲

.

•

NOTE: Program printouts of sample problems will be found in the main body of the report, Tables 6a through 6g.

•

.

۲

* . ₂

•

10017894205	1560 1 1FM	16875BL 12.5 5	2168 1
2005FAL COAT	0.5 RF	D SANDY GRAVEL	12.0GREY & BRWN SAND SUB
1560 1 52168 1	-	77.1 52.1 31.1	
1560 1 52168 1		77.1 51.1 31.1	
1560 1 52168 3		28.3 49.1 30.1	
1560 1 52168 2	- B 40.3	28.3 49.1 30.1	67.03
1560 1 52168 3	- A 38.3	77.1 47.1 30.1	65.03
1560 1 52168 3	- B 37.3	77.1 46.1 30.1	67.03
1560 1 52168 4	- A 49.3	32.3 49.1 32.1	74.03
1560 1 52168 4	- R 46.3	30.3 47.1 31.1	71.03
1560 1 52168 5	- A 43.3	29.3 50.1 34.1	77.03
1560 1 52169 5	- B 42.3	80.1 46.1 31.1	73.03

.

£

•

10017BR	Z	אח			28 S	4 2 1FM 2776NB	L 8.0	52168 1	
200 SEAL	Ċ	TAT				0.5 ASPHALT S	TAB. GP	RAVEL 7.5GREY SANDY CL	AY SUB
2824	2	52168	1	-	۵	55.3 40.3 2	9.3 66.	•1 50•1	
2824	2	52168	1	-	В	52.3 37.3 8	1.1 61.	•1 49•1	
2824	2	52168	2	-	4	77.3 49.3 3	1.3 71.	•1 53•1	
2824	2	52168	2	-	B	77.3 47.3 3	0.3 67.	•1 51.1	
2824	2	52168	3	-	Δ.	81.3 50.3 3	1.3 67.	•1 49•1	
2824	2	52168	3	-	8	83.3 51.3 3	1.3 67.	.1 50.1	
2824	2	52168	4	-	4	83.3 49.3 3	0.3 64.	•1 48•1	
2824	2	52168	4	-	B	81.3 47.3 2	8.3 61.	•1 47•1	
2824	2	52168	5		Δ	78.3 48.3 2	9.3 62.	•1 45•1	
2824	2	52168	5	_	8	81.3 49.3 3	1.3 65.	.1 47.1	

•

3

*

۰,

.

.

100178UPL	FSON		1	39	9 1 1FM 1361EBL 12.0 52168 1
200SEAL C	ΠΑΤ				0.5 LIME STAB. SANDSTONF11.5TAN SANDY CLAY SUBGR
1399 1	52168	٦.	-	A	50.3 37.3 71.1 47.1 33.1
1399 1	52168	l	-	8	52.3 41.3 78.1 48.1 33.1
1399 1	52168	2	-	A	55.3 40.3 67.1 40.1 81.03
1399 1	52168	?	-	8	48.3 35.3 64.1 38.1 82.03
1390 1	52168	3	-	A	50.3 35.3 60.1 37.1 89.03
1399 1	52168	3	-	В	48.3 33.3 58.1 37.1 87.03
1399 1	52168	4	-	A	50.3 35.3 56.1 34.1 72.03
1399 1	52168	4	-	8	46.3 33.3 54.1 33.1 71.03
1399 1	52168	5	-	A	64.3 42.3 65.1 40.1 28.1
1399 1	52168	5	-	B	60.3 38.3 63.1 42.1 31.1

10017WASHINGTON 186 5 15H 36 NBL 19.9 52168 1

200HOT MIX ASPH. CONC. 3.75SANDSTONE 1615BLACK CLAY SUBGRADE

ŧ

ť

ъ

٠

٠

186 5 52	2168-1	-	4	56.3	34.3	61.1	42.1	30.1
186 5 52	2168 1	-	В	61.3	36.3	61.1	42.1	31.1
186 5 52	2168 ?	-	A	58.3	36.3	67.1	47.1	36.1
186 5 52	2168 2	-	В	65.3	39.3	69.1	49.1	37.1
186 5 52	2168 3	-	A	56.3	36.3	68.1	50.1	38.1
186 5 52	2168 3	-		57.3	36.3	67.1	48.1	37.1
186 5 52	2168 4	-	A	56.3	37.3	75.1	57.1	46.1
186 5 52	2168 4	-	В	52.3	36.3	73.1	55.1	44.1
186 5 52	168 5	-	A	50.3	32.3	59.1	44.1	33.1
186 5 52	2168 5	-	8	53.3	33.3	60.1	43.1	33.1

۳.

)

10017R08FPTSON 49 8 105 190 NBL 15-2 52168 1

200HOT MIX ASPH. CONC. 1.25CEM. STAB. LIMESTONE1395PED SANDY CLAY SUBGP

49	9	52168	1	-	Δ	68.]	59.1	49.1	39.1	31.1
49	8	52168	1	-	9	68.1	60.1	49.1	39.1	31.1
40	8	52168	?	-	Δ,	72.1	63.1	51.1	39.1	31.1
40	8	52168	2	-	9	70.1	62.1	49.1	39.1	31.1
49	R	52168	3	-	4	75.1	65.1	52.1	39.1	30.1
49	8	52168	3	-	в	76.1	65.1	51.1	39.1	30.1
49	8	521.68	4	-	6	60.1	54.1	45.1	35.1	28.1
49	8	52168	4	-	ß	58.1	52.1	43.1	33.1	89.1
49	8	52169	5	-	۵	62.1	55.1	45.1	35.1	91.1
49	9	52168	5	-	Ŗ	65.I	57.1	47.1	36.1	28.1

10017884Z05	1560 1 1FM	1687NBL 7.5 5	2168 1
200ASPHALT SURFACT	NG 1.0 45	PH EMUL STAB GP	AVL 6.5BROWN CLAY SUBGRADE
1560 1 52168 1	- A 72.3	50.3 32.3 66.1	52.1
1560 1 52168 1	- 8 71.3	51.3 32.3 65.1	51.1
1560 1 52168 2	- A 64.3	47.3 31.3 64.1	49.1
1560 1 52168 2	- 8 62.3	45.3 30.3 63.1	50.1
1560 1 52168 3	- 4 68.3	49.3 31.3 63.1	49.1
1560 1 52168 3	- B 69.3	50.3 32.3 65.1	50.1
1560 1 52168 4	- A 74.3	54.3 34.3 67.1	49.1
1560 1 52168 4	- B 74.3	53.3 34.3 65.1	49.1
1560 1 52168 5	- A 66.3	46.3 30.3 61.1	47.1
1560 1 52168 5	- B 66.3	48.3 31.3 61.1	46.1

•

۲

•

100178PAZ	3 5.		54	0 3 1FM 974 FBL 8.3 52168 1
200SEAL CO)AT			0.5 IRON ORF GRAVEL 7.8GREY SANDY CLAY SUBG
540 3	52168	۰.	- A	80.3 51.3 32.3 68.1 50.1
540 3	52168	1.	- B	75.3 48.3 30.3 63.1 48.1
540 3	52168	2 .	- A	59.3 39.3 82.1 60.1 48.1
540 3	52168	2.	- B	60.3 40.3 82.1 62.1 49.1
540 3	52168	3.	- A	55.3 39.3 28.3 64.1 51.1
540 3	52168	3.	- B	53.3 39.3 28.3 61.1 51.1
540 3	52168	4 .	- Δ	75.3 49.3 33.3 75.1 60.1
540 3	521,68	4 .	- B	78.3 53.3 35.3 79.1 63.1
540 3	521.68	5.	- A	74.3 49.3 33.3 71.1 55.1
540 3	521 68	5 ·	- B	70.3 47.3 32.3 68.1 53.1