TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Acces	sion No. 3. R	lecipient's Catalog N	lo.		
4. Title and Subtitle	5. R	5. Report Date				
Modification and Implement	ation of the	Ja	nuary 1975			
Rigid Pavement Design System		6. P	Performing Organization Code			
7. Author(s)	8. P	erforming Organizati	on Report No.			
Robert F. Carmichael and B.	h Re	Research Report 123-26				
9. Performing Organization Name and Addres		10.	Work Unit Na.			
Center for Highway Research		11.	11. Contract or Gront No.			
The University of Texas at Austin, Texas 78712	Austin		Research Study 1-8-69-			
Austin, Texas 78712		13. Type of Report and Period Covered				
12. Spansoring Agency Name and Address		Tn	Interim			
Texas Highway Department		111	Let Im			
Planning & Research Divisio	n					
P. O. Box 5051 Austin, Texas 78763		14, 3	14. Sponsoring Agency Code			
15. Supplementary Notes						
Work done in cooperation wi	th the Federa	l Highway Administ	ration. Depa	rtment		
of Transportation.						
Research Study Title: A Syst	emAnalysis of	Pavement Design and	d Rese <mark>arc</mark> h Im	plementation		
16. Abstract						
The rigid pavement des	- •	• • • •				
of this study is the third		•	-			
entitled "A System Analysis			-			
sponsored by the Texas High Administration.	way Department	t in cooperation w	ith the Feder	ral Highway		
The rigid pavement des	ian system pro	arame designated	RPS have h	en developed		
in conjunction with flexibl			•	-		
the auspices of the Center						
Austin and the Texas Transp	•••					
Highway Department. At the						
of RPS and thirteen version	s of FPS had l	been developed by	the Project.	The devel-		
opment of the two previous	programs of th	ne rigid pavement o	design syster	n is docu-		
mented in Refs 2 and 3.) is messe	atad and		
A revised rigid pavemented. Details of mod						
were made in the traffic de						
is outlined and each new su						
of RPS-3 implementation is						
		complete set of sam				
complete input guide as wel						
in the use of RPS-3. This report is also intended to be a User's Manual for						
the RPS-3 program. 17. Key Words 18. Distribution Statement						
rigid pavement, design system, user						
errors, modularization, imp						
traffic delay cost, flow cha	11 L					
19. Security Classif. (of this report)	20, Security Class	if, (of this poge)	21- No. of Pages	22. Price		
Unclassified	Unclassifie	ed	242			
				L		

MODIFICATION AND IMPLEMENTATION OF THE RIGID PAVEMENT DESIGN SYSTEM

by

Robert F. Carmichael B. F. McCullough

Research Report 123-26

A System Analysis of Pavement Design and Research Implementation

Research Project 1-8-69-123

conducted

in cooperation with the U. S. Department of Transportation Federal Highway Administration

by the

Texas Highway Department

Texas Transportation Institute Texas A&M University

Center for Highway Research The University of Texas at Austin

January 1975

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration. This report does not consititute a standard, specification, or regulation.

PREFACE

This report provides a detailed documentation of the rigid pavement design system program RPS-3. The information includes discussions on modularization of the program, model changes made to the program, and a trial implementation study made using the program. The report also contains an analysis of common user errors, a complete program flow chart, a program listing, and a program input guide. This report is in essence a User's Manual with instructions to the designer.

December 1974

Robert F. Carmichael B. F. McCullough This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

LIST OF REPORTS

Report No. 123-1, "A Systems Approach Applied to Pavement Design and Research," by W. Ronald Hudson, B. Frank McCullough, F. H. Scrivner, and James L. Brown, describes a long-range comprehensive research program to develop a pavement systems analysis and presents a working systems model for the design of flexible pavements. March 1970

Report No. 123-2, "A Recommended Texas Highway Department Pavement Design System User's Manual," by James L. Brown, Larry J. Buttler, and Hugo E. Orellana, is a manual of instructions to Texas Highway Department personnel for obtaining and processing data for flexible pavement design system. March 1970

Report No. 123-3, "Characterization of the Swelling Clay Parameter Used in the Pavement Design System," by Arthur W. Witt, III, and B. Frank McCullough, describes the results of a study of the swelling clays parameter used in pavement design system. August 1970

Report No. 123-4, "Developing A Pavement Feedback Data System," by R. C. G. Haas, describes the initial planning and development of a pavement feedback data system. February 1971

Report No. 123-5, "A Systems Analysis of Rigid Pavement Design," by Ramesh K. Kher, W. R. Hudson, and B. F. McCullough, describes the development of a working systems model for the design of rigid pavements. November 1970

Report No. 123-6, "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections," by F. H. Scrivner, C. H. Michalak, and William M. Moore, describes a computer program which will serve as a subsystem of a future Flexible Pavement System founded on linear elastic theory. March 1971

Report No. 123-6A, "Calculation of the Elastic Moduli of a Two Layer Pavement System from Measured Surface Deflections, Part II," by Frank H. Scrivner, Chester H. Michalak, and William M. Moore, is a supplement to Report No. 123-6 and describes the effect of a change in the specified location of one of the deflection points. December 1971

Report No. 123-7, "Annual Report on Important 1970-71 Pavement Research Needs," by B. Frank McCullough, James L. Brown, W. Ronald Hudson, and F. H. Scrivner, describes a list of priority research items based on findings from use of the pavement design system. April 1971

Report No. 123-8, "A Sensitivity Analysis of Flexible Pavement System FPS2," by Ramesh K. Kher, B. Frank McCullough, and W. Ronald Hudson, describes the overall importance of this system, the relative importance of the variables of the system and recommendations for efficient use of the computer program. August 1971 Report No. 123-9, "Skid Resistance Considerations in the Flexible Pavement Design System," by David C. Steitle and B. Frank McCullough, describes skid resistance consideration in the Flexible Pavement System based on the testing of aggregates in the laboratory to predict field performance and presents a nomograph for the field engineer to use to eliminate aggregates which would not provide adequate skid resistance performance. April 1972

Report No. 123-10, "Flexible Pavement System - Second Generation, Incorporating Fatigue and Stochastic Concepts," by Surendra Prakash Jain, B. Frank McCullough and W. Ronald Hudson, describes the development of new structural design models for the design of flexible pavement which will replace the empirical relationship used at present in flexible pavement systems to simulate the transformation between the input variables and performance of a pavement. January 1972

Report No. 123-11, 'Flexible Pavement System Computer Program Documentation," by Dale L. Schafer, provides documentation and an easily updated documentation system for the computer program FPS-9. April 1972

Report No. 123-12, "A Pavement Feedback Data System," by Oren G. Strom, W. Ronald Hudson, and James L. Brown, defines a data system to acquire, store, and analyze performance feedback data from in-service flexible pavements. May 1972

Report No. 123-13, "Benefit Analysis for Pavement Design System," by Frank McFarland, presents a method for relating motorist's costs to the pavement serviceability index and a discussion of several different methods of economic analysis. April 1972

Report No. 123-14, "Prediction of Low-Temperature and Thermal-Fatigue Cracking in Flexible Pavements," by Mohamed Y. Shahin and B. Frank McCullough, describes a design system for predicting temperature cracking in asphalt concrete surfaces. August 1972

Report No. 123-15, "FPS-11 Flexible Pavement System Computer Program Documentation," by Hugo E. Orellana, gives the documentation of the computer program FPS-11, October 1972. April 1972

Report No. 123-16, "Fatigue and Stress Analysis Concepts for Modifying the Rigid Pavement Design System," by Piti Yimprasett and B. Frank McCullough, describes the fatigue of concrete and stress analyses of rigid pavement. October 1972

Report No. 123-17, "The Optimization of a Flexible Pavement System Using Linear Elasticity," by Danny Y. Lu, Chia Shun Shih, and Frank H. Scrivner, describes the integration of the current Flexible Pavement System computer program and Shell Oil Company's program BISTRO, for elastic layered systems, with special emphasis on economy of computation and evaluation of structural feasibility of materials. March 1973

Report No. 123-18, "Probabilistic Design Concepts Applied to Flexible Pavement System Design," by Michael I. Darter and W. Ronald Hudson, describes the development and implementation of the probabilistic design approach and its incorporation into the Texas flexible pavement design system for new construction and asphalt concrete overlay. May 1973 Report No. 123-19, "The Use of Condition Surveys, Profile Studies, and Maintenance Studies in Relating Pavement Distress to Pavement Performance," by Robert P. Smith and B. Frank McCullough, introduces the area of relating pavement distress to pavement performance, presents work accomplished in this area and gives recommendations for future research, August 1973.

Report No. 123-20, "Implementation of a Complex Research Development of Flexible Pavement Design System into Texas Highway Department Design Operations," by Larry Buttler and Hugo Orellana, describes the step by step process used in incorporating the implementation research into the actual working operation.

Report No. 123-21, "Rigid Pavement Design System, Input Guide for Program RPS2 in Use by the Texas Highway Department," by Robert F. Carmichael and B. Frank McCullough, describes the input of variables necessary to use in the Texas rigid pavement design system program RPS2, May 1974.

Report No. 123-22, "An Integrated Pavement Design Processor," by Danny Y. Lu, Chia Shun Shih, Frank H. Scrivner and Robert L. Lytton, provides a comprehensive decision framework with a capacity to drive different pavement design programs at the user's command through interactive queries between the computer and the design engineer.

Report No. 123-23, "Stochastic Design Parameters and Lack-of-Fit of Performance Model in the Texas Flexible Pavement Design System," by Malvin Holsen and W. Ronald Hudson, describes a study of initial serviceability index of flexible pavements and a method for quantifying lack-of-fit of the performance equation.

Report No. 123-24, "The Effect of Varying the Modulus and Thickness of Asphaltic Concrete Surfacing Materials," by Danny Y. Lu and Frank H. Scrivner, investigates the effect on the principal stresses and strains in asphaltic concrete resulting from varying the thickness and modulus of that material when used as the surfacing of a typical flexible pavement (being prepared for submission).

Report No. 123-25, "Elastic Layer Theory as a Model of Displacements Measured Within Flexible Pavement Structures Loaded by the Dynaflect," by Frank H. Scrivner et al, describes the fitting of an empirical model to the study of 136 (TTI) data (being prepared for submission).

Report No. 123-26, "Modification and Implementation of the Rigid Pavement Design System," by Robert F. Carmichael and B. Frank McCullough, describes the new RPS-3 version of the rigid pavement design system in detail and complete with an input guide, documentation, and listing. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

ABSTRACT

The rigid pavement design system computer program, RPS-3, designed as a result of this study is the third in a series of such systems developed under the project entitled "A System Analysis of Pavement Design and Research Implementation" (Ref 1), sponsored by the Texas Highway Department in cooperation with the Federal Highway Administration.

The rigid pavement design system programs, designated RPS, have been developed in conjunction with flexible pavement design system programs, designated FPS, under the auspices of the Center for Highway Research at The University of Texas at Austin and the Texas Transportation Institute at Texas A&M University and the Texas Highway Department. At the time this particular study was begun, two versions of RPS and thirteen versions of FPS had been developed by the Project. The development of the two previous programs of the rigid pavement design system is documented in Refs 2 and 3.

A revised rigid pavement system computer program, RPS-3, is presented and documented. Details of model changes are explained. The most significant changes were made in the traffic delay cost subroutine, TDS. The program's modularization is outlined and each new subroutine is flow charted and explained. A discussion of RPS-3 implementation is also included, to serve as a guideline for the program's future use. The report also contains a complete set of sample RPS-3 problems and a complete input guide as well as a discussion of the most common errors encountered in the use of RPS-3. This report is also intended to be a User's Manual for the RPS-3 program.

KEY WORDS: rigid pavement, design system, user errors, modularization, implementation, traffic delay cost, flow chart.

ix

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

SUMMARY

A newly documented version of the rigid pavement design system, computer program RPS-3, has been developed from the basic RPS-2 program. The new program has been changed in a number of ways to make the program more implementable. The program has been modularized into a total of eleven subroutines, each having a distinctive function which has been documented. This modularization makes RPS-3 the most easily changeable version of the rigid pavement design system. Future modifications will be much easier because of the modularization. A complete documentation of how to run the new program, the input guide, was prepared to allow easier program usage by highway design engineers. An attempt has been made to answer any questions a user may have concerning a particular variable or its input value.

Finally, a study was undertaken to evaluate how effective and accurate the RPS-2 program was in actual use. The results of this verification study led to the formation of certain recommendations concerning future implementation. The results are applicable to RPS-3 because both programs utilize the same design models. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

IMPLEMENTATION STATEMENT

This report describes the implementation process for the new rigid pavement design system, RPS-3. As such, it is an implementation of part of Project 123 findings. Making the RPS-3 program usable by highway design engineers was the major goal of the study. RPS-3 has many qualities which will make it easier to implement than RPS-2, but it retains the major design procedures of the rigid pavement system developed in RPS-2. A trial implementation of the RPS-2 program has been tried in Houston, Texas, and the results are report in Chapter 5. The results of the study in Houston, Texas, are applicable to RPS-3 also because both programs use the same design equations. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

TABLE OF CONTENTS

PREFACE	i ii
LIST OF REPORTS	v
ABSTRACT AND KEY WORDS	ix
SUMMARY	xi
IMPLEMENTATION STATEMENT	ciii
CHAPTER 1. INTRODUCTION	
Objectives	1 2
CHAPTER 2. SYSTEM DEVELOPMENT AND APPROACH	
System Development	5 8 9
CHAPTER 3. IMPROVEMENT OF MODELS	
Correction of Traffic Delay Cost Model	11 30 30 33 36 37 37
CHAPTER 4. MODULARIZATION OF THE RPS-3 PROGRAM	
Explanation of New Subroutines	40 46 49

Chapter 5. IMPLEMENTATION	
Future RPS-3 Implementation	51 53 67
CHAPTER 6. USER'S MANUAL	
Development of the Manual	69 69 71 81 83
CHAPTER 7. SAMPLE RPS-3 PROBLEM	
Coding Sheets	85 85
CHAPTER 8. SUMMARY AND FUTURE RESEARCH	
Future Research Recommendations	90 90
REFERENCES	91
APPENDICES	
Appendix 1. Flow Diagram for Program RPS-3	93
Appendix 3. User's Manual	135 151
Appendix 4. RPS-3 Program Listing	197
THE AUTHORS	225

CHAPTER 1. INTRODUCTION

The rigid pavement design system computer program, RPS-3, designed as a result of this study is the third in a series of such systems developed under a project entitled, "A System Analysis of Pavement Design and Research Implementation," (Ref 1) sponsored by the Texas Highway Department in cooperation with the Federal Highway Administration.

The rigid pavement design system programs, designated RPS, have been developed in conjunction with flexible pavement design system programs, designated FPS, under the auspices of the Center for Highway Research at The University of Texas at Austin and The Texas Transportation Institute at Texas A&M University and with support of the Texas Highway Department. At the time this particular study was begun, two versions of RPS and thirteen versions of FPS had been developed by the Project. The development of the two previous programs of the rigid pavement design system is documented in Refs 2 and 3.

The rigid pavement design system computer program RPS-2 is currently used as a state-of-the-art design tool to design concrete pavements. This study was initiated to modify the RPS-2 program so that it would be better suited for implementation into more district offices of the Texas Highway Department. The new version developed by this study is named RPS-3. All the modifications made to the program are documented. The major differences of this program and previous programs are its new models, its modularization into numerous separate models which are interfaced to form the complete system, and its complete documentation with the user in mind. The system was developed because there was a need for a more implementable rigid pavement design system for highway engineers.

OBJECTIVES

The goal of this study was to develop from the original two RPS versions, a new modularized program which could be easily modified and implemented into

1

field use. To accomplish this main goal, several objectives were established:

- (1) Program RPS-3 was modularized into a number of subroutines to make future modifications easier.
- (2) Program RPS-3 was completely documented with input guide, sample problems, and error analysis so that design engineers in the field could use it easily.
- (3) A trial use of RPS-3 was completed as an indication of the rigid pavement design system's usefulness.
- (4) The traffic delay cost (TDC) model was modified to take into account the traffic delay costs associated with concrete overlay curing.

Basically, this study provides the Texas Highway Department with a more implementable version of a rigid pavement design program.

SCOPE

The scope of this report is to document the development of RPS-3. This program is a modification of the rigid pavement design system and has many new implementation features. The program has been made easier to use from a technical standpoint and it has been refined to provide better solutions.

The needed program changes ascertained from previous experience with the program and the approach taken to accomplish these modifications are outlined in Chapter 2.

The results of specific model studies are described in detail and the changes made in the models used in RPS-2 are given in Chapter 3.

The method used to modularize the program to facilitate future changes and updating is explained in Chapter 4.

The process for implementing the program into field use for the Texas Highway Department is described in Chapter 5.

The general aspects of the new RPS-3 user's guide and a discussion of the most common user errors which occur with RPS-3 usage are included in Chapter 6.

An illustration of the use of the program with a complete sample problem is provided in Chapter 7.

The findings of this study and suggestions for future research in the rigid pavement design system are summarized in Chapter 8.

A flow chart of the new RPS-3 program, sample outputs, a user's manual for operation of the RPS-3 program, and a program listing are provided in the appendices in order to provide a complete documentation of the program. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 2. SYSTEM DEVELOPMENT AND APPROACH

This chapter presents a summary of the rigid pavement design system needs, determined by reviewing the experience gained with RPS-2 and consulting with the Design Division of the Texas Highway Department. Those changes which were accomplished in the development of RPS-3 are outlined. The models which were modified and the types of implementation features which were included in the new program version are discussed. Finally, a section discussing model improvements, program modularizations, and implementation is presented on the general approach used to develop RPS-3.

SYSTEM DEVELOPMENT

The initial step of RPS-3 development was to determine the overall needs of the rigid pavement design system and to plan a course of action which would achieve those needs, as shown in Fig 2.1. First, RPS-2 was completely documented and an Input Guide (Ref 3) was developed. Next, a proposed basic format for RPS-3 was developed with design inputs from Texas Transportation Institute, the Center for Highway Research, and the Texas Highway Department. This report deals only with the developement of RPS-3.

The final three steps of the rigid pavement design system to be accomplished by later research are (1) a comparison of RPS-3 and FPS, (2) the development of RPS-4 and a modified RPS more closely resembling each other, and (3) a final covergence of the RPS design model with the FPS design model to form a total pavement design system capable of designing and optimizing solutions for both flexible and rigid types of pavements.

Table 2.1 lists the specific work items which were to be accomplished during each step of RPS development.

The five steps of development shown in Fig 2.1 constitute the major steps in the rigid pavement design system evolution. The first step of development, accomplished before this study was undertaken, was to document the RPS-2 program.

5

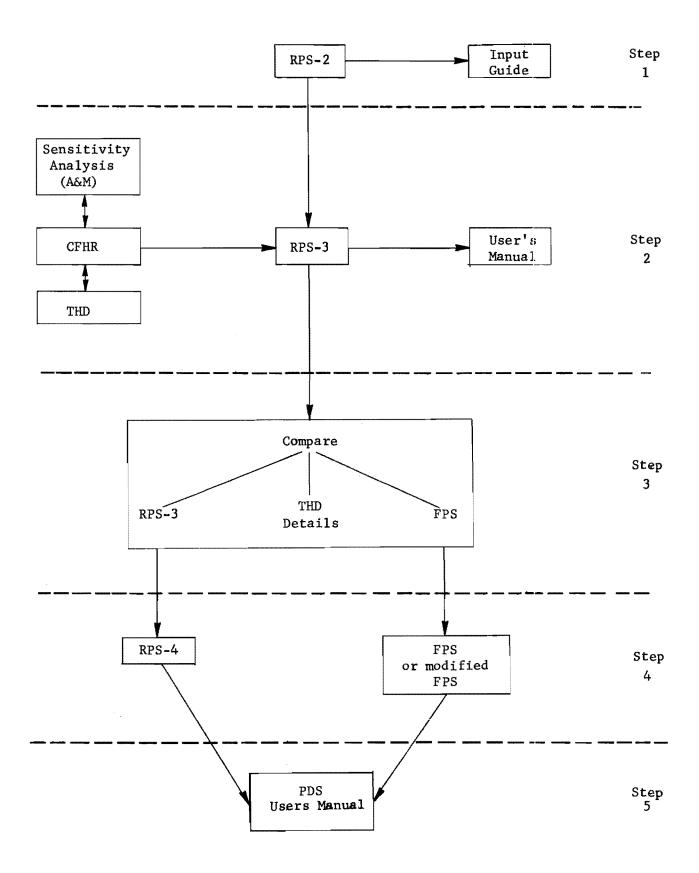


Fig 2.1. RPS development within the pavement design system structure.

- Step 1. RPS-2 Documentation and Input Guide
- Step 2. RPS-3 Development
 - 1. Add units to the program output and clarify variable titles for the user.
 - 2. Modify the asphaltic-concrete stiffness input (if sensitive).
 - 3. Add a user's cost associated PCC overlay (curing time).
 - 4. Check seal coat routine (PDD overlay).
 - 5. Reduce number of variables in the regression equations.
 - 6. Modularize program with comment cards and subroutines.
 - 7. Fix insensitive variables.
 - 8. Study maintenance subroutine.
 - 9. Characterize concrete flexural strength.
- Step 3. RPS-3 and FPS Comparison
 - 1. Justify differences in models between RPS and FPS if any.
 - 2. Make output suitable for use with typical THD design detail (example steel design).
 - 3. Change input format to conform with FPS input format.
- Step 4. New Program Development
 - 1. Create RPS-4 version
 - 2. Create FPS-x version
- Step 5. System Convergence
 - 1. Create total pavement design system
 - 2. Implement the new system

This report describes the accomplishments of Step 2 in the evolution process, the development of the RPS-3 design program. Three additional steps of development are envisioned. Step 3 will be a comparison of RPS-3 with FPS, the flexible pavement design system, and with Texas Highway Department design details. Step 4 will consist of the development of an RPS-4 version to incorporate the findings of Step 3 comparisons. Step 5, the final level of development, will be the merging of the RPS-4 version with the FPS version to form the total pavement design system.

OUTLINE OF RPS CHANGES ACCOMPLISHED

Two basic types of changes were made in RPS-2 to create RPS-3 and implement the RPS-3 program: (1) model changes, and (2) changes related to implementation. A general discussion of the modifications contained in each one of these areas is included in this section. Although these accomplishments do not encompass all the work items in Step 2, they are significant enough to create a new RPS program.

Better Models

Three of the models in the RPS-2 program were studied to ascertain how well they functioned. It was felt that if a model did not adequately simulate a real field situation, then that model would be detrimental to implementation attempts. Thus, if a particular model was not properly modeling a field situation, it was modified. In one extreme case, the seal coat model was deleted completely. The three models studied were seal coat scheduling, traffic delay cost calculation, and maintenance costs. The study and final evaluation of each of these models is discussed in Chapter 3.

Implementation Features

Many modifications were made to RPS-2 in an attempt to make the program more implementable into the THD pavement design process. Major changes included a complete reworking of input and output formats, the changing of insensitive parameters, and a modularization of the program. The input and

8

output formats were redone because the RPS-2 version did not print the input data units and also printed some inputs under misleading titles. It was decided that the output format should appear like the input guide for the program with complete titles and units for all variables. Insensitive parameter in RPS-2 were given specific values in the program so that the designer would not have to input variables. A discussion of these variables is given in Chapter 3. Finally, a modularization of the program was accomplished to facilitate implementation. The RPS-2 computer program contained a main program of approximately 1950 cards and three subroutines of 50 cards each. Modularization of these 1950 cards into numerous subroutines was necessary for implementation, so that at any future time, if better models were developed for concrete pavement behavior, they could be added easily into the rigid pavement design system. The program was broken down into eight new subroutines in addition to the three already existing subroutines. These new subroutines and the entire modularization process are discussed in detail in Chapter 5.

One of the most valuable results of the study is the documented user's guide which accompanies the RPS-3 version. This user's guide was developed from the input guide for RPS-2.

SUMMARY OF OVERALL APPROACH TAKEN TO MEET NEEDS

Once the needs for a revised RPS program were assessed, an approach was developed to modify, modularize, and implement the new program. The approach was developed to work in stages. Initially, inadequate models were to be improved and the implementation features of units, titles, and fixed variables were to be added to the program. Once these new models and additions were tested and validated, a modularization of RPS-2 began. The modularization consisted of flow charting RPS-2 and determining where compatible pieces could be broken out and subroutines developed. Once a new subroutine was developed, a battery of runs was made to test the accuracy of the program. The RPS-2 program was used as a base from which to judge the runs. If a subroutine did not function properly, it was corrected before the initiation of the next subroutine. Once the final version had been modularized, it was deemed ready for implementation. A trial implementation was performed using the RPS-2 program. The findings of the implementation trial are relative to RPS-3 because the program's basic design techniques are the same as those used in RPS-2. A complete flow charting of the program and the user's manual for the program were then developed, so as to make RPS-3 a completely separate entity in the continuing process of the rigid pavement design system development.

CHAPTER 3. IMPROVEMENT OF MODELS

In general, this chapter discusses the changes made to various models of RPS-2 so that the models will be more useful in RPS-3. Specific model changes include (1) an improvement of the traffic delay cost model, (2) a deletion of the seal coat model, (3) a modification of the input and output models, (4) a study and recommendations on the future of the maintenance model, (5) deletion of the traffic load groups model, and (6) the collection of concrete flexural strength data for the performance model. The chapter initially presents the positive additive steps in RPS-3 development and concludes with a discussion of those design models removed.

CORRECTION OF TRAFFIC DELAY COST MODEL

The current rigid pavement design system program, RPS-2, includes a model for determining the traffic delay cost for an overlay of an existing pavement. The model was adopted for use in the RPS-2 program from Research Report 32-11 (Ref 4), which explains the model. The model will determine traffic delay costs associated with both asphaltic concrete (AC) and portland cement concrete (PCC) overlays. However, since the model predicts the traffic delay costs only during the overlay laydown and neglects the traffic delay costs during the curing period of PCC overlays, a study was conducted to determine how traffic delay costs varied during different periods of the day. A study of average daily traffic (ADT) hourly distribution was required and was undertaken to determine the distribution of traffic during a typical 24-hour period. The study included an analysis of both urban and rural sections. This section provides the study results and the documentation of the new subroutine, TDC3, models development for RPS-3.

11

Objectives and Approach of ADT Variation Study

The main objective of this study item was to determine ADT distribution with respect to hour of the day so that valid costs for curing PCC overlays could be calculated. The study goal was to characterize the ADT distribution for both rural and urban sections of Texas highways for use in the modified rigid pavement computer program RPS-3 to determine the traffic delay costs during curing associated with PCC overlays. The designer using the program would adequately predict traffic delay costs for all cases.

Data Collection

The data used for the study were taken from "1973 Annual Report of Permanent Automatic Traffic Recorders," published by the Planning and Research Division of the Texas Highway Department (Ref 5). The recorders listed in the report operated for twelve full months during 1973 and were located on both rural and urban highway systems. The average daily traffic volumes reported are for both directions of traffic at the recorder location. The report characterizes the ADT at each location with respect to day of the week; high hour for the year, month, and season; and hour of the day. A percent variation of the average annual daily traffic from year to year of each recorder's operation is also presented.

Section Selection. Sections to be used in the study of the automatic traffic recorder (ATR) data were selected at random from the map of sections provided in the Annual Report. Eight rural and seven urban section identification numbers were selected and then each section was checked to determine whether it fit the urban or rural classification used for the study. A rural section was to be a two-lane section of either Farm-to-Market or State Highway designation. The rural sections were randomly chosen in areas distinctly removed from major population areas. Table 3.1 lists the rural sections, the ATR identification numbers, the section locations within the state, and the number of lanes.

An urban section was adopted for use on the basis of its location within a major urban area and the fact that it was of Interstate or U. S. designation. All sections studied were to have a total of four or more lanes. The pertinent data are given in Table 3.2. The Fort Worth section, SO41, has only two lanes,

TABLE 3.1. RURAL AUTOMATIC TRAFFIC RECORDERS STATIONS

Station	Highway	Number of Lanes (Both Directions)	Route
S058	FM 386	2	Mason - Katemcy
S015	US 289	2	Lampasas - Burnet
S097	US 281	2	Falfurrias - Encino
S043	US 59	2	Linden - Jefferson
S044	US 82	2	Henrietta - Ringgold
S119	US 16	2	Fredericksburg - Kerrville
S068	SH 163	2	Ozona - Juno
S060	SH 207	2	Claude - Silverton

TABLE 3.2. URBAN AUTOMATIC TRAFFIC RECORDERS STATIONS

Station	Highway	Number of Lanes (Both Directions)	City
_			
S158	US 87	4	Anarillo
S041	US 81	2	Fort Worth
S148	IH 35E	8	Dallas
S165	IH 10	10	Houston
S140	US 59	8	Houston
S156	IH 610	8	Houston
S123	IH 10	4	El Paso
S108	IH 35	4	San Antonio
S132	IH 35	6	Austin

but the use of this section did not adversely affect the study outcome. Two additional sections reported in Table 3.2 and located in the medium sized urban areas of Amarillo and El Paso were included as a check of traffic in such areas.

<u>ADT Calculations</u>. To determine the fluctuation of the ADT with respect to hour of the day, Tuesday, was chosen upon which to base comparisons. In most cases, the ADT for Tuesday was approximately one hundred percent of the average annual daily traffic (AADT) for the section. After all sections' data were compared on a Tuesday basis, the ADT for three sections was determined for either Friday or Saturday to determine if Tuesday was representative of all the days of the week.

Specifically, the ADT was determined for each section, using the annual average hourly values presented for each section in the Annual Report. Each hourly volume was divided by the total annual average daily volume to determine what percentage of the total each hour contributed. Figure 3.1 shows a sample of the data from the Annual Report. The section shown had an annual average daily traffic volume of 145,058 vehicles for Tuesday, which was 108.3 percent of the average annual daily traffic. The average hourly volume of 9,818 vehicles for 8:00 - 9:00 a.m. was divided by 145,058 to determine, for example, that, for this hour, 6.77 percent of the ADT passed through the section. After this calculation was made for each hour, the data were plotted. The same data were later cumulated for the preparation of cumulative frequency distribution graphs. These same calculations were made for all sections under study.

Data Comparison

The initial approach was to independently compare the rural sections and the urban sections. Each set of ADT distribution curves compared very favorably within their own classification set and, therefore, cross comparisons were made between urban and rural sections. These comparisons were simply made by visual comparison of the superimposed cumulative distribution. The Kolmogorov-Smirnov test was used to statistically compare the cumulative frequency distribution.

<u>Distribution Plots</u>. The distribution plots of ADT with respect to hour of the day were unique for both the urban and rural sets. The urban

15

ANNUAL AVERAGE HOURLY VOLUMES BY DAYS OF WEEK--1973

STATION - SI40

LOCATION- US 59, 0.6 MI W OF IH 610, S. HOUSTON

HOUR	SUN.	HON.	TUE.	WED.	THR.	FRI.	SAT.
12-AN	2 + 86 9	1,418	1.706	1,855	2.005	2,061	3,077
01-02	2,225	850	855	933	1,048	1,066	1,942
02-03	1,660	582	623	691	759	795	1.485
03-04	858	390	405	436	471	487	851
04-05	531	437	463	466	488	514	684
05-06	534	1,210	1,217	1,200	1,227	1,226	1,016
06-07	1,003	6.289	6,551	6,475	6,430	6,410	2,390
07-08	1+440	10,453	11,018	10,977	10,978	10,982	3,784
08-09	2,087	9,392	9,818	9,834	9,773	9,911	5+126
09-10	3,298	7.497	8,002	7,855	7,924	8.077	6,274
10-11	4,092	7.320	7,435	7,417	7,477	7,850	7,160
11-12	4.571	8.023	8.074	8,082	8,181	8,666	8,051
12-PM	5,896	8,493	8,335	8,279	8.398	8,999	8+498
01-02	5, 741	8,347	8.324	8,255	8,340	9,019	8,190
02-03	5.778	8+497	8,432	8,427	8,537	9,387	7,969
03-04	5,877	9,687	9,670	9,632	9,729	10,369	7,948
04-05	5,961	10,818	10,881	10,931	10,850	10,860	7,564
05-06	6,042	10.346	10,595	10,617	10,533	10,367	7,181
06-07	5,736	8.884	9,071	9,101	9,166	9+442	6,928
07-08	5,079	6.789	6,967	7,169	7,365	7,912	6,260
08-09	4,176	5,281	5,241	5,436	5,588	6+049	4,917
09-10	3,824	4.653	4,899	5,061	5,180	5,328	4,451
10-11	3,226	3,473	3,815	3,987	3,986	4,402	3,914
11-12	2,319	2,500	2 • 66 1	2.867	2,950	3,824	3,653
TOTAL	84,823	141,629	145,058	145,983	147,383	154,003	119,313
PERCENT						115.0	89.1
DF AADT	63.3	105.7	108.3	109.0	110.0	115.0	07.1

ANNUAL AVERAGE WEEK TOTAL -- 938,192

AADT -- 133,948

Fig 3. 1. Sample Average Traffic Recorder data.

distributions all showed bi-modal peaks and one minor peak of ADT flow. The major peaks were between seven and nine a.m. in the morning (representing the morning rush hour work traffic) and four to six p.m. (representing evening rush hour work traffic). Most of the distributions also showed minor peaks at the noon hour. Figure 3.2 shows a characteristic urban distribution for Section S165 in Houston, Texas.

The rural distribution curves had characteristically one main peak. The peak was spread out into one main broad increase of ADT between the hours of seven a.m. and five p.m. Figure 3.3 shows a characteristic rural distribution of the "one peak" type, for Section SO44 in Henrietta, Texas.

<u>Cumulative Plots</u>. An easy visual comparison could not be made between urban and rural sections because of the characteristic differences in the normal distribution plots. Therefore, cumulative frequency distribution plots were made for all the sections. These plots, when compared visually, were similar in all cases; rural sections to rural sections, urban sections to urban sections, and urban sections to rural sections. The cumulative frequency distribution of Section S119 in Fredericksburg, Texas, shown in Fig 3.4, is representative of the rural sections studied, while the cumulative frequency distribution of Section S041 in Fort Worth, Texas, shown in Fig 3.5, is characteristic of the urban sections studied. Comparison of the cumulative frequency distribution plots visually indicated that one generalized curve representing both rural and urban conditions could be made for the entire state, instead of separate curves for rural and urban as initially anticipated. However, it was felt that before such an action was taken, a statistical comparison to reinforce the visual conclusion should be undertaken.

Kolmogorov-Smirnov Comparison

The Kolmogorov-Smirnov test is a statistical comparison of any two cumulative frequency distributions. The maximum difference (D max) between the two sets of data is compared with a specified constant. If A(x) and B(x)are two cumulative functions, then the Smirnov test rejects the hypothesis that the A(x) distribution is equal to the B(x) distribution if the D max exceeds the specified constant:

$$P[A(x) \text{ dif } B(x)] \tag{3.1}$$

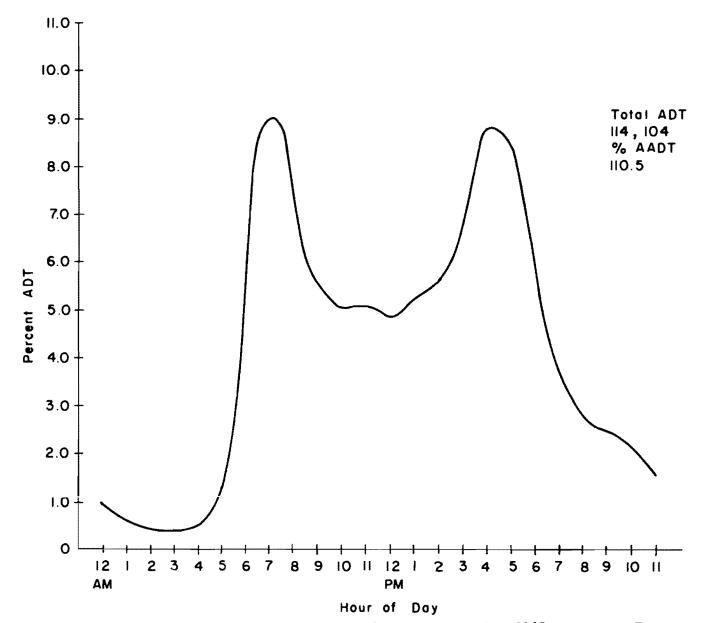


Fig 3.2. ADT distribution per hour for urban Section S165, Houston, Texas.

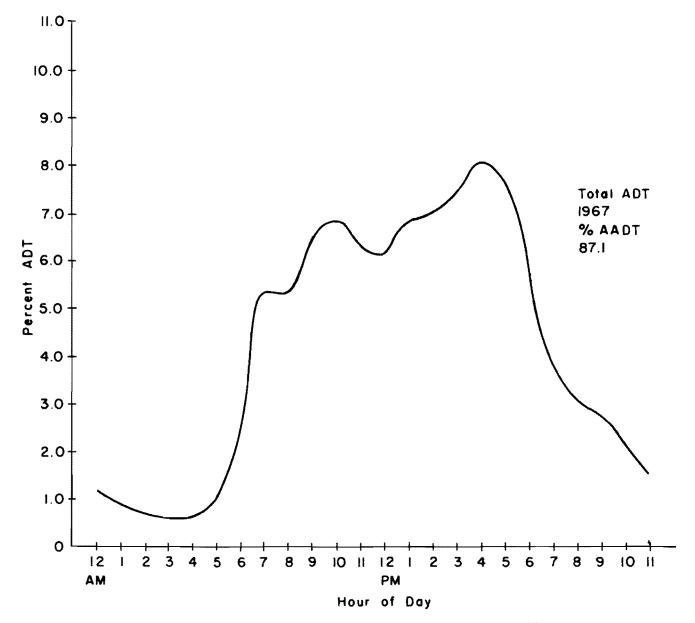


Fig 3.3. ADT distribution per hour for rural Section So44, Henrietta, Texas.

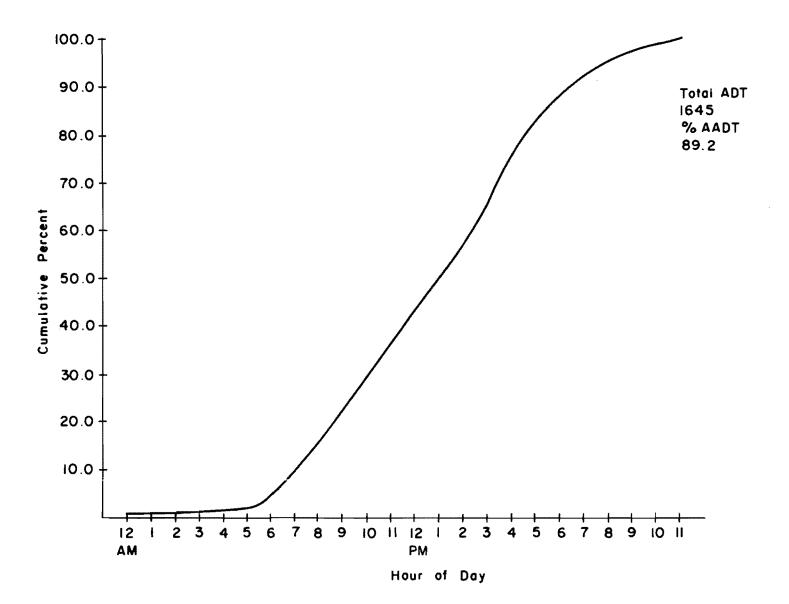


Fig 3.4. Cumulative distribution for rural Section S119, Fredericksburg, Texas.

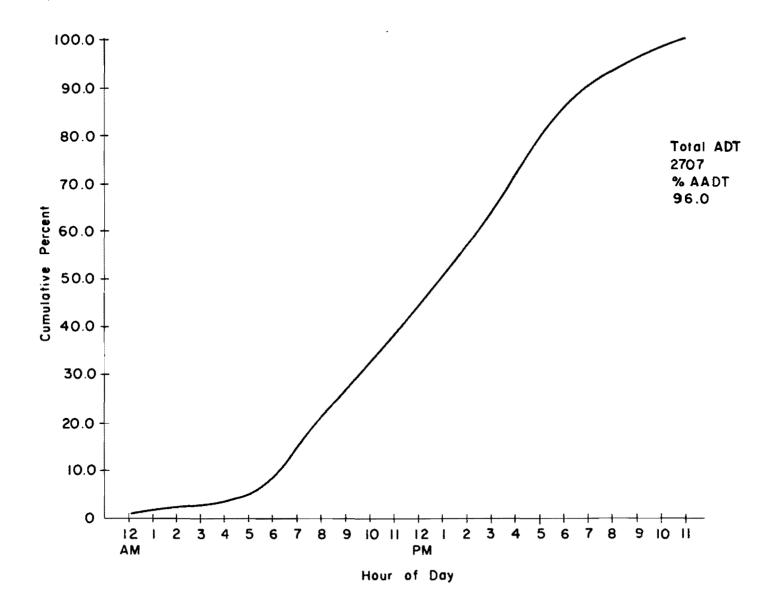


Fig 3.5.. Cumulative distribution for urban Section S041, Fort Worth, Texas.

The constant is determined by establishing an allowable Type-1 error. A Type-1 error is the error of saying something is true when it is not.

For all comparisons of this study, the constant α was determined at a 0.05 level so that

$$P\{D > C\} = \alpha = 0.05$$
(3.2)

This means that the test was made with the acceptance that five percent of the time when the curves compared favorably, they might actually be different. This level is a practical level at which to test because it is a reasonably difficult level to meet. The constant calculated for the test is a function of the sample sizes. The equation

$$C = 1.36 \sqrt{\frac{m+n}{mn}}$$
 (3.3)

was used, with m and n being the respective sample sizes of the two distributions. Both m and n are equal to 24; C is equal to 0.39. All the comparisons made for the study passed the test by a wide margin of safety. Table 3.3 shows a summary of all six comparison sets made for the study. The first set of comparisons is for rural sections compared to rural sections. The largest difference was 0.0957, which is well below the 0.39 level. The second set of comparisons is for the urban sections compared to one another. The largest difference for these comparisons was 0.0599. The third set of comparisons is between rural and urban sections. The largest D max was 0.100. The final two sets of comparisons are for medium urban areas and day of the week. The medium urban area comparisons indicated that there were no significant differences in these sections when they were compared to the urban and rural sections. The day of the week comparisons were made to check the choice of Tuesday as a study day. The results shown in Table 3.3 indicate the choice was reasonable and did not bias the data.

The Kolmogorov-Smirnov tests reinforced the assumptions made from visual examinations of the plots, i.e., statistically, the traffic patterns for all sections had the same basic pattern of fluctuation.

Comparisons	D max	Hour of D max
Rural		
Ozona - Claude	0.0421	3-4 p.m.
Mason - Fredericksburg	0.0603	4 - 5 p.m.
Falfurrias - Lampasas	0.0548	7-8 a.m.
Linden - Henrietta	0.0957	6-7 a.m.
Ozona - Mason	0.0511	3-4 p.m.
Claude – Fredericksburg	0.0492	4 - 5 p.m.
Falfurrias - Linden	0.0223	5 - 6 p.m.
Lampasas - Henrietta	0.0246	8-9 a.m.
Falfurrias - Claude	0.0824	5-6 a.m.
Linden - Mason	0.0913	6 - 7 a.m.
Urban		
Dallas - Fort Worth	0.0358	6-7 p.m.
Houston (140) - San Antonio	0.0251	7-8 a.m.
Houston (165) - Austin	0.0599	10 - 11 a.m.
Dallas - Houston (140)	0.0346	7-8 a.m.
Fort Worth - San Antonio	0.0217	8-9 p.m.
Houston (165) - Houston (140)	0.0423	5-6 p.m.
Austin — San Antonio	0.0405	4 - 5 p.m.
Rural to Urban		
Ozona - Dallas	0.0686	7 - 8 a.m.
Mason - Fort Worth	0.0990	7 - 8 a.m.
Linden - San Antonio	0.0397	8-9 a.m.
Claude - Houston (14)	0.0704	8-9 a.m.
Falfurrias - Austin	0.0600	3 - 4 p.m.
Henrietta - Houston (165)	0.0820	8 - 9 a.m.
Lampasas - Dallas	0.1000	8-9 a.m.
Fredericksburg - Fort Worth	0.0810	7 - 8 a.m.

TABLE 3.3. KOLMOGOROV-SMIRNOV COMPARISONS

Comparisons	D max	Hour of D max			
Medium Urban Area					
El Paso - Amarillo Amarillo - Lampasas	0.0360 0.0380	8 - 9 a.m. 7 - 8 a.m.			
Day of Week					
Linden - Linden Tuesday Saturday	0.0313	5 - 6 p.m.			
Houston (165) - Houston (165) Tuesday Saturday	0.0550	6 - 7 p.m.			
Houston (140) - Houston (140) Tuesday Friday	0.0346	7 - 8 a.m.			
Ozona - Linden Tuesday Saturday	0.0590	5 - 6 a.m. 8 - 9 a.m.			
Dallas - Houston (165) Tuesday Saturday	0.0476	3 - 4 p.m.			

TABLE 3.3. (Continued)

Conclusions

The major conclusion drawn from the study of ADT distribution was that one cumulative curve could be developed for both urban and rural conditions. The curve which was derived from the data for every section is shown in Fig 3.6. The points on this average cumulative frequency distribution are the average of the percents from Tuesday data for all sections. For calculation of traffic delay cost, this information was input into computer program RPS-3 as a cumulative curve which was used with the ADT input to estimate vehicles per hour (VPH) for any hour of the day desired.

The initial use of the information was primarily for the calculation of the traffic delay costs associated with the curing of concrete overlays. However, one additional benefit gained from this study information is the capability for the designer to specify when an overlay should occur in order to minimize traffic delay costs. For example, if the designer knows his district asphaltic overlays are constructed only during off peak traffic periods such as 10 a.m. to 3 p.m., then calculations may be made of the cost of such an overlay, using the results of this study.

Summary and Implementation

The generalized curve is very useful to the rigid pavement design system program and its existence in the system will provide more flexibility in the designer's decision making process. Since the designer can correctly determine the cost difference associated with overlay type and input the times of the day for overlaying, the program more realistically represents the actual field situation and thus is more useful in implementation.

Computer Mechanics of Model

This section explains the new TDC3 subroutine placed in RPS-3. The new subroutine uses the information gained in the study of ADT distribution, which has been described.

The computer model developed to calculate traffic delay costs using the data obtained from the study of ADT distribution is explained in this section. The model is a modified version of the traffic delay cost model outlined in Report 32-11 (Ref 4) and used in RPS-2. All the equations and cost tables of

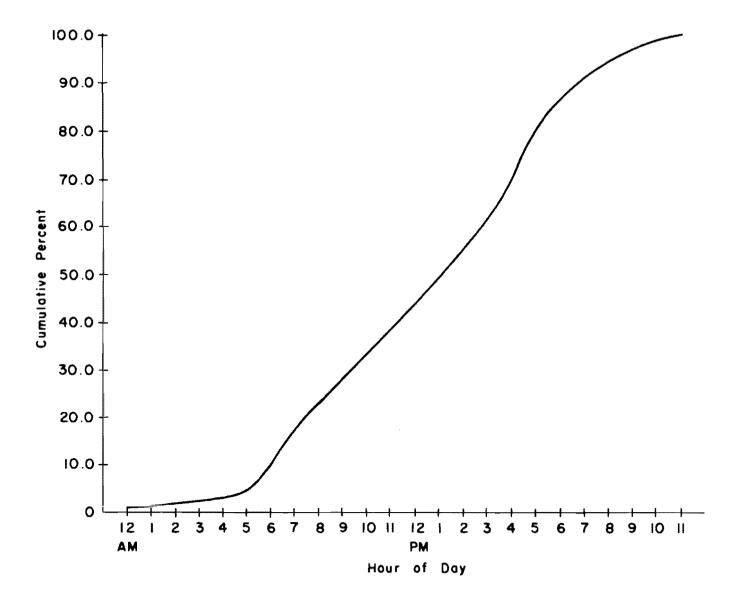


Fig 3.6. Average cumulative percent for all Texas Sections.

the model in RPS-2 were retained, but the ADT distribution data were added. The old model calculated a delay cost per hour depending upon the location (urban or rural), the traffic (an average ADT arriving per hour at the overlay site), and the model used for overlaying and its associated variables.

The new model utilizes the concept of summing all of the delay costs hour by hour for a day of construction. If the pavement is overlaid with a concrete overlay, the model determines delay costs on an hour by hour basis for a day of curing. The respective sums are multiplied by the number of days in each category.

Initially, the new traffic delay model subroutine TDC3 determines the hours to construct the overlay (HTCCO for concrete overlay or HTCAO for asphalt overlay), using the production rate variable hours per square yard, HPSY, and the total number of square yards to be overlaid, SYARDS, in the equation

$$HTCAO = HTCCO = HPSY (SYARDS)$$
(3.4)

The difference between asphalt and concrete is established by the program, but the variable HPSY comes into the subroutine in the correct form. The subroutine then calculates the number of days necessary to construct the overlay by dividing the hours to construct by the number of hours worked per day. The subroutine next calls subroutine VPHCAL to calculate the vehicles per hour using the ADT at the time of the overlay and the data from the ADT distribution study. Subroutine VPHCAL calculates the vehicles per hour (VPH) for all the hours of the day, using the average daily traffic at the time of the overlay multiplied by the percentage curve developed from the ADT distribution study. VPHCAL merely provides the 24 values of VPH to TDC3 so that costs may be determined. The TDC3 subroutine now begins several iterations to determine costs. All the cost calculations are the same as those in Report 32-11 (Ref 4) with the exception of the reduced delay costs associated with the concrete curing.

The subroutine first loops through the cost equations between the hour of the day when overlay construction begins and the hour of the day when overlay construction ends. These loops sum the delay cost per hour as a function of the vehicles per hour using the following equation (Ref 4):

DCH =
$$VPH*(PO1*(CO1 + CO2 + CO3) + (1.-PO1)*(CO3 + CO4) + (3.5)$$

PO2*CO5) + VPH*(PN1*(CN1 + CN2 + CN3) + (1.-PN1)*
(CN3 + CH4) + PN2*CN5)

This delay cost is saved as variable DCH1, and the program resets the last hour of construction as the initial hour and 12 midnight as the final hour. It then loops through the costs again using these two indices and a reduced equation for costs, which will be explained later:

$$DCH = VPH * (CO3 + CO4 + CN3 + CN4)$$
(3.6)

These costs are saved as variable DCH2, and the program resets the initial hour to one a.m. and the final hour to the hour before the construction begins. Using these indices the program again uses the reduced costs and stores the results in variable DCH3.

For its final loop, the program loops from 1 to 24 to determine the costs for an entire day of curing. It uses the reduced cost equation and saves the results as variable DCH4.

The program does the last three looping sequences only if the road is to be overlaid with concrete. If the roadway is to be overlaid with asphalt, the program merely saves the delay cost for the construction period.

In the case of concrete, the total delay cost for the overlay job is equal to

$$DCHTOT = (DCH1 + DCH2 + DCH3)(NDAYCO) + (DCH4)(NDAYCU)$$
(3.7)

This is the delay cost per day for a construction day times the number of days taken to construct the overlay, plus the delay cost per day for a curing day times the number of days of curing. The DCHTOT is converted to a unit of square yards by dividing by the number of square yards overlaid, in the equation

$$DCSYCO = \frac{DCHTOT}{SYARDS}$$
(3.8)

This delay cost per square yard is converted to a traffic delay cost per square yard on a present worth basis by the equation

$$TDCSY = \frac{DCSYCO}{\left(1 + \frac{RINT}{100}\right)^{PLAT}}$$
(3.9)

where RINT is the percent value of money and PLAT is the time at which the overlay occurs.

If the overlay is asphalt, the results are similarly calculated, except that the loop is activated only during the construction period; therefore,

$$DCSYAO = \frac{(NDAYCO * DCHT)}{SYARDS}$$
(3.10)

where NDAYCA is the number of days to construction the asphalt overlay, and DCHT is the total sum of hourly delay costs for the hours of construction.

The total traffic delay cost is calculated identically as for concrete:

$$TDCSY = \frac{DCSYAO}{\left(1.0 + \frac{RINT}{100}\right)^{PLAT}}$$
(3.11)

The subroutine flow chart in Appendix 1 clearly shows the looping process. This feature was necessary because military time had to be used to express the hours of the day.

The reduced equation for delay costs assumes that there will be no delay due to men and equipment interference, CO5, no delay costs associated with the cost of one cycle of stopping from and returning to the approach speed per vehicle, CO1, and no costs associated with the cost of idling and time loss per vehicle, CO2. These costs were considered to be insignificant during periods of the day when there is no construction and for curing days. The reduced cost consists only of costs of driving at reduced speed per vehicle, CO3, and the cost of one cycle of slowing to the through speed and returning to the approach speed per vehicle, CO4. Asphalt overlays use the full costs, but only during the time of construction, since asphalt overlays do not delay traffic significantly unless the overlay is actually taking place.

MODIFICATION OF INPUT AND OUTPUT MODELS

A complete review and modification of the input and output formats of RPS-2 was undertaken as part of the development of RPS-3. The new formats are contained in Subroutine INPUT, which prints out the input data, and Subroutine OUTPUT which prints out the final designs.

The reason for this modification was that many of the variables which the designer was asked to input had no units specified. As the input guide for RPS-2, Research Report 123-21 (Ref 3), was being written, all the units were added to the input and output formats. In addition, many of the variables titles were altered to simplify and clarify their meaning.

These modifications have made the input guide and the computer output comparable to one another. This is a beneficial characteristic because the designer may check inputs for accuracy.

MAINTENANCE SUBROUTINE STUDY

The RPS-2 program and the flexible pavement system, FPS, program calculated maintenance costs with two different models. The FPS program was developed to design flexible pavements using the same system concepts as the RPS system. Because the FPS system had already been implemented and was in use by highway design engineers, it was decided that possibly the new RPS-3 version could use the FPS maintenance model. Since designers were familiar with the model already, it was felt that this modification might prove beneficial to RPS-3.

With these problems in mind, work was begun to evaluate both models and to make necessary changes. The RPS model, Subroutine MANCE, was obtained from NCHRP Report 42 (Ref 6). The FPS model, Subroutine PWRM, was the result of a joint study by Texas Transportation Institute and the Texas Highway Department (Ref 4). The valuation for the current work was done with the idea of choosing the model which would require easily obtained inputs from the design engineers.

Because costs obtained from both the models seemed unreliable, the initial step of the study was to completely check the logic and programing of both models. This study indicated that both models are correctly programed for solution of their respective theories.

Even though the models are based on different premises, it was decided that the next step of study would be to compare models on similar sets of data. The MANCE model is based upon environment, traffic, and road characteristic maintenance costs, while the PWRM model is based on the historical trend of maintenance costs per square yard per year. Table 3.4 shows the major input of both models, their similarities, and their differences. Test runs made with the input data given equal values in each model indicated that the MANCE subroutine predicted higher costs than the PWRM subroutine. The fact that MANCE took into account the environmental factor, number of days freezing, the average daily traffic growth rates, and an indicator as to the type of road, seemed to give MANCE an advantage over PWRM for realistic use in RPS. Both the RPS model, MANCE, and the FPS model, PWRM, predict maintenance costs which have not been verified with current field data. The model inputs in both cases are not easily attainable and designers are forced to use only estimated inputs.

One recommendation as to how future studies should be conducted became apparent. A study of maintenance records should be made to determine what types of maintenance data are available to highway engineers, and then a realistic comparison of MANCE and PWRM may be made using the actual maintenance records for asphalt and concrete roadways.

The decision was made to leave the MANCE model intact in RPS-3 because it seems to contain more variables relating to the real situation, especially the index dividing urban and rural costs. The Input Guide in Appendix 3 gives an explanation of the composite costs and gives the values suggested by NCHRP-42 for use. It should be remembered that these values may be low today because of the increased cost of materials and labor.

TABLE 3.4. MAINTENANCE MODELS

Model MANCE	Model PWRM			
Variables	Variables	Description		
PLF	Т	Time from year "O" to the loss of serviceability		
PLP	TPRIM	Initial value of analysis year		
AP	CL	Analysis period (years)		
RINT	RATE	Rate of interest		
DFTY	-	Number days freezing during the year		
CLW	-	Composite labor wage		
CERR	-	Composite equipment rental rate		
CMAT	-	Composite material cost		
-	C1	Routine maintenance cost/square yard during first year		
-	C2	Incremental increase in routine maintenance cost		
ADTGR	-	Average daily traffic growth rate		
ITYPE	-	Type of facility urban or rural		

The rigid pavement system program RPS-2 requires the designer to input the following concrete material variables:

- (1) number of days at which concrete strength was measured (7 or 28 day),
- (2) concrete flexural strength, mean value,
- (3) percent coefficient of variation of the flexural strength of the concrete,
- (4) modulus of elasticity of the concrete, E,
- (5) standard deviation of the E value,
- (6) unit weight of the concrete,
- (7) type of strength test (center point or third point loading) and
- (8) tensile strength of the concrete.

It is a definite problem for the design engineer to obtain input values for the material properties used by RPS. Another important point to be made is that even though some data are available to the design engineer on these properties as related to a specific "cement factor," this information is highly dependent on the source and type of aggregate used in the mix. With this problem in mind, a study was undertaken to classify the concrete flexural strength.

The concrete flexural strength and modulus of elasticity are important and primary variables in the RPS design system and also are values closely correlated with a concrete aggregate source and a cement factor per cubic yard.

Data Collection

Construction files were taken from Texas Department construction records for concrete pavement jobs in 10 districts. The following information was obtained in each district on all jobs of at least one million dollars constructed within the last eight years:

- (1) aggregate source,
- (2) cement factor (cement per cubic yard),
- (3) flexural strength values from beam specimens,
- (4) water-cement ratios,
- (5) slump, and
- (6) percent air entrainment.

A total of 36 jobs were studied. From these 36 jobs, a total of 88 different design mixes were identified. For example, a job in a particular location might retain the same aggregate source and cement factor, but during the construction the water-cement ratio may be varied, thereby producing two different mix designs for one job. Slump and percent air entrainment data were obtained for 64 of the designs. The data were kept separated by district throughout the analysis.

Data Analysis

The next step of the study was an attempt to determine if a relation could be drawn between flexural strength and the other variables. A multiple regression analysis was run to determine if flexural strength could be predicted as a function of type of aggregate, cement factor, water-cement ratio, percent air, and slump. However, the data obtained indicated that only 43 percent of the variation in flexural strength could be determined to be a function of these variables. Since this information was not good enough to use in design practice, it was decided that a district average and coefficient of variation should be compiled to give guideline values for use in RPS-3. The total overall average strength was 686.6 psi for the 3009 flexural beam breaks recorded. Table 3.5 shows the district averages and coefficients of variation by district, with each districts' projects totaled.

Project 183 conducted at the Center for Highway Research provided the observations from the indirect tensile testing of 867 cores from 10 PCC projects (Ref 7). Marshall and Kennedy determined that the coefficient of variation of the tensile strength for each project was approximately 20 percent for individual specimens. The reason this coefficient of variation is greater than the ones resulting from the flexural beam break data is that the indirect tensile specimens were randomly selected from pavement sections. The flexural beam break data is more biased data, because groups of beams are made under more tightly controlled conditions at intervals during the construction.

Project 183 also provided the following information on the values of elastic modulus and percent coefficient of variation for Portland cement concrete (Ref 7).

"(1) Mean modulus values for all specimens varied from 3.36 X 10^6 psi to 5.02 X 10^6 psi and averaged 3.99 X 10^6 psi, and (2) The within

Dis- trict	Number of Projects	Number of Beam Break Data	Mean Flexural Strength (PSI)	Standard Deviation (PSI)	Percent Coefficient of Variation in Flexural Strength
2	4	412	677	58.9	8.7
3	4	490	730	61.1	8.4
4	1	160	587	42,2	7.2
9	4	258	705	71.2	10.1
11	1	65	501	58.8	11.7
12	7	360	703	87.1	12.4
13	5	587	746	84.5	11.3
15	1	56	675	43.6	6.5
18	6	411	666	98.4	14.8
24	4	208	566	66.8	11.8

TABLE 3 5. CONCRETE FLEXURAL STRENGTH STUDY RESULTS

project coefficient of variation ranged from 22 percent to 42 percent and averaged 34 percent for individual specimens."

Conclusions

In the multiple regression study, the type of aggregate and the cement factor explained together 42 percent of the variation. The variation was not significantly increased by the addition of water-cement ratio, percent air, or slump in the regression equations. These three variables all have an important part in determining flexural strength. Therefore, the only conclusion drawn was that the data obtained may have been insufficient or possibly the complex nature of these variable interrelations was not properly characterized for the regression study.

DELETION OF SEAL COAT CAPABILITIES

The inputs of the minimum time for first seal coat after an asphalt concrete overlay, the minimum time between seal coats, and the cost per lane mile of a seal coat were utilized in RPS-2. The program determined from these data the number of seal coats after an overlay until the performance period life was met. The program then calculated a present worth-cost of these seal coats and the schedule of their placement. However, the seal coats in no way affected the performance life calculations on each section.

The deletion of this model was accomplished in the new RPS-3 version for basic reasons.

- (1) The inputs minimum time to seal coat of the overlay and minimum time between seal coats are normally not critical to initial roadway design, because a seal coat is for the purpose of restoring a skid resistant surface and does not affect the pavement's structural life.
- (2) The costs associated with seal coating had little or no effect on the designs chosen through the program optimization process.
- (3) The outputs from the model were of no real use to the design engineer. The outputs consisted of the costs, which were minimal, as mentioned previously, and a seal coat schedule which was not realistic. The schedule was unrealistic because the inputs were not easily obtainable nor were they significant to the real design of the pavement. The schedule was merely an addition of the seal coat time periods to the pavement life at the time of the overlay.

For these reasons all the computations in RPS-2 pertaining to seal coats were removed in the development of RPS-3.

DELETION OF THE TRAFFIC VOLUME DATA

In the RPS-3 version, the capability of the designer to input traffic volume data has been removed. This deletion of traffic models was undertaken because of the availability to the designer of other traffic volume information which is easier to input. Instead of having to input the load group ranges, the number of axles, and the type of axle for each load group, the user need only to input the ADT and total 18-kip equivalent single-axle wheel load, ESAWL, for the analysis period. These traffic inputs are discussed in Chapter 6 and the Input Guide in Appendix 3.

The equations and checks for this option have been retained in program RPS-3 in case future investigation proves a need for their use. The use of the traffic load group input option may be reinstated in RPS-3 because the equations remain intact in Subroutine TRAFFIC. Two changes to Subroutine INPUT which will reinstate the option are the addition of an input variable entitled PSN2 to Card 2 (Program Controls Card) and the removal of the statement setting PSN2 equal to "1". If this option is ever exercised, the input guide should explain that an input value of 1 for PSN2, will make the program select the total 18-kip traffic input and a value of 0 for PSN2 will cause the program to select the load group input and equations. Also, the load group input cards used in RPS2 must be added to the input guide.

SUMMARY OF MODEL CHANGES

The changes to RPS-2 models which are documented in this chapter are the only changes made in the development of RPS-3. A summary list of the changed computer models is as follows:

- The traffic delay cost model was modified to account for traffic delay costs incurred because of concrete curing time.
- (2) The input and output formats of RPS-2 were changed to more adequately define variable units and characteristics.
- (3) The seal coat models used in RPS-2 were omitted in RPS-3.

(4) The traffic load group option was omitted as a designer option; however, the equations have been left in RPS-3 and may be used in the future.

Two additional models were studied without any changes being made to program operation:

- (1) The maintenance model was studied to determine possible future modifications.
- (2) The concrete flexural strength model was studied to determine if cement factor, water cement ratio, and aggregate type could be used to determine characteristic flexural strength values.

Once these model changes and studies were complete, the modularization process began. Chapter 4 will describe the modularization process in detail.

CHAPTER 4. MODULARIZATION OF THE RPS-3 PROGRAM

As was previously outlined, the RPS-2 computer program was very large and unwieldy. It consisted of one main program and three subroutines. This aspect of RPS-2 was undesirable for a number of reasons.

- (1) Its size prevented the modification or change of any model without a complete understanding of the entire program.
- (2) The program was difficult for a design engineer to learn even if he only wanted to investigate how one particular design factor was calculated.
- (3) The overall program logic was not easily deciphered because the complicated looping for design was obscured by the program's size.

The RPS-2 version had three subroutines: AGE2, which calculated the pavement performance life based on the modified AASHO equation; TDC2, which calculated the traffic delay cost associated with pavement overlays; and MANCE, which calculated maintenance costs for a pavement during its performance life. The flow charts for these subroutines are included in Appendix 1. The program was inflexible and hard to modify simply because of its size. For example, if a new reinforcement model were to be developed it would be impossible to implement the model into RPS-2 without a complete understanding of the entire program. For this reason, modularization was one of the most important tasks to be accomplished before implementation of the new version RPS-3.

The main goal of modularization was to subdivide the new version into a main program deck with numerous subroutines without limiting the program's ability to design. Not only would the program then be easier to change, but the program would be easier to understand for those desiring to learn its operational characteristics.

First a group of six reference data decks were prepared. These six problems were written to test every combination of RPS-2 design capability. The six problems were run and the outputs were placed in a master notebook. Then as each new subroutine was broken out of the main program these six data decks were run to verify that the system still produced the same pavement

designs. Once a subroutine was compared favorably with the six sample problems, a copy of the program was saved; another new subroutine was formed from another part of the RPS-2 main deck; and the testing program initiated again.

In this iterative fashion, eight new subroutines were ædded to the program. The original three subroutines, AGE2, TDC2, and MANCE, were retained, and the eight added were ORDER, REINF, NUMBER, TRAFFIC, INPUT, OUTPUT, INITIAL, and VPHCAL.

The new main program in RPS-3 consists of approximately 380 statements, with the subroutines making up the remainder of the program.

The remainder of this chapter presents an explanation of the function and operational flow of each new subroutine. After the subroutines have been explained, there is a discussion of how these subroutines fit into the overall program flow. The total program, including all the subroutines, is flow charted in Appendix 1. A listing of the program is presented in Appendix 4.

EXPLANATION OF NEW SUBROUTINES

The new subroutines included in this discussion are ORDER, REINF, INITIAL, NUMBER, TRAFFIC, INPUT, OUTPUT, and VPHCAL. The discussion of the modified subroutine TDC3 was presented in Chapter 3. The discussion of the two remaining subroutines in RPS-3, AGE 2 and MANCE, is included in this section because they were not completely documented during their development.

The discussion of each subroutine includes a statement as to the general function of the subroutine and a discussion of the operational flow within each subroutine. The flow diagrams for all subroutines appear in Appendix 1.

Subroutine ORDER

Subroutine ORDER stores and optimizes the design strategies for later printing as output designs.

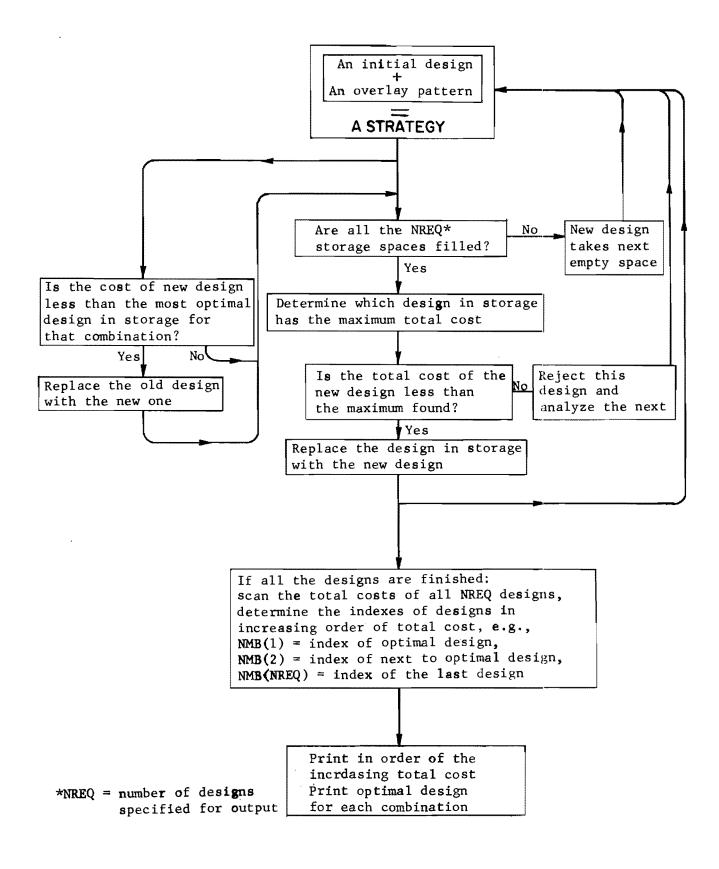
The subroutine is essentially composed of a do loop which loops twice to correctly compare and store each design strategy it receives. First, the design is indexed according to its design combination category. There are five design combinations: (1) JCP with AC overlay, (2) CRCP with AC overlay,

(3) JCP with CC overlay, (4) CRCP with CC overlay, and (5) JCP or CRCP without overlay. The new design being optimized is compared to the most optimal design of the same combination already stored. If the new design is more economical, it replaces the old design; if not, then the loop goes back to its beginning. The new design is then compared with all the NREQ designs (number of designs required by designer for OUTPUT). If it is less expensive than the most expensive design being kept, then it will replace that design; if not, the new design being analyzed is rejected and the next design is analyzed. Once all the designs have been analyzed, they are arranged in increasing order of total cost.

The OUTPUT subroutine then prints out the NREQ designs, the optimal design for each combination, and a summary of the total number of designs. Figure 4.1 presents a conceptual representation of the subroutine flow (Ref 2).

Subroutine REINF

Subroutine REINF designs the reinforcement steel for both JCP and CRCP pavements, using either bar or wire mesh reinforcement.


Initially, the subroutine determines the combination of reinforcement the designer desires. If the designer is specifying one combination only, the program will recognize this and skip all unnecessary calculations. If the designer is specifying CRCP with bars and wire mesh, the program will recognize this and not make any joint calculations or extra reinforcement calculations.

After designing the spacing for the type of reinforcement necessary, the subroutine determines the costs involved and totals these costs with others to provide an initial cost of the pavement, including subgrade preparation, concrete, subbase, joints, tie bars, and reinforcement steel. The design models used are outlined in Research Report 123-5 (Ref 2).

The flow chart for subroutine REINF is very detailed and the logic of this subroutine is straightforward.

Subroutine INITIAL

Subroutine INITIAL initializes the storage of variables and creates the initial arrays for the subroutine ORDER. The subroutine also calculates the cost of subgrade preparation for the designs.

Initially, the subroutine searches for the NREQ (number of designs for which the designer has asked). If the designer has made no choice, the subroutine prepares to give him 12 designs automatically. The subroutine then creates the arrays for all the combinations so that the most optimum design in each combination may be saved. The subroutine then creates an array to store NREQ designs and initializes a maximum cost against which to test all subsequent design costs. The subroutine then determines the cost of the subgrade preparation from the input of cost per lane mile of subgrade preparation. This cost is retained since it is applicable for all designs.

Subroutine NUMBER

Subroutine NUMBER determines the total number of initial designs possible for all combinations of concrete and subbase thicknesses derived using the thickness increment input by the designer. First, the subroutine determines with the use of a counter and stepping function, the number of initial designs a subbase can generate. It does this for each subbase until it has accounted for NSB, the number of subbases. Next, the subroutine uses a similar counting system to determine the number of designs generated by all the concretes and their respective thickness ranges. The subroutine then uses these two totals to determine the total number of initial designs possible. If the number of thickness combinations for subbase material is less than the number of subbases, the program will stop and print an error message indicating to the designer that there is an error in the subbase thickness input. For this reason, the designer must still input a 1 for the NSB even if the minimum and maximum thicknesses are equal to zero for designing the subgrade without subbase. The flow chart for subroutine NUMBER shows in detail, the subbase loop and then indicates that the concrete loop is identical in logic and format.

Subroutine TRAFFIC

Subroutine TRAFFIC determines the total 18-kip equivalent axle wheel loadings for a design using either the input 18-kip ESAWL or the traffic load range data. The subroutine initially begins by looping for the number of subbases and determining for each thickness the allowable 18-kip ESAWL. The subbase thickness is used only if the load group data are input into the program. The program checks an index and if the total 18-kip ESAWL is input, it skips over

the load range calculations. This subroutine places the traffic calculation in one easy location for future changes. For example, it is now easier to input information on truck traffic if desired.

Subroutine INPUT

Subroutine INPUT reads and prints out all the design information read into the program by the user. The subroutine reads all the inputs initially, then it prints them out. As the subroutine reads variables, some are set if they are not input by the user; these include:

- (1) Concrete increment thickness will default to 1.0-inch if not given.
- (2) Subbase thickness will be limited to a maximum of 18.0 inches if the input is greater than 18.0 inches.
- (3) The increment in spacing tried for transverse joints will be set to 10 feet if equal to zero.
- (4) If the type of concrete flexural test is not specified, the program will assume it to be third-point loading.
- (5) If the number of days at which the flexural test was made is not input, the program will set it to 28 days.
- (6) If the tensile strength of the concrete is not input, the program assumes it to be 40 percent of the flexural strength.

In printing out the data, RPS-3 makes many checks to insure that only those items read in are printed out. For example, if the designer is overlaying with AC, the program will not print out the titles for CC overlay data. The printing out of inputs has been completely checked in the course of RPS-3 development. Units have been added to all formats and titles have been changed to clarify their meanings. The confidence level variables which were not printed out in RPS-2 are now printed out as the last input. The data are not printed out in exactly the same order as read; however, the titles clearly identify the variables.

The modularization of subroutine INPUT is important because it facilitates the final pavement design system (PDS) development. It will now be easier for the RPS inputs to be modified to be compatible with FPS.

Subroutine OUTPUT

Subroutine OUTPUT prints all the final design information. The subroutine prints the optimum design in each category as follows:

- (1) JCP design with AC overlay,
- (2) JCP design with CC overlay,
- (3) CRCP design with AC overlay,
- (4) CRCP design with CC overlay, and
- (5) initial design lasting analysis period without overlay.

For each of the designs, subroutine OUTPUT provides a complete summary of thickness, materials, reinforcement type and spacing, subsequent overlay construction necessary, total life expected of design, and itemized and total costs.

The subroutine then prints out a summary table of the NREQ, designs for which the designer has asked. There are six designs per page with each page consisting of the identical design data which were provided for each of the optimum designs in every category. Following each summary page is a reinforcement design for each pavement design. The subroutine will print six per page up to the maximum of 23 designs.

Finally, after all the designs have been printed out, the subroutine will print out two design analysis tables, the initial design analysis table and the overlay subsystem analysis. The format of these tables has not been changed and gives the following information (Ref 2).

Initial Design Analysis. This design analysis describes the following:

- (1) the total initial designs possible for the problem,
- (2) number of designs rejected because their <u>initial thicknesses</u> are greater than the allowable value,
- (3) number of designs rejected because their initial lives are less than the <u>allowable minimum time to the first overlay</u>,
- (4) number of designs rejected because their costs are more than the money available for initial construction,
- (5) number of acceptable initial designs lasting the analysis period,
- (6) number of unacceptable initial designs lasting the analysis period, and,
- (7) number of initial designs for which overlay strategies are formulated.

Overlay Subsystem Analysis. This subsystem analysis describes the following for each combination analyzed by the program:

(1) total number of acceptable strategies,

- number of strategies rejected during analysis because of maximum overlay thickness restraints,
- (3) number of strategies rejected during analysis because the lives of the overlays provided are less than the minimum specified time between overlays,
- (4) number of strategies rejected because the number of overlays required is more than eight, and
- (5) number of times when each subroutine is called.

The initial design analysis is more informative to the designer than the overlay subsystem analysis overall because some of the subsystem analysis deals with the program's calling of certain subroutines and is useful only to one who understands the program's internal working. However, the first four outputs of the analysis listed above are useful. The design combination number at the top of the overlay subsystem analysis refer to (1) jointed concrete pavement with an AC overlay, (2) jointed concrete pavement with PCC overlay, (3) continuously reinforced pavement with an AC overlay, and (4) continuously reinforced pavement with a PCC overlay.

Subroutine VPHCAL

Subroutine VPHCAL uses the average daily traffic at the time of an overlay with the percentages of ADT for each hour of the day to calculate vehicles per hour, VPH, on an hourly basis.

This subroutine is short and its operation is simple. The subroutine uses the percentages of ADT per hour throughout the day to determine the number of vehicles per hour. The calculations and the source of percentage data are discussed in Chapter 3.

OVERALL PROGRAM FLOW

This section discusses the overall program flow of RPS-3 which is similar to the process of design generation used in RPS-2 (Ref 2) is shown in Fig 4.2. A new flow diagram was developed to explain how the new subroutines fit into the overall design process. Figure 4.3 shows the flow of RPS-3. The program

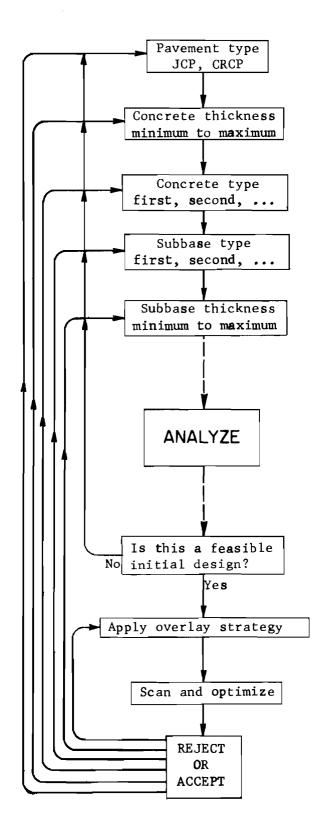
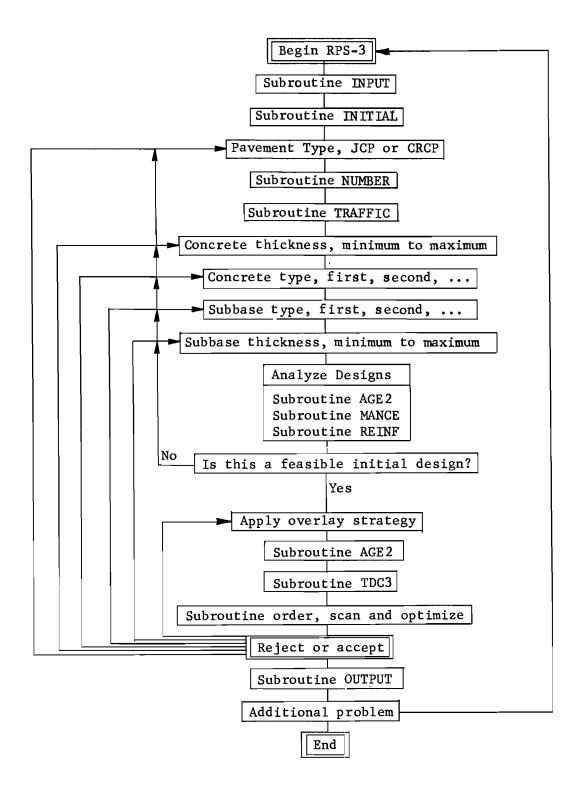



Fig 4.2. Process of generating designs in RPS-2

generates designs and will print up to a maximum of 23 design strategies in order of increasing cost. The main program calls all the subroutines and directs the flow shown in Fig 4.3. The flow diagram for the main program of RPS-3 is included in Appendix 1.

The RPS-3 program is considerably different from RPS-2 in the following ways:

- The main program of RPS-3 is 380 statements, whereas the main part of RPS-2 has approximately six times as many.
- (2) RPS-3 has eleven subroutines and RPS-2 has only three.
- (3) RPS-3 is now in a form which is more compatible with recognized computer techniques; it will therefore be easier for a computer programmer to learn.

SUMMARY OF RPS-3 MODULARIZATION

The modularization of RPS-2 to produce RPS-3 was accomplished without distrubing the design capability of the separate models. The two important results obtained from this work were

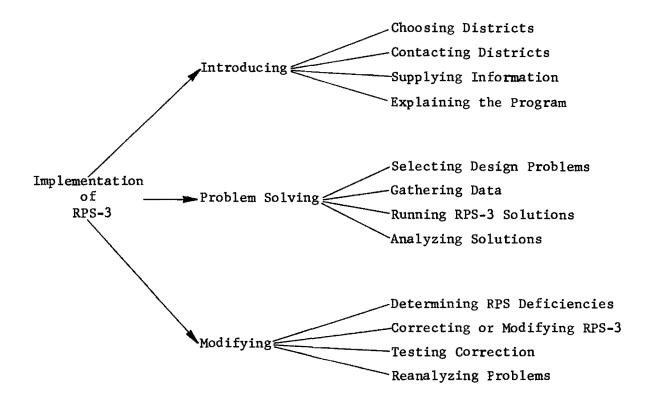
- (1) RPS-3 program flow is easier to decipher and understand.
- (2) Future modification of models in RPS-3 will be easier to perform.

The verification process utilized to check new subroutines of the modularized program was very successful. After the final subroutine was pulled out and the program tested, the results compared exactly with the results of the six reference design problems run with RPS-2. The iterative checking after each subroutine creation also allowed for programming bugs to be removed.

Once the modularization was complete, the final version of RPS-3 was prepared by adding sequential numbering to identify the statements and comments to assist the programmer and user. The RPS-3 version was added to the Center for Highway Research computer library.

After the program was complete, a study was undertaken to verify the accuracy of the rigid pavement design system to predict actual field situations. Chapter 5 presents a pilot study which was made in Houston, Texas using RPS-2. The results of this study are applicable to RPS-3 because both programs predict the same results.

CHAPTER 5. IMPLEMENTATION


This chapter outlines a proposed procedure for the implementation of RPS-3, and will cite trial uses of the RPS-2 program which have been made. Recommendations concerning the future implementation, usage, and modification of RPS-3 will be made. The development of RPS-3 was done in light of future implementation and the program contains many useful implementation features.

FUTURE RPS-3 IMPLEMENTATION

The general procedure for the implementation of RPS-3 should consist of three main areas of work: (1) introduction of the program to Texas Highway Department design engineers, (2) practical usage and problem solving with RPS-3, and (3) modification of RPS-3, resulting from feedback obtained from design engineers who use the program. A factorial analysis of these three main functions is given in Fig 5.1. This factorial was developed as a guide to the necessary operations in the implementation process.

Initially, the program must go through a period of formal introduction to the users. A careful process for choosing Texas Highway Department Districts which will use RPS-3 first is necessary. This is so that those Districts which are familiar with concrete pavement design can be chosen for implementation studies. These Districts should be contacted and supplied information concerning RPS-3. As a final part of RPS-3 introduction, someone familiar with the program should call on each District individually and introduce the program. This personal implementation will hasten the acceptance of the program and provide the Texas Highway Department design engineers with someone who can be questioned regarding the particulars of the program.

After the program has been introduced and the district engineers have had an opportunity to test its application, a problem solving step should begin. Problems should be chosen from real District jobs and data gathered

on the jobs. The RPS-3 program can then be used by the design engineers on problems with which they are familiar. Once the problems have been run, the solutions can be analyzed in an orderly fashion to determine how well RPS-3 has functioned. This evaluation process will be subjective and based on the District design engineer's experience.

Finally, the problem solving step should generate new ideas for future RPS-3 modification. The problem solving will help identify RPS-3 deficiences which can be corrected or modified in additional (RPS-X) versions. Once any correction is made, it is important that testing and documentation follow so that the RPS system will remain homogeneous. Finally, after a correction has been made, the program should be evaluated again by the Districts.

The implementation process is continuous once it has begun. Whenever any new modifications are made, they are passed to the user. The user likewise makes notes of suspected defects and proposes needed modifications. The initial introduction of a system, however, is important to the system's acceptance.

SPECIFIC TRIAL USE OF RPS-2

An evaluation of the accuracy of the AASHO equations to predict concrete pavement performance periods was undertaken with RPS-2. Since this particular model in RPS-3 remains unchanged, the study is applicable as a verification of RPS-3. Future use of RPS-3 for similar trials should be easier because the program's input guide has been written for easy field use. The process outlined in this section is basically a check of existing RPS design capability. The findings of this section should support the implementation of the program.

Before a designer can judge a particular pavement design and how it has performed, he must undertake a comprehensive study to diagnose the nature of the pavement's identity, its particular design characteristics, its construction, and the loads to which it has been subjected, both environmental and traffic. All of these detailed particulars function together to produce the performance life. A diagnostic study was performed to evaluate four in-service concrete pavements in Houston, Texas. A general performance survey had been conducted on the sections and more detailed information was desired. It was decided that an in-depth study should be made to determine more fully why the sections were behaving as they were.

As a part of the scope, the report gives a method of approach to the experiment design and the procedures followed in collecting all the necessary data.

Approach and Experiment Design

Four in-service concrete pavements are in themselves not an adequate size experiment because there are many different concrete pavement design combinations. First, it was decided to choose only CRCP sections. The pavement sections chosen were all sections on the Interstate System, either IH-610 or IH-45. They were also very similar in design and relative age. The four basic sections were given a current pavement condition rating of good, fair, or poor by the urban office engineers, as an estimate of the section's present condition. Table 5.1 also lists the Present Serviceability Rating (PSR) values from a performance survey made by NCHRP Project: 1-15 personnel from the Center for Highway Research and the values closely agree with the pavement condition estimates made by Texas Highway Department personnel. Mays meter readings were collected also for each section and the present serviceability index (PSI) values derived from these readings are given in Table 5.2. As Table 5.1 shows, pavements of all conditions (poor, fair, and good) and of both old and medium ages were studied. It was, therefore, decided that the four chosen sections would be sufficient for the experiment, although not ideal.

After the experiment sections were chosen, field measurements and samples were taken. Laboratory tests were run on these samples, and the data was analyzed to ascertain in particular what caused the pavement to perform as it had. This amount of data was necessary for a verification study, but for design use of the program, this data are not required.

Procedure for Data Collection

This section explains the procedures adopted to collect laboratory and job file data. These data provided a sound base for analyses of the sections under study.

TABLE 5.1. BASIC INFORMATION FOR EACH TEST SECTION

Project	Section	Relative age	Actual age (years)	Pavement ₁ Condition ¹	PSR ²	Subbase type (sand shell)
I610W - Memorial, Woodway	271-17-8	Medium	7	Fair	3.2	Cement stabilized
1610W - San Felipe, Westheimer	271-17-19	Medium	10	Poor	2.6	Cement stabilized
1610N - Yale, Main	271-14-26	Medium	9	Poor	2.8	Cement stabilized
145N - Cavalcade, Patton	500-3-68	01d	13	Good	3.8	Cement stabilized

1. A current pavement condition evaluation assigned by Houston Urban Office personnel

2. PSR ratings from a survey made by NCHRP Project 1-15 personnel from the Center for Highway Research

TABLE 5.2. SUMMARY OF DATA - CRCP INVENTORY FORM

Devision	Struc	ement acture Materials Traffic exness One Direction		Cons	Environmental Data			Mis cellane ous							
Project	Con-	Sub-	Conc	rete	Subbase		Commercial	18K		Concrete Mix Method	High	Low Temp. ^O F	Curing Temp. ^O F	Mays Meter Readings psi	No. of Days Until Traffic
	crete (in.)	base	Cement Factor SKS/SY	W/C GAL/SK	Туре	ADT (× 10 ⁵)	Vehicles Per Day (× 10 ³)	ESAWL (× 10 ⁶)	Con- tractor		Temp. °F				
IH 610 Memorial Woodway	8	6	5.0	5.5	Cement Stab. Sand Shell	.80	5.28	9.20	Austin Worth	Central Mix Plant	94	75	85	3.15	173
IH 610 San Felipe Westheimer	8	6	4.5	6.0	Cement Stab. Sand Shell	. 80	5.28	13.142	Brown Root	Traveling Drum Mixer	78	76	77	3.25	196
IH 610 Yale Main	8	6	4.5	5.8	Cement Stab, Sand Shell	.63	4.20	10.174	Holland Little	Traveling Drum Mixer	82	82	85	3.15	338
IH 45 Cavalcade Patton	8	6	5.0	6.0	Cement Stab. Sand Shell	. 56	2.30	3.573	Cage Bros.	Central Mix Plant	92	89	90	3.30	41

¹ Traffic count made April 1973.

<u>Field Data</u>. Each of the four 1200-foot sections was closed to traffic by Texas Highway Department crews while measurements and evaluations were being collected for each individual section. Physical measurements consisted of deflections, crack width, crack spacing, steel reinforcement depth, Mays Meter measurements, and various distress manifestations.

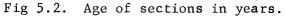
Two deflection measurements were made every 200 feet, one between two cracks and one at a crack, or a total of 12 measurements for the 1200-foot sections. An additional 12 measurements were made on the center line of each 1200-foot section at a spacing of 15 feet or less. Three crack widths were measured as outlined in the Project 1-15 report (Ref 8). Steel depth was obtained using a Pachometer.

Experimental Laboratory Data. Cores on each section were taken while the team was in the field. These cores were of the concrete, subbase, and subgrade of each section. The cores were taken both at cracks and between cracks.

First, before any tests and measurements were made, all the cores were photographed and measurements of height, diameter, and weight were made for each core to determine its density.

Next, indirect tensile tests were performed upon the uncracked concrete and subbase samples to obtain Young's modulus of elasticity values and the indirect tensile strengths.

<u>Information from THD Job Files</u>. The final step in gathering information for analyses was to obtain the particulars from the Texas Highway Department job files on each of the four sections. Table 5.2 shows a summary of the additional information obtained by the investigation, the cement factors, the water-cement ratios, traffic data (both ADT and 18-kip ESAWL), number of days curing before traffic allowed on facility, high temperature, low temperature, curing temperature, and Mays Meter readings.


<u>Diagnostic Study</u>. Once the data had been collected, the diagnostic studies were initiated. The objective of this diagnosis was to explain each sections' performance with respect to its individual characteristics. The diagnostic work was also for the purpose of making general conclusions about the designs. Each analysis will be specifically explained in the following subsections. <u>Comparisons of Section Differences</u>. A study of the pavement's characteristics was performed initially to determine if there were any obvious differences in the sections which would explain their behavior. Table 5.2 shows the specific information collected from the Texas Highway Department files for each section. The bar graphs in Figs 5.2 through 5.9 were plotted from these data for ease of assimilation. The information studied included pavement age, Mays Meter readings, average daily traffic, commerical vehicles per day, number of total 18-kip loadings, number of days until pavements were opened to traffic, month in which the concrete was placed, and the high and low temperature during concrete placement.

For the four sections chosen, age did not seem to be a critical factor. Although the IH-45 Cavalcade to Patton section was the oldest section, as shown in Figure 5.2, its current condition was "good" as shown in Table 5.1. It also had a PSR value of 3.8, the best given to the four sections by D-10 personnel. It would be expected after looking at the ages that the IH-610 section from Memorial to Woodway was performing better than the IH-45 section, but this was not indicated by either the current condition rating or the PSR values. The Memorial to Woodway section was, however, in better condition than the remaining two sections, as would be expected.

The Mays Meter readings shown in Fig 5.3 seem to verify both the current condition ratings and the PSR values given the pavements by raters. The IH-45 Cavalcade to Patton section had the best average Mays Meter reading. From the Mays Meter readings, all the sections would appear to be performing approximately the same. However, the current condition ratings are significant since they are made by the Texas Highway Department personnel who are aware of each section's required maintenance and user response. The THD personnel rated the Memorial to Woodway section in "fair" condition, with the San Felipe to Westheimer and Yale to Main sections being rated "poor". The PSR values given these sections by NCHRP Project 1-15 personnel confirm this appraisal.

The traffic variables considered were the average daily traffic, commercial vehicles, number of 18-kip equivalent single-axle wheel loads (ESAWL) and number of days until traffic, shown in Fig 5.4 through Fig 5.7. As these figures indicate, the section which was in the best condition had the least ADT, commercial vehicles, and 18-kip ESAWL. Figure 5.6, the 18-kip ESAWL

PROJECT	Age (years)
	1 2 3 4 5 6 7 8 9 10 11 12 13 14
IH-610 West Loop Memorial to Woodway	
IH-610 West Loop San Felipe to Westheimer	
IH-610 North Loop Yale to Main	
IH-45 Cavalcade to Patton	

PROJECT	PSI Values 10 20 30 40
IH-610 West Loop Memorial to Woodway	
IH-610 West Loop San Felipe to Westheimer	
IH-610 North Loop Yale to Main	
IH-45 Cavalca de to Patton	

Fig 5.3. Mays Meter readings converted to PSI for each section.

PROJECT	AD	T (Ave	erage	Dail	y Tro	affic) X 10;	5
FROJECT	10	20	30	40	50	60	70	80
IH-610 West Loop		_				-		
Memorial to Woodway	<u></u>				_			
IH-610 West Loop								_
San Felipe to Westheimer]
IH-610 West Loop								
Yale to Main								
1H- 4 5						7		
Cavalcade to Patton		_		-				

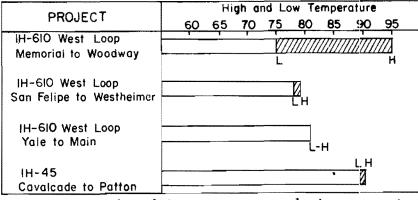
Fig 5.4. Average daily traffic for each section.

			Corr	mer	ci al	Vehic	les X	103		
PROJECT		I	2	3	4	5	6	7	8	
IH-610 West Loop		·						- , -		
Memorial to Woodway	<u> </u>	_		-						
IH-610 West Loop										
San Felipe to Westheimer		_								
IH-610 West Loop	<u> </u>									
Yale to Main										
IH-45	<u> </u>		_							
Cavalcade to Patton										

Fig 5.5. Commercial vehicles per day for each section.

PROJECT	No. 2	of 4	Kip 6	ESA 8	WL IO	X 10 ⁶ 12	Current Pavement Conditions
1H-610 West Loop Memorial to Woodway]	T T	 Fair
IH-610 West Loop San Felipe to Westheimer			 				Poor
IH~610 North Loop Yale to Main			 				Poor
IH-45 Cavalcade to Patton							Good

Fig 5.6. Number of total 18-kip loadings to


date on the pavements.

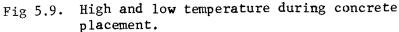

PROJECT	Curing Days till open to Traffic 50_100_150_200_250_300_350_400
IH-610 West Loop Memorial to Woodway	
IH∼6IO West Loop San Felipe to Westheimer	
IH-610 North Loop Yale to Main	
IH-45 Cavalcade to Patton	

Fig 5.7. Number of days until pavement open to traffic.

PROJECT	Placement Month
FROSECT	J F M A M J J A S O N D
IH-610 West Loop Memorial to Woodway	
IH-610 West Loop San Felipe to Westheimer	
IH-610 North Loop Yale to Main	I
IH-45 Cavalcade to Patton	l

Fig 5.8. Month in which concrete was placed.

plot, was especially significant because the current condition ratings and the PSR values both relate exactly one to one with the amount of 18-kip ESAWL each section has carried. The current pavement condition is written on the graph for emphasis. Figure 5.7 indicates that the time until traffic was turned upon the facilities may have been important. There are, however, so many variables involved that no conclusions could be drawn from these data.

Finally, the placement month of construction and the temperatures at which the pavement was poured were considered to ascertain their influence. Figure 5.8 shows the placement month for each section, which did not seem to be a significant factor. The temperature during placement, shown in Fig 5.9 also did not appear to be significant. The limited number of sections studied is the probable reason for these observations. The temperature of placement is definitely important and the Texas Highway Department limits the minimum temperature of concrete placement.

There were no specific material or structural differences, because all four pavement sections consisted of eight inches of continuously reinforced concrete pavements using quartz gravel, six inches of cement stabilized sandshell subbase, and clay subgrades. The cement stabilized sand-shell base was 65 percent oyster shell and 35 percent San Jacinto sand with one and onehalf sacks of cement per ton of mix. The deformed bar reinforcement was identical on all four sections, with 0.6 percent longitudinal steel and 0.08 percent transverse steel being used. All projects used 60,000 psi yield point steel in bar sizes of Number 4 in the transverse direction and Number 5 in the longitudinal direction. The subgrade material had a modulus of subgrade reaction of 115 pounds per cubic foot, determined by the density test, and was unstabliized.

<u>Material Strength</u>. The cores from the concrete slab and cement-treated subbase were tested to determine the mean indirect tensile-strength and elastic modulus for each section. Table 5.3 shows the results of the analysis. The concrete cores from the IH-45 Cavalcade to Patton section, had the highest indirect tensile strength, which may be another reason why this section is in the best condition. It would, however, be unrealistic to generalize this statement because, for example, the IH-610 Memorial to Woodway and the IH-610 Yale to Main sections have approximately the same strengths for concrete and yet, the IH-610 Memorial to Woodway section is in better condition and has a

	Subba	ase *	Pavement [*]			
Test Section	Elastic Modulus ¹ (psi) × 10 ⁶	Tensile Strength ² (psi)	Elastic ₃ Modulus (psi) × 10	Tensile 4 Strength (psi)		
IH-610 West Loop Memorial to Woodway	1.63	200	5.59	485		
IH-610 West Loop San Felipe to Westheimer	1.89	262	5.04	528		
IH-610 North Loop Yale to Main	2.25	221	4.11	471		
IH-45 Cavalcade to Patton	1.83	224	5.33	571		

TABLE 5.3. RESULTS FROM INDIRECT TENSILE TESTS OF CORES FROM HOUSTON PROJECTS

1. Mean values for Young's elastic modulus obtained from indirect tensile test and assuming a Poisson's ratio of .25 for calculations.

- 2. Mean values for indirect tensile strength obtained from indirect tensile test and assuming a Poisson's ratio of .25 for calculations.
- 3. Mean values for Young's elastic modulus obtained from indirect tensile test and assuming a Poisson's ratio of .20 for calculations.
- 4. Mean values for indirect tensile strength obtained from indirect tensile test and assuming a Poisson's ratio of .20 for calculations.

^{*}The cement-treated subbase and concrete slab cores were all sawed into three equal pieces for testing. Each sawed piece was tested and the results were correlated with depth in the core. The attempts to correlate the elastic modulus and tensile strength with depth were inconclusive and the values given in this table are averages of all the tests of each material in a particular section. Report NCHRP 1-15 (Ref 8) includes the plots of elastic modulus and tensile strength versus depth for the sections summarized herein.

better PSR value. Also, the San Felipe to Westheimer section has a higher indirect tensile-strength for concrete than either of the other IH-610 sections, yet it is in "poor" condition. The strengths of the subbase cores may not be generalized in any specific fashion either. The IH-610 San Felipe to Westheimer section has the highest flexural strength for subbase, yet it is in poorer condition and has a lower PSR value than the IH-45 Cavalcade to Patton section.

Use of RPS-2

The diagnostic study of four CRCP in Houston, Texas provided a complete set of data which was used to evaluate the AASHO performance equations for concrete pavement. The data collected for the study included many of the variables necessary for the execution of the rigid pavement design system program RPS-2 which utilizes the AASHO performance equations. The study was separated into two distinct segments. First, with all the variables set, the program was used to predict the pavement life, and, second, the program was used to design the pavements for a 30-year life with overlay at 20 years. Table 5.1 gives a review of the sections considered in the study.

Life Prediction. The initial study segment used the RPS-2 program as a prediction tool to predict performance periods for the different sections. The actual pavement thicknesses, traffic, material properties, serviceability at the time of the study, and age were input into the program. With the thickness of concrete and subbase held fixed, the program only gave one design strategy as an answer. As a part of the summary of every design strategy, the program will predict a performance period based upon the traffic, thickness, and material properties. A performance period is the time a pavement is used by the public until it must be overlayed. It is the time period determined by the maximum and minimum serviceability levels. This performance period was compared with the actual age of each pavement section to determine the program's capability to predict performance periods correctly. For each pavement section, this prediction was run at every confidence level, beginning with 50 percent and increasing the confidence level until the program would stop on some level. The confidence level is an indication of the variability of the pavement section. The predictions of performance periods by the program are shown in Table 5.4. For example, the IH-610 San Felipe to Westheimer section had a predicted performance period of 12.35 years at 95 percent confidence level. This compares with an actual age of 10 years at the time this study was performed. The reason the program would not design at a higher confidence level than the 95 percent level as the example was in this case, is that the program was not allowed to overlay. The analysis period was set at the actual age; therefore, at a confidence level of 99 percent for this section, the life was less than the 10-year actual life, and, with no overlay capability, the program stopped. The reason the Cavalcade to Patton section had to be designed at the 99.9 percent confidence level before closing on the actual age that this section had the least traffic of all the sections. Therefore, there was a higher confidence of this section's lasting to its actual age of 13 years. By this same reasoning, the IH-610 Yale to Main section only closed to a confidence level of 80 percent because it had a high traffic flow and the lowest concrete strength.

Design Analysis. The information from the diagnostic study was secondly used to check the pavements' design. The procedure followed was to take the known traffic and increase it linearly to a 30 year total, give a range of values to the concrete and subbase thickness inputs while retaining the material characteristics, and allow the program to overlay the facilities at 20 years. This information was supplemented with additional design information and the RPS-2 program was allowed to design each section. Table 5.5 lists the most economical designs which the program computed for each section.

Table 5.5 reports the design thicknesses, overlay thicknesses, the initial performance life of the pavement, and the total performance life after the specified overlay.

As Table 5.5 indicates, the program would have designed the San Felipe-Westheimer, Memorial-Woodway, and Yale-Main sections thicker than the actual eight-inch CRCP and six-inch cement stabilized subbase. The program gave the Cavalcade-Patton section some designs which have thinner concrete than the eight-inches present; however, these designs have thicker subbases. The Yale to Main section, which was in poor condition, was designed by the program to have a minimum concrete thickness of 10.5 inches.

		Level of Confidence								
Project	50 Percent	80 Percent	95 Percent	99 Percent	99.9 Percent	99.99 Percent	Current Age ¹			
IH-610 Memorial- Woodway	32.19	18.22	10.01	-	-	-	7			
IH-610 San Felipe- Westheimer	42.69	23.34	12.35	-	-	-	10			
IH-610 Yale- Main	44.32	19.60	-	-	-	-	9			
IH-45 Cavalcade- Patton	129.70	77.48	46.29	29.08	16.58	-	13			

TABLE 5.4.PREDICTED AGE OF HOUSTON SECTIONS USING
RPS-2 AASHO PERFORMANCE MODELS

1. The approximate age of the test sections as of April 1973.

Section and	Thic	kness (in	ches) ¹	Performance	2 Periods
Design Number	Slab	Subbase	Overlay	Initial	Total
IH-610 Memorial-Woodway	8.50 9.00 9.50 9.50	12.00 6.00 8.00 12.00	3.00 3.00 3.00 0	20.10 20.22 27.41 30.98	36.07 35.46 46.89 0
IH-610 San Felipe-Westheimer	9.50 10.00 10.50	8.00 6.00 8.00	3.00 3.00 0	21.15 24.23 31.83	37.03 41.61 0
IH-610 Yale-Main	11.00 10.50 11.50 11.50	6.00 12.00 8.00 12.00	3.00 3.00 3.00 0	20.85 21.12 27.07 30.32	36.02 36.89 45.89 0
IH-610 Cavalcade-Patton	7.00 7.50 8.00	10.00 6.00 8.00	3.00 3.00 0	21.17 22.51 31.78	39.18 40.04 0

TABLE 5.5. THIRTY-YEAR DESIGNS USING HOUSTON TEST SECTION DATA

1. The design alternatives given by the RPS-2 program.

2. The initial performance periods are the times to the first overlay while the total performance periods are the amounts of time the pavements last with overlays.

Conclusion

Both studies conducted with RPS-2 indicate that the program prediction of performance using the AASHO performance model as modified by THD studies gives reasonable answers. The designs which the program generated for the sections are valid designs and were what the Texas Highway Department might have built if the current traffic had been anticipated.

Although the study was performed on RPS-2, as earlier indicated, the model for predicting performance periods, subroutine AGE2, remained unchanged and this study is a valid trial verification for RPS-3.

RECOMMENDATIONS

The major recommendations concerning the RPS-3 implementation are

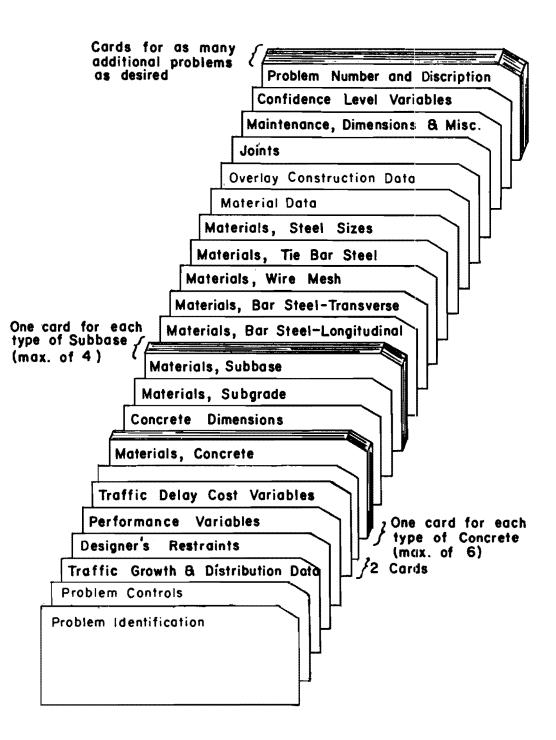
- (1) Implementation should begin as soon as possible.
- (2) Any future RPS modification should attempt to simplify input.
- (3) Feedback from initial users should be investigated because these users can evaluate the program in actual field use.
- (4) The RPS design program should be introduced by a team of persons familiar with the program.

These recommendations are in parallel with the ideas presented as to how a general implementation procedure would be accomplished. The potential for RPS-3 usage as a tool to design overlays on existing concrete pavements is another important aspect of RPS-3 which should be stressed.

In conclusion, the development of RPS-3 has been a major step forward in concrete pavement design because the program is the most implementable version available. The program should be used in the practical design world because of its straightforward user's manual and documentation. This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 6. USER'S MANUAL

This chapter discusses the User's Manual prepared for RPS-3, which is in Appendix 3. The topics discussed are development of the User's Manual, generalities of the Manual's use, input variables, and the most common errors made by RPS-3 users.


DEVELOPMENT OF THE MANUAL

A User's Manual for RPS-3 was developed using the input guide for RPS-2 (Ref 3) as a basis and supplementing it with the new characteristics of RPS-3. All units were added for the variables. The program was then run to design a hypothetical pavement. The coding sheets and output from this run were discussed and included in the report. The numerous runs made with the new program input guide also allowed for a discussion of the most common errors to be included in the report. This procedure of examining the input card by card was very useful in locating problem areas which needed clarification in the new User's Manual.

GENERAL STATEMENT ON USER'S MANUAL USAGE

All efforts were made to make the input guide as self-explanatory as possible; however, some general statements concerning its use will be helpful to the user. Figure 6.1 shows the arrangement of the data cards; as indicated, as many problems as desired can be run at once.

The program requires a storage of approximately 105,000 octal when running a design problem which calls for 23 designs. The types of letters, numbers, or characters to be input in the program are explained in the input guide for each card. The black dots on the data cards indicate where the

decimal point is to be punched. If there is no decimal point, then the user is directed as to how to input the number.

When material properties are being entered in the program, expected values should be used, not values with factors of safety added. The program takes care of design safety with the Confidence Level Variables or with internally added factors of safety for such inputs as concrete flexural strength, tensile yield strength of steel, and subgrade support (k) value.

On the subgrade and subbase cards, the user has the option of indicating either k-value or Texas Triaxial Class Value. If one of the values is input into the program, then the other is not necessary and the variable value can be left blank. If both are input, then the program will use the subgrade k-value to structurally characterize the subgrade.

It is important that the designer carefully think through the problem. For example, the concrete overlay parameters should not be input when the designer calls for asphalt overlays to be designed. It is advisable, therefore, to plan the facility to be designed and then list the necessary data inputs on paper before proceeding with the computer input.

INPUT VARIABLES FOR RPS-3

This section focuses on the variables needed to run RPS-3. They are discussed in groups according to the input card format.

Problem Identification Variables

The first input card for RPS-3 contains the problem identification variables, NPROB and TITLE. These variables are any combination of letters and/or numbers the designer desires to use. Their function is to identify the program output for the user.

Program Controls

The second input card for RPS-3 has the variables which control the main program design function. The variables are NCS1, NCS2, NCS3, PSN1, and PSN4. Variable NCS1 allows the designer the choice of what type of pavement to design, jointed concrete (JCP), continuously reinforced concrete (CRCP), or

both. Variable NCS2 gives the designer the option of determining which type of overlay the facility would have, portland cement concrete (PCC), asphaltic concrete (AC), or both. Variable NCS3 allows the designer the option of having the program design with deformed bar reinforcement, welded wire mesh reinforcement, or both. Variable PSN1 lets the designer specify that the program print out either a long or short form of output. The short output excludes reinforcement details and the involved input variable listing. Variable PSN4 is used to specify how many designs should be included in the program output. The minimum is 12 and the maximum is 23.

Traffic Growth and Distribution Variables

Card 3 of a correct RPS-3 data deck includes variables AGF, ADTGR, DDF, DFL, ADT, and WWW, which define the design traffic to be used by RPS-3. Variable AGF, the axle-growth factor, defines the percent per year of linear growth in the number of axles. The variable gives an indication of the increase of the number of axles in the traffic stream. In other words, this is an indication of increasing truck traffic. Variable ADTGR, the average daily traffic growth rate, is a linear growth rate in percent per year. This input is used by RPS-3 to determine future traffic on the facility. A normal range for this variable would be from 2 to 10 percent on a new facility. This variable may be zero percent if the facility has no traffic growth or if it is actually declining in usage.

The distribution factors, DDF and DFL, control the weight of traffic in the design lane. The directional distribution factor, DDF, is the percentage of traffic per direction to be used in design and the lane distribution factor DFL is the percentage of ADT expected in the most frequently used design lane. The next input is ADT, the initial average daily traffic expected in one direction. This is the number of vehicles per day on the planned roadway. The designer should be careful not to allow this input variable to exceed the practical capacity of 1500 vehicles per hour per lane. The final traffic variable is WWW, the total 18-kip axles expected on the facility during the analysis period. This variable is a total for both directions. All the traffic growth and distribution variables may be obtained from the Traffic Division, D-10, of the Texas Highway Department. If the

information for the requested section is not available, the Traffic Section has techniques to accurately make estimates.

Designer's Restraint Variables

The designer's restraint variables are perhaps the most important inputs of RPS-3 in determining the computed designs. The variables provide limits and guidelines for the program in its generation of designs. The inputs include CMAX, TMAX, OFMIN, BOMIN, OMAXA, OMINA, OMAXC, OMINC, AP, THLEV, and ILEVEL. Table 6.1 gives the description of each of these variables and the units of the input. The values for these inputs correspond exactly to the pavement being designed. The overlay variables indicate how much overlay material will be allowed the facility to help it meet its design life, the analysis period. The average level-up thickness, THLEV, is that amount of overlay material necessary to bring the existing roadway up to a level grade. An indication of the confidence level at which the designer desires to construct the pavement is ILEVEL. For example, it may be much more important that an urban interstate freeway last its design life, than a rural interstate section. As the designer increases this confidence level, designs will generally get thicker and more expensive. The program also takes a correspondingly greater amount of time to run.

Performance Variables

The performance variables P1, P2, POV, PSS, THETA, and SACT define the serviceability life of the facility in connection with the AASHO design concept. The initial serviceability index expected for the new pavement is P1. The terminal serviceability index accepted by designers is P2, and POV is the serviceability index after an overlay. These variables define the riding quality of the pavement and all three must range in value from 0-5 (Ref 9). The probability of the common occurance of bad soil at the construction site is PSS. The swelling rate constant is THETA, and SACT is the estimated differential movement caused by swelling clay and used by the AGE2 model of RPS-3 in the prediction of the pavement section's performance life. Guidelines establishing values for these variables are given in the input guide in Appendix 3.

TABLE 6.1. DESIGNER RESTRAINT VARIABLES

Variable	Descriptive Title	Units
CMAX	Maximum funds available for initial construction	Dollars per square yard
TMAX	Maximum allowable thickness, slab plus subbase	Inches
OFMIN	Minimum allowable time to the first overlay	Years
BOMIN	Minimum allowable time between overlays	Years
OMAXA	Maximum total asphalt concrete overlay thickness	Inches
OMINA	Minimum total asphalt concrete overlay thickness at one time	Inches
OMAXC	Maximum total portland cement concrete overlay thickness	Inches
OMINC	Minimum total portland cement concrete overlay thickness at one time	Inches
AP	Length of analysis period	Years
THLEV	Average level-up thickness	Inches
ILEVEL	Confidence level desired for design	Percent

Traffic Delay Cost Variables

The traffic delay cost variables are used by subroutine TDC3 to determine the costs associated with pavement overlays. Research Report 32-11 (Ref 4) discusses the development of these models and Chapter 3 discusses their modification in RPS-3. The 15 input variables associated with traffic delay cost are well documented in the Input Guide in Appendix 3. All necessary comments on boundary conditions are listed.

Concrete Variables

The concrete variables of RPS-3 define the specific mix designs to be used in the section design. The variables are NC, ND, NP, SX, WC, E, TS, CIC, CPCYC, CSC, and PSVC.

- NC indicates how many different types of concrete the program will use for design up to a maximum of six types,
- ND indicates the number of days at which the flexural test was made on the concrete sample,
- NP indicates the number of loading points used in flexural strength testing,
- SX indicates the concrete average flexural strength,
- WC indicates the unit weight of the concrete,
- E indicates the modulus of elasticity of the specific design,
- TS indicates the tensile strength of the mix and are descriptive of each of the concrete types. A data card is made up for each concrete type.
- CIC indicates the equipment cost per lane mile for concrete placement,
- CPCYC indicates the cost per cubic yard of concrete,
- CSC indicates the cost per lane mile for surfacing the concrete and are descriptive of each concrete design mix cost, and
- PSVC indicates the final concrete input and gives an indication of the percent of salvage value of the concrete at the end of the analysis period. For example, the material would be beneficial as a base course for another road or as a fill material if torn out.

Concrete Dimension Variables

The concrete dimension variables TCMIN, TCMAX, and CINC define the concrete design thickness limits. The minimum allowable concrete thickness, TCMIN must be greater than 6.0 inches. The maximum allowable concrete thickness, TCMAX, has no established maximum value. The practical increment at which concrete can easily be poured is CINC; this is the increment at which RPS-3 makes its solutions. This variable should be no less than 0.50 inch. It must be realized by the designer using the program that changing the increment thickness from 1.0 inch to 0.5 inch will double the total amount of designs analyzed.

Subgrade Material Variable

Variables SGK, TTC, FFSG, EFSG, and CPLMSG are descriptive information of the subgrade material at the construction site. The subgrade k-value SGK, and the Texas Triaxial Class Value, TTC, may be used interchangeably in RPS-3. If both are input, SGK will be used. Variable SGK is in units of pounds per cubic inch, while TTC is a unitless value. Variable FFSG, the factor for friction between the subgrade and the concrete, and EFSG, the erodibility factor, are analogous to the friction factor and erodibility factor of the subbase and will be discussed later. Both are left zero unless the designer wishes to design the pavement to rest directly on the subgrade and then both must be input. The cost per lane mile of subgrade preparation is CPLMSG and is input in the units of dollars.

Subbase Material Variables

The subbase material variables are NSB, the number of subbases; NAME, the subbase descriptive title; EF, the subbase erodibility factor; FFSB, the subbase friction factor; ES, the subbase elastic modulus; CIS, the equipment cost per lane mile for initial subbase construction; CPCYS, the cost per cubic yard of compacted subbase; PSVS, the percent salvage value of the subbase; TSMIN, the minimum subbase thickness; TSMAX, the maximum subbase thickness; and SINC, the thickness increment for subbase solutions. In the design case mentioned earlier, a pavement designed upon the subgrade, all subbase inputs may be left zero. A 1 placed in column 5 for the NSB variable will notify the program of this particular design option. When designing with subbase material, up to four different subbase materials may be input into RPS-3 at once.

An explanation of the erodibility factor and the friction factor is included in the User's Manual in Appendix 3. The practical increment at which the subbase may be placed and solutions made, SINC, should have a minimum value of two inches for a granular subbase and one inch for a stabilized subbase.

Steel Material Variable

There are four cards which give design information for the reinforcing steel. These cards are for longitudinal bar steel, transverse bar steel, wire mesh steel, and tie bar steel. A maximum of four different steel types may be given in each category. For each steel type, the designer must give an identification number, the tensile yield point of the steel, and a cost per pound of the steel. The bar steel information may be excluded if the designer has specified, with the control variable NCS3, a design with mesh steel only. The opposite is also true; if the designer wishes to design with deformed bar steel, then the wire mesh and tie bar steel cards may be deleted.

Steel Size Variables

There are three sets of variables which provide RPS-3 with the steel sizing information. The first set of variables, BARN, are the bar numbers which the program uses for reinforcement design. The second set of variables is the SL and ST variables, which are the longitudinal and transverse spacings of the welded mesh wires. The final group of variables are the TBARN variables, the bar numbers to be used for the tie bars. As with the reinforcing material cards, the unrelated inputs may be omitted. A maximum of four values for BARN, SL, ST, and TBARN inputs may be used.

Overlay Variables

The overlay material data are given by eight variables: CIOV, the equipment cost per lane mile for asphalt-concrete overlays; CPSYC, the cost per cubic yard of compacted AC overlay; PSVAC, the percent salvage value of the

AC overlay material; ACE, the asphaltic concrete modulus value; ACRP, the production rate of AC; CPR, the concrete production rate; COEF, the United States Army Corps of Engineers concrete coefficient; and CPSYR; the cost per square yard of overlay construction.

The only variable which needs any explanation is COEF, the Corps of Engineers concrete coefficient. COEF ranges from an input of 0.35 for badly cracked slabs to 1.0 for slabs in excellent condition. This input is an indication of how a concrete overlay will perform, depending on the existing slab condition.

Overlay Construction Data

The overlay construction variables, N1, N2, NDAYCU, ALANES, and OVERLEN were added to the traffic delay subroutine TDC3 to define the overlay construction more clearly. N1 and N2 are respectively the beginning and ending hour of overlay construction in military time. The number of days which a concrete overlaid facility must cure before it can accept traffic is NDAYCU. An explanation of the variable is included in Chapter 3. The number of lanes to be overlaid, ALANES, and the length of the overlaid section in one lane, OVERLEN, are used to determine the total number of square yards to be overlaid. An explanation of how these variables should be used is included in the User's Manual in Appendix 3.

Joint Variables

The joint variables are used by RPS-3 to calculate the cost of joint construction and joint spacing. The cost per foot of a transverse joint dowel's sawing and sealing is CPFTJ; CPFLJ is the cost per foot of longitudinal joints; SLV is the spacing RPS-3 will try for the lower value of jointed concrete pavement joints; and SUV is the upper value of joint spacing. The increment at which RPS-3 tries solutions for joint spacing is SPINC, and NJM is the number of construction joints per mile of CRCP. The value of NJM must be greater than or equal to zero.

Maintenance and Miscellaneous Varibles

The variables used in the RPS-3 maintenance subroutine MANCE are DFTY, CLW, CERR, and CMAT. DFTY is the number of days in the year with freezing

temperature, CLW is the composite labor wage; CERR is the composite maintenance equipment rental rate; and CMAT is the cost of the maintenance material. There are guidelines for input values of these variables in the Input Guide. Additional variables to be input on the same data card are RINT, the rate of interest for money; WL, the width of the traffic lanes; and NLT, the total number of lanes in both directions at the facility.

Confidence Level Variables

The confidence level variables are used in RPS-3 for stochastic input into the design process. The variables are PSXSD, the percent coefficient of variation of flexural strength; ESD, the standard deviation of elastic modulus; XKSD, the standard deviation of the subgrade K; XJSD, the standard deviation of the continuity factor J; PlSD, the standard deviation of the initial serviceability index; P2SD, the standard deviation of the terminal serviceability index; and DSD, the standard deviation of concrete thickness. Table 6.2 gives the results of a study of 56 concrete projects (Ref 10). As the data show, 89 percent of the projects studied had a coefficient of variation, PSXSD, of less than 15 percent. Table 6.3 gives the results of a variability of deflections study (Ref 11). These standard deviations of the continuity factor J, variable XJSD in RPS-3, should be used as inputs into RPS-3 because they are the best currently available. The standard deviation of concrete thickness, DSD, shown in Table 6.4, is from Reference 10. The modulus of subgrade reaction K, was found to have an increasing standard deviation as the mean K increased (Ref 10). The overall standard deviation of K for the 59 study sections was reported to be 187 psi (Ref 10).

A study of 32 selected sections by Darter and Kher (Ref 10) produced two additional variable ranges and standard deviation values. For concrete elastic modulus, the mean range was 3×10^6 to 5×10^6 psi and the coefficient of variation was 15 percent. The initial serviceability index standard deviation, P1SD, was reported was 0.3.

The final confidence level variable P2SD has a standard deviation of the same magnitude as P1SD.

TABLE 6.2. CONCRETE FLEXURAL STRENGTH	TABLE (5.2.	CONCRETE	FLEXURAL	STRENGTH
---------------------------------------	---------	------	----------	----------	----------

Quality Control Standard	Percent Coefficient of Variation	Percent Projects
Excellent	Below 10	25
Good	10 to 15	64
Fair	15 to 20	7
Poor	Above 20	4

TABLE 6.3. STANDARD DEVIATION OF THE CONTINUITY FACTOR J

Value of J	Description	Standard Deviation in J
3.2	Jointed pavement without load transfer units	0.13
2.2	Continuously reinforced pavements	0.19

TABLE 6.4. STANDARD DEVIATION OF CONCRETE THICKNESS

Nominal Concrete Pavement Thickness in Inches	Standard Deviation	Number of Projects
8	0.32	14
9	0.29	8
10	0.29	5

SUMMARY OF COMMON USER ERRORS

An effort is made here to document the most common errors made by users of the rigid pavement design system program RPS-3 so that the user will be able to diagnose and avoid mistakes. Some of the blunders are subtle, and unless the user is familiar with their characteristics, they are extremely difficult to analyze. The program does give certain error messages which will help the user. The errors will be divided and discussed with respect to the types of variables involved. For example, there are certain errors associated with the traffic variables. Where at all possible, a figure or computer output sheet is used to show the user what information he will receive if he makes a mistake.

Errors Caused by Traffic Variables

The traffic variables in RPS-3 are very sensitive at high levels and will cause many different types of errors. The most common error occurs when the average daily traffic (ADT) exceeds the capacity of the facility. The ADT in one direction should not be large enough to exceed the practical capacity of 1500 vehicles per hour per lane. The errors are subtle in nature because this ADT is increased until the time of an overlay and is then used in calculating the traffic delay cost. If the ADT is too large and exceeds capacity, the program will automatically correct the problem by setting the RECVPH variable to a minimum value of 1 . A user can recognize that the program has done this because the user costs will be exorbitantly high in the magnitude of hundred of dollars per square yard. If the ADT exceeds practical capacity, the RECVPH will be a negative value and this causes the program to set RECVPH to 1 . This is done because a negative value will give unrealistic negative traffic delay costs.

Errors Caused by Decisions or Constraints

The inputs which reflect the designer's decisions on how the pavement can be built generally cause time limit errors for the program. For example, if the designer uses the option available to him and designs with a confidence level of 99.99 percent, then he must realize that the program will take an enormous amount of computational time formulating the designs to meet this restriction. If the designer chooses a confidence level of 80 percent, which is less restrictive, then the program will compute the strategies in less time.

An analysis of the initial designs and overlay designs is supplied the user at the end of the computer output for every problem. The designer can ascertain why the largest proportion of designs are being rejected and correct the erroneous input whether, for example, it be maximum funds available or any of the other restraints.

Finally, if the designer inputs the designer's constraint, maximum total thickness of initial construction, and it is less than the sum of maximum concrete thickness and the maximum subbase thickness, the program will be restricted and unable to generate any designs.

Errors Caused by Performance Variables

There are limitations placed upon the performance variables, and, if the program has failed to run, it is advisable to check the performance inputs, initial serviceability index, terminal serviceability index, and serviceability index after an overlay. The initial serviceability index must be less than 4.5 and the final serviceability index should be greater than 1.5. In some cases, the program may run with the variables outside these limits, but due to the method of the performance model derivation, the results calculated would be unrealistic.

Errors Caused by Concrete Dimensions

If the value of the practical increment for pouring concrete, which is the increment at which the design strategy solutions are made, is less than 0.5-inch, the user should be aware of the fact that the program will use a large amount of computational time.

Errors Caused by Subbase Variables

If the designer wishes to place the pavement directly upon the subgrade with no subbase, the program allows this design strategy to be calculated. However, if the designer has left the subbase card completely blank, the program will not function because of a time limit error. To correct this, the designer needs to put a 1 in column five on the subbase information card and leave the remainder of the card blank. A correct output will look like Fig 6.2. The negative zeroes shown on Fig 6.2 should not worry the user; they are acceptable and the output is correct.

Errors Caused by Overlay Variables

The RPS-3 program will allow the designer to overlay the pavements with asphalt concrete, portland cement concrete, or both. In any event, if the designer fails to give the specific overlay variables needed for each particular type of overlay, the computer will be unable to run the solutions. The United States Army Corps of Engineers concrete coefficient is the one main variable which causes errors. It has a minimum value limit of 0.35 and a maximum value limit of 1.0.

Errors Caused by Joint Information

The most common error for the user with respect to the joint design information occurs when the number of transverse construction or warping joints per mile variable for CRCP is input equal to zero. This imput must be greater than zero, otherwise the program will not run.

SUMMARY

The User's Manual which this chapter outlines, has been used and checked numerous times. It is felt that the description of the different variables, deck arrangement, and common user errors will be beneficial to the RPS-3 user. The User's Manual described in this chapter is in Appendix 3 of this report. Chapter 7 outlines a sample problem complete with input coding sheets, output, and discussion.

		SYSTEM 2			
PROB	8	TRIAL USE OF	INPUT GUIDE	BY FRANK CARMICHAEL	18 FEB 74

SUMMARY OF DESIGNS IN INCREASING ORDER OF TOTAL COST

DESIGN NUMBER ************************************	1 ******** CRC AC #ESH	2 CRC AC MESH	3 •******** CRC AC MESH	4 ****** CRC NONE MESH
CONCRETE TYPE SUBBASE TYPE ####################################]] ********	 *********	1 1 ********	1 1 ******
SLAB THICKNESS Subbase Thickness	10.00 -0.00	9 • 0 0 - 0 • 0 0	9.00 -0.00	12.00
OVERLAY + LEVEL UP 1 Overlay + level up 2	4.00	4•00 4•00	7.00	
INITIAL LIFE	10.52	5.60	5.60	29.10
PERFORMANCE LIFE 1 PERFORMANCE LIFE 2	24.30	13.83 27.72	21.24	
TOTAL PERFORMANCE LIFE	24.30	27.72	21.24	29.10
SPACING TRANS. JOINTS Spacing Long. Joints	R 12•00		R 12.00 ******	R 12.00
COST OF SUBG. PREPARATION COST OF CONCRETE COST OF SUBBASE COST OF REINFORCEMENT COST OF JOINTS COST OF TIE BARS	.142 1.837 0.000 2.061 .680 .052	.142 1.670 0.000 1.855 .680 .047	•142 1.670 0.000 1.855 .680 .047	•142 2•170 0•000 2•474 •680 •062
INITIAL CONST. COST OVERLAY CONST. COST TRAFFIC DELAY COST MAINTENANCE COST SALVAGE RETURNS ANY ADDITIONAL COST	4.772 .558 .095 .377 215 5.000	4.394 1.247 .203 .153 272 5.000	4.394 1.356 .216 .450 272 5.000	5.528 0.000 0.000 1.307 172 5.000
₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ TOTAL COST PER S⊍ YARD «₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	10.635	10,831	11.261	11.663

Fig 6.2. Correct design of slab on subgrade.

CHAPTER 7. SAMPLE RPS-3 PROBLEM

This chapter explains the sample problem coding sheets and computer output produced by the input given in Appendix 2. The purpose of this information is to give the user a complete example of what a typical RPS-3 problem input and output looks like and to help familiarize the user with how to use the program. The example is also helpful to the user as a reference guide for coding a problem.

CODING SHEETS

The two coding sheets in Appendix 2 are all that is necessary for one complete problem. Any number of additional problems may be coded and placed together in one computer run. The lead problem description card of the next problem simply follows the confidence level variables of the preceding problem. Following the last confidence level card of the last problem, an end-of-file card will terminate the program. The example problem is for an eight lane urban freeway.

The example problem uses a confidence level of 95 percent and designs for an analysis period of 20 years. The example uses all the different combinations: continuously reinforced concrete (CRCP), jointed reinforced concrete (JCP), portland cement concrete overlays (PCC), and asphalt concrete overlays (AC); and deformed bar and wire mesh reinforcements. The program input consists of the maximum number of concrete and subbase types.

PROBLEM OUTPUT

The computer output produced by the sample problem coded is also included in Appendix 2. The output prints out all the input variables. The variables are grouped in the same categories listed in Chapter 6 under the discussion of input variables. Even though the output is in a slightly

different order than the input guide, the designer should have no trouble in locating the variables to check the input.

Once the program has completed a printing of the input variables, it begins to loop through the solutions. There are error messages which will be printed out in certain cases of input error. Once the program has completed the design work, subroutine OUTPUT begins to print out the design information. First, the most economical pavement of each combination is printed. For example, in the sample problem, the most economical JCP with an AC overlay is printed first, followed by the most economical JCP with a CC overlay, CRCP with AC overlay, and CRCP with CC overlay, in this order. Also printed next is the most economical initial design which lasts the entire analysis period without an overlay. For each economical design, all the design information is printed, including performance lives, thicknesses, material identifications, reinforcement plans, overlay strategies, and all the costs. If the short form of output switch is called on the program control card, then the reinforcement information and the most economical design summary sheets are deleted from the output, and only the summary tables are printed out.

Following the summary of the most economical design in each class is a complete summary of the designs in increasing order of total cost. The most economical designs of each category are also included in these summary tables. However, if one type of design is more economical in all cases, up to 23 designs, then the other categories will not appear. For example, in the sample output of Appendix 2, the most economical CRCP with CC overlay was printed out as costing \$11.80 per square yard. This design, however, does not appear on the summary tables because the 23rd design, a JCP with AC overlay, cost only \$11.27 and this was the final design printed in the summary table. However, the most economical CRCP with an AC overlay is included in the summary tables as design number 12, costing \$11.10.

Six designs are printed for each summary table page. Each successive page contains the reinforcement design information for the six preceding designs on the summary table.

An overall analysis of all the designs shows that there are no designs with CC overlays in the most economical 23 designs in the summary tables. This stems from the new models which take into account the traffic delay costs of CC overlays. For example, the traffic delay cost of the most economical CRCP with a CC overlay was \$.65 per square yard, while the most economical CRCP with an AC overlay of the same thickness incurred a traffic delay cost of only \$.025 per square yard. This one cost accounted for almost all the difference in the costs of these two designs. Another factor which is noticeable is that only designs with mesh reinforcement are printed out in the summary tables. However, in checking the reinforcement inputs, it can be seen that the mesh steel inputs show lower costs per pound for the steel. These costs may not accurately reflect today's fluctuating market values; however, they do indicate how the program is influenced by the costs which the designer inputs.

The final page of output is an analysis of the problem for the user. This summary design analysis gives the user information on why the majority of the designs were rejected. This is helpful to the designer in allowing the selection of variables which may be unnecessarily restrictive to the design. The sheet summarizes the initial design stage of the RPS-3 and the overlay design stage of the RPS-3. The sheet also gives the total number of designs which were optimized to produce the number of economical outputs to desired by the designer.

The total cost of each design is a per square yard cost and is a present worth value of all the initial and future costs.

This sample problem should be used as a trial coding by a person unfamiliar with RPS-3.

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

CHAPTER 8. SUMMARY AND FUTURE RESEARCH

The major goal of this study, the development of a modified rigid pavement design program, has been accomplished. The major accomplishments of this work have been (1) the modification of the traffic delay cost model so that it more correctly predicts costs, (2) the modularization of the program to provide easier future change, and (3) the preparation of additional contributions for implementation of the new program; including an input guide, a discussion of common user errors, an implementation study and recommendations for future pilot uses, and a sample problem for reference.

In addition to the traffic delay cost model modification, certain other models were studied including the concrete flexural strength model and the maintenance model. Recommendations are given concerning possible future changes. The traffic load model was deleted from RPS-3 input, but the model can be easily replaced if needed. The seal coat model was also deleted. The input and output format models were modified to provide for clearer variable identification. The modularization made RPS-3 more changeable and understandable. Not only is each new subroutine flowcharted, but a complete description of its function is included. This type of documentation makes RPS-3 better from a computer programming standpoint. Also, future modifications will be easier to make.

The implementation tools significantly improve the usefulness of the program. A step-by-step procedure to follow for RPS-3 is included in the sample problem input forms. The implementation study gives the complete results of a specific trial design problem. The results of the study indicate the RPS-3 program accurately predicts pavement life and reasonably designs roadway sections. The summary of common errors is thought to be one of the most beneficial implementation tools provided in this report. This type of analysis should be made with every new design program. The major obstacles to RPS-3 implementation are considered to have been overcome with this study and a realistic observation should be taken as to the feasibility of beginning the program introduction into Texas Highway Department design offices.

There are three major areas of work that should receive priority in future RPS-3 development.

- (1) An all-out effort should be made to implement this program into use in the highway design field.
- (2) The models which determine pavement costs should be modified to include the entire cross-section design models (Ref 12).
- (3) The models of RPS-3 which design steel reinforcement should be modified to make design more accurate, taking into account developments in NCHRP Report 1-15 (Ref 8) and Project 3-8-75-177 entitled, "Development and Implementation of the Design, Construction of the Design, Construction and Rehabilitation of Rigid Pavements.

It would be a mistake not to begin a pilot study to implement RPS-3, because the program was developed for this major purpose. The two model changes suggested would greatly improve the realistic way in which RPS-3 approaches the systematic design of rigid pavement.

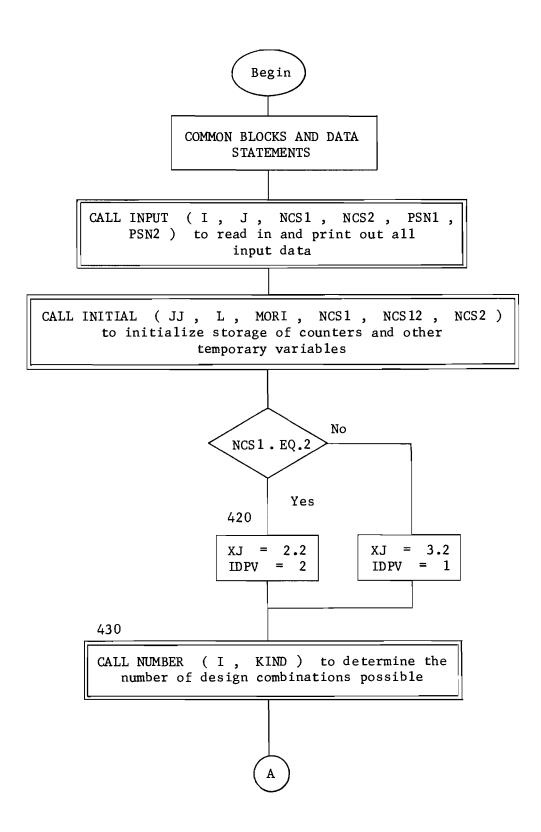
CONCLUSIONS

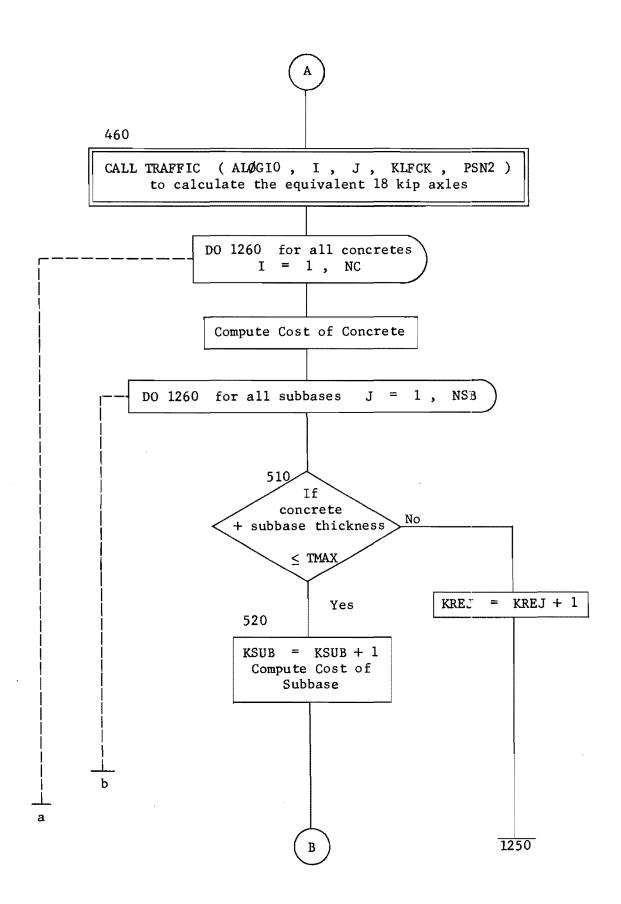
The development of RPS-3 has led to a number of conclusions concerning past, present and future rigid pavement systems design.

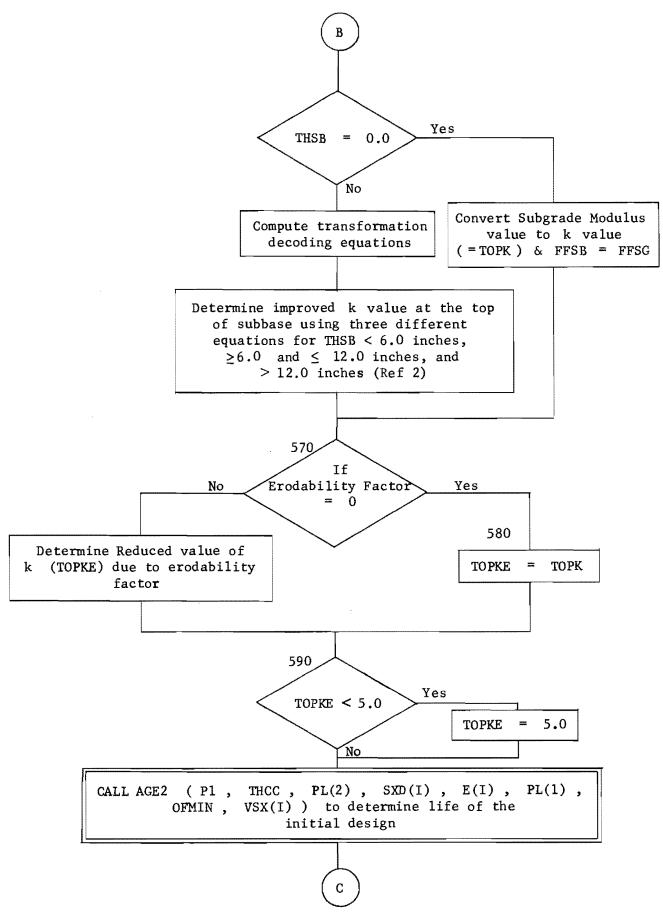
- (1) From a computer programming stand point, RPS-3 is the most acceptable program available.
- (2) The implementation of RPS-3 is esstatial to continuance of the rigid pavement design system. This conclusion stems from the theory that feedback from highway engineers will be extremely useful for guidance of future RPS-3 updating.
- (3) The traffic delay cost subroutine, TDC, has been improved to realistically predict concrete overlay curing costs.
- (4) The traffic study of ADT distribution throughout the complete day should be useful to other areas of the systematic approach to pavement design.

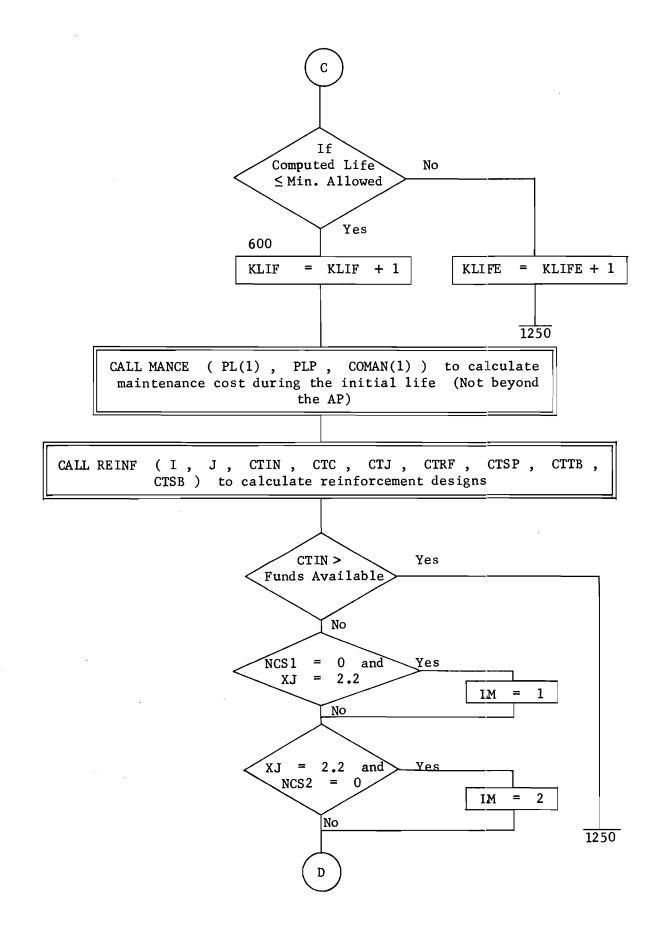
REFERENCES

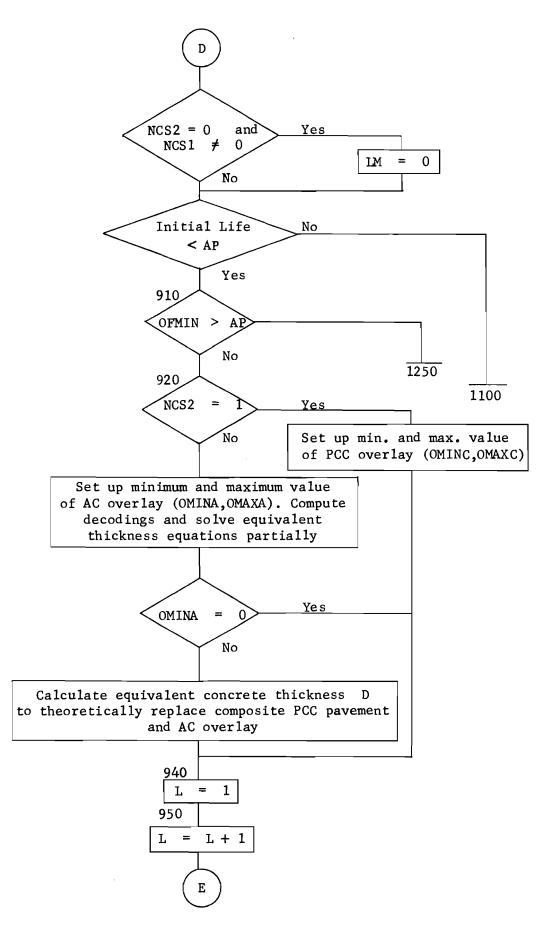
- Hudson, W. Ronald, B. F. McCullough, F. H. Scrivner, and J. L. Brown, "A Systems Approach Applied to Pavement Design and Research," Research Report 123-1, published jointly by Texas Highway Department; Texas Transportation Institute, Texas A&M University; amd Center for Highway Research, The University of Texas at Austin, March 1970.
- 2. Kher, Ramesh K., W. Ronald Hudson, and B. Frank McCullough, "A Systems Analysis of Rigid Pavement Design," Research Report 123-5, published jointly by the Texas Highway Department; Texas Transportation Institute, Texas A&M University; and Center for Highway Research, The University of Texas at Austin, November 1970.
- 3. Carmichael, R. F., and B. F. McCullough, "Rigid Pavement Design System Input Guide for Computer Program RPS-2," Research Report 123-21, published jointly by Texas Highway Department; Texas Transportation Institute, Texas A&M University; and Center for Highway Research, The University of Texas at Austin, February 1974.
- 4. Scrivner, F. H., W. M. Moore, W. F. McFarland, and G. R. Carey, "A Systems Approach to the Flexible Pavement Design Problem," Research Report 32-11, Texas Transportation Institute, 1968.
- 5. "1973 Annual Report of Permanent Automatic Traffic Recorders," an annual report published by the Texas Highway Department in cooperation with the United States Department of Transportation Federal Highway Administration, 1973.
- "Interstate Highway Maintenance Requirements and Unit Maintenance Expenditure Index," NCHRP Report 42, Highway Research Board, 1967.
- Marshall, Bryant P., and Thomas W. Kennedy, "Tensile and Elastic Characteristics of Pavement Materials," Research Report 183-1, Center for Highway Research, The University of Texas at Austin, January 1974.
- 8. McCullough, B. F., Adnan Abou-Ayyash, W. R. Hudson, J. P. Randall, "Design of Continuously Reinforced Concrete Pavements of Highways," Research Report NCHRP 1-15, Center for Highway Research, The University of Texas at Austin, August 1974.
- 9. Carey, W.N., Jr., and P.E. Irick, "Pavement Serviceability Performance Concept," <u>Bulletin 250</u>, Highway Research Board, 1960.
- 10. Kher, Ramesh K., and Michael I. Darter, "Probabilistic Concepts and their Applications to AASHO Interim Guide for Design of Rigid Pavements," paper presented at the 52nd Annual Meeting of the Highway Research Board, 1973, Washington, D.C., Center for Highway Research, December 1972.

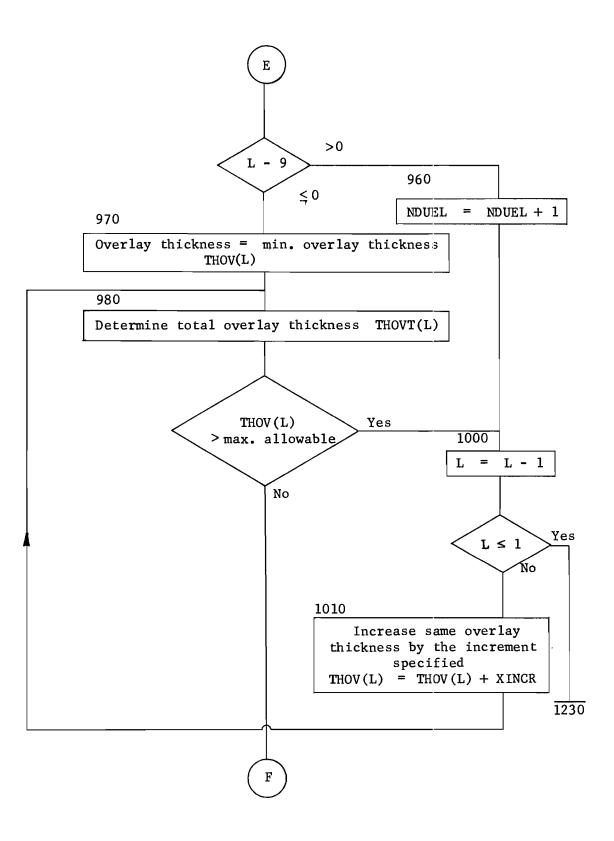

- 11. Treybig, H. T., B. F. McCullough and W. R. Hudson, "Sensitivity Analysis of the Extended AASHO Rigid Pavement Design Equation," <u>Highway Research Record No. 329</u>, Highway Research Board, 1970.
- 12. "Systems Approach to Pavement Design Implementation Phase, NCHRP Report 1-10A, Highway Research Board, September 1973.

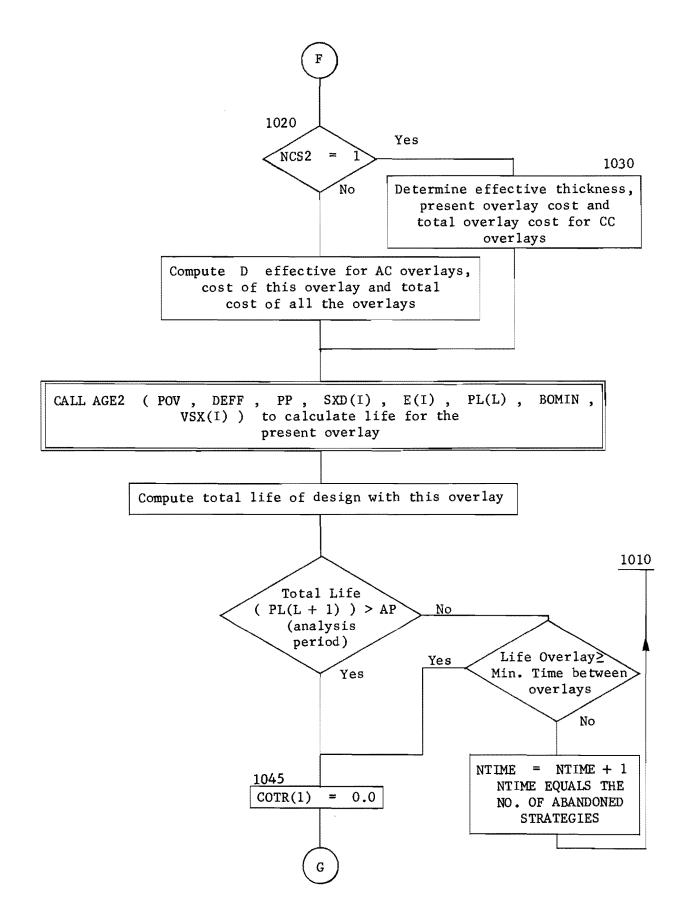

APPENDIX 1

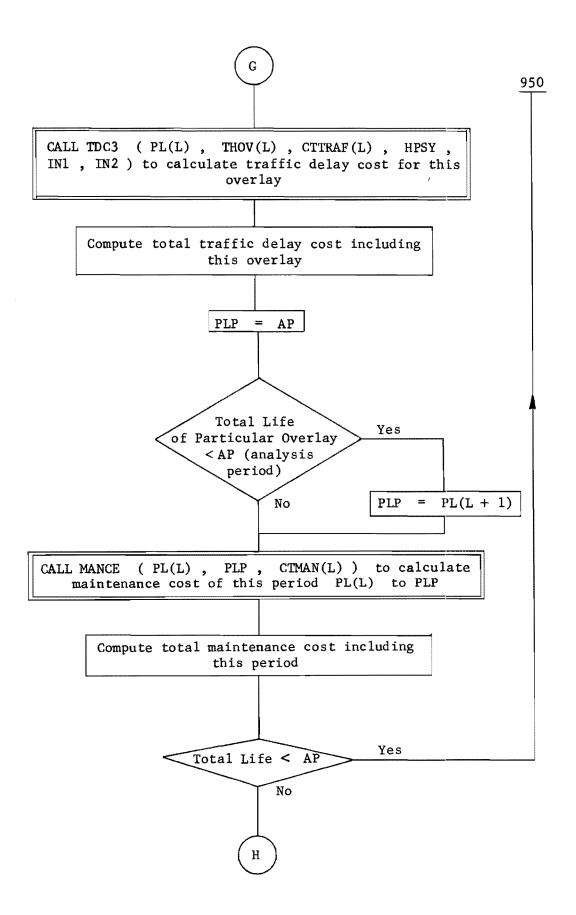

FLOW DIAGRAM FOR PROGRAM RPS-3

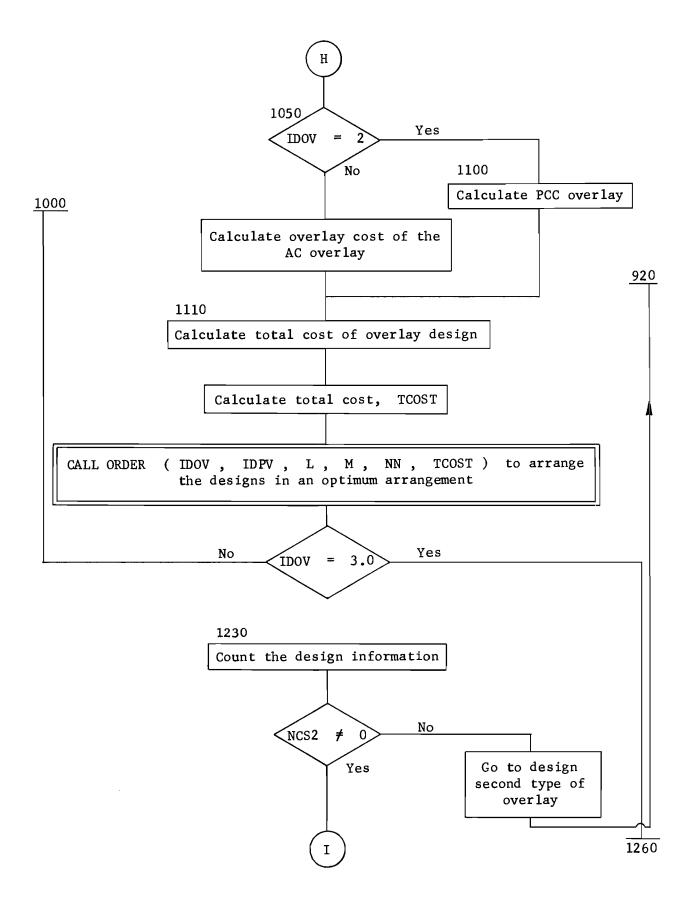

.

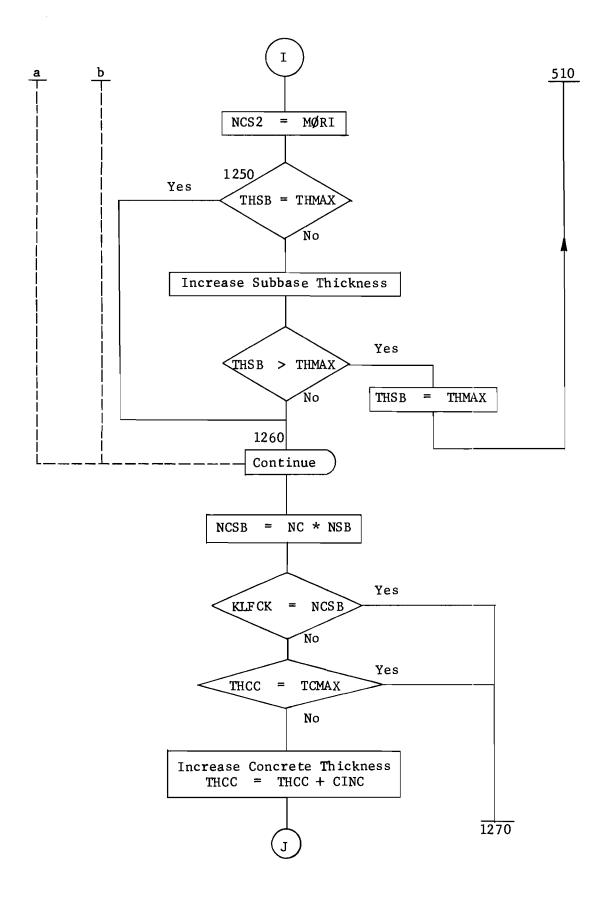

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

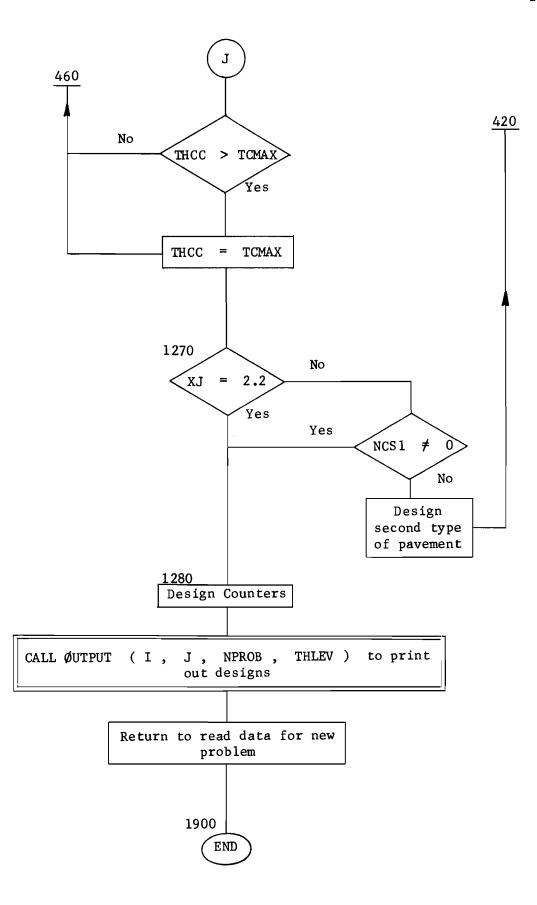


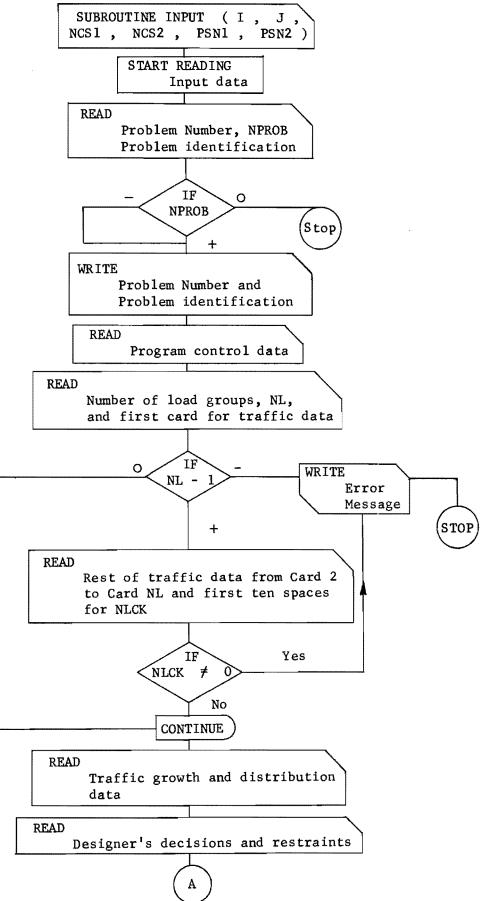


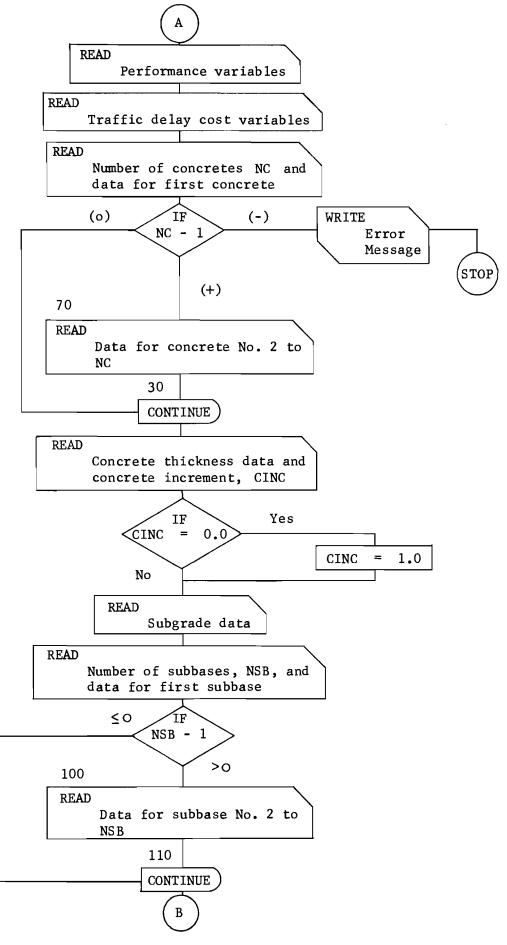


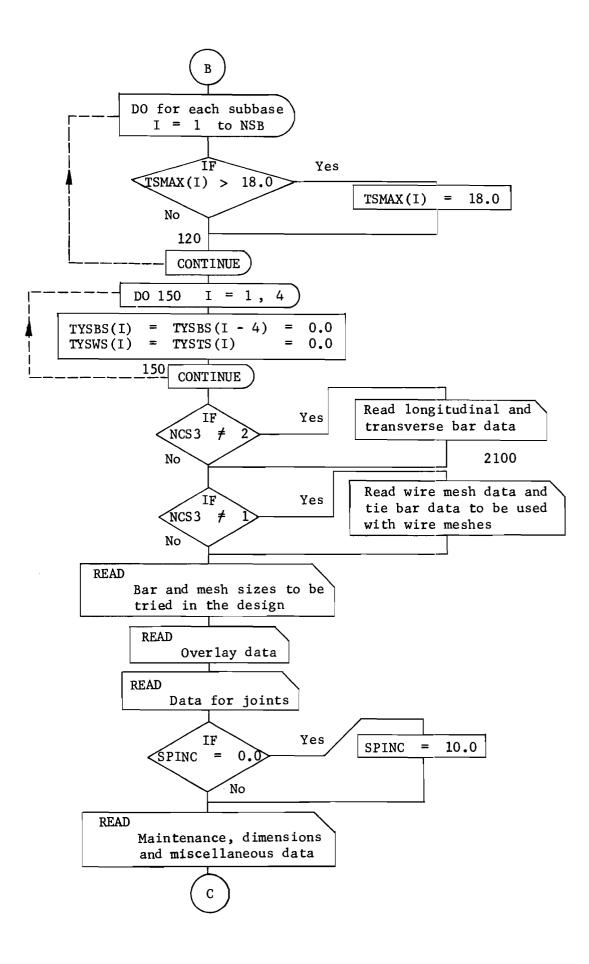


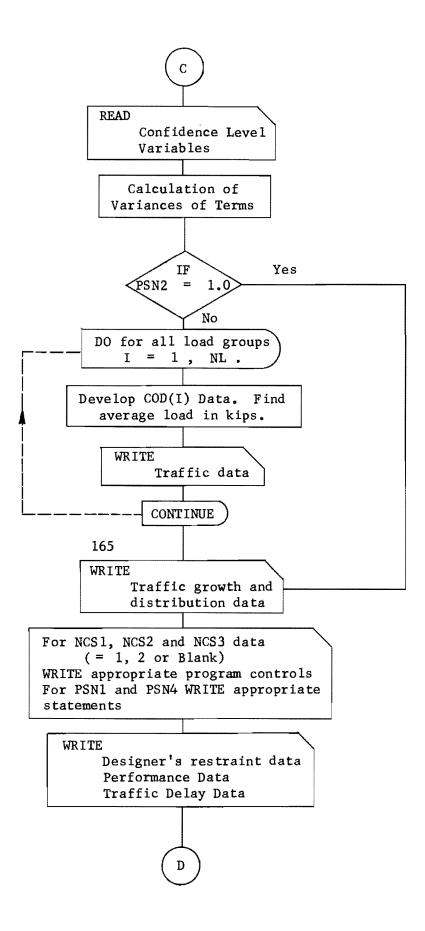


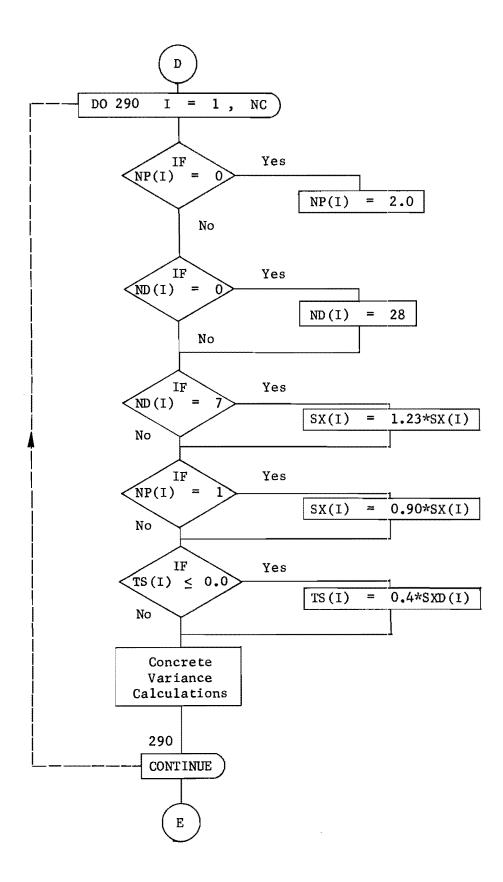


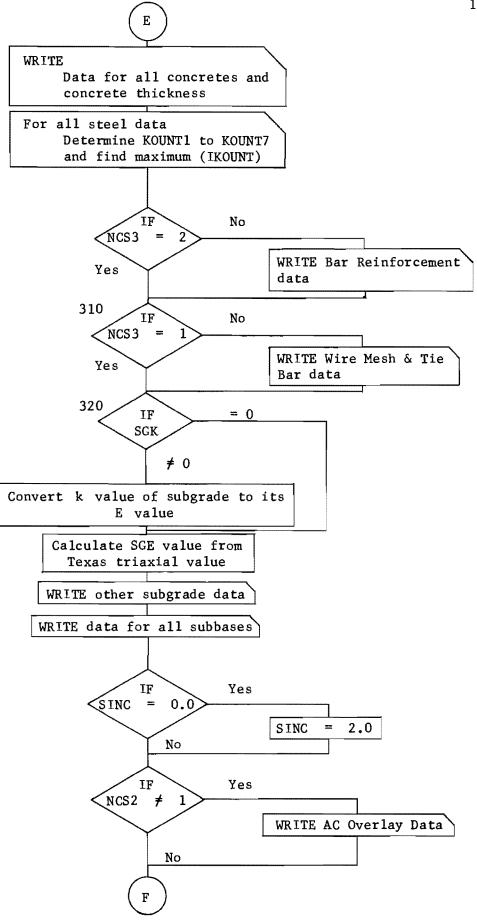


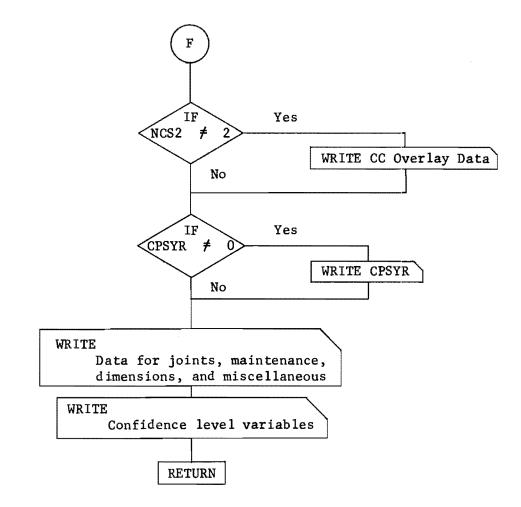


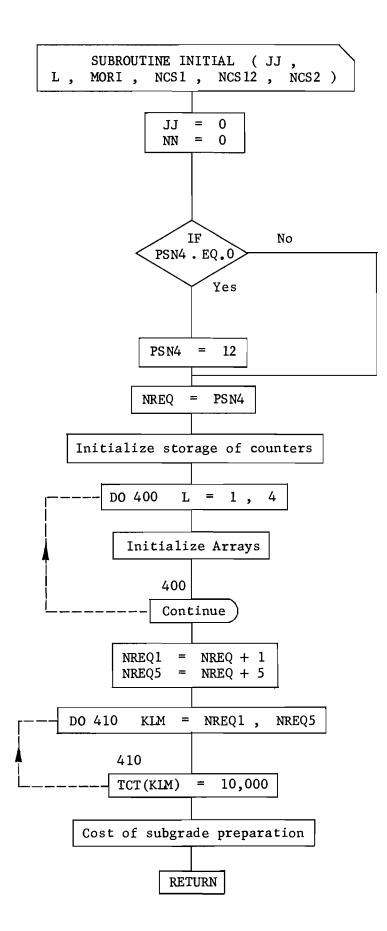


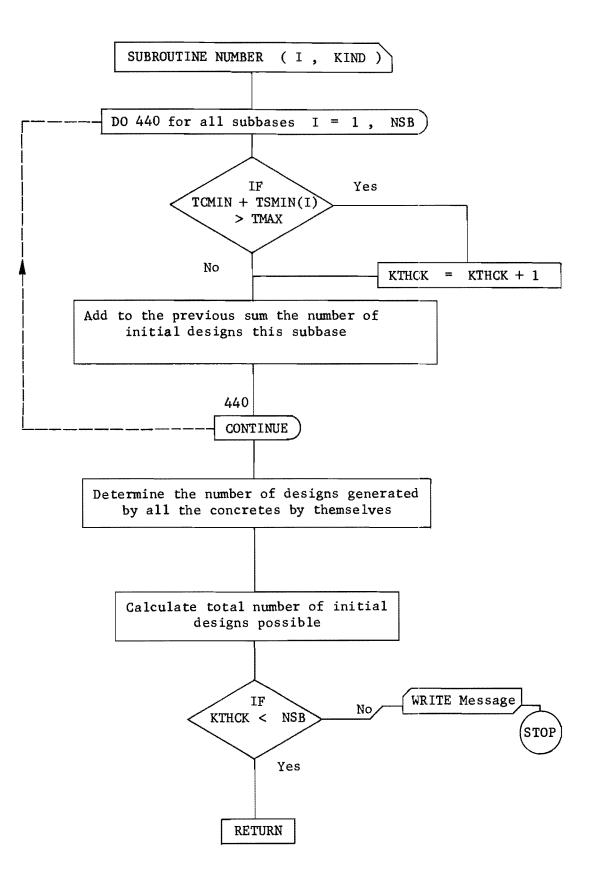


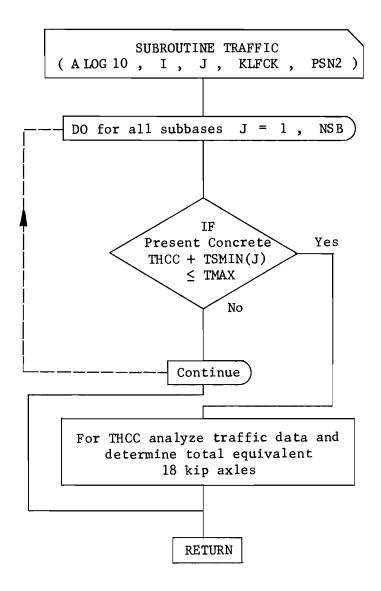


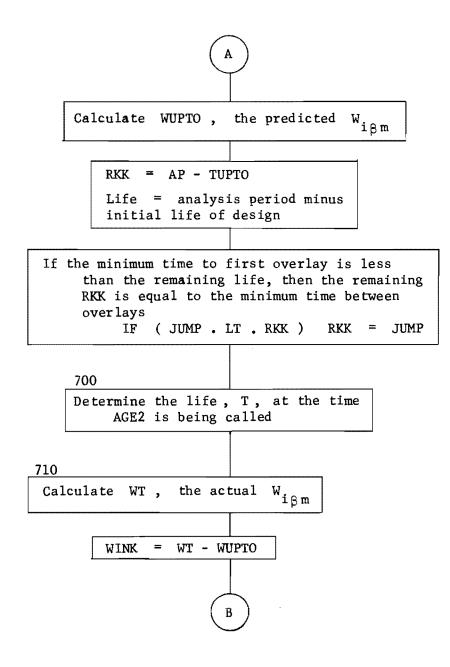


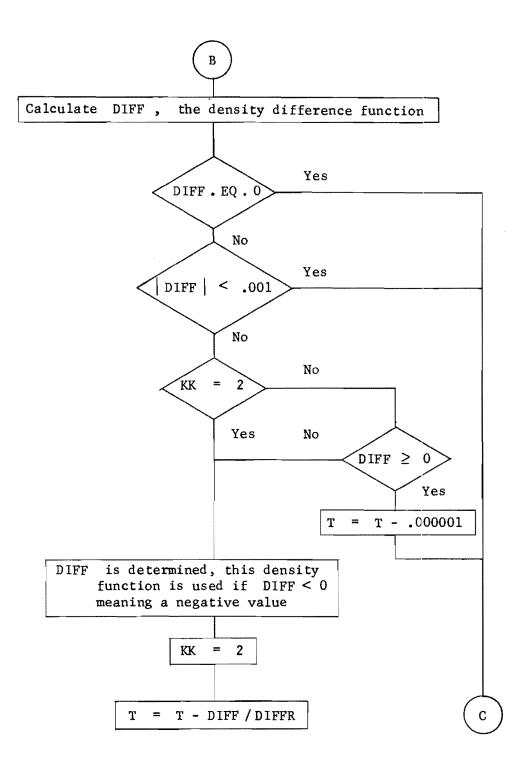


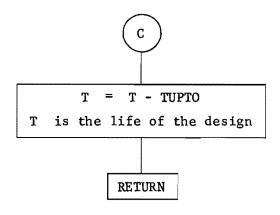


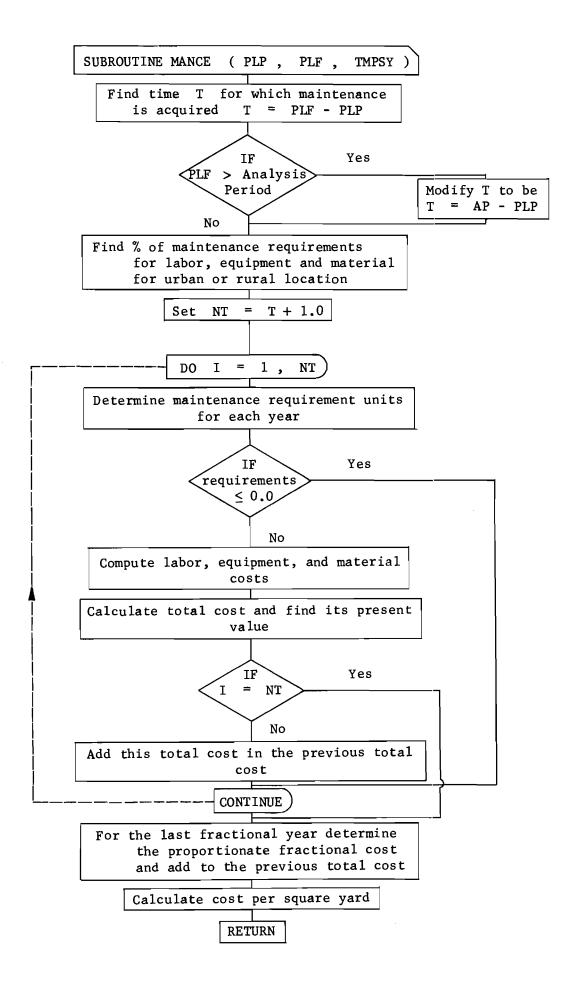


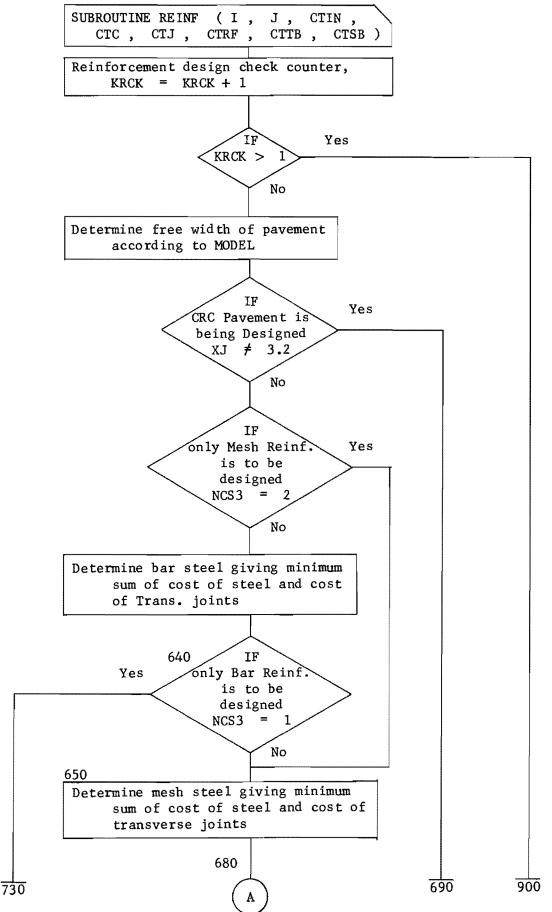


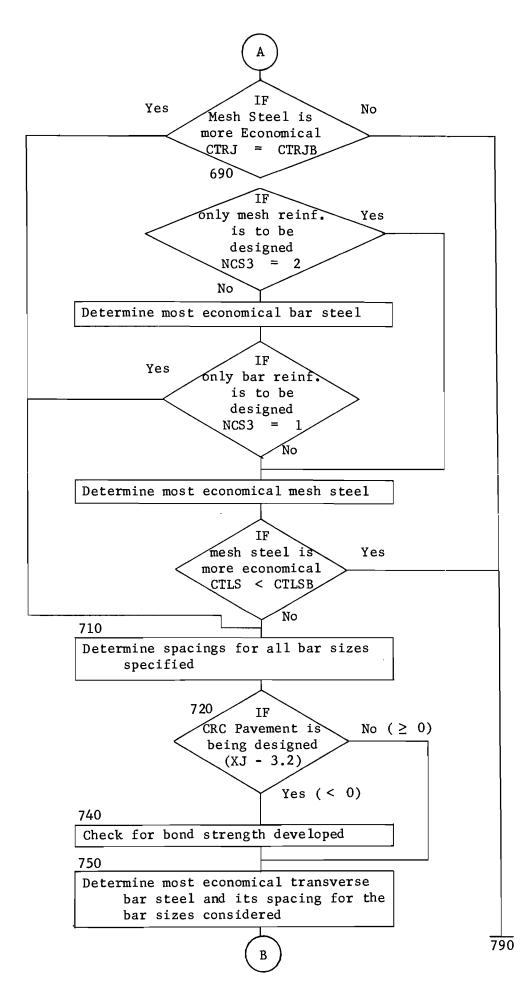


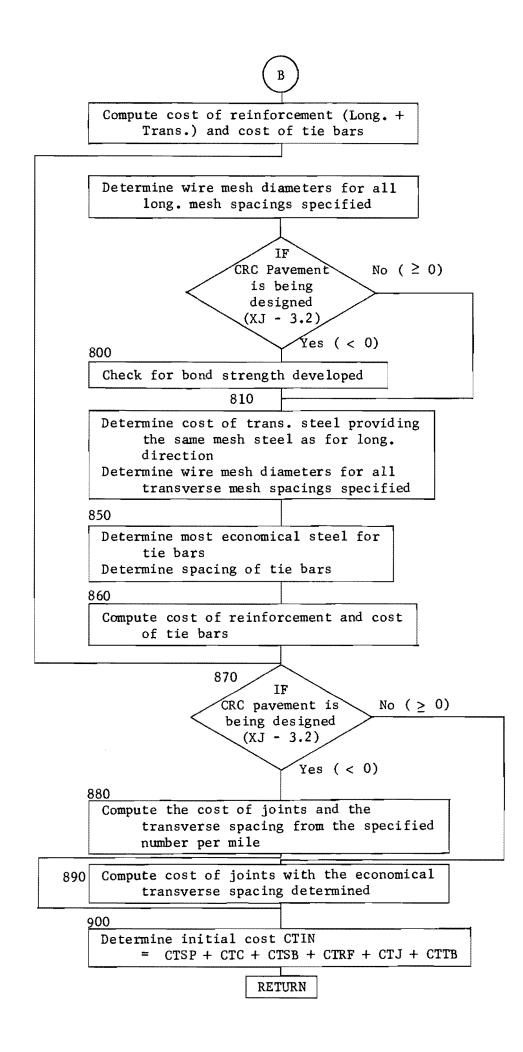


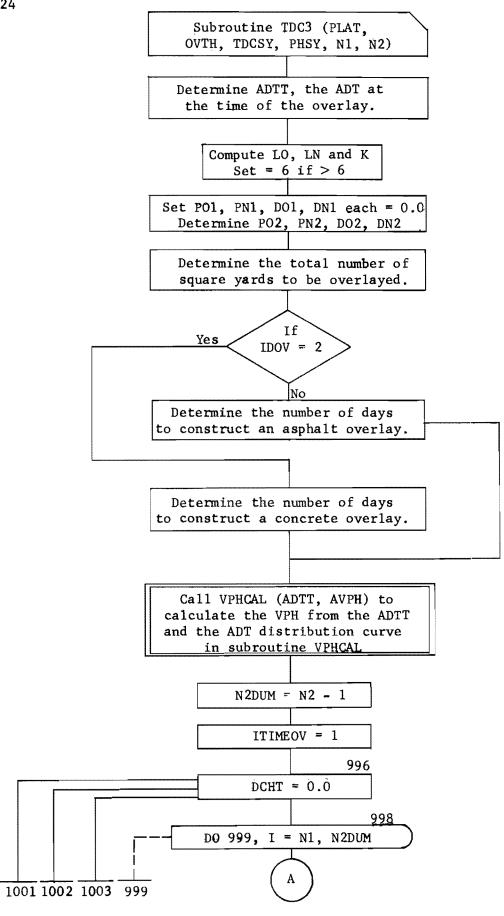


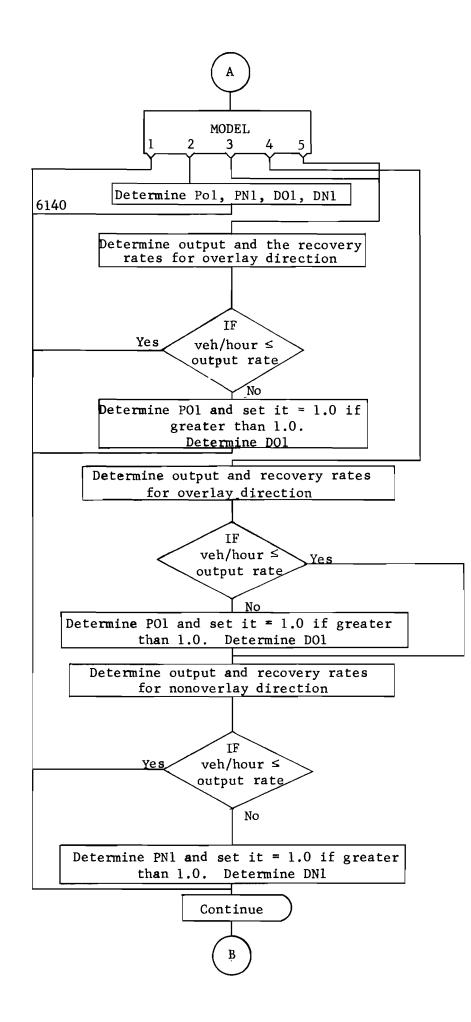


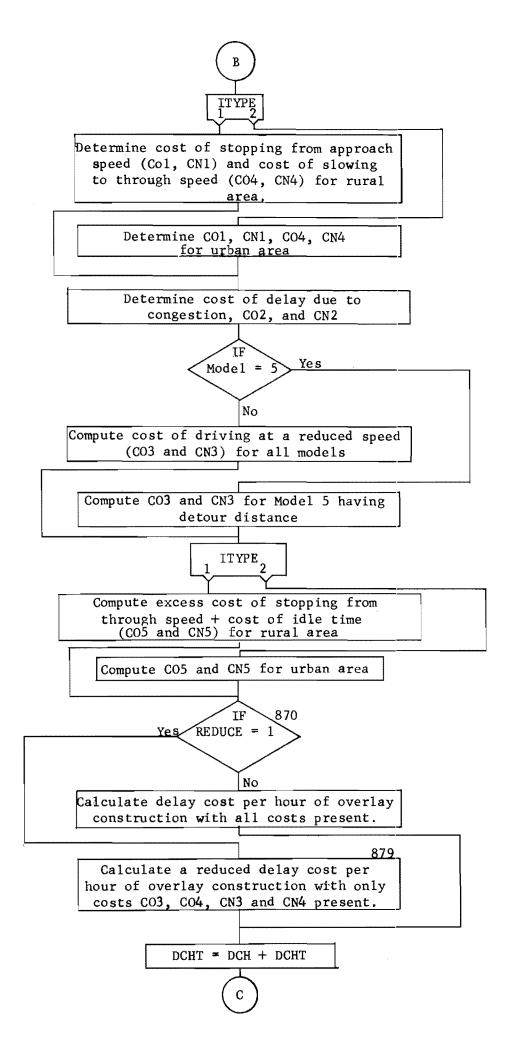


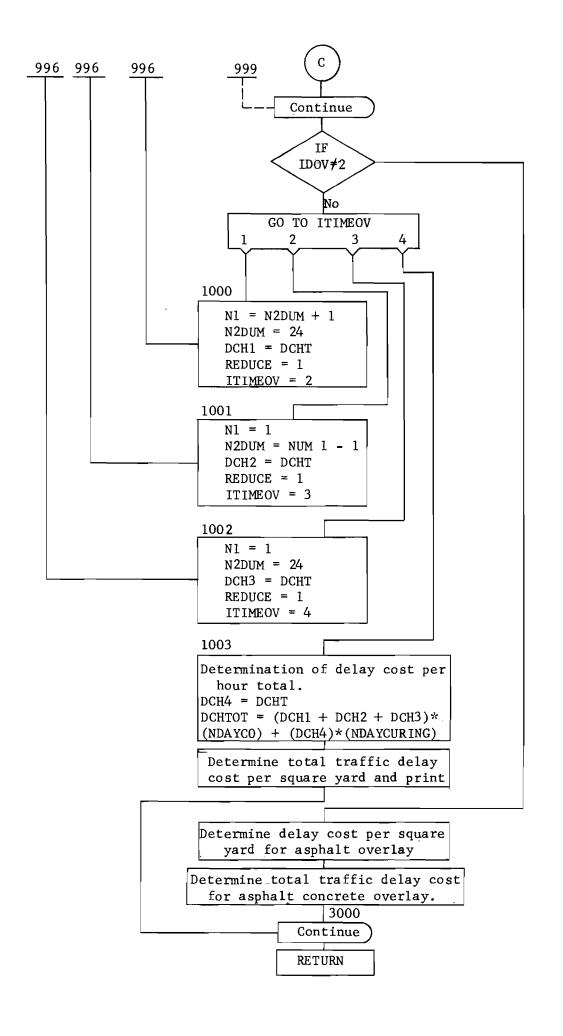


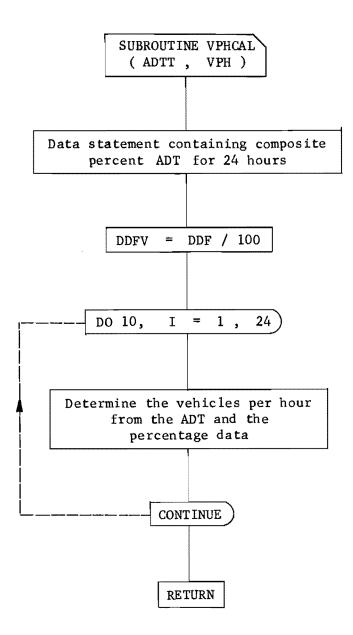


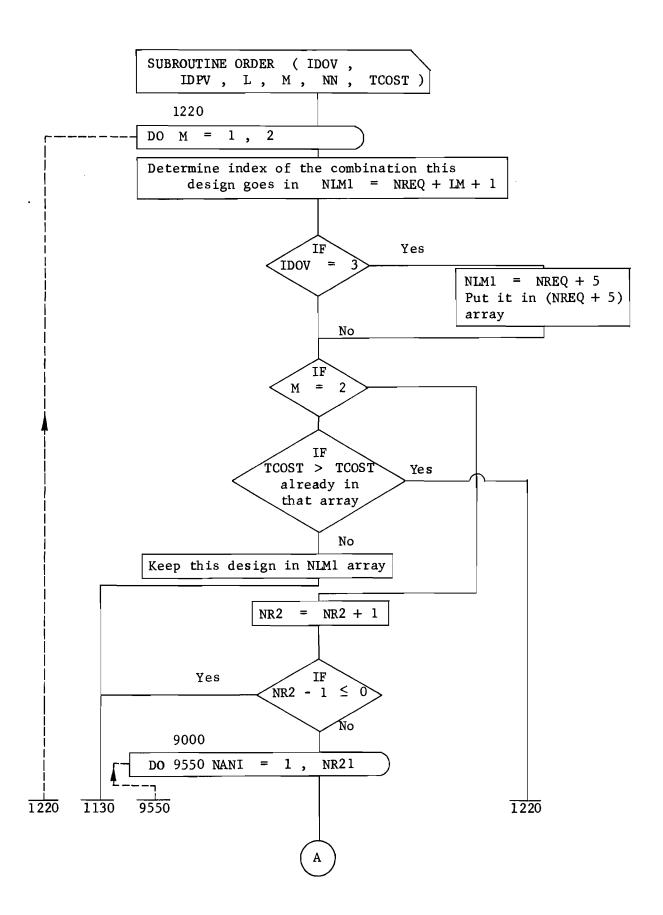

•

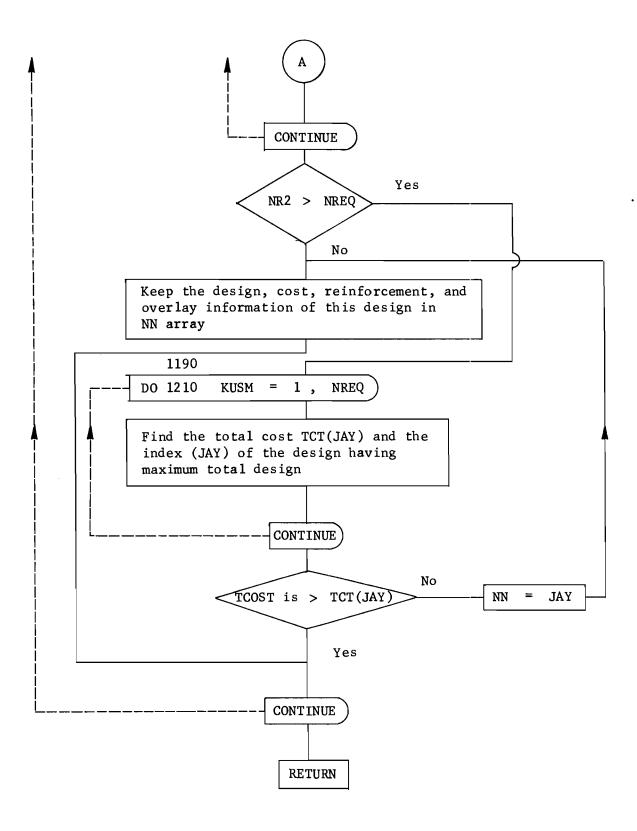


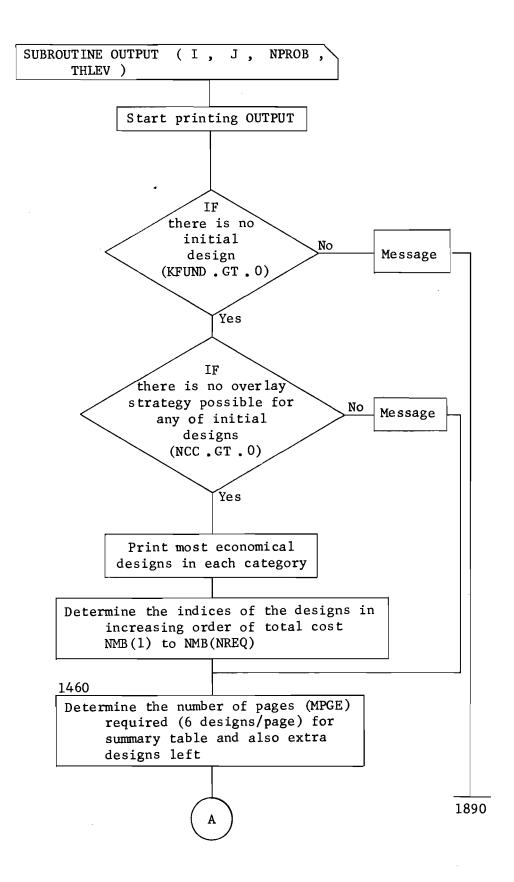


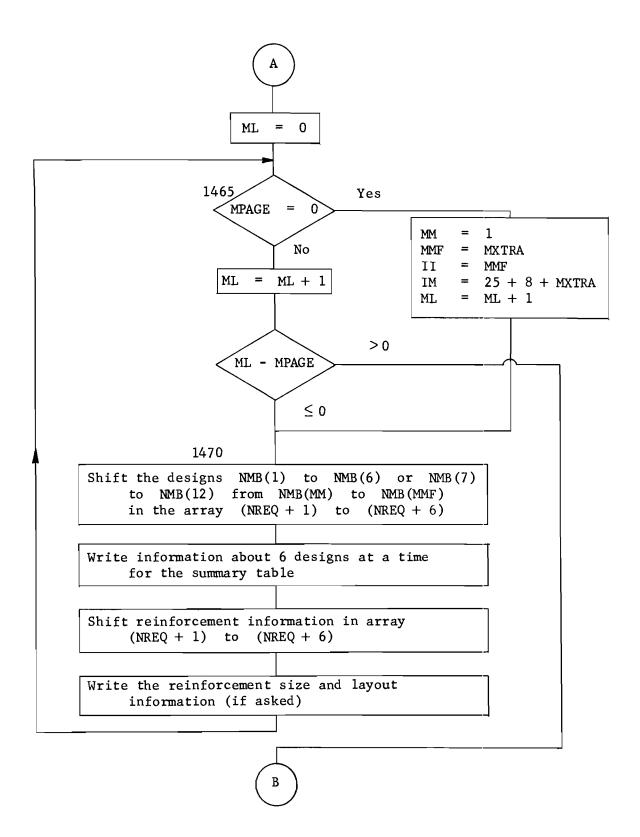


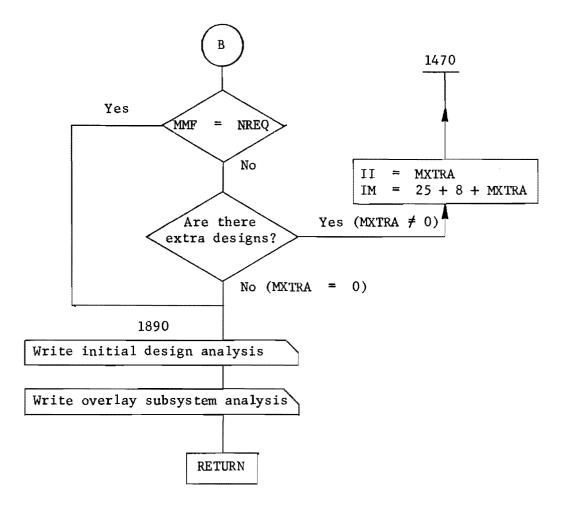












This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team APPENDIX 2

INPUT CODING SHEETS FOR PROGRAM RPS-3 SAMPLE RUN AND SAMPLE OUTPUT This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

5	10	o	15	20	>	Z 5	30		35	4	0	45		50		55	60		e	5	7	0	i	75	80	0
		TES	TR	UN	SHO	VING	NEM	RP	5-3) Ve	851	ON	RF		IT											1
																	1								23.	1
2.	0		3	. 0					5/	2.0			60.						201		.0	1	80	000		
12.	0		24	0		5	.0				6	.0		.0	6.	0	2.0			20		1		0	C	
4.				.0			5			. 80				14			1.5					+	* * *			
2				.0			.0		3	3.0		┼┿╉	8.			2	4								2	
5.	0			.0			. 02). O			0.				. 0			55	0				2	
	T	500.				14		19			200				200.				50			150		60		1
		550.				14				TTT	210				200.			Π	75			150		70		
	1 T	600.				14					220				000.				00			750		70		
	TT	650.				14					230				200.				10			150		70		1
		700.				14					240				00.				15			50		75		1
		750.				/ 5					250				00.				25			150		75		1
			8	.0		12				2.0									23			00			•	1
150.	5			•															0	0	.0					
		ULAR		++	1.		╧┼╋			200	╉┼┼		0.				. 00								.00	1

DENTIFIC		EXI	۹ M	PLE	· (Ca	D	<u> </u>	G		5,	{E	ET	-		R	p	5-		3			со	DE	D	BY_	R	? F	<u>C</u>	2	Ш	•			DA	TE.	De	<u>.</u>	3	<u>ı,</u>	19	i7	4	, P	AG	Ë_	2	2	.OF		2	
1	5	tO		t.	5		20	-1		2:	, 	1	30	。			35				40	- r		, T T	5			50				55				50			6				70		,		7	5				80
	C	ENT	S	TAE	30		2	1.	8							10) O	01	20	0				2	2	ø	•						Ç	;.	0	24	ю	•		1	0	•		,	Z		0		2	2.	0	
	A	SP	бт	AB	0	ļ	5	1.	7							E	20	00	20	00				2	$\frac{1}{2}$	0							4		5	4	0				0	•		,	2		0		2		0	
		IMS			,		5	1.	5								2	5/	20	20		ĺ		2		0								2.	5	23	0			,	0			,	2		0		2		0	
9-61							3			32					~	00						Δ-			Т			45		5/	00	h		1	1	Т								Π			1					1
9-15				000			07				1	-				00	T								ľ						20				0	1				-							1				0	9
ASTM						Π	10						2	Т	Π		Γ			1	T				Т		Γ				1-	Π			0	Т			Τ	Π				Π				7	-	T	0	
4-61																								[]	1												TI		1							1	T					
i I I			40				80					T		Τ	Π	<u>oc</u>	ī								7				T		00	П			0	4		61			51			3	8				<u> </u>	T		
3	•	4.		5.		Π	4.		-		12				5	. (Τ							0	┦	6	•	0		Ζ.	0	1			Π	╀	$\left \cdot \right $		<u>,</u>		_	1	4.	┟┤			5				6	
	000	•				<u>></u> .(41			Т			30	X	20	20					47	.5		+					_4	0		2		_	+	$\left \right $		<u>/</u> ,	0			_			5		0	
		- 9		\square	╂┼╴		'7	-+-	+	+-	╏┼	+	13	3		+				+	1	+	+	$\left \right $	╀			2			-		+			╀	┝┤			\square	+	+	+-	┞┤	+			╞	-	\vdash		
+		. 4	┨┼		/		2	_		_		+-	 -	+		_		1	5-	0					1	i 0		0					15	<u>.</u>	0			+	-				2			_	_			-	ļ	
	10	. 0			2		50	_		_		<u>s</u> .	00	2					1.	0	0					8		<u>oc</u>												1	2,	. 0	0									8
					19	; -	70			82	0	00	0.			_			35	5.	0						0	<u>.</u> c							30	2							50								3	0
												l										1			ĺ											I		ĺ					ĺ						Ì			
														T																						T																
														1		+			T						╎											T			T			Ţ				+		t				
																										11								1 1																		

PTOID PAVEMENT SYSTEM 3 CENIER FOR HIGHWAY RESEARCH DEC 1974 HEC III Pode 1 - Test Run Showing New APS-3 Vedsion REC III

THAFFIC GROWTH AND DISTMINUTION

.

AN E GROWTH FACTOR, PEHOFNT PER YEAR	2,00
ADT GHOWTH RATE, PERCENT RER YEAR	3.00
DIRECTIONAL GISTRIBUTION FACTOR, PERCENT	50.00
UESIGN LANF UISTRIBUTION FACTUR, PERCENT	60.00
INITIAL AVERAGE DAILY TRAFFIC, ONE DIRECTION	20000.00
TOTAL 18 MTP AXLES FOR ANALYSIS PERIOD, BOTH DIRECTIONS	A00000

.

RIGID PAVEMENT SYNTEM 3 CENTER FUR HIGHWAY RESEARCH DFC 1974 HFC 111 PODE 1 TEST RUN SHOWING NEW HPS-3 VERSION RFC 111

PROGNAM CONTROLS

DESIGNER SPECIFIES

BOTH CRCP AND JCP PAVEMENTS TO BE TRIED BOTH CC AND AC UVERLAYS TO BE TRIED BOTH DEFORMED BAR AND WIRE MESH REINFORCEMENT TO HE TRIED PRINT IONS FORM OF DUTPUT PRINT FIRST 23 DESIGNS TH INCHEASING UNDER OF TOTAL COST

DESIGNERS DECISIONS OR RESTRAINTS

MAXIMUM INITIAL FUNDS AVAILABLE, DOLLARS PER 50. YO.	12.00
MAX INTTIAL THICKNESS, SLAH PLUS SUBBASE, INCHES	24+00
MIN TIME TO FIRST OVERLAY. YEARS	5.00
MIN TIME RETWEEN DVERLAYS, YEARS	5.00
MAX TOTAL AC OVERLAY THICKNESS, INCHES	6.00
MIN AC OVERLAY SHICKNESS AT ONE TIME. INCHES	2,00
MAX TOTAL CONC UVERLAY THICKNESS, INCHES	6+00
MIN CONC OVERLAY THICKNESS AT UNE TIME. INCHES	2.00
AVERAGE LEVEL UP THICKNESS. INCHES	1.00
LENGTH OF ANALYSIS PERIOD, YEAHS	20.00
CONFIDENCE LEVEL (C) + PEPCENT	95.000

PERFORMANCE VARIABLES

INTTIAL SERVICEAULITY THDEX. EXPECTED	★
TERMINAL SERVICEABILITY INDEX. ACCEPTED	3.00
SERVICEABLI ITY JNDEX AFTER AN OVERLAY. EXPECTED	4.50
PROBABILITY OF CONJUNCTION OF BAD SOIL AND SITE. PERCENT	.80
SHELLING HATE CONSTANT	.14
SWELLING ACTIVITY. ESTIMATED DIFFEHENTIAL MOVEMENT, INCHES	1.50

TRAFFIC DELAY COST VARIABLES

UISTANCE OVER WHICH TRAFFIC IS SLOWED, MILES, OV.DIRECTION	2.00
NDN. 0Y . DIRECTION	0.00
NO. OF OPEN LANES IN RESTRICTED ZONE. MILES. OV.DIRECTION	2
NUN_DV.DIRECTION	4
PERCENT VEHICIES STOPPED BY ROAD EQUIPMENT, OV. DIRECTION	5,00
NON_OV.DIRECTION	0.00
ANG DELAY CAUSED BY ROAD EQUIP. HOURS . DV.DIRECTION	.02
NON-OV-DIRECTION	0.00
AVG SPEED THROUGH OVERLAY ZONE. MPH OV.DIRECTION	40.00
NON. 0Y + DIRECTION	55.00
AVERAGE APPROACH SPEED TO OVERLAY AREAF MPH	60.00
DETOUR DISTANCE AHOUND OVERLAY ZONE, MILES	2.00
NO. OF HOURS TOAY OVERLAY CONSTRUCTION OCCURS	8+00
TRAFFIC MODEL USED IN THE ANALYSIS	3
ROAD LOCATION	URBAN

RIGID PAVEMENT SYSTEM 3 CENTER FOR HIGHWAY RESEARCH DEC 1974 RFC III I----TRIM PROB 1 TEST RUN SHOWING NEW RPS-3 VERSION RFC III

MATERIALS. CONCRETE

CONCRETE MIX DESIGN NUMBER	1	2	3	4	5	6
AGE OF TESTING CONCRETE, DAYS	28	28	28	28	28	28
MEASURING POINT	CENTER	CENTER	CENTER	CENTER	CENTER	CENTER
FLEXURAL STRENGTH, PST	500.00	550.00	600.00	650,00	700.00	750.00
TENSILF STRENGTH. PSI	200.00	210.00	550.00	230.00	240.00	250.00
ELASTIC MODULUS, PSI	1800000	2000000	SS00000	2400000	2600000	2900000
UNIT WEIGHT. PCF	140.00	141.00	142,00	145,00	148.00	150,00
CONSTRUCTION FOUIPMENT COST, PER LANE MILE	1000.00	1000.00	1000.00	1000.00	1000.00	3000.00
COST PER CUBIC YARD OF CONCRETE, DOLLARS	8.50	8+75	9.00	9.10	9+15	9.25
COST OF SURFACING CONCRETE, DOLLARS/PER LANE MILE	950.00	950+00	950.00	950.00	950.00	950.00
SALVAGE VALUE OF CONCRETE, PERCENT	60.00	70.00	70.00	70.00	75.00	75.00

MINIMUM ALLOWABLE CONCRETE THICKNESS, INCHES	8.00
MAXIMUM ALLOWABLE CONCRETE THICKNESS, INCHES	12.00
PRACTICAL INCREMENT FOR POURING CONCRETE. INCHES	2.00

MATERIALS, STEEL

4		٦	2	1	
					BARS
					LONGITUDINAL
777, GR80	- 1	A-812, GR65	A-432	A-615,GR75	BAD STEEL ASTA DESIG
75000.00				70000.00	TENSILE STRENGTH.PSI
.110		.120			COST/LB, DOLLARS
		• • •			TRANSVERSE
-15 INT		A-15 STR	A-15INT	A-15STR	
38000.00				33000.00	TENSILE STRENGTH.PSI
.090				.070	COST/LB. DOLLARS
6		5	4	3	BAR NOS. TO BE TRIED
					TRF MESHES
TM. A-52	4	AST: +++=51	ASTM.A-50	ASTM. A-49	
65000.00		60000.00	75000.00	70000.00	-
.090		.080	.110	.100	COST/L8, DOLLARS
		-	• -	-	MESH SIZES TO HE TRIED
7.00		6.00	5.00	4 ●U0	LONG. WIHE SPACING.FT
18.00					
18.0		16.00	14.00	12.00	TRAN. WIRE SPACING.FT
615,GR46		4-6.5 GD45	A-15 STR	A-615.GR40	TIE BAR ASTM DESIG.
38000.00		•			
_078					
• 070 6			• • • • •		
		37000.00 .075 5	33000.00 .070 4	40000+00 .080 3	TENSILE STRENGTH.PSI Cost/LB: Dollars TIE BAR NOS to be tried

RTGID PAVEMENT SYSTEM 3 CENTER FOR HIGHWAY RESEARCH DEC 1974 RFC JII I-----PROB 1 TEST RUN SHOWING NEW RPS-3 VEPSION RFC III

MATERIALS. SUBGRADE

SURGRADE K. POI	150.00
SURGRADE FRICTION FACTOR	.90
SUBGRADE FRODABILITY FACTOR	2.00
COST PER LANE MILE OF SUBGRADE PREPARATION, DOLLARS	1500.00

MATERIALS. SUBBASE

SUBBASE TYPE	GRANULAF	CEMT S	TAB ASP STA	B LIMSTN
ERODABILITY FACTOR	1.00	0.00	.50	1.50
FRICTION FACTOR	1.50	1,80	1.70	1.50
ELASTIC MODULUS: PSI	20000	1000000	800000	25000
CONSTRUCTION FOUIPMENT COST, DOLLARS/LANE MILE	2000.00	2000.00	2000.00	5000.00
COST PER COMPACTED CU YD , DOLLARS	3.00	5,00	4.50	3.50
SALVAGE PERCENT VALUE, PERCENT	30.00	40.00	40.00	30.00
MIN ALLOWED THICKNESS, THCHES	10,00	10,00	10.00	10.00
MAX ALLOWED THICKNESS, INCHES	12.00	12,00	12.00	12.00
INCREMENT FOR SUBBASE. INCHES	2.00	2.00	2.00	2.00

OVERLAY

INITIAL COST PER LANE MILE OF EQUIPMENT FOR OVERLAYS. DOLLARS	1000.00
COST / CU YD OF IN PLACE COMPACTED ASPHALT CONCRETE, DOLLARS	10.00
SALVAGE VALUE OF ASPHALT CONCRETE PERCENT	40.00
ASPHALT CONCRETE MODULUS VALUE, PSI	300000
PRODUCTION RATE OF COMPACTED ASPHALT CONCRETE, CU YD / HR	175.00
CONCRETE PRODUTION RATE, CU YD ZHR	40.00
CONCRETE COEFFICIENT	1.00
RANDOM ADDITIONAL COST / SQ YD FOR ANYTHING	5.00

JOINTS

CUST/FT OF TRANS. JUINT. SAWING, DOWELS, AND/OR SEALING, DOLLARS	1.40
COST/FT OF LONG. JOINT, SEALING, DULLARS	1.20
RANGE OF SPACING FOR TRANSVERSE JOINTS, LOWER VALUE, FT	15.00
UPPER VALUE, FT	90,00
INCREMENT OF SPACING TO BE TRIED FOR TRANSVERSE JOINTS, FT	15.00
NO. OF TRANS. CUNST. OR WRAPPING JOINTS/MILE FOR CRCP	2

MAINTENANCE, DIMENTIONS AND MISCELLANEOUS

DAYS OF FREEZING TEMPERATURE PER YEAR	10.00
COMPOSITE LABOR WAGE FOR MAINTENANCE OPERATIONS, DOLLARS/HR	2.50
COMPOSITE EQUITPMENT RENTAL RATE FOR MAINT. OPERATION. DOLLARS	3.00
COST OF MATERIALS FOR MAINTENANCE OPERATIONS, DOLLARS	1.00
WIDTH OF EACH LANE, FEET	12.00
TOTAL NUMBER OF LANES IN BOTH DIRECTIONS	8
HATE OF INTEREST OR TIME VALUE OF MONEY. PERCENT	8.00

141

HIGID PAVEMENT SYSTEM 3 CENTER FUR HIGHWAY RESEARCH DEC 1974 MEC TIL Hody 1 - Test Hun Showing Mew PPS=3 Version REC III

MINETHENCE LEVEL VARIABLES

PERCENT COFFF. OF VARIATION OF FLEXURAL	
STRENGTH OF CONCHETE	19.70
STU. DEV. OF ELASTIC MODULUS OF CONCRETE (PSI)	820000.00
STU. DEV. OF SUBURADE K VALUE	35.00
STU. DEV. OF CONTINUITY FACTOR (1)	0.00
STU. DEV. OF INITIAL SERVICABILITY INDEX (PI)	.30
STU. UEV. OF TERMINAL SERVICABILITY INDEX (P2)	. 30
STU. DEV. OF THICKNESS OF CUNCRETE	• 3n
STUE DEV. OF FLEXURAL STRENGTH OF DESIGN WITH:	
MIX 1	98.50
MIX 2	108.35
MIX Z MIX 3	118,20
HIX 4	128,05
M1X 5	137.90
r#1x b	147.75

OVERLAY CONSTRUCTION VARIABLES

MILITARY HOUR OF THE DAY WHEN OVERLAY CONSTRUCTION BEGINS	Ŷ
MILITARY HOUH OF THE DAY WHEN OVERLAY CONSTRUCTION ENDS	17
NUMBER OF DAYS GONCRETE WIST CURE	13
TOTAL NUMBER OF LANES TO BE OVERLAID	1
TUTAL OVERIAY LENGTH IN ONE LANE	~

RIGID PAVEMENT SYNTEM 3 CENTER FOR HIGHWAY RESEARCH DEC 1974 REC III TEST RILL SHOWING NEW RPS- VERSION RFC ITE PHON (

MOST FOUNDMICAL ICP PAVEMENT DESIGN WITH AC OVERLAY.

INITIAL CONSTRUCTION. LIFE IS 5.708 YEARS

MATERIALS					DESCH	IPTION
					NUMHER	NATERIAL NAME
CONCRETE 8.00 INC	HES				6	
SURHASE IU.NO INC	HES				1	
ONG. PETNE MESH SPACING	4.0	5.0	6.0	7.0	3	ASTM. 4-51
MESH DIAMETER	.21	.23	.25	.27		
TRAN. REINF. MESH SPACING	12.0	14.0	16.0	18.0	3	ASTM+4-51
MESH DIAWETER	3 2	. 34	. 37	39		
TEF BARS BAR SHIMBER	3	· · •	5	6	1	A-415,6840
SPACING	11.0	19+6	30.7	44.2		
TRANSVERSE J	OINT S	PACING			50	FFFT
LUNGITHDINAL	JOINT	SPACI	NG		12	FFET

SUBSEQUENT CUNSTRUCTION

.

1 OVERLAY AND LEVEL OF WITH 3.00 INCHES OF AC AFTER 4.708 YEARS > OVERLAY AND LEVEL UP WITH 3.00 INCHES UF AC AFTER 13,529 YEARS

EVERY OVERLAY INCLUDES 1.00 INCHES OF LEVEL UP

TOTAL OVERLAY THICKNESS 4.00 INCHES TOTAL LIFE 24.022 YEARS

CUST ANALYSIS DOLLARS PER SQUARE YAND

INITIAL CONSTRUCTION	
COST OF SUNGRADE PHEPARATION	.213
CURT OF CONCRETE	2.333
COST OF SUBBASE	1+117
COST OF REINFORCEMENT	• 4 41
COST OF JUINTS	.885
COST OF THE HARS	.034
TOTAL INITIAL CONSTRUCTION COST	5.02.1
TOTAL OVERLAY CONSTRUCTION COST	• 97 3
TOTAL TODA COST OUTING OV. CONSTRUCTION	*047
TOTAL MAINTENANCE COST	.145
SALVAGE RETURNS	÷•48₀
ANY ADUITIONAL COST SPECIFIED	5.000
TOTAL OVERALL COST	. 10.712

DESTON ANALYSIS

TOTAL 144 INITIAL DESIGNS WERE EXAMINED, OUT OF WHICH.

78 DESIGNS JERF REJECTED OUE TO USER RESTRAINTS 66 REMAINING INITIAL DESIGNS PRODUCED 141 OVERLAY STRATEGIES

RTGID PAVEMENT SYSTEM 3 CENTER FOR HIGHWAY RESEARCH DEC 1974 HEC III P904 1 TEST RUN SHOWING NEW RPS-3 VERSION AFC ITT

MOST FOUNDHICAL ICP PAVEMENT DESIGN WITH CO OVERLAY.

INITIAL CONSTRUCTION. LIFE IS 12.342 YEARS

MATERIALS. DESCRIPTION MATERIAL MATERIAL NUMBER NAME CONCRETE 8.00 INCHES 6 CHHHASE 10,10 INCHES 1 1 DNG. RETNE HESH SHACING 4.0 5.0 6.0 7.0 3 45TM+4+51 HESH DIAMETER .22 .25 .27 .24 TRAN . RETIN . MESH SOUCING 12.0 14.0 16.0 18.0 3 ASTM+A-51 MESH DIANETER . 34 .31 .39 .42 TIE HANS HAR NUMBER 3 1 . 5 6 4+415.0R40 5- CING 9.7 17.3 27.1 39.0 TRANSVERSE JOINT SPACING 60 FFET

LUNGIT IDINAL JOINT SPACING 12 FFET

SURSEQUENT CONSTRUCTION

A OVERLAY AND LEVEL OF WITH 3.00 INCHES OF CC AFTER 12.322 YEARS

EVERY OVERLAY INCLUDES 1.00 INCHES OF LEVEL UP

TOTAL OVERLAY THICKNESS 2.00 INCHES TOTAL LIFE 31.839 YEARS

COST ANALYSIS DOLLARS PER SQUARE YAND

INITIAL CONSTRUCTION	
COST OF SUBGRADE PREPARATION	•213
COST OF CONCRETE	2+333
CUST OF SURBASE	1.534
COST OF REINFORCEMENT	.500
COST OF JOINTS	•885
COST OF THE BARS	.039
TOTAL INITIAL CONSTRUCTION COST	5.504
TOTAL UVERLAY CONSTRUCTION COST	++06
TOTAL TODA COST DURING DV+ CONSTRUCTION	+622
TOTAL MAINTENANCE COST	.*72
SALVAGE RETURNS	521
ANY ADULTIONAL COST SPECIFIED	ວະບຽດ
TOTAL OVERALL COST	11.483

DESTON ANALYSIS

TOTAL 144 INITIAL DESIGNS WERE EXAMINED. OUT OF WHICH.

TH DESIGNS WERE REJECTED OUL TO USER RESTRAINTS

A6 HEMAINING INITIAL DESIGNS PRODUCED 114 OVERLAY STRATEGIES

REGED PAVEMENT SYSTEM 3 CENTER FUR HIGHWAY RESEARCH DEC 1974 HEC 113 POOR 1 FEST RUN SHOWING NEW RPS-3 VERSION REC 111

MOST ECONOMICAL CHE PAVEMENT DESIGN WITH AT OVERLAY.

INITIAL CONSTRUCTION. LIFE IS 9.359 YEARS

MATERIALS						UE>C+	IPTION
						NUMBER	NATERIAL
CONCRETE	8.10 INC	HE S				з	
SUBBASE	10.00 TNC	HES				1	
I ONG . RETNO	. MESH SPACING	4.0	5.0	6.0	7+0	3	ASTM. 0-51
	MESH NIAHETFA	.45	•5V	+55	,59		
TRAN RETN	.MESH SPACING	12.0	14.0	16.0	18.0	3	ASTM.4=51
	MESH DIAMETER	١ċ.	.34	+ 3A	.38		
TIE HANS	BAR MIMBER	3		4	6	1	A-615.0H40
	SPACING	11+7	20.1	32.4	40+7		
	TRANSVERSE C	ONSTRU	CTION	JUINT	SPACIN	G 2640	FFET
	LONGITIDINAL	JOINT	SPACE	NG		12	FFFT

SUBSEQUENT CONSTRUCTION

3 OVERLAY AND LEVEL UP WITH 3.00 INCHES OF AC AFTER 9.359 YEAPS

EVENY OVERLAY INCLUDES 1.00 INCHES OF LEVEL UP

TOTAL OVERLAY THICKNESS 2.00 INCHES TOTAL LIFE 22.354 YEARS

COST ANALYSIS ONLLARS PER SQUARE YARD

INITIAL CONSTRUCTION	
COST OF SUBGRADE PREPARATION	+213
COST OF CONCRETE	2.277
COST OF SUBBASE	1+117
CUST OF REINFORCEMENT	1.335
COST OF JOINTS	• 680
COST OF THE PARS	- D.J. (
TOTAL INITIAL CONSTRUCTION COST	5+855
TOTAL OVERLAY CONSTRUCTION COST	. 475
TOTAL T.U. COST DURING OV. CONSTRUCTION	+025
TOTAL MAINTENANCE COST	+ 34n
SALVAGE RETURNS	402
ANY ADDITIONAL COST SPECIFIED	5.000
TOTAL OVERALL COST	11+094

DESTON ANALYSIS

TOTAL 144 INITIAL DESIGNS WERE EXAMINED. OUT OF WHICH.

112 UESIGNS VERF REJECTED DUL TO USEN RESTRAINTS 32 REMAINING INITIAL UESIGNS PRODUCED 63 UVERLAV STRATEGIES MOST ECUNOMICAL CRC PAVEMENT DESIGN WITH CC OVERLAY.

INITIAL CONSTRUCTION. LIFE IN 11.525 YEARS

COST OF SUNGPADE PREPANATION

COST OF CONCRETE

COCT OF THE MARS

TOTAL MAINTENANCE COST

SALVAGE HETURNS

TOTAL OVERALL COST

COST OF SUBBASE COST OF HEINFORCEMENT COST OF JOINTS

TOTAL INITIAL CONSTRUCTION COST TOTAL OVERLAY CONSTRUCTION COST

ANY ADULTIONAL COST SPECIFIED

TOTAL TODA COST NURING OV. CONSTRUCTION

MATERIAI S						DESC	PIPTION
						MATERIAL	MATEHTAL NAME
CONCRETE	8.40 TNC	HE S				4	
	10.00 INC					1	
	MESH SPACING		5.4	6.0	7.0	3	ASTN+4-51
	ESH DIANETFR						
TRAN-RETIVE.	MESH SPACING	12.0	14.4	16.0	18.0	و	AST*+A-51
	SH DIAMETER						
	BAH MIMBER					1	4+615.GR40
	SPACING					-	-
	TRANSVERSE C	ONSTRU	CTIUN	JOINT	SPACIN	6 26+0	FFET
	LUNGITODINAL						FFET
FVERY UV	ISTRUCTION 2NO LEVEL UP FERLAY INCLUDE REAY THICKNES	5 1.00	INCHE	S OF L	EVFL U	P	
CUST AMALYSIS INITIAL C	ONSTRUCTION	SQUAR					

.213

2.294

1.117

+033

5,734

+65.,

+423

-.433

5.000

11.801

DESTON ANALYSIS

TOTAL 144 INITIAL DESIGNS WENE EXAMINED, OUT OF WHICH, 112 DESIGNS WERE REDECTED OUE TO USER RESTRAINTS 32 HEMAINING INITIAL DESIGNS PRODUCED 43 OVERLAY STRATEGIES RIGID PAVEMENT SYSTEM 3 CENTER FOR HIGHWAY RESEARCH DEC 1974 REC 111 PROH 1 TEST HUN SHOWING WEW RPS-3 VERSION REC 111

HOST ECONOMICAL INITIAL DESIGN LASTING THE ANALYSIS PERIND

PAVEMENT TYPE IS UCP

.

CONCRETE	10.00 INCHES	MATERIAL NUMBER 5	
	10.00 INCHES		
		5	
SUPPASE	10.00 INCHES	3	
TR	ANSVERSE JUINT SPACE	NG	45 FFET
LO	NEITHDINAL JOINT SPA	CING	12 FEET

COST ANALYSIS DULLARS PER SQUARE YARD INITIAL CONSTRUCTION CUST OF SURGADE PREPARATION COST OF CONCRETE .213 2.814 COST OF SUBBASE COST OF REINFORCEMENT 1+534 .531 COST OF JUINTS COST OF TIE HARS . 455 • 048 TOTAL INITIAL CONSTRUCTION COST 6.100 TOTAL MAINTENANCE COST 1.307 SALVAGE RETURNS ANY ADDITIONAL COST SPECIFIED -.516 5.000 11+89-TOTAL OVERALL COST UESTON ANALYSIS THIS IS THE MOST OPTIMAL DESIGN

OUT OF 85 ACCEPTABLE DESIGNS OF THIS KIND RIGID DAVEMENT SYSTEM 3 CENTER FOR HIGHNAY RESEARCH DEC 1974 REC 111 PROB 1 TEST RUN SHOWING NEW RPS-7 VERSION RFC 111

SUMMARY OF DESIGNS IN INCREASING ONDER OF TOTAL COST

DESTON NUMBER	1	2	3	4	5	
авсаваевее ^{рее} еевеевееее Раукмалт Тург	eeeeeee ⊬CP	******* JCP		*******	*****	eeeee JC
OVERIAY TYPE	AC	AC	JCP	JCP	40L 2 4	JU A
REINFORCEMENT TYPE	MESH	MESH	AC HESH	MESH	MF SH	MES
AFINFUR(FACAL TPC	MEDU	AC 3H	16.24	16.94	Mr 0 4	PL 3
CONCRETE TYPE	6	5	4	3		
SUBBASE TYPE	1	3	3	1	1	
&{\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	******	*******	*******	*******	*******	
SI AH THICKNESS	8.00	8.00	8.00	10.00	8.00	8.0
SUBBASE THICKNESS	10+00	10.00	10.00	10.00	12.00	10.00
OVERIAY + LEVEL OP 1	3.00	1.00	3.98	3.00	3,50	3.91
OVERIAY + LEVEL UP >	1,00				3,00	3.0
	-				-	
INITIAL LIFE	5.71	10.49	8.62	9,79	5,84	5.4
PERFORMANCE LIFE 1	13.53	25.82	21.63	22.49	14.63	14.4
PERFORMANCE LIFE 2	24.02				24.52	26.3
TOTAL PERFORMANCE LIFE	24.02	25.82	21.63	22.49	26,52	26.3
		*				
SPACING TRANS. JOINTS	60+00	60.00	60.00	45.00	60.00	60.0
SPACING LUNG. JOINTS 858888################################	12.00	12.00	12.00	12.00	00.51. *****	12.0
-						
COST OF SUNG, PREPARATION	• 21 3	.213	+213	• 213	.213	+51
COST OF CONCRETE	2,333	<.310	2.249	2,177	2,333	2.22
COST OF SUBBASE	1+117	i,534	1.534	1+117	1.584	1.53
COST OF REINFORCEMENT	+++1	+493	.483	+ 4 4 9	.441	+47
COST OF JOINTS	.885	.885	.885	.955	, 985	. 56
COST OF THE MARS	+034	.039	.038	• 941	.034	•03
INITIAL CONST. COST	5.023	5,474	5.452	5,553	5,190	5,36
OVERLAY CONST. COST	.973	.435	.495	.459	1.026	.93
TRAFFIC DELAY COST	.0.9	.023	.025	+02+	.053	.041
MAINTENANCE COST	.145	. 376	.341	.354	, 168	.16
SALVAGE RETURNS	480	482	459	-,477	~ 502	49
ANY ANDITIONAL COST	5.000	5.000	5.000	5.040	5,000	5.00
*************	*******	*******	******	********		******
TAL COST PEN SQ YAND	10.712	10.826	10.854	10.913	10,434	11.01
		*******		*******		

RTGID PAVEMENT SYSTEM 3 CENTER FOR HIGHWAY RESEARCH DFC 1974 RFC JII Proh 1 test run showing new RPS-3 version RFC JII

	REINFOR	CEMENT	DESIG	iN			
NËSIGN RI NUMBER	EINFORCEMENT DESCR	IPTION				NUMBER	NAME
1 LONG.R	EINF.MESH SPACING MESH DIAMETER	۰.U	5.n •23	A.0	7.0	3	ASTM. A-51
TRAN.R	EINF.MESH SPACING	12.0	14.0	16.0	18.0	3	AST4, A-51
TTE BA		• 3¢	• 34	.37	•34	1	A-615.GR40
	SPACING	11.0	19.6	30.7	44+2		
2 LONG.R	EINF.MESH SPACING MESH DIAMETER	4.U .22	5.0 •24	6.0 .27	7.0 .29	3	ASTM.A-51
TRAN.RI	EINF.HESH SPACING MESH DIAMETER	12.0	14.0	16.0 .34	18.0	3	ASTN. 4-51
TIE HAI		5 5 9.9	17.6	5	6 34.5	1	A-015.GR40
3 10NG.R	EINFAMESH SPACING	4.0	5.0	6.0	7.0	. 3	ASTM. A-51
	NESH DIAMETER	.22	.74	.26	.29		
	EINF.MFSH SPACING MESH DIAMETER	12.0 د3.	14.n •36	16.0 .39	18.0	3	ASTN.A-51
T E BAI	RS BAR NUMBER SPACING	اد. 1001	4	5 2g.0	6 40.3	1	A-615.6440
4 LONG-RI	EINF.MESH SPACING	4.0	5.0	6.0	7.0	3	ASTM.A-51
TRAN	MESH DIAMETER EINE.MESH SPACING	12.0	14.0	.24 16.0	.26 14.0	3	ASTN. 4-51
TIL HA	MESH DIANETER RS BAR NUMBER	35. ز	• 37	•40	•43 6	1	A-015.GR40
-	SPACING	4.3	16.6	25.9	37.3		
5 INNG.RI	EINF.MESH SPACING MESH DIAMETER	4.U .21	5.0	6.0 •25	7.0 .27	3	ASTM. A-51
TRAN.R	EINF.MFSH SPACING MFSH DIAMETER	12.0	14.0	16.0	18.0	3	ASTH.A-51
TJE BA		ے۔ د ۱۱۰۷	4	5	6 44.2	1	A-615.GR40
			19.6	30.7		•	
-	EINFINESH SPACING NESH DIAMETER	4.U 121	5.0 •24	6.0 .26	7.0 .28	3	ASTH.A-51
TRANIR	EINF.MFSH SPACING MFSH DIAMETER	0•≤1 تدو•	14.0	16.0	18.0	3	ASTN. 4-51
TJE 84			18.4	5 28.9	¢1.5	1	#-015.GR41

.

RTGID PAVEMENT SYSTEM 3 CENTER FOR HIGHWAY RESEARCH OFC 1974 REC LIT PROF 1 TEST RUN SHOWING NEW RPS-3 VERSION RFC 111

SUMMARY OF DESIGNS IN INCREASING ORDER OF TOTAL COST

DESIGN NUNGER	7	A	9	10	11	1
	*******	*******	********	******	******	******
PAVEMENT TYPE Overian type	ЧСР Ч	JCP	JCP	-JC o	JC o	
REINFORCEMENT TYPE	AC.	AC	AC	AC	AC	
REINFORCEMENT TYPE	MESH	ME SH	MESH	HRESH	MESH	MES
CONCRETE TYPE	3	3	s		4	
SUBBASE TYPE	3	3	1	4		
********************	*******	*******	******	******	****	*******
SLAB THICKNESS	6.00	8.00	10.00	10.00	A.00	8.00
SUBRASE THACKNESS	15.00	10.00	10.00	10.00	12.00	
OVEDLAY (LEVE) UP 1	4			7		•
OVERLAY + LEVEL OP 1 OVERLAY + LEVEL OP 2	3.00	4.00	3.00	3.00	3.00	
OVEPLAT + LEVEL OF P			3.00		٩,00	
INITIAL LIFE	9.04	7-31	7.7A	10.48	5.09	9.30
PERFORMANCE LUFE 1	22.33	20.34	18.13	25.29	12.15	22.39
PERFORMANCE LUFE 2			30.57		21.71	
TOTAL PERFORMANCE LIFE	22.33	23 . 34	30.57	25.29	21.73	22•35
SPACING THANS. JULIUTS	60 <u>-</u> 00	÷0.00		45.00		
SPACING LONG. JOINTS	14-04	12.00	45.00	12.00		2640.00
######################################	*******	120UU 4#########	*******		12.00	12.U(********
		_				
COST OF SUBG. PREPARATION	.213	.213	.213	•213	• 513	
COST OF CONCRETE	2+277	2.277	2.70A	2.805	2.333	2.271
COST OF CUBBASE	1+784	1.534	1.117	1.256	1.451	1+113
COST OF RELINFORCEMENT	+473	.473	.445	+459	.441	1 • 3 3 5
COST OF JOINTS	. 885	.885	• 455	. 955	. 885	.680
COST OF THE BARS	+037	.037	.040	• 0 • 2	.034	.033
INITIAL CONST. COST	5.669	5,419	5,489	5.730	5.357	5,655
VERLAY CONST. COST	.487	.714	.778	.425	1.047	.475
FRAFFIC DELAY COST	.025	.036	042	.023	.052	.025
ATNTENANDE COST	.341	.361	2 80	.38A	.134	.346
SALVAGE DETURNS	477	- 479	- 514	490	- 501	+02
ANY ADDITIONAL COST	5.000	5,000	5,000	5.000	5.000	5.000
		*******			*******	*******
OTAL COST PER SO YARD	11.045	11.052	11.065	11.075	11.0 6	11.099

TOTAL COST PER SO YARD 11.045 11.052 11.065 11.075 11.0 6 11.094

REC (1)

FSIGN	RE INF	OUVEMENT DESC	RCEMENT RTPT10N	06.510	n M		MATE REAL	MATERIAL
UMHEN			••••••				N JM8FP	NAME
7	I NNG.REINF	.MESH SPACING	 0	5,0	6.0	7.0	3	ASTM, 4-51
		MESH DIAMETER	.21	.24	.26	. 28		
	TUAH. PEINF	. VESH SPACING	12.0	14,0	16.0	19*0	3	ASTM.A#51
		HESH DIAMETER	د د .	• 36	• 3B	. + 0		
	TTE BARS	HAR NUMBER	د	- 4	٣	6	-	A=615+6Hes
		SPACING	10.3	18.3	28.0	41.2		
¥	I ONG.REINF	.MESH SPACING	4.0	5.0	6.0	7.0	3	ASTN.A-SI
		HESH DIAMETER	-51	. 24	.26	.28	1	
	TRAN. REINF	.MESH SPACING	12.0	14.0	16.0	18.0	3	ASTM.A-51
		MESH DIAMETER	• 3 3	• 36	•38	.40		
	TIE BARS	HAR NUMBER	t	4	5	6		A-015.GR4
		SPACING	10.J	18,3	28.5	41.2		
9	ONG. REINE	MESH SPACING	4 . V	5.0	6.0	7.0	3	ASTM.A-51
		MESH DIAMETER	.19	.22	.24	.20		
	TOAN. REINE	. UFSH SPACING	12.0	14.0	16.0	18.0	3	ASTM+A-51
		MESH DIAMETER	.35	.37	.40	, 42		
	TIE HARS	HAR NUMHER	ى	4	5	6	1	A-615,GR+
		SPACING	9.4	16,7	29+1	37.6		
10	I ONG. HE INF		4.0	5.0	6.0	7.0	3	ASTM. A-51
		MESH DIAMETER	.20	.27	.74	,26		
	TRAN. REINF	.MESH SPACING	12.0	14.0	16.0	18.0	3	ASTM.A-51
		MESH DIAMETER	. 35	. 38	.*1	. 43	ł	
	TJE BARS	BAR NUMBER	t	- 4	5	6	1	A-615.6740
		SPACING	4+1	16.2	25.4	36.6		
11	I ONG. REINF	.HESH SHACING	4.0	5.0	6.0	7.0		ASTM.A-51
		HESH DIANETER		.23	. 25	.21		
	TOAN. REINF	.MESH SPACING	12.0	14.0	16.0	18.0		A5TM+ A-51
		MESH DIAMETER	,3≥	.34	, 37	ود.	•	
	TIE BAHS	BAR NUMBER			5	6		A-615,644(
		SPACING	11.4	19.6	30,7	44,2		
12	I ONG . REINF	. HESH SPACING	* . U	5.0	6.0	7.0	3	ASTN.A-51
		MESH DIAMETER	.45	.50	.55	.59		
		.MESH SPACING		14.0	16.0	18.0	3	ASTM.A=51
		MESH DIAMETER	.31	.34	.36	, 38		
	TIE BARS	BAR NUMBER		4	5	6		A-615.64+0
		SPACING	11,7	20.7	32.+	46.7		

HEC ILI

SUMMARY OF DESIGNS IN INCREASING ORDER OF TOTAL COST

DESIGN NUMBER Banadataat ^a tatataatataata	13	14	15	16	17	t.
PAVEMENT TYPE	4444444 40P	JCP	JCP	******** ¤jL	смс Смс	****** JC
DVERLAY TYPE	AC	AC	AC	AC		A:
REINFORCEMENT TYPE	MESH	MESH	MESH	MESH		
ar the only one of the	1230	ALSH	7E 3H	1534	ME 94	112.3
CONCRETE TYPE	2	6	•	3	ş	
SHORASE TYPE	1	2	1	3	1	
*******************	*******	*******	******	*******	*******	*******
SI AR THICKNESS	10.00	8.00	10.00	8.00	8.00	10.0
SUBHASE THICKNESS	10.00	10.00	12.00	10.00	10.00	12.0
DVERLAY + LEVEL IP 1	4.50	3.00	3.00	3,50	3.00	4.0
IVERIAY + LEVEL UP >				3.00	3.00	
INITIAL LIFE	7.78	14-10	12.37	7.31	7.47	.7.9
PERFORMANCE LIFE 1	20.72	34.92	28.95	19.00	17.76	20.2
PERFORMANCE LIFE 2	20110	54472	EG # 75	35.20	31.16	10+L
FILL FILL FILL F				33420	31.14	
OTAL PERFURMANCE I TE	20.72	34.92	28.95	35.20	31.16	20.2
PACING TRANS. JOINTS	+5.00	45.On	45.00	60.00	2640.00	45.0
PACING LONG. JOINTS	12.00	12.00	12.00	12.00		12.0
********************	*******	*******	*******	******		******
	• •					
INST OF SUBG. PREPAWATION	•213	•513	•513	• 513		• 51
OST OF CUNCRETE	2.708	2,333	2.805	2.277	5.551	2.70
OST OF SUBBASE	1+117	1.673	1.284	1.534	1.117	1.28
DST OF REINFORCEMENT	+45	.456	.459	+473	1.285	. 44
OST OF JUINTS	.955	.955	.955	.845	*680	• 95
AST OF THE MARS	• 0 4 0	•0 4 1	.042	.037	.035	• Q #
NITIAL CUNST. COST	5.480	5,671	5.757	5,419	5,546	5.64
VERLAY CONST. COST	.765	.330	.376	.861	798	.67
RAFFIC DELAY COST	.040	.019	.021	.0+5	.043	.03
AINTENANCE CUST	.349	.613	.475	.344	. 255	+ 345
ALVAGE RETURNS	502	498	+,442	-,515		50
NY ADDITIONAL COST	5.000	ə ,00n	5,000	5.000	5,000	5.00
*****	*******	*******	*******			******
OTAL COST PER SQ YARD	11.132	11,135	11.13A	11.155	11.201	11.20

REGED PAVEMENT SYSTEM 3 CENTER FOR HEGHWAY RESEARCH DEC 1974 REC III PROB 1 TEST KING SHOWING NEW RPS-3 VERSION REC III

NESIGN REI NUMHER	NFORCEMENT DESCR	IPTION				M.TFHTAL	MATERIAL
NUMHER							
						UJH8F®	NAME
13 LONG.REI		4.0	5.0	5.0	7.0	з	ASTM.A-51
• • • • • • • • • •	MESH DIAMETER	.19	22	.24	26		-,
TOAN.RE I	NE.MESH SPACING	12.0	14.0	16.0	18.0		ASTM. A-SI
	MESH DIAMETER	.35	.37	.40	. 42		
TTE BARS	BAR NUHBER	د	4	۶,	6	1	A-615,6440
	SPACING	9.4	16.7	59.1	37.0		
14 ANG.REI	NF.HESH SPACING	4.U	5.0	6.0	7.0	з	ASTM.A=51
	MESH DIAMETER	.20	. 22	.24	.26		
TPAN. RE]	NE.MESH SPACING	12.0	14.0	16.0	18.0	3	AC M.A-D.
	MESH DIAMETER	5 د .	• 38	.40	. 4 3		
TTE BARS	HAR NUMBER	د	4	5	6	1	A-615.6440
	SFACING	9.2	16.4	25.6	30.d		
15 ONG.RE1	NE.MESH SPACING	4.0	5.0	6.0	7.0	Э	ASTM, A-51
	MESH DIAMETER	• 20	• 22	.24	.26		
TPAN.REJ	NF.MESH SPACING	12.0	14.0	16.0	18.0		ASTM.A-51
	MESH DIAMETER	.35	• 3A	.41	. + 3		
TTE BARS			4	5	6		A+615+GR+0
	SPACING	1.پ	16.2	25.4	36.6		
16 FONG.REL	NETHESH SPACING	4.0	5.0	6.0	7.0	Э	ASTM.A-51
	MESH DIAMETER	.21	.24	• 2+	.28		
TPANAREI	NF.MESH SPACING	15.0	14.0	16.9	18.0	3	ASTN:A-51
	MESH DIAMETER	دو.	+ 36	•3H	.+0		
TTE BARS		د	4	5	6		A=615+GR40
	SPACING	10.3	18.3	29.6	41.2		
17 I NG. REI	NE.HESH SPACING	0. 4	5.0	6.0	7,0	3	ASTM. 4+51
	MESH DIAMETER		• 4 9	.53	.58		
TRAN.RE1	NF.MESH SPACING	15.0	14.0	16.0	10.0		ASTM.A-51
	MESH DIAMETER	.31	• 33	. 36	.38		
TTE BARS		E .	*	5	ь		A=615.GR40
	SPACING	11.7	20.9	32.4	47.0		
18 LONG.REL	NE SPACING	4.0	5.0	6.0	7.0	3	AST N. 4-51
	MESH DIAMETER	.19	• 22	.74	.26		
TRAN.RE	NF.MFSH SPACING	12+0	14.0	16.0	18.0		ASTM, A-51
	MESH DIAMETER	.35	• 37	.40	. * 2		
TIE BARS		د د	. 4	5		•	A-615.G940
	SPACING	9.4	16.7	26.1	37.6		

RTGIN PAVEMENT SYSTEM 3 CENTER FOR HIGHWAY RESEARCH DEC 1974 REC LLL PROM 1 TEST RUN SHOWING NEW RPS-3 VERSION REC LLT

SUMMARY OF DESIGNS IN INCREASING ORDER OF TOTAL COST

DESTON NUMBER	19	20	21	22	23
	0	JCP	JCP	JCP	JCo
PAVEMENT TYPE Overiay Type	4CP		-		
OVERLAY TYPE RFINFORCFMENT TYPE	AC MESH	A C MESH	AC HESH	∆C MESH	AC MFSH
AFINFUNCTERENT TYPE	HE 5H	HC 3H	112 34	me 3 m	WEDM
CONCRETE TIPE	2	1	3	6	2
SUBBASE TYPE	3	3		1	2
		*******	*******	*******	******
				6 .	
SI AH THICKNESS	8.00	B.00	10.00	8.00	8.00
SUBRASE THICKNESS	12.00	12.00	12.00	10.00	10.00
OVERIAY + LEVEL UP 1	4.06	3.00	3.00	6.50	4.50
OVERIAY + LEVEL UP >		3.00			
			_		•
INITIAL LIFE	7,38	5+87	8.88	5.71	6.8A
PERFORMANCE LIFE 1	20.78	14.36	20.75	21.50	20.74
PERFORMANCE LIFE 2		26.48			
	-				_
TOTAL PERFORMANCE LIFE	20.78	26.4R	20.75	21.50	20.74
SPACING THANS. JOINTS	60.00	60.00	45.00	60.40	60.00
SPACING LUNG. JOINTS	12.00	12.00	12.00	12.00	12.00

			• · · ·		
COST OF SUBG. PREPARATION	• 513	.213	.213	•513	• 213
COST OF CONCRETE	5.551	2.166	2.777	<·333	2.221
COST OF SUBBASE Cost of PelnForcement	1.784	1.784	1.451	1.117	1.673
COST OF JUINTS	• 470 • 885	.466	. 4 4 9	• • • • 1	• 4 97
COST OF TIL BARS	.03/	.885	• 955	•885 •034	.885
LOST OF TIL BARS	.031	.036	.041	.034	.039
INITIAL CUNST. COST	5.610	5,55 1	5.886	5.023	5,529
DVERLAY CONST. COST	•710	. 944	.492	1.255	.820
TRAFFIC DELAY COST	.036	.048	.025	.064	.042
AINTFHANCE COST	.359	.161	. 341	• • • 2	. 376
SALVAGE RETURNS	+92	+67	498	516	-,495
ANY ADDITIONAL COST	5.000	5,000	5.000	5.000	5,000
					·
SABBARARARARARARARARARARARARARARARARARAR	11.224	11,237	11.246	11.740	11.272
INTAL COST PER 50 VARD	11+654	444631	114540	11.269	11.812

RIGIN PAVENENT SYSTEM 3 CENTER FOR HIGHWAY RESEARCH DEF 1974 REF. IT PROB 1 TEST KUN SHOWING REM HPS-3 VERSION REC 111

	REINFOR	CEMENT	0E516	N			
DESIGN NUMRER		(bilov				MATERIAL	NATERIAL NAME
19	IONG.REINE.WESH SPACING	4. U	5.0	6.0	7.0		A5 [M. A=5]
	HESH DIAMETER TRAN.REINE.MESH SPACING	12.U	+24 14.0	.26 16.0	.28 18.0		ASTNAATSI
	MESH DIAMETER		+36	438	.40		431-18-31
	TIE HARS HAR NUMBER	در.	• 19	• • • •			A-015.684
	SPACING	10.4	18.4	28. H	41.5		
20	IONG. REINF . MESH SPACING	U	5.0	6 •0	7.0	3	45TM. 4-51
	MESH DIAMETER	+ 21	. 24	•59	. 28		
	TRAN-REINF. MESH SPACING	15.0	14.0	14.0	18.0	3	A5TM+A-51
	HESH DIAMETER	ق ق ۽	. 35	. Зн	.+0		
	TTE BARS BAR NUMBER	د ا	. 4	5	6	-	4-615.644
	SPACING	10,+	18.5	Zy.0	41+8		
21	I DNU.REINE. SPACING	4.0	5.0	6.0	7.0	-	A-14.A-51
	MESH DIAMETER	+17	• 22	.24	.26		
	TPAN.REINF.PESH SPACING	12,0	14.0	16.0	18.0		ASTM.A-51
	MESH DIAMETER	<د .	• 37	e 4 i j	. + 3		
	TE BARS BAR NUMBER	اد	4	5	6		A-015.6840
	SPACING	د . پ	16.6	25 g	37.3		
22	LONG. RET OF	ل 🖕 ا	5.0	6+0	7.0		ASTN.A-51
	MESH DIAMETER	• 51	• 23	. 24	.27		
	TRAN, RELAF . HESH SPACING	12.0	14.0	16.0	18.0		A5TM+A-51
	MESH DIAMETER	• 4 d	. 34	.3/	. 39		4 - 11 Mar
	TTE BARS HAR NUMHER SPACING	د. ۱۱.۰	4 14.6		6		A+015.64+)
	SPACING	11.0	14.4	30.7	44•2		
23	I DNG. RETHE FSH SPACING	4.V	5.0	5.0	7.0	-	ASTM.A-51
	MESH DIAMETER	+24	• 24	. 27	. 29		
	TRAN. REINF. MESH SPACING	12.0	14.0	16.0	14.0	-	ASTM.A-51
	MESH DIAMETER	.34 J	.37	, 39	.42		
	TTE BARS HAP NUMBER SPACING	у.В	17.4	27.2	6 ع۰۶	•	4-615.6440
	,			2	3.52		

RIGIN PAVEMENT SYSTEM 3 CENTER FOR HIGHWAY RESEARCH DEC 1974 HEC III POOR 1 TEST RING SHOWING NEW RPS-3 VENSION REC III

INITIAL DESIGN ANALYSIS

νUT	ОF	A TOTAL OF 288 INITIAL POSSIBLE DESIGNS.
		O WERE REJECTED DUE TO MAR. INITIAL THICKNESS RESTRAINT
nU†	01	280 OLSIGNS THUS LEFT
		BE DESIGNS WERE REJECTED SINCE THEY ARE UVERDESIGNS OF
		INITTAL DESIGNS WHICH LAST THE ANALYSIS PERIND
UU1	oF	206 DESTONS THUS LEFT.
		23 DESIGNS WERE REJECTED DUE TO THEIR LIVES BEING LESS
		THAN THE MINIMUM ALLUMABLE TIME TO THE FIRST OVERLAY
OUT.	0F	183 DESIGNS THUS LEFT.
		U DESIGNS WERE REJECTED DUE TO THE RESTRAINT OF MAXIMUM
		INITIAL FUNDE AVAILABLE
100	UF	183 DESTANS THUS LEFT.
		HS DESTONS WERE ACCEPTABLE INITIAL DESTONS WITH LIVES
		HURF THAN THE ANALYSIS PERIOD
AND	THU	S OA DESIGNS WERE PASSED TO THE OVERLAY SUBSYSTEM TO
		FORMULATE THE PUSSIBLE OVERLAY STRATEGIES

OVERLAY SUBSYSTEM ANALYSIS

ULSTON	COMPINATION NUMBER	1	2	3	
NUMRER NUMRER	WHEN HAX, OV, THICKNESS HESTHAINI WAS HIT WHEN MIN TIME HETWEEN OV RESTHAINT WAS HIT WHEN OVERLAVS MEEDED WERE MORE THAN EIGHT	21 0 0	0 0	5	0 0 0
NUMRER	OF TIMES SUBERVITINE # AGE # #AS CALLED OF TIMES SUBERVITINE #MANCE# #AS CALLED OF TIMES SUBERVITINE # TDC # #AS CALLED	237 237 237	162 162 162	49 49 49	54 54 54
NUMHEP	OF PUSSIBLE OVERLAY STRATEGIES DETAINED OF DVERDESIGNS ONTAINED	51 90	86 28	49 14	43
OUT OF	A TOTAL UF	162	114	68	43

THUS FOR THE ENTIRE DESIGN SYSTEM OUT OF AN AVERALL TOTAL OF 387 OVERLAY STRATEGIES 26 "ERE REJECTED DUE ID DIFFERENT RESTRAINTS ANU 361 "ENE CONSIDERED FOR OPTIMIZATION PRACESS This page replaces an intentionally blank page in the original --- CTR Library Digitization Team

APPENDIX 3

USER'S MANUAL

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

TEXAS HIGHWAY DEPARTMENT RIGID PAVEMENT DESIGN SYSTEM PROGRAM RPS-3

PROBLEM IDENTIFICATION CARD NO. 1

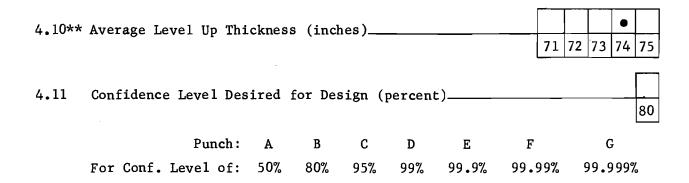
1.1	Problem Number		_						
						1	2	3	4
	(Any combination of letters and/or numbers)								
1 2						· · ·			
1.2	Problem Description	11	12	13	14	15	16	17	18
	<u> </u>								
	19								70

(Any combination of letters and/or numbers)

PROGRAM CONTROLS CARD NO. 2

		······
2.1	Type of Pavement	
		10
	= 1 for jointed concrete pavement to be designed only	
	= 2 for continuously reinforced concrete pavement to be designed onl	у
	= blank for jointed concrete pavement and continuously reinforced concrete pavement to both be designed	
2.2	Type of Overlay	
		20
	= 1 for portland cement concrete overlay only	
	= 2 for asphaltic concrete overlay only	
	= blank for portland cement concrete and asphaltic concrete overlays to be tried	
2.3	Type of Reinforcement	30
	= 1 for deformed bar reinforcement only	
	= 2 for welded wire mesh reinforcement only	
	= blank for deformed bars and wire mesh to be tried	
2.4	Form of Output	50
	= 1 for short form of output (no steel layout or seal coat schedule)	
	= blank for long form of output	
2.5	Number of Designs for the Output (< 24)	•
	78 79	80
	= blank for twelve designs (six per page)	

TRAFFIC GROWTH AND DISTRIBUTION DATA CARD NO. 3


3.1 Axle Growth Factor (percent per year of linear growth of number of axles)							1	•		
Timear growen of number of axies)	1	2	3	4	5	6	7	8	9	10
3.2 ADT Growth Rate (percent per year of										
linear growth in average daily traffic)	11	12	13	14	15	16	17	• 18	19	20
							_	_		
3.3 Directional Distribution Factor (percent)	31	32	33	34	35	36	37	38	39	40
	с г									
3.4 Lane Distribution Factor (percent)	41	42	43	44	45	46	47	• 48	49	50
			-13	••	10	10				50
3.5 Initial ADT Expected, One Direction (vehicles per day)	<u> </u>							•		
(venicles per day)	61	62	63	64	65	66	67	68	69	70
** 2 6 Total 18-kin Aulos for Analysis Deriod										
3.6 Total 18-kip Axles for Analysis Period in Both Directions										•
	71	72	73	74	75	76	77	78	79	80

- * The initial ADT expected in one direction should not be large enough so as to exceed the practical capacity of 1500 veh/hr/lane. This data may be obtained from D-10
- ** These inputs may be obtained from D-10 of the Texas Highway Department

DESIGNER'S RESTRAINTS CARD NO. 4

4.1	Maximum Funds Available for Initial Construction (dollars/sq.yd)								•							
		1	2	3	4	5	6	7	8	9	10					
4.2	Maximum Allowable Thickness, Slab Plus Subbase (inches)							-	•							
		11	12	13	14	15	16	17	18	19	20					
4.3*	Minimum Allowable Time to the First Overlay (years)								•							
		21	22	23	24	25	26	27	28	29	30					
4.4*	Minimum Allowable Time Between Overlays (years)								٠							
		31	32	33	34	35	36	37	38	39	40					
4.5*	Maximum Total Asphalt Concrete Overlay Thickness (inches)									٠						
							41	42	43	44	45					
						-	<u></u>				,					
4.6*	Minimum Total Asphalt Concrete Overlay at Thickness (inches)	one	ti	ne						•						
						l	46	47	48	49	50					
(7.4	Mandaum Matal Dantland Compaty Company					r					 ,					
4./*	Maximum Total Portland Cement Concrete Overlay Thickness (inches)									٠						
						l	51	52	53	54	55					
1. 0.3.	Minimum Total Portland Cement Concrete at		.			г		·····		·						
4.0^	Overlay Thickness (inches)		C11	пе ——						•						
						Į	56	57	58	59	60					
4.9	Length of Analysis Period (years)								•							
4.7	Henken of Analysis ferrod (years)	61	62	63	64	65	66	67	68	69	70					

* See explanation following completion of this card.

** See explanation on following page.

EXPLANATIONS OF SPECIFICALLY INDICATED DESIGNER'S RESTRAINT VARIABLES ON CARD NO. 4

4.3-4.8* Overlay Inputs

If no overlay is planned for the facility 4.3 should be (at least) equal to the analysis period while items 4.4, 4.5, 4.6, 4.7, and 4.8 can be left blank.

If only one type of overlay, either asphalt or concrete, is planned, the thickness limits for the desired overlay type may be input while the thickness limits for the other type may be left blank.

4.10** Average Level Up Thickness

This is the designer's estimate of the average thickness required by a contractor to restore a pavement to its original profile before overlay. It would be correspondingly larger for example on a rough road, than for a fairly smooth road. If no information is available, a value of 1 inch may be used.

PERFORMANCE VARIABLES CARD NO. 5

5.1	Initial Serviceability Index (expected)								¢		
		1	2	3	4	5	6	7	8	9	10
5.2		[1						•		
	Terminal Serviceability Index (accepted)	11	12	13	14	15	16	17	18	19	20
5.3	Serviceability Index After an Overlay (expected)								•		
		21	22	23	24	25	26	27	28	29	30
F / 4			1	,							·
5.4*	Probability of Conjunction of Bad Soil and Site (percent)								•		
	-	31	32	33	34	35	36	37	38	39	40
F Calada	Seclific Data Constant								•		
5.5**	Swelling Rate Constant		42	43	44	45	46	47	48	49	50
			-								

5.6*** Swelling Activity, Estimated Dif-										
ferential Movement (inches) (potential vertical rise)								•		
(potential vertical lise)	51	52	53	54	55	56	57	58	59	60

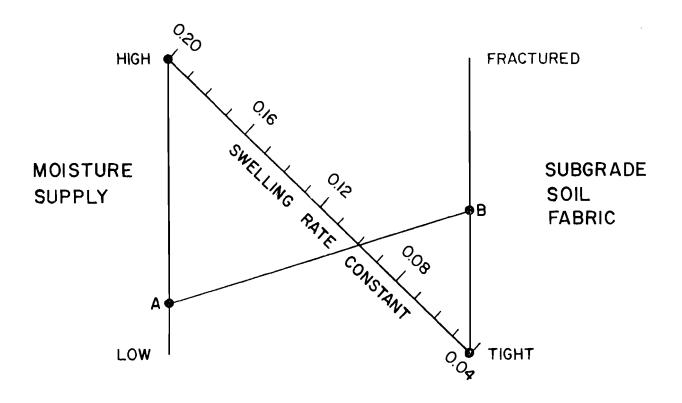
* See explanation on following page.
** See explanation on following page.
*** See explanation on following page.

EXPLANATIONS OF SPECIFICALLY INDICATED PERFORMANCE VARIABLES ON CARD NO. 5

5.4* Swelling Probability

At present, three constants are used to calculate the reduction of the serviceability index with time due to swelling clay and other non-traffic causes of serviceability loss. The first constant, swelling probability (6.4), is a fraction between 0 and 1 which represents the proportion of the project length which is likely to experience swell. This suggests that swelling clay must be present, and that local conditions must be conducive to swelling. Cuts, grade points, bridge approaches, grass root grade lines, and choppy fills seem to be more of a problem than uniform fills. Local experience must be input for this value until more definite guidelines can be developed.

5.5** Swelling Rate Constant


The swelling rate constant is used to calculate how fast swelling takes place. This constant lies between .04 and .20. It is larger when the soil is cracked and open, and when a large moisture supply is available due to poor drainage, high rainfall, underground seeps, or other sources of water. When drainage conditions are good or the soil is tight the swelling rate constant becomes smaller.

The nomograph in Fig 5.1 gives a method of selecting this input based upon the judgement of the designer of local soil and moisture conditions.

Figure 5.2 shows the effects (in the absence of traffic) for three values of PVR and two values of the swelling rate constant on the performance curve. For the curves shown the swelling probability used is 1.0. The effect of other values of swelling probability can be evaluated considering that this input is used solely as a multiplying modifier on PVR in the program. For example, a swelling probability of 0.10 and PVR of 10 inches is exactly equal in the program to a swelling probability of 1.0 and a PVR of 1 inch.

5.6*** Potential Vertical Rise

The potential vertical rise (PVR) is a measure of how much the surface of the bed of clay can rise if it is supplied with all the moisture it can absorb.

- <u>NOTES</u>: (a) LOW MOISTURE SUPPLY Low Rainfall Good Drainage
 - (b) HIGH MOISTURE SUPPLY

High Rainfall Poor Drainage Vicinity of Culverts, Bridge Abutments, Inlet Leads

- (c) SOIL FABRIC CONDITIONS Self-Explanatory
- (d) USE OF THE NOMOGRAPH
 - Select the appropriate moisture supply condition which may be somewhere between low and high (such as A).
 - (2) Select the appropriate soil fabric (such as B).
 - (3) Draw a straight line between the selected points (A to B).
 - (4) Read SWRATE from the diagonal axis (read 0.10).

Fig A5.1. Nomograph for selecting swelling rate constant.

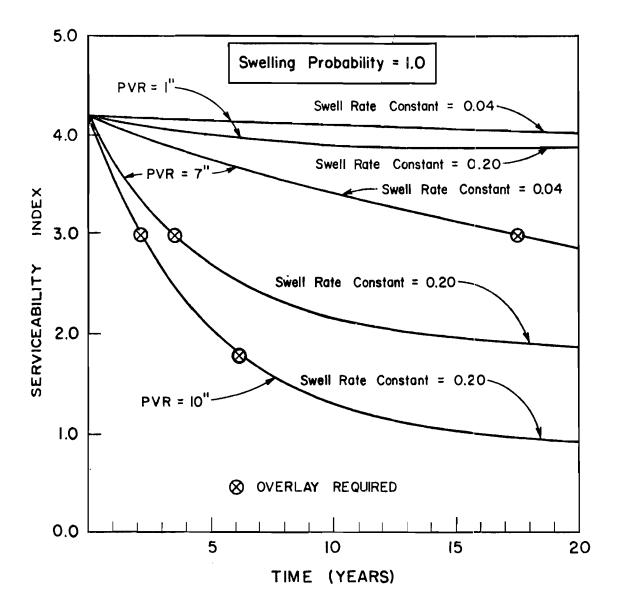


Fig A5.2. Performance curves illustrating serviceability loss not caused by traffic.

PVR can either be estimated in a particular locality from the total amount of differential heave the designer (or maintenance personnel) would expect to observe over a <u>long</u> period of time, or by using Texas Test Method, Tex-124-E. Extremely bad clay may have a PVR in the order of 10 to 20 inches.

For highways that have been in existence for some time, the remaining potential for swelling should be reduced by the amount of swell that has already occurred. How much has occurred will depend on the age of the roadbed and the swell rate constant which is discussed in the next section. Figure 5.3 provides a multiplier (ratio) to apply to the original PVR if the swell rate constant and age of an existing road are known.

163

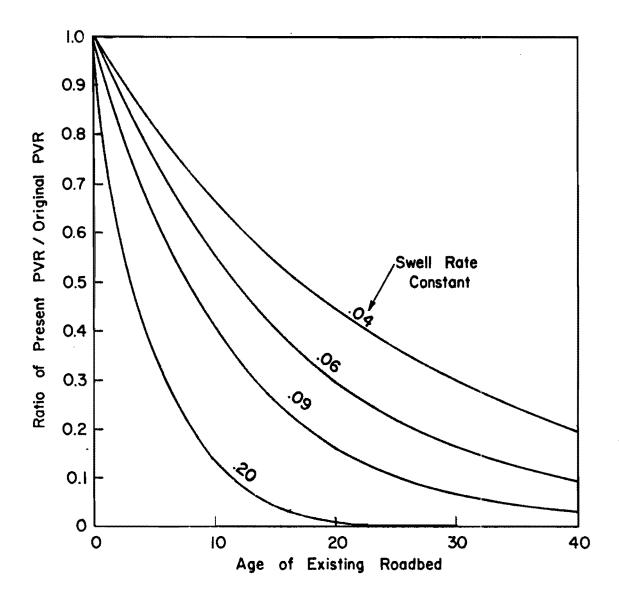


Fig A5.3. Chart for estimating PVR for an existing road.

TRAFFIC DELAY COST VARIABLES CARD NO. 6

6.1* Distance Over Which Traffic is Slowed								•		
in Overlay Direction (miles)	1	2	3	4	5	6	7	8	9	10
6.2* Distance Over Which Traffic is Slowed in Non-Overlay Direction (miles).								•		
	11	12	13	14	15	16	17	18	19	20
6.3* Distance Measured Along Detour Around		Γ								
Overlay Zone (miles)	21	22	23	24	25	26	27	• 28	29	30
	L <u>.</u>						_,			
6.4 Number of Hours Per Day that Overlay Construction Takes Place	[1			-		<u> </u>	•	-	
	41	42	43	44	45	46	47	48	49	50
6.5 Number of Open Lanes in Restricted Zone in Overlay Direction										
										55
6.6* Number of Open Lanes in Restricted Zone										
in Non-Overlay Direction	••									
										60
6.7 Type of Road										
			·							80
= 1 indicates rural roads										
= 2 indicates urban roads										

= 2 indicates urban roads

* See item 7.8 before filling in these values.

TRAFFIC DELAY COST VARIABLES CARD NO. 7

7.1	Percent of Vehicles Stopped by Construc- tion Equipment and Personnel, Overlay							· · · · ·	•		
	Direction (percent)	1	2	3	4	5	6	7	8	9	10
7.2	Percent of Vehicles Stopped by Construc- tion Equipment and Personnel, Non- Overlay Direction (percent)	11	12	13	14	15	16	17	• 18	19	20
7.3	Average Delay Per Vehicle Due to Road Equipment and Personnel, Overlay Direction (hours)]						•		
	Direction (nours)	21	22	23	24	25	26	27	28	29	30
7.4	Average Delay Per Vehicle Due to Road Equipment and Personnel, Non-Overlay Direction (hours)	31	32	33	34	35	36	37	• 38	39	40
7.5	Average Approach Speed to Overlay Area (mph)	6.1	1.2	1.2	1. 1.	4.5	1.6	4.7	•	4.0	50
		41	42	45	44	45	40	47	40	49	50
7.6	Average Speed Through the Restricted Zone, Overlay Direction (mph)				[•		
		51	52	53	54	55	56	57	58	59	60
7.7	Average Speed Through the Restricted Zone, Non-Overlay Direction (mph)		[•		
		61	62	63	64	65	66	67	68	69	70
7.8**	Model Number Which Describes Traffic										
	Situation During Overlay Construction—										

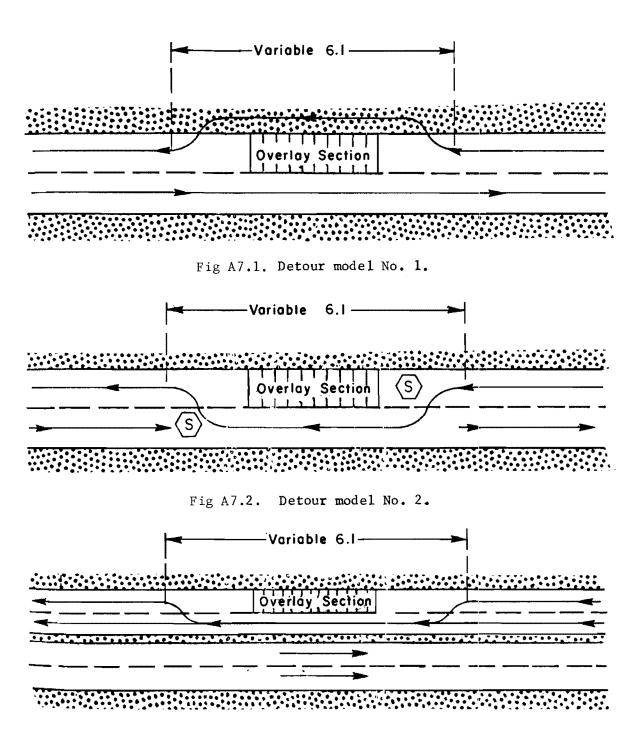
80

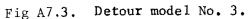
** See explanation on following page.

EXPLANATION OF SPECIFICALLY INDICATED TRAFFIC DELAY COST VARIABLES ON CARDS 5, 6, and 7

7.8** Model Number Which Describes Traffic Situation for Overlay

There are currently five models describing the separate ways in which traffic might be handled during overlay construction.


The designer must specify which model would be used for the particular type of facility being designed by input of a 1, 2, 3, 4, or 5. These models are respectively drawn in Figs 7.1 through 7.5.


Variable 6.3; Distance Measured Along Detour Around Overlay Zone (miles); is only necessary if Model 5 is used and may be left blank when selecting the other models.

Variables 6.5 and 6.6; the Number of Open Lanes in Restricted Zone in Overlay Direction and Non-Overlay Direction respectively should neither be greater than three lanes.

6.5* and 6.6* Number of Open Lanes

Both the number of open lanes in the overlay direction and the number of open lanes in the nonoverlay direction must be greater than zero. For example, Model 2 in Fig 7.2, appears to indicate that one direction should have a "1" input and the other direction a zero; however, this is incorrect. Both must have a "1" input or the program will not run correctly.

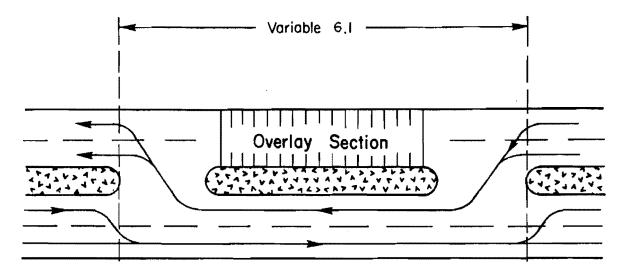


Fig A7.4. Detour model No. 4

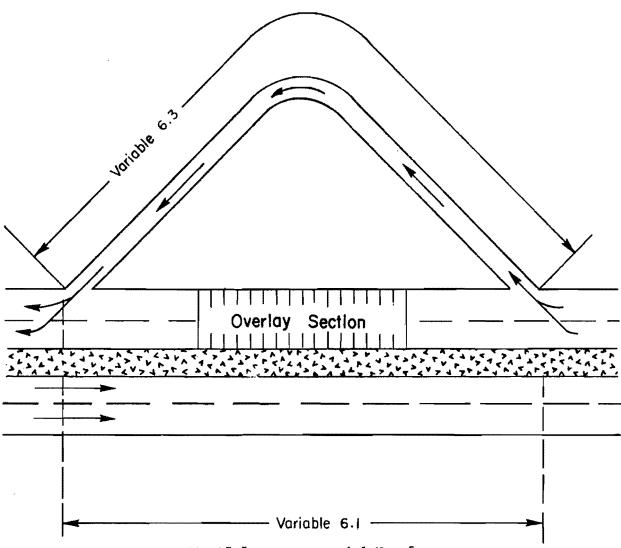


Fig A7.5. Detour model No. 5.

MATERIALS, CONCRETE CARD(S) NO. 8

8.1	Number of Concrete Types					.					5		
	(Maximum number of concrete types is six)									1			
	Include this input only for the first concr	<u>ete</u>	ty	<u>pe</u> *									
8.2	Number of Days at Which Concrete Flexural Strength was Measured (7 or 28)								_	7	8		
	Indicate in column 8 for 7-day strength								1				
	Indicate in columns 7 and 8 for 28-day strength												
										I			
8.3	Type of Concrete Flexure Test										10		
	= 1 for flexural strength obtained by cen	ter	DO.	int	10:	adir	nø				10		
	= 2 for flexural strength obtained by thi		-				-						
			•			1					·		
8.4	Concrete Flexural Strength (psi)									•			
							11	12	13	14	15		
85	Unit Weight of Concrete (pounds per cubic f	oot'	`							•			
0.5	unit Meigne of concrete (pounds per cubic i	006	,				26	27	28	29	30		
											•		
8.6	Modulus of Elasticity at 28 Days (psi)	31	32	33	34	35	36	37	38	39			
		L				1	[]	I I	r	I			
8.7	Tensile Strength of Concrete (psi)			-						•			
							41	42	43	44	45		
8.8	Equipment Cost Per Lane Mile for Placing												
0.0	Concrete for the Initial Construction								•				
	(dollars)	46	47	48	49	50	51	52	53	54	55		
		·			·	r		·	·	·	·		
8.9	Cost Per Cubic Yard of Concrete (dollars)								•		65		
		56	57	58	59	60	61	62	63	64	65		

* An additional card including only items 8.2 through 8.11 should be added for each concrete type.

8.10 Cost Per Lane Mile of Surfacing Concrete Pavement - Finish, Texture, and Curing (dollars)

							٠		
66	67	68	69	70	71	72	73	74	75

8.11 Salvage Value of Concrete at End of Analysis Period (percent) ______ 76 77 78 79 80

CONCRETE DIMENSIONS CARD NO. 9

- 9.1 Minimum Allowable Concrete Thickness (inches) ______ 11 12 13 14 15 16 17 18 19 20
- 9.2 Maximum Allowable Concrete Thickness (inches)_____

							•		
21	22	23	24	25	26	27	28	29	30

* The minimum thickness for incrementing placement of the concrete should be .50 inch.

MATERIALS, SUBGRADE CARD NO. 10

10.1	Subgrade K-value (pci)								٠		
		1	2	3	4	5	6	7	8	9	10
10.2	Texas Triaxial Class Value								•		
		31	32	33	34	35	36	37	38	39	40
10.3*	Friction Factor Between Subgrade										1
	and Concrete						61	62	• 63	64	65
10.4**	Subgrade Erodability Factor						66	67	68	69	70
10.5	Cost Per Lane Mile of Subgrade Preparation (dollars)								٠		
	<u> </u>	71	72	73	74	75	76	77	78	79	80

* See explanation on following page.** See explanation on following page.

EXPLANATIONS OF SPECIFICALLY INDICATED SUBGRADE MATERIAL VARIABLES ON CARD NO. 10

10.3* Friction Factor Between Subgrade and Concrete

This input may be left out if the design minimum subbase thickness is greater than zero. If the minimum thickness of subbase is specified as zero, then a friction factor must be included. A general range for friction factors is shown in Table 11.1.

10.4** Subgrade Erodability Factor

This input may be left out if the design minimum subbase thickness is greater than zero. If the minimum thickness of subbase is specified as zero, then an erodability factor must be included. The erodability factor for the subgrade material should be higher than that for subbase. An explanation of the subbase erodability factors is found on page 171, Fig 11.1 and the same estimation technique should be used for obtaining the subgrade erodaility factor which should be between zero and three. Generally a value of 3.0 is input for the erodability factor of the subgrade.

MATERIALS, SUBBASE CARD NO. 11

This card must be input, even if blank, in the case where the designer wishes to design without a subbase. In this event, all that is needed is a "1" in column 5.

11.1*	Number of Subbase Types										-
	(Maximum number of Subbase Types is four) <u>Include this</u> input only for the first sub				*						5
	Include this input only for the first su		se i	_ype	-						
11.2	Description of Subbase	6	7	8	9	10	11	12	13	14	15
	(Any combination of letters and/or number		•								
11.3**	Erodability Factor for Subbase								•		
							16	17	18	19	20
11.4***	Friction Factor Between Subbase and Concrete					1			•		
		_				-	21	22	23	24	25
11.5	Elastic Modulus of Subbase (psi)										•
		31	32	33	34	35	36	37	38	39	40
11.6	Equipment Cost Per Lane Mile for Initial Subbase Construction										
	(dollars)	41	1.2	1.3	<u>.</u> 	45	46		4.8	/ Q	50
		41	42	40	44	45	40	47	40	49	50
11.7	Cost Per Cubic Yard of Compacted										<u> </u>
11./	Subbase (dollars)								٠		
		51	52	53	54	55	56	57	58	59	60
11.8	Salvage Percent of Subbase at End of Analysis Period (percent)								•		
	of Analysis ferrou (percent)	-					61	62	63	64	65

11.9	Minimum Allowable Subbase Thickness (inches)			•		
	· · · · · · · · · · · · · · · · · · ·	66	67	68	69	70

11.10	Maximum Allowable Subbase Thickness (inches)			•		
		71	72	73	74	75

11.11**** Practical Increment at Which Subbase Can Be Easily Placed (inches)			•		
	76	77	78	79	80

- * An additional card including only items 11.2 through 11.11 should be added for each subbase type.
- ** See explanation following completion of this card.
- *** See explanation following completion of this card.
- **** See explanation on following page.

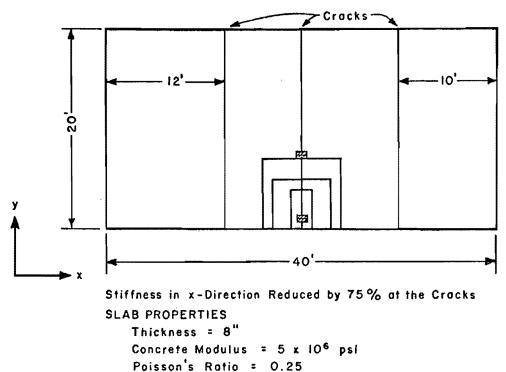
EXPLANATIONS OF SPECIFICALLY INDICATED SUBBASE VARIABLES ON CARD NO. 11

11.3** Erodability Factor for Subbase

A theoretical attempt is made to evaluate the effects of systems loss of support characterized by a term "erodability factor." This factor essentially defines the size of the area of pavement slab which experiences a complete loss of support due to erosion. Based upon experience and engineering judgement, three sizes and shapes of these areas, as explained in Fig 11.1, are chosen under a standard slab to define the erodability factors of one, two, and three.

Theoretically E_f should be a function of factors such as precipitation, amount of water on and under the pavement, erosion, cross slope, grades, joint patterns and sealing efficiency, subbase materials, subgrade, compaction, slab thickness, and traffic loads and their repetitions, etc.

11.4*** Friction Factor Between Subbase and Concrete


The friction factor variable is a coefficient which expresses the ability of the subbase to develop frictional forces which oppose contraction and expansion movements. In a study run for the Texas Highway Department, the factors shown in Table 11.1 were suggested for use.

11.11**** Practical Increment for Subbase Placement

This input should have a minimum value of 2 inches for a granular type of subbase and 1 inch for a stabilized subbase.

ase Coefficient
2.2
1.8
1.8
1.8
1.5
1.5
1.2
0.9

TABLE 11.1. FRICTION FACTOR VALUES

4 Tires are 6000 lbs Each

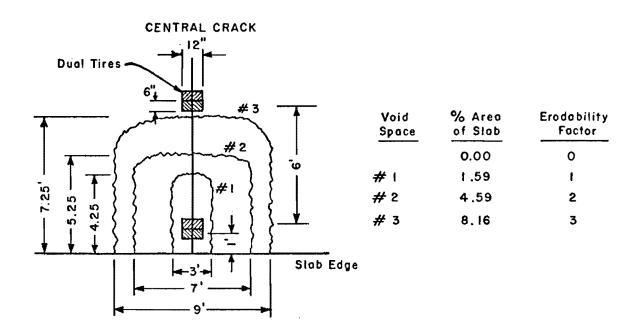


Fig All.1. Slab and support conditions for erodability analysis.

MATERIALS, BAR STEEL - LONGITUDINAL CARD NO. 12

(Include this card only if input 2.3 is equal to 1 or blank)

12.1(a)	Bar Steel Identification Number										
		1	2	3	4	5	6	7	8	9	10
	(Any combination of letters and/or number	ers))								
12.1(b)	Tensile Yield Point Strength of Steel (psi)										
							1 1	12	13	14	15
	(No decimal required)										
12.1(c)	Cost Per Pound of Bar Steel (dollars per pound)								٠		
	per pound)						16	17	18	19	20
12 2(a)	Bar Steel Identification Number				[
12.2(a)	bal Steel Identification Number	21	22	23	24	25	26	27	28	29	30
	(Any combination of letters and/or number	ers))								
12.2(Ъ)	Tensile Yield Point Strength of Steel										
	(psi)						31	32	33	34	35
	(No decimal required)						L		I		
12.2(c)	Cost Per Pound of Bar Steel (dollars per pound)								•		
	per pound)						36	37	38	39	40
** ** `											
12.3(a)	Bar Steel Identification Number	41	42	43	44	45	46	47	48	49	50
	(Any combination of letters and/or number	ers)	•					.		
12.3(b)	Tensile Yield Point Strength of Steel										
	(psi)						51	52	53	54	55
	(No decimal required)										

12.3(c)	Cost Per Pound of Bar Steel (dollars										
	per pound)								•		
			_	_			56	57	58	59	60
											
12.4(a)	Bar Steel Identification Number										
		61	62	63	64	65	66	67	68	69	70
	(Any combination of letters and/or number	ers)								
12.4(Ъ)	Tensile Yield Point Strength of Steel										<u> </u>
	(psi)	_									
							71	72	73	74	75
	(No decimal required)										
12.4(c)	Cost Per Pound of Bar Steel (dollars							,			, – – ,
/	per pound)								٠		
	• • •						76	77	78	79	80

MATERIALS, BAR STEEL - TRANSVERSE CARD NO. 13

(Include this card only if input 2.3 is equal to 1 or blank)

						· 1		1	1	······	
13.1(a)	Bar Steel Identification Number										
		1	2	3	4	5	6	7	8	9	10
	(Any combination of letters and/or numb	ers)								
13.1(Ъ)	Tensile Yield Point Strength of Steel (psi)										
							11	12	13	14	15
	(No decimal required)										
13.1(c)	Cost Per Pound of Bar Steel (dollars per pound)								•		
							16	17	18	19	20
					;						
13.2(a)	Bar Steel Identification Number	21	22	23	24	25	26	27	28	29	30
	(Any combination of letters and/or number	L	L					27	20	27	50
			/								
13.2(Ъ)	Tensile Yield Point Strength of Steel					1					
	(psi)						21	32	22	34	35
	(No decimal required)						<u> </u>	52		54	
13.2(c)	Cost Per Pound of Bar Steel (dollars								•		
	per pound)						36	37	38	39	40
		·					<u> </u>				
13.3(a)	Bar Steel Identification Number										
		L	+	43	44	45	46	47	48	49	50
	(Any combination of letters and/or number	ers)								
10 0 (1)											
13 . 3(b)	Tensile Yield Point Strength of Steel (psi)						ļ				
							51	52	53	54	55
	(No decimal required)										

13.3(c)	Cost Per Pound of Bar Steel (dollars								1		· · · · ·
23 03 (0)	per pound)								•		
	For Found)						56	57	58	59	60
				r					r	_	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
13.4(a)	Bar Steel Identification Number				ļ						
		61	62	63	64	65	66	67	68	69	70
	(Any combination of letters and/or number	ers)		d		L				Lan
13.4(b)	Tensile Yield Point Strength of Steel										
	(psi)										
							71	72	73	74	75
	(No decimal required)										
$13 \ 4(c)$	Cost Per Pound of Bar Steel (dollars								1		—
13.4(0)	per pound)								•		
	F F May						76	77	78	79	80

MATERIALS, WIRE MESH CARD NO. 14

(Include this card only if input 2.3 is equal to 2 or blank)

14.1(a)	Wire Mesh Steel Identification Number										
		1	2	3	4	5	6	7	8	9	10
	(Any combination of letters and/or numb	ers)								
14.1(b)	Tensile Yield Point Strength of Steel					1					
	(psi)						11	12	12	17	16
	(No decimal required)						<u> </u>	12	12	14	10
	(NO decimina requires)										
14.1(c)	Cost Per Pound of Wire Mesh Steel							<u> </u>	•		
	(dollars per pound)				<u> </u>		16	17	18	19	20
			1		I			I			
14 . 2(a)	Wire Mesh Steel Identification Number	21	22	22	2%	25	26	27	20	20	20
	(Any combination of letters and/or number			25	24	25	20	21	20	29	50
	(1.1.) 0010111012011 01 2000000		•								
14.2(Ь)	Tensile Yield Point Strength of Steel										·
	(psi)		-				31	32	33	34	35
	(No decimal required)						L	L	L		Lł
14.2(c)	Cost Per Pound of Wire Mesh Steel (dollars per pound)								•		
							36	37	38	39	40
							r		<u> </u>	1	
14.3(a)	Wire Mesh Steel Identification Number	41	42	43	44	45	46	47	48	49	50
	(Any combination of letters and/or number	ers)	•				<u> </u>		A	
14 . 3(b)	Tensile Yield Point Strength of Steel (psi)			-							
							51	52	53	54	55
	(No decimal required)										

	Cost Per Pound of Wire Mesh Steel (dollars per pound)								•		
							56	57	58	59	60
				r							
14.4(a)	Wire Mesh Steel Identification Number	61	62	63	64	65	66	67	68	69	70
	(Any combination of letters or numbers)	L	<u> </u>	1	<u> </u>	<u> </u>					
14 . 4(b)	Tensile Yield Point Strength of Steel (psi)										
	(931)						71	72	73	74	75
	(No decimal required)										
14.4(c)	Cost Per Pound of Wire Mesh Steel										1
	(dollars per pound)						76	77	78	79	80
							Ľ	<u> </u>		<u> </u>	

185

MATERIALS, TIE BAR STEEL CARD NO. 15

(Include this card only if input 2.3 is equal to 2 or blank)

15.1(a)	Tie Bar Steel Identification Number	1	2	3	4	5	6	7	8	9	10
	(Any combination of letters and/or numb				-*					7	10
15 . 1(b)	Tensile Yield Point Strength of Steel (psi)										
							11	12	13	14	15
	(No decimal required)										
15.1(c)	Cost Per Pound of Tie Bar Steel (dollars per pound)								•		
							16	17	18	19	20
15 2 (2)	Tio Dan Stool Idontification Number										
13.2 (a)	Tie Bar Steel Identification Number	21	22	23	24	25	26	27	28	29	30
	(Any combination of letters and/or numb	ers)					.	a		
15.2(Ъ)	Tensile Yield Point Strength of Steel (psi)					I					·
	(191)						31	32	33	34	35
	(No decimal required)								<u></u>		
15.2(c)	Cost Per Pound of Tie Bar Steel (dollars per pound)								•	1	
	(•••••••••		36	37	38	39	40
15 0 4 1					•						
15.3(a)	Tie Bar Steel Identification Number	41	42	43	44	45	46	47	48	49	50
	(Any combination of letters and/or number	ers)	<u></u>						•	I
15 . 3(b)	Tensile Yield Point Strength of Steel										
	(psi)						51	52	53	54	55
	(No decimal required)										

15.3(c)	Cost Per Pound of Tie Bar Steel (dollars per pound)								•		
	(dollaro por poond)						56	57	58	59	60
			r	T	<u> </u>	1					
15.4(a)	Tie Bar Steel Identification Number					ļ .					
		61	62	63	64	65	66	67	68	69	70
	(Any combination of letters and/or numb	ers))								
15.4(b)	Tensile Yield Point Strength of Steel						·				
	(psi)										
							71	72	73	74	75
	(No decimal required)										
15.4(c)	Cost Per Pound of Tie Bar Steel (dollars per pound)								•		
	(dorrarb per pound)		_		-		76	77	78	79	80

MATERIALS, STEEL SIZES CARD NO. 16

Leave all 16.1 inputs blank if input 2.3 is equal to 2. 16.1 ۲ 16.1(a) Bar Number To Be Tried _____ 1 2 3 4 5 • 16.1(b) Bar Number To Be Tried 7 8 10 6 9 • 16.1(c) Bar Number To Be Tried _____ 11 12 13 14 15 • 16.1(d) Bar Number To Be Tried _____ 16 17 18 19 20 16.2 Mesh Sizes To Be Tried Leave all 16.2 inputs blank if input 2.3 is equal to 1.

16.2(a)	Spacing of Longitudinal Wires (inches)			•		
		21	22	23	24	25
16.2(a)	Spacing of Transverse Wires (inches)			٠		
10.2 (u)		26	27	28	29	30
16.2(h)	Spacing of Longitudinal Wires (inches)			٠		
10.2(0)		31	32	33	34	35
		·				
16.2(h)	Spacing of Transverse Wires (inches)			٠		
10.2(0)	spacing of fransverse writes (inches)	36	37	38	39	40
		·			,,,,,	
16.2(c)	Spacing of Longitudinal Wires (inches)			•		
10.2(0)	spacing of Dongreudinal wires (inches)	41	42	43	44	45
16 2 (0)	Specing of Transverse Wires (inches)			•		
10.2(C)	Spacing of Transverse Wires (inches)	46	47	48	49	50
		L	L	L		

189

-----,

16.2(d)	Spacing of Longitudinal Wires (inches)			•		
		51	52	53	54	55
16 9 (3)						
16.2(d)	Spacing of Transverse Wires (inches)			•		

16.3 Leave all 16.3 inputs blank if input 2.3 is equal to 1.

16.3(a)	Tie Bar Number To Be Tried					•
		61	62	63	64	65
						•
16.3(b)	Tie Bar Number To Be Tried	66	67	68	69	
16.3(c)	Tie Bar Number To Be Tried					•
		71	72	73	74	75
14 041						•
10*3(g)	Tie Bar Number To Be Tried	76	77	78	79	80

.

OVERLAYS, MATERIAL DATA CARD NO. 17

17.1	Equipment Cost Per Lane Mile for Asphalt Concrete Overlays (dollars)	[٠		
		1	2	3	4	5	6	7	8	9	10
17.2	Cost Per Cubic Yard of In-Place Compacted								•		
	Asphalt Concrete (dollars)	11	12	13	14	15	16	17	18	19	20
	(Omit this input if input 2.2 is equal to	1)									
17.3	Salvage Value of Asphalt Concrete at End of Analysis Period (percent)								•		
			22	23	24	25	26	27	28	29	30
	(Omit this input if input 2.2 is equal to	1)									
17.4	Asphaltic Concrete Modulus Value (psi)				_						•
			32	33	34	35	36	37	38	39	40
	(Omit this input if input 2.2 is equal to	1)									
17.5	Production Rate of Compacted Asphalt Concrete (cubic yard/hour)								٠		
		41	42	43	44	45	46	47	48	49	50
	(Omit this input if input 2.2 is equal to	1)									
17.6	Concrete Production Rate								•		
	(cubic yard/hour)	51	52	53	54	55	56	57	58	59	60
	(Omit this input if input 2.2 is equal to	2)							•		
17.7									•		
	Engineers Formula	61	62	63	64	65	66	67	68	69	70
	= 0.35 for badly cracked slabs	•	L		•						
	= 1.00 for slabs in excellent condition										
	(Omit this input if input 2.2 is equal to	2)									
17.8	Any Additional Cost Per Square Yard for					[]			-	1	
	Overlay Construction (dollars)	71	72	73	74	75	76	77	• 78	79	80
		1		1.2	1	10	1.0			1 ^{, ,} ,	

OVERLAYS, CONSTRUCTION DATA

CARD NO. 18

18.1	Military Hour of the Day When Overlay Construction Begins (If only one digit place in column 10)	9	10
	(II only one argit place in column 10)		
18.2	Military Hour of the Day When Overlay Construction Ends	19	20
	(If only one digit place in column 20)		<u> </u>
18.3	Number of Days Concrete Must Cure Before Traffic		
	Is Allowed	29	30
	(If number of days less than 10 place single digit in column 30)		1
18.4*	Total Number of Lanes To Be Overlaid		
	(If number of lanes less than 10 place single digit in column 40)	39	40
18.5	Total Overlay Length In One Lanes (miles)		
	(indicate length to nearest tenth of a mile) 47 48	49	50

* EXPLANATIONS OF SPECIFICALLY INDICATED OVERLAY CONSTRUCTION VARIABLES ON CARD NO. 18

18.4 - 18.5 Overlay Construction Inputs

The total number of lanes to be overlaid will be multiplied by the total overlay length in one lane to obtain the total length of pavement to be overlaid. Therefore, if the number of lanes to be overlaid is 3, but the lengths of overlay in each lane are not the same, then input total number of lanes equal to "1" and input for total overlay length the amount of three projects. JOINTS CARD NO. 19

- 19.2 Cost Per Foot of Longitudinal Joints, Excluding Cost of the Bars (dollars)

11	12	13	14	15	16	17	18	19	20

4 5 6 7 8 9 10

- 19.4 Transverse Joint Spacing To Be Tried for Jointed Concrete Pavements, Upper Value (feet)

						_			
							•		
41	42	43	44	45	46	47	48	49	50

19.5 Increment in Spacing To Be Tried for Transverse Joints (feet)

							•		
51	52	53	54	55	56	57	58	59	60

 19.6
 Number of Transverse Construction or
Warping Joints Per Mile Provided for
Continuously Reinforced Concrete
Pavement (>0)
 68 69 70

(Place last digit of number in column 70)

MAINTENANCE, DIMENSIONS, AND MISCELLANEOUS CARD NO. 20

20 1	Days of Freezing Temperature Per Year								•		
20.1	bays of freezing remperature fer feat	1	2	3	4	5	6	7	8	9	10
20.2*	Composite Labor Wage (dollars per unit hour of maintenance)								•		
		11	12	13	14	15	16	17	18	19	20
20.3*	Composite Maintenance Equipment Rental Rate (dollars per unit hour of mainte-	r		1	1		r	1			
	nance)								٠		
		21	22	23	24	25	26	27	28	29	30
20 /*	Cost of Materials (dollars per unit	r	1	1	1		T				1
20.41	operation)	_							•		
		31	32	33	34	35	36	37	38	39	40
20 5	Rate of Interest or Time Value of Money				·	1		.	r		- 1
20.5	(percent per year)								•		
		41	42	43	44	45	46	47	48	49	50
20 6	Width of Each Lane (feet)						<u> </u>		•		
20.0	width of Each Lane (feet)	61	62	63	64	65	66	67	68	69	70
20.7	Total Number of Lanes in Both Directions _			-						79	80
	(Place last digit of number in column 80)										

* See explanation on following page.

*

EXPLANATION OF SPECIFICALLY INDICATED MAINTENANCE VARIABLES ON CARD NO. 20

20.2* Composite Labor Wage 20.3* Composite Maintenance Equipment Rental Rate 20.4* Cost of Materials

These variables may be specifically calculated using the procedure outlined by NCHRP Report 42, entitled "Interstate Highway Maintenance Requirements and Unit Maintenance Expenditure Index." The following values are recommended at the present:

Composite Labor Rate	=	\$2.20/unit hour of maintenance
Composite Maintenance		
Equipment Rental Rate	=	\$2.72/maintenance unit
Material Cost	=	\$1.00/unit operation

CONFIDENCE LEVEL VARIABLES CARD NO. 21

21.1	Percent Coefficient of Variation of Flexural Strength of Concrete								•		
		11	12	13	14	15	16	17	18	19	20
21.2	Standard Deviation of Elastic Modulus of Concrete (psi)								•		
		21	22	23	24	25	26	27	28	29	30
				-		1	1				
21.3	Standard Deviation of Subgrade K-value			<u> </u>					•		
		31	32	33	34	35	36	37	38	39	40
21.4	Standard Deviation of Continuity Factor J		<u> </u>						•		
		41	42	43	44	45	46	47	48	49	50
		L	1		•	I					
21.5	Standard Deviation of Initial Service- ability Index, Pl								•		
	ability maex, II	51	52	53	54	55	56	57	58	59	60
		L		L	1	L	L.,	L	L	L	.
21.6	Standard Deviation of Terminal Service-		1		r						
	ability Index, P2			ļ			L		•		
		61	62	63	64	65	66	67	68	69	70
21.7	Standard Deviation of Thickness of Concrete (inches)								•		
		71	72	73	74	75	76	77	78	79	80

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team APPENDIX 4

RPS-3 PROGRAM LISTING

This page replaces an intentionally blank page in the original. -- CTR Library Digitization Team

PROGRAM RPS3,INPUT, UUTPUT, TAPE5 = INPUT, TAPE6 = OUTPUT,
COMMON /MAINI/ AVGL(30) . ATBPF(4) . BARN(4) .
1 BONY(12) + CTC(6) + CIS(4) + COO(30,2) + COOF(2,2) +
2 COMAN(11)+ COSOV(11)+ COTR(11)+ CPCYC(6)+ CPCYS(4)+ 3 CPPBS(8)+ CPPTS(4)+ CPPBS(4)+ CSC(6)+ CTMAN(11)+
3 CPPHS(8): CPPTS(4): CPPHS(4): CSC(6): CTMAN(1): 4 CTOVER(11): CTTRAF(11): D1AL(4): D1AM(4): D1AT(6):
5 = E(6) + EF(4) + ES(4) + ESL(4) + FFSR(4) + ESL(4) + FFSR(4) + ESL(4) + FFSR(4) + ESL(4)
6 L1(30), L2(30), LFT(4), MANT(4), NA(30),
7 NAME(4+3) • NAMEBS(8+3) •NAMETS(4+3) •NAMEWS(4+3) •NCNT(4) •
R NCOUL(30) + ND(6) + NDLT(4) + NP(6) + NTDCT(4) +
9 NTHT(4), NTMT(4), NTOT(4), NTOTR(4), DVID(3),
1 OVNAM(6)+ PL(12)+ PVIO(6)+ PVNAM(6)+ RD(2+2)+ 2 RNFIU(2)+ RNFNAM(6)+ SINC(4)+ SL(4)+ SPAC(4)+
3 SPACL(4), SPACT(4), SPTIE(4), ST(4), SX(6),
4 V5X(6), 5XD(6), 5XDAT(6:2), 5XDA(2:2), 5X5D(6),
5 THARN(4), TCTM(11), TCTOV(11), TCTTD(11), THOV(11),
6 THRVT(11), TITLE(15), TS(6), TSMAX(4), TSMIN(4),
7 TTCS(b) + TYSBS(8) + TYSTS(4) + TYSWS(4) + WC(6) +
B #HO(9), SCOT(20), KIN(6), PSVC(6), PSVS(4),
9 NODE(4); CONF(7); ZZCONF(7); LEVEL(7) COMMON /MAINZ/ CA(30); CC(30); CI(30); CJ(30);
COMMON /MAIN2/ CA(30), CC(30), CI(30), CJ(30), 1 CM(30), CO(30), CR(30), CSB(30),
2 CSP(30), CSR(30), CT(30), CT8(30), IO(30),
3 1P(30), TR(30), JMR(30), JNR(30), JPR(30).
4 MC(30) + MLR(30) + MS(30) + MTB(30) + MTR(30) +
5 NHB(24), NG(30), NPP(30), PLF(30,13), RLN(30,4),
6 RIS(30,4), RTN(30,4), RTS(30,4), STJ(30), SUNOV(30))
7 THN(40+4), TBSP(30+4), TC(30), TCT(30), TO(30,12),
8 TGUB(30) COMMON /REINFD/ KRCK,CPFLJ,CPFTJ,IDRF,JM,JN,JP,
1 KOUNTI, KOUNTZ, KOUNTZ, KOUNTZ, KOUNTS, KOUNTS, KOUNTS,
1 KOUNT7+ NCS3+ NJM+ NLT+ SLV+ SPINC+ SPTJ+
1 SUV, THCC, WL, XNJM, MADLR, MNOTB, MNOTR
CDMMDN/ARRAY/ CPSYR,CTC,CTIN,CTJ,CTRF,CTSB,CTSP,CTSP,CTTR,KK,
1 LPL+MNOC+MNOS+NODES+NREQ+NR2+THSB+LM
COMMON /LIF/ P2, PSS, XJ+ TOPRE, WT+ THETA; SACT+
I VTMCC, VTOPKE: VE: VXJ: ZZ: VP1: VP2 Common /Manc/ Cerr: Clw, Cmat. DFty
COMMON /TUC/ HENC: PVSO: PVSN, DEQU, DEQN, AAS, ASOD,
ASND, MODEL, DISO, DISN, DUOZ, NULO, NOLN, ADT
COMMON /ALL/ AP+ADTOR+ITYPE+RINT+NDAYCU+IDOV+ALANES+DVERLEN
COMMON / INPUT / ACE+ACPR+AGF+BUMIN+CINC+CIOV+CNAX+CDEF+CPCYAC+
1 CPLNSG+CPR+DDF+DFL+DSD+EFSG+EOF+ESD+FFSG+IKOUNT+ILEVEL+
2 ISX+K1+K2+K3+M+MAXU+NC+NL+NLCK+NPROB+NSB+
3 DFMIN, OMAXA, OMAXC, OMINA, OMINC, POV, PSNA, PSVAC, PSXSO, 4 P1 P1SD, P2SD, SGE, SGEL, SGK, TCMAX, TCMIN, THLEV, TMAX,
5 TTC+####xXJeD+XKSD
COMMON / OUTPUT / KANAL, KFUND, KLIF, KLIFE, KREJ, KSUB, NN, NNC, NNR.
1 NNT+NOID+NOIN
COMMON /NUM/ N1.N2
REAL KII, K27, MI, MZ, M3, NCODE, LANDA, NI, NE
DATA CODE/3HSIN, 3HTAN, 3HGLE, 3HDEN /
DATA OVID/4H AC,4H CC,4HNONE/
DATA PY10/3HJCP+3HCRC/
DATA RU/3H RU, 3H UR, 3HRAL, 3HBAN / Data RNFID/4HBARS,4HMESH/
DATA SADA/SHCEN, 3H TH: 3HTER: 3HIRD/
DATA CUNF/50.0, 80.0, 95.0, 99.0, 99.9, 99.99, 99.99, 99.997

	DATA LEVEL/1HA, 1HB, 1HC, 1HD, 1HE, 1HF, 1HG /	59
	DATA ZZCONF/0, 0, 0, 8415, 1, 6450, 2, 3267, 3,090, 3,75, 4,5/	60
10	CONTINUE	61
	CALL INPUT (I+,)+NCS1+NCS2+PSN1+PSN2)	62
	INIzNI+.5000001	63
	IN2=N2+.5000001	64
		65
	CALL INITIAL (JJ+L+NORI+NCSI+NCS12+NCS2)	66
	1F (NCS1 .EQ. 2) GO TO 420	67
	2°t = 7°5	68
	IDPV = 1	
	GO TO 430	69 70
420	xJ = 2,2	
	IDPV = 2	71
430	CALL NUMBER (1.KIND)	72
460	CALL TRAFFIC (&LOG10+I+J+KLFCK+PSN2)	73
	DU 1200 T . 1, NC	74
	MNOC = I	75
	CTC = 3.0/(1760,U*WL)#(CIC(I)+CSC(I))+CPCYC(I)/36.	76
	1 *THCC	77
	00 1260 J m 1, NSB	78
	MNOS & J	79
	KRCK . 0	80
с		81
č	KRCK CHECKS THE REINFORCEMENT FROM BEING DESIGNED MORE	82
č	THAN ONCE WITH THE INCREMENTS OF SUBBASE THICKNESS	83
č		84
C	THSB # TSMIN(J)	85
		86
	THMAX # TSMAX(J) TF {{TMCC+TH5B} .LE, TMAX} 00 TO 520	87
510		88
	KREJ = KREJ+1	89
	60 To 1250	90
520	KSUB # KSUB+1	91
с		-
c c	KSUB IS A COUNTER TO GIVE THE NUMBER OF SUCH DESIGNS	92
¢	IOUT OF ALL THE POSSIBLE DESIGNS WHICH DO MEET THE	93
č	MINIMUM INITIAL THICKNESS REQUIREMENT	94
	CTSB w CPCYS(J)/36.0*THS8+CIS(J)+3.0/(1760.0*WL)	95
	ESJ = #\${J}	96
	EEF # EF(J)	97
c		98
ç	START EQUATIONS FOR FINDING K AT THE TOP OF THE SUBBASE	99
c		100
-	IF (THSB .EQ. 0.0) 80 TO 560	101
	E1 . (AL0010(ESJ)-5.06)/0.35	201
	E2 = E1**2=4.0	103
	E3 = 1.0/6.0+(E1*+3-7.4+E1)	104
	M1 _ (SOE_8100,)/1500,	105
	M2 . 1,0/8.0*(3.0*M1**2-35.0)	106
	H3 # 1.0/24.0*(5.0+H=*3-101.0*H1)	107
	IF (THSB LT, 6,0) GO TO 530	108
	TF (THSB +LF, 12.0) 80 TO 540	109
		110
* • •	60 TO 550	111
530	T1 = (THS8+3,0)/3,0	iiż
	72 3 3 0471442-2.8	113
	TOPK - 385.76202+69.6978+T1+8.58994+T2+27.06117+E1	114
	1 +3,98285+E2+5,55074+E3+66,48248+H1-1,60374+M2	115
	2 +0.43241*M3+31.07086*T10E1+4.40539*T1*E2+5.05764	
	3 *T1*E3+7.08264*T1*M1+2.35151*T1*M2+4.00969*T2	116

<u></u>	*F1+0.42254*T2*E2*1.12694*T2*H1+3.55564*E1*H1	117
5	_0,38658+E1+M2+0,36171+E2+M1+0,19788+E2+M2+1,05619	118
6	•F3*H1+4+21905*T1*E1*H1=0+45553*T1*E1*H2+0+47169	119
7		120
R	+9,10999*T2*E2*M1+0,13451*E1*M3+0,13786*T1*E1	121
9	en3+0,24915*T1*H3	122
	60 TO 570	123
548	T1 = /THSA=9,0)/3.0	124
	72 = 3.0 + 71 + 2 - 2.0	125
	TOPK = 578,61786+115,10060#T1+108,03355#E1+13,39899	126
1	*F2+13.09083*E3+88,39701*M1*7.08938*M2+1,34638	127
2	++3++5,94402*11#E1+4,57328*11#E2+2,42403#11	128
3	•E3+13.81048*T1+M1-2.9967*T1+M2+0.58461+T1+M3	129
4	.15.35524*E1*H1-1.45862*E1*H2+0.39667*E1*H3	130
5	+1,54525+E2+H1-0,45022+E2+H2+0,07024+E2+H3+2,35879	131
6	+F3+H1+6,92728+T1+E1+H1=0,56362+T1+E1+H2+0,12992	132
ž	+11+F1+M3+0.b0521+T1+E2+M1+0.09651+T1+E2+M2	133
	+0.59329*T2	134
8	60 TO 570	135
554	TI a (THSR=15.0)/3.0	136
550		
	T2 = 3,0*T1**2=2+0 TOPK = 810,62222+11\$,98818*T1+200,53012*E1+23,20865	137
		139
1	+E2+18,74713+E3+116,49854+M1-13,38744+M2+2,6625	
2	•M3+46,53830*T1*E1+5,34689*T1*E2+2,75181*T1	140
Э	•#3+14.18543*T1+H1=3.30254+T1+H2+0.71233*T1	141
\$	+43+29,34840+E1+N1+2+93899+E1+H2+0,73782+F1	142
	*43.2.99806*E2*M1=0.72234*E2*M2+0.16776=E2*M3	143
6	+3.19113*E3*M1=0.53567#F3*M2+7.08050*T1*E1*M1	144
7	_0,g2363*T1*E1*M2*0,1g601*T1*E1*M3+0,681gA*T1	145
6	*f2=M1_0,16666=T1*E2=M2	146
	60 TO 570	147
560	TUPK = SGE/23.925	148
	EEF = EF\$8	149
¢		150
с	START EQUATIONS FOR FINDING K AT THE TOP AFTER ERODAMILITY	151
Ċ		152
	FF5B(1) = FFSG	153
570	TF (EEF .EQ. 0.0) GO TO 580	154
-	EF1 = (EEF-1.51/0.5	155
	EF2 = (EF1++2-5.0)/4.0	156
	EF3 = (5.0*EF1**3*41,0*EF1)/12.0	157
	XLK = ALOGIO (TOPK)	158
	XLOK # 10.0+(XLK+2.3)	159
	LOK2 . (LOK++2-21.0)/4.0	160
	XLOK3 . (XLOK#+3-37.0+XLOK)/12.0	161
	TUPKEL # 1.08537-0.21029-EF1.0.00681-EF2.0.02305	162
1	+##3+0.08057*XLOK+0.00478+XLOK2+0.00175+XLOK3	163
ź	+0+01030*EF1*XLOK=0+00151*EF1*XLOK2=0+005#3	164
3	*EF2*XLOK=0.00548*EF2*XLOK2+0.00563*EF3*XLOK	165
4	+0.00382*EF3*XLOK4.0.00116*EF3*XLOK3-0.00186	166
ŝ	*FES#XLDK3=0.00043*EF1#XLOK3	167
э		168
	TOPKE # 10.00+TOPKEL	169
	60 TO 590	170
580	торке . Торк	
C	THE PERSONNE THE TREATMENT OF A LL C	171
	THIS FINISHES THE TREATMENT OF K VALUE	172
ç		
С С 59л	IF (TOPKE LT, 5,0) TOPKE = 5.0	173 174

	PL(1) = 0.0	175
	CALL AUE2 (P1, THCC, PL(2), SXU(1), E(1), PL(1), OFMIN, VSX(1))	176
	IF (PL(2) .GE. OFMIN) GO TO 600	177
	KLIFE # KLIFE+1	178
c		179
¢	KLIFE COUNTER OF DESIGNS REJECTED BY INITIAL LIFE RESTRAINT	180
	GO TO 1250	161
600	KLIF = KLIF+1	185
с		183
c	KLIF IS THE NUMBER OF SUCH DESIGNS WHICH PASSED THE TIME TO	184
c	THE FIRST OVERLAY RESTRAINT	185
	PL(1) = 0.0	186
	PLP = PL(2)	187
	IF (PLP .GE. AP) PLP # AP	188
	CALL MANCE (PL(1), PLP, COMAN(1))	189
	CALL REINF(I, J, CTIN, CTC, CTJ, CTRF, CTSP, CTTB, CTSB)	190
	IF (CTIN .GT. CMAX) GO TO 1250	191
_	KFUND a KFUND+1	192
ç		193
ç	This to support of First Africa butch have the	194 195
Ċ	KEUND IS THE NUMBER OF SUCH DESIGNS WHICH PASS THE	196
c c	RESTRAINT OF THE MAXIMUM INITIAL FUNDS AVAILABLE	147
C		199
	LH = q E (1)Cert en av AND (X) EQ E EN LA E 1	199
	IF ((NCS1 ,FQ, 0) .AND. (XJ .EQ. 2.2)) LM = 1 TF ((XJ .EQ. 2.2) .AND. (NCS2 .EQ. 0)) LM = 2	200
	IF ((NCS2 .EQ. 0) .AND+ (NCS1 .NE. 0)) LH = 0	201
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202
	IF (PL(2) LT, AP) GO TO 910	203
	LPL • L•1	204
	IDov a 3	205
	KLFCK # KLFCK+1	205
	KANAL - KANAL+1	207
	COTR(1) = 0.0	208
	C050V(1) # 0.0	209
	THOYT(1) = 0.0	210
	PL(1) = 0.0	211
	THOV(1) = 0.0	212
	60 TO 1100	213
910	TF (OFHIN . GE. AP) 80 TO 1250	214
c		215
с	KIND IS THE NUMBER OF DESIGNS WHICH PASS ALL RESTRAINTS	216
Ċ	WITHIN EACH COMBINATION	217
c		218
	KIND 🖬 KIND+1	219
920	NTHICK = 0	220
	NTIME # 0	221
	NODES . 0	222
	NDUEL = 0	223
	NCONS . 0	224 225
	LIFCAL = 0	225
	MANCAL = 0	227
	NTDCAL # 0	228
	COTR(1) = 0.0	229
	COSOV(1) = 0.0	230
	THOV(1) = 0.0	231
	THOVT(1) # 0.0 PL(1) # 0.0	232
	· mitter and construction	

	XINCR . U.S	233
	1F (NC52 .E0. 1) GO TO 930	234
	OMIN = OMINA	- 235
	OMAX - OMAXA	236
с	FIRST BLOCK OF EQUATIONS	237
	TF (OMINA.FQ. 0.0) GO TO V40	238
	Ell = (ACE-450000.0)/350000.0 E22 = 3.0€Ell€+2-2.0	239
	$U11 = THCC=9_0$	241
	022 = 1.0/4.0 = (011 = 2.5.0)	242
	D33 # 1.0/12.0+(5.0+D11++3-41.0+O11)	243
	K11 = (ALOGIO(TOPKE)-2.30103)/0.6989	244
	K22 = 3,0+K11++2-2,0	245
	£Fov = 11.77033+0.79408*E11=0.05925*E22+0.93256*D11	246
1	•n.032+D22+0.5545*K11+0.1155*K22=0.01952+E11	247
2 3	*011-0.15087*E11*K11-0.02921*E11*K22*v.00713 *F22*011*0.01438*E22*K11-0.03193*011*K11-0.02356	249 249
4	+011+K22+0+043+022+K11+0+01+33+022+K22+0+02228	250
5	+F11+011+K11+0.0081+*E11*D11*K2202238+E11	251
6	+022+K11	252
	50 TO 940	253
930	OMIN = OMINC	254
	UMAX = OMAXC	255
940	L = 1	256
950		257
960	1F (L-9) 970,970,960 NDUEL - NDUEL+1	258 259
c	HUDEL & HUDEL .	260
č	NDUEL IS THE NUMBER OF TIMES THE TOTAL NUMBER OF OVERLAYS	261
č	REQUIRED WERE MORE THAN THE MAXIMUM NUMBER SPECIFIED	202
c		263
	50 TO 1000	264
970	THDV(L) = OMIN	265
980	THOVT(L) = THOVT(L=1)+THOV(L)	260
	IF (THOVT(L) .6T. OMAX) GO TO 990 Go to 1020	267 268
990	NTHICK = NTHICK+1	269
c	NTHICK IS THE NUMBER OF TIMES THE MAXIMUM TOTAL OVERLAY	270
č	THICKNESS RESTRAINT WAS HIT WHILE THE STRATEGY WAS TRYING	271
с	TO REACH THE ANALYSIS PERIOD	272
Ċ	GO TO BACK OFF TO THE PREVIOS OVERLAY THICKNESS AND INCREASE	273
с	IT BY THE SPECIFIED INCREMENT	274
1000		2/5
~	IF (L .LE.)) GO TO 1230	276
c c	THE ABOVE STATEMENT QUITS THE OVERLAYING PROCEOURE FOR A PARTICULAR INITIAL DESIGN. THIS WILL HAPPEN IN ANY OF THE	277 278
č	FOLLOWING CASES.	579
č	1. WHEN OVERLAY NUMBER 1 THICKNESS, PASSING THE THICKNESS	280
с	RESTONINT IS SUFFICIENT TO LAST THE ANALYSIS PERIOD	ŽAľ
с	2. WHEN THE OVERLAY NUMBER 1 THICKNESS MITS THE THICKNESS	282
с	RESTPAINT	283
c	OR 3. WHEN AFTER CONSIDERING A NUMBER OF SUCCESSFUL OVERLAY	584
C,	STRATEGIES, THE PROGRAM REACHES ANY OF THE ABOVE STATED.	285
1010	THOV(L) = THOV(L)+XINCR gg TD 98n	296
с	CALL AGE TO CALCULATE THE LIFE OF THE PAVEMENT OVERLAY COMB.	287 268
1020	IF (NCS2 (FO. 1) GO TO 1030	200
1.50		290

	TF (UMINA _EQ. 0.0) GO TO 1021	291
	T11 = (THOVT(L)=6.0)/3.0	292
	$T^{22} = \tau^{11 + 2} - 2, 0$	293
	T33 = 1.0/6.0*(5.0*T11**3~17.0*T11)	294
	EFOT = 1,50661+T11+0,1104+T22=0,02239+T33+0,42692	295
1	<pre>*TII*E11-0.03819*T11*E22=0.03936*T11*D11*0.01239</pre>	296
2	<pre>«T11+022+0.0083+T11+E11+D11+K11+0.25962+T11</pre>	297
3	*K11+0.05293*T11*K22*0.02232*T22*E11=0.00796	298
3	*⊤ŽŽ≈ĖZŽ=0.00467*TŽŽ*Ď11=0.01509*TŽŽ*K11=0.01425	299
5	*T33+E11-0+0087+T11+E11+D11-0+09388+T11+E11	300
6	<pre>************************************</pre>	301
7	-0.00864*T11*D11*K11=0.00937*T11*D11*K22	302
	DEFF EFOV+EFOT	303 304
	GU TO 1022	304
1021 1022	DEFF = THCC CTOUER (1) = (CTOVAR 0//1760 0001) > (THOW (1) > THE FV) (34-0	305
10/2	CTOVER(L) = {CIOV+3+0/(1760+0+WL)+(THOV(L)+THLEV)/36+0 +CPCYAC) / ((1+0+RINT/100+0)++PL(L) }	307
•	COSOV(L) = COSOV(L+1) * CTOVER(L)	308
	HPSY = (THOV(L)+THLEV) / (36.0*ACPR)	309
	80 TO 1040	310
1030	IDov = 2	311
10.10	RR = THOVT (L) #+1.4+COEF *THCC+*1.4	312
	DEFF = $RR + (1, 0/1, 4)$	313
	COSOV(1) = 0.0	314
	CTOVER(L) = (3.0/(1760+0+WL)+(CIC(I)+CSC(I))+CPCYC(I)	315
1	/36.*(THOY(L)+THLEV))/((1.0+RINT/100.0)****(L))	316
	COSOV(L) = COSOV(L=1) + CTOVER(L)	317
	HPSY = (THOV(L)+THLEV) / (36.0+CPR)	316
1040 CA	LI AGE2 (POV. DEFF. PP. SXD(I). E(I). PL(L). BOMIN. VSX(I))	319
	LIFCAL # LIFCAL+1	320
с	LIFCAL IS THE NUMBER OF TIMES AGE SUBROUTINE IS CALLED	321
	PL(L+1) = PL(L)+PP	322
	IF (PL(L+1) .GT. AP) GO TO 1045	323
	IF (PP GE, BOMIN) GO TO 1045	324 325
~	NTIME # NTIME+1 NTIME 15 NUMBER OF SUCH STRATEGIES WHICH WERE AMANDONED	326
с с	RECAUSE TIME BETWEEN DVERLAYS AS CALCULATED AT ANY	327
č	TIME WAS LESS THAN THE MININUM SPECIFIED.	328
č	NO NOW TO INCREASE THAT PARTICULAR THICKNESS BY THE INCREMENT	329
v	60 TO 1010	330
с	CALCULATE DELAY COSTS	331
1045	COTR(1) = 0.0	332
	LI TPC3 (PL(E)+THOV(L)+CTTRAF(L)+HPSY+IN1+IN2)	333
	NTDCAL = NTDCAL+1	334
	COTR(L) = COTR(L=1)+CTTRAF(L)	335
		336
	IF (PL(L+1) +LT+ AP) PLP # PL(L+1)	337
с	CALCULATE MAINTENANCE FROM PLUL) TO PLP	338
CA	LI MANCE (PL(L), PLP, CTMAN(L))	339
	MANCAL = MANCAL+1	340
~	COMAN(L) = COMAN(L=1)+CTMAN(L)	341 342
с	TE (D) (1 -1 -17 -40, GO TO 950	343
1050	TF (PL(L+1, .LT. AP) GO TO 950 Continue	344
1020		345
	IF (IDOV .Eg. 2) GO TO 1100	346
	NVCOS # THOVT (L) + CPCYAC + PSVAC / 3600+	347
	GO TO 1110	348

1100	OVCOS = THOVT(L) = CPCYC(I) = PSVC(I) / 3600.	349
1110	CTSR = - (THCC + CPCYC(I) + PSVC(I) / 3600. + OVCNS + THSB	350
		351
1	• CPCYS(J) • PSVS(J) / 3600.) / ((1.0 + RINT / 100.0)	
2	•• AP)	352
	TCOST = CTIN+COSOV(L)+COTR(L)+COHAN(L)+ CTSR	353
1	+ CPSYR	.354
	. n . LL	355
CAL	L ORDER (IDOV, IDPV, L.M. NN+TCUST)	356
	1F (IDOV .FG. 3) GO TO 1260	157
	NCONS NCONS+1	358
с	NCONS IS THE NUMBER OF SUCH STRATEGIES WHICH PASSED ALL TESTS	359
	AND RESTRAINTS AND HIT THE ANALYSIS PERIOD. EACH STRATEGY	
c		360
c	WILL MAKE ONE DESIGN IN COMBINATION WITH THE INITIAL DESIGN.	361
с	AFTER THIS. THICKNESS INCREMENT WILL BE GIVEN TO THE OVERLAY	365
C	PREVIOUS TO THE ONE WHICH MADE THE PRESENT STRATEGY POSSIBLE.	363
	00 10 1000	364
1230	CONTINUE	165
		366
	NCONS - NCONS - NODES	367
	NTHT (LM) = NTHT (LM) +NTHICK	368
	LFT(LM) = LFT(LM)+LIFCAL	369
	NTDCT (LM) = NTDCT (LM) +NTDCAL	370
	MANT(M) = MANT(L ^H)+MANCAL	371
	NTMT(LM) = NTMT(LM)+NTIME	372
	NCNT(LM) = NCNT(LM)+NCONS	373
	NODE(L4) = NODE(LM) + NODES	374
	NDLT(1 M) = NDLT(LM)+NDUEL	375
	NTOTR (IM) = NTHT (LM) +NTHT (LM) +NOLT (IM)	376
	NTOT (I M) . NTOTR (LM) +NCNT (LM) +NODE (LM)	377
	KIN(LM) # KIND	378
		179
	IF (NCS2 .NF. 0) GO TO 1240	
	NCS2 = 1	08E
	GO TO 920	381
1240	NCS2 # MOR1	362
1250	IF (THSA .FO. THMAX) GO TO 1260	393
	THSB = THSB+SINC(J)	384
	IF (THSR .gt. THMAX) THSB = THMAX	385
	60 TU 510	356
1240	CONTINUE	367
c	ABUVE STATEMENT IS FOR SUBBASE TYPES AND CONCRETE TYPES LOOPS	368
č	AS WELL AS SUBBASE THICKNESS INCREMENTS.	399
c .	NCSB = NCANSB	340
_	IF (KLFCK .EQ. NCSB) GO TO 1270	391
с	KLFCK HAS TO BE EQUAL TO NOSE BY CONSECUTIVE ADDITION TO	345
с	QUIT CONCRETE THICKNESS LOOP. OTHERWISE. THE DESIGN	393
с	PROCESS WILL GO ON IN THE NORMAL FASHION	394
	IF (THUC .EQ. TCMAX) GO TO 1270	395
	THCC = THCC+CINC	376
	IF (THCC .GT. TCHAX) THCC = TCHAX	397
	GO TO 460	348
1270	CONTINUE	399
	1F (XJ .EQ. 2.2) GO TO 1280	400
	JF (NCS1 .NE. () GO TO 1280	401
	GO TO 420	402
1240		403
	IF (NCS12 ,Eq. 0) LM = 4	404
	TF (NCS12 .dT. 2) LM # 1	405
	IF ((NC512 .EQ. 2) .AND. (NC51 .EQ. 1)) LM = 1	406

DO 1290 IS = 1. LM	407
NNT # NNT+NTOT(IS)	40g
NNR = NNR + NTOTR(IS)	409
1290 NNC = NNC+NCNT(IS)+NODE(IS)	410
CALL OUTPUT (1, J. NPROB, THLEV, PSN1)	411
GC TO 10	412
1900 CONTINUE	413
C ABOVE STATEMENT IS USED TO END THE PROGRAM	414
c	+15
c	416
END	417

	HODALITAR TH	DUT IT. L.N.	51+NC52+PSN1+	151.21		418	c	
	OMMON ZMAINI			BARN (4) .		419	•	R
ີ່	BONY (12) +	CICIGIA	CIS(4) +	COD (30+2)+	CODE(2+2)+	420		
ź	COMAN(11),	cosov(11),	COTH(11),	CPCYC(6) +	CPCYS(4).	421	30	¥
3	Cpp85(8),	CPPT5(4),	CPPWS(4),	CSC(6),	CTMAN (11) .	422		
4		CTTHAF (11)			DIAT(A).	423	40	
5	EINII	FF(4)+	Es (4) +	ESL (4) .	FFSR(4).	424	-	R
6	L1(30).	(2(30).	LFT(4).	MANT (4)	N4 (30) .	425		
7	NAME (4.3) .		+NAMETS (4+3)		INCNT (A)	426	50	
é	NCODE(30)	ND (6) .	NOLT (4) .	NP (6) .	NTDCT (4) .	427	с	
à.	NTHTIAL	NTHTEAT	NTOT (4)	NTDTR (4) +	OVID(3).	428	с	
i	OVNAM(6) +	PL (12) +	Pv10(2),	PVNAM(6) .	HU (2.2) .	429	с	
2	RNFID(2).	RNENAM(6).	STNC (4) .	SL(4).	SPAC(4),	430	55	
Э	SPACL (4) +	SPACT(4)+	SPTIE(4)+	ST (4) +	5X(6) .	4 31	с	
4	VSX (0) .	SXD (6) .	SXDAT (6,2) .	5XDA (2.2) .	SX50(6) .	432	с	
5	TBARN (4) .	TCTH(11)+	TCTOV(11),	TCTTD(11);	THOV (111+	4 33	c	
6	THOYT(11).	TTTLF (15) .	Ts (6) +	TSMAX(4).	TSMIN(4).	434		R
7	TTCS (6) .	Ty585(8) .	TySTS (4) +	TySWS (4)+	WC (6) .	435		1
A	¥H0(9),	SCOT (20) +	KIN(6)+	PSVC(6).	PSVS(4).	436	c	
9	NODE (4) +	CONF (7)	22CON+ (7) +			437	с	
Ć	OMMON /REINF	DI KRCK+CPI	FLJ,CPFTJ.IDR	F+JH+JN+J₱+		438	с	
1	KOUNT1: +	OUNTE KOUN	T3, KOUNT4, K	OUNTS, KOUNT	16.	430		R
1			LT: SLV: SPIN			440	С	
1	SUV+ THCO	. WL. XNJM.	MNOLR, MNOTH	MNOTR		441	с	
C	OMMON/ARRAY	CPSYR.CTC.	CTIN+CTJ+CTRF	CTS8+CTSP+C	TSR,CTTB.KK.	442	с	
1		LPL . MNOC . N	NOS, NODES, NRE	O, NR2, THSB.L	M	443		R
C	OMMON /LIF/	P2. P55. XJ	. TOPKE: WT.	THETA: SACT	,	444		R
1	VTHCC	VTOPKE, VE	. VXJ. ZZ. YP	1. 455		445	с	
c	OMMON /MANC	CERR, CLW,	CMAT, DFTy			448	с	
C	OMHON /TDC/	HPOC+PVSO+P	VSN, DEQU, DEQN	+AAS+AS0D+		447	С	
1			DTSN: DOOZ: 1			4 4 8		R
			YPE, RINT, NDAY			449		1
c	OMMON / INPI	IT / ACE .ACP	R.ASF.BUHIN.C	INC+CIOV+CM4	X.COFF, CPCYAC.	450		
- 1			SD.EFS0.EOF.E		INT, ILEVEL,	451	60	¥
5			NC . NL . NLCK . NPI			432	_	
з			INA. OMINC. POV			453	70	R
4	PI+PISD+P	250.SGE,SGE	L+ŠGK+ŤCHAX+TI	CMIN, THLEV,	MAXI	454		1
5	TL + MMM + 3	USD+XKSD				455	60	
	DHMON /NUH/	SN+ 1N				455	С	
	EAL NODE					457	c	
F	EAL NI+NZ+NO	DAYCU				458	с	
						459		R
		READ INPUT	DATA			450		
						461	c	
						462	c	
		PROBLEM IOE	NTIFICATION			463	С	
						464		R
F	EAD 15,1910;		LE			465	с	
		5) 1900,20				466	с	
	WITE (6,192))) NPROB, TI	TLE			467	с	
						468		6
		PROGRAM CON	THOL CAND			469		1
						470		
		NCS1+NCS2+N	CS3+PSN1+P5N4			471	10n	R
	5N2 = 1.0					472		1
	TF(PSN2.E	(Q.1.0) GO T	0 55			473		2
	1 · · · •							
ŗ	1	TRAFFIC INP				474 475	110	

	OF AD & 18EA AN ALL 12 1. MADDE 1 MALL.	476
	READ (5+1950) NL+ L1(1)+ L2(1)+ NCODE(1)+ NA(1) (F (NL-1) 30+ 55+ 40	478
0	#RITE(0+1960)	479
•	60 TO 1900	480
0	no be Isten	481
	READ (5:1950) NLCK+ L1(I)+ L2(1)+ NCODE(I)+ NA(I)	492
	IF (NLCK.NF.0) GO TO 30	483
U	CONTINUE	484 485
	TRAFFIC GROWTH AND DISTRIBUTION	486
		487
5	READ (5,1970) AGE, AUTGR, DDE, UEL, ADT, WWW	488
		489
	USERS DECISIONS OR RESTRAINTS	490
	READ (5,1980) CMAX, TMAX, OFMIN, BOMIN, OMAXA, OMINA, OMAXC,	491
	1 UNINC, AP, THLEV, ILEVEL	493
	I ouliers was increa yeare	494
	PERFORMANCE VARIABLES	495
		496
	READ, 5+1990) P1, P2, POV, P55, THETA, SACT	497 498
	TRAFFIC DELAY COST VARIABLES	499
	WARFIC UCLA, COST VANIABLES	500
	READ (5,2000) DTSO, DTSN, DDOZ, HPUC, NOLO, NOLN, ITYPE	501
	READ (5,2010) PVSO, PVSN. DEQO. DEQN. AAS. ASOD. ASND. MONEL	502
		503
	MATERIALS (CONCRETES)	504
	READ (5:2020) NC. ND(1), NP(1)+ SX(1), #C(1),	505
	1 E(1) + TS(1) + CIC(1) + CPCYC(1) + CSC(1) + PSVC(1)	507
	TF (NC-1) 60,80,70	508
0	wRITE (6,2030)	509
	00. TO 1000	510
0	READ (5+2040) ((ND(I), NP(I), SA(I), WC(I),	511
0	<pre>1 E(1)* TS(1)* CIC(I)* CPCYC(I)* CSC(I)* PSVC(I))*I * 2* NC) CONTINUE</pre>	512 513
U	EQUITABLE .	514
	CONCRETE DIMENSIONS	515
		516
	REAU (5:2050) TOMIN: TOMAX, CINC	517
	$\mathbf{y}\mathbf{F}$ (CINC .EQ. 0.0) CINC = 1.0	51 A 51 9
	MATERIALS (SUBGRADE)	520
	PRILITES (VEBCASE)	521
	READ (5,2060) SGK, TTC, FFSG, EFSG, CPLMSG	522
		523
	MATERIALS (SUBBASE)	524
	PEAD (5,2070) MSB. (NAME(1.J), J = 1.3), EF(1), FFSB(1), ES(1),	525 526
	1 CIS(1), CPC45(1), PSVS(1), TSMIN(1), TSMAX(1), SINC(1)	527
	1F (NSB-1)110+110+100	528
0 n	READ (5+2090) (((NAME(1. J), J # 1. 3)) EF(1), FFSB(1).	529
	1 ES(I), CIS(I), CPCYS(I), PSVS(I), TSMIN(I), TSMAX(I),	530
۰.	2 SINC(1)). I= 2. NSB)	531 532
10	CONTINUE DO 120 I m 1. NSB	533
	the emain of the location	

.

c c

12	∩ ₁ ₽ (TSMAX(₇₁ .GT. 18.0) TSM ^A X(1) = 18.0	5.34
	DO 150 I = 1. 4	5.15
	TY585(1) # 0.0	536
	TYSRS(T+4) = 0.0	547
	$TYS_{H}S(T) = 0.0$	538
15	$n \qquad TYSTS(T) = 0.0$	53 4
с		540
0000000	MATERIALS (STEEL)	541
с	MAXIMUM OF FOUR TYPES CAN BE SPECIFIED FOR EACH OF	542
с	1. LONGTIDINAL BAR STEEL	543
č	2. TRANSVERSE BAR STEEL	544
č	3. WIRE MESH REINFORCEMENT	545
ž	4. TIE HAR STEEL	546
2	4. ILE HAR SIELL	547
C		
	tF (NCS3 +NE+ 2) READ (5+2100) ((/NAMEBS(I+ J)+ J = 1+	548
	1 3), $TYSHS(I)$, $CPPBS(I)$, $I = 1 + 4$)	549
	TF (NCS3 .NE. 2) READ (5+2100) (((NAMEBS(I+ J)+ J = 1+	550
	1 3) \cdot TYSES(I) \cdot CPPES(I) \cdot 1 = 5 \cdot 8)	551
	IF (NC53 .NF. 1) READ (5+2100) (((NAMEWS(I+ J)+ J = 1.	552
		55.3
	1 3), TYSWS(I), CPPWS(I)), 1 = 1, 4) IF (NCS3 .NF. 1) READ (5.2100) (((NAMETS(I+ J)+ J = 1,	554
	1 3), TySTS(I), CPPTS(I)), I = 1, 4)	555
с с		556
с	HAR AND MESH SIZES TO BE TRIED	557
с		558
-	READ (5.2110) (RAKN(I), $I = 1, 4$), (SL(I), ST(1), $I = 1, 4$),	559
	1 TBARN	560
с		561
č	MATERIALS (OVERLAY)	562
	HATENING (VERCHT/	563
С		
	READ (5,2120) CIOV, CPCYAC, PSVAC, ACE, ACPR, CPR, COEF, CPSyR	564
с	_	505
с	OVERLAY CONSTRUCTION DATA	566
с		567
	A9 READ (5,2015) NJ.N2.NDAYCU.ALANES.OVERLEN	568
с		569
č	JOINTS	570
č	dir fini di	571
C.	READ (5+2140) CPFTJ+ CPFLJ+ SLV+ SUV+ SPINC+ NJM	572
		573
	IF (SPINC , EQ. 0.0) SPINC = 10.0	
С		574
C	HAINTENANCE, DIHENSIONS AND MISCELLANEDUS	575
с		576
	READ (5,2150) OFTY, CLW, CERR, CMAT, RINT, WL, NLT	577
С		578
ē	CONFIDENCE LEVEL DATA	579
č		580
C	READ (5.2155) PSXSD, ESD, XKSD, XJSD, PISD, P2SD, DSD	581
		582
	VE = FSD • ESD	583
	VTHCC . DSO . DSD	584
	VTOPKF = XKSD + XKSD	-
	UZLX = ZJZD	585
	VP1 = P150 # P1\$D	544
	VP2 = P2SD • P2SD	587
	TE (PSN2.E0.1.0) GU TO 165	588
с		549
č	THIS SECTION IS NO LONGER USED TO DETERMINE THAFFIC	590
č	BECAUSE PSN2 HAS BEEN SET EQUAL TO ONE IN THE	591
υ.	APAKARY LOUE UND REFL OF FRANK IN AND IN THE	

с	BEGINNING OF THIS ROUTINE	592
	BEOTHING OF THIS ROUTHE	593
c		544
С		
с	PPINT INPUT DATA	595
с		596
-	DO 160 I=1.NL	597
	M=NCODE(I)	598
	COD(1,1)=CODE(M,1)	599
		600
	COD(I.P)=COUE(M.2)	601
160	AVGL(1)=(L1(I)+L2(I))/2000.	
С	AVGL AVERAGE LDAD IN KIPS	602
	WRITE (0+2160)	603
	WPITF(0,2170) ((1(T), 2(T), AVGL(T), COD(T+1), COD(T+2),	604
	NA(I), I=1.NL)	605
	WRITE (0+2180) AGF, ADTOR, ODF, DFL, ADT	606
165	IF (PSN2_E0_1.0) WHITE(6.2185) WWW	607
		6v8
	WRITE (6+1920) NPROH+ TITLE	609
	WAITE (6.2190)	610
	K1 = MCS1+1	
	GO TO (170.180.190), K1	611
170	WRITE (6+2200)	612
	GU TO 200	613
180	WAITE (6+2210)	614
	GU TU 200	615
190	waltr (6,2220)	615
200	K2 ± NCS2+1	617
200		618
	GO TD (210.220.230), K2	619
210	#AITE (0.2230)	
	60 TO 240	620
220	WRITF (6,2240)	621
	RO TO 240	622
230	WRITE (6,2250)	623
240	K3 = rics3+1	624
	60 TO (250,260,270), K3	625
250	WRITE (6,2260)	626
2.30	GO TO 280	627
24	WRITE (0,2270)	628
5eu		629
	60 to 28n	630
270	WRITE (6+2280)	631
280	IF (PSN1 .EQ. 1,) WRITE (6,2290)	
	1F (PSN1 F) 0) WRITE (6,2300)	632
	HQITE (0,2310) PSN4	633
	WRITE (6,2320) CHAX: THAX: OFMIN: BOMIN	634
	IF (NCS2 NE 1) WRITE (6,2330) OMAXA, OMINA TF (NCS2 NF, 2) WRITE (6,2340) OMAXC, OMINC	635
	TF (NCS2 .NF. 2) WRITE (6.2340) OMAXC. OMINC	636
	WRITE (0.2341) THLEV	637
	WRITE (6.2350) AP	639
	ZZ = 0,0	639
		640
	NO 286 I ± 1, 7 IF (ILEVEL "EQ. LEVEL(I)) 60 TO 284	641
	RO TO 286	642
284	WRITE(0+2355) LEVEL(I), CONF(I)	643
	ZZ = 77CONF(I)	644
	GU TO 288	645
296	CONTINUE	646
	I # 1	647
	wpitr (6.2355) (EVFL(1), CONF(1)	648
248	CONTINUE	644
C-10		•• ·

	WRITE (0.2360) P1. P2. POV. PSS. THETA. SACT	650
	WRITE (6.2370) DTSO. DISN. NOLD. NOLN	651
	WHITE (6+2380) PVSO+ PVSN+ DEGO+ DEGN+ ASOD+ ASND+ AAS	652
	WRITE (0+2390) DDOZ+HPDC+MODEL	653
	IF (ITYPE _FQ. 1) WRITE (6.2400)	654
	IF (ITYPE .FQ. 2) WRITE (6:2410)	655
	WRITE (6:1920) WROB, TITLE	656
	00 290 I = 1+ NC	657
	TF (NP(I) ,FQ, 0) NP(I) = 2	658
	IF (ND(I) .FQ. 0) ND(I) # 28	659
	SXD(I) = SX(I)	660
	IF (ND(I) = EQ. 7) SxO(I) = 1.23 + SxD(I)	601
	TF (NP(I) + FQ + 1) SXU(I) = 0 + 90 + SXU(I)	662
	IF (TS(I) _LE, 0,0) TS(I) = 0,40+SXU(I)	663
	SXSD(1) = PSXSD = SX(1) / 100.0	664
	VSX(I) = SXSU(I) = SXSU(I)	665
	15x = NP(1)	666
••	SXDAT(I+1) = SXDA(ISX+1)	667
590	SADAT(1. 2) = SADA(ISA: 2)	66 P
	WRITE (6:2420) (I. I x 1: VC)	669
	WRITE (0,2430) (NO(1), 1 = 1, NC)	670
	WRITE (0,2440) ((SXDAT(1+ J)+ J = 1+ 2)+ I = 1+ NC)	671
	WRITE (6,2450) (5X(1), I = 1: NC)	672
	WRITE (6+2480) (TS(I)+ I = 1+ NC)	673
	WRITE (6+2400) (E(1)+ 1 # 1+ NC)	674
	WRITE (6,2500) (WC(1), I = 1, NC)	675
	WRITE (6+2510) (CIC(I)+ I = 1+ NC)	676
	WHITE (6.2520) (CPCYC(I), I = 1, NC)	677
	WRITE (6.2530) (CSC(1), 1 = 1, NC)	K78
	WRITE (6+2535) (PSVC(1)+ 1 = 1+ NC)	679
	WRITE (6.2540) TOMIN, TOMAX, CINC	550
	KDUNTI = 0	581
	KOUNTP = 0	682
	KOUNTS = 0	683
	KOUNTA = 0	684
	KDUNTS = 0	685
	KDINTE = D	686
	KOUNTY = 0	687
		688
	JF (TYSBS(1) .NE. 0.) KOUNTI = KOUNTI+1	689
	J <u>* 1.4</u> 15 (TYSBS(J) *NE* 0.) KOUNT2 = KOUNT2+1	640
	IF (TYSWS/I) .NE. 0.) KOUNTE # KOUNTE:1	691
	IF (SL(I) .WE, 0.) KOUNTA = KOUNTA+1	692
	IF (TYSTS(1) , NE. 0.) KOUNTS = KOUNTS+1	693
	IF (BARN(I) NE. 0.) KOUNTS * KOUNTS+1	694
	IF (TBARN(1) .NE. 0.) KOUNT7 = KOUNT7+1	695
300	CONTINUE	696
	IKOUNT = MAX0 (KOUNT1: KOUNT2, KOUNT3, KOUNT5)	697
	KDUNT2 = KOUNT2+4	698
	WRITE (6,2550) (I. I # 1+ IROUNT)	699
	IF (NC53 .F. 2) GO TO 310	700
	WRITE (6.2560) ((NAMEBS(I) J) + J = 1. 3) + I = 1. KOUNTI)	701 702
	WRITE (6,2570) (TYSHS(1) + I = 1+ KOUNTI)	703
	WRITE (6,2580) (CPP85(I): I = 1: KOUNTI)	704
	WRITE (6+2590) ((NAMEBS(I+ J)+ J = 1+ 3)+ I = 5+ KDUNTZ)	705
	WRITE (0+2570) (TYSBS(1)+ 1 = 5+ KOUNT2)	705
	WRITE (6,2580) (CPPRS(I)+ I = 5+ KOUNT2)	707
	- THE FORMER	

	WRITE (6:2000) (BARN(I), I = 1: KOUNTO)	708
310	tF (NCS3 +FQ. 1) GO TO 320	709
210	WRITE (6+2610) ((NAMEWS(I+ J)+ J = 1, 3)+ I = 1, KDUNT3)	710
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	711
	write $(6_{12}, 6_{2}, 2_{2}, 0)$ (CPPWS(I) + I = 1+ KOUNT3)	712
	WAITE (0.2030) (SL(1), 1 = 1, KOUNT4)	713
	write $(0,2040)$ (ST(1), I = 1; KOUNTA)	714
	WRITE (6:2650) ((NAMETS(I* J)* J = 1, 3)* I = 1, KOUNTS)	715
	write $(6+2570)$ (TYSTS(I), I = 1+ KOUNTS)	716
	write $(0.25(0))$ (TPIS(1), 1 = 1, KOUNTS) write $(0.25(0))$ (CPPTS(1), 1 = 1, KOUNTS)	717
	write (6.2670) (TBARN(I) $I = 1 + KOUNT7$)	718
320	CONTINUE	719
36.0	WRITE (6.1920) NPROB, TITLE	720
	1F (SGK) 330, 360, 330	721
с	MODULUS VALUE (SBE) FOR SUBGRADE WILL BE CALCULATED FROM SOK	524
330	SGE = 23.925+5GK	723
330	WRITE (6:264) SGK	724
	60 TO 300	725
с	MODULUS VALUE (SGE) FOR SUBGRADE WILL BE CALCULATED FROM TTC	726
360	SGEL # 4,40586-0.10744*TTC*+1.5	727
~0"	SUE = 10.0**SOEL	728
	WRITE (6:2710) TTC	729
397	WRITE (6,2740) FESG, EFSG, CPLMS8	730
- G ()	WRITE (6,2750) (NANE(I, J), J = 1: 3): I = 1: NSB)	731
	WWITE (5,2760) (EF(1), 1 = 1, NS8)	732
	WRITE (6.2770) (FFSH(1), I = 1. NgB)	733
	WHITE (6+2790) (ES(1)+ 1 = 1+ NS8)	734
	waitr (6+2800) (CIS(I)+I = 1+NSB)	735
	WRITE (6,2010) (CPCYS(1), I # 1+ NSB)	736
	waite (6:2815) (PSVS(I). 1 = 1: NSB)	737
	WRITE (6,2,20) (TSMIN(1), I = 1+ NSB)	73 ₈
	WRITE (0+2830) (TSMAX(I)+ I = 1+ NSB)	739
	WRITE (6+2840) (SINC(I)+ 1 = 1+ NSB)	740
	WRITE (6,2850) CIOV	741
	DU JÖE Imlansh	742
395	IF (SINC(1) .EQ. 0.0) SINC(1) = 2.0	743
	IF (NCS2 NE 1) WRITE (6.2860) CPCYAC. PSVAC, ACE, ACPR	744
	IF INCS2 .NE. 2) WHITE (6.2870) CPR. COEF	745
	IF (CPSyR _NE, 0.0) WRITE (6+2880) CPSyR	746
	WRITE (6,2900) CPFTJ, CPFLJ, SLV, SUV, SPINC	747
	TF (NCS1 .NF, 1) WRITE (6+2918) NJM	748
	XNJH MINJM	749
	10+0*10+ IO+0+0 ANJM # 10+0*10+	750
	WRITE (6,292n) DETY, CLW, CERK, CHAT, WL, NLT, RINT	751
	WRITE (6.1920) NPROB. TITLE	752 753
	WRITE (6:3860) SXSD. ESD. XKSD. XJSO, PISD. P25D. USD.	
	1 (I, 5x5D(I), I = 1, NC)	754
	WRITE (6.2415) NI.NZ.NUAYCU, ALANES.OVERLEN	756
	FORMAT (A4, 5%, 1544) FORMAT (141,77,4%,141,7%,29HR1GID PAVEMENT SYSTEM 3	757
1450		758
		759
	1 34.7HPFC III,2X. 2 10HI~TRIM./12X. 5HPROB .44. 6X. 1544)	759
1.40	2 10HI~====1H1M#/12A# DMFRUD #A## DA# 10A##	761
1940	FORMAT (3110,10x.1F10,0.20x,F10,0)	762
	FORMAT (3110, F10,0, 110)	763
	FORMAT (/120X145H************************************	764
		765
	2 /+20X+45H# ERROH IN INPUT DATA FOR TRAFFIC #	703

	Amiliate under the ford dropped ou fundia	
4	ZARAASHA NOT IN ORDER *	
5	/s20xs45H*	
6	/+20x+45H# PRDGRAM TERMINATED #	
7	∕,2∩≾,45H\$6####################################	
1970 FORMAT		
19A0 FORMAT		
1990 FORMAT		
2000 FORMAT	(3F10,0,10x,F10,0,2I5,10x,I10)	
2010 FORMAT	(7F10.0+ T10)	
2015 FORMAT		
2020 FORMAT		
2030 FORHAT		
1	/•20ו45H* *	
2	/+2nx+45H4 NO DATA ON CONCRETE +	
3	1.20x.45H+	
4	1.201.45H* PROGRAM TERMINATED *	
5	/.20x.45H************************************	
2040 FORMAT		
2050 FORMAT		
POAD FORMAT	(2(F10,0, 20x), 2F5.0, F10.0)	
070 FORMAT		
20P0 FORMAT		
2100 FORMAT		
2110 FORMAT	(16F5.0)	
120 FORMAT	(8F10.0)	
140 FORMAT		
150 FORMAT		
2155 FORMAT	1 11X, 7F10,0)	
2140 FORMAT	(///, 44X, 13HTRAFFIC INPUT, ///24X, 10HLOAD RANGE, 10X,	
1	9MAVG. LUAD+ 6X+ 4HAXLE+ 8X+ 11HNO. OF AXLE+ / 45¥	
2	THIN KIPS, 7x, 4HCODE, 8x, 12HAPPLICATIONS /)	
2170 FORMAT		
	(///, 35x. 31HTRAFFIC URDWITH AND DISTRIBUTION. ///	
	SCHARLE GROWTH FACTOR, PERCENT PER YEAR	
2 15X	• F 8 • 2 /	
3 78+	SHADT GROWTH RATES PERCENT PER YEAR	
	** 8,2/	
	STHUIRECTTONAL DISTRIBUTION FACTOR. PERCENT	
	1FA.2/	
7 78+	53HDESIGN LANE DISTRIBUTION FACTOR, PERCENT	
8 15X	1F8,2/	
	SAMINITIAL AVERAGE DAILY TRAFFIC. ONE DIRECTION	
	+F8+2) The contraction of the starts were proton of the other other	
	(7X,55HTOTAL 18 KIP AXLES FOR ANALYSIS PERIOD, BOTH OIRECTI	
10NS}}X	*F10+0/1	
LOO FORMAT	(//37X. 16HPROGRAM CONTROLS./ ZUX. 18HDESIGNER SPECIFIES/)	
200 FORMAT	(7x, 39HBOTH CRCP AND JCR PAVENENTS TO BE TRIED)	
210 FORMAT		
	(7x, 26HDESIGN CHEP PAVEHENTS UNLY)	
2230 FORMAT	(7X, SHEATH CC AND AC OVERLAYS TO BE TRIED)	
ZZ40 FORMAT	(TX, 24HPROVIDE CE DVEHLAY ONLY)	
2250 FORMAT		
2240 FORMAT		
1	SHEE THIED)	
2270 FORMAT		
ÊZRÛ FORMAÎ	(7x, AAHDESIGN WELDED WIRE MEEH REINFORCEMENT ANLY)	
Z290 FORMAT	(7X, 26HPRINT SHORT FORM OF OUTPUT)	

3	1.20 4.45H4 NUMBER OF LOAD GROUPS ON LADDS	766	2310 FARMAT (7x, 24MPRINT LONG FURM OF DUTPUT)	824 N
4 5	/+2nx+45H4 NOT IN ORDER *	767 768	2310 FORMAT (7X. 1) HPRINT FIRST, F3.0, 27H DESIGNS IN INCREASING ORDE	825 O
é	7.201.45H* PROGRAM TERMINATED *	764	2320 FORMAT (1/1, 7X, 37, 34HDESIGNERS DECISIONS OR RESTRAINTS //	827
7	/+2nx+45H+4+++++++++++++++++++++++++++++++++	770	1 7X+53HMAXIMUH INITIAL FUNUS AVAILABLE. DOLLARS PER SO. YD.	62A
	(2(2F10.0, 10x), 2F10.0)	771	2 15×+F0+2/	829
O FORMAT	(4F10.0, 4F5.0, F10.0, F5.0, 4X, A1)	772	3 7X,53HHAX INITIAL THICKNESS, SLAB PLUS SUBBASE, INCHES	830
	(8F10_∩) (3F10_0,10x,F10,0,2I5,10x,I10)	773	4 15X+F8,27	A31
	(7F10.0+ T10)	775	5 7x+>3HMIN TIME TO FIRST OVERLAY, YEARS 6 15X+F8.27	д32 833
5 FORMAT		776	6 7X-53HMIN TIME RETWEEN OVERLAYS, YEAHS	834
	(15. 11. 12. F5.0.10%, F5.0. F10.0. F5.0. 3F10.0. F5.01	717	7 (53)(8,8)	835
O FORHAT	(/+2nx+45H+++++++++++++++++++++++++++++++++++	778	2330 FORMAT (7%, 53HMAX TOTAL AC OVERLAY THICKNESS, INCHES	836
1	/,2nz,45HP	774	1 15×+FA+2/	837
2	/.2nx.45H4 NO OATA ON CONCRETE	780	2 7X,53HMIN AC OVERLAY THICKNESS AT ONE TIME, INCHES	A38
3	/.20x.45H* PROGRAM TERMINATED *	781 782	3 15X+F8.2) 2340	839 840
5	/=20x+45H+***********************************	783	2340 FORHAT (7X+53HMAX TOTAL CONC OVERLAY THICKNESS+ INCHES } 15X+F8+2/	841
0 FORMAT		784	2 7X-53HMIN CONC OVERLAY THICKNESS AT ONE TIME+ INCHES	842
O FORMAT	(10x, 4F10.0) -	785	3 [5X+F8-2]	843
0 FORMAT	(2(Fin.0, 20x), 2F5.0, F10.0)	7,6	2341 FORMAT (7% 53HAVERAGE LEVEL UP THICKNESS+ INCHES	RAA
O FORMAT		787	1 15x+F8.2)	845
O FORMAT		788	2350 FORMAT(7X+53HLFNGTH OF ANALYSIS PERIOD+ YEARS	846
	(4(244, A2, 2F5,0))	789 794	1 15X+F8,21	847
D FORMAT		791	2355 FORMET(7X+)7HCDWFIDENCE LEVEL(+ A1+ 10H)+ PERCENT I 40X+Fm+3)	848 249
O FORMAT		792	2360 FORMAT (//, 34%, 21MPERFORMANCE VARIABLES //	A-9 850
	(5F10.0. 104. F10.0. I10)	793	1 7X+53HINITIAL SERVICEABILITY INDEX, EXPECTED	851
5 FORMAT		794	2 15x+F0,2/	852
O FORMAT	(///, 44X, 13HTRAFFIC INPUT, ///24X, 10HLO4D RANGE, 10X,	795	3 7X, SHTERNINAL SERVICEABILITY INDEX, ACCEPTED	853
1	9MAVG, LOAD+ 6X+ 4HAXLE+ 8X+ 11HNO. OF AXLE+ / 45X	796	4 15X+F8.2/	A54
P FORMAT	THIN KIPS, TX, AHCODE, BX, 12HAPPLICATIONS / 1	797 798	5 7X, SJMSERVICEAULITY INDEX AFTER AN OVEPLAY. EXPECTED	855
	(18x, TA, 2H -, 18, 7x, F8,3, 7x, 243, 5x, 11n) (///, 35x, 31HTRAFFIC URUNTH AND DISTRIBUTION, ///	749		856
	BAAKLE GRONTH FACTOR, PERCENT PER YEAR	604	7 7X+56HPROBARILITY OF CONJUNCTION OF BAD SOIL AND SITE, PERCENT R 17X+F8_2/	857 858
	F8.2/	NOT	9 TX-DENSELLING RATE CONSTANT	859
	SHADT GROWTH RATE, PERCENT PER YEAR	AOS	1 15X+F8+2/	850
	+8,2/	803	2 7X.58HSWELLTHG ACTIVITY, ESTIMATED DIFFERENTIAL HOVEMENT, INCHE	961
	SHUIRECTTONAL DISTRIBUTION FACTOR, PERCENT	864	C5	862
	FR.2/ DINDESIGN LANE DISTRIBUTION FACTOR, PERCENT	805	3 10X+F8,21	963
	F6.2/	806 807	2370 FORMAT(//+31x)24HTRAFFIC DELAY COST VARIABLES-//+	854
	SAMINITIAL AVERAGE DAILY TRAFFIC, ONE DIRECTION	808	1 7%,59HDISTANCE OVER WMICH TRAFFIC IS SLOWED, MILES, NV.DIRECTIO 2N 9%,F8,2/	865 866
1 148		809	3 7x+42x+16HNON_0Y_DIRECTION 10X.FB.2/	867
5 FORMAT	(7X, SSHTOTAL 18 KIP AXLES FOR ANALYSIS PERIOD, BOTH OIRECTI	816	4 7X - SHNU, OF OPEN LANES IN RESTRICTED ZONE, MILES. DV. DIRECTIO	868
10NS11X		811	5N 9X.18/	869
	(//37x, 16HPROGRAM CONTROLS / 20x, 18HDESIGNER SPECIFIES/)	A12	5 7X.42X.16HNCN_DV_DIRECTION_10X.18)	970
	(7x, 39HBOTH CRCP AND JGP PAVEMENTS TO BE TRIED) (7x. 28HDESIGN JGP PAVEMENTS ONLY)	813 H14	2380 FORMAT (7X, 59HPERCENT VEHICLES STOPPED BY ROAD EQUIPHENT, OV.DIRE	871
O FORMAT		415	2CTION 914F8.2/	872 873
	(TX. SHBOTH CC AND AC OVERLAYS TO BE TRIED)	816	3 7X,42X,16HNON.OV.UIRECTION 10X,F8.2/ 4 ₇ X, ⁵ 9Mayg DFLay Caused by RDAD Equip. Hours + ov.Directio	873 A7 ⁴
0 FORMAT	(TX, 24HPROVIDE CE DVEHLAY ONLY)	μī7	zn. 9 _x , F8, 2/	875
	(7x, 24HPROVIDE AC OVERLAY ONLY)	n 1 A	6 71++27+16HNNH+04-DIRECTION 10X+F8+2/	876
-	(7X, 49HBOTH DEFDRAED BAR AND WIRE WESH REINFORCEMENT TO	814	7 IX-59 HAVE SPEED THROUGH OVERLAY ZONE. HPM OV.DIRECTI	877
	8HBE TRIED) { 7x, 39HDESIGN DEFDRMED BAR REINFORCEMENT ONLY }	056	90N 9x.F6.2/	878
NO FORMAT		821 822	9 71+42X-16HN04.0V-DIRECTION 10X+F8.2/	679
	(7X. >6HPRINT SHORT FORM OF OUTPUT)	873	1 72:50HAVERASE APPPOACH SPEED TO OVERIAY AREA. MPH	880
		•	1 1 ₈ X+F8+Z1	AGI

2390 FORMAT(7X+50HUFTOUR DISTANCE AROUND OVERLAY ZONE+ MILES	882
1 1AX+F8.2/	883
4 7X, 50HNO, OF HOURS/DAY OVERLAY CONSTRUCTION OCCURS	884
5 1AX+F8+2/	885
5 7X, SONTHAFFIC MODEL USED IN THE ANALYSIS	886
6 18X+18/	887
7 TX. LAHROAD LOCATION	888
2400 FOHMAT (14., 77X, SHRURAL)	AR9
2410 FORMAT (1H+, 77X, SHURBAN)	890
2415 FORMAT(//+30X+30HOVERLAY CONSTRUCTION VARIABLES+///+	891
1 7X,57HMILTTARY HOUR OF THE DAY WHEN OVERLAY CONSTRUCTION BEGINS	842
2 11X+F10+0/	893
3 7X+57HMILITARY HOUR OF THE DAY WHEN OVERLAY CONSTRUCTION ENDS	Agé
4 31X+F10.0/	895
5 7X, SCHNUMBER OF DAYS CONCRETE MUST CURE	896
6 12X+F10.0/	897
7 7X,56HTOTAL NUMBER OF LANES TO BE OVERLAID	898
8 12X+F10+0/	899
9 7X.56HTOTAL OVERLAY LENGTH IN DNE LANE	900
1 12X+F10+0/)	901
2420 FORMAT (///. 39X, 20HMATERIALS, CONCRETE //	20ي
1 7X,53HCDNCRETE MIX DESIGN NUMBER	903
2 3x+0(I5+5x))	904
2410 FORMAT (7X+33HAGE OF TESTING CONGRETE, DAYS	905
3 3x+6(15+5x))	906
2440 FORMAT(7X+53HMEASURING POINT	907
5 2x+6(2A3+4X))	908
2450 FORMAT(7x+49HFLEXURAL STRENGTH: PSI	909
7 2x+6F10.2)	910
2480 FORMAT(74+49HTENSILE STRENGTH: PSI	911
1 2x,6F10.2)	912
2490 FORMAT(7X+49HELASTIC MODULUS+ PSI	913
1 2x,6F10.0)	914
2500 FORMAT(7X+49HUNIT WEIGHT+ PCF	915
1 = 2x, 6F10.2	916
2510 FORMAT(7X+49HCONSTRUCTION EQUIPMENT COST. PER LANE HILE	917
1 2X:5F10.2) 2520 FORMAT(7X:49HCOST PER CUBIC YARD OF CONCRETE, DOLLARS	918
	919
1 2x,0F10.2) 2530 FORMAT(7X,49HCOST OF SURFACING CONCRETE, DOLLARS/PER LANE MILE	020
1 2X+6F10.2)	921 922
2535 FORMAT (7%, 49HSA) VAGE VALUE OF CONCRETE, PERCENT	923
1 2x+6F10+2}	924
2540 FORMAT (// 1X, 49HMINIMUM ALLOWABLE CONCRETE THICKNESS, INCHES	925
1 19X+F8.2/	926
2 7X+49HMAXIMIH ALLOWABLE CONCHETE THICKNESS+ INCHES	927
3 19X+F8.2/	928
4 7X+49HPRACTICAL INCREMENT FOR POURING CONCRETE+ INCHES	429
5 17x • F10 • 2/)	4 <u>3</u> 0
2550 FORMAT (//. 36%. 17HMATERIALS. STEEL . //. 38%. 4(10%. 12))	931
2560 FORMAT (12x, 4HBARS, /, 16x, 12HLONGITUDINAL, /,	932 9
1 18X, 20HBAR STEEL ASTM DESIG, 4(2X, 244, 42))	933
2570 FORMAT (18x, 20HTENSILE STRENGTH,PSI, 4(2x, F10,2))	434
25A0 FORMAT (18x, 20HCOST/LB+ DOLLAHS 4(2X+ F10+3))	935
2590 FORMAT (16X, 10MTRANSVERSE, /)	936
1 16x. 20HBAR STEEL ASTM DESIG. 4(2x. 244. A2))	937
2600 FORMAT (16x, 20HBAR NOS, TO BE TRIED, 2x, 4(2x, Flu.d))	9 ³ 8
2610 FORMAT (/, 12%, 11HWIRE MESHES+ /,	939

1 18x, 20ните мезн Азти Desig, 4(2x, 244, А2)) 2670 гоямат (18x, 20нсозт/LB, Dollans 4(2x, F10.3))	949
2670 FORMAT (18X, 20HCOST/LB, DOLLARS" 4(2X, F10+3))	94]
2640 FORMAT (16X. 22HMESH SIZES TO BE TRIED. /.	942
1 17x, 21HLONG, WIRE SPACING, FT 4(2x, F10.2))	943 944
2640 FORMAT (17X, 21HTRAN, WIRE SPACING.FT 4(2X, F10.2))	945
2650 FORMAT (/, 124, 26HTIE BARS USED WITH W. MESH, /, 1 18x, 20HTTE BAR ASTM DESIG. 4(2x, 244, A2))	946
2660 FORMAT (18x, 16HCOST/LB, DOLLARS 4(2X, F10.3))	947
2670 FORMAT (15X, 24HTIE BAR NOS TO BE TRIED 4(F10.0+ 2X))	948
ZERO FORMAT (//, J5%. 20HMATEHIALS. SUBGRADE , //. 7X.15HSHBGHADE K.	9 ⁴ 9
1PCI 531.FA.2)	950
2710 FORMAT (///, 4AX, SHSUHGRADE, ///, 20X, 22HTEXAS THIAXTAL CLASS,	₉ 51
1 33X, FA_2)	952
2740 FORMAT (7X, 24HSUHGRADE FRICTION FACTOR, 44X+ F8+2	953
1 /. 7x, 27HSUBGRADE ERUDABILITY FACTOR, 41x, FA.2. /	954
2 7X, 51HCOST PER LANE MILE OF SUBGRADE PREPARATION, JOLLA	955 956
ЗRS 17X, F4,2) 2750 FORMAT (/, Э5х, 19HMATEMIALS, S _U BBASE , //, 7X, 12HS _U BBASE TYPE	457
2750 FORMAT (/, 35x, 19HMATERIALS, SUBBASE, //, 7X, 12HSUBBASE 1992 1 39x, 4(244, 42))	958
CT60 FORMAT(7X) 44HERODABILITY FACTOR	959
1 3x + 4F10.2	950
2770 FURMAT (7X+44HERICTION FACTOR	961
1 3x,4F10,21	962
2790 FORMAT(7x+44HELASTIC MOOULUS+ PSI	963
1 = 3x + 4F = 10 + 0	964 965
2800 FORMAT(12,40HCONSTRUCTION EQUIPMENT COST. DOLLARS/LANE MILE	966
1 1X+4F10+2) 2010 FORMAT(7X+44HCOST PER COMPACTED CU YO + DOLLARS	967
1 3x, 4FIO_2)	944
2415 FORMAT (7X, 44454) VAGE PERCENT VALJE+ PERCENT	969
1 3x,4F10,21	97u
2820 FORMAT (7X+44HMTN ALLOWED THICKNESS+ INCHES	971
1 3x+4F10+21	972
2830 FORMAT(7X,44HMAX ALLOWED THICKNESS, INCHES	973
1 3x+4F10+2)	974 975
2840 FORMAT(7X+44HINCREMENT FOR SUBBASE+ INCHES	476
1 3X+4F10+2) 2850 FORMAT (/+ 35x+ 7HOVERLAY+ //+ 7X+	
1 ATHINITIAL COST PER LANE MILE OF EQUIPMENT FOR OVERLAYS, DOLLAR	978
25 7x,F8.2)	979
2860 FORMAT(7X+61HCOST / CU YD OF IN PLACE COMPACTED ASPHALT CONCRETE:	9 R ()
1 DOLLARS 7X+F8+2+/+	981
2 7X.61HSALVAGE VALUE OF ASPHALT CONCRETE: PERCENT	982
1 7x,F8.2,/,	983
1 7X.41HASPHALT CONCRETE MODULUS VALUE, PSI	984 985
TX.61HPRODUCTION RATE OF COMPACTED ASPHALT CONCRETE, CH YD / HR	985
1 7X, FIGHONSCITTIN WATE OF COMPACIED ASPINET COMMETER OF TO 7 100	987
2870 FORMAT (7X, 61HCONCRETE PRODUTION RATE, CU YD ZHR	988
1 7x.F0+2,/.	989
17X . ATHCONCRETE COEFFICIENT	990
7x.F8.2)	991
2880 FORMAT (7%, 61HRANOOM ADDITIONAL COST / SQ YO FOR ANYTHING	992
1 7X FB 2	993 994
2900 FORMAT (/ 35%, AMJOINTS, 2%, //, 7%, 65HCOST/FT OF TRANS, JOTNT, SAWIN	994
1G. DOWELS: AND/OR SEALING: DOLLARS 1 5x,FB.2,/,	996
A REAL AND A REAL AND A REAL AND A DOLLARS	497
4 7X+65HCUST/FF OF LUNG+ JUIN++ SEALING+ UULLAND	

1	1 5x,F8,2,/,	998
	1 7% ASHRANGE OF SPACING FOR TRANSVERSE JOINTS, LOWER VALUE, FT	999
1	5x,F8.2./,	1000
1	1 47X+15HUPPER VALUE+ FT+ 15X+FA,2+/+	1001
	R 7X,65HINCREMENT OF SPACING TO BE TRIED FOR TRANSVERSE JOINTS, F	1005
	1T 4x+Fy+2)	1003
2910	FORMAT(7x+65HND+ OF TRANS+ CONST+ OR WRAPPING JOINTS/WILE FOR CR	1004
	1CP 5X+I0+//)	1005
	FORMAT(7X+3X+44HMAINTENANCE+ DIMENTIONS AND MISCELLANEOUS	1005
	1,//.7X,65HDAYS OF FREEZING TEMPERATURE PER YEAR	1007
	1 3x,F8,2+/+	1008
	27X.65HCUMPUSITE LABOR WAGE FOR MAINTENANCE OPERATIONS, DOLLARS/HR	1009
	1 3x,F8,2+/+	1010
	47X 65HCUMPOSITE EQUIPMENT RENTAL RATE FOR MAINT. OPERATION, DOLLAR	1011
	15 3x,FB.21/1	1012
	57X.65HCOST OF MATERIALS FOR MAINTENANCE OPERATIONS, DOLLARS	1013
	1 3x,F8.2,/,	1014
	67X+65H*IDTH OF EACH LANE+ FEET	1015
1	1 3x,F8.2,/,	1015
	97X.65HTUTAL NUMBER OF LANES IN BOTH DIRECTIONS	1017
1	3x+18+/+	1014
1	17X+65HRATE OF INTEREST OR TIME VALUE OF MONEY. PERCENT	1019
	1 3x,F8.2)	1020
3840	FORMAT (///, 30X, 26HCONFIDENCE LEVEL VARIABLES,//,	1021
	1 20X.4 UHPERCENT COEFF. OF VARIATION OF FLEXURAL +/+	1022
	2 30x, 20HSTRENGTH OF CONCRETE, 23x, F10, 2, //,	1023
	3 20X.46HSTD. DEV. OF ELASTIC MODULUS OF CONCRETE (PSI).7X.	1024
	4 F10.2+//+ 5 20%.29HSTD, DEV, OF SUBGRADE K VALUE,24%.F10.2+/	1025
	6 20X.34HSTD, DEV. OF CONTINUITY FACTOR (J)+19X+F10+2+/+	1020
	7 20X.45HSTD. DEV. OF INITIAL SERVICABILITY INDEX (P1).8X.F10.2.//	1029
	B 20X.40HSTD. DEV. OF TERMINAL SERVICABILITY INDEX (P2).7X.F10.2.	1029
	9 // 20X + 34HSTD, DEV. OF THICKNESS OF CONCRETE, 19X + F10, 2.//	1024
	T 20X.46HSTD. DEV. OF FLEXURAL STRENGTH DF DESIGN WITH: //	1030
	1 (40x, 3HMIX, 15, 25x, F10, 2))	1032
		1033
1900	STOP 77	1035
1 -410	END	1035
		1033

<pre>cidential initial (JJ+L+MpRI+MESI=NCS12+NCS2) CCMMON /MAINI/ AVGL(30), ATBPF(4), BARN(4), 1 BON(12), CTC(4), CIS(4), COD(30,2), CODE(2+2), 2 COMAN(11), CTSOV(11), COTR(11), CPCVC(6), CPCVS(4), 3 CPDBS(8), CPPTS(4), CPPS(4), CSC(6), CTMAN(1),</pre>	
1 BONY(12), CTC(6), CIS(4), COD(30,2), CODE(2,2), 2 COMAN(11), CNSOV(11), COTR(41), CPCyC(6), CPCyS(4),	1035
2 COMAN(11), COSOV(11), COTR(11), CPCyC(6), CPCyS(4),	
	1039
	1040
<pre>4 CTOVER(11), CTIRAF(11), DIAL(4), DIAM(4), DIAT(4),</pre>	
5 E(K) + FF(4) + ES(4) + ESL(4) + FFSH(4) + (20)	1042
$A = L_1(3^0)$, $I \ge (30)$, LFT (4), $M_A NT (4)$, $N_A (30)$,	1044
7 NAME 14:3) . NAMERS (8:3) . NAMETS (4:3) . NAMEWS (4:3) . NCNT (4) .	1045
8 NCDÜE(30), MIL(6), NDLT(4), NP(6), NTDCT(4), 9 NTHT(4), NTDT(4), NTOTR(4), OVIN(3),	1045
	1047
1 OVNAH(6), OL(12), PVIO(2), PVNAH(6), RO(2,2),	1047
2 RNFIU(2), RNFNAM(6), SINC(4), SL(4), SPAC(4),	
3 SPACL(4), CDACT(4), SPTIE(4), ST(4), SX(6),	1049
4 V5x(6), 5xD4T(6,2), SADA(2,2), SXSD(6),	1050
5 THARN(4) + TOTM(11) + TCTOV(11) + TCTTO(11) + THOV(11) +	1051
6 THOVI(11), TTTLE(15), TS(6), TSMAX(4), TSMTN(4),	1052
7 TTCS(6) + TYSHS(8) + TYSTS(4) + TYSHS(4) + #C(6) +	1053
A WHO(9) + COT(20) + KIN(6) + PSVC(6) + PSVS(4) -	1054
9 NODE (4) + CONF (7) + ZZCONF (7) + LEVEL (7)	1055
COMMON /MAINZ/ CA(30) + CC(30) + CI(30) + CJ(30) +	1056
1 CM(30), CA(30), CR(30), CSB(30),	1057
2 CSP(30), CSR(30), CT(30), CTB(30), IO(30),	105A
3 [P(30), 1-(30), JMR(30), JNR(30), JPR(30),	1059
4 MC(30), MR(30), MS(30), MTB(30), MTR(30),	1060
5 NMR(24) + NO(30) + NPP(30) + PLF(30+13) + RLN(30+4) +	
A RIS(30,4), DTN(30,4), RTS(30,4), STJ(30), SUMOV(30),	
7 TRN(30,4), TRSP(30,4), TC(30), TCT(30), TU(30,12),	
8 TSUB(30)	1064
COMMON /REINFD/ KRCK+CPFLJ+CPFTJ+IDRF+JM+JN+JP+	1065
I KOUNTI, KOUNTZ, KOUNTJ, KOUNTA, KOUNTS, KOUNTA,	1966
1 KOUNT7+ VCS3+ NJM+ NLT+ SLV+ SPINC+ SPTJ+	1067
1 SUVA THCC. AL, KNJM, MNOLR, MNOTR, MNOTR	1058
COMMON/ARRAY/ CHSYR+CTC+CTIN+CTJ+CTRF+CTS8+CTSP+CTSH+CTTB+KK	
1 LPL + MNOC + MNOS + NODES + NREQ + NR2 + THSB + LM	1070
COMMON / INPUT / ACE, ACPR, AGF, BUMIN, CINC, CIOV, CMAX, COEF, CPCY	
<pre>CPLMSG+CPR+D0F+0FL+0S0+EFSG+E0F+ES0+FFSG+IK0UNT+ILEVEL+</pre>	1072
2 TSX+K1+K2+K3+M+MAX0+NC+NL+NLCK+NPROB+NSH+	1073
3 OFMIN+OHAXA+OMAXC+OMINA+OMINC+POV+PSN4+PSVAC+PSASD+	1074
4 P1+P1SU, P2S(), SGE, SGEL+SQK+TCMAX+TCMIN, THLEV+TMAX+	1075
5 TTC+WWW+XJSh+XKSD	1076
COMMON / OUTPUT / KANAL, KEUND, KLIF, KLIFE, KREJ, KSUB, NN, NNC, NN	1079
COMMON / OUTPUT / KANAL, KEUND, KLIF, KLIFE, KREJ, KSUB, NN, NNC, NN 1 NNT, NOID, NGTN	
	1079
1 NNT+NOID+NOTN	1080
1 NNT+NOID+NOTN	1080
1 NT.NOID.NATN J L C	1080 1081 1082
1 NNT+NOID-NATN JJ _ A Initializing NN = 0	1080 1081 1082 1083
1 NNT NOID NATH JJ = 0 INTIALIZING TF (PSN4 -FD. 0.0) PSN4 = 14.	1050 1081 1082 1083 1083
1 NNT+NOID.NATN JJ _ D INTTIALIZING NN = D TF (PSN4 .FD. 0.0) PSN4 = 14. NRED = PSN4	1080 1081 1082 1083 1084 1085
1 NNT NOID NATH JJ = 0 INTIALIZING TF (PSN4 -FD. 0.0) PSN4 = 14.	1080 1081 1082 1083 1085 1085 1085
1 NNT+NOID.NATN JJ = 0 INTIALIZING TF (PSN4 +FD, 0.0) PSN4 = 14. NRE0 = PSN4 KSUB = 0 NNT = 0	1000 1081 1042 1043 1044 1085 1096 1087
1 NNT+NOID+NATN JJ = 0 I = 0 $TF (PSN_4 + FD_1 = 0,0) PSN_6 = 14.$ $NRE0 = PSN_6$ KSUB = 0	10%0 10%1 10%2 10%3 10%4 10%5 10%5 10%7 10%7
1 NNT+NOID.NATN JJ = 0 INTIALIZING TF (PSN4 +FD, 0.0) PSN4 = 14. NRE0 = PSN4 KSUB = 0 NNT = 0	10%0 1081 10%2 10%3 10%5 10%5 10%7 10%7 10%7
1 NNT+NOID+NATN JJD INTIALIZING NN = 0 TF (PSN4 +F3. 0.0) PSN4 = 14. NRE0 = PSN4 KSUB = 0 NNT = 0 KLIFE = 0	10%0 10%1 10%2 10%3 10%5 10%5 10%7 10%7 10%4 10%9
1 WNT+NOID+NATN JJ = A INTIALIZING TF (PSN4 + FD: 0.0) PSN4 = 14. NREO = PSN4 KSUB = 0 NNT = A KLIFE = 0 KREJ = 0	10%0 10%1 10%2 10%3 10%4 10%5 10%6 10%7 10%7 10%7 10%9 10%0 10%0
1 WNT+NOID.NATN JJ = 0 INTIALIZING TF (PSN4 «FD. 0.0) PSN4 = 14. NRE0 = PSN4 KSUB = 0 NNT = 0 KLIFE = 0 KREJ = 0 NNP = 1	10%0 10%1 10%2 10%3 10%5 10%5 10%7 10%7 10%4 10%9

.

с с с

	MHH = A	1094
	MORT # NCS2	1095
	NC512 - NC51+NC52	
	N01% = 0	1096
		1097
	KANAL	1098
	n0 400 L = 1.4	1099
	NTHT() # 9	1100
	LFT(L) = 0	1101
	MANT(L) = 0	1102
	NTMT(L) = 0	1103
	NTOTALL = 0	1104
	NCNT(L) = 0	
	NODE (1) = 9	1105
		1106
	NTOT(1) = 0	1107
	NTDCT (L) = 0	1109
	NDLT(L) = 0	1109
	KIN(L) # 0	1110
400	CUNTINUE	1111
	NREQ1 = NREQ+1	1112
	NREQ5 . NREQ+5	
	DO 410 KLM . NREQ1. NRED5	1113
410	TCT (K) w) # 10000.0	1114
• • • •		1115
	CTSP = CPLMSG#3,0/(1760,0*WL)	1116
	RETURN	1117
	FNO	1118

SHE	ROHTINE NO	MRER (1.KIND	1			1119
		/ AVGL (30) -	ATUPF (4)+	BAPN (4) +		1150
	ONY (12) .	CTC(6)+	CT5 (4) +	COD(30,2),	CODF (2+2)+	1121
	04AN [1] .	r-SOV(11)+	COTH(11) +	CHCAC (9) +	CPCY5(4)+	1122
	P085(8).	COPTS(4):	CPP#S(4)+	CSC (6) .	CTMAN(11) +	1123
		CTTRAF (11) .		DIAM(4).	0147(4),	1124
	(K) +	FF(4)+	ES(4) + LFT(4) +	ESL (4) .	FFSA(A)	1125
	1(30); (4+3);	12(40);	+NAMETS(4+3)	MANT (4) +	NA(30) .	1127
	CODE (30)	ND(0);	NOLT (*) +	NP (6) +	NIOCT(4)+	1128
	ITHT (*(.	NTMT(4).	NTOT (*).	NTOTR(4) .	OVIDEN.	1129
	WNAM (6) +	Pi (12) +	PVID(2).	PVNAM(6)+	Ru(2+2)+	1130
	NF10(2) .	PHENAM (61.	\$1NC(+).	SL(4).	SPAC(A).	1131
	PACL (4) .	SPACT (4) +	SPT1E(4)+	ST(4),	54(6).	1132
	cx(b),	STD(6),	SXDAT(6.2).		5450161+	1133
	BARN(4),	TCTM(11)+	TCTOV(11).	TCTT0(11),	THOV(11):	1134
5 T	HOVI (11) +	TITLE (15) +	TS (6) +	TSHAX (4) +	TSMIN(4)	1135
	TCS(6) .	TYSUS(U) .	TYSTS (4) .	TYSWS(4) +	WC (4) .	1136
R W	40(9)+	SCOT (201+	KIN(6)+	PSVC(6)+	PSVS(4).	1137
	00E(+)+	CONF (7) +	ZZCONE (7) +	LEVEL (7)		1148
(OM	MON TREINFI		LJ, CPFTJ, IDR			1139
1			3. KOUNT4. K		6.	1140
1			TI SLVI SPIN			1141
1			MNOLR, MNOTH			1142
					A.COEF.CPCYAC.	1143
1			D.EFSG.EOF.E		NI + ILEVEL +	1144
5			CONLONLCK ONP		06160	1145
3			NA.OMINC.POV .SGK.TLMAX.T			1140
4	TIC+###+4		1200110000411	CHERFINE EXF		1146
			FINDARI TRAKI		B+NN+NNC+NNR+	1149
1	NNT, NUID.		OND THE FILL	11 21 4 4 2 3 4 3 4		1150
		= TCMIN				1151
	KIND					1152
	NOS					1153
		K z Q				1154
	00 440 I	= L. NSH				1155
	TF ({TCHI	N+TSMIN(1))	.GT. TMAX) K	THCK = KTHCK	* j	1150
	SON	# (TSMAX(I)-	T\$M1N(1))/S1	NC(I)		1157
		■ SON				1158
		E NON				1159
		GT. SONS) NO	N # NON+]			1160
		= N05+N0N+1				1161
440	CONTINUE					1162 1163
	NOC					1164
	n0 450 I	E (TCHA _X -TCH				1165
		E (ICHAX-ICH E SON	14/20140			1166
		= NON				1167
		GT. SONS) NO	N = NON+1			1169
		NOC+NON+1				1169
450	CONTINUE					1170
		NOS*NOC				1171
	NOIN	. NOIN+NOID				1172
	IKTHCK, LT.	NGR) RETURN				1173
¥R1	TE (0.2930	}				1174
2930 FOR			***********	********	**********	1175
1	1.	20x+45H*			•	1176

2	/+20x+45H#	NO COMBINATION OF CONCRETE AND	+	1177
Э	/+2nx+45H#	SUBBASE THICKNESSES IS POSSIBLE	÷	1176
4	/+2nx+45H#	EVEN AT THEIP MINIMUM LEVELS	•	1179
5	/#20x#45H#		•	1140
5	/+20X+45H#	PROGRAM TERMINATED	•	1181
7	/.20x.45H####	***************************************	****)	1182
STOP 77		•		1183
END				1184

	SUBRDUTINE TRAFFIC (ALOGIO+1				11
			HARN(4) +		11
			+ (5+02)00	CODE (2+2)+	11
	2 COMAN(11), COSOV(11), CO	1R(11)+ C	PCYC(6) +	CPCYS(4)+	11
			SC (6) +	CTHAN(111+	11
	4 CTOVER(11), CTTRAF(11) + DI		1IAM(4)+	D1AT(4).	11
	5 E(6) + FF(4) + ES		SL (4) +	FF58(4)+	11
			ANT (4) .	NA(30)+	11
	7 NAME (4+3) . NAMERS (8+3) + NA	HETS (4+3) +h	IAMEWS (4+3)	+NCNT (4) +	11
)LT(4), N	P(6).	NTOCT (4) +	11
		DT (4) . N	TOTR(4)+	DVID(3),	11
		IDiel. P	VNAM(6)+	RD(2+2).	11
		(NC (4) + 5	iL (4) e	SPAC(4) +	11
			T(4).	SX (6) .	11
		DAT (5.2) . 5	X04(2.2).	SXSn(6).	11
			CTT0(11).	THOV (11) .	12
			SMAK (A) +	TSHIN(4) .	12
			YSWS (4) +	WC(6).	12
			SVC(6).	PSVS(A),	12
			EVEL (7)		12
	COMMON /REINFD/ KRCK+CPFLJ+	CPET.I. TOPE			12
		KOUNTAL KO		6.	12
	· · · · · · · · · · · · · · · · · · ·	SIV. CPTNC.	SPT 1-		12
		10. NUCTO.A			iž
	1 COMMON /LIF/ P2+ PSS+ XJ+ TO	DERE HNUININ	INUIN CACTA		12
					12
	3 VTHCC, VTOPKE: VE: VX	Je ZZ, VPI	I TOON ALAN		12
	COMMON FALLE AP.ADTOR.ITYPE.	ALNI TNUATCH	IT DUATELAN	C 3 FUYENLEN	12
	COMMON / INPUT / ACE+ACPR+AG	P BOWINSCIN	C+C10V+CMA	NT TO FUEL	12
	1 CPLMSG.CPR.DUF.UFL.DSD.E	F SWICOF IESU	11 - 20 ILOU	HI .ILEVEL.	
	2 ISX+K1+K2+K3+M+MAX0+NC+N	LINLUKINPRU	8+1128+		12
	3 OFHIN, OMAXA. OHAXC. OHINA.	UNINC POY P	SNAIPSVALI	- 2420+	
	4 P1.P1SD, P250, SGE. SGEL. SG	14 + 1 CHAA + 1 CH	114 147511	~***	12
	5 TTC+WWW+XJ4D+XKSD				12
	REAL NOUDE				12
	00 470 J = 1+ NSB				12
	IF ((THCC+TSHIN(J)) .LE.	, TMAX) GO T	'O 480		12
470	CONTINUE				12
	a0 F0 500				15
480	WT WWW * DOF * OFL	/(10.0##4)			12
-	1F (PSN2.E0.1.0) 00 TO 5				12
					12
с			TAIDUT TO	RE ENULL	
с с	PSN2 HAS BEEN SET BY	. 208KDOLINE			12
с	PSN2 HAS BEEN SET BY To one. So this sect			EVER	12
c c		TON IS NOT	USED. HOM	EVER	12
с с с	TO ONE. SU THIS SECT	TIDN IS NOT EDGRAM SO TH	USED. HOM	EVER	12
с с с с	TO ONE. SO THIS SECT IT IS LEFT IN THE PR	TIDN IS NOT EDGRAM SO TH	USED. HOM	EVER	12 12 12 12
с с с с с	TO ONE. SO THIS SECT IT IS LEFT IN THE PR	TIDN IS NOT EDGRAM SO TH	USED. HOM	EVER	12 12 12 12
0 0 0 0 0 0	TO ONE. SO THIS SECT IT IS LEFT IN THE PR	TIDN IS NOT DGRAM SO TH INPUT OPTI	USED. HOM NAT FUTURE ION	EVER USE MAY BE	12 12 12 12 12 12 12
0 0 0 0 0 0	TU ONE, SU THIS SECT IT IS LEFT IN THE PR Made of this type of	TIDN IS NOT DGRAM SO TH INPUT OPTI	USED. HOM NAT FUTURE ION	EVER USE MAY BE	12 12 12 12 12 12 12
0 0 0 0 0 0 0	TO ONE, SO THIS SECT IT IS LEFT IN THE PR Made of this type of Computing Equivalent	TON IS NOT ROGRAM SO TH INPUT OPTI 18 KIP SIN	USED. HOM NAT FUTURE ION	EVER USE MAY BE	12 12 12 12 12
0 0 0 0 0 0	TU ÖNE, SU THIS SECT IT IS LEFT IN THE PR Made of this type of Computing Equivalent Compute Serviceability Te	TIDN IS NOT Rogram \$0 Th Input Opti 18 Kip Sin	USED. HOM NAT FUTURE ION	EVER USE MAY BE	12 12 12 12 12 12 12 12 12
00000000	TU ÖNE, SU THIS SECT IT IS LEFT IN THE PR Made of this type of Compute Serviceability te UT=Alfald((P)=P2)/(TIDN IS NOT ROGRAM SO TH INPUT OPTI 18 KIP SIN RMM (P1-1+5))	USED. HOM NAT FUTURE ION IGLE AXLE L	EVER USE MAY BE	12 12 12 12 12 12 12 12 12 12 12
0 0 0 0 0 0 0	TO ONE, SO THIS SECT IT IS LEFT IN THE PR Made of this type of Compute serviceability te Gtmalfaid((P1=P2)/(BETA For 16 Kip, Sin	(ION IS NOT (OGRAM SO TH F INPUT OPT) (18 KIP SIN (P1-1.5)) (PLE AXLE LO	USED, HOM NAT FUTURE ION IGLE AXLE L	EVER USE MAY BE	12 12 12 12 12 12 12 12 12 12 12
00000000	TU ÖNE. SU THIS SECT IT IS LEFT IN THE PR Made of this type of Computing equivalent Gtalfaid (P1=P2)/(Beta far 18 kip, Sin U18=1.4+3.63=19+**5	(ION IS NOT (OGRAM SO TH F INPUT OPT) (18 KIP SIN (P1-1.5)) (PLE AXLE LO	USED, HOM NAT FUTURE ION IGLE AXLE L	EVER USE MAY BE	12 12 12 12 12 12 12 12 12 12 12 12
00000000	TU ÖNE, SU THIS SECT IT IS LEFT IN THE PR Made of this type of Compute Serviceability te Ut=almg10((P1=P2)/(BETA Frg 18 kip, Sin U18=1.9+3.63+19.**5 W1=0.0	(ION IS NOT (OGRAM SO TH F INPUT OPT) (18 KIP SIN (P1-1.5)) (PLE AXLE LO	USED, HOM NAT FUTURE ION IGLE AXLE L	EVER USE MAY BE	12 12 12 12 12 12 12 12 12 12 12 12 12 1
00000000	TO ONE, SO THIS SECT IT IS LEFT IN THE PR MADE OF THIS TYPE OF COMPUTE SERVICEABILITY TE OT=ALF010((P1+P2)/(BETA Fra 16 KIP, SIN B18=1.9+3.63+19.**5 W1=0.0 DO 490 I=1.NL	TID IS NOT ROGRAM SO TH INPUT OPTI T 18 KIP SIN (PI-1.5)) (DLE AXLE LO S.20/(TMCC.)	USED, HOM NAT FUTURE ION IGLE AXLE L	EVER USE MAY BE	12 12 12 12 12 12 12 12 12 12 12 12 12 1
00000000	TU ÖNE, SU THIS SECT IT IS LEFT IN THE PR Made of this type of Compute Serviceability te Ut=almg10((P1=P2)/(BETA Frg 18 kip, Sin U18=1.9+3.63+19.**5 W1=0.0	TID IS NOT ROGRAM SO TH INPUT OPTI T 18 KIP SIN (P1-1.5)) WELE AXLE LO S.20/(THCC.)	USED. HOM (AT FUTURE (DN IGLE AXLE L)AD (.)**8.46	EVER USE MAY BE	12 12 12 12 12 12 12 12 12 12 12 12 12 1

С	CALCULATE EDHIVALENCY FACTOR FOR EACH LOAD GROUP	1243
	EQ =(YN/19•0)*****62*10*0***(GT/818-GT/8)/NCODE(T)**3.28	1244
С	CALCULATE TOTAL EQUIVALENT IN-KIP AXLES	1245
	WTWWT+NA(I)#EQ	1246
490	CONTINUE	1247
С	INCLUBE GROWTH AND DISTRIBUTION FACTORS	1248
	WT#WT#365,0+DFL#DDF/(10,0##4)	1249
	WT = WT + (1 + 0 + AGF + AP/200 + 0)	1250
	WTEWTAAP	1251
С	WT TOTAL 18 KIP SINGLE AXLES FOR ENTIRE ANALYSIS PERIO	1252
С		1253
C	REFER CUTS THE INITIAL DESIGNS AFTER FINDING THAT INITIAL	1254
С	LIFE FOR ALL CONCRETE AND SUBBASE TYPES IS MORE THAN	1255
С	THE ANALYSIS PERIOD	1256
C		1257
500	KLFCK = 0	1258
	RETURN	1259
	END	1260

	NUTINE AGE? (P1, D, T, SX, L, TUPTU, JUMP, VSX) NN /LIF/ P2, PSS, XJ, TOPKE, WTOT, THETA, SACT,	1261 1262
1	4D+ VTOPKE+ VE+ VXJ+ ZZ+ VP1+ VP2	1263
	ON /ALL/ AP, AUTGR, ITTPE, RIN(, NDAYCU, IOOV, ALANES, OVERLEN	1264
COMM	A ALLY APARITY EATH THE ATH THE ATT ATT THE ATT THE ATT ATT ATT ATT ATT ATT ATT ATT ATT AT	1265
	AND FIND THE IN YEARS TO DOING A OFFICE FROM TO	1265
	GEZ FINDS THE TIME IN YEARS TO BRING A DESIGN FROM ITS	1267
I	NITIAL TO TTS TERMINAL SERVICEABILITY	
	N/A-D	1268
HFAL	9MUC	1269
		1270
	PEST = 0.001	1271
	KK 🔹 1	1272
	Z = E/TOPKE	1273
	(+005+HDTGA+(AP#ADTGA+1)	1274
	C2 = 2nQ + / (AP + AD T GR + 200 +)	1275
	$PR0 = 5_{*}85 - 4_{*}62 + A_QG10(19_{*}0)$	1276
	XL = (7*(0**3.0)/11.52)**0.25	1277
	RHD5P = (xJ#900U,/D##2+)+(1,-7,15#SQRT(2+J/xL)	1278
	R18L = 1+010#ALOG10(RHUSP#690+/SX)+ALOG10(0+301)	1279
	DIL = 1.995-0.517*R18L	1290
		1281
	BETA = 1.+(3,63+19,0++5.20)/(D1)++8.46	1282
	CLK = 7,35+D1L + PR0	1283
	CK = 10.0 ** CLK	1284
		1285
	41 ± 7,35+4,517+1_01	1286
	Q2 = 3,63+19,0+5,2	1287
	Q3 = 7.15+50RT(2.0)	1288
	45 = 1,43429	1289
		1290
	₩Sx = (Q1+Q5)++2 +vSx /(Sx+Sx)	1291
	WXJ = (Q1+Q5) ++2 +VXJ /(XJ+XJ)	1292
	WP2 = (05/05) ++2+ VP2/((P1-P2)++2)	1293
	WP1 = (05/05) **2 * (1/(P1-P2) = 1/(P1-1.5)) **2*VP1	1294
	#K1=(1./(1(03/(((E*D**3)/(11.52*TOPKE))**.25))))*05	1295
	"K2= (03/4.) + (11.52/(E*(D**3)*(TOPKE**3))) ++ 24)	1296
	WK = (-Q1+WK1+WK2)++2+VTUPKF	1297
	WE1 = WK1	
	#E1 = WK1 #E2=(^3/4,)*(((11,52*TOPKE)/((0**3)*(E**5)))**,25)	129a 1299
	WE = (01+ME1+ME2)++8+VE	1300
	wD1 = 2.0+01+05/0	1301
	WD2 = - (3.0+01+03+05/(4.0+(D++1.75)+	1302
	([E/(11,52*TOPKE))**0,25 + Q3/(0**0,75)))	1303
1		1304
-	wD3 = (ALOG10((P1-P2)/(P1-1.5)) + Q2 + B.46)	1305
1	• (0+1+0)**7.46 /	1306
2	$((Q^2 + (D+1, Q) + + + + + + + + + + + + + + + + + + $	1307
	#D = (4D1 + #02 + #D3)**5 * 40	
		1308
	VLOGW = WSX+WXJ+WP1+#P2+WK+WE+W0+0+0354	
	SDLW # SQRT (VLOGW)	1310
	WUPTO = (10.0*+(ZZ+SDL#))*(WTOT*(C1+(TUPTO/AP)**2	1311
1	+C2+TUPTO/AP))	1312
		1313
	RKK = AP - TUPTO	1314
	TF (JUMP .LT. PKK) RKK & JUMP	1315
	01FFR # 0.0	1316
n 0	T = THPTO + RKK	1317
10	wT = (10+0++(ZZ*SDLw))*(wTOT+(C1+(T/AP)**2+C2*T/AP))	1318

	WINK = WT - WUPTO	1319
	UIFF = P2_(P1_(P1_1+5) + (WINK++UETA)/(CK++BETA)	1320
	1 - (0.335+PSS+SACT) * (EXP (-THETA+TUPTO)	1321
	1 -(0.335+PS5+SACT)+(EXP(+THETA+TUPTO) 2 -EXP(-THETA+T)))	1322
	TF (DIFF) 740. 750, 740	1353
746	TF (AUS(DIFF) LT, PEST) 60 TO 750	1324
	1F (KK.EQ.2) GO TO 741	1 3 2 5
	1F (DIFF) 741, 742, 742	1326
742		1327
	GU TO 750	1358
741	CONTINUE	1329
	DIFFR = (P1+1+5)*BETA*(#INK++(HETA+1+0))/(CK++AETA)*	1 3 3 0
	1 wTOT # (10,0**(ZZ*SOLW))*	1331
	1 (C2/AP+2,0+C1+T/(AP++2))+0,335+P55+5ACT+THETA	1332
	2 *EXP(+THETA*T)	1333
	KK • 2	1334
	T = T = DIFF/UIFFR	1335
	60 TO 710	1336
750	Τ # Τ-ΤυΡΤΟ	1337
С		1338
с с с	T IS THE LIFE OF THE DESIGN	1339
C	THIS WILL BE TAKEN BACK TO THE HAIN PROGRAM	1340
с		1341
	RETURN	1342
	END	1343

	1319	SHENDUTINE MANCE (PLP, PLF, TMPSY)	1344
	1320	COMMON ZMANCZ CERR. CLW. CHAT. DFTY	1345
	1321	COMMON /ALL/ AP.ADTOR, ITYPE, RINT. NDAYCU, IDOV. ALANES, OVERLEN	1346
	1322	REAL LAB. MAT. MTOT	1347
	1323	DATA PLW PERP PMAT/0.60.0.19,0.21/	1348
	1324	DATA PLWR, PERRR, PMATR/0, 44:0-21,0, 35/	1349
	1325	T = PIF-PLP	1350
	1326	TF (PLF GT AP) T # AP-PLP	1351
	1327		1352
	1328	C PLP PERFORMANCE LIFE PREVIOUS	1353
	1329	C PLF PERFORMANCE LIFE FOLLOWING	1354
) #	1330	C T - YFARS OF MAINTENANCE	1355
, -	1331	c	1356
ETA	1332	1F (1TYPE .EU. 2) GO TO 7000	1357
	1333	$XLW \Rightarrow PLWR$	1358
	1334	XERR # PERRR	1359
	1335	XMAT = PMATR	1360
	1336	GU TO 7010	1361
	1337	7000 XLW = PLW	1362
	1338	XERR = PERG	1363
	1339	XMAT * PMAT	1364
	1340	7010 CUNTINUE	1365
	1341	MTOT # 0+0	1366
	1342	NT = T+1+0	1367
	1343	107020 f = 1.007	1368
		$x_{11} = 1 - 1$	1369
		ŶP¯19+72+(XIL)++2++14+72+DFTY=1#3+0	1370
		TF (YP +LE, 0+0) GU TO 7020	1371
		LAB z vP*xLw*CLw	1372
		EQUIP = YP*XERR*CERR	1373
		MAT = VPexMATecNAT	1374
		TOT = (LAH+EQUIP+MAT)/(1++RINT/100+)++(X1+PLP)	1375
		1F (1 +EQ+ NT) GO TO 7030	1376
		MTOT _ MIDT.TOT	1377
		C	1378
		C MTOT TOTAL MAINTENANCE COST FOR T YRS AFTER APPLYING RINT	13/9
		c	1340
		7020 CUNTINUE	1381
		7030 TI # NT	1392
		Figr = TOT+(TL-T)	1383
		TOT = TOT-FTOT	1384
		HTOT = NTOT+TUT	1385
		TMP5Y = MTOT/(1760,0+10.0)	1366
		c	1347
		C THPSY TOTAL HAINTENANCE COST PER SQUARE YARD	1388
		C THIS WILL BE TAKEN BACK TO THE MAIN PROGRAM	1389
		c	1390
		RETURN	1391
		END	1392

XNUN = NUNT	3449	
NJNT = NLT-2	1448	
610 WIDTH . WIDTH/2.0	1447	
IF (MODEL-2) 615, 615, 610	1446	
XNJN = NJNT	1445	
NUNT = NLT = 1	1443	
XNLT = NLT WIDTH = XNLT+WL	1443	
	1441 1445	
o ⊯ ML n ⊯ ¶L	1440	
JN = 0	1,39	
CTL58 = 0.0	1438	
CTR.18 . 0.0	1437	
IURF # 1	1436	
IF (KHCK .GT. 1) GO TO 900	1435	
	1434	
WITH AN INCREASE IN THICKN	ESS OF THE SAME SUBRASE 1433	
KRCK PREVENTS THE STEEL FROM BE		
	1431	
KRCK - KRCK+1	1430	
1 ASNO, MONEL OTSO, DTSN, DDO		
COMMON /TDC/ HPAC.PVSO.PVSN.0EQD.D		
A TSUB(30)	1425	
7 TAN (30+4) + TASP (30+4) + TC (30) +)+ STJ(30)+ SUMOV(30)+ 1425 TCT(30)+ To(30,12)+ 1425	
5 NMB(#4), NG(30), NPP(30), 6 Ris(30,4), RTN(30,4), RTS(30,4	PLF(30,13), RLN(30,4), 1424), STJ(30), SUMOV(30), 1425	
4 MC(30), H(R(30), MS(30), 5 NHB(#4), NO(30), NPP(30),	MTB(30), MTR(3n), 1423	
3 IP(30), 14(30), JMR(30),	JNR (30), JPR (30), 1422	
2 CSP(30)+ CSR(30)+ CT(30)+	CTB(30), IO(30), 1421	
1 CM(30), CO(30), CR(30),	CSB(30), 1420	
COMMON /MAINP/ CA(30) + CC(30) +	CT(30)+ CJ(30)+ 1419	
9 NODE 41+ CONF(7) ZZCONF (7	1+ LEVEL (7) 1+18	
A WHO(\$), SCOT(20), KIN(6).	PSVC(6), PSVS(4), 1417	
7 TTCS(6)+ TYSBS(8)+ TYSTS(4)		
6 THOYT (11) + TITLE (15) + TS(6) +	TSMAX(4)+ TSMIN(4)+ 1415	
5 TRARN(4) + TOTH(11) + TOTOV(11	1. TCTTD(11), THOV(11), 1414	
	2) + SXDA (2+2) + SXSD (A) + 1413	
2 RNF1U(2)+ RNFNAM(6)+ SINC(4)+ 3 SPACL(4)+ SPACT(4)+ SPTIE(4)		
	PVNAM(6)+ RU(2+2)+ 1410 SL(4)+ SPAC(4)+ 1411	
9 NTHT(4)+ NYMT(4)+ NTOT(4)+ 1 DVNAM(6)+ Pr(12)+ PV10(2)+	NTOTR(4) + OVIn(3) + 1409 PVNAM(6) + RD(2+2) + 1410	
A NCODE (30) + NO (6) + NOLT (4) + 9 NTHT (4) + NTHT (4) + NTOT (4) +	NP(6), NTDCT(4), 1408	
	+3)+NAME#S(4+3)+NCNT(4)+ 1407	
6 L1(30) + L2(30) + LFT(4) +	MANT(4), NA(30), 1406	
5 E(6) + FF(4) + ES(4) +	ESL(4), FFSR(4), 1405	
4 CTOVER(11), CTTHAF(11), DIAL(4),		
3 CPP65(8) + CPPT5(4) + CPP85(4)	• CSC(6) • CTMAN(11) • 1403	
2 COMAN(11)+ COSUV(11)+ COTR(11)	+ CPCYC(6)+ CPCYS(4)+ 1402	
1 BONY (12) + CTC(6) + CTS(4) +	COD(30,2), CODE(2.2), 1401	
COMMON /MAIN1/ AVGL (30) + ATBPF (4)+ BARN(4)+ 1400	
1 SUV. THCC. WL. KNJH. HNOLR. MN	OT6, MNOTR 1399	
1 KOUNTT NCS3+ NUM+ NLT+ SLV+ S		
I KOUNTI. KOUNTZ, KOUNTA, KOUNTA		
COMMON /REINFD/ KRCK+CPFLJ+CPFTJ,		
1 VTHCC. VTOPKE: VE: VXJ: 42.		
CONMON /LIF/ P2. PSS: XJ: TOPKE: W	T+ THETA+ SACT+ 1394	
SUBROUTINE REINF (1.J.CTIN+CTC+CTJ.	CTRF+CTSP+CTTH+CTSB1 1393	

	CTRJ = 1000	145)
	15 (NCS3 .59. 2) 60 TO 650	1,52
	DO 640 ISTEFL = 1, KOUNTI	1453
	SPATJ = SLV	1454
620	ASPFW = THCC/24.*WC(I)*SPATJ*FFSB(J)/(TYSBS(ISTEEL)	1455
1	¢1,75)	1456
	COSTLS = 12.0+ASPF#+CPP8s(ISTEEL)++90.0/1728.0	1457 1458
	COSTTJ = CPFTJ/SPATJ	1459
	CTLRTJ = COSTLS+COSTTJ	1457
	TF (CTLRTJ .GE. CTRJ) GO TO 630	1461
	CTRJ E CTLATJ CT(S = COSTLS	1462
	CTTJ = COSTLJ	1463
		1464
с	ABOVE COSTS ARE PER SO FT AND AREA OF STEEL IS PER FT WIDTH	1465
L.	MNOLR # ISTEEL	1465
	SPTJ = SPATJ	1467
630	1F (SPAT) . EQ. SUV) GO TO 640	1469
	SPATJ = SPATJ+SPINC	1469
	IF (SPATJ , GT, SUV) SPATJ # SUV	1476
	0 TO 520	1471
640	CONTINUE	1472
	CTR IB # CTRJ	1473
	1F (NC53 ,FQ. 1) GO TO 730	1474
650	00 689 JMESH = 1, KOUNT3	1475
	SPATJ = SLV	1476
660	ASPFW 🖕 THCC/24+#WC(1)#SPATJ#FFSB(J)/(TYSWS(IMFSH)	1477
1	•0.75)	1478
	CUSTLS = 12.0*ASPF#*CPP#\$(IMESH)**90.0/1728.n	1479
	COSTTU - CPFTU/SPATU	1480
	CTLRTA = COSTLS+CDSTIU	1481
	IF (CTLRTJ _GE, CTRJ) GO TO 670	1482
	CTRU = CTLRTU	1483
	CTLS = COSTLS	1484
	CTTJ = COSTTJ	1485
	ASPF _ ASPF#	1486 1487
	HNOLR . IMESH	1487
	SPTJ = SPATJ	1489
670	IF (SPATJ "20. SUV) GO TO 680 SPATJ # SPATJ+SPINC	1490
	IF (SPATJ AT+ SUV) SPATJ = SUV	1491
	00 TQ 660	1492
680	CONTINUE	1493
oun	IF (CTRJ .FQ. CTRJB) 60 TU 730	1494
с		1495
č	FOR JCP AND CRCP. BUTH. THE PROGRAM DESIGNS THE HARS IF	1496
č	THE COSTS OF MESHES AND BARS MAPPEN TO BE THE SAME	1497
c	WHEN BOTH TYPES OF REINFORCEMENT ARE TO BE TRIED	1498
ċ		1499
	10RF . 2	1500
	60 TO 790	1501
690	CTLS = 1000.0	1502
	ASLIN = 0,4+12.0+THCC/100.0	1503
	1F (NCS3 ,ED, 2) GO TO 710	1504
	NO 700 ISTFEL = 1, KOUNTI	1505
	ASPF# = 12.0=THCC=(1.3=0.2=FFSB(J))=TS(1)/(0.75=TYSBS(IST	1506
1	FEL))	1507
	IF (ASPFW LT. ASLIM) ASPFW = ASLIM	1209

.

	CUSTLS = 12.0+ASPF++CPPOS(ISTEEL)+490.0/1728.0	1509
	1F (COSILS .GE. CTLS) GO TO 700	1510
	CTLS # COSTLS	1511
	ASPF # ASPF#	1512
70.	MNOLK # ISTEEL	1513
70 n	CONTINUE CTLSB = CTLS	1514
	TF (NCS3 .F. 1) 60 TO 730	1516
710	NU 720 JHESH # 1. KOUNT3	1517
	ASPFW = 12.0+THCC+(1.3+0.2+FFS8(J))+TS(1)/(0.75+TYS#S(IME	1518
	1 (4))	1519
	IF (ASPFH LT+ ASLIM) ASPFH = ASLIM	1520 1521
	CO _{STLS} = 12.00ASPFW*CPPus(IMESH)+49n./1728. IF (COSTLS .ge. CTLS) GO TO 720	1522
	CTLS # COSTLS	1523
	ASPF . ASPFW	1524
	MNOLR # IMESH	1525
721	CONTINUE	1526
730	1F (CTLS + T. CTLSB) GO TO 790 Do 760 ISP = 1, kounte	1527
130	SPAC(197) = 3+0/64+0=3+14159=(BARN(15P))==2+0/ASPF	1529
	1F (XJ-3.2) 740,750,750	1530
740	BOND # 3+14159+BARN (ISP) / (8+0*SPAC (ISP) *THCC)	1531
	1F (BOND +LT+ 0.03) GO TO 760	1532
750	JN = (N+1	1533
	SPACL(.N) = SPAC(ISP) DIAL(.N) = BARN(ISP)	1534 1535
760	CUNTINUE	1536
	CTTS = 1000.0	1537
	DO 770 ISTEEL = 5+ KOUNTZ	1538 1539
	ATSF _ THCC/24.0+4C(I)+410TH+FFSB(J)/(TYSBS(TSTREL)	
		1540
	COSTTS _ 12_0*ATSF*CPPBS(ISTEEL)**90_0/1728_0 TF (COSTTS .8E. CTTS) 60 TO 770	15+1 1542
		1543
	ATSPF . ATSF	1544
	MNOTR . ISTEEL	1545
770	CONTINUE	1546
	DO 780 ISP = 1, KOUNT6 SPAC(ISP) = 3,0/64,0+3,14159+(BARN(ISP))+2,0/ATSPF	1547
	JW = JM+1 SLUCIISH1 = 3+0104*0-2+14124-184K4(12H)1C+014(2H)	1549
	SPACT (JH) = SPAC(ISP)	1550
	DIAT(JM) = BARN(ISP)	1551
78 n	CUNTINUE	1552
	JP = jH CTTOD - TH DESTROY BOATS () (A DESTROY)	1553
	CTTBR # XNJN#ATSPF#60,0*DIAT(1)/8,0*CPPBS(HNNTP) 1	1554
с	1 6490.0/1728.001.0/(XNLTONL) COST OF TIE BARS IS CALCULATED FROM FIRST TIE BAR PRINTED OUT	1556
•	CTRF = (CTLS+CTTS)=9+0	1557
	CTTB = CTTBR*9.0	155 ₈
	GO TO 870	1559
790	IDRF = 2 DO B20 ISP = 1. KOUNT4	1560 1561
	DIAM(JSP) = (ASPF*SL(ISP)/(3,0+3,14159))***4.5	1562
	1F (xJ-3.2) 800,010,810	1563
600	BOND = 3.14159=DIAm(ISP)/(SL(ISP)=THCC)	1564
	IF (20ND _17. 0.03) GO TO 820	1565
810	E+NL m NL	1566

	SPACE (JN) = SL (ISP)	1567
	DIAL(JN) = DIAM(ISP)	1568
820	CONTINUE	1569
830	ATSPE = THCC/24.0 WC(1) WIDTH FFSB(J)/TYSWS(MNDLR)	1570
	1 44.0/3.0	1571
	CTTS = 12.0+ATSPF=CPPWS(MNOLR)+490.0/1728+0	1572
	MNOTR - MNOLR	1573
	DD 84G ISP = 1. KOUNT4	1574
	UIAM(TRP) = (ATSPF+ST(ISP)/(3-0+3-14159))++0.5	1575
		1576
	SPACT ()M) = ST (ISP)	1577
	DIAT(JM) = DIAM(ISP)	1578
640	CONTINUE	1579
	CSTTB = 1000.0	1580
	00 850 ITB # 1. KOUNTS	1581
	ATBPF(ITB) = THCC/24.0*MC(I)=WIDTH=FFSB(J)/TVSTS(ITB)	1582
	1 ***0/3*0	1583
	COSTTB = 12.0*ATHPF(ITH)+CPPTS(ITB)+490.0/1728.0	1584
	IF (COSTTB .GE. CSTTB) GO TO 850	1585
	GSTTB = COSTTB	1586
	ATB = ATBPF(ITB)	1587
	HNOTE m ITE	1588
850	CONTINUE	1589 1590
	DO 860 JPP # 1. KOUNT7	1570
	JP = jp+1	1591
	SPTIE(JPP) = 3.0/64.0*3.14154*(TBARN(JPP))**2.0/ATB	1593
86 ก	CONTINUE CTTBR = XNUN#ATUPF(1)#60_0#TBARN(1)/8.0#CPPTS(1)	1594
		1595
	1 0490.0/1728.0#3.0/(XNLT#WL) CTRF _ (CTLS_CTT\$)#9.0	1596
	CTTB w CTTBR#9.0	1597
870	CONTINUE	1598
0/0	TF (XJ-3,2) 880,890,890	1599
86 n	CTJ = YNJN+CPFLJ/(XNLT*4L)+9.0+NJM/1760+0*3.0*CPFTJ	1600
000	SPTJ _ 5280.0/XNJM	1601
	90 TO 900	1602
890	CTJ = (XNJN+CPFLJ/(XNLT+WL)+CTTJ)+9.0	1603
900	CTIN . CTSP+CTC+CTSB+CTRF+CTJ+CTTB	1604
с ⁷⁰ "	CTIN INITIAL COST	1605
-	RFTURN	1606
	ENO	1607

SUBROUTINE TOCH (PLAT, OVTH, TUCSY, HPSY, NI. N2)	1608
COMMON /ALL/ AP, ADTGR, 1TYPE, RINT, NDAYCU, IDOV, ALANES, OVERLEN	1609
COMMON /REINED/ KRCK+CPFLJ+CPFTJ+IDRF+JM+JN+JP+	1610
1 KOUNT1, KOUNT2, KOUNT3, KOUNT4, KOUNT5, KOUNT6,	1611
1 KOUNTTE NCSA. NJM. NLT. SLV. SPINC. SPTJ.	1612
1 SUV+ THCC, WL+ XNJM, HNOLK+ MNDTB+MNOTR	1613
COMMON /TDC/ HPDC.PVSO.PVSN.DEGO.DEGN.AAS.ASDO.	1614
1 ASND HONFLY DTSO, DTSN , DOZ , NOLO, NOLN , ADT	1615
COMMON / INPUT / ACE, ACPR, AGF, BUMIN+CINC, CIOV, CMAX+COEF, CPC	
1 CPLMSG, CPR, DF, DFL, DSD, EFSG, EOF, ESD, FFSG, IKUUNT, ILEVEL,	1617
2 15X+K1+K2+K1+M+MAX0+NC+NL+NLCK+NPROB+NSR,	1619
3 DFMIN+UMAXA+OMAKC+OHINA+OMINC+POV+PSN4+PSVAC+PSXSD+	1619
4 PI+PISD, P2SD, SGE. SGEL, SGK, TCMAX, TCMIN, THLEV, TMAX.	1620
5 TTC+WWW+XJSD+XKSD	1621
NTMENSION AVPH(24)	1622
DIMENSION CCSR(6,7), CCSU(6,7), CURS(12+2), COD(1+2), CAP(4	13) 1623
	1624
	1625
THE FOLLOWING ARE TABLES CONTAINING THE USER CUSTS.	1626
	1627
	1629
COST OF SLOWING DOWN IN A RURAL AREA IN TEXAS.	1629
	1630
	1631
EXCESS COST ABOVE CONTINUING AT INITIAL SPEED	1632
IT INCLUDES OPERATING AS WELL AS TIME COST OF SPEED CHANGE C	
-+OLLARS PER 100 CYCLES	1634
DATA CCSR/10.676, 22.932, 39.753, 63.454, 98.194, 151.888.	1635
1 U., 11,860, 27,079, 49,907, 83,454, 134,793, 200,, 14	, 106, 1636
2 35.812, 47.935, 116.527, 3.0., 19.902, 50.326, 95.788	
3 4+0., 28,491, 71.070,5+0., 40.931, 6+0./	1638
	1639
COST OF SLOWING DOWN IN AN URBAN AREA	1640
	1641
DATA CCSU/7.395, 14.329, 24.570, 37.838, 56.705, 85.514, 0. 1 /.059, 16.2, 28.896, 47.046, 74.330, 2000, 81.91, 20.	· 1642
2 37,303, 61,884, 3+0., 10,845, 27,024, 50,705, 4+0.0,	1644
	1645
; 14,934 , 36,994, 5*0,0, 2V.704, 6×0,/	1646
COST OF UPERATING AT A UNIFORM SPEED IN TEXAS	1647
DIFFFPANCE OF TWO VALUES GIVES THE EXCESS COST OF DPERATING	
REDUCED SPEED	1649
IT INCLUDES OPERATING AS WELL AS TIME COST	1650
AN DOLLARS PER 1900 VEHICLE MILES	1651
- BOLENNE EK HOU VENTEEL PIEL -	1652
DATA CURS/945.25, 495.77, 345.43, 270.31, 225.70, 146.62.	1653
1 176,63, 162,58, 152,54, 145,54, 141,04, 138,80, 872,0	
2 456 66, 317 78, 248 30, 206 84, 179 64, 160 75, 147 2	2. 1655
3 137.31. 130.08. 124.97.121.68/	1656
	1657
COST OF IDLING	1658
IT INCLUDES OPERATING AS WELL TIME COST	1659
DOLLAPS PER 1000 VEHICLE HOURS	1440
	1661
DATA CUD / 4409.70, 4111.52/	1662
	1663
CAPACITY TABLE	1664
OUTPUT AND RECOVERY RATES, VEHICLES PER MOUR IN ONE DIRECTION	N 1465

C USED TO CALCULATE POLIPNIADOL AND DN1 FOR MODEL NOS 314 AND 5	1666
c	1667
DATA CAP / 1350., 3000., 1400., 3000., 2700., 4500., 28n0.,	1668
1 4700 4350 6200 4500 6400 /	1669
REAL NDAYCU, DAYCO, NDAYCA	1670
INTEGER REPOCE	1671
C COMPUTE FINAL ADT	1672 1673
ADTT = ADT+(1.0+ADTGR/100.0+PLAT)	1674
TF (AAS .G7. 60.0) AAS = 60.0	1675
1F (ASOD .GT. 60.0) ASOD = 60.0	1675
JF (ASND .GT. 60.0) ASNO = 60.0	1677
$L0 \pm 4$ SOD/10.0	1678
L01 = ASOD = 2.0/10.0	1679
LN = ASND-10.0 LN] = ASND-2.0/10.0	1680
K = Aa < 10.0	1641
K1 = #45+2.0/10.0	1682
SYARDS = (1760+0VERLEN) + ((#L/J+0)+(ALANES))	1683
1F (1D0V.EQ.2) 30 10 994	1684
HTCAD = HPSY + SYARDS	1685
NDAYCA = HTCAU/HPOC	1686
GO TO 995	1687
994 HTCCN = HPSY + SYARUS	1688
NDAYCU = HTCCUZHPUC	1689
995 CONTINUE	1690
CALI VPHCAL (ADTT, AVPH)	1691
PFDHCE = 0	1692
ITIMEOV = 1	1693
N2DUM = N2-I	1694
NUM1 = N1	1695
996 DCHT = 0.0	1696
998 00 999 I=N1+N2DUM	1697
VPH = AVPH(I)	1698
	1699
C MODEL NUMBER ONE	1700
C • **•	1702
P01 = 0	1703
PN1 = 0	1704
DO] = 0. ON1 * 0.	1795
	1706
C AROVE VALUES ARE BEING GIVEN FOR MODEL NUMBER ONE BUT THESE	1707
C VALUES ARE ALSO USED FOR OTHER MODELS IN CASE SEPERATE VALUE	S 1708
C OF THESE VARIABLES ARE NOT COMPUTED FOR THEM	1709
PO2 = PV\$0/100.	1710
PN2 = DVSN/100.	1711
VO2 = nEQD	1712
DN2 = DEQN	1713
D = 1./12.	1714
GO TO (740,750,760,770,764) + HODEL	1715
C ••••	1716
C MODEL NUMBER TWO	1717
C •••••	1718
750 A = DTS0/AS9D	1719
	1720
PO] = 0.5*(1EXP(-AQ))**2	1721
PNI z pol	1722
DD1 = (1++EXP(2++AQ))+(ExP(AQ)-AG-1+)/(2++VPH+PO)	1723

	1724
1 + (EXP (2. •AU) = EXP (AQ) +1.))	• • = •
0N1 = h01	1725
60 TO 79 0	1726
C =====	1727
C MODEL NUMBERS THREE AND FIVE	1728
C	1729
760 OUTRAT = CAP (2+ITYPE-1+ NOLO)	1730
RECRAT # CAP (2+ITYPE+ NOLO)	1731
IF (VRH .LE. OUTRAT) GO TO 790	1732
RECUPHTAMAX1 (1.0. RECRAT-VPH)	1733
745 P01 # HPOC+ (VPH-OUTRAT) / (2++VPH+D)	1734
	1735
1F (P01 _GT, 1,) P01 # 1+	1736
DO] = HPDC+(VPH=DUTRAT)*(RECRAT=OUTRAT)/(2.*VPH*PO1	1737
1 + (RECVPH))	
BO TO 790	1738
	1739
C MODEL NUMBER FOUR	1740
	1741
77n OUTRAT = CAP (2+I TYPE-1+ NOLO)	1742
RECRAT = CAP (2+ITYPE, NDLO)	1743
TF (VPH ,LF. OUTRAT) GO TO 780	1744
RECVPH=AMAX1(1.0.RECRAT-VPH)	1745
P01 = HPDC+(VPH-OUTRAT)/(2.+VPH+O)	1746
	1747
<pre>JF (PQ1 .GT, 1,) P01 = 1. 001 = HPDC*(VPH-OUTRAT)*(RECRAT-OUTRAT)/(2.*VPH*P01</pre>	174B
	1749
1 + (RECVPH)	1750
78n OUTRAT = CAP (2#ITYPE=1+ NOLN)	
RECRAT = CAP (20ITYPE, NOLN)	1751
IF (VPH "LF. OHTRAT) GD TO 790	1752
PN3 = HPDC+(VPH+DJTRAT)/(2++VPH+D)	1753
1F (PN1_GT_1_) PN1 = 1+	1754
DN1 = HPDC+ (VPH+OUTRAT) + (RECRAT-OUTRAT) / (2, +VPH+PN1	1755
1 + (RECRAT-VPH))	1756
60 70 790	1757
790 CONTINUE	1758
	1759
C START COLLECTING ALL PERTINENT INFORMATION ABOUT DIFFERENT TYPES OF	1760
	1761
	1762
C COSTS PER VEHICLE	1763
C and a set	
50 TO (800-810) + ITYPE	1764
C COST OF STOPPING FROM APPRDACH SPEED IN A RURAL AREA.	1765
800 CO1 # (CCSR(K+1)+(CCSR(K+1+1)+CCSR(K+1))*(AAS	1766
1 /10.0-K13/1000.0	1767
CN1 = CO1	1768
C COST OF SLOWING TO THRU SPEED IN A RURAL AREA.	1769
CO41 = CCSR(K, LO+1)+(CCSR(K+1, LO+1)+CCSR(K, 10	1770
	1771
1 +1))*(AAS/10+=K1 CD47 _ CCSR(K+ L0+2)+(CCSR(K+1+ L0+2)=CCSR(K+ L0	1772
	1773
1 +2))*(AA5/10+=K) C04 = (C041=(C041=C042)*(A50D/10+0=L0))/1000+0	1774
C(t = (C(t+1)(C(t+1)(t+1)(t+1)(t+1)(t+1)(t+1)(t+1)(t+1)	1775
CN4) # CCSR(K, LN+1)+(CCSR(K+1, LN+1)-CCSR(K, LN	1776
$1 \qquad +1) + (AAS/10+K) = CCCC + 1 + N = CCCCC + 1$	1777
CN42 _ CCSR(K, LN+2)+(CCSR(K+1, LN+2)=CCSR(K, LN	1778
1 +7))*(AAS/10K)	1779
CN4 _ (CN4]+(CN4]+CN42}*(ASHD/10.0+LN))/1000.0	
GÚ TÚ 820	1780
C COST OF STOPPING FROM APPROACH SPEED IN AN URBAN AREA.	1781

610	$C_{01} = (CC_{50}(K_{1}, 1)) + (CC_{50}(K_{1}, 1)) - CC_{50}(K_{2}, 1)) + (AAS)$	1782
1	/10.0+K))/1000.0	1793
•	$C_{N1} = CO1$	1784
C COST OF SL	WING TO THRU SPEED IN AN URBAN AREA.	1785
	C041 # CCSU(K+ L0+1)+(CCSU(K+1+ L0+1)+CCSU(K+ 10	1786
1	+++)+(AAS/10++K)	1787
•	C042 _ CCSU(K+ L0+2)+(CCSU(K+1+ L0+2)+CCSU(K+ 10	1768
	+21)#(AAS/10++K)	1789
1	CO4 = (CO41-(CO41-CO42)*(ASOD/10.0-LO))/1000.0	1790
	CN41 _ CCSU(K, LN+1)+(CCSU(K+1, LN+1)=CCSU(K, 1N	1791
	+3))*(AAS/10++K)	1792
1	CN42 # CC5U(K+ LN+2)+(CC5U(K+1+ LN+2)-CC5U(K+ LN	1793
		1794
1	+2))*(AAS/10+-K) CN4 m {CN4]-(CN41-CN42)*(ASND/10.0-LN))/1000.0	1795
		1796
	LAY DUE TO CONGESTION OUTSIDE THE RESTRICTED AREA.	1797
820	CD2 = D0)+COD(1; ITYPE)/1000.	1798
-	CN2 = DN1+CDD(1+ ITYPE)/1000.	1799
	(MODEL .EQ. 5) GO TO 830	1800
C COST OF UM	IVING AT A REDUCED SPEED+	
	CU31 = CURS(LO1+ ITYPE) + (CURS(LO1+ ITYPE)-CURS(LO1	1801
1	+1, ITYPE) + (A500*2,0/10.0-L01)/2.0	1802
	CO32 = CUPS(K1+ ITYPE) = (CURS(K1+ ITYPE) = CURS(K1+1+	1803
1	TTYPE))*(AA5+2,0/10.0-K1)/2.0	1804
	C03 # (C031-C032)*D150/1000.0	1905
	CN31 # CURS(LN1+ ITYPE)-(CURS(LN1+ ITYPE)-CURS(LN1	1406
1	+1. ITYPE))*(ASND*2.0/10.0-LN1)/2.0	1807
	CN3 # (CN31-CO32) *DTSN/1000.0	1608
C FXCFSS COS	ST OF STAPPING FROM THHU SPEED + COST OF IDLE TIME, ALL	1809
C WITHIN THE	RESTRICTED AREA.	1810
60	TO 840	1011
830	CO31 = CURS(LO1: ITYPE)=(CURS(LO1: ITYPE)=CURS(LO1	1812
1	+1. ITYPE;)*(ASOD*2.0/10.0+L01)/2.0	1813
•	CU32 = CURS(K1, ITYPE) = (CURS(K1, ITYPE) = CURS(K1+1,	1814
1	TTYPE) + (AAS+2.0/10.0-K1)/2.0	1815
•	CO3 # (CO31+0002+C032+0TS0)/1000.0	1816
	CN31 - CURSILNI. ITYPEI-ICURSILNI. ITYPEI-CURSILNI	1817
1	+1+ ITYPE) 1+ (ASND*2.0/10.0-LN1)/2.0	1818
•	CN32 . CURS(K1. ITYPE)-(CURS(K1. ITYPE)-CURS(K1+1.	1819
1	1TYPE11+(AAS+2.0/10.0-K1)/2.0	1820
•	CN3 = (CN31+CN32)+UTSN/1000.0	1821
84n G0	TO (850.860) + ITYPE	1822
250	CO5 = (CCSR(LO, 1)+(CCSR(LO+1+ 1)-CCSR(LO+ 1))+(AS00	1823
1	/10.0-LOJ.DO2+COD(1, ITYPE))/1000.	1424
*	CN5 = (CCSR(LN+ 1)+(CCSR(LN+1+ 1)+CCSR(LN+ 1))+(ASND	1825
	/10.0-LN)+UN2+COD(1, ITYPE))/1000.	1826
1	TO 870	1827
860	COS = (CCSU(LO, 1)+(CCSU(LO+1+ 1)+CCSU(LO+ 1))*(ASOD	1828
	/10LU;+002*COD(1, ITYPE))/1000.	1829
1	CN5 # (CCSU(LN, 1)+(CCSU(LN+1+ 1)+CCSU(LN+ 1))+(ASND	1830
	/10LNJ+DN2+COU(1+ ITYPE))/1000.	1931
		1832
C START TOTA	NE COST COMPUTATIONS Is total traffic delay cost per hour of overlay constr.	1833
C DCH	TO TUTAL TRAFFIC DELAS COUT FER HOUR OF OWENERY CONSTANT	1834
BTU IN (RE	DUCE-E0,11 GO TO 879	1835
UCH .	/PH*(P01+(C01+C02+C03)+(1+=P01)+(C03+C04)+P02	1836
	05) + VPH+(PN1*(CN1+CN2+CN3)+(1,-PN1)*(CN3+CN4)	1837
	12+CN5)	AFA (
60 TO \$		
	'01 /PH# (CO3+CO4+CN3+CN4)	1839

881	DCHT # DCH + DCHT	1840
999	CONTINUE	1841
	IF (100V_NE_2) OD TO 2000	1942
	GO TO (1000,1001,1002,1003),ITINEOV	1843
1000	NI # NCDUM + 1	1844
	N2DIM = 24	1845
	DCH1 = DCHT	1846
	REDUCE = 1	1847
	1TIHEOV = 2	1848
	60 TO 496	1849
1001	N1 = 1	1850
	N2DUM = NUM1-1	1851
	DCH2 = DCHT	1852
	REDuce = 1	1853
	ITIMEOV = 3	1854
	GO TO 946	1855
1002	NT a L	1856
	N20114 = 24	1857
	DCH3 = OCHT	1458
	RFDIJCE = 1	1459
	ITIMFUV = 4	1860
1	GO TO 996	1861
1003	DCH4 = DCHT	1862
	DCHTOT = (DCH1+)CH2+DCH3) + (NDAYCQ) + DCH4+ (NDAYCU)	1863
	DCSYCO = DCHTOT/SYARDS	1864
	TDCSY = DCSYCO/(1.+RINT/100.) **PLAT	1965
	IFITDCSY.LT. 0. n) TOCSY = 0.0	1866
	GO TO 3000	1867
€060	DCSYAD = (NDAYCA = DCHT) / SYARDS	1868
	TDCsy = DCSYAD/11,+RINT/100,)==PLAT	1869
~	IF (TOCSY LT. 0.4) TOCSY # 0.0	1470
ç	TOCSY IS THE PRESENT WORTH OF TOTAL TRAFFIC DELAY COST PER	1871
c c	SQUARF YARD DURING OVERLAY CONSTRUCTION This will be taken back to the main program	1872
		1873
~000	CONTINUE RETURN	1874 1875
	END	1875
		1910

SUBQOUTINE VPHCAL (AUTT, VPH)	1877
OTHENSION PERADT (24) . VPH (24)	1878
COMMON / INPUT / ACE, ACPR, AGF, BUMIN, CINC, CIUV, CHAX, COEF, CPCYAC,	1879
1 CPLMSG+CPR.ODF+DFL+DSD+EFSG+EUF+ESD+FFSG+1KOUNT+ILEVEL+	1860
2 TSA+KI+KZ+K3+H+HAXO+NC+NL+NLCK+NPROB+NS8+	1881
3 DFMIN+UMAXA+DMAXC+DMINA+DMINC+PDV+PSN4+PSVAC+PSXSD+	1862
4 P1+P1SD, P2SD, SGE, SGEL, SGK, TCHAX, TCHIN, THLEV, THAX,	1883
5 TTC+WHW-XJCD-XKS0	1884
DATA PERADT / 1.044.0.691+0.520+0.509.0.606.1.605.3.174.6.334.	1885
1 6.081.5.438.5.961.6.035.5.691.6.127.6.382.6.894.	1666
2 8.114.7.806.0.117.4.400.3.269.2.669.2.401.1.621	1887
DOFY + DUF/100.0	1888
Do 10 1=1,24	1889
VPM(1) * ADTT*PERADT(1)/100+0 *DDFV	1890
10 CONTINUE	1891
RETURN	1692
END) 893

51	MHANUTINE DRDF	់ត (1 រ _ប ប÷10)				1994
			ATHPF (4) ,	HARN (4) +		1495
1		10(6) .	C15(4)+	COD(30,2),	C 10F (2+2) +	1840
2		n50V(11).	COTH (11) .	CPCYC(6),	CPCY5(4) .	1497
3		OPT5 (4) .	CPP#S(4).	CSC(6),	CTMAN(11)+	1438
4	CTOVER(11). C		DIAL(4),	QIAM(4),	D14T(4).	1000
5		F(4)+	ES (4) +	£SL(4)+	FFSH(4).	1400
6		2(30).	LFT(4),	MANT(4).	NA (30) .	1401
7	NANE [4+3]	14EB5(8+3)	NAMETS (4.31.	NAME#5 (4+3)+	NCNT (4)	1905
я	NC JUL (30)	0 (6) +	NOLI(+),	NP (6) +	NTDCT(4).	1903
Ŷ	NTHT (4) # N	TMT (4) .	NTOT (+) .	NTOTR(4).	OV10(3).	1944
1	OVNAM(6) P	1.(15)+	PV1U(C).	PVNAM(6)	Ro(2+2).	1905
P	HIGE [U (2) + 0	FNAM (6) .	51NC (4) .	51 (4) .	SHAC (4) .	1905
3	SUACL (4) + 5	DACT (4) .	SPTIL(+)+	51(4) -	51(6).	1997
4		DIA:	5x0AT(6.2).	SXDA(2.2),	5×50(6).	1908
5		CTM(11).	TCT0+(11) .	TCTTD(11).	TH0y(11).	1909
6		TLF (15) .	15(6)+	TSMAX [4] .	TSMTN(4) +	1410
7		Y585(0).	TYSTS(4)+	TY5W5(4):	WC(4).	1410
A		011201+	KIN(6)+	PSVC(h) +		
9		ONF (7) .	ZZCONF (7) .		PSVS(4).	1015
	MAGN /MAINZ/			LEVEL (7)		1413
				301, CJ(30)	•	191*
1		0(30),	CR (30) +	CSB(30) .		1415
		sk(30)+	CT (30) .	CTB(30) .	101301+	1416
3		130) +	JW9 (30) *	JAR(30).	+ { nE } R4L	1917
4		6_P(30)+	MS (30) +	MTH (30) +	MTR(3n).	1418
5		+ 10L 101 +	NPP(JU),	PLF(30,13)+		1419
		TN(30+4)+	RTS(30+4),	STJ(30).	50M0V/301+	1920
7		45P(30,4).	TC(30)+	ТСТ (ЗЛ),	Tu(30,12),	1951
e	TSUB(30)					1925
C0	MMON /REINFD/					1923
1			H KOUNTA: KO		•	1924
1	KOUNET NCS	A. NUM. NLT	. SLV. SPINC	+ SPTJ.		1925
1	SUV, THCC.	WL. XNJN. P	NOLR. MNDTR.	MNOTR		1920
CO	MMONZABRAY/ C				SH.CITR.KK.	1927
1			S. NODES, NREG			1928
•	DO 1220 4 -					1929
		NHEO+LH+1				1030
		9.3) NLH1	- NUFULE			1931
		21 60 TO 11				1932
			1) 60 10 12	1947A		
	NN = 1			C U		1973
	GU TO 1130	1 11 1				1934
1120	CONTINUE					1935
1120						1936
		-R≤ • 1				1937
	NN = 5					1434
		1 11:00 11	30. 9000			1934
9000		NK2 - 1				1440
		$\sim 1 = 1$ NRd				1941
/ 0 / 0		+P (NANI))	9550+ 9020.			1942
				9556		1443
9020	TH CIDON -		9550, 9030,			1-+2
9020 9030	TH (IDON - TF (IDRF -	TR (NAUI))	4550+ 4030. 4550+ 9040+			1944
9020 9030	TH CIDON -	TR (NAUI))				-
9070 9070 9040	TH (IDON - TF (IDRF -	(R(NAIII))		955n		1944
9070 9070 9040	TF (IDOV = TF (IDRF = KIRN =	TR(NAUI)) 0 (NANI)) 95	¥550, 9640,	955n		1944 1945
9070 9070 9040	TF (IDOV - IF (IDRF - KIRN = TF (L - NPP IGRET	tR(NAUI)) 0 (NANI)) 95 = 0	9550, 9640, 56, 9010, 95	955n		1944 1945 1946 1947
9030 9030 9040 9110	TF (1005 - TF (10RF - KIRN - TF (L - NPP IGRET TF (1007-3)	TR(NAUI)) 0 (NANI)) 95 20 9210+ 9310	9550, 9640, 56, 9010, 95	955n		1944 1945 1946 1947 1948
9020 9020 9020 9020 9020 9020	TF (IDOV - TF (IDRF - KIRN = TF (L - NPP IGRET TF (IDOV - 3) DU 9510 No	TR(NAUI)) 0 (NANI)) 95 = 0 9210+9310 9210+L	9550, 9640, 56, 9010, 95	955n 50		1944 1945 1946 1947

9510	CONTINUE	1952
9310	1F (MNOS - MS(NANI)) 9050, 9060, 9050	1953
9050	KIRN = KIRN + 1	1954
9060	1F (MNQC - 4C(NANI)) 9070, 9080, 9070	1955
9070	KIRN # KIRN + 1	1956 1957
90 A 0	1F (THCC - TC(NANI)) 9090+ 9100+ 9090	1957
9090	KIRN - KIRN + 1	1959
9100	IF (THSB - TSUR(NAMI)) 9110, 9120, 9110	1960
9110	KIRN # KIRN + 1	1961
9120	IF (IGRET) 9130, 9130, 9140	1991
91.70	1F (KIRN-1) 9550, 1211, 9550	1963
9140	TF (KIRN) 9550+ 1211+ 9550	1964
9540	CONTINUE	1965
	1F (NR2 .GT. NREQ) GO TO 1190	1966
	NN & NR2	1967
1130	CONTINUE	1968
	IP(NN) = IOPV	1969
	IO(NN) # IOOV Ir(NN) # IORF	1970
	TC (NN) = THCC	1971
	MC(NN) # MNOC	1972
	TSUH (NN) = THSB	1973
	NS (NN) # 1100	1974
	70 1140 KK=1.JN	1975
1	RLS(NN+KK)=SPACL(KK)	1976
1140	KLN(NN, KK) = DIAL(KK)	1977
1140	UNR(NN) # UN	1978
	MLR(NN) = MNOLR	1979
	00 1150 KK # 1. JM	1980
	RTS (NN. KK) = SPACT (KK)	1981
1150	RTN(NN, KK) = DIAT(KK)	1992
	JHR (NN) I JH	1943
	MTR (NN) . HNOTR	1984
	00 1160 KK = 1. JP	1985
	TBSP (HN, KK) = SPTIE (KK)	1986
11.0	TBN (NN. KK) = TBARN (KK)	1987
	JPR (NN) = JP	1986
	NTB(NN) # MNOTB	1989
	STJINNS # SPTJ	1990
	DO 1170 KK # 2. LPL	1991
1170	PLF(NN, KK) = PL(KK)	1992
	PLF(NN, 13) = PL(LPL)	1993
	NPP(NN) = L	1994
	DD 1180 KK = 1. L	1995
1100	TO(NN, KK) # THOV(KK)	1996
	SUMOV(NN) = THOVT(L)	1997
	CSP(NN) = CTSP	1998
	CC(NN) = CTC	1999
	CSB(NN) = CTSB	2000
	CR (NN) = CTRF	2001
	CJ(NN) * CTJ	2002
	CTB(NN) = CTTB	2003
	CI(NN) = CTIN	2004
	CO(NN) = COSOV(L)	2005
	CT(NN) = COTR(L)	2006
	CH (NN) # COMAN (L)	
	CSR (NN) . CTSR	2008
	CÁ(NN) = CHSTŘ	20114

	TCT(NN) = TCOST	2010
	60 10 1220	2011
1190	TCT44x = 0.0	2012
	NH2 = NREQ	2013
	DO 1210 KUSH = 1. NREU	2014
	TF (TCT (KUSH) .GT. TCTHAX) GO TO 1200	2015
	GO TO 1210	2016
1200	TCTMAX = TCT (KUSM)	2017
	JAY = KUSM	2014
1210	CONTINUE	2019
	IF (TCOST , GT. TCT(JAY)) GO TO 1220	2020
	NN = JAY	2021
	GO TO 1130	2025
1211	NR2 = SR2 - 1	2023
	NODES . NODES + 1	2024
	TF (TCOST - TCT (NAN1)) 1212, 1212, 1220	2075
1212	NN = MANI	2026
	GU TO 1130	2027
1220	CUNTINUE	202A
R	FTURN	2024
	ND	20 10

		HERDULINE TI		08.THLEV.P5N	1)		ノーま
		ATA STAR/ING		ATHPF (4)			20.1
		OMMOU ZMAINI BOUT (12) +			34RN(4)+ CUD(30+2)+		203
	1	COMAN(11).	C1C(6)+ C1SOV(11)+	CIS(4)+	CPCYC(6) +	CHDF(2+2)+ CHCY5(4)+	504
	5	Сррну(н)	CPPTS(4).	CPP#5(4) .	C5C(6)	CTMAN(11)+	203
	4		CTTRAF (11) +		DIAM(4).	D1AT(4).	275
	5	FIELE	FF(4)+	Es (4) +	ESL (4) .	FFSH(4).	203
	6	6 (6611	· (() · (LFT(4),	44NT(4).	NA (30) .	203
	7	VAME (4.5).	MUMERS(B+3)	. NAMETS (4,3)	.NAMEWS (4.3)	+ NCNT (4) .	2041
	н	NCODE (30),	N-3(6),	NDLT(4).	NP (5) .	NTDCT(4)+	204
	9	NTHT (4) +	NTMT(4).	NTOT (4) .	NIUTP(4)+	UVI0(3).	2044
	1	OVNAM(6) ·	PI(12),	Pvlu(2).	PVNAM(h) +	R((2,2).	204
	2	HNEID(S)+	0.(FNA4(0)+	SINC (4) +	SL(+)+	SPAC (4) .	21144
	3	SPACE(4).	50ACT(+)+	SPTIE(4),	ST(4).	SA (4) .	20+
	4	VSXLDI+	<xd(6).< td=""><td>SXDAT (6.2).</td><td></td><td>5×50(6).</td><td>204</td></xd(6).<>	SXDAT (6.2).		5×50(6).	204
	5	THAKN (4) .	TCTM(11)+	IC104(11)*	TCTTD(11)+	THOV (11) +	204
	6	THOV!(11),	TTTLE(15).	15(6)+	T5HAX (4) +	TSMTN(4) .	204
	1	Trcs(b),	T-SHS(H),	TYSTS 4	TYSWS(4),	4C(4),	204
	8	4HU(A)+	SCOT(20)	KIN(b) +	PSVC (b)	Psvs(4).	200
	9	WODE (4);	CONF (7) +	ZZCUNF (7)	LEVEL (7)	,	2052
		OMMON ZMAINS			(UE) (UE)	• •	502
	1	CN(30)+	C-3(30) +	CR(30), CT(30),	CSH(30),	1.0.1.20.	205
	- 2	050(40),	CSR(30)+	JMR (30) .	CTH(30); JNR(30);	10(30)+ JPR(3n).	2.153
	3	(UE) 4]	19(30)+	45(30).	MTB(30).	4) = (3n) .	205
	*	40(30)+	11 R(30).	NPP(30),		RLN(30+4)+	205
	5	⋈₩ij[៥4≯; R 5(30;4);	NO(30)+ 9TN(30+4)+	ATS(30.4),	5TJ(30)+	SU40V(30)	2050
	7	Trig(30,4)	T45P(30+4)+		TCT (30) +	To(30,12)+	2059
	, 	15-18(30)	1-131-1 () () 4 1 1	10(30)	101130)1		206
		DIMON ZREINE		LU-CPETU-TOR	FallAsticalPa		206
	''		UNAT2. KOUNT			.	2163
	1		CS3. NUM. NL				206
	î		. VL. XNJM.				2064
	Ċ	MANON/ARRAY/				TSP.CTTH.KK.	2069
	1				DINR2+THSB+L		2056
	ŕ	DMADN Z OUTP	UT / KANAL .K	FUND:KLIF:KL	IFE+KREJ+KSJ	B+NN+NNC+NNR+	204
	1	NIV FINOLO .	NOTH				504-
			.GT. 0) GO				2051
		PITE (6+192a		LE			2074
	*	141TF (0,294)					207
		AD TO LAY					2072
13	γn		Gr. 01 60 10				2073
		HITE (0.1920		LE			207
	*	HITE (0.2950					2076
		GU TU 143					2071
1.5	10						2018
		= ۱۹۵۱ (Lite (6,192)					2074
	•		RK1 +GT. 0)				2040
		41TF (6+2960					2114
	•	30 10 143					204,
11	20		IRK) .GT. 0)	3n TO 1330			208
		WITE 16.2970					2084
		60 To 143					2085
13	3,0		R = 1P(NN)				2084
		100v	R = 10(NN)				504
		IURF	R = IR(UN)				5040

		5049
	HETTE (6.2980) PVID(IDPVR) OVID(IDOVR) + PLE(NN+ 2 + TC(NN)+	2040
1	"C(NN), TC(10) (11), MS(NN)	2091
	JNRN # JNR ("N)	2045
	MLRN = MLR (MN)	1.143
	(NN) 4ML + JAML + JAML	- 17 × 44
	MTRNA = MTR(NN)#4	2095
	MTRN = MTR(NN)	2046
		2097
	NTHN = MTR((N)	20.98
С	RAM REINFORCEMENT	2009
	IF (IURFA .FQ, 2) GO TO 1370	2100
	TF (JNRN) 1350+1340+1350	2101
1340	w4ITE (6,2990)	2105
	60 TO 1360	2193
1350	WHITE (6.3010) (RLN(NN. 1). I = 1, JNRN)	2104
	WRITE (6.303) -LRN, (NAME3S(MLHN, 1), 1 = 1. 3)	2195
	white (6.3020) (RES(NN. 1), $I = 1$, JNRN)	2106
1340	WRITE (6:3040) (RTN(NN+ 1)+ 1 = 1. JMRN)	2107 2108
	WRITE (0+3020) HTRN4+ (NAMEBS(MTRN+ I)+ I = 1+ 3) WRITE (0+3020) HTS(NN+ I)+ I = 1+ JWRN)	2109
	IF (CTB(NN) + EQ. 0.0) 60 TO 1410	2110
	WRITE (5030AD) (RTN(NNA I)+ 1 #), JMRN)	2111
	WWITE (6.3030) "THN4, (NAMEBS(MTRN, I), I = 1, 3)	2112
	weite (6,3020) (RTS(NN, I), I * 1, JMRN)	2113
	60 TO 1410	2114
с	YESH RETARAPCEMENT	2115
1370	16 (JARN) 1390-1360-1390	2115
1300	WRITE (6.3000)	2117
	60 TO 1+00	2118
1300	$= \text{QITF} = \{6, 3050\} (\text{MLS}(11N+1) + 1 = 1, \text{JNRN}\}$	2119
	+PITE (0.3030) -LHN, (NAMERS(HLMN, I), I = 1, 3)	2120
	#PITE (6,3060) (RLN(NN+ 1)+ 1 = 1, JNRN)	2)21
1400	WRITE (6+3070) (RTS(NN+ 1)+ 1 # 1+ JMRN)	2122
	WHITE (6+3030) WTRN, (NAMENS(MTRN, I); I = 1, 3)	5153
	WHITE (0,3060) (RTN(NN, 1), I = 1, JHRN)	2124
	WHITE (6,3080) (TBN(NN, 1)+ 1 = 1, JPRN)	2125
	WRITE (6,3030) HTUN, (NAMETS(MTUN, 1), 1 = 1, 3)	2126
	HRITE (6+3020) (TUSP(NN, I), I = 1+ JPRN) CONTINUE	2128
1410	CUMPLANDE. 1STJ = STJ(NN)	2129
	1F(PVIU(TDP/R)_EQ.3HUCP) WRITE(6.3040) ISTU	0L [S
	1F(PV1D(1DPVR)_E4_3HCRC) WRITE(6,3095) 1510	2131
	WRITE (6.3100) WL	2132
	waite (6,3110)	2133
	00 1420 KK = 2. NPPR	2134
	KPRINT = KK-1	2135
	OVLEV . TO(NN. KK) + THLEV	2136
1420	WRITE (6+3120) (KPRINT, QVLEV: OVID(IDOVR), PLF(NN, KK))	2137
	WAITE 16,31211 THLEV	213A
	WRITE (6,3130) SUMOV (NN) + PLF (NN+ NPPR+1)	2135
	WRITE (0,3140) CSP(WN), CC(NN), CSB(NN), CR(NN), CJ(NN)	2140
	WRITE (6,3150) CTB (NN)	2141
	WHITE (5.3160) CI(NN), CO(NN), CT(NN), CM(NN)	2142
	WRITE (6.3180) CSR(NN)	2143 2144
	IF (CA(NN) .NE. 0.0) WRITE (6:3190) CA(NN)	2145
	JERK = NOID+KIN(IRK) HACN = NCNT(IRK) + NODÉ(IRK)	2146
	HARTE T HERE FEARING & HORE FAILE	

	WPITE (5-3200) TCT(NH) + NUID+ JERK+ KIN(IRK) + NACN	2147
1430		214A
1475	CURT INUF	2149
	TE (KANAL .FU. 0) GO TO 1440	2150
	$NN = \sqrt{12}EQ + 5$	2151
		2152
	WRITE (6,1920) MPHOH, TITLE	2153
	WRITE (6, J210) PVID(IDPVR), TC(NN), MC(NN), TSUB(NN), MS(NN)	2154
	$IST_{ij} = ST_{ij}(NN)$	
	WRITE (5,3090) ISTJ	2155
	weite (0+3100) af	2156
	walte $(6+3220)$ plf(NN+ 13)	2157
	while (Franch) brinne 19	¢15A
	WRITE (6+1140) "SPINN) + CC(NN) + CSB(NN) + CRINN) + CJ(NN)	2154
	HAITE (5+3150) CTB (WN)	2160
	WPIIF (6.3230) CI(NN). CH(NN)	2161
	WPITE (0+JIRII) CSR(NN)	S165
	TF (CA(NN) _NE, 0.0) WRITE (6,3190) CA(NN)	2163
	WRITE (6+3243) TCT(WN) KANAL	2164
1440	CONTINUE	2) 65
	IF (NH2 LLT. NREQ) NREQ # NK2	2106
	FCT-44 = -1.0	2167
	00 1460 J = 1+ NREG	2158
	TCTMIN = 10.00010.	2169
	DU 1450 T = 1+ NREQ	2170
	1F (TCT(1) .GI. TCTMIN) GO IO 1450	
	1F (ICT(1) .LE. TCTMM) 60 TU 1450	2171
	NMR4J = 1	2172
	TCTMIU = TCT(I)	2173
1450	CONTINUE	2174
1470		2175
1440	TCTHH # TCTMIN	2176
1460	CUNTINUE	2177
	MPGE . NKF9/6	2178
	MATRA = NREQ-6*MPGE	2179
	HL a n	69 ES
	1F (MPGE _FO, A) GO TO 1880	2141
	II = 6	2182
1445	ML =L + 1	2183
	IF (ML - MPRE) 1408+ 1468+ 1075	2184
146A	HM a 1+6#(HL-1)	2185
	MMF = 6+6+(ML-1)	2186
	IM = 74	2187
1470	IZ = NREG	2188
	MCA # NRED+1	5149
	NTY # NREG+6	2190
	$DO 1480 I = MCA_{\star} KTY$	2191
	NO 1480 K # 3, 12	2192
14.0	PLF(I, K) = 0.0	2193
	00 1440 I = HM, NHF	
	17 a 1/+1	2194
	KZ m (461)	2195
		2196
	IP(12) = TP(KZ)	2197
	$\frac{10(12)}{10(12)} = \frac{10(12)}{10(12)}$	2198
	IR(12) = IR(K2)	2199
	MC(12) # MC(KZ)	2200
	MS(12) = MS(K2)	2501
	TC(12) = TC(K2)	5505
	TSUA(T7) = TSUB(KZ)	2503
	STUTITE STUCKER	220*

	CSP(17) = CSP(KZ)
	CC(TZ) = CC(KZ)
	CSH(17) = CSB(KZ) Cr(12) = Cr(KZ)
	CR(1Z) = CR(RZ) CJ(1Z) = CJ(KZ)
	CTH(17) = CTB(KZ)
	CT(IZ) = CT(KZ)
	CO(1Z) = CO(KZ)
	CT(TZ) = CT(KZ)
	Cm(tz) = Cm(kz) CSr(t7) = CSr(kz)
	CA(TZ) = CA(KZ)
	TCT (17) = TCT (KZ)
	TCT (17) # TCT (KZ)
	JNR(17) = JNR(KZ)
	MLR(17) = MLR(KZ)
	JMR([7] = JMR(KZ) MTR([7] = MTR(KZ)
	MTR(17) = MTB(KZ)
	JPR(I7) = JPR(KZ)
	$NPEN = NPP(K_Z)$
	NPL = NPP(KZ) + 1
	NPP(I7) = NPP(KZ) PLF(I7, 13) = PLF(KZ+ 13)
	00 1485 1K7s2+NPPN
	TF (10(K7) FQ.3) TO(KZ.2) = 0+0
	TO(12. 1KZ) = TO(KZ. 1KZ) + THLEV
1485	CONTINUE
	00 1490 IK7 # 2+ NPL
	PLF(17. JKZ) = PLF(KZ) IKZ) CONTINUE
1490	WAITE (011920) APROBE TITLE
	WRITE (6+3250) (MX+ MX = MM+ MMF)
	WRITE (6+3260) (STAR, MX # 1+ 14)
	NO 1500 I = I+ II
	INP # [P(NREG+1) PVNAM(1) # PVID(INP)
	1NO = TO(NREQ+I)
	OVNAM()) = OVID(INO)
	INR = tR(NREQ+1)
1500	RNFNAH(1) = RNFID(INR)
	WRITE (6.3270) (PVNAM(I): 1 = 1: II) WRITE (6.3280) (OVNAM(I): 1 = 1: II)
	WRITE (0:3290) (RNENAN(I) + I = 1, II)
	IN _ HREQ+I
	$I6 = j_{N+1}I=1$
	##ITE (0.3300) (MC(I). I = IN. 16)
	WRITE (6:3310) (MS(1): I = IN: 16) WRITE (6:3260) (STAR: 13 = 1: IM)
	WRITE (0,320) (TC(1), I = IN, 16)
	WAITE (6,3330) (TSUR(1), 1 = IN+ 16)
	WAITE (6,3420)
	LMAX # 0
	DO 1510 I = IN + I6
1510	IF (NPP(I) GT LMAX) LMAX # NPP(I)
	IF (LMAX +FQ, 1) GO TO 1600 Do 1540 J = 2, LMAX
	I+ , = £U

	ATTER 16 Disease of	2263
	WRITE (6,3340) (1	-
	- 50 1580 T = IN+ I6	2264
	IF (NP⊢(I) .LT. J) GO TO 1⊐BO	2265
	II = T-NRF;	2266
	GU TU (1520,1530,1540,1550,1560,1570) . 11	2767
10-0		
1740	RITE (6.3350) (TO(I. J))	2768
	GO TO ISHO	2269
1530	wPITE (0+3360) (TU(I+ J))	2270
	GU 10 15A0	2771
1540	#41TF (6,3370) (TO(I, J))	2272
1000	60 TO 1580	2273
		2274
1550		
	GO TO 1590	2275
15-0	WRITE (6+3340) (TO(I+ J))	2276
	60 TO 1540	2277
1570	WHITE (0,3400) (TU(I, J))	2278
		2279
1540		
1590		2240
с	PERFORMANCE PERINDS	2251
1600	wRITF(0+34(0))(PLF(1+2)+I=IN+I6)	2282
	#PITE (0,342n)	2243
	TF (LMAX, En. 1) 60 TO 1685	2284
	$n_0 = 1680 \text{ J} \pm 2 \text{ LMAX}$	2285
	J2 ≖ 1+1	2290
	SPITE (0.3430) 2	2247
	D() 1670 I = IN, IG	2268
	TF (NPP(T) .LT. J) 60 TO 1670	2284
	II = T-NRFO	2290
	G() TO (1610.1620.1630.1640.1650.1660). 11	2291
1010	wPITE (6,3350) (PLF(I, J+1))	2292
	GO TO 1570	2293
1620	WPITE (0,3347) (PLF(1, J+I))	2294
	30 10 1670	2245
1630	wPITE (6,3370) (PLF(I, J+1))	2296
	GO TO 1470	2297
		2244
1000	WRITE (6,334) (PLF(I, J+1))	
	GU TO 1670	2299
1650	WRITE (6,3340) (PLF(I, J+1))	0085
	GD TO 1670	2301
1660	WHITE (0,3400) (PLF(1, 3+1))	2302
1670		5055
1680	CONTINUE	2304
	write $(6,344n)$ (PLF(I, 13), I = IN, 16)	2305
-	MMII4 (210-20) (MELIIA TOLA I = 144 101	
с		2306
	WRITE (6:3450) (STU(I): I # IN: I6)	2307
	wRITF (6,3460) (wL, I = IN+ I6)	2308
	WPITE (6,3260) (STAR, 13 # 1, 14)	5304
	wq1rF (6:3470) (CSP(I): I = IN: I6)	2310
	write (6,3480) (CC(I), I = $1N_{0}$ IG)	2311
		2312
	wRITE $(6,3490)$ (CSR(I), I = IN, I6)	
	walts (6.350) ($CR(I)$, $I = TN$, $I6$)	2313
	wPITE (6,3510) (CJ(I), I = IN, I6)	2314
	wRITE (6,3520) (CTA(I), I = IN, 16)	2315
	wRITE (6,3530) (CI(I), I = IN, 16)	2316
	WPITF (0,3540) (CO(I), I = IN, 16)	2317
	wPITE (6,3550) (CT(I), I = IN, I6)	2318
	$w_{\rm HITF}$ (6,3560) (CM(I), I = IN, I6)	2319
	wPITE (6+3570) (CSR(I)+ I = IN+ I6)	2320

	101690 I = IN, I6
	1F (CA(1)E. 4.0) GO TO 1700
1590	CUNTINUE
	40 TO 1710
	- JITE (6,3590) (CA(I), 1 = IN, 16)
1710	CONTINUE
	wpITF (6.3420)
	$_{\rm W}$ PITF (0.3260) (STAR, $M_{\rm X}$ = 1. 1m)
	WHITE (6,3600) (TCT(I), I # IN. 16)
	WAITE (0,3260) (STAN, MX = I. 1M)
	TF (PSNI
	WRITE (6,1920) VHROR, TITLE
	wRITE (0:3610)
	00 1020 IX = IN+ I6
	JMRN = JMR(IX)
	$JPRN = JPR(I_X)$
	MTRU # MTH(IX)
	MTRN = MTR(IX)
	JNRN = JNR(IX)
	MLRN = MLR([X)
	NTRNA - MTW([X)-4
	MY = 114+1X-NREQ-1
	MU = 3,49 (MY)
	NU 1720 1 = 1. JINNIN
	ALH(IX. 1) # HLN(MU+ 1)
1720	RLS(Ix+ I) = RLS(MU+ 1)
	NO 1730 1 = 1. JMRN
	HIN(IX. I) # HTN(MU. I)
1730	RTS(1+, 1) = RTS(40, 1)
	10 1740 I = 1, JPRN
	TBN(IV. 1) = TBN(MU. 1)
1740	TUSP(14, 1) # TUSP(MU, 1)
• •	wolte (6,367A) 47
	TF (IH(IX) EQ 2) GO TO 1700
	[F (UNRN) 1760.1750.1760
1750	wRITE (6,2993)
• • •	GU TO 1770
1760	WRITE (6+3690) (REN(IX+ IY)+ IY = 1+ JNRN)
	WRITE (0,3540) 4LRN. (NAMERS(MLRN. 1). I . 1. 3)
	WRITE (0,3650) (RES(IX+ I)+ I = 1, JNRN)
1770	WRITE (6+3664) (RTN/IX+ II+ I = 1+ JNRN)
	WQ17E (6+3640) ATRNA+ (NANEBS(MTRN+ 1)+ 1 # 1+ 3)
	WRITE (6.3650) (RTS(1X, 1), 1 = 1, JMRN)
	1F (CTH(1x) .EQ. 0.0) GO TU 1820
	WRITE (6,3670) (RTN(IX, I), I = 1, JMRN)
	WRITE (5+364) ATRNA. (NAMEBS (MTRN. 1) . I . 1. 3)
	WRITE (6+3650) (RTS(IX, I)+ I = 1, JMRN)
	60 TO 1820
1780	TE (JNRN) 1400.1790.1800
	WRITE (0,3000)
	60 TO 1810
1600	WRITE (6,3680) (RLS(IX+ I)+ I = 1, JNRN)
	WRITE (6.364)
	WRITE (0.3690) (RLN(IX, I), I = 1, JNRN)
1810	WRITE (6,3709) (RTS(1X+ 1)+ 1 = 1+ JMRN)
	WRITE (6,3640) "THN, (NAMEWS(MTHN, 1), 1 = 1, 3)
	WRITE (6:369) (RTN(IX+ I)+ I = 1, UMRN)
	WRITE (6.367)) (TBN(1X, 1) - 1 = 1, JPRN)
	HALLE THEFT IN TIDULTATION TO THE MERITY

TENTIAN PAGARA PARTIALLY CONTINUED	° 2436
6 /+202+4540 7 /+202+4540 PROGRAM PARTIALLY CONTINUED	• 2435
	* 2434
4 / 2014 4544 NU OVERLAY STRATEGY 5 / 2014 4549 MEETS THE REDUCTORENTS	* 2453
3 /120 4145H# THAT HERE TRIED	• 2432
2 /+20++45HP OUT OF ALL OVERLAY STRATEGIES	* 2431
1 /+20++45#+	* 2430
2950 FORMAT (1,291,45,10000000000000000000000000000000000	
7 /127214545H4858888888888888888888888888888888	
6 PHOGHAM TERMINATED	* 2426 * 2427
3 /+201+45H* NO INITIAL DESIGN 4 /+201+45H* MERTS THE REQUIREMENTS	* 2424
THE PARTY OF ALL COMPLICATIONS INTED	• 2473
1 /+29x+454# 2 /+20x+454# 007 07 ALL COMBINATIONS TUICO	* 2422
2940 FORMAT (2+20++45H###################################	
2 10H1THIM:/14X. 5HPR08 .A4. 6X. 15A4)	2428
1 3x,7mprc III,2x+	4 C*13 2419
1 27"CENTEN FOR HIGHWAY RESEARCH, 2% INHUEC 1974	1 2418
1920 FORMAT (141+//+4X+1HI.TX+29HRIGID RAVENENT SYSTEM	2416
WHITE (0,3850) WAT, WAH, NAC	2415
WAITE (0:364) (NTOTII), I = 1, LW)	2414
WEITE (0,3030) INCNI(1), 1 ± 1, LM) WEITE (0,3030) INCNI(1), 1 ± 1, LM)	2413
#41TF (0;3830) (4TACT(1); 1 # 1; LM) #41TF (0;3830) (4CAT(1); 1 # 1; LM)	2412
WRITE $(6 \cdot 38)_{(1)}$ (MANTII) = 1 = 1 + LM)	2411
walte (b.dbun) (Lft(1), I = 1, Lm)	2410
₩PITE (0+3790) (NOLTII)+ 1 = 1+ LM)	2404
WRITE (0:37An) (NTMT(I): I # 1: LW)	2409
WRITE (6+3770) (NIHT(I)+ I = 1+ LH)	2405
WRITE (0.3760) (I+ 1 # 1. LM)	2405 2406
TE (JUIN , PA, A) GO TO 10	2404
1 AFD+ KFU-N+ KANAL+ JOIN	
WRITE (6,3750) DIN: KHEJ: NORTH: KAP, KSUB. KLIFE: KI	2402
JOIN = KFUND-KANAL WRITE (6,1920) WROH, TITLE	2401
KTO = KLIF-KFUND	2400
KAP = MOIN-KOIN	2399
KUIN = K50H+KHEJ	239A
NORTH = NOTH-KREU	2347
1H90 CONTINUE	2395 2374
40 TO 1470	2394
IM = 25.050MKTHA ML = MI + L	2393
II = HF	5345
MMF == 'XTRA T.T	2341
INAD HM # 1	2390
GO TO 1470	0415
JM = VH+HHHXTHA	2385
II = the TRA	2345 2387
TH (MATPA	2345
MM ≈ waso MMF ≈ KM+MxTRA⇔I	2364
1475 TF (MMF LED. WREW) GD TO 1890	2143
1H70 SO TO 1465	2142
1H20 CONTINUE	2 191
weite (0,365() (T(SP($1x, 1$), $1 = 1, JPRN$)	2 174
#RITE (0+364,1) "THN+ (NAMETS(MTON+ 1 + 1 = 1+ 3)	1. N. 1944

	/+20+++5++++++++++++++++++++++++++++++++	2437
5 	(/ s2n + s + 5 + + s + s + + + + + + + + + + +	2430
2940 FORMAT	(/+Cll)+45H4	24 14
1	VIEDVINGHT NO INITIAL DESIGN PUSSIBLE	2440
2	A20145H* FOR THIS COMMINATION *	2441
3	/*50x*45H*	2442
4 5	1204.45H PRUGRAM WILL BE CONTINUED	2447
	A A FUR FOR THE OTHER COMBINATIONS P	2444
<u> </u>	· · · · · · · · · · · · · · · · · · ·	2445
7 2970 FORMAT	/•284++3100000	2446
	/.20 4:45 49	2447
1	7.201145H# NO UVERLAY STRATEGY POSSIBLE *	2444
2	1201145H* FOR THIS COMBINATION *	2444
3	7,201,45H*	2450
4	/+201445H& PROGRAM WILL BE CONTINUED *	2451
5	FOR THE OTHER COMBINATIONS *	2452
6	/. £0x+45H4440484648464846668666686866668686868686	2453
	(1 15%, 16HMOST ECONUMICAL , A3, 21H PAVEMENT OFSIGN WITH	2454
	A4. OH OVERLAY. //. LOX. 22HINITIAL CONSTRUCTION	2455
1	10H I TEE 15 . F7.3. 6H YEARS . //. 13X. 9HMATEPTALS. 43X.	2450
2	INDESCRIPTION + /+ 614, BHMATERIAL, 4X+ BHMATERIAL + /+	2451
3	62X. GHNUMBER: 7X. GHNAME: //: 13X. BHCUNCHETE. 4X. F8.2.	2454
	7H INCHES: 25%, II. /: 13%, 7HSURBASE: 5%, FR. 7.	2454
5	TH INCHES, 25%, 11)	2450
3 6 F 3 B 4 4 7	(13x, 40 HLONG, REINF. HAR SPACING NOT AVAILABLE DIE TO BOND)	2451
2000 FORMAT	13X, 4AHLONG, REINF, MESH DIAMETER NOT AVAILANLE TO .	2462
3000 FORMAT		2461
1	4H80N0) (13%-23460N6+ REINF+	2454
3010 FORMAT	(29X, 7HSPACING, 4F6.1)	2465
3020 FORMAT	(1H+, 54X, 11, 5X, 2A4, A2)	2465
3030 FORMAT	(13x,2347RAN. HEINF. BAR NO 4F6.0)	Zant
3040 FORMAT	(13X, 2HLONG REINF MESH SPACING, 4FA.11	2468
3050 FORMAT	(23X, 13HMESH DIAMETER: 4F5.2)	2464
3060 FOHMAT	(13X. DAHTRAN. HEINF. HEST SPACING. 4F6.1)	2470
3070 FORMAT	(13X. JAHTAN HE MARS BAR NUMBER, 4F6.0)	2471
30R0 FORMAT	1.25x, 26-TRA VSVERSE JUINT SPACING, 15x, 15, 5H FEFT	2472
	1.25X, 37-TRANSVERSE CONSTRUCTION JOINT SPACING, 24.15.	2473
L.	H FEET)	2474
	25X.26H ANGITUDINAL JOINT SPACING, 13X. F5. 0.5H FEFT	2475
	(//, IAX, 23HSURSEQUENT CONSTRUCTION)	2476
3110 FORMAT	(13X, 11. 28H DVERLAY AND LEVEL UP WITH F5.7.	2477
3120 FORMAT	11H INCHES OF . A4. TH AFTER . F7.3. 6H YEARSI	2474
3121 FORMAT	(/16%, 22HEVERY OVERLAY INCLIDES, F5.2.	2479
	LON THROUGH OF LEWELLUP)	2490
1 3130 FORMAT	(1. 154. 24 HTOTAL OVERLAY THICKNESS . F6.2. TH INCHES.	2481
	15H TOTAL LIFE . F7.3, 6H YEARS)	2482
1 3140 FORMAT	11. 101. 30HCOST ANALYSIS DOLLARS PER SQUARE YARD. 1.	2443
3140 FURMAL	15K. 20HINITIAL CONSTRUCTION, /. 18X. 16HCUST OF SUBGRADE	یہ 4 ش م
5	12H POFPARATION, 16%, F6.3. /. 18%.	2485
	16HCOST OF CONCRETE, 20X, FA.J. /. 18X.	2650
4	15HC057 OF SUBBASE, 29%, F6. 3. /. 18X.	2487
4	22HCOST OF REINFORCEMENT .22x. F6.3. /	2481
5	18x, 14HCOST OF JDINTS+ 30X, F6-3)	2489
5.55 F		2490
3150 FORMAT	(15%, 3)HTOTAL INITIAL CONSTRUCTION COST. 16%. F6.3. /.	2441
3160 FORMAT	15x, 31HTOTAL OVERLAY CONSTRUCTION COST: 16x; F6.3: /:	26.32
1		2443
5	F6.3 / 154. 22HTOTAL MAINTENANCE COST. 25X. F6.3)	24 - 4
3	LONIN VA TOVA SSURDING WENTERING AND C TONO CONDU	-

3170 FORMAT	(15%, 43HTOTAL SHAL COAT COST AFTER OV. CONSTOURTION. 4%.	びょうち
1	F6,3)	2496
3180 FORMAT	LISK, ICHSALVAUE RETURNS, 32x, +6.3)	2447
3]90 FORMAT	(15x, 2)HANY ADDITIONAL COST SPECIFIED, 18x, F6,3)	~444
3240 FURMAT	(/* 14%. 194TOTAL OVERALL COST: 30%. F6.3* //*10%*	2499
1	15HOLSTON AMALYSIS, /, 13X, SHTOTAL, 14, 12H INITIAL DES	2540
5	. 33HJANS WERE EXAMINED. DUT OF WHICH. /. 14X, 14.	2501
3	ADH DESIGNS WERE REJECTED DUE TO USER RESTRAINTS. /+ 1HX+	5905
4	14. 364 REMAINING INITIAL DESIGNS PRODUCED, 2X. 13.	2503
5	19H OVERLAY STRATEGIES!	25114
3210 FORMAT		2505
1	13HALYSIS PERIOD. //. 13X. [THPAVEMENT TIPE IS . A3. //.	2506
S	544. AHMATERIAL / 55%, BHNUMBER, / 13+ BHCONCRETE.	2597
3	44. FG.2. 7H INCHES, 18x, 11. /. 13x, 7HSUHBASE, 5x,	2508
3350 500	FH.2. 7H INCHES: 18X, II) (//. 19x, 22HLIFE OF THE DESIGN IS , F7.3, 6H VEARS)	2509
3220 FORMAT 3230 FORMAT	(15x, STHTOTAL INITIAL CONSTRUCTION COST, 15x, F6.3) /4	2510
1	15x, DHIGTAL MAINTENANCE COST. 25x, F6.3)	2512
3240 FORMAT	(/: 14x. IgHTOTAL OVEHALL COST: 30X, F6.3: //, 10X.	2513
1	ISHDESIGN ANALYSIS. /, 201.25HTHIS IS THE MOST OPTIMAL .	2514
2	DENDESTEN. /. 20X. THUUT OF . 14. 19H ACCEPTABLE DESIGNS	2515
3	1 /1 Pax 12HOF THIS KIND)	2514
3250 FOHMAT	(11. 21x, 42HSUMHARY OF DESIGNS IN INCREASING ONDER OF	2517
1	IGHTUTAL COST. //. 12X. 13HDESIGN NUMBER: 12X. 414)	2514
3240 FORMAT	(1ds. 73A1)	2514
3270 FORMAT	(12X.) HPAVEMENT TYPE, 12X. 6(5X.A3))	2520
3240 FORMAT	(124. "HOVERLAY TYPE, 124. 6(48,44))	2521
3290 FORMAT	(12x. 1 HHFINFONCEMENT TYPE. 7X. 5(4x. A4))	2522
3300 FORMAT	(/, 12v. 13HCONCRETE TYPE, 12x+ 618)	2523
3310 FORMAT	(12x, 13HSURBASE TYPE, 12x, 610)	1524
3320 FORMAT	(/. 124. 14HSLAR THICKYESS. 11X. 6FH.2)	2525
H3R0 FORMAT	(12x. 17HSUBBASE THICKNESS: AX. AFA.2)	2526
3340 FORMAT	(IZK, IRHOVERLAY - LEVEL UP, 12)	2526
3350 FORMAT 3350 FORMAT	(1H+, 36X+ FH-2) (1H+, 44X+ FR-2)	2529
3370 FORMAT	(14++ 52×+ F8.2)	2530
3340 FORMAT	(IH+, K1X, FH+Z)	2531
3300 FORMAT	(1H++ 6HX+ FH-2)	2532
34n0 FORMAT	(14+ 74X+ FA_2)	2533
3410 FORMAT	(/, 12x. 12HINITIAL LIFE, 13x, 6F8.2)	2534
3420 FORMAT	(10x)	2535
3410 FORMAT	(12x,1AHPERFORMANCE LIFE . 12)	2536
3440 FORMAT	(/+ 12+. 2PHTOTAL PERFORMANCE LIFE+ 3X+ 6F6, 2)	25.37
3450 FORMAT	(11. 124, 21HSPACING THANS. JOI ITS. 4X. 6F8.21	2538
3450 FORMAT	(121, DUNSPACING LONG. JOINTS, SX. KF8.2)	2539
3470 FORMAT	(/. 124, 25HCOST OF SUBG. PREPARATION, 6FB.3)	2540 2541
JAAO FORMAT	(12%, 16HCOST OF CONCRETE, 9%, 6FA.3) (12%, 15HCOST OF SUBBASE: 10%, 6F8.3)	2542
3400 FORMAT	(12x,) HICOST OF HEINFORCEMENT, 4X, 6F8,3)	2543
3560 FORMAT 3510 FORMAT	(12x, 14HCOST OF UDINTS: 11X, 6FB.3)	2544
3570 FORMAT	(12x, 16HC05T OF TIE HAMS, 9X, 6FA.3)	2545
3530 FORMAT	(/+ 12x+ 19HINITIAL CONST. COST+ 6x+ 6F8+3)	2547
3540 FORMAT	(12x. 1 HOVEHLAY CONST. CUST. 64. 6FA.3)	2547
3550 FORMAT	(12X, 1AHTRAFFIC UELAY CUST: 7X. 6FA. 3)	2543
3540 FORMAT	12X. JAHMAINTENANCE COST, 9X. 6FA.3)	2549
3570 FORMAT	(12x. ISHSALVAGE HETURNS: 10x. 6FA. 3)	2550
3570 FARMAT	(12x, 19HANY AUDITIONAL COST. 6x, 6FA.3)	2551
3640 FORMAT	112x, PRHTOTAL CUST PEH SO YARD. 3X, 6F8.3)	2552

		2553
3610 FORMAT	(/ 30% 20HREINFORCEMENT DESIGN. /, 13%, 06HDESIGN. 05%	2554
1	25HREINFORCEMENT DESCRIPTION: 17X: 19HMATERIAL MATERIAL: /: 14X: 6HNUMBER: 6HX: 15HNUMBER: NAME: /)	2555
5		2556
3620 FORMAT	(/ 14x, 12)	2557
3630 FORMAT	(1H., 1AX, 23HLONG HEINF BAR NO , 4F6.0)	2558
3640 FORMAT	(1H+, 474) II, 4X+ 284+ 82) (35%, 7HSPACING+ 4F6+1)	2554
3650 FORMAT		2560
J660 FORMAT	(19%, 23HTRAN, REINF, - BAR NO., 4F6.0) (19%, AHTIF BARS, 5%, 10HBAR NUMBER, 4F6.0)	2551
3670 FORMAT 1680 FORMAT	(14+, 18x, 23HLONG, REINF, MESH SPACING, 4F6.1)	2562
3690 FORMAT	(29%, 13HMESH DIAMETER, 466.2)	2563
3700 FORMAT	(19X. 23HTRAN_HEINF, MESH SPACING, 4F6.1)	2564
3750 FORMAT	(4(/), A3X, 23MINITIAL DESIGN ANALYSIS, //, 17X,	2565
	17HOUT OF A TOTAL OF, 15, 26H INITIAL PUSSIBLE DESIGNS,	2566
1	/ 234. 14. 42H WERE REJECTED DUE TO MAX. INITIAL THICKNE	2507
2	12HSS RESTRAINTY / 174, 6HOUT OF, 14, 14H DESIGNS THUS	6558
3	HLEFT / 23X IA 24H DESIGNS WERE REJECTED SINCE .	2569
• 5	23HTHEY ARE OVERDESIGNS OF. /. 27X. 14HINITIAL DESIGN	2570
5	32HS WHICH LAST THE ANALYSIS PERIDD. /. 174. AHOUT OF.	2571
7	14. 144 DESIGNS THUS LEFT 23X IA. 144 DESIGNS YERE .	2572
7	39HREJECTED DUE TO THEIR LIVES BEING LESS. /. 27X.	2573
8	SANTHAN THE MINIMUM ALLOWABLE TIME TO THE FIRST OVERLAY	2514
4	/. 174. 6HOUT OF, 14: 19H DESIGNS THUS LEFT 234. 14:	2575
i	SAH DESIGNS WERE REJECTED DUE TO THE RESTRAINT OF MAXIMUM	2516
2	+ /, 27X+ 23HINITIAL FUNDS AVAILAHLE. /. 17X. 6HOUT OF.	2577
3	14, 104 DESIGNS THUS LEFT ++ 23x+ 14+ 14H DESTONS HERE +	2578
4	30HACCEPTABLE INITIAL DESIGNS WITH LIVES. /. 27X.	2579
5	24HHONE THAN THE ANALYSIS PERIOD, 1. 17%, SHAND THUS,	2580
6	3X, 14, 45H DESIGNS HERE PASSED TO THE OVERLAY SUBSYSTEM.	2581
7	04H TO. /. 32X. JINFORMULATE THE POSSIBLE OVERLAY .	2542
A	10HCTDATEGTES)	2543
3740 FORMAT	(3 (/) + 12X, 26HOVERLAY SUBSYSTEM ANALYSIS, //, 10%.	2554
1	25HDERIGN COMBINATION NUMBER, 26X, 415)	2585
3770 FORMAT	(1. 10%. 45HNUMBER WHEN MAX. DV. THICKNESS HESTRAINT WAS .	2586
1	3HHIT. 3X, 415)	2547
3780 FORMAT	(10%, 49HIND ABER WHEN MIN TIME BETWEEN OV MESTRATHT WAS HIT	2588
1	* 2x+ 415)	2549
3790 FORMAI	(10%, ARHNUMBER WHEN OVERLAYS NEEDED WEHE MORE THAN FIGHT.	2590
1	3%, 41%)	2591
3800 FORMAT	(10%, 4 AMNUMBER OF TIMES SUBROUTINE + AGE + WAS CALLED.	2592
1	4x, 414)	2593
3810 FORMAT	(10X, "HHNUMHER OF TIMES SUBROUTINE HMANCE" WAS CALLED.	2544
1	34. 415)	2595
3870 FORMAT	110% + 44HNIMBER OF TIMES SUBROUTINE + TOC + WAS CALLED.	2596
1	3X, 415)	2597
3830 FORMAT	(10%, 48HNUMBER OF POSSIBLE OVERLAY STRATEGIES OBTAINED.	2598 2599
1	3X, 415)	
3HA1 FORMAT	(10%, 3)HNUMBER OF OVERVESIGNS OBTAINED, 21%, 415) (7, 10%, 17HOUT OF A TOTAL DF, 34%, 415)	2600 2601
3H40 FORMAT	(3(7) - 21X - 33HTHUS FUR THE ENTIRE DESIGN SYSTEM /*	2002
3850 FORMAT	21X. 26HOUT OF AN OVERALL TOTAL OF. 16. 9H OVERLAY :	2603
1	10HSTUATEGIES: /: 25X. IS. 22H WERE REJECTED DIE TU	26.14
2	20HOTFFERENT RESTRAINTS: /: 21x +HAND + 15.	2605
3	42H WENE CONSIDERED FOR OPTIMIZATION PROCESS)	2606
4	ASH REAC CHADIBERED CAN DESTUTATION CAPEBOL	2608
10 RETURN		2604
F,ND		2000

THE AUTHORS

Robert F. Carmichael is a Research Engineer at the Center for Highway Research at The University of Texas at Austin. He is currently pursuing a Master of Science degree in Civil Engineering, with a specialty in highway design and transportation planning. His experience includes employment with the Center for Highway Research as an undergraduate research assistant for three years and with the Texas Highway Department as a field assistant engineering aid for three summers. His major involvements currently are the implementation of the Rigid Pavement Design System and the modification of the computer program which performs this rigid pavement design.

B. Frank McCullough is an Associate Professor of Civil Engineering at The University of Texas at Austin. He has strong interests in pavements and pavement design and has developed design methods for continuously reinforced concrete pavements currently used by the Texas Highway Department, U. S. Steel Corporation, and others. During nine years with the Texas Highway Department he was active in a

variety of research and design activities. He participates in many national committees and is chairman of the Rigid Pavement Design Committee of the Transportation Research Board.