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PRE F ACE 

This report is the third of a series which summarizes the detailed 

investigation of the various problems associated with the design and con

struction of long span prestressed concrete bridges of precast segmental 

construction. The initial report in this series summarized the general 

state-of-the-art for design and construction of this type bridge as of 

May 1969. The second report stated requirements for and reported test 

results of epoxy resin materials for jointing large precast segments. This 

report summarizes design criteria and procedures for bridges of this type 

and includes two design examples. One of these examples is the three-span 

segmental bridge constructed in Corpus Christi, Texas, during 1972-73. 

Later reports in this series will detail the development of an incremental 

analysis procedure and computer program which can be used to analyze seg

mentally erected box girder bridges and will summarize the results of an 

extensive physical test program of a one-sixth scale model of the Corpus 

Christi structure. Comparisons with analytical results using the computer 

model and verification of the design procedures will be presented in those 

reports. 

This work is a part of Research Project 3-5-69-121, entitled "Design 

Procedures for Long Span Prestressed Concrete Bridges of Segmental Construc

tion." The studies described were conducted as a part of the overall 

research program at The University of Texas at Austin, Center for Highway 

Research. Work was sponsored jointly by the Texas Highway Department and 

the Federal Highway Administration under an agreement with The University 

of Texas at Austin and the Texas Highway Department. 

Liaison with the Texas Highway Department was maintained through 

the contact representative, Mr. Robert L. Reed, and the State Bridge Engineer 

Mr. Wayne Henneberger. Extensive detailed liaison in the design phase was 

maintained with Mr. Harold J. Dunlevy and Mr. Alan B. Matejowsky of the 

Bridge Division; Mr. Donald E. Harley and Mr. Robert E. Stanford were the 

contact representatives for the Federal Highway Administration. 
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The overall study was directed by Dr. John E. Breen, Professor of 

Civil Engineering. He was assisted by Dr. Ned H. Burns, Professor of 

Civil Engineering. The design phase and the optimization studies were 

developed by Dr. Geoffrey C. Lacey, who at that time was a Research Engi

neer for the Center for Highway Research. Valuable assistance was con

tributed by Dr. Robert C. Brown, Jr., Dr. Satoshi Kashima, and Mr. Tsutomu 

Komura, Assistant Research Engineers, Center for Highway Research. The 

authors are appreciative of the contributions of Dr. D. M. Himmelblau 

and Dr. W. G. Lesso of the College of Engineering, The University of 

Texas at Austin, for their advice regarding optimization techniques. 
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SUM MAR Y 

The economic advantages of precasting can be combined with the 

structural efficiency of prestressed concrete box girders for long span 

bridge structures when erected by segmental construction. The complete 

superstructure is precast in box segments of convenient size for trans

portation and erection. These precast segments are erected in cantilever 

and post-tensioned together to form the complete superstructure. 

This report details the application of design, analysis, and 

optimization techniques to segmentally precast prestressed concrete box 

girder bridges. These were classified into two main types according to 

their method of construction, namely those constructed on falsework and 

those erected in cantilever. The prestressing cable patterns and the design 

procedures required are very different in the two types of construction. 

Design procedures are developed for both types of construction. 

Both ultimate strength and service load design criteria are satisfied 

under all loading conditions. The effect of the cable force on the con

crete section is calculated u~ing an equivalent load concept. A computer 

program is used to check all service level stresses. 

Sample designs are carried out for the case of a hypothetical 

two-span bridge constructed on falsework and that of an actual three-span 

bridge erected in cantilever. In the former case, full length draped 

cables are used, the profile consisting of three parabolas. In the case 

of the bridge erected in cantilever, each stage of construction is a 

separate design condition and a pattern of cables of varying lengths is 

required. 

Optimization techniques are used to find the optimal cross sections, 

i.e., those having minimum cost for such bridges. In each case, the 

problem is treated as an unconstrained nonlinear programming problem and 

a subroutine is developed to compute the objective function. Numerical 
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methods of solution that do not require derivatives of the objective 

function are used. From contour plots of the objective function it is 

found that the optimal dimensions can be varied substantially with small 

increase in cost. 
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IMP L E MEN TAT ION 

This report presents the background and detail of design, 

analysis, and optimizing procedures recommended for use with precast 

segmental prestressed concrete box girders erected on fa1sework or by 

balanced cantilevering. The design procedures illustrate the use of 

both ultimate strength and service load design techniques and consider 

a wide range of loading conditions. The interaction of manual calcula

tions and various computerized analysis procedures is illustrated. The 

report includes a brief summary of important factors to be considered in 

in i t ia 1 design, trea ts analytical procedures which are especially 

useful in dealing with the types of tendon layouts and erection schemes 

utilized with this construction, and provides two major example problems 

illustrating the numerical calculations and procedures to be utilized. 

One of the example problems is based on the box girder bridge erected 

over the Intracoastal Waterway at Corpus Christi, Texas, and is essen

tially a documentation of the preliminary design procedure used in devel

opment of the structure. 

While the design examples consider box girders of constant depth, 

the minor variations required in dealing with members of variable depths 

are indicated. The design and analysis procedures should be extremely 

useful in analysis of proposed structures in the 100 to 300 ft. span 

range, can be easily extended to structures up to 450 ft. and can deal 

with a wide variety of cross sections. 
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C HAP T E R 1 

INTRODUCTION 

1.1 General 

Bridge engineers continually face requirements for safer, more 

economical bridge structures. In response to many requirements imposed 

by traffic considerations, natural obstacles, more efficient use of land 

in urban areas, safety, and aesthetics, the trend is to longer span 

structures. At present, the most commonly used structural system for 

highway bridge structures in Texas consists of prestressed concrete 

I-girders combined with a cast-in-place deck slab. This system has prac

tical limitations for spans beyond the 120 ft. range. With the fluctuating 

costs and maintenance requirements of steel bridges, there exists a need 

to develop an economical approach to achieve precast, prestressed con

crete spans in the 120-400 ft. range. 

In the United States, spans in the 160 ft. range have been achieved 
23* 

by the use of post-tensioned, cast-in-place girders. The box, or cellu-

lar, cross section shown in Fig. 1.1 is ideal for bridge superstructures 

since its high torsional stiffness provides excellent transverse load 

distributing properties. Construction experience along the West Coast 

has indicated that this type bridge is a very economical solution to many 

long span challenges. 

In Europe, Japan, and Australia, during the late 1960's and early 

1970's, the advantages of the cellular cross section were combined with 

the substantial advantages obtained by maximum use of prefabricated com-
20 

ponents. By precasting the complete box girder cross section in short 

segments of a convenient size for transportation and erection, the entire 

*Numbers refer to references listed at the end of this report. 
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Fig. 1.1. Typical cellular cross section 

bridge superstructure may be precast. These precast units are subsequently 

assembled on the site by post-tensioning them longitudinally. A number 

of extremely long span precast and cast-in-p1ace box girder bridges have 
16 20 

been segmentally constructed in Europe ' and interest in this construc-

tion concept is rapidly growing in the United States. A three-span 

precast segmentally constructed box girder bridge with a 200 ft. maximum 

span was completed in Corpus Christi, Texas, in 1973. 

When construction of large numbers of prestressed concrete bridges 

is envisaged, precasting has a number of advantages over cast-in-p1ace 

construction, e.g. 

(1) Mass production of standardized girder units is possible. This 

isdone at present with precast I-girders for shorter spans. 

(2) High quality control can be attained through plant production 

and inspection. 

(3) Greater economy of production is possible by precasting the girder 

units at a plant site rather than casting in place. 

(4) The speed of erection can be much greater. This is very 

important when construction interferes with existing traffic 

and is most critical in an urban environment. 

In segmental box girder construction utilizing the cantilever erec

tion procedure, precasting has several other advantages over cast-in-p1ace 

construction, e.g. 

(1) Strength gain of the concrete is essentially taken out of the 

erection critical path. This allows faster erection times and 

higher concrete strength at time of stressing. 



(2) Shrinkage strains can substantially develop prior to erection 

and stressing if adequate lead times and stockpiling are used. 

(3) Creep rates can be substantially reduced since the segments are 

considerably more mature at time of stressing. 

The major advantages frequently cited for utilization of cast

in-place segmental construction are: 

(1) Provision of positive nonprestressed reinforcement across the 

joints is easier. 

(2) Continuous correction of girder grade and line is possible to 

compensate for deformations. 

Extensive utilization of epoxy joints, grouted tendons, and 

3 

shear keys has reduced the emphasis on the positive bonded joint rein

forcement while the versatility of the match casting procedure on numerous 

major projects involving complex horizontal and vertical alignment has 

illustrated the ability of the precast procedures to deal with geometri

cal problems. 

At present, precast I-section girders are widely used in highway 

bridge construction for spans up to about 120 ft. They are cast in a 

manufacturing plant and transported to the bridge site for erection. 

While their span can be stretched by using "drop in" girders, they cannot 

be used for significantly greater spans, because this length is approxi

mately the upper limit that can be transported by road. In addition, 

I-sections are not the most structurally suitable form for long span 

bridge structures. A better structural unit is the box girder. 

The box girder is a very compact structural member, which combines 

high flexural strength with high torsional strength and stiffness. It is 

superior to the I-section girder for long spans in that (a) there is no 

lateral buckling problem so that the compressive capacity of the bottom 

flange is fully utilized, and (b) the torsional rigidity brings about a 

more even distribution of flexural stresses across the section, under a 

variety of live loads. A further advantage of the box girder in precast 
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structures is that it is possible to precast the full cross section 

(apart from a longitudinal joining strip in some cases), whereas with 

I-sections the deck slab must largely be cast in place. 

A considerable number of long span bridges have been constructed 

throughout the world using prestressed concrete box girders. Both cast

in-place construction and segmental precasting have been widely utilized. 

The suitability of box girders even for extremely long spans can be seen 

from the Bendorf Bridge in West Germany, which was cast in place and has 

a span of 682 ft. In the United States, cast-in-place box girder bridges 

are being widely used by the California Division of Highways, as well as 

in several other states. 

When box girder bridges are precast, the casting is generally 

segmental, i.e., the girders are cast in short, full width units or 

"segments". The reason for manufacture in short segments is essentially 

that box girders, unlike I-girders which have narrow width, cannot be 

readily transported in long sections. In addition, the short units are 

suited to fairly simple methods of assembly and post-tensioning. During 

erection the segments are joined together, end to end, and post-tensioned 

to form the completed superstructure. The segmental pattern for a typical 

bridge is shown in Fig. 1.2. The length and weight of the segments are 

chosen so as to be most suitable for tr~nsportation and erection. 

1.2 Segmental Construction 

Figure 1.3 illustrates some of the wide range of cross-sectional 

shapes which can be used. Various techniques have been used for jointing 

between the precast segments, with thin epoxy resin joints being the widest 

used. The most significant variation in construction technique is the 

method employed to assemble the precast segments. The most widely used 

methods may be categorized as construction on falsework and cantilever 

construction. Construction on falsework is the simplest method of erecting 

precast, segmental bridges. It also leads to the simplest design approach. 

The joints used are usually cast-in-place concrete or mortar. This method 

is particularly applicable to locations where access by construction 



Fig. l.a. Superstructure of the Oosterschelde Bridge, The Netherlands 
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(a) Single cell girder 

, , 
I 

\ J \ J 

(b) Single cells joined by deck 

(c) Multicell girder 

Fig. 1.3. Girder cross-sectional configurations 
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equipment is difficult, the project is of limited scope and traffic 

interruptions due to falsework are acceptable, and where single or twin 

spans are to be used so that balanced cantilevering is not feasible. The 

prestressing system for the superstructure will normally consist of long 

draped cables in the box girder webs. If the overall length of the bridge 

is moderate, it is possible to set all the segments in place and join them 

before inserting and tensioning full length cables. This method tends to 

economize on prestressing steel and hardware. Stressing operations are 

minimized but at the expense of falsework costs. 

The outstanding advantage of the cantilever approach to segmental 

construction lies in the fact that the complete construction may be accom

plished without the use of falsework and hence minimizes traffic 

in terrup tion. 

Assembly of the segments is accomplished by sequential balanced 

cantilevering outward from the piers toward the span centerlines. Ini

tially the "hannnerhead" is formed by erecting the pier segment and 

attaching it to the pier to provide unbalanced moment capacity. The two 

adjoining segments are then erected and post-tensioned through the pier 

segment, as shown in Fig. 1.4(a). Auxiliary supports may be employed for 

added stability during cantilevering or to reduce the required moment 

capacity of the pier. Each stage of cantilevering is accomplished by 

applying the epoxy resin jointing material to the ends of the segments, 

lifting a pair of segments into place, and post-tensioning them to the 

standing portion of the structure [see Fig. 1.4(b)]. Techniques for 

positioning the segments vary. They may be lifted into position by means 

of a truck or floating crane, by a traveling lifting device attached to 

(or riding on) the completed portion of the superstructure, or by using 

a traveling gantry. In the latter case the segments are transported over 

the completed portion of the superstructure to the gantry and then lowered 

in tv position. 

The stage-by-stage erection and prestressing of precast segments 

is continued until the cantilever arms extend nearly to the span center

line. In this configuration the span is ready for closure. The term 
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closure refers to the steps taken to make the two independent cantilever 

arms between a pair of piers one continuous span. In earlier segmentally 

constructed bridges there was no attempt to ensure such longitudinal con

tinuity. At the center of the span, where the two cantilever arms meet, 

a hinge or an expansion joint was provided. This practice has been largely 

abandoned in precast structures, since the lack of continuity allows 
19 24 unsightly creep deflections to occur.' Ensuring continuity is advised 

and usually involves: 

(1) Ensuring that the vertical displacements of the two cantilever 
ends are essentially equal and no sharp break in end slope exists. 

(2) Casting in place a full width closure strip, which is generally 
from 1 to 3 ft. in length. 

(3) Post-tensioning through the closure strip to ensure structural 
continuity. 

The exact procedures required for closure of a given structure must be 

carefully specified in the construction sequence. The final step in 

closure is to adjust the distribution of stress throughout the girder to 

ensure maximum efficiency of prestress. Adjustment is usually necessary 

to offset undesirable secondary moments induced by continuity prestressing. 

The final adjustments may invo1ve19 

(1) Adjusting the elevation of the girder soffit, at the piers, to 
induce supplementary moments. The adjustment may be accomplished 
by means of jacks inserted between the pier and the soffit of the 
girder with subsequent shimming to hold the girder in position. 

(2) Insertion of a hinge in the gap between the two cantilever arms 
to reduce the stiffness of the deck while the continuity tendons 
are partially stressed. The hinge is subsequently concreted 
before the continuity tendons are fully stressed. 

(3) A combination of hinges and jacks inserted in the gap to control 
the moment at the center of the span while the continuity tendons 
are stressed. The final adjustment is made by further incre
menting the jack force and finally concreting the joint in. 

The first of these possibilities is the widest used. After final 

adjustments are complete, the operation is moved forward to the next pier 

and the erection sequence begins again. 
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1.3 Research Program in Segmentally 
Constructed Bridges 

In 1969, a comprehensive research effort dealing with segmental 

construction of precast concrete box girder bridges was initiated at The 

University of Texas at Austin. This report summarizes part of this 

mu1tiphase project which had the following objectives: 

(1) To investigate the state-of-the-art of segmental bridge 
construction. 

(2) To establish design procedures and design criteria in general 
conformance with provisions of existing design codes and 
standards. 

(3) To develop optimization procedures whereby the box girder cross 
section dimensions could be optimized with respect to cost to 
assist preliminary design. 

(4) To develop a mathematical model of a prestressed box girder, 
and an associated computer program for the analysis of seg
mentally constructed girders during all stages of erection. 

(5) To verify design and analysis procedures using a highly devel
oped structural model of a segmental box girder bridge. 

(6) To verify model techniques by observance of construction and 
service load testing of a prototype structure. 

Various phases of this work were reported in previous reports in 
7-11 14-16 

this series and in several dissertations.' Objective (1) was 

initially accomplished with publication of Report 121-1. It has subse

quently been updated and advanced by Muller's excellent paper. 20 Objec

tives (2) and (3) are the direct areas of interest in the present report. 

Objective (4) was accomplished with the development of the program SIMPLA2 

as documented in Report 121-4. Objectives (5) and (6) were accomplished 

as documented in Report 121-5. 

1.4 Objectives and Scope of this Report 

The object of this report is to document proper design procedures 

and to develop practical optimization techniques for the application of 

the segmentally precast box girder in long span highway bridge superstructures. 

Segmentally precast box girders should be designed and analyzed con

sidering the construction process. In contrast to many concrete structures, 
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it is essential that erection conditions and stresses be carefully checked 

at all stages for balanced cantilever construction. Analysis at each 

stage can represent a monumental task unless the problem is simplified 

considerably. Effects of simplification for purposes of design are often 

difficult to evaluate, since the degree to which a box girder behaves as 

an element depends on many variables and it is difficult to determine.
26 

In developing the design procedures, the authors used adaptations 

of methods recommended in AASHO specifications for the design of normal 

bridge cross sections under the action of wheel loads wherever possible. 

This AASHO method was somewhat simplified and utilized in the development 

of a computerized optimization scheme to determine preliminary box girder 

cross section dimensions for minimum cost. 

In Chapter 2 a general design procedure is outlined. Interaction 

of the various steps of preliminary proportioning, optimization studies, 

detailed transverse and longitudinal design, box girder analysis for 

warping effects, checks of erection stresses, and development of post

tensioning system details are interrelated. Construction trends influ

encing preliminary proportioning are examined and references are made 

to several helpful summaries of physical properties of completed 

structures. 

Detailed procedures for the design of bridges constructed on 

falsework are developed in Chapter 3 and a design example is utilized. 

Chapter 4 gives similar material and an example for bridges erected in 

cantilever. Both ultimate strength and service load design criteria are 

satisfied. Utilization of existing computer programs to thoroughly check 

the stresses under various loadings is illustrated. 

Mathematical methods of optimization are briefly reviewed in 

Chapter 5. Appropriate methods are applied to illustrate factors affecting 

the optimal cross section for bridges constructed on falsework (Chapter 6) 

and erected in cantilever (Chapter 7). In the optimization studies, the 

function which is minimized is an approximate cost index for the bridge. 
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C HAP T E R 2 

DESIGN PROCEDURES 

2.1 General 

While over one hundred long span bridges have been constructed 

throughout the world using segmentally precast box girders, their utiliza

tion in the United States has been very slow in developing. With comple

tion of the first U.S. project in 1973, there has been a heightened interest 

and a number of projects are now actively underway. While there are 

undoubtedly many reasons for the slow development of this type of con

struction in the United States, probably one of the most significant 

is the general division of the engineering and construction responsibilities 

that has existed in the concrete industry. The segmental precast box 

girder bridge requires extensive consideration of construction methods 

and procedures during the design phase. In the same way, the erector 

must be responsible for substantial calculations for control of stresses 

and deflections throughout the erection phase. While such interaction has 

been very common in construction of long span steel bridges, it has not 

been as usual in long span concrete structures. 

A successful design of a precast segmental box girder bridge must 

consider carefully the constructabi1ity of the project, must leave room for 

competitive systems and constructor improvements, and must consider the 

stability of the structure in all of its embryo stages as well as per

formance of the completed structure. 

Division of responsibility must be very carefully developed, so 

that the constructor is not forced into undertaking an unrealistic or unsafe 

construction procedure by orders of the designer and, conversely, the 

designer is not responsible for errors or lapse in judgment by the contractor. 

13 
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The authors feel that the main reason for the lag in development 

of this type of structure in the United States has been the technological 

transfer gap, not of highly involved analysis procedures, but rather of 

efficient construction procedures suited for the engineering, constructor, 

laborer, and material practices of the United States. 

In this chapter a very brief outline of the design procedures 

which should lead to a successful project is given. The material in this 

chapter is intended to outline the general framework of the design process. 

Two very specific technical designs are included in subsequent chapters 

to provide specific guidance on "detailing". Substantial information on 

factors affecting optimization of the cross sections are included in sub

sequent chapters to assist in preliminary designs. 

2.2 State-of-the-Art 

Report 121-1 summarized the state-of-the-art in precast segmental 

box girder technology as of 1970. The ensuing five years have seen rapid 

developments in this technology. Foreign experience by one of the world's 

foremost builders of this type structure was summarized in 1974 at the 

FIP/PCI Congress in New York City by Jean Muller. His report has been 

printed for distribution in the United States in the January 1975 PCI 
20 

Journal. One of the most interesting aspects of the developmental period 

of the last decade has been the evolution of the jointing and erection 

process. Epoxy joints are still the foremost type of jointing, but less 

reliance is being placed on the strength of the epoxy and more jointing 

surface is being provided for mechanical interlock keys between units. Muller 

shows pictures of recent French bridges with castellated or serrated web 

keys for a long portion of the web length. The multiple key designs cer

tainly decrease reliance on long-term epoxy integrity and should be carefully 

studied. In the same light, numerous projects are going to procedures which 

move the negative moment (cantilevering) tendon anchorages out of the web 

end surface and provide internal stiffeners attached to the webs for 

locating anchorages. By moving the anchorage from the end surface of the 

unit, several units can be placed using temporary fasteners before stressing 
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has to be accomplished. In this way threading of cables and stressing of 

tendons has been removed from the critical path operations in erection. 

Another obvious tendency in foreign practice is to the use of 

wider sections resting on single piers, rather than double box sections 

supported by parallel twin piers. While the cost of the superstructure 

is somewhat higher for the wider single section, substantial economies 

have been achieved in pier costs. 

The large number of projects currently underway in the United 

States as summarized by Koretzky and Kuo 13 indicates that this type of 

construction is emerging rapidly. Their survey indicates that as of 

December 1973 sixteen states were involved on a total of 56 bridges with 

almost half of these appearing to be on a fairly firm basis. 

2.3 Design Sequence 

Probably because of the relative unfamiliarity with the segmental 

construction procedures, but largely because of the close relationship 

which must exist between design and construction concept, the design 

sequence for a precast segmental box girder bridge is a highly inter

active one. Figure 2.1 shows the various stages of the design sequence 

and the usual paths between sequences. The main elements are: 

(1) Conceptual design--basic decisions regarding type of construc

tion, span lengths and ratios, and cross section types. 

(2) Preliminary design--choice of basic dimensions for cross 

section elements, tendon and reinforcement patterns, slab and web thick

nesses, and optimization studies of the span and cross section layout. 

Analysis procedures are usually approximate. 

(3) Detailed design--specific proportioning of a tentative cross 

section considering both construction sequence loads and normal design 

loads on the completed structure, sizing of tendons, reinforcement, 

structural member dimensions, and planning of the erection and closure 

sequences. Relatively detailed analysis to consider all major loads and 

conditions which will affect behavior of a structure. 
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CONCEPTUAL ~ 
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DETAILED I--
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I...- VERIFICATION 

FIELD SUPPORT ,......-
u 

CHANGES 

Fig. 2.1. Interactive design sequence 
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(4) Verification Analysis--studies undertaken after most elements 

of the design are substantially fixed to check construction stresses and 

deformations and behavior under all critical design load conditions. 

(5) Field Support Analyses--checks of working drawings, contractor's 

erection stresses, detailed stressing sequences, and development of deflection 

and closure information for guidance of field forces. 

(6) Change Order Evaluation--provid:ing rapid information to field 

forces and contractor on technical advisability of proposed changes in 

design requires quick response in technical decisions. 

Some specific details for each of these stages will be developed 

in the following sections. The large number of interactions indicated in 

Fig. 2.1 shows that such a breakdown is extremely artificial, since often 

the same person will be handling several of the items in the sequence. 

The schematic is useful in organizing a discussion of the important elements 

in the design sequence. 

2.4 Conceptual Design 

The most important decisions in the project are generally made at 

the start when major questions have to be answered with relatively little 

hard information. Major decisions usually involve: 

A. Span lengths 
B. Span ra tios 
C. Box girder versus alternate structural system 
D. Cast-in-place versus precast 
E. Erection on falsework versus cantilever erection 
F. Single box versus multiple box versus multicell cross section 
G. Constant depth versus variable depth 

These important questions are best decided after a careful review 

of the state-of-the-art, consultation with experts who have been involved 

in the design and construction of successful projects, and intensive study. 

However, a substantial body of information is available to assist in these 
19 25 decision-makings. Excellent summaries by Muller and Swann as well as 

16 a summary by Lacey, Breen, and Burns describe many successful projects 

and can help one develop a feel for the "possible". In particular, the 
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compilation by Swann
25 

of detailed dimensions of 173 concrete box girder 

bridges (segmental, nonsegmenta1, precast, and cast-in-p1ace) is very 

useful. Figure 2.2 illustrates the distribution of constant section, 

constant depth with variable slab thickness, and variable depth bridges 

reported by Swann. As in all studies, this distribution must be examined 

carefully, since it contains a variety of experiences. The majority of 

the short span structures were not built segmentally. In addition, most 

of the structures are located in Europe and are undoubtedly colored by 

the design criteria and economic experience of that region. 

+ , , + Type 1 
constant section Wffi Type of 

longitudinal ,I.b thickness varies 
section 

total depth varies -0..'-....'-....'\ 
... 

t , , f 
< .... 
0 

Type 2 .... ... 
0 

Z 0·5 
0 
i= 

tJ 
'" Jj ,,., 0 ... 
0 

'" ... 

(a) Types of longitudinal section (b) Distribution of longitudinal section 
types 25 

Fig. 2.2. Types of longitudinal profiles (from Swann ) 

Discussion with several other designers of segmental bridges 

indicates that the following rough "rule of thumb" represents the current 

s ta te-of - the-ar t: 

Span 

0-150 ft. 

125-300 ft. 

275-450 ft. 

400-600 ft. 

600-1200 ft. 

1200 ft. up 

Bridge Type 

I-type pre tensioned girder 

Precast segmental constant depth 

Precast segmental variable depth 

Cast-in-p1ace segmental 

Cable-stayed with precast segmental girders 

Sl,lspension 
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Obviously, such a ru1e-of-thumb is only a crude indicator of the 

appropriate type structure. Decision between precast and cast-in~lace 

segmental units must consider not only span length but ease of access to 

the site of heavy handling equipment, construction seasons, and size of 

project. 

Segmentally precast box girder bridges may be classified into 

two main types according to the method of erection, namely those con

structed on fa1sework and those erected in cantilever. The third method, 

assembly on shore, will generally be too cumbersome to have widespread USe. 

The different methods of construction will require different pre

stressing cable patterns and different design procedures. In bridges 

constructed on fa1sework, long draped cables, traversing one or more spans, 

can be used. If the cables run the full length of the bridge, only one 

structural system, namely the completed continuous superstructure, need 

be considered in design. 

For bridges erected in cantilever, a set of cables in the top of 

the girder is required for each length of the cantilever arm. Each stage 

of erection constitutes a separate design condition, with different bending 

moments in the cantilever. The completed superstructure contains additional 

cables in the bottom of the girder and constitutes an indeterminate con

tinuous system. It is designed to withstand the dead and live loads under 

service conditions. 

Erection on fa1sework with close-spaced supports is the simplest 

method of construction when conditions permit, as in the case of viaducts 

over land and not passing over existing roads. Lifting and placing tech

niques will depend on the exact site conditions. For bridges having three 

or more spans over water or over existing roads, where intermediate support 

is not possible, the cantilever method will probably be the most suitable. 

There will be a critical span length, however, below which it will be more 

economical to use a fa1sework truss. For two-span bridges over an existing 

highway, erection on a fa1sework truss or girder or with temporary braces 

or ties is probably the simplest procedure. 
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The superstructures of the box girder.bridges generally conform 

to three main types: (a) single-cell box girder, (b) pair of single-cell 

box girders connected by the deck slab, and (c) multi-cell box girder. 

These types are sketched in Fig. 2.3. The simplicity, economy, and good 

appearance of these sections is evident. 

Single-cell box girders are generally used in relatively narrow 

bridges. As the width increases, the bending moments in the deck slab 

increase and hence the thickness must increase. Beyond some critical 

width it becomes more economical to use a multicell box or mUltiple 

single-cell boxes. 

In the case of multiple single-cell box girders, the basic 

single-cell units are cast separately and are connected after erection 

with a concrete joint. Usually the deck is post-tensioned transversely, 

but it is possible to use nonprestressed reinforcement only and to make 

the joint width sufficient for splicing. In general, it is possible to 

have smaller basic units with multiple single-cell boxes than with a 

multi-cell box girder. The smaller units are easier to transport and 

erect. The bridge can be easily widened by the addition of another box. 

On the other hand, with a multi-cell box the cast-in-place longitudinal 

joint is not required. Also, a multi-cell box, of relatively small base 

width may be advantageous when narrow piers are desired. 

2.5 Preliminary Design 

In the preliminary design stage, the important structural parameters 

are determined. Such factors as span-to-depth ratios, minimum web thickness, 

upper and cantilever flange thicknesses, and preliminary tendon requirements 

can be fairly readily determined by conventional elastic analyses, deter

mination of cantilever moments prior to closure, and utilization of normal 

or'beamN theory for stress analysis of sections. 

The recent report of the PCI Committee on Segmental Construction 21 

suggests span-to-depth ratios from 18:1 to 25:1 are currently considered 

practical and economical for constant depth segmental bridges. They suggest 

that variable depth bridges may have span-to-depth ratios of 40 to 50, based 
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(0) Two-cell box girder. 

Fig. 2.3. Box girder cross section types. 
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on the depth at the center of the span. Figure 2.4 from Swann25 indicates 

a wider variation in span-to-depth ratio. The optimizing studies in 

Chapter 6 and Chapter 7 indicate that very efficient structures can be 

obtained in the 25 to 30 span-to-depth ratio range. Past experience, as 

reflected in Fig. 2.4 may be colored by the much heavier live loads used 

in European design. Figure 2.5 is from a study by Rajagopa1an
22 

which 

indicates that for 140 ft. spans, live load design moments in some 

European countries will vary from 150 to 300 percent of those used in the 

United States. Use of lower span-to-depth ratio values are indicated 

when shears are heavy, little load balancing is utilized, or when pre

liminary design indicates extreme congestion of tendons. The experience 

with the Corpus Christi segmental bridge, which had a span-to~epth 

ratio of 25, indicates that even higher values could be used without sub

stantial deflection difficulty. 
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In many structures the web thickness will be based more on 

"placeability" considerations and providing adequate room for anchorages 

than on shear considerations. Based on successful French experience, 

the Corpus Christi structure was designed with a minimum web thickness 

of 12 in. In retrospect, the congestion of the webs hindered placement 

and made detailing of anchorages difficult. Figure 2.6(a) from Swann's 

study shows a web thickness parameter for a wide range of bridges. It 

can be seen that the value of the parameter for the Corpus Christi bridge 

is one of the lowest, with a value of 2.88 X 10-3 • Retrospect would 

indicate that the webs should have been increased to about 14 in. minimum, 

which would give a parameter value of 3.36 X 10-3 and essentially plot 

on Swann's curve. This indicates that such a graph could be quite useful 

in preliminary design. 

While many of the cross-sectional elements can be designed 

utilizing normal slab design under AASHO specifications, the lower flange 

near the piers in narrow bridges is very critically affected by the canti-

lever moments and particularly ipan-to-depth ratio5. This slab often 

has to be thickened and may indicate the desirability of a greater cross 

section depth to increase the lever arm and cut down the thickness of the 

lower flange. This will be more prevalent on double box cross sections 

than on single box cross sections. 

Dimensions of successful projects are often one of the best indi

cators of the practical market place. However, the use of more formal 

optimization techniques can indicate important trends to be investigated 

in design. In Chapters 5 through 7 of this study, an attempt is made to 

illus tra te how rela tively simple optimiza tion techniques 'can be used in 

preliminary design to give the designer information as to the cost 

"trade offs" of his basic parameter decisions. Unfortunately, these 

optimization examples only include a relatively narrow number of span 

lengths and roadway widths. These studies should be extended to give more 

information as to the effect of variations in these important parameters. 

There seems to be a systematic relationship between length and width in the 

choice of cross section, as indicated in Fig. 2.7. The relatively narrower 
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bridges go to single box units, while the wider structures go to twin box 

units. Further studies of variables would clarify the practical boundaries 

for these decisions. 

2.6 Detailed Analysis 

After a basic construction scheme, span arrangement, cross-sectional 

type and important section properties have been at least preliminarily 

decided upon, a detailed analysis can be made to determine tendon sizes and 

patterns, flange and web thicknesses, transverse and shear reinforcement, 

and stressing details. For the initial detailed analysis, ordinary equilib

rium equations, elastic analysis, and normal "beam" design procedures are 

utilized. In many box girders, there will be substantial deviations from 

such stresses due to shear lag, section warping, and torsion due to unsym

metrical loading. After completion of 3 detailed design which considers 
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both construction and normal live load effects, it is advisable to check 

the structure with a "folded plate" type analysis. The authors reconnnend 

the use of computer analysis programs such as MUPDI for constant depth 

sections or FINPLA2 for variable depth bridges. These programs were 

developed by A. Scorde1is at The University of California under sponsor

ship of the California Department of Transportation and are widely· 

available. 

In Chapter 3 and Chapter 4, comprehensive examples of a segmental 

box girder erected on fa1sework and a structure erected by balanced canti

lever are used to illustrate typical design procedures. These examples 

illustrate the interaction between the preliminary and the detailed design 

phase and typical changes made in the detailed design phase to satisfy 

normal design requirements. 

2.7 Verification Analysis 

Particularly when cantilever erection is to be used, it is 

advisable to run a check analysis which will verify the suitability of the 

proposed construction sequence and check for stresses and deflections to 

be expected during all stages of erection. In order to facilitate such an 

analysis, a program SIMPLA2 was developed in this study. Detailed informa

tion is given in Report 121-4. Such a program can be used to determine 

longitudinal and transverse stresses, deformations, tendon friction losses, 

tendon incremental stressing losses, and track the structure through all 

unbalanced states and closure operations. The program uses a "folded plate" 

analysis and so also gives indications of excessive shear lag or other 

effects. Because of the complexity of :inputting the problem into this pro

gram and the high cost of the analysis, it is ordinarily only undertaken 

at the completion of the design as a final check. 

In a similar way it is advisable to make a final check of any struc

ture where substantial shear lag or warping effects are suspected to verify all 

design load conditions. The MUPDI program is an excellent one, and indi-

cated very high correlation with the measurements in the companion test 

program involving a model study of the Corpus Christi Bridge. 
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2.8 Field Support 

Depending on the contractual arrangements, the designer, the owner, 

or the contractor will need to carefully control the erection and have 

substantial technical information to check on the adequacy of construction. 

Upon completion of design and award of contract, erection stresses, 

deflection profiles at various stages, tendon stressing patterns and limits, 

tendon elongation values, and closure computations will have to be developed 

and transmitted to the appropriate parties. Many of the procedures are 

repetitive and a computer analysis is often advantageous. Because of the 

complexity of input into the SIMPLA2 program, it will be advisable to 

utilize simpler "beam theory" programs to develop the less critical values. 

It is especially important that working drawings be cross-referenced 

and compared so that careful coordination exists in placing reinforcing, 

post-tensioning tendons, and post-tensioning anchorages. It is advisable 

to develop high modularity in details to make maximum use of precast 

technology. 

2.9 Change Order Evaluation 

After the contractor begins his work, numerous items will come up 

requiring technical decisions. Some of these will be major, such as sub

mission by a contractor of a major revision in the tendon layout, stressing 

sequence, or erection plan. One of the great advantages of program 

SIMPLA2 is that it can be reprogrammed relatively quickly to handle such 

changes and give a complete reanalysis of all stages of construction. In 

this way the designer will be able to see the overall effect of the plan 

change in a clearer fashion. 

2.10 Pier Design 

In most of the existing literature on precast segmental box girders, 

insufficient attention is given to pier design. Since the cantilever erec

tion procedure imposes substantial moment requirements on the pier, it can 

greatly increase the cost of the piers. Several cases have been reported 

where the increase in pier cost to permit balanced cantilever construction 
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amounted to 25 percent of the superstructure cost. Careful attention 

should be given to the possibility of providing for the unbalanced moment 

with temporary struts, ties, or shoring, as shown in Fig. 2.8, so that 

the permanent pier does not have to have the built-in capability of 

resisting the full moment. In addition, considerable saving can be 

obtained by using hollow piers which can develop the required strength 

and stiffness, but which will not need as much material as the solid 

piers nor require as many additional vertical supports. In difficult water 

crossings, the pier costs may be of the same magnitude as the superstructure 

costs and it is extremely important that careful attention be paid to the 

pier design. Several recent examples have indicated that erection on 

fa1sework is practical even in long spans if pier costs are high. 

2.11 Applicable Specifications and 
Regula tions 

In design of relatively modest (up to 400 ft. span) segmental box 

girder bridges, existing design regulations are reasonably adequate. The 

examples in Chapter 3 and Chapter 4 utilize the 1973 AASHO regulations; 

the ACI Building Code 318-71 provisions for shear and prestressed concrete 

as allowed by AASHO for prestressed concrete shear, and the 1969 Ultimate 

Design Criteria of the Bureau of Public Roads. This latter was used rather 

than the 1973 AASHO because the authors are leery of the combined load and w 
factors permitted for this type of construction in the AASHO regulations. 

In the 1969 Bureau of Public Roads ultimate design criteria, the 

basic load factors are 1.35 DL + 2.5 LL. In addition, the values of ~ 

for flexure are 0.9 and for shear are 0.85. For this bridge typein the 

critical stage when cantilevering is almost complete, the structure is 

almost 100 percent dead load. The "safety factor" in flexure under the 

BPR criteria would then be 1.35 + 0.9 = 1.5. Using the 1973 AASHO, the 

load factor would be 1.3 dead load and a ~ factor of 1 could be used, since 

this could be interpreted as "factory produced precast prestressed concrete 

members" . This would give a total safety factor of 1.3 at this critical 

stage. The authors considered this as insufficient. 
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C HAP T E R 3 

DESIGN PROCEDURE FOR BRIDGES CONSTRUCTED ON FALSEWORK 

Construction on fa1sework is the simplest method of erecting 

precast, segmental bridges. It also leads to the simplest design approach. 

The prestressing system for the superstructure will norrna11yconsist of 

long draped cables in the webs of the box girder. If the overall length 

of the bridge is moderate, say two to four spans, it is possible to set 

all the segments in place and join them before inserting and tensioning 

full-length cables. However, for very long bridges, especially viaducts 

having many spans, it will be necessary to erect and tension one or two 

spans at a time. 

The design procedure in this chapter is developed using as a 

particular design example a two-span continuous bridge with spans of 

180 ft.-180 ft. The basic steps in the design of the superstructure are 

as follows: 

(a) An approximate cross section is chosen, on the basis of a prelimi
nary design or an optimization study. 

(b) The cross section is designed in detail. 

(c) The prestressing cables are designed to balance the dead load. 

(d) The ultimate strength is calculated. 

(e) The concrete service load stresses are calculated from beam theory. 

(f) The ultimate shear strength is checked. 

(g) The final structure is analyzed using the computer program MUPDI 
to check for shearing, warping, and unsymmetrical loading effects 
and to verify the design. 

The same procedure can be applied directly to other span lengths. Exten

sion to bridges having more than two spans and to viaducts will be 

discussed. 

It is to be noted that both ultimate strength criteria and service 

load stress criteria are applied in this design procedure. 
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In the design of continuous prestressed concrete structures there 

are different ways of considering the effect of the prestressing cables 

on the concrete stresses. The approach adopted here is to utilize an 

equivalent load concept, as described below. 

3.1 Equivalent Load Concept 

In a prestressed concrete girder the prestressing cables exert 

forces and moments on the concrete and so produce stresses in the concrete 

which are added to those produced by the dead loads and applied loads. 

In a statically determinate girder, the cable moment at any point 

is simply equal to the product of the cable force and the eccentricity 

about the girder centroid. However, in a continuous girder the cables 

generally modify the external reactions and so the determination of the 

stresses produced in the concrete by the cables is more complex. The con

crete stresses in a continuous prestressed girder may be determined most 

efficiently by means of the equivalent load concept,17 which will be 

described below. 

3.1.1 Cable Moments. In a continuous beam it is convenient to 

distinguish between the different components of the cable moments as follows. 

The primary moment (~) at any point in the girder is equal to 

the product of the cable force (F) and the eccentricity about the girder 

centroid (e). 

The secondary moment (Ms) is the moment produced by the cable 

induced reaction. This moment will vary linearly between the supports. 

The resultant cable moment on the concrete section (~) is the 

sum of these two, 

The concrete stresses produced by the cables at any point in the 

girder can be determined from ~ and F at that point. 

Normally ~ is determined directly, without first determining MS' 

~ will here be determined using the equivalent load concept. 
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3.1.2 Equivalent Load. Wherever there is a change in direction 

of the cable, a transverse force is exerted on the concrete section. Also, 

wherever a cable is anchored, it exerts a concentrated longitudinal force 

on the section. If the anchorage is not at the centroid, this force has 

a moment about the centroid. The equivalent load is here defined as the 

transverse load (and also the concentrated moment) exerted by the cable 

on the concrete. 

The equivalent loads for some important cable configurations will 

now be determined. First consider a general configuration, y = y(x), shown 

in Fig. 3.1. The slope is e(x) = dy/dx. The equivalent load per unit 

length is w = w(x). The transverse cable force on the element dx is given by 

w.dx F(Q(x + dx) - Q(x)) 

d 
F(Q(x) + dx(Q)dx - Q(x)) 

w F(dQ/dx) 

F(d
2
Y/dx

2
) 

Consider now the parabolic cable shown in Fig. 3.2. Its equation 

is y ax
2 + bx + c. The equivalent load is 

w = 

2aF 

i.e., a parabolic cable gives a uniform equivalent load. The total load 

along the length is given by 

J
.B 

w • dx 
A 

B 

S F(dQ/dx)dx 
A 

i.e., the product of the cable force and the total change in slope. 

It is also useful to obtain the equivalent load in terms of the 

cable drape, h, and the length, L. 
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h = (YB + yA)/2 - Yc 

a(x
A 

+ L)2/2 + b(x
A 

+ L)/2 + c/2 + 2 axA/2 + bxA/2 

+ c/2 - a(xA + 2 L/2) L/2) - b(xA + - c 

aL 2 /4 

a = 4h/L2 

w = 2aF 

8Fh/L 2 

Consider next a straight cable with a sharp bend, as shown in Fig. 3.3. 

The equivalent load, P, at C will be a concentrated load given by 

i.e., the product of the cable force and the change in slope, as before. In 

terms of the cable drape, h, 

P F(h/a + h/b) 

Fh (a + b) / (a b) 

= FhL/ (ab) 

Finally consider the anchorage point of a cable, as shown in Fig. 3.4. 

The transverse equivalent load is given by 

P = F.9 

as above. There is also an equivalent moment 

m F.e 

and an axial load 

F cos 9 ~ F 
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which will produce uniform compression but no bending if the girder cross 

section is uniform. 

3.1.3 Determination of Cable Moments. When all the equivalent 

cable loads on a girder have been calculated, the resultant cable moments 

can be determined. This is done by analyzing the girder under the equiva

lent cable loads, treating these in the same way as externally applied 

loads. The secondary moments are obtained by subtracting the primary 

moments from the resultant moments: 

3.1.4 Load Balancing. In the design of prestressed concrete 

girders it is often convenient to treat the equivalent cable load as an 

external load that can counteract or "balancell other applied loads; for 

example, the dead load and live load. A parabolic cable, for instance, 

exerts an upward uniform load, which will counteract a portion of a uniform 

dead load. The cable force may be determined so as to balance some 

definite proportion of the dead load. Similarly, a concentrated applied 

load could be balanced by a straight cable with a sharp bend. This 

d · h' 17. es~gn tec n~que ~s called load balancing. 

3.2 Design Example - Two-Span Bridge 

The design criteria will be developed, using as a design example 

the two span bridge shown in Fig. 3.5. The precast segments are 10 ft. 

long. The cross section, shown in Fig. 3.6, consists of a pair of single

cell boxes connected by the deck slab. Each box is cast separately and 

the 2-ft. wide longitudinal cast-in-place joint connecting them is not made 

until the two separate girders have been erected and fully tensioned. The 

completed superstructure is supported on simple neoprene pads on the 

piers and abutments. Diaphragms are provided inside the box sections at 

all supports. The prestressing system consists of a group of full length 

draped cables in the webs of the box girders. This particular example was 

chosen to correspond to an approximate maximum length of a two-span 

highway crossover. 
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The overall width of the superstructure, 50 ft., allows a 

four-lane roadway width of 48 ft. The 7-ft. depth was chosen to give a 

conservative span/depth ratio of about 25, a value typical of existing 

segmental bridges. The other dimensions shown in Fig. 3.6 are trial 

dimensions for the design and were selected on the basis of a preliminary 

design similar to that described in Chapter 6, which was carried out to 

determine approximate dimensions and an approximate cable quantity. The 

10-ft. segment length was chosen as a convenient dimension for handling 

and highway transportation. The cross section consisting of a pair of 

single-cell boxes was chosen, rather than a full-width multi-cell box 

girder, to provide basic units that conform with highway transportation 

weight requirements. The 2-ft. wide cast-in-place strip allows for 

splicing of the reinforcement between the two halves of the cross section. 

If the deck were post-tensioned transversely, this width could be reduced. 

The joints between the segments may be either concrete or epoxy 

resin. Ordinarily segmental bridges erected on falsework have used 

concrete or mortar joints. 

3.3 Construction Procedure 

The details of the construction procedure depend on whether con

crete joints or epoxy resin joints are used. In either case the falsework 

must be very rigid. 

In the case of concrete jointing, the segments are cast short of 

the 10 ft. nominal length to allow for the cast-in-place joints. A 3-in. 

joint thickness is suitable. All of the segments are lifted onto the 

falsework and set in their exact positions, after which the joints between 

the segments are cast at one time. The cables are then inserted in 

their ducts and tensioned. 

With epoxy resin jointing, the segments are lifted into place on 

the falsework and are glued together one by one, starting from the central 

pier. A number of single strand, 20-ft. long prestressing cables inserted 

in the top and bottom slabs, or alternatively temporary external strands, 

must be used to tie each pair of segments together. Great care must be 
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taken to ensure that the segments are firmly supported on the falsework 

in such a way that no differential settlement will occur and cause 

cracking. When all the segments have been connected, the main cables are 

inserted and tensioned. 

Finally, in either case, the falsework is removed so that the 

superstructure is supported on the neoprene bearing pads, and the longi

tudinal deck joint is cast between the two box girders. 

Epoxy joints require more care in setting the segments in position 

than do concrete joints and also require the use of short cables to tie 

each pair of segments together. On the other hand, they require no forms 

and should make possible faster construction, better quality control and 

a better finished appearance. 

3.4 Material Properties 

The material properties assumed are as follows: 

Concrete: 

Reinforcemen t: 

Prestressing: 

Compressive strength: f' = 6 ksi. 
c 

Yield strength: f 40 ksi. (This choice is 
arbitrary; 60 ksiYcould be used.) 

Each cable consists of a bundle of 1/2 in. diam
eter strands. Ultimate strength: f' = 270 ksi. 

s 

3.5 Cross Section and Reinforcement 

Details of the transverse design of the cross section will not be 

given here. The procedure used was identical with that to be described 

in Chapter 4 for a three-span bridge. The reinforcement details are shown 

in Fig. 3.16. 

The deck slab thickness and reinforcement were designed to comply 

with the 1969 and 1973 AASHO specifications. l ,2 The live load used was 

AASHO HS20-44. The transverse reinforcement adopted in the top and bottom 

of the slab consists of #8 bars at 6-1/2 in. spacing. 

Since this design envisaged cables anchored in the webs, the 

thickness of the web must be adequate to accommodate the cables and their 

anchors and, together with the reinforcement, to withstand the transverse 
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bending moments and the shear force. In this case, a thickness of 13 in. 

was chosen as a minimum thickness which could accommodate cables consisting 

of 20 strands, arranged in rows of two. The vertical reinforcement was 

designed to resist the maximum transverse bending moment in the web. The 

shear capacity will be checked later. 

A minimum thickness of 6 in. was chosen for the bottom slab, this 

being considered a practical minimum for placing of concrete with two 

layers of reinforcement. The thickness is increased linearly to 10 in. 

at the pier over a distance of 45 ft., i.e., a quarter of the span, to with

stand the higher longitudinal compression in that region. The 10-in. maxi

mum thickness was chosen on the basis of the preliminary design, using 

procedures outlined in Sec. 6.2.4 and 6.2.5. The compressive capacity 

will be checked later. 

The transverse reinforcement in the bottom slab and the longitudinal 

reinforcement throughout the section were provided'to comply with the mini

mum requirements specified by AASHO. 

3.6 General Design Criteria 

The following design criteria must be satisfied by the bridge 

superstructure. 

3.6.1 Ultimate Strength. The concrete section and the prestress

ing cables must provide adequate ultimate flexural strength at all sections. 

The concrete in the webs, together with the vertical reinforcement, must 

provide adequate ultimate shear strength. 

The load factors and ~ factors used are the more conservative 

values specified in the BPR Criteria for Reinforced Concrete Bridge 
6 

Members, Clause 2.A.l, and are as follows: 

LF Dead Load: 1.35 ~ Flexure 0.9 

LF Live Load and Impact: 2.25 (~ Shear 0.85 

As permitted by the AASHO specifications, ACI Standard 318-71
4 

will be used for all of ilie ultimate shear strength calculations. 



42 

3.6.2 Service Load Stresses. Under all possible loads the stresses 

at service load after losses have occurred must not exceed the allowable 

limits specified by AASHO, Clause 1.6.6(B)(2). 

The allowable concrete compressive stress at design load is 

0.4f' 2.4 ksi 
c 

Since the nonprestressed longitudinal reinforcement does not cross 

the joints between the segments, no tension will be allowed on the concrete. 

The effective prestress in the cables after losses is assumed to be 

f 0.6f' = 162 ksi [Equivalent to O.Sf*l 
se s y 

3.6.3 Deflections. Deflections in the completed bridge will be 

examined to ensure that they are compatible with proper functioning and 

good appearance of the bridge. 

3.7 Design of Superstructure 

After completion, the bridge superstructure will consist of a pair 

of connected box girders, continuous over two spans and seated on simple 

supports. 

The section properties of the superstructure have been calculated 

by a program, for which a listing and a diagram showing the notation are 

given in Appendix B. The properties of the section at the pier and of 

the minimum section are presented in Table 3.1. Properties of the half 

section (i.e., one box girder) and of the full section (i.e., two box 

girders joined by the 2 ft. width of a cast-in-p1ace deck) are given for 

each position. The former are required for computing stresses under dead 

load and cable forces and the latter for computing stresses under live load. 

3.7.1 Loading. Dead Load. The dead load compreses the weight 

of the girder section and that of an asphalt road surface. The unit 

weights are as follows: 

(a) Concre te: 

(b) Asphalt: 

A gross density, including reinforcement and cables, 
of 0.150 kip/ft. 3 is assumed. 

The asphalt surface, weighing 0.017 kip/ft.2, covers 
the 4S-ft. width of roadway. 



TABLE 3.1. SECTION PROPERTIES OF SUPERSTRUCTURE--TWO-SPAN BRIDGE 

Properties of Half Section (1 box) 

Area (ft. 2) 

Distance from top to centroid (ft.) 

Second moment of area (ft. 4) 

Section modulus (top) (ft. 3) 

Section modulus (bottom) (ft.
3) 

Properties of Full Section (2 boxes) 

Area (ft. 2) 

Distance from top to centroid (ft.) 

Second moment of area (ft. 4) 

Section modulus (top) (ft. 3) 

Section modulus (bottom) (ft. 3) 

Maximum Section 

35.84 

3.118 

261.9 

83.98 

67.47 

72.77 

3.076 

532.4 

173.1 

l35.7 

Minimum Section 

32.55 

2.797 

225.4 

80.58 

53.61 

66.19 

2.755 

457.5 

166.0 

107.8 
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The load per ft. length is as follows, using the area of the 

completed section obtained from Table 3.1. 

Dead Load a t Pier: 

Concrete section: 0.150 X 72.77 

Asphalt: 0.017 X 48 

Dead Load at Minimum Section: 

10.91 

0.82 

11.73 kip/ft. 

Concrete section: 0.150 X 66.19 = 9.92 

Asphalt: 0.82 

10.74 kip/ft. 

Live Load. The live load is AASHO HS20-44. The lane load will 

be critical. When four lanes are loaded simultaneously, a 25 percent 

reduction in load intensity is allowed (AASHO Clause 1.2.9). 

Impact. The impact factor, specified in Clause 1.2.12, is as 

follows: 

I 50/(180 + 125) 0.164 

3.7.2 Bending Moments. The bending moments are ca1cu~ted at 

the pier, i.e., the point of maximum negative moment, and at a distance 

of 72 ft. from the end of the girder (i.e., 0.4 X span) which is approxi

mately the point of maximum positive moment. The influence coefficients 

used in the following calculations were obtained from Ref. 5. 

Dead Load Moments 

Moment at pier: 

-0.125 X 10.74 X 180
2 

-43,500 

- (263/960) X (11.7 - 10.7) X 45
2

/2 -280 

-43,780 k. ft. 

Moment at 72 ft. from end: 

0.0700 X 10.74 X 1802 24,360 

(19/1280) X (11.7 - 10.7) X 45 X 72/2 20 

24,380 f. ft. 



Live Load Moments 

Uniform lane load on 4 lanes = 0.75 X 4 X 0.640 = 1.92 kip/ft. 

Concentrated lane load on 4 lanes = 0.75 X 4 X 18 54 kip 

Moment at pier: 
2 

-0.125 X 1.92 X 180 

-2 X 0.0962 X 54 X 180 

Moment at 72 ft. from end: 

0.0950 X 1.92 X 180
2 

0.2064 X 54 X 180 

Moments Due to the Cables 

= -7,776 

~ -1,870 

-9,650 kip-ft. 

5,910 

2,006 

7,920 kip-ft. 

These will be determined after the cable area has been calculated. 
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3.7.3 Cable Area. In an initial preliminary design the cable 

area was calculated by the criterion of adequate ultimate strength at the 

pier similar to that in Sec. 6.2.4. However, when service load stresses 

were determined, it was found that this cable area was insufficient to 

prevent some tension in the concrete. Accordingly, it was decided instead 

to select the cable area by the relatively simple procedure of balancing 

the dead load. The service load stresses and ultimate strength are then 

checked in detail. 

The cable profile will take the form of three parabolas having 

points of tangency at 22.5 ft. (i.e., span + 8) from the center of the 

pier, as shown in Fig. 3.7. An "ideal" profile, consisting of two parabolas 

and a sharp bend at the pier (Fig. 3.8) would balance a uniform load along 

the full length of the girder. However, it is impossible to have a sharp 

bend in practice, and so the third parabola is fitted. The position of 

the tangent point, at a distance of span + 8 from the pier, is sufficient 

to avoid excessive curvature. 

If five cables per web are assumed as suggested by the preliminary 

design, then 

Minimum distance from edge of girder to cable center - 0.610 ft. 



y 
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Fig. 3.7. Cable profile ct 
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Fig. 3.8. Idealized cable profile 
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At the end of the girder the centroid of the cable anchors will 

be made to coincide with the centroid of the concrete section, to produce 

no bending at that point. From Table 3.1: 

Distance from top of girder to centroid of end section = 2.797 ft. 

The cable area will now be chosen as that required to balance the 

dead load of the superstructure, assuming the idealized cable profile 

of Fig. 3.8. The cable drape is: 

h ~ (7 - 0.610) - (2.797 + 0.610)/2 = 4.686 ft. 

Cable force required to balance dead load: 

F = wL2/8h (From Sec. 3.1.2) 

= 10.8 X 1802/(8 X 4.686) = 9,330 kip 

Effective prestress: 

Cable area required: 

f = 162 ksi 
se 

A = 9,330/162 = 57.6 in: 
s 

Adopt 20 cables each 20 strands (i.e., 5 cables per web) [A possible 

alternate would be 32 cables, each 12 strands.] 

A 61.2 in~ (Total - 4 webs) 
s 

The cables could of course have been chosen to balance some other 

fraction of dead load, either greater or less than unity. All that is 

necessary is that the concrete stresses in the girder be satisfactory under 

all service loads and that the ultimate strength be adequate. The choice 

of the factor of unity, used here, was again suggested by a preliminary 

design in which the cables balanced about 0.9 of the dead load and were 

insufficient since some tensile stress occurred in the concrete. 

The idealized cable profile was used to simplify the "load 

balancing" calculation. However, in all checks on the concrete stresses 

and the ultimate strength in the following sections, the actual profile 

is used. 

3.7.4 Equivalent Cable Loads. In order to determine the stresses 

in the concrete the equivalent cable loads must be calculated for the 

actual tendon profile. The total cable force is given by: 
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Cable Force: F = A X f 
s se 

- 61.2 X 162 = 9,914 kip 

The equations of the parabolas forming the cable profile (Fig. 3.7) 

are as follows: 

x = 0 to x = 157.5 ft.: 

y = 0.00065440x2 - 0.09698Ox 

x = 157.5 ft. to 180 ft.: 

y = -0.0024257x2 + 0.87325x - 76.406 

where y is measured upwards from the centroid of the minimum cross section 

(i.e., the centroid of the cables at the end). Reference 12 (Table lA) 

was utilized in deriving these equations. 

The equivalent transverse cable loads are obtained as follows, 

using the approach of Sec. 3.1.2. 

x = 0 to x = 157.5 ft.: 

U 'f 'lId F(d
2
Y/dx2) n~ orm equ~va ent oa , w = 

9,914 X (2x.00065440) 

12.975 kip/ft. 

Total load = 12.975 X 157.5 = 2,043.6 kip 

x = 157.7 ft. to x = 180 ft.: 

Uniform equivalent load 9,914 X (2x-0.0024257) 

-48.097 kip/ft. 

Total load -48.097 X 22.5 = -1,082.2 kip 

x 0: 

Concentrated load, P F(dy/dx) 

9,914(-0.096980) 

-- -961.46 kip 

These transverse loads acting on the concrete section are shown in 

Fig. 3.9. An axial load, equal to the cable force, is also shown acting 

on either end. 

3.7.5 Cable Moments. The bending moments produced by these cable 

loads on the concrete section are now determined. The moment at the pier 

is obtained by elastic analysis utilizing Fig. 21 of Ref. 12. 
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Fig. 3.9. Equivalent cable loads on superstructure 
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Fig. 3.10. Variation in position of section centroid 
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Resultant cable moment at pier 
(about line of action of F) = 39.761 k-ft. 

This value is not quite l1exactl1 because the effect of the axial force was 

ignored. The position of the section centroid varies over a part of the 

span, as shown in Fig. 3.10, and in that portion the axial force will have 

a moment about the section centroid, which will cause bending of the 

girder and modify the moment determined above. This small error is ignored 

here, but will be taken into account when a computer analysis of stresses 

is made using the program MUPDI. 

The following moments and reactions are required in the calculation 

of ultimate strength and concrete stresses. 

Resultant Cable Moment at Pier (About centroid of section) = 

39,761 + 9,914(3.118 - 2.797) = 42,943 k-ft. 

Secondary Cable Moment at Pier 

Resultant moment - Primary moment 

42,943 - 9,914(3.118 - 0.610) = 18,080 k-ft. 

Since the secondary moment is produced by the cable-induced reactions, it 

will vary linearly across the span from zero at the end of the girder to 

the above value a t the pier. 

Cable-induced End Reaction -

Secondary moment at pier 

18,080/180 = 100.44 kip 

This is an upward reaction. 

span 

Resultant Cable Moment at 72 ft. from End = 
(100.44 - 961.46) X 72 + 12.975 X 722/2 ~ -28,362 k-ft. 

3.7.6 Ultimate Flexural Strength at Pier. In calculating ultimate 

flexural strength, no moment redistribution will be assumed. The secondary 

cable moments are included in the calculations, because these are produced 

by real external reactions caused by the cables. The ultimate moment at 

the pier is given by 



M = 1.35(DL moment) + 2.25(LL + Impact moment) 
u 

+ (secondary cable moment) 

~ 1.35(-43,780) + 2.25(1.164)(-9,650) + 18,080 

-59,100 - 25,270 + 18,080 

= -66,300 k-ft. 
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The capacity of the cables and the bottom slab are now determined 

as follows: 

Effective depth: d = 7 - 0.61 = 6.39 ft. 

Total bottom slab b 2 12 == 24 ft. 
width: = X 

Cable area: A 61.2 in~ 
s 
p = A /bd 

s 
= 61.2/(24 X 6.39 X 144) 0.00277 

0.5 f' / f' p s c 0.5 X 0.00277 X 270/6 0.0623 

Cable stress at ultimate load, given by AASHO Sec. 1.6.9(C) for 
bonded members: 

Bottom slab 
thickness: 

f f' (1 - 0.5pf' /f') 
su s s c 

270(1 - 0.0623) == 253 ksi 

t = 10 in. ~ 0.833 ft. 

Since C T indicates A = 10.5 in. ~ t 

Moment arm = d - 0.5a = d - 0.5t 

Cable force at 
ul tima te load: 

Capacity of cables 

Capacity of bottom 
slab 

6.39 - 0.5(0.833) = 5.97 ft. 

P = M / (d - 0.5 t) 
u u 

= 66,300/5.97 11,100 kip 

= ""f A 
'i-' su s 
0.9 X 253 X 61.2 

== ~(0.85f' bt) 
c 

13,900 kip 

= 0.9 X 0.85 X 6 X 144 X 24 X 0.833 == 13,200 kip 

The capacities of both the cables and the slab are greater than 

P. Hence the ultimate flexural strength is adquate. 
u 
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3.7.7 Ultimate Flexural Strength at 72 ft. from End. The 

ultimate moment at 72 ft. from the end is given by 

M = 1.35(DL moment) + 2.25(LL + Impact moment) 
u 

+ (Secondary moment) 

1.35(24,380) + 2.25(1.164)(7,920) + (0.4 X 18,080) 

32,910 + 20,740 + 7,230 

60,880 k-ft. 

The capacity of the cables was checked in a manner similar to 

that used in the preceding section and found to be adequate. 

3.7.8 Service Load Stresses. The service load stresses in the 

concrete at the critical sections are first determined using beam theory. 

The cable moments used are the resultant moments on the concrete section. 

In the calculation of dead load stresses the properties of the two unjoined 

box girders are used and for live load stresses the properties of the full 

section are used. These properties are obtained from Table 3.1. 

Concrete stresses at pier 

Stress at centroid = pIA 

-9,914/(2 X 35.84 X 144) 

Stresses under dead load 

Dead load moment 

Cable moment 

Top stress -0.960 + 

-0.960 ksi 

-43,780 

42 2 940 

-840 k-ft. 

840/(2 X 83.98 X 144) _. -0.925 

Bottom stress -0.960 - 840/(2 X 67.47 X 144) -1. 003 

Stresses under full load 

-1.164 X 9,650 = -11,230 k-ft. 

ksi 

kdi 

LL + Impact moment 

Top stress -0.925 + 11,230/(173.1 X 144) -0.474 ksi 

Bottom stress -1. 003 11,230/(137.5 X 144) = -1.570 ksi 

Concrete stresses at 72 ft. from end 

Stress at centroid ~ pIA = 
-9,914/(2 X 32.55 X 144) -1.057 ksi 



Stresses under dead load 

Dead load moment ~ 24,380 

Cable moment =-28,360 

-3,980 k-ft. 

Top stress -1.057 + 3,980/(2 X 80.58 X 144) = -0.885 ksi 

Bottom stress -1.057 3,980/(2 X 53.61 X 144) = -1.315 ksi 

Stresses under full load 

LL + Impact moment 1.164 X 7,920 = 9,220 k-ft. 

Top stress -0.885 - 9,220/(166 X 144) = -1.270 ksi 

Bottom stress = -1.315 + 9,220/(107.8 X 144) = -0.721 ksi 
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All of the stresses ealcula ted are wi thin the accep table 2.4 ksi 

compression and 0 ksi tension limits. The stresses at all sections and 

under various critical loadings will also be checked by computer analyses. 

However, before that the shear strength will be investigated to determine 

web adequacy. 

3.7.9 Shear. The maximum shear forces on the full width of the 

superstructure are calculated using the influence coefficients obtained 

from Ref. 5. 

Shear force at pier: 

Dead load: 0.625 X 10.74 X 180 = 
(1,261/1,280) X (11.7 - 10.7) X 45/2 

Live Load: 4[(0.625 X 0.640 X 180) + 261 

1,208 

22 

1,230 kip 

392 kip 

The 25 percent reduction in live load intensity for loading on four lanes 

is not used here, because it was found in the computer arialysis of a 

double box girder bridge (to be described in the next chapter) that, if 

this reduction is made, the critical shear loading caae will then be live 

load on two lanes only. 

Cable-induced shear: -100 kip 

This is equal to the external end reaction induced by the cables, as 

calculated in Sec. 3.7.5. 
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Shear force at end of bridge 

Dead load: 0.375 X 10.74 X 180 = 
(19/1,280) X (11.7 - 10.7) X 45/2 

Live load: 4[(0.4375 X 0.640 X 180) + 26] 

Cable-induced shear 

Ultimate shear at pier 

725 

725 kip 

'" 306 kip 

= 100 kip 

V = 1.35(DL shear) + 2.25(LL + Impact shear) + (cable shear) 
u 

= 1.35(1,230) + 2.25(1.164)(392) - 100 

= 1,660 + 1,027 - 100 

2,587 kip 

The shear capacity of the webs at this section will now be deter

mined. The concrete stresses f and (f - fd ) are obtained from 
pc pe 

Sec. 3.7.8. 

Compressive stress at centroid: f ;.: 0.960 ksi 
pc 

Compressive stress at top of girder under dead load and 
Prestress: (f - fd ) ;.: 0.925 ksi pe . 

6 JfT = 6 J6,000/1,000 = 0.465 ksi 
c 

Top section modulus (from Table 3.1): 

(I/y) = 173.1 X 123 in~ 

Cracking Moment: M = (I/y) [6 -If.':. + (f - f d )] cr c pe 
= 173.1 X 123(0.465 + 0.925)/12 

= 34,600 k-ft. 

Live load shear/moment ratio: 

(V /M ) = 0.75 X 392/9,650 = 0.0304 t max 

Effective depth: 

Total web wid th: 

V M 
~ 

M max 

d 

(0.0304)(34,600) = 1052 

(7 - 0.61) X 12 = 76.7 in. 

b' = 4 X 13 = 52 in. 

Vertical component of cable force: V = 0 
p 

since the cables are horizontal at the pier. 



The shear carried by the concrete, V -. v b' d is the lesser of 
c c 

V. v .b'd and V ~ v b'd where 
c~ c~ cw cw ' 

Hence, 

V . = (0.6 Jf:)b' d + Vd + V M /M 
c~ c t cr max 

(0.0465 X 52 X 76.7) + (1230 - 100) + 1052 

185 + 1130 + 1052 

= 2,367 kip 

V (3 . 5 ff. + O. 3 f ) b' d + V cw c pc p 

= (0.271 + 0.288) X 52 X 76.7 + 0 

2,230 kip 

V = 2,230 kip. 
c 
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The AASHO Specifications allow the use of the above expressions 

for the shear capacity of the concrete, taken from Eqs. 11-11 and 11-12 

of the ACI Standard 318-71. These expressions were actually developed 

for prestressed I-sections, but are considered also applicable for box 

girders, when the webs are loaded approximately uniformly as in this 

calculation. 

In the expression for V . the cable-induced shear must be included 
c~ 

wi th the dead load shear. 

The vertical shear reinforcement required in the webs of the box 

girders will now be determined. 

Shear reinforcement required: Using Eq. 11-13 of ACI 318-71 as per

mitted by AASHO Specifications 

A 
v 

(v - v ) b' s 
u c (V - mV )b' s 

u c 
f 
Y 

= (V - ~V )s/(~f ) 
u c Y 

(2,587 - 0.85 X 2,230) X 12/(0.85 X 76.7 X 40) 

3.18 in~ per ft. length of bridge 

This exceeds the minimum A 
v 

100b's/f = 1.56 in~ per ft. required by 
y 

AASHO. 
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The vertical web reinforcement provided for transverse bending 

moment is #7 at 13 in. in both faces of each web. The total area (4 webs) 

is 
A 

v 4.43 in~/ft. length 

In this particular case it is not considered necessary to add the rein

forcement requirements for maximum shear and maximum transverse moment, 

because the amount required for shear falls off rapidly away from the 

pier, whereas the diaphragm over the support ensures that the transverse 

moment near the pier will be small. So the web reinforcement will remain 

as shown in Fig. 3.16. 

The shear strength at the end of the bridge was also investigated. 

It was found that the concrete webs have adequate strength at that sec

tion without utilizing additional reinforcement. 

3.7.10 Computer Analysis. With the basic proportions, reinforce

ment, and tendons designed, the completed superstructure was analyzed by 

computer to determine the stresses in the concrete section under dead 

load and under various live load patterns. The MUPDI program of A. 

Scordelis, described in Ref. 23, was used. This program analyzes the 

structure using elastic folded plate theory. 

For dead load (including the cable forces) one box girder (i.e., 

half of the superstructure cross section) was analyzed, but for live load 

the full cross section was used. In this way the actual behavior of the 

structure is best represented. 

The effect of the prestressing cables was simulated by treating 

their equivalent transverse loads and axial forces as applied loads in 

the webs of the girder. Thus, the cable forces for input consist of the 

distributed lateral loads and the axial forces shown in Fig. 3.9. In 

addition, the effect of the change in the position of the girder centroid 

over the 45-ft. distance either side of the pier (Fig. 3.10), was taken 

into account. In that region the axial force has a moment about the cen

troid, which causes additional bending. This effect was treated as an 

applied moment varying linearly from a value of (cable force) X (shift in 

centroid position) at the pier to zero at a distance of 45 ft. from the pier. 



The following two simplifications were made, so that analysis 

with the MUPDI program would be feasible. 
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(a) The MUPDI program cannot handle the variation in the thickness 

of the bottom slab. Separate analyses were made with two different 

idealized sections, one having the properties of the maximum section 

(Fig. 3.11), the other the minimum section (Fig. 3.12). The first is used 

to obtain the stresses near the pier and the second to obtain the stresses 

elsewhere throughout the superstructure. 

(b) With this program, all concentrated loads must be applied at 

the node points of the idealized section. The moment of the end axial 

force about the centroid of the real section was calculated and this 

force and moment replaced by a pair of forces at the node points at the 

top and bottom of the web of the idealized section. This pair of forces 

was determined so as to give the same resultant force and moment about the 

centroid of the idealized section as occur in the real section. The 

applied moment near the pier was also replaced by a pair of forces in the 

same way. 

The following live load cases were investigated: 

(a) Full lane loads on all lanes of one span 

(b) Lane load on one side (2 lanes) of one span 

(c) Full lane loads on all lanes of two spans 

Examination of the computer output revealed that under dead load 

and also under full dead and live load (with impact) all stresses in the 

concrete were within the permissible limits. Stress distributions across 

the section at the pier and at a distance of 70 ft. from the end of the 

bridge are shown in Figs. 3.13 and 3.14. It can be seen that the stresses 

vary across the section at the pier because of shear lag, but are almost 

uniform over each slab for the section 70 ft. from the end, where the 

shear is small. Comparison of these stresses with those calculated using 

beam theory in Sec. 3.7.8 shows generally good agreement. The increased 

local stress at the piers due to shear lag results in an approximately 

25 percent increase over beam theory calculations. This indicates a need 

for conservatism in design based on beam theory analyses. 
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The stresses in the cables and hence in the concrete alter with 

time under the effects of creep and shrinkage. Creep tends to reduce the 

effective stress in the cables. However, the value of the effective 
I stress used in the calculations, namely f = 0.6f , allows for this loss. 

se s 
The effect of shrinkage is similar to that of creep, but will probably be 

small, because much of the shrinkage occurs in the precast units before 

they are erected. This minimization of creep and shrinkage effects is an 

important advantage of precast segmental construction. 

Comparison of the results obtained for (a) full live load on one 

span and (b) live load on one side of one span showed that the full (4 lane) 

loading is critical (for stresses in the positive moment region), even 

though a 25 percent reduction in load intensity is made in this case. When 

the load is uneven, the superstructure tends to even out the stresses to 

some extent. The stress distribution for case (b) is shown in Fig. 3.15. 

Deflections are also given in the computer output. The maximum 

deflections occur at 80 ft. from the end of the bridge and are as follows: 

Deflection under dead load 

Deflection under live load (with impact) 
on one span 

Total deflection 

-0.481 in. 

1.128 in. 

0.647 in. 

The effect of creep on the concrete modulus is not included. If creep, 

shrinkage, or temperature seem significant, the MUPDI analysis could be 

changed to examine these effects. The deflection/span ratio under live 

load is approximately 1/2000. This is well within the limit of 1/300 which 

is normally considered acceptable. 

The results of the computer analysis indicate that no alterations 

are required to the girder section or the cables. Since the units meet 

all service load stress conditions comfortably and have approximately 

25 percent more ultimate moment capacity than required, another iteration 

in design could be attempted. However, as the previous trial did not meet 

tensile stress limits with approximately 10 percent less tendon area, little 

is to be gained from further refinement. Full details of the section, 

including cables and reinforcement, are shown in Fig. 3.16. 
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Fig. 3.16. Cable and reinforcement details 



3.7.11 Friction Losses. The friction losses in the cables 

were calculated using the SIMPLA2 program developed by R. Brown. It 

was found that the assumed effective prestress of 0.6f' was realistic 
s 

with normal stressing if the conduits consist of rigid thin wall metal 

tubing. 
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3.7.12 Diaphragms. Diaphragms inside the box sections are 

required at each of the bearings to maintain the shape of the cross 

section and to provide concrete bearing capacity. A thickness of 6 in. 

is chosen as a practical minimum. This provides adequate bearing capacity. 

No intermediate diaphragms are indicated as necessary from the results 

of the MUPDI analysis. 

3.7.13 Prestressing System Details. When the actual post

tensioning system is selected for the project (usually following selec

tion of a contracto~, the prestressing system details will have to be 

closely examined. Anchorage locations, dimensions, and auxiliary rein

forcement to control bursting, spalling, and splitting stresses should be 

checked by the designer. 

3.8 Summary of Design Procedure 

The principal stages of design are as follows: 

(a) An approximate cross section shape is chosen.--This can be based on 

the result of an optimization study, as described in Chapter 6. 

Alternatively, a preliminary design may be carried out. 

(b) The cross section is designed in detail.--The deck slab thickness and 

reinforcement are determined by wheel load moments. The web thickness 

must be sufficient to accommodate the cables and their anchors. A 

preliminary shear check is advisable to ensure adequate web thickness 

is provided. 

(c) The cables are designed to balance the dead load.--To calculate the 

cable area, an ideal cable profile consisting of two parabolas is 

assumed. The actual profile consists of three parabolas, fitted to 

avoid excessive curvature at the pier. 
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(d) The ultimate strength of the superstructure is checked.--The 

capacities of the cables and the bottom slab are checked at the 

pier. The capacity of the cables is also checked at the section of 

maximum positive moment. If necessary the cross section or the cables 

are revised. 

(e) The concrete service load stresses are calculated from beam theory.-

The stresses under dead and live load are checked at both critical 

sections. The cross section or cables are revised if necessary. 

(f) The ultimate shear strength is checked.--The ultimate shear force, 

the capacity of the webs, and the reinforcement required are calculatd 

at all the critical sections. Web thickness is adjusted upward if 

necessary. 

(g) The superstructure is analyzed with the MUPDI program.--The stresses 

are determined under dead load and under various live loads. If 

necessary the cross section or the cables are revised and the analysis 

repeated. 

3.9 Other Examples of Bridges 
Constructed on Falsework 

Other cases of bridges constructed on falsework, requiring varia

tions in the design procedure adopted in the example chosen, are considered 

briefly. 

3.9.1 Multi-Cell Box Girder. An alternative cross section for 

the bridge considered is a three-cell box girder cast in full width 

sections. 

The design procedure for this case is almost identical with that 

already outlined. However, a different program must be prepared or manual 

computations used to compute the cross section properties. A preliminary 

design and optimization program for a multi-cell box girder bridge is 

included in Chapter 6. 

The advantage of a multi-cell box is that the cast-in-place longi

tudinal joint is not required. The disadvantage is that the basic units 
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are twice as heavy and, therefore, more difficult to transport and erect. 

Also, the lower flange tends to have excess capacity and results in 

longer cantilever overhangs on the top flange. 

3.9.2 Bridges with More Than Two Spans. With bridges having 

three or four spans, it may still be possible to use full length draped 

cables. Friction losses constitute the main factor limiting the feasible 

length of cables. 

If full length cables are used, the design procedure can be essen

tially the same as that for two-span bridges. The number of critical 

sections for investigation of service load stresses and ultimate strength 

is, of course, greater. If all spans are equal, the load that is balanced 

by the cables in the outer spans will be less than that balanced in the 

inner spans, unless the drape is adjusted. 

If the cables do not run the full length of the bridge, the 

cable pattern and, hence, the determination of the cable loads will 

become more complex. Apart from this, it should be possible to follow 

a generally similar design procedure. Concrete stresses must also be 

checked during construction, i.e., as each separate group of cables is 

tensioned. 

3.9.3 Continuous Viaducts. In viaducts, comprising a large 

number of equal spans, the cables will generally extend across one or two 

spans. The strength of the superstructure must be checked during the dif

ferent stages of construction of a span, especially as each set of cables 

is tensioned. 

The determination of ultimate strength and servic"e load stresses 

in the completed structure can be generally similar to that for the two

span example. The MUPDI program can handle a maximum of five spans, but 

this should provide an adequate approximation to the stresses in the 

multi-span superstructure. 

Provision must be made for expansion of the superstructure and 

careful consideration given to location of joints and to design of the 

piers. 
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C HAP T E R 4 

DESIGN PROCEDURE FOR BRIDGES CONSTRUCTED IN CANTILEVER 

The design of a bridge to be constructed in cantilever is 

considerably more complex than that of a bridge constructed on falsework. 

The bridge must be designed for each stage of the segmental construction, 

as well as in its completed state. Besides, unlike construction on false

work, where full-length draped cables can be used, cantilever construction 

requires a large number of cables of various lengths anchored at various 

points along the girder. 

The design procedure in this chapter is developed using the 

particular example of a continuous bridge with spans 100 ft.-200 ft.-lOO ft. 

The basic steps in the design of the superstructure are as follows: 

(a) An approximate cross section is chosen on the basis of a 
preliminary design or an optimization study. 

(b) The cross section is designed in detail. 

(c) The top cables are designed for cantilever erection. 

(d) The bottom cables are designed for ultimate load on the 
completed structure. 

(e) The concrete service load stresses are calculated from beam 
theory. 

(f) The ultimate shear strength is checked. 

(g) The completed superstructure is analyzed using the computer 
program MUPDI to check for shear lag, warping, and unsymmetrical 
loading effects, and to verify the design. 

(h) The final design is analyzed using the computer program SIMPLA2 
to check stresses, deflections, and forces at each construction 
stage to verify the design and construction plan. 

The same procedure can be directly applied to other three-span 

bridges with span ratios 1:2:1 but with varying lengths. Extension of 

the method to other span ratios and to bridges of more than three spans 

will be discussed. 
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The equivalent cable load concept, developed in Chapter 3, will 

again be extensively used. However, first this concept will be extended 

to apply to a system with cables of varying length as used in a cantilever 

constructed bridge. 

4.1 Equivalent Load of a Cable System 

4.1.1 Moment Balancing. In a continuous girder prestressed by a 

system of cables of varying length, it is often desirable or convenient 

to design the cable forces such that the cable moment at each point will 

counteract or "balance" the bending moment due to some applied load. By 

analogy with load balancing, this design technique will be called moment 

balancing. 

As an example, consider the problem of balancing a uniform load 

on the three-span bridge shown in Fig. 4.1. This can be done by setting 

the primary bending moment of the cables about the centroid equal and 

opposite to the elastic bending moment due to the uniform load w, at each 

point along the girder rFig. 4.l(a)]. With cantilever construction the 

cables are generally straight over the greater part of their length and 

the eccentricity from the centroid is approximately constant. Variation 

in cable moment is achieved by varying the number of cables of each size 

from section to section. The resultant of the bending moments due to the 

applied load and the cables will be zero at all points. The deflection, 

consequently, will also be zero. 

The cable (primary) moment diagram shown in Fig. 4.l(a), however, 

is not the only one that will achieve balance. There is no need for the 

primary cable moment diagram to correspond to an elastic distribution; any 

moment diagram that is statically compatible with the applied load will do. 

Two other suitable primary cable moment diagrams are shown in Figs. 4.l(b) 

and 4.l(c). In 4.l(b) the moment diagram is the same as in a simply sup

ported system, and in 4.l(c) it is the same as in a cantilever system, i.e., 

the end reactions are zero. However, in all cases under the applied load w, 

there will be zero resultant moment at all points in the concrete section. 

There will be zero deflection also and no interaction between the different 

spans. 
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Fig. 4.1. Moment balancing for a uniform load 
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If the cable systems of Figs. 4.l(a), (b), and (c) are further 

examined, it will be found that the external reactions at the supports 

are different in each case. Also, it may be noted that the primary and 

secondary cable moments differ in each case but the resultant cable moments 

are the same. 

One further important distinction between load balancing with a 

single draped cable and moment balancing with a system of cables should 

be pointed out. With a draped cable the shears, as well as the bending 

moments, can be balanced. However, with a system of cables of varying 

length it is generally possible to balance the bending moments only but 

not the shears, because the cables normally run horizontally except near 

their anchorages. 

4.1.2 Equivalent Load. The equivalent load of a cable system 

will be defined as the applied load which produces the same resultant 

bending moments on the concrete girder section as are produced by the 

cable system. 

The equivalent load is equal and opposite to the load that would 

be balanced by the cable system. Consequently, in view of the preceding 

section, the following principle provides one way of determining the 

equivalent load of a cable system. 

If a system of cables produces a primary bending moment diagram 
that can statically balance some applied load, then the negative 
of that load is the equivalent load of the system. 

Thus, when the cable system is designed to directly balance some 

specific applied loading, the equivalent load will be known. However, 

sometimes a cable system will be designed by some other criterion, and 

the above principle cannot be readily used to obtain the equivalent load. 

In such cases, the following alternative approach will be useful. 

Another way to determine the equivalent load of the system is to 
take each cable separately and calculate its individual equivalent 
load. Then combine all the separate loads for the different cables 
along the length of the girder to give the equivalent load of the 
system. 
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As an example, consider a 200-ft. span of a continuous girder, 

as shown in Fig. 4.2(a), which has a system of ten cables in the bottom 

flange, all of equal size and stopping off at 10-ft. intervals starting 

5 ft. from the span center. The cable force is the same in all cables 

and the eccentricity is constant. The equivalent load for each individual 

cable consists of a pair of concentrated moments, m(k-ft.), one at each 

anchor, where 

m (cable force) X (eccentricity) 

Summing for all cables, the equivalent load will be a set of 

concentrated moments, m, at 10-ft. intervals, as shown in Fig. 4.2(b). 

The girder could now be analyzed to obtain the resultant cable 

moments. However, a simplification can be made that will greatly facili

tate the design procedure. Each concentrated moment can be replaced by 

the statically equivalent couple of forces, P(kip), as shown in Fig. 4.2(c), 

where 

P = milO 

Now it can be seen that these forces all cancel out, except at 

midspan, where there is a resultant upward force of 2P, and at the supports 

where there is a downward force P[Fig. 4.2(d)]. So, ignoring the forces 

at the supports, which are equivalent reactions, we have an equivalent 

load of 2P at midspan. 

In a simple case like this, the equivalent load can also be obtained 

using the firs t method and the two resu1 ts can be compared. The primary 

moment diagram for the cable system is triangular (smoothing out the steps) 

with a maximum moment 

M = lOrn = lOOP 

Such a moment diagram will statically balance a downward concentrated load 

Q (kip) at midspan, where 
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Fig. 4.2. Equivalent load of a cable system 



M QL/4 

-- Q X 200/4 

i. e. , Q = M/50 

. - 2P 

Hence, again there is obtained an equivalent load of 2P acting upwards 

a t midspan. 

4.2 Design Example - Three-Span Bridge 
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The design criteria will be developed using as a design example 

the three-span bridge shown in Fig. 4.3. The precast segments are la-ft. 

long, except for the two end segments which are 5 ft. and the central 

closing segment which is made 1 ft. short to allow for a concrete joint. 

The cross section, shown in Fig. 4.4, consists of a pair of single-cell 

boxes connected by the deck slab. Each box is cast separately and the 

2-ft. wide longitudinal cast-in-place joint connecting them is not made 

until the two separate girders have been erected and fully tensioned. The 

completed superstructure is supported on simple neoprene pads on the piers. 

Diaphragms are provided inside the box section at all supports. 

This particular example was chosen to meet the requirements for 

an actual prototype, envisaged by the Texas Highway Department, to cross 

the Gulf Intracoastal Waterway at Corpus Christi, Texas. This example 

was used as the preliminary design of the structure. Details of the final 

design are shown in Appendix A. 

The overall width of the superstructure, 56 ft., allows a four 

lane roadway width of 54 ft. The 8-ft. depth was chosen to give a con

servative span/depth ratio of 25. The other dimensions shown in Fig. 4.4 

are trial dimensions for the design and are selected on the basis of a 

preliminary design similar to that described in Chapter 7, which was 

carried out to determine approximate dimensions of the cross section and 

approximate cable layouts and quantities. 

Epoxy resin jointing is used between the segments. 
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4.3 Construction Procedure 

The stages of construction are as follows: 

The first 10-ft. segment is set in place directly above the main 

pier, as in Fig. 4.5. Temporary support blocks are used instead of the 

neoprene pads, to provide rigidity during construction. Temporary holding 

down bolts are also used to keep the segment fixed in place. To provide 

fixity against any unbalanced moments on the superstructure the pier must 

have a high moment capacity or temporary struts supported on the pier 

foundation can be set at either end of this first segment. 

The superstructure is erected by the symmetric cantilever proce

dure, to a distance of 95 ft. either side of the pier [Fig. 4.6(a)J. Top 

cables are inserted and tensioned as each pair of segments is set in place 

and jointed. This procedure is carried out for both halves of the cross 

section and for both of the main piers. 

The final 5 ft. segment is placed in each side span [Fig. 4.6(b)]. 

The bottom cables in this span are inserted and tensioned, thereby com

pleting this span. Jacks are set on the end piers under the ends of the 

girder. 

The closing segment is placed at the center of the bridge 

[Fig. 4.6(c)]. This segment is made 9 ft. long (or two 4 ft., 6 in. 

segments are used) to allow a 6 in. cast-in-place concrete joint at either 

end. The girder is required to have zero slope at this point for continuity. 

This could be assured either by initially setting the pier segment at an 

appropriate slope or else by camber. 

The bottom cables in the main span are then inserted and tensioned, 

starting with the longest cables. The temporary struts or bolt connec

tions at the piers can be removed after the first (longest) set of cables 

have been tensioned [Fig. 4.6(d)]. The jacks at the ends of the bridge 

will provide restraint. At some stage during the insertion of the bottom 

cables, these jacks will have to be raised to give an increment in the 

reaction sufficient to prevent tension in the concrete at the top of the 

girder at midspan. The required stage and increment will be determined 

in Sec. 4.8.11. 
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After all the cables have been inserted and tensioned, the bridge 

is jacked up slightly at the main piers and the temporary supports are 

replaced by the neoprene bearing pads. The end jacks are then adjusted 

to exert the correct reaction for the completed continuous bridge as 

determined in Sec. 4.8.9. The neoprene bearing pads at the ends are set 

firmly in position to provide this reaction ensuring continuous behavior. 

Finally, the longitudinal deck joint between the two box girders 

is cast in place. 

4.4 Materal Properties 

The material properties assumed are the same as in Chapter 3, i.e., 

Concrete: ~ 
c 

Compressive strength: 6 ksi 

Reinforcement: f 
y 

Yield Strength: 40 ksi 

Prestressing; Each cable consists of a bundle of 
1/2 in. dia. strands 
Ultimate strength: 

4.5 Design of Cross Section and 
Reinforcement 

~ = 270 ksi 
s 

4.5.1 Deck Slab. The deck is designed according to the 1969 and 

1973 AASHO specifications. l ,2 The loading on the deck is as follows: 

Dead load 

(a) Concrete: 

(b) Asphalt: 

A density of 0.150 kips/ft~ is assumed. 

An asphalt surface, weighing 0.017 kip/ft:, 
the 54-ft. width of roadway. 

covers 

Live load and impact. The live load is AASHO HS20-44. The impact 

factor is 30 percent (Clause 1.2.12). 

Allowable stresses (Clause 1.5.1) 

Concrete: f = 0.4f' = 2.4 ksi 
c c 

Reinforcement: f = 20 ksi 
s 

Modular ratio (Clause 1.5.2): n = 6 

The distance from the surface of the slab to the neutral axis 

is kd, where 

k = f /(f + f In) 
c c s 

= 2.4/(2.4 + 3.33) 0.419 
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The moment arm is jd, where 

j = 1 k/3 = 0.860 

The concrete moment resistance coefficient 

R = O. 5f j k 
c 

0.5 X 2.4 X 0.860 X 0.419 = 0.432 ksi 

Concrete cover. The concrete cover for reinforcement and cables 

will be as specified by AASHO (Clause 1.5.6), i.e., 

(a) Underside of deck slab: 1 in. 

(b) Elsewhere: 1-1/2 in. 

Live load moments. The live load moments in the deck slab are calcu

lated by the method given in Clause 1.3.2 of the AASHO specifica

tions. To determine if this method is sufficiently accurate for 

a double box girder bridge, a typical superstructure was analyzed, 

using the MUPDI program, with truck loads in various critical 

positions. The maximum negative moment computed by the program 

for the interior portion of the deck slab exceeded that given by 

the AASHO method by 9 percent under the worst loading condition. 

The maximum positive moment computed was 20 percent below the AASHO 

value. Allowing for a small amount of inelastic moment redistribu

tion, and the conservatism of the design procedures selected, the 

AASHO method may be considered sufficiently accurate. 

4.5.2 Cantilever Portion of Deck Slab. The slab dimensions and 

the critical wheel load position are shown in Fig. 4.7. For design 

purposes, assume a 6 in. X 6 in. fillet to allow for possible variations. 

The critical section is at the root of the fillet. The weight of a curb 

and railing is neglected in this design example. In general it should be 

included, although the effect on the total bending moment will be small. 

Dead load moment 

Asphal t: 

Concrete: 

0.017 X 4.5
2

/2 

(6/12) X 0.150 X 5.5
2

/2 

(1.833/12) X 0.150 X 5.5
2

/6 

=- 0.172 

= 1. 134 

0.116 

1. 422 k - ft. / ft . 
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Fig. 4.7. Cantilever portion of deck slab 
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(Live load and impact) moment 

X 3.5 ft. 

Width of distribution [Clause 1.3.2(H)]: 

E 0.8X + 3.75 = 6.55 ft. 

Moment: 

M 1.3 PX/E (30% Impact Factor) 

1.3 X 16 X 3.5/6.55 = 11.114 k-ft./ft. 

Total moment: 12.54 k-ft./ft. 

Required effective depth 

d JfM/(R Xl)] 

= J [12.54/(0.432 X 1)] ~ 5.39 

Actual d ~ 5.83 in., assuming #8 bars and 1-1/2 in. concrete 
cover. 

Reinforcement required 

A = M/ f jd 
s s 

= 12.54 X 12/(20 X 0.86 X 5.83) = 1.50 in7/ft. 

Adopt #8 bars at 6 in. in top of slab 

A ~ 1.57 in7/ft. 
s 

4.5.3 Interior Portion of Deck Slab. To be on the safe side, 

the fillets are ignored and the full clear span between the webs is used: 

S == 13.33 ft. 

Dead load moment 

(0.017 + 0.150 X 7/12) X 13.332/12 1.55 k-ft./ft. 

Live load moment 

Wheel load: P = 16 kip 

The maximum positive and negative moment is given according to 
Clause 1.3.2(C) 

M = 1.3 X 0.8(S + 2)P/32 

1.3 X 0.8(13.33 + 2) X 16/32 7.97 k-ft./ft. 

(0.3 represents the impact factor and 0.8 is a continuity factor) 

Total moment 9.52 f-ft./ft. 
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This moment must be corrected for carry-over from the cantilever 

portion. As an approximation, the top slab is considered fixed at the 

interior web and the outer web pinned at the bottom 

Top slab stiffness: (7/12)3/ 14 .33 

Web stiffness: (3/4)(1)3/ 7 . 5 

slab. 

0.014 

0.100 

0.114 

The corrected moment is then obtained from moment distribution, thus 

M [(9.52 X 0.100) + (12.54 X 0.014)]/0.114 

9.89 k-ft./ft. 

Required effective depth 

d = J[9.89/(0.432 Xl)] 4.78 in. 

Actual d = 5 in. 

Reinforcement reguired 

A = 9.89 X 12/(20 X 0.86 X 5) = 1.38 in~/ft. 
s 

To match the spacing in the cantilever portion, adopt #8 bars 

at 6 in. in top and bottom of slab. 

A == 1.57 in~/ft. 
s 

4.5.4 Web Thickness. The maximum cable size to be used in the 

girder was envisioned as 20 strands. The contractor later submitted a 

construction plan based on 12 strand tendons. A minimum web thickness 

of 12 in. is required to accommodate the anchorages for these cables. 

Construction experience with the congested webs later indicated that a 

14 in. thickness would have been more appropriate. 

4.5.5 Bottom Slab. A minimum thickness of 6 in. is chosen for 

the bottom slab, as in Chapter 3. The thickness is increased linearly or 

in steps to 10 in. at the main pier, over a distance of 25 ft., to with

stand the higher longitudinal compression in that region. The 10 in. 

maximum thickness and the 25 ft. taper length are chosen on the basis of 

a previous preliminary design similar to that outlined in Sec. 7.2.3. The 

compressive capacity will be checked later. 

4.5.6 Reinforcement of the Girder Section. The transverse 

reinforcement in the deck slab has been determined. The reinforcement 
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for the full cross section is shown in Fig. 4.14. The following criteria 

were used to determine this reinforcement. 

Vertical reinforcement in the webs. The results of the MUPDI 

analysis of a bridge under truck loads, referred to earlier, indicated 

that the maximum bending moments in the webs are approximately equal to 

those in the interior portion of the deck slab. Vertical reinforcement 

is provided to withstand these moments. The shear capacity will be 

checked later. 

Transverse reinforcement in the bottom slab. Minimum reinforce-

ment of 0.5 percent of the flange section is specified by AASHO, Clause 

1.5.12(F). This is adequate to withstand the maximum bending moments 

computed in the MUPDI analysis. 

Longitudinal reinforcement in bottom of deck slab. Reinforcement 

to distribute the wheel loads is provided as specified by AASHO 

Clause 1.3.2(E). 

Longitudinal reinforcement in top of deck slab. The BPR Criteria 

for Reinforced Concrete Bridge Members6 specify temperature and shrinkage 

reinforcement in the top of the deck slab equal to 0.25 percent of the 

concrete area. 

Longitudinal reinforcement in webs and bottom slab. Shrinkage 

reinforcement equal to 0.125 in: per foot of each surface is specified 

by AASHO, Clause 1.5.6(H). 

4.6 General Design Criteria 

The design criteria set out in Chapter 3, Sec. 3.6, are again 

applied. They must be satisfied by the bridge superstructure at all 

stages of construction and also in the completed state. 

4.7 Design of Superstructure during 
Cantilever Construction 

As each pair of segments is set in place, a set of cables is 

inserted and anchored (see Fig. 4.13). The cables at each section must 
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be adequate to resist all moments applied at that section. The highest 

bending moment at each section during the construction phase occurs when 

the full cantilever arm, a length of 100 ft. from the pier centerline, is 

completed. The two box girders comprising the superstructure are con

structed separately and are not joined till after completion. 

It was initially assumed that the segments would be lifted into 

place with a pair of floating cranes and that the only live load on the 

bridge would be the weight of equipment for fixing the segments in position, 

placing the cables, etc., and the weight of the persons who would carry out 

these operations. To include all these loads, a concentrated live load 

(including impact) of 25 kips could be assumed at the end of the cantilever 

for each (27 ft. wide) box girder. The maximum distance of this load from 

the pier centerline would be 95 ft. Further reflection indicated that 

even if two cranes were used, unrealistic coordination would be required 

to maintain symmetrical loading at all times. Both to reflect construction 

realities and to allow use of only one crane, design should be based on 

temporary unbalance of one segment during an erection stage. Each com

pleted stage should be able to support a segment plus holding equipment 

with reasonable impact. 

If, instead of using a floating crane, the segments were to be 

lifted by traveling hoists moving outward on the superstructure, the live 

load would be even greater. It would have to include the weight of the 

hoist and the segment being lifted, and a high impact factor of at least 

100 percent should be used. Since segments will almost certainly be 

temporarily unbalanced, the temporary unbalanced moments must also be 

considered in pier design. 

The section properties of the superstructure were calculated by 

the program listed in Appendix B. The properties of the section at the 

pier and of the minimum section are presented in Table 4.1. Properties of 

the half section (i.e., one box girder) and of the full section (i.e., two 

box girders joined by the 2-ft. width of cast-in-place deck) are given. 

The former are required for design during construction and the latter 

for design of the completed bridge under live load. 

The approximate positions of the prestressing cables, which are 

required to carry out the design, were obtained from a preliminary layout 
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TABLE 4.1. SECTION PROPERTIES OF SUPERSTRUCTURE--THREE-SPAN BRIDGE 

Properties of Half Section (One box) 
2 Area (ft.) 

Distance from top to centroid (ft.) 

Second moment of area (ft~) 
Section modulus (top)(ft~) 
Section modulus (bottom)(ft~) 

Properties of Full Section (Two boxes) 
2 Area (ft.) 

Dis tance from top to cen troid (f t. ) 
4 Second moment of area (ft.) 

Section modulus (top)(ft~) 
Section modulus (bottom)(ft~) 

Maximum 
Section 

40.60 

3.442 

398.2 

115.7 

87.36 

82.37 

3.397 

807.8 

237.8 

175.5 

TABLE 4.2. TOP CABLE ECCENTRICITIES 

Distance from Distance from top of girder to 
center of main 

pier Centroid of section Center of cables 
( ft.) ( ft.) ( ft.) 

0 3.442 0.460 

5 3.373 0.439 

15 3.224 0.455 

25 3.058 0.402 

35 to 85 3.058 0.313 

Minimum 
Section 

36.93 

3.058 

338.0 

110.5 

68.39 

75.02 

3.015 

684.8 

227.2 

137.4 

Cable eccentricity 
about section 

centroid 
(ft. ) 

2.982 

2.934 

2.769 

2.656 

2.745 
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based on the preliminary design. Table 4.2 gives the position of the 

section centroid, the position of the center of the top cables, and the 

cable eccentricity for various locations along the girder, corresponding 

to the ends of the segments. The section centroid was obtained from the 

program mentioned above. 

4.7.1 Loading. The loading on each box girder is as follows: 

This is the weight of the girder section. 

Maximum section weight (i.e., at pier): 

40.60 X 0.150 = 6.09 kip/ft. 

Minimum section weight: 

36.93 X 0.150 = 5.54 kip/ft. 

Live load and impact. 25 kip concentrated load as an allowance 

for erection equipment and personnel plus a construction load 

equal to the weight of a unit being temporarily supported from 

the end of the cantilever arm plus a 50 percent impact factor. 

4.7.2 Top Cables Required at Pier Center. The bending moment 

on each box girder at the pier for the full 100 ft. cantilever is as follows: 

Dead load moment 

5.54 X 1002/2 

(6.09 - 5.54) 

Live load moment 

25 X 95 

- 27,700 

X 25 2/6 60 

27,760 

2,380 

30,140 k-ft. 

(NOTE: This case does not require temporary support of one unit 

since it represents the terminal and worst condition.) 

Cable eccentricity (from Table 4.2) = 2.982 ft. 

Effective prestress: f 162 ksi (A very conservative assump-
se 

tion during construction, since losses will not have fully 

occurred.) 

For a cable force F (per box girder) the concrete stress in the 

top of the girder can be found from 

f t = - F/A ± M/S = - F/A - Fe/St + M/S t 

f t - (30,140 - F X 2.982)/115.7 - F/40.60 

in ksf units (tension positive). 
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The prestress force furnished F must be at least sufficient to 

ensure that this stress is compressive, since no tension is desired across 

the fresh epoxy joints. 

F ~ 30,140/(2.982 + 115.7/40.60) 

= 5,170 kip 

However, a more severe case may be the construction condition 

when individual units are being temporarily supported from the existing 

cantilevering structure prior to completion of stressing. As an example, 

the condition with 95 ft. of cantilever completed on each side of the 

pier and with the last 5 ft. length segment near the side pier being 

applied will be checked. 

Dead load moment - completed section 

5.54 X 95
2

/2 25,000 

(6.09 - 5.54) X 25
2

/6 60 

Live load moment 25,060 

Lifting equipment 25 X 90 = 2,250 

Segment (5.54)(5)(97.5)(1.5) 4 2 050 

Note: 1.5 includes 50% impact factor 
31,360 k-ft. 

Substituting this moment in the equation for prestress force, 

F 5380 kip or approximately a 4 percent increase for construction loads. 

The design of the completed superstructure will be greatly 

simplified if the top cable pattern is such as to balance some simple 

applied load, for instance a uniform load. Within some range the value 

of the uniform load to balance may be chosen arbitrarily. In choosing 

such a load, the following considerations are relevant: (a) The more 

cables there are in the top of the girder, the fewer cables will be 

required in the bottom; (b) it is desirable to make the balanced load 

less than the dead load to ensure that there will be adequate reaction at 

the outer supports of the completed girder without excessive jacking. This 

is particularly important with short side spans, since live loading in the 

center span causes the end reactions to decrease and it is undesirable to 

have the girder rise off its outer supports; (c) the balanced load should 

be sufficiently high that it will be the controlling criterion for the 

top cable quantity at each section rather than the no tension criterion 

or the ultimate load criterion. 
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Based on trial designs, it was found that a balanced load of about 

60 percent of the dead load is suitable. The force F was chosen to balance 

a uniform load of 3.5 kip/ft. on each box girder. 

W ::-: 8Fh/L2 

F = WL2
/8h 

F = 0.125 X 3.5 X 2002/2.982 

The cable area required 

A F/f 
s se 

5,870/162 E 36.2 in~ 

5,870 kip 

The ultimate strength must now be checked. The ultimate moment at 

the pier center with a 50 percent impact factor on the suspended segment 

during lifting is 

Mu 1.35(25,060) + 2.25(2,250)+ 2.25(4,050) 

- 48,000 k-ft. 

Effective depth: 

d - 8 - 0.460 = 7.540 ft. 

Bottom slab width: 

b = 13 ft. 

p 

0.5pf' If' 
s c 

A /bd 
s 

= 36.2/(13 X 7.54 X 144) 

0.5 X 0.00256 X 270/6 ~ 

0.00256 

0.0577 

The cable stress at ultimate load, given by AASHO Sec. 1.6.9(C) 

for bonded members is 

f = f' (1 - 0.5pf' If' ) 
su s s c 

~ 270(1 - 0.0577) = 254 ksi 

Bottom slab thickness: t 10 in. = 0.833 ft. 

T :;: C 

A f 
s su 

(36.2)(254) 

A 
c 

Area of lower flange 

0.85f' A 
c c 

== (0.85)(6)(A ) 
c 

1802 in~ required 

(10)(156) = 1560 
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Therefore, part of web is in compression zone 

1802 - 1560 
24 = 10 in. 

Centroid of compression is 0.53 ft. from bottom 

Moment arm: N d - 0.53 

= 7.540 - 0.53 ~ 7.01 ft. 

Ultimate moment capacity ((() (A ) (f ) (Momen t arm) 
s su 

(0.9)(36.2)(254)(7.01) 

58010 k-ft. [Approximately 1.21 M ] 
u 

Hence, the ultimate strength of the section at the pier is adequate. 

This reserve in ultimate strength (approximately 20 percent con

sidering the impact allowance) was fortunate, since the contractor decided 

to erect the structure with one crane. Similar calculations at each sec

tion based on a one-segment imbalance indicated this was permissible. 

Provision for imbalance should be considered in initial design. 

4.7.3 Top Cable Pattern throughout Girder. The above procedure 

is followed to determine the cables required for sections at distances 

of 5, 15, 25, ... and 85 ft. from the pier center, corresponding to 

the ends of each of the segments in the cantilever. The cable force and 

cable area required at each section are shown in Table 4.3. 

Distance from pier 
ft. 

0 

5 

15 

25 

35 

45 

55 

65 

75 

85 

TABLE 4.3. TOP CABLES REQUIRED 

(For each box girder) 

Cable force required 
kip 

5868 

5383 

4566 

3706 

2694 

1929 

l29l 

781 

398 

152 

Cable area required 
sq. in. 

36.2 

33.2 

28.2 

22.9 

16.6 

11. 9 

8.0 

4.8 

2.5 

0.9 
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In the case of all sections except the last (85 ft. from the pier 

center), the governing criterion for the cable force and area was the 

requirement to balance the 3.5 kip/ft. load. In the latter case, the 

no-tension criterion was critical by a small amount. The ultimate load 

capacity was quite adequate at all sections. 

The system of cables adopted in the design, which provided the 

required area at each section, is given in Table 4.4. Each set of cables 

extends beyond the point indicated in the table to the end of the next 

segment, where the cables are anchored in the webs. An elevation of the 

bridge showing the cables is given in Fig. 4.13 

At any stage of erection, before the cantilever arms are completed, 

the cable area at each section is less than the value indicated in 

Table 4.4. Beam theory calculations were carried out to ensure that at 

each section and for each length of the cantilever arm during erection, 

the cables inserted up to that stage are sufficient to provide a compres

sive stress in the top of the girder and adequate ultimate strength. In 

these calculations, the dead load moment was conservatively taken as that 

corresponding to the length of cantilever arm completed at the stage con

sidered together with an extra segment added to allow for the possibility 

of accidental loss of crane support during placing of a segment or unsym

metrical placement of segments. It was found that the cables are adequate 

at all sections during all stages of erection. 

A check was made on the concrete stresses in the bottom of the 

girder for the different stages of completion of the cantilever arm. 

The compressive stresses are highest when the cantilever arm is completed 

and these do not exceed the allowable value of 2.4 ksi.However, it was 

found that some tensile stresses can occur near the pier. The highest ten-

sile stresses occur at a distance of 15 ft. from the pier center when the 

cantilever arm length is 25 ft. or 35 ft. They disappear when the length 

becomes 45 ft. These stresses do not exceed 50 psi and must be controlled 

by the use of some temporary external prestressing strands. Us of such 

external prestressing force is advantageous on all units to keep positive 

contact on the epoxy surfaces prior to completion of stressing. 

Prior to actual construction, the post-tension supplier asked 

that an alternative cable arrangement be allowed so that the maximum tendon 
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TABLE 4.4. TOP CABLES ADOPTED 
(For each box girder) 

Design 
Distance No. of strands Design total Cable Total cable 

from No. of Cables per cable cable cable force force 
pier Design Supplied Design Supplied area area Design Supplied Design Supplied 
(ft. ) (sq.in.) (sq. in.) (kip) (kip) 

85 2 2 6 6 1.837 1.84 298 298 298 298 

75 2 2 6 6 1.837 3.67 298 298 596 596 

65 2 2 6 7 1.837 5.51 298 348 894 944 

55 2 2 13 12 3.981 9.49 645 596 1538 1540 

45 2 2 13 12 3.981 13.47 645 596 2182 2136 

35 2 2 13 12 3.981 17.45 645 596 2827 2732 

25 2 4 20 11 6.124 23.58 992 1092 3819 3824 

15 2 4 20 11 6.124 29.70 992 1092 4812 4916 

5 2 2 13 12 3.981 33.68 645 595 5456 5511 

0 2 2 13 12 3.981 37.66 645 595 6101 6106 
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size would be based on 12 - 1/2 in. diameter 270 ksi strands. In this 

way anchorages could be used more efficiently and the maximum anchorage 

size reduced. The proposed pattern was approved, as shown in Table 4.4, 

and used in the construction. At most stages force equivalents were 

virtually the same except for the initial segments. This illustrates 

again the desirability of flexibility in design procedures which can be 

had if the initial design philosophy does not take the design to absolute 

limits. 

4.8 Design of Completed Superstructure 

In the completed bridge it is assumed as a trial that the support 

reactions are set to provide the Ilbeam on unyielding supportsll condition. 

If there were no camber the supports could all be set at the same level 

to obtain the correct reactions. However, camber will be provided and at 

the completion of construction the end supports will be set in position 

using jacks to ensure that the correct reactions are obtained. These 

reactions will be determined in Sec. 4.8.9. Correct application of these 

reactions allows analysis of the completed structure to be based on elastic 

analysis of a continuous bridge. 

If it is found in the process of design that this condition does 

not lead to suitable behavior of the structure, the end reactions may be 

modified as necessary and the resulting effect on the calculated bending 

moments and shears taken into account. 

Strictly speaking, the sequence of construction should be con-
9 19 sidered in the design and analysis of the completed superstructure. ' 

While dead load moments are determined for a three-span continuous beam 

using normal elastic influence lines, the structure has carried its full 

dead load as a cantilever span and its moment pattern is set by its stage 

completion (including jacking of the reactions). This will be considered 

in the ultimate moment performance, but is questionable refinement at the 

service load stage. Action of creep will put the true values of moment 

somewhere intermediate between those of full cantilever dead load and 

fully continuous dead load. In each case, a reasonably conservative 

assumption will be made. 
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4.8.1 Loading; Dead load. The dead load consists of the weight 

of the girder section and the asphalt. The area of the completed section 

is obtained from Table 4.1. 

Dead load at main pier: 

Concrete section: 0.150 X 82.37 = 12.36 

Asphalt: 0.017 X 54 0.92 

Dead load at minimum section: 

Concrete section: 0.150 X 75.02 

Asphal t: 

13.28 kip/ft. 

11.25 

0.92 

12.17 kip/ft. 

Live load. The live load is AASHO HS20-44. Generally the lane 

load will be critical, rather than the truck load. When four lanes are 

loaded simultaneously, a 25 percent reduction in load intensity is 

allowed (Clause 1.2.9). 

Impact. The impact factors, specified in Clause 1.2.12, are 

as follows: 

Positive moment--main span: 50/(200 + 125) 

Positive moment--side span: 50/(100 + 125) 

Negative moment--both spans: 50/(150 + 125) 

0.154 

0.222 

0.182 

4.8.2 Bending Moments. The influence coefficients used in the 

following calculations were obtained from a program prepared by T. Komura. 

This program was checked against tables in Ref. 5 for the case of a con

tinuous beam with three equal spans. 

Dead load moment (if fully continuous) 

Moment at main pier: 

-0.070 X 12.17 X 200
2 

=-34,080 

-(13.28 - 12.17) X 25
2 

X 375/(12 X 200) -100 

Moment at center of bridge: 

0.055 X 12.17 X 2002 

(13.28 - 12.17) X 25
2

/6 - 100 

-34,180 k-ft. 

26,780 

10 

26,790 k-ft. 



Moments in side span (at ~ from end) : 

(x == 10) 0.0043 X 12.17 X 2002 _. 2,090 k-ft. 

(x = 20) 0.0061 X 12.17 X 2002 
= 2,970 k-ft. 

(x = 30) 0.0054 X 12.17 X 2002 2,630 k-ft. 

(x 40) 0.0022 X 12.17 X 2002 1,070 k-ft. 

(x 50) -0.0036 X 12.17 X 2002 -1,750 k-ft. 

Live load moments 

Uniform lane load on four lanes = 0.75 X 4 X 0.640 

1.92 kip/ft. 

Concentrated lane load on four lanes 0.75 X 4 X 18 

Moment at main pier: 

-0.074 X 1.92 X 2002 

-(0.1024 + 0.0360) X 54 X 200 

Moment at center of bridge: 

0.0625 X 1.92 X 2002 

0.1563 X 54 X 200 

Moments in side span: 

(Truck load is critical) 

(x = 10) 

54 kip 

-5,680 

-1,495 

-7,175 k-ft. 

4,800 

1,690 

6,490 k-ft. 

[(0.0441 + 0.0353)96 + (0.0269)24] X 200 

(x = 20) 

1650 k-ft. 

[(0.0764 + 0.0593)96 + (0.0430)24] X 200 2810 k-ft. 

(x = 30) 

r(0.0973 + 0.0725)96 + (0.0492)24] X 200 3500 k-ft. 

(x = 40) 

[(0.1074 + 0.0758)96 + (0.0663)24] X 200 3840 k-ft. 

Moments due to top cables 
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The equivalent load from the top cables, ignoring the turned down 

section at the anchorages, for the full width of the superstructure is 

-2 X 3.5 = -7.0 kip/ft. (Two boxes with 0.6DL.) The moments on the 

concrete section produced by this load are as follows: 
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Moment at main pier: 

0.070 X 7.0 X 2002 

Moment at center of bridge: 

19,600 k-ft. 

-0.055 X 7.0 X 200
2 = -15,400 k-ft. 

The above requirements are the resultant cable moments. The 

secondary moments will also be required, where 

Secondary moment = Resultant moment - Primary moment 

At the center of the bridge the primary moment for the top cables is zero, 

because there are no top cables at that section. Hence, 

Secondary moment at center of bridge = -15,400 k-ft. 

Since the secondary moment is that produced by the cable-induced reactions, 

it will be constant in the main span and will vary linearly in the side 

spans from the above value at the main piers down to zero at the ends of 

the bridge. (This moment is induced during the closure by jacking of the 

end reactions. Stressing top cables during cantilevering does not introduce 

secondary moments.) 

Moments due to bottom cables 

For ultimate load calculations the secondary moments due to the 

bottom cables will also be required. Let the values of these moments in 

the main span be denoted as follows. 

MSI = Secondary moment from bottom cables in main span 

MS2 Secondary moment from bottom cables in side spans 

Again, these moments will be constant in the main span and in the 

side spans will vary linearly down to zero at the ends. 

The values of MSI and MS2 are not known until the bottom cable 

areas have been determined. Initial values must therefore be assumed, so 

that the ultimate moments can be calculated. After the cable areas have 

been determined, the assumed values can be corrected and the ultimate 

moments rechecked if necessary. The initial values could be zero. 

However, on the basis of a preliminary design the following trial values 

will be assumed. 

MSI +5000 k-ft. 

+1000 k-ft. 
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4.8.3 Ultimate Strength at Main Pier. In calculating ultimate 

strength, no moment redistribution will be assumed. The secondary cable 

moments are included in the calculations, because these are produced by 

real external reactions caused by the cables. 

Conventional calculation of the ultimate moment at the pier, 

assuming the structure was completely constructed as a three-span beam, 

is given by 

M 1.35(DL moment) + 2.25(LL + Impact moment) 
u 

+ (Secondary moments) 

= 1.35(-34,180) + 2.25(1.182)(-7,175) 

+ (-15,400 + MSI + MS2 ) 

1 MJ < 46,140 + 19,080 + (15,400 - 6000) 

74,620 k-ft. 

which is less than the ultimate moment capacity found in Sec. 4.7.2 

I Mul = 2 X 58,010 = 116,020 ft. 

However, based on the recommendations following the model test 

program contained in Report 121-5, a more severe computation of ultimate 

moment is recommended. The structural ultimate moment capacity should 

exceed Mul + Mu2 ' Mul is computed for 1.35 DLlas a balanced cantilever. 

D11. is the dead load at time of cantilevering construction. Mu2 is com-

puted for 1.35 DL2 + 2.25(LL + I) + S. DL2 is any subsequent dead load 

placed on the completed structure, LL is the design live load, I is 

impact, and S is secondary moments induced by stressing of cables and 

reactions provided on closure. (See Sec. 4.8.9.) 

On this basis 

Mul = - (1.35)(~1.25)(100)2 - (1.35)(~.11)(25)2 = -76,090 ft.-k 

M 
u 

(1.35)(0.92)(-0.070)(200)2 - (2.25)(7175)(1.182) 
+(185)(100) = -4060 ft.-k 

= -76,090 - 4060 = -80,150 ft.k 

which is less than the ultimate moment capacity of 116,020 k-ft. 



100 

4.8.4 Bottom Cables in the Main Span. The bottom cable pattern 

used in the preliminary design is shown in Fig. 4.8. All of the cables 

are the same size and there are seven cables per web. However, under 

detailed analysis with the MUPDI program, it was found that this pattern 

did not give a satisfactory stress distribution along the length of 

girder. Excessive cable area was required to prevent tensile stresses 

from occurring in the bottom of the girder in a region about 20 ft. to 

40 ft. from the bridge center under live loads. 

Accordingly, the cable pattern was revised to that shown in 

Fig. 4.13, in which the inner set of cables is removed, leaving six cables 

per web all the same size. 

The design procedure used to determine the bottom cable quantity 

is as follows. First, the cable area required to give adequate ultimate 

strength at the bridge center is determined. Later, after design of the 

bottom cables in the side span, stress analyses are carried out and the 

cable area is revised if necessary. 

In this case it will be more conservative to compute the moment 

as if a three-span continuous beam for all loads. Such a condition will 

be closely approximated if correct reactions are jacked in during closure. 

A check will be made in Sec. 4.8.9 to ensure that the ends of the bridge 

will not lift off the neoprene pads under design ultimate load. The 

ultimate moment at the center of the bridge is given by 

M 1.35(DL moment) + 2.25(LL + Impact moment) 
u 

+ (Secondary moments) 

1.35(26,800) + 2.25(1.154)(6,490) 

+ (-15,400 + MSI + MS2 ) 

Using the assumed values of MSI and MS2 from Sec. 4.8.2 

36,180 + 16,850 - 15,400 + 5,000 + 1,000 

43,630 k-ft. 

The cable area A required to satisfy this moment will be 
s 

determined. 

On the basis of the preliminary design, the following two 

quantities are first assumed. 



Distance from bottom of girder to center of cables = 0.437 ft. 
2 A _ 25 in. 

s 

Then the exact determination of A proceeds as follows: 
s 

Effective depth: d = 8 - 0.437 = 7.563 ft. 

Top slab width: b 56 ft. 

p :: A /bd 
s 

0.5pf' / f' 
s c 

25/(56 X 7.563 X 144) 

= 0.5 X 0.00041 X 270/6 

= 0.00041 

= 0.00922 

Cable stress at ultimate load: 

f f' (1 - 0.5pf' If' ) su s s c 

~ 270(1 - 0.00922) = 267.5 ksi 

Concrete stresss block depth: 

a A f /0.85f' b 
s su c 

25 X 267.5/(0.85 X 6 X 56 X 144) • 0.163 ft. 

Cable force at ultimate load: 

P M /(d - 0.5a) 
u u 

43,630/(7.563 - 0.163/2) = 5,830 kip 

Cable area required: 

A - P / (wf ) s u . su 2 
= 5,830/(0.9 X 267.5) = 24.2 in. 

AdoEt 24 cables each 7 strands 

A 25.72 2 
= in. 

s 

Actual ultimate moment capacity: 

M ~ 25.72(43 630) = 46.370 ft.-k u .... 24.2' • 

Equivalent load 

In order to determine the cable moments, the equivalent cable 

load will be calculated. 

Total cable force: F = 25.72 X 162 ~ 4166.8 kip 

Cable eccentricity about section centroid at center of bridge: 

e = 7.563 - 3.058 = 4.505 ft. 
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The equivalent load is calculated using the second approach 

described in Sec. 4.1.2. As a (conservative) simplification!each group 

of similar cables is treated as stopping off at the bend-up point, i.e., 

at distances of 20 ft., 30 ft., 40 ft., 50 ft., 60 ft., and 70 ft., from 

the bridge center. Thus, the equivalent load for each group is a moment 

m at either end, as shown in Fig. 4.9(a), where 

m = F'e/6 

- 4,167 X 4.505/6 3,130 ft.-k 

and this moment can be replaced by a pair of loads P [Fig. 4.9(b)}, where 

P = mIlO = 313 kip 

These loads cancel out except for the four shown in Fig. 4.9(c), which 

will be considered as the equivalent load diagram. 

Moments due to bottom cables 

The resultant moments on the concrete section from the bottom 

cables are determined using influence line values as follows: 

Moment at main pier: 

(0.1005 + 0.0823 - 0.0609 - 0.0206) X 313 X 200 

= 0.1013 X 313 X 200 

Moment at center of bridge: 

(-0.1211 + 0.0217) X 2 X 313 X 200 

= -0.1988 X 313 X 200 

6,340 k-ft. 

= -12,440 k-ft. 

Since the primary moment due to the bottom cables at the main 

pier is zero, the secondary moment is given by 

MSI = 6,340 k-ft. 

Since this is greater than the initial assumed value, the ultimate moment 

at the bridge center must be rechecked. Using MSI = 6,340, the design 

moment increases to 44,970 ft.-k which is still less than the 46,370 ft.-k 

capacity provides. Thus, these cables were found to be adequate. 

4.8.5 Bottom Cables in Side Span. The bottom cable pattern 

chosen for the side span is shown in Fig. 4.13. There are two cables per 

web. The cable size required to give adequate ultimate strength in this 

*Consideration of the curved portion of the tendons would increase 
equivalent loads less than 10 percent. 
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Fig. 4.9. Equivalent load for main span bottom cables 
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span will be determined first. Later, stress analyses will be carried 

out and the size revised if necessary. Again, it will be more conserva

tive to compute design moments as if a three-span continuous beam for 

all loads. It was found in the preliminary design that the critical 

section is about 30 ft. from the end support. The ultimate moment at 

this section is given by 

M 1.35(DL moment) + 2.25(LL + Impact moment) 
u 

+ (Secondary moments) 

1.35(2,630) + 2.25(1.222)(3,500) 

+ 0.3(-15,400 + 6,340 + 1,000) 

(Note: The last term is the linear proportion of the secondary moment 

at the pier which is effective at the critical section. The value of 

MSI determined in the previo1.ls section is used along with an assumed 

MS2 1,000.) 

3,550 + 9,620 - 4,620 + 1,900 + 300 

10,750 k-ft. 

From preliminary design, A ~ 6 in:, and 
s 

Distance from bottom of girder to center of cables 

Effective depth: d 

p 

O. 5p fl / f' 
s c 

f 
su 

8 - 0.292 7.708 ft. 

A /bd 
s 

6/(56 ~. 7.708 X 144) = 0.0001 

0.5 X 0.0001 X 270/6 0.0022 

270(1 - 0.0022) = 269 ksi 

a = A f /0.85 f' b 
s su c 

6 X 269/(0.85 X 6 X 56 X 144) 

Cable force at ultimate: 

P M /(d - 0.5a) 
u u 

0.292 ft. 

0.04 ft. 

10,750/(7.708 - 0.02) = 1,400 kip 

Cable area required: 

A 
s 

P / «(flf ) 
u su 

1,400/(0.9 X 269) = 2 
5.8 in. 



Adopt 8 cables each 5 strands 

A = 6.124 in: 
s 

Actual ultimate moment capacity: 

M = 6.124(10 750) = 11,350 k-ft. 
u 5.8 ' 

Equivalent load 

Cable force: F = 6.124 X 162 = 992.1 kip 

Cable eccentricity: e = 7.708 - 3.058 = 4.650 ft. 
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The equivalent load is calculated in the same way as for the main 

span bottom cables, and the different steps are shown in Fig. 4.10. The 

moments m and the load P are as follows. 

m = Fo e/2 

992 X 4.65/2 = 2,300 k-ft. 

P = milO = 230 kip 

Moments due to side span bottom cables 

The resultant moments on the concrete section from the bottom 

cables in both side spans are ca1cu~ed using influence lines as follows. 

Moment at center of bridge: 

f2(0.0031) + 0.0120 - 0.0090] X 2 X 230 X 200 = 850 k-ft. 

This moment is constant over the main span. 

Since the primary moment due to the side span bottom cables is 

zero in the main span, the secondary moment is 

MS2 = 850 k-ft. 

Since this is very close to the 1,000 k-ft. assumed, no further check is 

required. 

4.8.6 Additional Cables in Side Span. When the 100 fto cantilever 

arm in the side span is completed, the bottom cables in this span are to be 

inserted and tensioned as the last segment is added and thus before the 

end supports are set in place. To avoid tensile stresses in the top of the 

girder near the end at this stage, it is necessary to include some addi

tional cables at the centroid. Trial designs were made in which top 
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Fig. 4.10. Equivalent load for side span bottom cables 
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tensile stress at several critical sections was calculated and necessary 

compressive stress to restore the top fiber to compression was determined. 

These showed that the following set of centroidal cables will give 

satisfactory stresses. 

Centroidal cables adopted: 8 cables each 5 strands (i.e., two cables per 

web), half to extend from the end a distance of 25 ft., half to extend 

from the end a distance of 45 ft. All to be placed along the section 

centroid. 

These cables produce no moments on the concrete section but could 

provide resistance to ultimate moment loading in the side span. This 

contribution will be ignored although the design could recycle to reduce 

the bottom cables. 

4.8.7 Service Load Stresses for Completed Structure. The 

service load stresses at the critical sections will now be determined 

using beam theory. Elastic analysis for a three-span continuous beam will 

be generally applicable if the correct reactions are jacked in during 

closure. Similar service load stresses were previously checked for the 

cantilever stage and determined acceptable in Sec. 4.7.3. The cable 

moments used are the resultant moments on the concrete section. In 

the calculation of dead load stresses the properties of the two unjoined 

box girders are used and for live load stresses the properties of the 

full section are used. In inch units these properties are as follows: 

Maximum section 

Properties of section for dead load 

Area 

Section Modulus (Top) 

Section Modulus (Bottom) 

Properties of section for live load 

Section Modulus (Top) 

Section Modulus (Bottom) 

Minimum section 

Properties of section for dead load 

Area 

11,690 in: 

(33,320 X 

(25,160 X 

(34,240 X 

(25,270 X 

2 10,640 in. 

12) . 3 1n. 

12) 3 in. 

12) 3 in. 

12) . 3 1n. 
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Section Modulus (Top) (31,820 X 12) · 3 1n. 

Section Modulus (Bottom) (19,700 X 12) · 3 1n. 

Properties of section for live load 

Section Modulus (Top) (32,720 X 12) · 3 1n. 

Section Modulus (Bo ttom) (19,790 X 12) · 3 1n. 

Concrete stresses at main pier assuming full continuous three-span beam 
for all stresses 

Top cable force = 2 X 6,101 = 12,200 kip 

Stress = 12,200/11,690 = ~1.044 ksi 

Stresses under dead load 

Dead load moment: -34,180 

Top cable moment: 19,600 

Main span bottom cable moment: 6,340 

Side span bottom cable moment: 850 

- 7,390 k-ft. 

Top stress = -1.044 + 7,390/33,320 = -0.822 ksi 

Bottom stress = -1.044 - 7,390/25,160 = -1.338 ksi 

Stresses under full load 

Live load + impact moment = -1.182 X 7,175 ~ 8,480 k-ft. 

Top stress :.- -0.822 + 8,480/34,240 = -0.574 ksi 

Bottom stress = -1.338 - 8,480/25,270 = -1.673 ksi 

Concrete stresses at main pier assuming dead load of concrete is carried 
as a cantilever 

This calculation represents the most conservative stress calcula

tion possible in case end reactions are incorrectly applied during 

closure. The true state of stress is somewhere intermediate between the 

cantilever state and the fully continuous state when creep is considered. 

Stress at centroid 

Top cable force = 2 X 6,100 = 12,200 kip 

Stress = -12,200/11,690 = -1.044 kst 



Stresses under dead load 

Concrete cantilever dead load moment: 

-27,760 X 2 

Asphalt topping dead load moment: 

'0.92/12.17 X (-34,180) 

Top cable moment: 

Main span bottom cable moment: 

Side span bottom cable moment: 

= -55,520 

= - 2,500 

19,600 

6,340 

850 

-31,310 k-ft. 

Top stress = -1 044 + 31.310 
. 33,320 -0.104 ksi 

Bottom stress = -1.044 - 31.310 = -2.288 ksi 
25,160 

Stresses under full load 

Top stress n -0.104 + 8,480/34,240 = 0.143 ksi 

Bottom stress ~ -2.288 - 8,480/25,270 = -2.623 ksi 
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The stresses are within acceptable limits under dead load even by 

this calculation. Stresses would be reduced when applied end reactions 

are considered. However, under this extreme calculation procedure, full 

service load stresses are high. The tensile stress at the top is within 

the 6 Ji' tension allowed by Clause 1.6.6(B)(2). The compressive stress 
c 

is 9 percent above the 0.4f' limit. In view of the extreme conservatism 
c 

of the calculation procedure these were judged acceptable. 

Concrete stresses at center of bridge 

These stresses can be checked conservatively for fully con

tinuous action only. 

Stress at centroid 

Bottom cable force = 4,167 kip 

Stress ~ -4,167/10,640 = -0.392 ksi 

Stresses under dead load 

Dead load moment 

Top cable moment 

Main span bottom cable moment 

Side span bottom cable moment 

26,790 

-15,400 

-12,440 

850 

-200 k-ft. 



110 

Top stress = -0.392 + 200/31,820 = -0.386 ksi 

Bottom stress ~ -0.392 - 200/19,700 = -0.402 ksi 

Stress under full load 

Live load + impact moment = 1.154 X 6,490 = 7,490 k-ft. 

Top stress ~ -0.386 - 7,490/32,720 = -0.615 ksi 

Bottom stress = -0.402 + 7,490/19,790 = -0.023 ksi 

Concrete stresses 30 ft. from end of bridge 

Stress at centroid 

Top cable force: 2 X 893 = 1,786 

Bottom cable force: 992 

Center cable force: 992/2 = 496 

3,274 kip 

Stress ~ -3,274/10,640 = -0.308 ksi 

Stresses under dead load 

Dead load moment: 

Top cable moment: -0.0054 X 7.0 X 200 2 

Main span bottom cable moment: 0.3 X 6,340 

Side span bottom cable moment: 

-(992 X 4.65) + (0.3 X 850) 

Top stress ~ -0.308 + 1,340/31,820 = -0/266 ksi 

Bottom stress = -0.308 - 1,340/19,700 = -0.376 ksi 

Stresses under full load 

= 2,630 

= -1,510 

= 1,900 

-4~360 

-1,340 

Live load + impact moment ~ 1.222 X 3,500 = 4,277 k-ft. 

Top stress = -0.266 - 4,277/32,720 = -0.397 ksi 

Bottom stress = -0.376 + 4,277/19,790 = -0.160 ksi 

k-ft. 

All of the other stresses calculated are within the acceptable 

limits. The stresses at all sections and under all loadings will also 

be checked with the MUPDI program for the completed structure and the 

SIMPLA2 program for erection stresses. However, first the shear strength 

will be investigated. 

4.8.8 Shear. The shear forces on the full width of the 

superstructure are as follows: 



Shear force at main Eier during construction 

Dead load: 2 X 5.54 X 95 = 1053 

2 X 0.5(6.09 - 5.54) X 25 14 

1067 kip 

Live load: 2 )( 25 50 kip 
2 X 5.54 X 5 X 1.5 = 83 

133 kip 

Total 1200 kip 

Shear force in main sEan at Eier ~after comEletion 

Dead load: (0.5 )( 12.17 X 200) + 14 1231 kip 

Live load: 4[(0.5155 X 0.640 X 200) + 26]= 368 kip 

Total 1599 kip 

The 26 kip load is the AASHO concentrated load with shear lane (Note: 

loads.) The 25 percent reduction in live load intensity for loading 
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on four lanes is not used here, because it was found in the MUPDI 

analysis of the completed bridge (to be described later) that, if this 

reduction is made, the critical shear loading will then be live load on 

two lanes only. 

Shear force in side sEan at main Eier 

Dead load: (0.3902 X 12.17 X 200) + 14 = 964 kip 

Live load: 4[(0.398 X 0.640 X 200) + 26] = 308 kip 

Top cables: 15,400/100 154 kip 

Main span bottom cables: -6340/100 -63 kip 

Side span bottom cables: -850/100 -9 kiE 
Total 1354 kip 

For live load shear, the lane load is critical. The cable shears 

computed above are the shears due to the external reactions induced by 

the cables, where 

End reaction = (Secondary moment at main pier) (Side span) 

Shear force at end of bridge 

Dead load: 0.1098 X 12.17 X 200 = 267 kip 

Live load: (truck load critical) 

4[32(1 + 0.822) + 8(0.649)] = 254 kip 

Top cables: = -154 kip 

Main span bottom cables: = 63 kip 

Side span bottom cables: = 9 kiE 
Total 439 kip 
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From examination of the various service load shear conditions, 

the shear face in the main span after completion is clearly the critical 

condition. 

Ultimate shear in main span at pier 

(Disregarding allowable reduction to the shear at critical section at d 

from support) 

V = 1.35(DL shear) + 2.25 (LL + Impact shear) 
u 

1.35(1,231) + 2.25(1.154)(368) 

2,617 kip 

The shear capacity of the webs at the pier will now be 

determined. Using ACI 318-71, Eqs. 11-11 and 11-12, as allowed by AASHO, 

the concrete stresses, f and (f - f d ) are obtained from Sec. 4.8.7. 
pc pe 

Compressive stress at centroid: f = 1.044 ksi pc 
Compressive stress at top of girder under dead load and prestress: 

(f 0.822 ksi + 0.104 ksi 0.461 
pe - f d ) = 2 = 

(Note: This assumes an actual stress midway between cantilever and fully 

continuous conditions.) 

V 
ci 

6 Jf! = 6 ./6,000/1,000 ::0 0.465 ksi 
c 

Top section modulus (from Table 4.1): (I/y) = 237.8 X 12
3 in~ 

Cracking moment: Mcr (I/y) [6 Jt: + (fpe - f d)] 

[(237.8 X 123)(0.465 + 0.461)]/12 

31,700 k-ft. 

Live load shear/moment ratio: 

(V /M ) = 0.75 X 368/7,175 
,f. max 

V M 
.t cr = (0.0385)(31,700) 

M 
max 

1220 

0.0385 

Effective depth: d (8 - 0.46) X 12 :;:: 90.5 

Total web wid th: b' = 4 X 12 = 48 in. 

The shear carried by the concrete V = v b' d 
c c 

v . b' d and V = v b' d, where 
C1 cw cw 

V . = ( 0 . 6 J"f') b' d + Vd + (V M / M ) 
C1 C .t cr max 

= (0.0465 X 48 X 90.5) + 1231 + 1220 

2653 kip 

in. 

is the lesser of 
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V (3.5 J7 + 0.3f )b'd 
cw c pc 

(0.271 + 0.313) X 48 X 90.5 

• = 2,537 kip 

Hence, V ~ 2,537 kip. 
c 

Shear reinforcement required using Eq. 11-13 of ACI 318-71 as permitted 

by AASHO: 

A 
v 

(v - v )b's 
u c 

f 
Y 

(2,617 0.85 X 

(V 
u - ("V ) S 

C 

(l',d f 
Y 

2,537) X 12/(0.85 

= 1.80 in: per ft. length of bridge. 

X 90.5 X 40) 

This exceeds the minimum A = 100b'slf = 1.44 in: per ft. required by 
v y 

AASHO. This is much less than the reinforcement required for bending 

moment in the webs. Thus, the web reinforcement will remain as shown in 

Fig. 4.14. 

The shear strengths in the side span at the main pier and at the 

end support were investigated, and also the shear strength at the main 

pier during construction. None of these cases was critical. 

4.8.9 Reaction at End of Bridge. The reaction over the full 

width of the superstructure at each end of the fully continuous completed 

bridge is obtained as follows: 

Dead load: 0.1098 X 12.17 X 200 

Maximum live load: (truck load critical) 

0.75 X 4[32(1 + 0.0822) + 8(0.649)] 

Minimum live load: (lane load critical) 

-0.75 X 4[(0.1247 X 0.640 X 200) + (0.2047 X 26)] 

Top cables 

Main span bottom cables 

Side span bottom cables 

:c:: 

267 kip 

190 kip 

-64 kip 

-154 kip 

63 kip 

9 kip 

The total reactions under dead load and under maximum and minimum 

live loads are as follows: 
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Reaction due to dead load and cables 

267 - 154 + 63 + 9 185 kip/bridge = 92.5 kip/box 

Maximum reaction 185 + 1.222(190) 417 kip/bridge 208.5 kip/box 

Minimum reaction = 185 -1.222(64) - 107 kip/bridge 53.5 kip/box 

Checking ultimate live load conditions the minimum reaction 

= 185 - (2.25)(1.222)(64) = 9k 

The minimum reaction is adequate (barely) to maintain proper 

seating on the bearings. Therefore, the IIbeam on unyielding supports" 

condition will be adopted as initially assumed. At the completion of 

erection, the reaction at each end of the bridge will be set to the correct 

value for dead load and cable forces, i.e., 185 kip, or 92.5 kip/box. 

In a subsequent check, Kashima9 ,11 showed that consideration should 

be given to the effect of the end reaction on cracking moment as well. His 

calculations indicated the optimum value of the end reaction as 176 kips 

per bridge, or 88 kips/box. This is very close to the value above. 

4.8.10 Computer Analysis of Completed Structure. With the basic 

proportions, reinforcement, and tendons designed, the completed bridge 

was analyzed by the MUPDI program to obtain the stresses in the concrete 

section under dead load and under various live load patterns. For dead 

load (including the cable forces) one box girder (i.e., half of the super

structure cross section) was considered and for rive load the full cross 

section was analyzed to correspond to the real conditions. The structure 

was assumed fully continuous at all times. This corresponds to the com

pleted structure with the correct end reactions applied. 

In this analysis the effect of the cables was simula ted by consid

ering each cable individually, determining the load it exerts on the con

crete section and including this load with the input. However, the number 

of cable loads far exceeded the number that can be handled by the program 

in one run. The following simplifying assumptions were made regarding 

these loads in order that the dead load and cable forces could be handled 

in three runs. The output for the runs was then added to give the total 

dead load stresses. 

(a) Each cable is 

mately at the bend point. 

treated as a straight cable stopping off approxi

Thus, the top cables are considered to stop off 

If 
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at distances of 5 ft., 10 ft., 20 ft., 30 ft., •.. and 90 ft. from the 

main pier center; the main span bottom cables at 20 ft., 30 ft., . 

and 70 ft. from the bridge center: and the side span bottom cables at 

60 ft. and 70 ft. from the end support. The load exerted by each cable 

is a pair of equal and opposite longitudinal forces, one at each end. 

(b) In cases where a number of successive cables along the span 

are the same size and have approximately the same eccentricity about the 

centroid, the set of concentrated longitudinal forces corresponding to 

these cables is replaced by a single linearly varying longitudinal force 

in each web. 

(c) The beneficial compressive effect of the turned-up portions 

of the main span bottom cables is taken into account by treating these 

overlapping portions as a single horizontal cable at the centroid in each 

web, extending between 15 ft. and 80 ft. from the bridge center. 

The following further simplifications were made in order to make 

the analysis feasible: 

(d) The MUPDI program cannot handle the variation in the thickness 

of the bottom slab. Separate analyses were made with two different ideal

ized sections, one having the properties of the maximum section (Fig. 4.11), 

the other of the minimum section (Fig. 4.12). The first is used to obtain 

the stresses near the main pier and the second to obtain the stresses 

elsewhere throughout the superstructure. 

(e) With this program, all concentrated loads must be applied at 

the node points of the idealized section. The moment of each cable force 

about the centroid of the real section was calculated and this force and 

moment replaced by a pair of forces at the node points at the top and 

bottom of the web of the idealized section. This pair of forces was 

determined so as to give the same resultant force and moment about the 

centroid of the idealized section as occur in the real section. 

The following live load cases were investigated: 

(a) Full lane loads on main span 

(b) Lane loads on one side (two lanes) of main span 
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(c) Full lane loads on two adjacent spans 

(d) Lane loads for maximum moment 40 ft. from center of bridge 

(e) Full truck loads for maximum moment in side span 

(f) Truck loads on one side (two lanes) of side span for maximum moment 

(g) Lane loads on main span for maximum shear 

(h) Lane loads on one side (two lanes) of main span for maximum shear 

(i) Lane loads on two inner lanes of main span for maximum shear 

Examination of the computer output revealed that under each of 

the loadings «onsidered, all stresses in the concrete were within the per

missible limits. However, in order to provide a greater factor of safety 

against tensile cracks, it was decided to increase the size of the bottom 

cables in the main span to 8 strands and that of the bottom and centroida1 

cables in the side span to 6 strands. In this way the minimum compressive 

stresses in the bottom slab under the most severe live load conditions are 

increased from about 0.023 to 0.118 ksi in the main span and from 0.035 to 

0.077 ksi in the side span. 

The final layout of the cables is shown in elevation in Fig. 4.13 

and in section in Fig. 4.14. 

The dead load analysis was then repeated for the altered cable 

sizes. All stresses were found to be satisfactory. Flexural stress dis

tributions across the section at the main pier and the section at the 

bridge center are shown in Figs. 4.15 and 4.16 for dead and live load. 

The characteristics of these stress distributions are similar to those 

in Chapter 3; shear lag is evident at the pier section, whereas the 

stresses are almost uniform over each slab at the center of the bridge. 

Pier section stresses increased by as much as 25 percent over the beam 

theory computations due to shear lag. The increased stresses on the lower 

flange at midspan reflect the increased cable sizes. 

follows: 

The critical live load conditions for bending moments are as 

Bending moment at center of bridge: Full lane load on main span 

Bending moment in side span: Truck load on two lanes 



End pier 

Cables at centroid (per web): 
2 tendons, each 6 strands 

'--__ Bottom cables in side span (per web): 
2 tendons, each 6 strands 

Main pie 

NOTE = All strands 1/2" diameter. 

Bottom cables in main span (per web): 
6 tendons, each 8 strands 

precast segment length 

pier 

Fig. 4.13. Elevation showing design cable profile 

Bridge 
centerline 
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6 tendons, each 8 strands 

Fig. 4.14. Design cable and reinforcement details 
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If it were not for the 25 percent reduction, four lane loading 

would be critical in all cases. 
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The shear stresses in the four webs are approximately equal under 

dead load and under live load on all four lanes. For live load on two 

lanes only they are not equal. The maximum shear stress in the main 

span occurs under two-lane loading on one side of the deck. 

When the maximum shear stress occurs under a load condition that 

produces unequal shears, as in this case, then the reinforcement for each 

web may be designed individually for the maximum shear possible in that 

web. An alternative, simpler procedure is to design all four webs 

together under a uniform load that produces shears in all of the webs 

equal to the maximum value that can occur in anyone of them. This latter 

approach was adopted in the design of the webs in Sec. 4.8.8. Four-lane 

loading without the 25 percent reduction was used as this loading causes 

shears slightly greater than the maximum occurring under the critical 

two-lane loading condition. 

It is to be noted that although dead load and uniform live load 

produced an equal distribution of shears among the webs in this particular 

design example, this may not always occur. In general, the distribution 

will depend on the geometry of the cross section. 

Deflections in the bridge are also given in the computer output. 

The deflections at the center of the bridge are as follows: 

Deflection under dead load: 0.216 in. 

Deflection under live load on main span 
(wi th impac t) : 0.665 in. 

Total deflection: 0.881 in. 

The effect of creep on the concrete modulus is not included, although if 

felt significant it could be examined in a MUPDI analysis. The def1ection/ 

span ratio under full load is approximately 1/2,700. This is well within 

the limit of 1/300 normally considered acceptable. The structure is 

qui te stiff. 
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Examination of behavior under minimum positive moment conditions 

in the main span indicated satisfactory behavior. Muller
19 

indicates 

midspan top cables are sometimes needed across the closure section if 

moment reversal is possible. 

As 4.8.11 Stresses during Tensioning of Main Span Bottom Cables. 

described in Sec. 4.3, the first of the main span bottom cables is 

inserted and tensioned after jacks have been set under the ends of the 

superstructure and the closing segment has been placed at the center. At 

this stage the bridge behaves as a continuous girder, although the end 

supports have not been raised to their final position. 

As the bottom cables are tensioned, there is a tendency to produce 

a tensile stress in the top of the girder at midspan. To reduce this 

tendency the longest cables are placed first. The stress produced by 

the cables at this point was calcum ted as in Sec. 4.8.7, after determining 

the equivalent load of the cables as in Sec. 4.8.4. 

It was found that in order to prevent tensile stresses in the 

concrete during the placing of the last two sets of cables, the reaction 

at each end of the superstructure had to be increased by 20 kip (10 kip/box) 

by means of the jacks after the fourth set of cables had been tensioned. 

4.8.12 Friction Losses. The friction losses in the longest 

cables were calculated using the program developed by R. Brown. 

It was found that the assumed effective prestress of 0.6f~ was 

realistic if the conduits consist of rigid thin wall metal tubing. 

4.8.13 Diaphragms. Diaphragms inside the box sections are 

required at each of the bearings to maintain the shape of the cross section 

and to provide concrete bearing capacity. A 6-in. thickness is adequate. 

no intermediate diaphragms were indicated as necessary from the MUPDI 

analysis. 

4.8.14 Prestressing System Details. When the actual post

tensioning system is selected for the project (usually following selec

tion of a contractor), the prestressing system details will have to be 

. 
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closely examined. Anchorage locations, dimensions, and auxiliary 

reinforcement to control bursting, spalling, and splitting stresses should 

be checked by the designer. 

4.8.15 Incremental COIDEuter Analysis of Construction Sequence 

Stresses. With the completed structural plans, a final check was made 

of the structure to examine stresses and deflections under each stage of 

construction through closure and setting of permanent supports. The 

sequential analysis program SIMPLA2 was utilized as described in Report 121-4. 

All proposed details and operations were input to the program and an incre

mental folded plate analysis used to include effects of shear lag, warping, 

and construction sequence. This program transitions smoothly from canti

lever to continuous structure so that its results are more consistent 

than the MUPDI analysis. The complexity of input procedures and extensive 

running time required restrict practical use of the program to the final 

check stages. 

Typical stress calculation results are shown in Figs. 4.17 through 

4.20. These calculations indicate that dead load stresses are much 

closer to those calculated for beam theory assuming continuity than for 

complete cantilever action. Figures 4.19 and 4.20 are particularly informa

tive, showing the critical stages for flange stress to occur at widely 

different stages for top and bottom flanges. 

Typical displacement results are shown in Figs. 4.21 and 4.22. 

These figures illustrate the advantage of the incremental analysis which 

has the ability to track all major construction operations. This analysis 

indicated a slightly lower closure reaction desirable for geometric 

compatability. 

4.9 Summary of Design Procedure 

The principal stages of design are as follows: 

(a) An approximate cross section shape is chosen.--This can be based on 

the result of an optimization study as described in Chapter 7. Alterna

tively, a preliminary design may be carried out. 
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(b) The cross section is designed in detail.--The deck slab thickness 

and reinforcement are determined by wheel load moments. The web 

thickness must be sufficient to accommodate the cable anchors. A 

preliminary shear check is advisable to ensure adequate web thickness 

is provided. 

(c) The top cables are designed for cantilever construction.--The cables 

are chosen at each section to balance a uniform load, about 60 per

cent of the dead load. They must provide adequate ultimate load 

capacity and ensure acceptable service load stresses in the concrete. 

The bottom slab of the girder must be made thick enough to give 

adequate ultimate load capacity. 

(d) The bottom cables are designed for ultimate load on the completed 

superstructure.--A simple pattern of bottom cables is chosen for 

each span and the quantity adjusted to give adequate ultimate strength 

under the critical live load. 

(e) The concrete service load stresses are computed from beam theory.-

The stresses under dead and live load are obtained for the critical 

sections. If necessary the bottom cables are revised. 

(f) The ultimate shear strength is checked.--The ultimate shear force, 

the capacity of the webs and the reinforcement required are calculated 

at all of the critical sections. Web thickness is adjusted upward if 

necessary. 

(g) The completed superstructure is analyzed with the MUPDI program.-

The stresses are determined under dead load and under various live 

loads. If necessary the bottom cables are revised and the analysis 

repeated. 

(h) The completed design is analyzed with the SIMPLA2 program.--Stresses 

and deflections are determined at all stages of construction to 

verify the design. 



4.10 Other Examples of Bridges 
Constructed in Cantilever 

Other cases of bridges constructed in cantilever, requirimg 

variations in the design procedure adopted in the example chosen are 

considered briefly. 
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4.10.1 Multi-Cell Box Girder. An alternative cross section for 

the bridge considered is a three-cell box girder, cast in full width 

sections. 

The design procedure for this case is almost identical with that 

already outlined. However, a different program or manual computations 

must be prepared to compute the cross section properties. Other advan

tages and disadvantages are as given in Sec. 3.9.1. 

4.10.2 Segments Lifted from Bridge Superstructure. In the con

struction procedure considered in Sec. 4.3, the segments were lifted 

into position by a floating crane. An alternative method is to lift 

them by a hoist on the partially completed superstructure. 

In this case the impact load on the cantilever should be much 

higher (possibly 100 percent) and the live load and impact moments may 

constitute a substantial fraction of the total moment during construction. 

If this is so, it is probably best to design the top cables to balance a 

uniform load together with a concentrated load at the ends of the canti

levers (i.e., at the center and ends of the completed bridge). 

4.10.3 Superstructure Rigidly Connected to Pier. Instead of the 

final simple support system considered so far, it is possible to have the 

segments above the main piers permanently rigidly fixed by vertical pre

stressing cables. 

This will considerably modify the construction procedure and 

hence the design. The cantilever erection process will not be altered, 

but because of the fixity at the main piers it will no longer be possible 

to adjust the moments in the completed structure simply by jacking at the 

ends. Before closure at midspan, flat jacks will have to be inserted 
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between the final segments at deck level and pressure applied to induce 

a positive moment. 

Closure and placing of the main span bottom cables may be done 

before placing the side span bottom cables if desired. 

4.10.4 Side Span Greater Than Half Main Span. If the side span 

is greater than half the main span, the final segments in the side span 

cannot be readily erected by the cantilever method. 

The simplest procedure is to erect the superstructure by canti

lever on either side of the main piers to a distance of half the main 

span (minus the gap for the closing segment). The remaining segments in 

the side spans can be erected on fa1sework. Closure and insertion of the 

main span bottom cables can be done either before or after completion of 

the side spans, depending on the details of the structural system. 

4.10.5 Continuous Viaducts. The construction and design of 

viaducts, comprising a large number of equal continuous spans presents 

no special difficulties. However, provision must be made for expansion 

and careful attention paid to joint location and pier-girder connections. 

Mu11er
20 

treats this problem in some detail. 



C HAP T E R 5 

METHODS OF OPTIMIZATION 

In the previous two chapters criteria were developed for the 

design of bridges, for which the spans, overall widt~ and construction 

method were specified. The basic dimensions of the cross section apart 

from the overall width were chosen somewhat arbitrarily on the basis of 

experience and initial trial designs. The problem to be considered in 

this and the following two chapters will be that of determining the dimen

sions that will lead to a design having "minimum" cost. 

To obtain this minimum cost design, i.e., to "optimize" the design, 

the structural problem must be expressed in mathematical terms. A 

standard mathematical problem is that of minimizing a function f(x
1 
... x

n
) 

of a set of variables xl . . . x
n

. Such a problem is called "ma thema tical 

progranuning" or "nonlinear prograIIlIIling". The function f is called the 

"objective function". 30,31,34 

Nonlinear prograIIlIIling problems may be subdivided into uncon

strained and constrained problems. In an unconstrained problem the 

variables can take on any value. In a constrained problem the constraints 

may be either equality constraints, of the form 

or inequality constrains, of the form 

A simple example of an inequality constraint would be the following: 

xl :l a constant 

i.e., there is a lower limit to x
1

(for instance, a minimum web thickness). 
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In this chapter only unconstrained problems will be considered, 

as it will be shown later that the optimization of the bridge super

structure can be treated as such a problem. This is fortunate, because 

the solution of constrained problems is much more complex. 

5.1 Notation and Definitions 

x is the column vector [xl' 
T 

. x ] 
n 

The optimal point: ~*, is the vector ~ which minimizes the objective 
func tion, f (~) . 

The optimal value: f(~*), is the corresponding value of the objective 
function. 

The optimal solution: comprises the optimal point and the optimal value. 

A global optimal solution represents the smallest value of f(~) for all x. 

A local optimal solution represents the smallest value of f(~) in a 
limited region only (see Fig. 5.1). 

A unimodal function has only one optimum. 

A contour of the objective function is the set of points for which this 
function has a constant value. 

The gradient, ~f(~) of the objective function at any point is a vector 
pointing in the direction of maximum increase of the 
function and is given by 

~f(~) = [of/oxl ... of/oxn] 
T 

The gradient exists if the objective function is continuous and 

differentiable. 

5.2 Unconstrained Minimization Using 
Derivatives 

There are various numerical methods of solving the nonlinear pro-

gramming problem without constraints. These methods may be divided into 

two classes, those that use derivatives of the objective function and 

those that use values of the function only. The methods using derivatives 

are generally the more efficient, provided of course the derivatives 

exist and can be easily calculated. These methods will be examined first. 

5.2.1 Gradient Methods. In gradient (or "steepest descent") 

th d 28 , 30 , 31 ... 1 . .. h d th d . t me 0 S, an lnltla startlng pOlnt lS c osen an e gra len 



, 

.. 

Contours of the 
objective function 

Local optimal 
solution 

l37 

Global optimal 
solution 

Fig. 5.1. Local and global optimal solutions 
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Vf(~) at that point calculated. A step is taken in the direction of 

steepest descent, i.e., the reverse of the gradient, and a new point 

obtained. This point may be chosen, for example, by searching along the 

direction of steepest descent until a minimum value of f(~) along this 

line is reached. The gradient is then calculated at the new point and 

another step taken. The process continues until an optimal is reached to 

within some tolerance, i.e., until some appropriate stop criterion is 

sa tisfied. 

The gradient methods are relatively simple. However, they con

verge very slowly and are inefficient. With some functions which have 

very irregular contours, they can never reach a solution. 

5.2.2 Second Order Methods. Second order methods are those 

which will min1m1ze a quadratic function in n steps or less, where n is 

the number of variab1es. 30 ,31 Such methods are much more efficient than 

the gradient methods and will usually converge for a general objective 

function. 

Some of the mos t powerful of these methods make use of If conjuga te 

directions. It can be shown that a quadratic function 

f(~) ~T! ~ + b
T ~ + c 

can be minimized in n steps by searching along each of a set of !-conjugate 

directions (in a manner similar to that described for gradient methods in 
29 

the preceding section). The Fletcher-Powell method, is perhaps the most 

powerful of the second order methods. 

5.3 Unconstrained Minimization 
without Using Derivatives 

Although the methods using derivatives are generally the most 

efficient, sometimes continuous derivatives may not exist or may not be 

readily calculated as in the box girder optimization problems. For such 

cases, derivative-free methods, also known as "search" methods, must be 
30 

used to find the optimal solution of the nonlinear programming problem. 

Two of the most efficient of the search methods are Powell's method and 

the NeIder-Mead method. 
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5.3.1 Powell's Method. 33 
In Powell's method the minimum of an 

objective function of n variables is located through a series of itera

tions, each of which involves a search for a minimum along a set of n 

linearly independent directions. These directions are the coordinate 

directions initially, but at each iteration a new direction is defined to 

replace one of the initial directions. The new directions formed after 

a series of iterations will be mutually conjugate if the objective function 

is quadra tic. 

One iteration of the procedure is as follows. Let x be the 
-0 

starting point and let ~l' ~2' . . . s 
-n 

be the search directions. 

(a) Carry out the search for a minimum along each of the n directions; 

i. e. , for r = 1, 2 n calculate ~ so that f(~r_l + \r~) is 

minimum. Define x = x 1 + >.. x where )r~ is the step size. 
-r -r- r-r 

a 

(b) Define a new direction to replace one of the initial directions, thus: 

for r == 1,2, ... (n-l) replace s by s 1 and replace s by 
-r -r+ -n 

(x - x ). 
-n -0 

(c) Define a new starting point for the next iteration, thus: choose ,,_ 

so that f[x + ~(x - x )] is a minimum and replace x by -n -n -0 -0 

x + X(x - x ). 
-0 -n-o 

It can be shown that, if the objective function is quadratic, 

after k iterations the last k of the n directions chosen for the ~+l)th 

iteration is mutually conjugate. After n iterations all the directions 

are mutually conjugate and the exact minimum of the quadratic is found. 

Powell has added some modifications to the procedure to ensure 

rapid convergence for more difficult objective functions and poor starting 

points. The method appears to be very efficient in general. The method 

has been programmed in FORTRAN as program OPTMSE and listed in Appendix C.l. 

5.3.2 NeIder-Mead Method. 
32 

In the NeIder-Mead method the 

optimal solution for a problem involving n variables is obtained by a 

search procedure using a "simplex". This is defined by a set of (n+l) 

points in the n-dimensional space of the variables. In a two-dimensional 

space the simplex is defined by three points forming a triangle; in a 
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three-dimensional space by four points forming a tetrahedron, etc. Over 

successive i tera tions the simp lex is mod ified by processes of "reflec

tion", "expansion", and "contraction", to be defined; eventually it 

becomes smaller and smaller and converges on the optimal point. 

Let P 
0' 

Yi 

H 

L 

P 

The following definitions are made: 

P
l

' .. P
n 

be the (n+l) points defining the current simplex, 

-- the value of the objective function at each P., 
~ 

= 

= 

the suffix such that Y
H 

= max (y
i
), 

the suffix such that YL min (y
i
), 

[P . p .] = 
. ~ J 

the centroid of the points excluding PH' 

the distance from p, to P,. 
~ J 

The steps in one iteration of the method are as follows. 

(a) Reflection. The reflection of PH' denoted by P' , is obtained. 

Its coordinates are defined by the relation 

P' = (1 + a) P - a PH 

where the "reflection coefficient", a, is usually taken as 1.0. If 

Y' 1 ies be tween Y
H 

and YL' the PHis rep laced by P' to form a new 

simplex. 

(b) Expansion. If y' < YL' then P' is expanded to P" by the relation 

P" == cP' + (1 - c ) P 
where the "expansion coefficient", c, is generally taken as 2.0. 

If y" < Y
L

, rep la c e PH by P" and start the next iteration. 

Otherwise, rep 1 ace PH by P' and restart. 

(c) Contraction. If in stage (a) it occurs that Y' > y, for all i # H, 
~ 

de fin e a new PH to be either the old PH or P' , whichever has the 

lower y value, and contract PH' thus 

P' , :: bP H + (1 - b) P 

where the " con trac tion coefficient", b, is usua lly taken as 0.5. 

Then replace PH by P" and start the next iteration, unless 

y" > min (YH' y'), in which case replac e all the P 's by 
i 

(Pi + P
L

)/2 and restart. 

,- -



The iteration process continues until a stop criterion is 

satisfied, indicating convergence on a minimum. A flow chart taken 

from Ref. 32 is shown in Fig. 5.2. 

The method appears to be very efficient for a wide range of 

objective functions. The method has been programmed in FORTRAN as 

program SIMPLEX and is listed in Appendix C.2. 

5.4 Limitations of the Methods 

The second order methods using derivatives and the two search 

methods presented generally give rapid convergence and good solutions 
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for problems in which the contours of the objective function are fairly 

regular. When the contours are very irregular, solution will be more dif

ficult. However, these methods have been found to give a reasonable rate 

of convergence, even in several test cases having irregular contours such 

as the function 

known as Rosenbrock's parabolic valley. 

When the objective function is not unimodal, there is no guarantee 

that the solution obtained will be the global optimum rather than a local 

optimum.
30 

The NeIder-Mead method is considered most likely to terminate 

at a global optimum, provided the initial points defining the simplex are 

widely dispersed. In general, when it is known or suspected that there 

is more than one optimum, a safe procedure is to compare solutions 

obtained using widely different starting points. 

In some cases the gradient of' the objective function is very flat 

in a wide region around the optimal point. This makes exact determination 

of the optimal point very difficult, although the actual optimal value of 

the objective function can be found quite accurately. In such cases it is 

useful to obtain two-dimensional plots of contours of the objective func

tion, and these may be of more significance than the value of the optimal 

point itself. When gradients are very flat, a wide choice of dimensions 

is usually possible. 
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The choice of a starting point can be important in some cases. If 

the starting point is far removed from the optimal point, solution may be 

difficult in the case of very irregular contours. If there are local 

optima or a very flat gradient, the starting point may influence the 

solution. 
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C HAP T E R 6 

OPTIMIZATION OF BRIDGES CONSTRUCTED ON FALSEWORK 

In this chapter the problem of optimizing the cross section of 

bridges constructed on fa1sework will be considered. The function to be 

minimized will be the cost of the bridge. The dimensions defining the 

basic geometry of the cross section to produce this minimum cost will be 

determined. 

The optimization will be carried out for the sample case of a 

two-span, four-lane crossover, having the same length as the bridge 

designed in Chapter 3. Two cases will be solved: (a) a superstructure 

consisting of a pair of single-cell boxes and (b) one consisting of a 

multi-cell box girder. The procedure used in these examples can be 

readily extended to other spans. Extension of the method to bridges 

having more than two spans will be discussed. 

The steps in the optimization procedure are as follows: 

(a) A mathematical model of the structure is set up.--The constants, 

independent variables, and dependent variables for a nonlinear program

ming problem are defined. 

(b) A computer subroutine is developed to calculate the objective 

function.--The objective function is calculated by carrying out a simpli

fied design of the superstructure and summing the costs of the various 

components. This process is programmed to form the computer subroutine. 

(c) The nonlinear programming problem is solved by the Ne1der-Mead 

method and the Powell method.--Computer programs for both methods are used, 

together with the objective function subroutine, to obtain the optimal 

solution of the problem. 

145 
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6.1 First Example--Two-span, Double 
Box Girder Bridge 

The first example for optimization is shown in cross section in 

Fig. 6.1. The cross-sectional type, the cable pattern, and the support 

system are the same as in the example designed in Chapter 3. Each span 

is 180 ft. 

To obtain the optimum cross section the problem must be expressed 

in mathematical terms, i.e., as a nonlinear programming problem. The 

various dimensions and quantities will first be somewhat artibrarily 

classified into constants, independent variables, and dependent variables 

as follows. All dimensions are in foot units. 

(a) Constants: 

The spans of the bridge: 180ft. - 180 ft. 

b: overall width 

b
6

: width of cast-in-place strip 

t4: web thickness (based on anchorage and placement requirements) 

Minimum thickness of bottom slab: 6 in. 

Thickness of outer edge of deck slab: 6 in. 

Segment length: 10 ft. 

(b) Independent Variables: 

b
l

: width of cantilever portion of deck slab 

b
2

: width of outer internal spans of deck slab 

b
3

: width of lower slab of each box 

d : depth of concrete cross section 

(c) Dependent Variables: 

b
S

: width of central span of deck slab 

s: sloping height of web between slabs 

tl: thickness at root of cantilever portion of deck slab 

t2: thickness of interior portion of deck slab 

t3: thickness of bottom slab at pier 

q: fraction of span over which bottom slab is thickened 

A: cable area 
s 
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NOTES: Bottom slab thickness tapers from t) at pier to 0.5 ft. at l80q ft. 

from pier. 
All dimensions are in feet. 
Spans: 180 ft.-180 ft. 

Fig. 6.1. Cross section of first example 

3d b + 10 3d 

NOTE: Dimensions in feet. 

Fig. 6.2. Profile of roadway embankment 
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The objective function, denoted by C, will be the cost of the 

bridge per foot length of superstructure. It is a function of the 

independent variables, i.e., 

The problem will be treated as an unconstrained nonlinear pro

gramming problem, i.e., no limits will be set on the values taken by 

the independent variables. This is the simplest approach possible, and 

will be justified if a meaningful solution is obtained. From physical 

considerations it seems likely that there will be such a solution. How

ever, if the resulting dimensions turned out to be physically unfeasible 

(i.e., d having a negative value), the problem would have to be reformu

lated as a constrained problem; limits would have to be set on the dimen

sions, and very different and more complex solution techniques used. 

The procedure outlined above was not the only approach considered. 

Initially the quantities t
l

, t
2

, and t3 were included with the independent 

variables and a constrained nonlinear programming problem formulated. 

Constrainm would take the form of inequalities expressing allowable limits 

for the concrete stresses. However, it became apparent that with this 

approach the problem would be so complex as to be probably insoluable. 

Besides, it became clear that the thicknesses could be treated correctly 

as dependent variables. 

6.2 The Objective Function 

A computer subroutine listed in Appendix C.2 was developed to 

calculate the objective function. This calculation involves the two 

stages of performing an approximate design of the superstructure and sum

ming the costs of the various components. 

The procedure used in the approximate design follows closely that 

outlined in Chapter 3, except that the later stages are omitted. The 

basic steps adopted here are as follows: 

(a) The deck is designed for wheel loads. 

(b) The cables are designed to balance the dead load. 

(c) The ultimate moment is calculated, the bottom slab thickness is 
determined, and the cable area adjusted. 
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A number of simplifications are made to facilitate the design 

and to reduce the time taken by the computer to evaluate the objective 

function. Reducing this time is important since the computer solution of 

the problem may involve over a hundred evaluations of the objective func

tion. Some of the main simplifications are as follows; others will appear 

in the course of the computations. 

(a) Fillets in the cross section are ignored. 

(b) The nonprestressed reinforcement is not calculated separately, 
but is considered as a fixed percentage of the concrete quantity. 

(c) The positions of the cable centers are treated as being inde
pendent of the cable quantity. 

These simplifications may significantly affect the design and 

hence the cost estimate. However, the purpose is not to develop a com

puterized final design but to determine the basic dimensions of the cross 

section for minimum cost. In other words, what is important is to obtain 

correct values of the independent variables at the optimal point. It is 

considered that the simplifications will have little effect on the solution 

value of these variables. 

The material properties used in the calculations are the same as 

those given in Chapter 3. 

6.2.1 Design of Deck. The deck slab thicknesses at the base of 

the centilever portion, t
l

, and in the interior portion, t
2

, are calculated 

using the procedure of Sec. 4.5. 

Cantilever portion of deck slab 

2 
Dead load moment -- 0.5 X 0.150 X b~ /2 + (tl - 0.5) X 0.150 X 

0.025(1 + tl)b l 
Live load and impact moment 1.3 PX/E 

Total moment: Ml 

1.3 X 16 X (b l 2)/[0.8(b
l 

- 2) + 3.75] 

26(b l 2)/(b
l 

+ 2.6875) 

2)/(b l + 2.6875) 

If b
l 

> 8.0 ft., the live load moment will include an additional 

term corresponding to a second wheel load. This is done in the subroutine. 
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The concrete moment resistance coefficient is 

R = 0.430 ksi 

The distance from the top of the slab to the center of the 

reinforcement is assumed to be 2 in. (corresponding to #8 bars and 1-1/2 in. 

concrete cover). The slab thickness required, tl (feet), is then given by 

tl = [2 + J( M
l /R)]/12 

= [2 + J(Ml /0.432)]/12 

= 0.167 + 0.1268 JMl 

Since Ml depends on t
l

, an initial value of tl is assumed in the 

subroutine and the correct value obtained by iteration. 

Interior portion of deck slab 

The interior portion of the deck has two different spans, b
2 

and 

b
S

' The latter is a dependent dimension given by 

b = b - 2b - 2b - 4t 
5 1 2 4 

The thickness required for each span will be calculated and t2 set to 

the larger value. 

(a) Span, S ~ b
S 

Dead load moment t2 X 0.150 X bS
2
/l2 

= 0.0125 t 2bS 
2 

Live load and impact moment 0" 1.3 X 0.8(S + 2)P/32 

1.3 X 0.8(b
S 

+ 2) X 16/32 

0.S2(bS + 2) 
2 

0.0125 t 2b
S 

+ 0.S2(bS + 2) Total moment; MS 

The slab thickness required, t
2
(feet), is given by 

t2 :0 0.167 + 0.1268 JM; 
(b) Span, S = b

2 

Total moment; 

However, this moment must be corrected for carry-over from the 

cantilever portion, as in Sec. 4.5.3. 



Clear sloping height of web: 

s = J[d 
Tq>slab stiffness: 

Web stiffness: 3 k4 :: 0.7St
4 

/s 

Corrected moment: M = (k4M2 + k
2
M

l
)/(k

4 
+ k

2
) 

The slab thickness required is 

t2 ~ 0.167 + 0.1268 JM 
Minimum thickness 

The minimum value a110wed for a11 slab thickr,·~sses wi11 be 

0.5 ft. 

6.2.2 Properties of Concrete Girder Section. The following 

properties of the minimum cross section (i.e., away from the pier) are 

next computed by the subroutine. 

all = area of the half-section (i.e., one box girder) 

a l area of the full section 
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d
Cl 

distance from top of girder to centroid of the half-section 

6.2.3 Cable Area. The cables are designed to balance the dead 

load of the concrete section, assuming the idealized double-parabolic 

profile. 

The minimum distance from the edge of the girder to the center of 

the cables is assumed to be 0.67 ft. (corresponding to six cables per 

web, 20 strands). 

Cable drape: h = (d - 0.67) - (d cl + 0.67)/2 

= d - O.Sdcl - 1.005 

Dead load per unit length of half-section = O.lSOa ll 
Cable force (per half-section) required to balance dead load: 

F = O.lSOa
ll 

X l802/8h 

,~, 607. Sa
ll 

/h 

Effective prestress: f :- O. 6 £' .. . 162 ks i 
se s 
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2 The cable area per full section in ft. is given by 

A = 2F/f 
s se 

2 X 607.5 X all/(162 X h X 144) 

a
ll / (19.2h) 

6.2.4 Ultimate Strength at Pier and Bottom Slab Thickness. The 

load factors are the same as in Sec. 3.6.1. The bending moments are 

calculated in the same way as in Sec. 3.7.2. The moments at the pier are 

as follows: 

Dead load moment 

Live load moment 

-0.125 (Concrete DL + Asphalt DL) X 180 

= -0.125 [0.150a
l 

+ 0.017(b - 2») X 1802 

= -607.5[a
l 

+ 0.113(b -2)J 

- -9,650 (i-ft.) 

2 

The secondary cable moment is obtained by calculating that for 

the idealized cable profile and mUltiplying by a correction factor of 0.7. 

This factor takes account of the difference between the actual and 

idealized profiles and was obtained during the preliminary design for the 

bridge of Chapter 3. 

Secondary moment: MS 0.7 [Resultant moment (ideal profile) - Primary 

moment (ideal profile)] 
2 

-·0.7 [(2 X 0.150all X 180 18) - 2F(d cl - 0.67)] 

0.7 [(12,150a ll ) - (2 X 607.5all/h)(dcl- 0.67)] 

850.5a11 [1 - (d
c1 

- 0.67)/h] 

The ultimate negative moment at the pier is then given by 

M = -1.35(DL moment) - 2.25(LL + Impact moment) -
u 

(Secondary moment) 

1.35(607.5)[al + 0.113(b - 2)] 

+ 2.25(1.164)(9650) - MS 

820ra1 + 0.113(b - 2») + 25,260 - MS 

The thickness of the bottom slab at the pier, t
3

, is chosen to 

give adequate compressive capacity at ultimate load. 



Moment arm: dm = d - 0.67 - 0.5t
3 

The required value of the thickness is given by 

M I(d X W X 0.85f' X 2b
3

) 
u m c 

M I(d X 0.9 X 0.85 X 6 X 144 X 2b3 ) 
u m 

-, M 1(1322 d b
3

) 
u m 

Since dm depends on t
3

, an initial value of t3 must be assumed in the 

subroutine and the correct value obtained by iteration. 
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The cable area required for ultimate strength is now determined. 

The following (conservative) value is assumed for the cable stress at 

ul tirna te load. 

f = 240 ksi su 

Cable area required: 

A (ult)= M I(dm X W X fsu) s u ' 

M I(d X 0.9 X 240 X 144) 
u m 

M l(3l,lOOd ) 
u m 

If the value of A computed previously is less than this value, then it 
s 

must be replaced by this value. 

6.2.5 Extent of Bottom Slab Taper. The value of q, the fraction 

of the span over which the bottom slab must be thickened, is also 

calculated. 

The effective depth d (i.e., the distance from the center of the 
e 

cables to the bottom of the girder) varies along the span from a maximum 

value of (d - 0.67) at the pier. A linear approximation to d was obtained 
e 

by drawing a straight line through points on the cable profile at the pier 

and at the point of contraflexure, in the case of the example in Chapter 3, 

giving 

d . . ( d - O. 67) - 1. 7 z ( d - 1. 34 ) 
e 

where z .' (the distance from the pier center)/(span). 
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At the end of the taper in the bottom slab, the thickness is 

0.5 ft. and the ultimate moment capacity is obtained as follows. 

Moment arm: d 
m 

d - 0.5/2 
e 

d - 0.92 - 1.7z(d - 1.34) 

Moment capacity: 

Mu (min) -- dm X (f'! X O. 85f~ X 2b
3 

X 0.5 

dm X 0.9 X 0.85 X 6 X 144 X 2b
3 

X 0.5 

661 d
m

b
3 

The actual moments at z are obtained as follows. The dead load 

moment varies parabolically, thus 

Dead load moment at z ~ (DL moment at pier) X (1 - 5z + 4z2) 

The live load moment for this case will be obtained by loading 

only the span that does not contain the section considered, and so will 

vary linearly as follows. 

Live load moment at z = 0.5 X (LL moment at pier) X (1 - z) 

The secondary moment varies linearly along the span. Hence, 

Secondary moment at z ~ M X (1 - z) 
S 

The ultimate negative moment at z is then given by 

M (z) = -1.35 (DL moment) - 2.25(LL moment) - (Secondary 
u 

moment) 

820[a
1 

+ 0.113( - 2)](1 - 5z + 4z2) 

+ 12,630(1 - z) - MS(l - z) 

The subroutine computes the value of M (z) for successive values of 
u 

z, starting from z = 1/9, until a value less than M (min) is obtained. 
u 

The fraction q is set equal to the value of z at that point. 

6.2.6 Average Section Area. The subroutine next computes the 

area of the full cross section at the pier, a
2

. 

The average cross-sectional area is given by 
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6.2.7 Unit Costs. The following typical unit costs (1970) were 

obtained from manufacturing firms and from the Texas Highway Department. 

The costs are relatively of a correct magnitude, although a wide range 

was indicated. Objective functions can easily be updated for new or more 

accurate cost information. 

(a) Concrete 

Cost of concrete without reinforcement 

Cost of reinforcement 

3 = $75 per yd. 

= $2.78 per ft~ 
~ $0.20 per lb. 

Both figures include an allowance for the placing of the materials. 

A cost analysis of the bridge designed in Chapter 4 gave the 

following average figure for the cost of the concrete + reinforcement, 

which will be used in this optimization study. 

Cost of reinforced concrete 

(b) Prestressing cables 

Cost of cables (including tensioning) 

(c) Epoxy re~in joints 

Cost of epoxy (including application) 

(d) Earth fill 

Cost of fill (including labor) 

(e) Transportation of segments 

~ $4.92 per ft~ 

= $0.70 per lb. 

- $343 per ft~ 

- $80 per ft~ 

3 - $1.0 per yd. 

~ $0.037 per ft~ 

Seventy-five miles is chosen as a likely average distance for 

transportation. For this distance, 

Transportation cost ~ $2.55 per kip 

(f) Forms - The cost of the forms is considered likely to be a 

constant, for the range of dimensions possible in this analysis, 

and is not taken into account. 

(g) A~phalt surface - The asphalt cost is also ignored, as it is a 

constant. 

(h) Erection cost - There are insufficient data available about 

erection costs. The cost will depend on the weight of the 
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segments, but will probably increase with discrete increments 

of weight rather than in a linear manner. Hence, it will not 

be taken into account. 

Final cost objective functions will thus correctly reflect 

variables such as costs of concrete, steel, transportation of segments, 

etc., but will not give correct cost estimates, since items such as forms 

and stressing labor are not included. 

6.2.8 Total Cost per Foot Length. The costs of the various 

items, per foot length of superstructure, are obtained as follows: 

(a) Concrete 

Cost per ft. length ~ (Unit cost) X (Average section area) 

4.92a 

(b) Cables 

Cost per ft. length 

(c) Joints 

(Unit cost) X (Cable area) 

343A 
s 

An epoxy joint thickness of 1/16 in. is assumed 

Cost per ft. length = (Unit cost) X (Joint thickness) X 

(Average section area)/(Segment length) 

(80) X [1/(16 X 12)J X (a)/(10) 

0.042a 

(d) Earth fill - The quantity of earch fill, forming the roadway 

embankment leading up to the abutment, is a function of the girder 

depth, d. The profile of the embankment at the abutment (above 

the level of the bottom of the girder) is shown in Fig. 6.2. The 

width and slopes shown are those required by the Texas Highway 

Department. A 150 ft. length of embankment is assumed, giving a 

volume of fill (above that required for a value of d ~ 0) at 

each abutment, as follows: 

Vol. : (b + 10 + 3d) X d X 150 

Cost per ft. length of superstructure (Unit cost) X (vo1.)/ 

(1/2 length of bridge) 

0.037 X (b + 10 + 3d) X d X 150/180 

0.031(b + 10 + 3d)d 



(e) Transportation 

Cost per ft. length - (Unit cost) X (Unit weight) X (Average 

section area) 

(f) Total cost 

- 2.55 X 0.150 X a 

~ 0.383a 

The total cost per ft. length is given by 

C - 4.92a + 343A + 0.042a + 0.031(b + 10 + 3d)d + 0.383a 
s 

5.345a + 343A + 0.031(b + 10 + 3d)d 
s 
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The quantity C constitutes the objective function for the problem. 

6.2.9 Subroutine. A listing of the subroutine which carries out 

the design outlined above and computes the objective function C is given 

in Appendix C.3. 

The constants b, b
6

, and t4 are set to the following values, 

corresponding to the design in Chapter 3. 

b 50 

b
6 

2 

t4 1.0833 

6.3 The Optimal Solution 

6.3.1 Optimization Methods. To solve the unconstrained nonlinear 

programming problem the methods of Ne1der-Mead and Powell will be used. 

As explained in Chapter 5, these methods do not require derivatives of 

the objective function. It is probable that continuous derivatives of 

the object function C do not exist at some points. In any case, to calcu

late the derivatives would be extremely difficult. 

Computer programs for both the Ne1der-Mead and the Powell methods 

were used in order to obtain solutions by both methods in order to see 

which is the more efficient for this problem. 

6.3.2 Solution. Optimal solutions to the problem were obtained 

using both optimization programs together with the subroutine for determining 

the objective function. 
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As a precaution against obtaining a local optimum rather than a 

global optimum, several solutions were obtained using different starting 

points. 

In order to determine the sensitivity of the optimal point to 

relative changes in the unit costs of the materials, a second problem was 

solved in which the tendon cost was increased by 50 percent. Thus, the 

objective functions for the two problems are as follows: 

First problem: 

Second problem: 

C 5.345a + 343A + 0.031(b + 3d + 10)d 
s 

C .. 5.345a + 514.5A + 0.031(b + 3d + 10)d 
s 

The solutions obtained for both problems, using the two optimiza

tion methods and various starting points, are shown in Table 6.1. The 

best solution for each problem, i.e., the one having the lowest value of 

the objective function, is indicated. 

6.3.3 Contour Plot. To obtain an estimate of the sensitivity of 

the objective function to small changes in the variables near the optimum, 

a contour plot of this function is useful. 

In the case of the first problem, a two-dimensional contour plot 

of the objective function was obtained by computer. The two variables 

chosen for the axes of the plot were b
1 

and d. The other independent 

variables, b
2 

and b
3

, must be set at constant values or else made dependent 

on b
1 

and d. They were made functions of b1 in the following way. 

b
2 

was set at a fraction of the sum of the interior spans of the 

top slab, i.e., (b - 2b
1 

- 4t
4

), and b
3 

was set at a fraction of the 

bottom slab width for vertical webs, i.e., (b
2 

+ 2t
4
). The fractions were 

chosen to give the correct values of b
2 

and b
3 

at the optimal point; thus, 

b
2 

O.319(b - 2b
1 

- 4t
4

) 

b
3 

0.700(b
2 

+ 2t
4

) 

The contour plot is shown in Fig. 6.3. 

6.3.4 Comments. With each of the two problems solved, there is 

some variation in the values obtained for the variables at the optimal 

point, using the different optimization methods and different starting 

points. However, the variation in the optimal value of the objective 



TABLE 6.1. OPTIMAL SOLUTION FOR TWO-SPAN DOUBLE BOX GIRDER BRIDGE 

Method Starting Point Solution 

Variables (feet) Variables (feet) Objective 
Function 

b1 b2 b3 d b
1 b

2 b 3 
d Lid ($ per ft.) 

Objective function: C = 5.345a + 343A + 0.031(b + 3d + 10)d s 

Ne1der-Mead 6.0 10.0 10.0 8.0 8.00 9.47 8.14 6.30 I 28.6 472 .04 

Powell 10.0 8.0 7.0 5.0 9.35 8.06 6.85 6.381 28.2 474.00 

Powell 6.0 
• 

10.0 7.0 5.0 8.00 9.46 7.73 6.32 28.5 472.50 

Best Solution 8.00 9.47 8.14 6.30 28.6 472.04 

Objective function: C = 5.345a + 514.5A + 0.031(b 
s 

+ 3d + 10)d 

Ne1der-Mead 6.0 10.0 10.0 8.0 8.00 9.38 7.15 7.27 24.8 535.95 

Ne1der-Mead 6.0 10.0 5.0 8.0 8.00 9.38 7.12 7.30' 24.6 535.96 

Powell 6.0 10.0 10.0 8.0 7.23 10.00 7.39 7.20 25.0 538.59 

Powell 9.0 9.0 9.0 8.0 8.22 9.14 6.83 7.29 24.7 536.72 

Best Solution 8.00 9.38 7.15 7.27 24.8 535.95 



9.0r---------T---------T---------T---------~--------~------~ 

d(ft.) c = 482.5 

8.0~ __ ------~--------.... ~~--------+_-~----~~~~~~~~--------~ 

5.0~--------~-------- __ +_--------~----------+_--------_+----------~ 

4.0~ ______ ~ ________ ~ ________ ~ ______ ~~ ______ ~ ________ ~ 

5.0 6.0 9.0 10.0 11.0 

Fig. 6.3. Objective function contours for two-span double box girder 
bridge. 

Objective Function 

C = 5.345a + 343A 
s 

+ 0.03l(b + 3d + 10)d 



function is less than 0.5 percent. Examination of the contour plot 

reveals that the gradient of the objective function is quite flat near 

the optimum. Consequently, the optimal point is not sharply defined. 

The best solutions to both problems were obtained using the 

NeIder-Mead method. In the case of the Powell method, some starting 

points were tried that did not lead to a solution at all. The reason 
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for this was that in one of the early iterations the method would arrive 

at a point having a value of b
3 

or d so small that the objective function 

subroutine could not obtain a value for t3' On the other hand, with the 

NeIder-Mead method, the computer output always revealed a slow but steady 

convergence. 

The value of b
l 

(the width of the cantilever portion of the deck 

slab) has a value of 8.00 ft. at the optimum in both problems. The 

apparen t reason for this "round figure" value is tha t for grea ter wid ths 

a second wheel load would be acting on the cantilever, giving a discon

tinuity in the gradient of the objective function at this value. The 

value of b2 (the width of the outer interior span of the deck slab) is 

such that this span is less than the central span, bs ' The value of b3 
(the width of the lower slab) is such as to give sloping webs for the box 

girders. 

The effect of increasing the unit cost of the cables as done in 

the second problem is to increase the value of the depth d at the optimum 

and to decrease the value of b
3

. The increase in d was expected because 

the required cable area decreases with the depth of the superstructure. 

Optimal LId ratios decreased from 29 to 25 with increased tendon costs. 

The bottom flange area required for negative moment also decreases with the 

depth; hence the decrease in b
3

. 

The contour plot for the first problem (Fig. 6.3) shows that the 

objective function is not very sensitive to small changes in the variables 

near the optimal point. In other words, as already noted, the gradient is 

flat. A range of values of b
l 

and d to give values of the objective 

function within 1 percent and 2 percent of the optimal value are as follows: 
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Objective Function Range of b
1 
(ft) Range of d(ft) Range of Lid 

1 percent above optimal value 6.8 to 9.0 5.6 to 7.1 32 to 25 

2 percent above optimal value 5.3 to 10.8 5.2 to 7.7 35 to 23 

6.4 Second Examp1e--Two-Span, Multi-cell 
Box Girder Bridge 

The cross section of the second example bridge to be optimized is 

shown in Fig. 6.4. The spans, the support system, and the cable pattern 

are the same as for the first example. The constants and the variables 

for the nonlinear programming problem are the same as in the previous 

example, apart from the following exceptions to the constants. 

The dimension b
6 

does not appear in this example. The following 

item is added: 

n number of webs 
w 

Four webs are shown in Fig. 6.4. However, the subroutine is set up to 

handle any arbitrary number. If there are more than four webs, the 

interior spans of the deck slab, apart from those adjacent to the canti

lever portion, are all set equal to b
S

' 

The procedure for computing the objective function is similar to 

that used in the previous case. A listing of the subroutine is given in 

Appendix C.4. The constants b, t 4 , and nw are set to the following values: 

b 50 

t4 1.0833 

n 4 
w 

Two problems are again conSidered, corresponding to two values of 

cable cost. As before, the objective functions are given by: 

First problem: 

Second problem: 

C 5.345a + 343A + 0.03l(b + 3d + 10)d 
s 

C = S.34Sa + 5l4.SA + 0.03l(b + 3d + 10)d 
s 

The optimal solutions obtained from the Ne1der-Mead method and the 

Powell method are shown in Table 6.2. 
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b 

b b
2 

'I~ r t2 

Q 
t3 

NOTES: Bottom slab thickness tapers from t3 at the pier to 
0.5 ft. at l80q ft. from the pier. 
All dimensions are in feet. 
Spans: 180 ft.-180 ft. 

Fig. 6.4. Cross section of second example 
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TABLE 6.2. OPTIMAL SOLUTION FOR TWO-SPAN THREE-CELL BOX GIRDER BRIDGE 

Method Starting Point Solution 

Variab 1es (feet) Variables (feet) Objective 
Function 

b 1 b2 b3 d b 1 b2 b 3 d Lid ($ per ft.) 

Objective function: C = 5.345a + 343A + 0.031 (b + 3d + 10)d s 

NeIder-Mead 6.0 10 .0 20.0 8.0 10.83 6.46 24.39 5.95 30.2 509.63 

Powell 6.0 10.0 20.0 8.0 11.00 6.29 24.39 5.91 30.4 509.68 

Best Solution 10.83 6.46 24.39 5.95 30.2 509.63 

Objective func t ior,: C = 5.345a + S14.5A + 0.031(b + 3d + 10)d s 

NeIder-Mead 6.0 10.0 20.0 8.0 10.89 6.10 23.25 6.32 28.5 582.45 

Powell 6.0 10.0 20.0 8.0 14.30 8.12 17.28 6.83 26.3 581.20 

Powell 10.0 8.0 20.0 8.0 13.78 7.68 18.30 6.69 26.9 581.28 

Best Solution 14.30 8.12 17.28 6.83 26.4 581.20 
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A contour plot for the first problem is given in Fig. 6.5. The 

axes correspond to the variables b
l 

and d. As in Sec. 6.3.3, the 

variables b
2 

and b
3 

are expressed in terms of b
l 

in such a way that the 

correct values are obtained at the optimal point; thus, 

b2 = 0.269(b - 2b l - 4t4 ) 

b3 = 0.86l(b 2b l ) 

6.4.1 Comments on the Optimal Solution. As in the previous 

example, there is some variation in the values of the variables at the 

optimal point, obtained with the different methods and different starting 

points. The variation in the optimal value of the objective function does 

not exceed 0.2 percent. Again, the flat gradient of this function is the 

reason why the optimal point is not sharply defined. 

The best solution for the first problem was obtained by the 

NeIder-Mead method and for the second problem by the Powell method. The 

Powell method yielded solutions with all of the starting points tried. 

In view of the small variation in the solution values of the objective 

function, the two methods can be considered about equally effective in 

this example. 

The values of b
l 

and b
3 

in the optimal solutions indicate a large 

cantilever overhang for the top slab and a narrow bottom slab. The 

apparent reason for this is that a large area of bottom slab is required 

only in the negative moment region near the pier, thus leading to a narrow 

width for the optimum, and in consequence the cantilever portion of the 

top slab becomes large, avoiding excessive slopeof the outside webs. 

The effect of increasing the unit cost of the cables is again to 

increase the value of the depth d at the optimum. Lid decreases from 30 

to 26 with increasing tendon costs. Also the value of b
3 

decreases and 

that of b
l 

increases. 

The contour plot for the first problem (Fig. 6.5) again indicates 

that the objective function is not very sensitive to changes in the 

variables near the optimal point. The range of values of b l and d giving 

values of the objective function within 1 percent and 2 percent of the 

optimal value are as follows. 
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Fig. 6.5. Objective function contours for two-span three-cell box girder 
bridge 



Objective Function 

1 percent above optimal value 

2 percent above optimal value 

6.5 The Optimal Solution as 
a Basis for Design 

Range of b
l 
(ft) 

9.8 to 13.7 

8.8 to >14.0 
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Range of d (ft) Range of L/d 

5.3 to 6.6 34 to 27 

4.9 to -7.2 36 to 25 

The procedure developed in this chapter makes possible the deter

mination of the optimal basic dimensions (b
l

, b
2

, b
3

, and d) for the cross 

section of a two-span bridge, of given length, width, and sectional type. 

These optimal dimensions can form the basis for the design of the bridge. 

As noted in Chapter 2 and Sec. 3.8, the first step in the design 

of the superstructure is to select an approximate cross section. The 

full dimensions, including the various thicknesses, are required. These 

latter dimensions, classified as dependent dimensions in Sec. 6.1, may be 

otained as follows. 

The subroutine developed to compute the objective function can 

easily be converted into a program to compute the full dimensions of the 

section. The variables b
l

, b
2

, b
3

, and d can be made input items for 

this program and the various dimensions computed by the subroutine, e.g., 

the slab thicknesses, the section area, and the cable area, can be printed 

as output. Thus, this program performs the function of a preliminary design. 

6.6 Possible Limitations of 
the Optimal Solution 

The question must finally be raised as to whether the cross section 

determined by the optimal solution, i.e., having the minimum cost, is in 

fact the most appropriate one to use in design. The following considera

tions are relevant. 

The op timal d ep th, d, obtained using the bes t es tima te of cable 

cost, came to 6.30 ft. in the case of the double box girder and 5.95 ft. 

for the three-cell box girder. These correspond to a span/depth ratio of 

about 30, which is higher than that for most box girder bridges actually 

constructed abroad. It is to be noted that the smaller the depth the 

greater the number and the crowding of the cables. However, there is no 
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reason to consider this excessive for these values of d. The higher 

span/depth ratios may be reflecting both lighter U.S. live loads and 

different economic conditions. 

Deflections are also greater for smaller depth. A deflection 

limitation was not built into the subroutine for the objective function. 

This could be done but would add significantly to the complexity. In 

view of the very small deflections obtained for the bridge designed in 

Chapter 3 and considering that the dead load was balanced, it is unlikely 

that the deflections obtained for the optimal values of depth, given 

above, will be excessive. 

In the case of the three-cell box girder, the optimal values of 

b
1 

indicate a large cantilever overhang. The larger the overhang the 

more crowded the transverse reinforcement becomes in the top of the slab. 

It is also possible that with a large value of b
l 

the shear stresses in 

the outer webs of the girder may be considerably higher than those in 

the inner webs. A large inequality of shears will probably result in a 

greater quantity of web reinforcement being required. 

The flat gradient of the objective function near the optimum allows 

a reasonable latitude in the choice of the dimensions without large varia

tion in this function. So an increase in depth or a decrease in the 

cantilever overhang (in the case of the three-cell box) can be made with 

small increase in cost. 

6.7 Other Examples for Optimization 

The methods developed in this chapter for optimizing two-span 

bridges can be extended to bridges having a greater number of spans. 

The changes in procedure will follow the changes outlined in the design 

method. 

In the case of long viaducts, the span could also be made a 

variable to be optimized. This will be discussed further in the next 

chapter. 



C HAP T E R 7 

OPTIMIZATION OF BRIDGES CONSTRUCTED IN CANTILEVER 

The problem of optimizing the cross section of bridges constructed 

in cantilever will be considered in this chapter. The difference in the 

design procedure for a bridge of this type as compared to one constructed 

on falsework will be reflected in the subroutine to compute the objective 

function for the problem. Otherwise, the optimization procedure is essen

tially similar to that described in the preceding chapter and the basic 

steps are as follows; 

(a) A mathematical model of the structure is set up. 

(b) A subroutine is developed to calculate the objective function. 

(c) The nonlinear programming problem is solved using the NeIder-Mead 
method and/or the Powell method. 

The sample case for which the optimization is carried out in full 

is that of a three-span bridge, having the same length and span ratio as 

that designed in Chapter 4. The function to be minimized will again be 

the cost of the bridge. The method used in this example can be readily 

extended to other lengths of bridge. Extension of the method to bridges 

with other span ratios and to viaducts having many spans will be discussed. 

7.1 Example Case--Three-Span 
Double Box Girder Bridge 

The cross section of the example bridge is shown in Fig. 7.1. It 

consists of a pair of connected, single-cell box girders. The segmental 

pattern, the cable pattern and the support system are the same as for 

the bridge designed in Chapter 4. The spans are 100 ft. - 200 ft. -

100 ft. 

The constants, independent variables, and dependent variables for 

the nonlinear programming problem are the same as in Sec. 6.1. The 
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NOTES: Bottom slab thickness varies from t3 at main pier to 0.5 ft. at 
100q ft. from pier. 
All dimensions are in feet. 
Spans: 100 ft.-200 ft.-lOO ft. 

Fig. 7.1. Cross section of example for cantilever erection 

.-
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objective function C, the cost of the bridge per foot length, is a function 

of the independent variables; thus 

The problem will again be treated as unconstrained. 

7.2 The Objective Function 

The subroutine given in Appendix C.S is developed to calculate 

the objective function, by performing an approximate design of the super

structure and summing the costs of the various components. 

The basic steps adopted in the approximate design are as follows: 

(a) The deck is designed for wheel loads. 

(b) The bottom slab thickness and the top cables are designed for 
cantilever erection. 

(c) The bottom cables are designed for ultimate load on the completed 
superstructure. 

This procedure closely follows that outlined in Chapter 4, except 

that some steps are omitted. Various simplifications are made to 

facilitate the design. These include the ones outlined in Sec. 6.2. 

The material properties assumed are as given in Chapter 3. 

7.2.1 Design of Deck. This is exactly the same as in Sec. 6.2.1. 

7.2.2 Properties of Concrete Section at Center of Bridge. The 

following properties of the minimum section are next computed by the 

subroutine. 

all area of ~e half section (i.e., one .box girder) 

a l = area of ~e full section 

d 
cl 

~ distance from top of girder to centroid of ~e 
half section 

7.2.3 Bottom Slab Thickness. The bottom slab thickness at the 

main piers, t
3

, is designed to give adequate compressive capacity for 

ultimate strength during cantilever erection. The ultimate load factors 

are the same as in Sec. 3.6. The approximate bending moments are calcu

lated as in Sec. 4.7.2 and the ultimate moment is as follows for each box 

girder. 
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M = 1.35(Dead load moment) + 2.25(Live load moment) 
u 2 

1.35(0.150a ll X 100 /2) + 2.25(25 X 95) 

1012.5a
ll 

+ 5,344 

The distance from the top of the girder to the center of the top 

cables is assumed to be 0.46 ft., as in the bridge designed in Chapter 4. 

Moment arm: d
m 

= d - 0.46 - 0.5t
3 

The required value of the thickness is given by 

t3 = M)(dm X q'l X 0.85f'c X b3) 

_. M /(d . X 0.9 X 0.85 X 6 X 144 X b
3

) 
u n, 

M /(661 d b
3

) u m 

The value of q, the fraction of the cantilever span over which the 

bottom slab must be thickened, is now calculated. At the end of the taper 

the bottom slab thickness is 0.5 ft. and the ultimate moment capacity is 

obtained as follows. 

Moment arm: d 
m 

d - 0.46 - 0.5(0.5) 

-d-O.71 

Moment capacity: Mu(min) = dm X ~ X 0.85f~ X b3 X 0.5 

dm X 0.9 X 0.85 X 6 X 144 X b3 X 0.5 

The actual ultimate moment at a distance (lOOz) ft. from the pier 

center is given by 

M (z) 
u 

1.35(DL moment) + (LL moment) 

1.35 X 0.5 X 0.150all [lOO(1 -

2.25 X 25(95 - 100z) 
2 

1012.5all (1 - z) + 5,625(0.95 

2 
z)] + 

- z) 

The subroutine computes the value of M (z) for successive values 
u 

of z, starting from z = 0.10 until a value less than M (min) is obtained. 
u 

The fraction q is set equal to the value of z at that point. 

7.2.4 Properties of Concrete Section at Main Piers. The following 

properties of the maximum section can now be computed by the subroutine. 
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:::: area of the half section 

a2 = area of the full section 

dc2 
:::; distance from top of girder to centroid of the 

half section 

7.2.5 Top Cable Area. The top cables are designed to balance 

60 percent of the dead load during cantilever erection. 

The moment to be balanced at the pier for each box girder 

(i.e., the half section) is given by 

M = 0.6(Dead load moment) 
2 = 0.6 X 0.150a ll X 100 /2 

= 450an 
The eccentricity of the cables about the section centroid is 

d = d - 0.46 ec c2 

The effective prestress: f = 0.6f' = 162 ksi se s 

The top cable area required for the full cross section at the 

pier is given by 

Asl = 2 X M/(d ec X fse) 

= 2 X 450a11 /(d ec X 162 )( 144) 

:::: 0.0386a l1/(d c2 - 0.46) 
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The capacity of the cables at ultimate load is now checked. From 

Sec. 7.2.3 the ultimate moment at the pier is given by 

Mu ~ 1012.5all + 5,344 

and the moment arm is 

dm = d - 0.46 - 0.5t
3 

The following (conservative) value is assumed for the cable stress at 

u1 tima te load 

f - 240 ksi su 

Hence, the top cable area required for ultimate strength is .given by 
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Mu/(dm X W X fsu) 

M /(d X 0.9 X 240 X 144) u m 
M /(31,100 d ) u m 

If the value of Asl computed previously is less than this value, then 

it must be replaced by this value. 

The average top cable area along the length of the girder will 

be required for the cost estimate. This was calcuffited in the case of 

the bridge designed in Chapter 4 and found to be 43 percent of the cable 

area at the pier. This proportion will be assumed here. Hence, 

Average top cable area: Ast = 0.43Asl 

7.2.6 Bottom Cable Area. The bottom cable area is designed to 

provide adequate ultimate strength at the center of the completed bridge. 

The bending moments (on the full cross section) at the center of 

the bridge are calcu~ed as in Sec. 4.8.2 and are as follows: 

Dead load moment 

Live load moment 

0.055(Concrete DL + Asphalt DL) X 2002 

0.055fO.150al + 0.017(b - 2)] X 200
2 

330[a l + 0.113(b - 2)] 

6,490 (k-ft.) 

Secondary moment due to top cables 

-0.055(balanced load) X 2002 

-0.055(2 X 0.6 X 0.150a ll ) X 200
2 

= -396all 

In order to determine the secondary moment due to the bottom cables, 

an initial value of the bottom cable area at the bridge center, As2 ' is 

assumed. The cable force and the eccentricity of the cables about the 

centroid of the section are obtained as follows: 

Cable force: F = f X A se s2 

- 162 X 144 X As2 

= 23,330A
s2 



The distance from the bottom of the girder to the center of the bottom 

cables is assumed (conservatively) to be 0.5 ft. 

Cable eccentricity: dec = (d - dcl 0.5) 
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Since the cable pattern and segmental pattern are the same as in 

Chapter 4 the equivalent cable load and the secondary moment may be 

obtained in the same way as in Sec. 4.8.4. The equivalent load for the 

main span bottom cables is given by 

P F X d 1(6 X 10) ec 
23,330A 2d 160 

s ec 
388.8A 2d s ec 

The secondary moment due to the main span bottom cables is (0.1013 X 

P X 200). In Chapter 4 the secondary moment due to the side span bottom 

cables amount to 14 percent of this value, So it is assumed here that 

the secondary moment due to all of the bottom cables is given by 

MS 1.14 X 0.1013 X P X 200 

1.14 X 0.1013 X 388.8A 2d X 200 
s ec 

= 8,980A 2d 
s ec 

The ultimate moment at the center of the bridge can now be 

determined; thus 

M 1.35(DL moment) + 2.25(LL + Impact moment) 
u 

+ (Secondary moments) 

1.35[330(a
l 

+ O.113(b - 2» + 2.25(1.154)(6,490) 

+ (-396a ll + MS)] 

445.5[a l + 0.113(b - 2)] + 16;850 - 396a ll + MS 

The required cable area is now determined. In Sec. 4.8.4 a value 

of 267.5 ksi was calculated for the cable stress at ultimate load at the 

bridge center. The following conservative value will be assumed here. 

f 
su 

Depth of stress block: 

= 265 ksi 

d -A2f 1(0.85fb) a s su c 

As2 X 265/(0.85 ~ 6 X b) 

== 52A s2 / b 
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Moment arm: d 
m 

d - 0.5 - 0.5d a 

d - 0.5 - 26A s2 /b 

Bottom cable area required at center of bridge: 

= M / (d X (I') X f ) u m su 
M /(d X 0.9 X 265 X 144) u m 

= M / (34, 340d ) 
u m 

The subroutine thus computes the correct value of As2 by an 

iterative procedure, starting with the assumed value. 

The average bottom cable area over the full length of the bridge 

was calculated in the case of the bridge designed in Chapter 4 and found 

to be 47.5 percent of the area at the center. The same proportion will 

be assumed in this calculation. 

Average bottom cable area: Asb = 0.475A
s2 

7.2.7 Average Section Area and Cable Area. The average cross

sectional area is 

The average area of top and bottom cables is 

A 
s 

7.2.8 Cost per Foot Length of Bridge. The unit costs fur this 

bridge are the same as in Sec. 6.2.7. However, earth fill is not consid

ered in this case, as it is assumed that a conventional short span struc

ture leads up to each end pier of the bridge (as in Chapter 4) rather than 

an earth embankment. 

The objective function, i.e., the total cost per foot length, is 

given by the same expression as in Sec. 6.2.8, except that the last term 

(corresponding to earth fill) is dropped. Thus, 

C = 5.345a + 343A 
s 

A listing of the subroutine that computes the objective function, 

C, is given in Appendix C.5. The constants b, b
6

, and t4 are set to the 

following values corresponding to the design in Chapter 4. 



7.3 The Optimal Solution 

b 56.0 

b
6 

= 2.0 

t4 1.0 

The nonlinear programming problem having the above objective 

function was again solved using both the NeIder-Mead method and the 

Powell method. 

A second problem was also solved in which the cable cost was 

increased by 50 percent. The objective functions for the two problems 

are as follows: 

First problem: C 

Second problem: C 

5.345a + 343A 
s 

5.345a + 5l4.5A 
s 

The solutions obtained are shown in Table 7.1. 
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A contour plot obtained by computer for the first problem is 

presented in Fig. 7.2. The axes correspond to the variables b l and d. 

As in Sec. 6.3.3, the variables b
2 

and b
3 

are expressed in terms of b l 
in such a way that the correct values are obtained at the optimal point; 

thus 

b2 0.322(b - 2b l - 4t4 ) 

b
3 

0.783(b2 + 2t
4

) 

7.3.1 Comments. As in the examples of the previous chapter, 

there is some variation in the values of the variables at the optimal 

point, obtained with different methods and different starting points. 

The flat gradient of the objective function is again the reason for this. 

The variation in the optimal value does not exceed 0.2 percent. 

The best solution to both problems was obtained by the Nelder

Mead method. As in the first example of the previous chapter, the 

Powell method failed to give a solution for some starting points that 

were tried. 

The geometry of the cross section defined by the optimal solution 

for each problem is similar to that obtained in the first example of 



TABLE 7.1. OPTIMAL SOLUTION FOR THREE-SPAN DOUBLE BOX GIRDER BRIDGE 

Method Starting Point Solution 

Variables (feet) Variables (feet) Objective 
Function 

b1 b
2 

b
3 d b

1 b2 b
3 

d Lid ($ per ft.) 

Objective function: C '" 5.345a + 343A 
s 

NeIder-Mead 6.0 10.0 10.0 8.0 8.00 11.62 10.14 5.72 34.9 463.64 

NeIder-Mead 6.0 10.0 5.0 8.0 8.00 11.60 10.65 6.l3 32.6 463.62 

Powell 10.0 8.0 7.0 5.0 8.00 11.61 10.07 5.76 34.7 463.66 

Best Solution 8.00 11.60 10.65 6.l3 32.6 463.62 

Objective function: C = 5.345a + 514. 5A s 

NeIder-Mead 6.0 10.0 10.0 8.0 8.00 11.54 9.76 6.78 29.5 521.79 

NeIder-Mead 6.0 10.0 5.0 8.0 8.00 11.54 9.32 6.75 29.6 522.71 

Powell 10.0 8.0 7.0 5.0 8.00 11. 53 9.08 6.86 29.2 522.75 

Best Solution 8.00 11.54 9.76 6.78 29.5 521.79 



9.0r---------r-------~--------~--------~--------~--------_. 

d(ft.) 

474 

8.0~--------+---------+---------~------~~~~~~~--------, 

= 468 
466 
464 

7.0~--------4---~~--~~--~~~~~~~~r_--------~--------__i 

4.0 ~ ________ ~ ________ ~ ______ ~ ________ ~ ________ ~ ________ ~ 

5.0 6.0 7.0 8.0 10.0 11.0 

Fig. 7.2. Objective function contours for three-span double box girder bridge 

Objective Function 

C = 5.345a + 343A 
s 
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Chapter 6. The value of b l (the width of the cantilever portion of the 

deck) has a "round figure" value of 8.00 ft. The value of b
2 

(the width 

of the outer interior span of the deck slab) is such that this span is 

slightly less than the central span, b
5

. The value of b
3 

(the width of 

the lower slab) is such as to ensure sloping webs for the box girders. 

The effect of increasing the unit cost of the cables is again 

to increase the value of the depth d at the optimal point. The value 

of b
3 

decreases also as before. 

The contour plot for the first problem (Fig. 7.2) again indicates 

that the objective function is not very sensitive to changes in the 

variables near the optimal point. It may also be noted that the contours 

are more irregular than in the previous cases. The range of values of b l 
and d to give values of the objective function within 1 percent and 2 per

cent of the optimal value are as follows. 

Objective Function Range of bl(ft) Range of d(ft) Range of L/d 

1 percent above optimal value 6.8 to 8.7 5.1 to 6.8 39 to 29 

2 percent above optimal value 5.6 to 9.8 4.6 to 7.5 43 to 26 

7.3.2 Possible Limitations of the Solution. The optimal depth d, 

obtained in the first problem (i.e., using the lower value of cable 

cost) is 6.1 ft. This corresponds to a span/depth ratio of 33, which is 

higher than that occurring in any of the existing bridges recorded in 

Ref. 16 except for those having variable depth. So the question arises 

as to whether or not the optimal depth should be used for design in this 

case. 

First, deflections must be considered. As in the previous chapter, 

no deflection limitation was built into the subroutine for the objective 

function. However, a rough estimate of the deflection at the center of 

the bridge can be obtained by a comparison with the bridge designed in 

Chapter 4. The maximum dead and live load deflection (excluding creep 

effects) in that case was 0.88 in. Assuming that the deflection is 

inversely proportional to the square of the box girder depth, the approxi

mate deflection in the present case is 0.88 X (8.0/6.1)2 = 1.52 in. = 
span/1600. This is quite acceptable. 
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The size of the top and bottom cables required will be roughly 

inversely proportional to the depth of the girder. With larger cables 

bigger fillets may be required to provide adequate concrete cover. Fillets 

were ignored in the optimization process, as noted in Sec. 6.2, and it 

is considered that they would not significantly affect the optimum depth. 

The girder section corresponding to the optimal solution is the 

one having minimum cost. However, in view of the flat gradient of the 

objective function, a design having some improved features, namely 

smaller deflections and smaller cable and fillet sizes, can be obtained 

at small increase in cost by increasing the depth above the optimal. The 

actual value used in construction of the example bridge (Lid = 25) is 

near the 2 percent above optimal limit. This bridge was so stiff that 

higher Lid ra tios seem ind ica ted. 

7.4 Effectiveness of the Optimization 
Techniques 

The following is a summary of the previous comments regarding 

the effectiveness of the optimization techniques: 

(a) Treatment as an Unconstrained Problem.--In each of the three 

examples considered, the problem of optimizing the dimensions of the 

bridge cross section was set up as an unconstrained nonlinear programming 

problem. The cost per foot length was chosen as the objective function 

and expressed in terms of the basic variables, b
l

, b
2

, b
3

, and d. 

Physically acceptable solutions were obtained for these variables in all 

cases, thereby justifying the treatment as an unconstrained problem. 

(b) The NeIder-Mead and Powell Methods of Optimization.--Calcula

tion of derivatives of the objective function was not feasible. The 

NeIder-Mead and the Powell methods were accordingly chosen, being the 

most efficient of the methods that do not require derivatives. In the 

examples considered, the NeIder-Mead method was generally superior to the 

Powell method. In two of the three examples, with some starting points 

the Powell method would not reach a solution. With the NeIder-Mead method 

steady convergence to the solution was always attained. 
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(c) Design Simplifications.--In calculating the objective function 

an approximate design of the superstructure was carried out by the sub

routine. Various simplifications were made in this design, as outlined 

in Sec. 6.2. It was considered that these would have little effect on 

the solution value of the basic variables at the optimal point. 

(d) Contours of the Objective Function.--Two-dimensional plots of 

contours of the objective function were obtained by computer for each of 

the three examples. In each case the plot showed that the gradient of 

the objective function near the optimal point was quite flat. Variations 

in the values of the variables b
l 

and d over a considerable range produce 

only small changes in the value of the objective function. 

(e) Effect of Changes in Unit Costs.--By varying the cost of the 

cables by 50 percent, it was found that the optimal point is sensitive to 

relative changes in the unit costs. A 50 percent increase in cable cost 

causes an increase of about 1 ft. in the optimal value of d. The value 

of b
3 

decreases. 

(f) Deflections.--No deflection limitation was built into the 

objective function subroutines. Approximate estimates indicate that for 

the examples considered deflection is not critical. However, if bridges 

with much greater spans were being optimized, it would be best to have a 

deflection limitation in the subroutines. 

(g) Design Dimensions.--The optimal solution defines the basic 

dimensions of the cross section for the bridge having minimum cost. 

However, by utilizing the flat gradient of the objective function, the 

design dimensions can be varied to some extent with only.small increase in 

cost. An increase in the depth d will result in smaller deflections and 

also fewer or smaller cables. In the case of a multi-cell girder, a 

decrease in the cantilever overhang b
l 

will result in less crowding of the 

transverse reinforcement and a better distribution of shears. 

7.5 Other Examples for Optimization 

The optimization of other cases of bridges constructed in canti

lever will now be considered briefly. 
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7.5.1 Multi-Cell Box Girder. The procedure for a multi-cell box 

girder bridge is similar to that for the example considered in this chap

ter. Some minor changes are required in the objective function subroutine, 

as was the case for the second example in Chapter 6. 

7.5.2 Side Span Greater than Half Main Span. In the case of a 

three-span bridge in which the span lengths are specified, the optimiza

tion process can be generally similar to that used in the example of this 

chapter. However, when the side span is greater than half the main span, 

the design procedure and the calculation of the objective function will 

be a little more complex. 

More generally the different spans will not be specified but only 

the total length of the bridge. The side span can be made one of the 

independent variables to be optimized. An alternative case is that of a 

bridge crossing a navigation canal, where the main span is specified and 

the side span can be a variable. The two cases can be treated in essen

tially the same way. They differ from the problems already considered in 

that there is an extra variable, the side span length. 

In Sec. 4.10.4 it was pointed out that when the side span exceeds 

half the main span, the final outer portion of the superstructure cannot 

readily be erected by the cantilever process and that some fa1sework will 

normally be required. The amount of this falsework will depend on the 

length of the side span in excess of half the main span. Its cost must 

be included in the objective function, when the side span is a variable. 

7.5.3 Continuous Viaducts. With continuous viaducts, comprising 

many spans, the span length should be included among the independent 

variables in the optimization problem. The number of piers will depend 

on the span and so the pier and bearing costs must be included in the 

objective function. 
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C HAP T E R 8 

CONCLUSIONS 

8.1 General Conclusions 

The prestressed concrete box girder constitutes an effective and 

economical member for the superstructure of a long span bridge. Segmental 

precasting provides an economical means of manufacture, with high quality 

control, and leads to rapid methods of erection. A number of long span 

bridges have been constructed throughout the world using segmental precast 

box girders and techniques of precasting and jointing are available for 

high strength and precision. 

There are two principal methods of construction, namely erection 

on falsework and cantilever erection. The former is generally simpler 

provided support for the falsework is feasible at fairly close intervals. 

Cantilever erection is usually more suitable for river crossings and for 

viaducts over water or heavily traveled roadways. 

Procedures for the design of such bridges erected on falsework or 

erected in cantilever have been developed. These procedures involve using 

"beam" theory analysis procedures to satisfy both service load criteria 

and ultimate strength criteria under all conditions of loading. The 

effect of the cable forces on the concrete stresses is calculated using 

an equivalent load concept. Service load level stresses considering 

possible warping effects and effects of unsymmetrical loading throughout 

the structure are then checked using the MUPDI program developed by 

A. Scordelis. Erection stresses in bridges erected in cantilever are 

also checked using the SIMPLA2 program developed by R. Brown. 

For bridges erected on falsework, the prestressing system can con

sist of long, draped cables. If the number of spans is small, these can 

run the full length of the bridge and are inserted and tensioned at the 

end of construction. A cable profile consisting of a series of parabolas 
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will produce a series of uniform equivalent loads along the girder. The 

cables and the concrete section must provide adequate ultimate strength 

and acceptable service load stresses under dead load and the various 

live load patterns on the continuous superstructure. 

In the case of bridges erected in cantilever, each stage of 

construction is a separate design condition, for which the ultimate 

strength and service load criteria must be satisfied. The cables are of 

varying length. Those in the top of the girder are inserted and ten

sioned as each pair of segments is erected and must withstand the dead 

load and possible unbalanced moments in the cantilever arm. The cables 

in the bottom of the girder are inserted after completion of the canti

lever arms and casting of the closure and are designed to ensure adequate 

ultimate strength and satisfactory service load stresses under dead and 

live load on the completed bridge. To obtain the effect of the cable 

forces on the concrete stresses, the equivalent load concept has been 

further developed for application to a system of cables of varying 

length. 

Mathematical methods of optimization have been adapted to the 

problem of finding the optimal cross sections, i.e., those having minimum 

cost, for bridges constructed on falsework and bridges erected in canti

lever. Two types of cross section were considered--a pair of connected 

single-cell box girders and a multi-cell box girder. In each case the 

problem was treated as an unconstrained nonlinear programming problem in 

four variables that define the geometry of the cross section. A subroutine 

was developed to compute the objective function, taken as the relative 

cost of the bridge per foot length, and a solution obtairied by the 

NeIder-Mead method and the Powell method. 

The optimal solution obtained for each problem defines the basic 

dimensions of a cross section having minimum cost. However, to some 

extent the dimensions can be varied with small increase in cost, because 

it was found from two-dimensional contour plots that the gradient of the 

objective function is quite flat near the optimum. The range of variation 

of the variables for a given increase in cost can be readily obtained 

from the contour plots. 
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The dimensions of the section for minimum cost are sensitive to 

relative changes in the unit costs of the materials. An increase in 

the cost of the cables, for example, causes an increase in the optimal 

depth. Studies using the optimization programs were limited to the gen

eral spans and roadway widths of the example problems. Results should 

not be widely generalized until further parameter studies are made. 

8.2 Particular Conclusions 

The following conclusions apply to the particular examples treated 

in Chapters 3, 4, 6, and 7, and may not necessarily apply to other cases, 

such as bridges with different spans, widths, and loadings. 

For the bridges designed in Chapters 3 and 4, the more accurate 

stress analyses obtained with the MUPOI and SIMPLA2 programs confirmed 

the adequacy of the basically simple design procedures adopted. These 

procedures utilized hand calculations and beam theory to determine the 

basic concrete section and the layout and size of the prestressing cables 

required. 

In the case of the bridge constructed on falsework (Chapter 3), 

the cable profile consisted of three parabolas and the equivalent cable 

loads were determined accurately. However, in the case of the bridge 

erected by the cantilever method (Chapter 4), the design procedure 

utilized approximate estimates of the equivalent loads of the system of 

cables. This procedure resulted in a satisfactory design, as confirmed 

by the MUPDI and SIMPLA2 analysis. 

In the design of the bridge constructed on falsework, full length 

draped cables were adopted and their size determined by a simple load

balancing procedure. The cable area was set equal to that required to 

balance the dead load, assuming an idealized, double-parabolic profile 

for this purpose. The area so determined gave satisfactory service load 

stresses and ultimate strength. 

For the bridge constructed by the cantilever method, it was found 

that the top cables could be designed to balance a uniform load of about 

60 percent of the dead load on the completed cantilever. The quantity of 
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cables so determined gave acceptable service load stresses and adequate 

ultimate strength during construction. The MUPDI program was used to 

determine a suitable pattern for the bottom cables. These were designed 

to give adequate ultimate strength under live load on the completed bridge 

and their quantity was adjusted after analysis to give better service 

load stresses. 

Stress distributions obtained by the MUPDI analyses for both 

bridges designed indicated a variation of stress across the sections at 

the main piers, because of shear lag, and an almost uniform stress dis

tribution across the top and bottom slabs at sections of zero shear. 

Studies in Chapters 6 and 7 showed that the problem of optimizing 

the cross section of the bridge could be treated successfully as an uncon

strained nonlinear programming problem. Physically acceptable solutions 

were obtained in all cases. 

Of the two optimization methods used, the NeIder-Mead method was 

generally the more effective. It always gave steady convergence to a 

solution. On the other hand, in two of the three examples considered, 

the Powell method did not reach a solution for some starting points. The 

NeIder-Mead method is also the simpler of the two methods. 

For sections of the double box girder type with an approximate 

overall width of 56 ft., whether constructed on falsework or by the canti

lever method, the optimal width obtained for the cantilever overhang of 

the deck was 8.0 ft. This is the maximum width for which there is a 

single wheel load on this portion of the deck. The values of bottom slab 

width were such as to give sloping webs. 

In the case of the three-cell box girder, the optimal solution 

indicated a large value of the cantilever overhang, a narrow bottom slab 

and sloping webs. The apparent reason for this configuration being 

optimal is that a large area of bottom slab is not required structurally 

except in the short region of negative moment. 

The span/depth ratios obtained in the optimal solutions were 

approximately 30 for the two-span bridges constructed on falsework, and 
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33 for the three-span bridge constructed in cantilever. These values 

are higher than those generally occurring in similar bridges, excluding 

those having variable depth. The flatness of the cost gradient indicated 

relatively little cost change (2%) for span/depth ratios as low as 26. 

This indicates that the "optimum" ratio will be somewhat above 25 but 

factors such as fillet size and tendon congestion should be considered 

in selecting proportions. 

8.3 Recommendations 

Important design cases not considered in detail in this report 

include skew bridges and bridges with variable depth. These should be 

investigated more fully. 

Highway crossovers will often be skewed. The design and analysis 

of such bridges will require modifications to the procedures developed 

for normal bridges. A few computer programs are now available for 

analyzing box girder skew bridges and these could be used in the way 

MUPDI was used in this study. Skew will also create some difficulties 

with segmental precasting. One solution is to cast a few segments near 

the ends of the span on the skew and the remaining segments normal to 

the roadway axis. Much will depend on the pier location details in this 

case. 

Bridges having spans greater than 250 to 300 ftA generally vary 

in depth from a maximum at the piers to a minimum at midspan. In this 

way greater economy can be achieved. To a large extent the design proce

dure developed is applicable to bridges with variable depth. The finite 

element analysis program FINPLA2, developed by Scordelis, can be used 

for these bridges in place of the MUPDI analysis. Unfortunately, no pro

gram corresponding to SIMPLA2 exists for this case. 

The optimization techniques should also be extended to cases where 

the bridge span is a variable, as well as the cross-sectional dimensions. 

Examples of such cases include three-span river crossings, in which the 

total length is specified but not the span ratio, and also viaducts. A 

wider study of effects of variables such as span and roadway width should 



190 

be undertaken using the optimization techniques to provide further 

guidance for preliminary designs. 
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Notation 

N: Problem Number 

B, Bl, B3, B5, B7, D, Tl, T2, T3, T4, T6, HI, VI, H2, V2, H3, V3, H4, V4: 

Dimensions defined in Fig. B.l 

Form of Input Data 

1. Firs t Card 

Column 1 - N 

Format (II) 

2. Second Card -- Format (8ElO.3) 

3. 

Col. 1 to 10 - B 
Col. 11 to 20 - Bl 
Col. 21 to 30 - B3 
Col. 31 to 40 - B5 

Third Card Format 

Col. 1 to 10 - T3 
Col. 11 to 20 - T4 
Col. 21 to 30 - T6 
Col. 31 to 40 - HI 

(8ElO.3) 

4. Fourth Card -- Format (8ElO.3) 

Col. 1 to 10 - V3 
Col. 11 to 20 - H4 
Col. 21 to 30 - V4 

Col. 41 to 50 - B7 
Col. 51 to 60 - D 
Col. 61 to 70 - Tl 
Col. 71 to 80 - T2 

Col. 41 to 50 - VI 
Col. 51 to 60 - H2 
Col. 61 to 70 - V2 
Col. 71 to 80 - H3 

5. All above data cards are repeated for next problem. 

6. One blank card will terminate program. 

Output Description 

The output includes (a) a printout of the input quantities and (b) a 

list of the following section properties for both the half section (i.e., each 

unconnected box) and the full section: 

Section area 

Distance from top of girder to centroid of section 

Second moment of area 

Section modulus (top of girder) 

Section modulus (bottom of girder) 
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PROGRAM BOX, (INPUT, OUTPUT) 
PRINT 1000 

10UO FORMAT (lH1, 9X, *BOX GIRDER SECTION PROPERTIES*' 
10 READ 1010,N 

1010 FORMAT (11) 
IF (N.EQ.O) CALL EXIT 
READ 1020, B. B1, B3, B5, B7. O. T1. T2. T3, T4, T6, 

1 HI, VI, H2, V2, H3, V3, H4, V4 
1020 FORMAT (8E10.3) 

PRINT 1030, B, B1, B3, B5, B7, 0, T1, T2, T3, T4, T6, 
1 HI, VI, H2, V2, H3, V3, H4, V4 

1u30 FORMAT (III lOX, *B =*, E10.3, 5X, *B1 =*, E10.3, 5X, *83 =*, 
1 E1W.3, 5X, *B5 =*, E10.31 lOX, *B7 =*, E10.3. 5X, 
I *0 =*, E10.3, 5X. *T1 =*. E10.3. 5X, *T2 =*. E10.31 
1 lOX, *T3 =*. E10.3. 5X, *T4 =*, E10.3. 5X, *T6 =*, 
1 E10.3, 5X, *H1 =*, E10.31 lOX. *V1 =*, E10.3, 5X, 
1 *H2 =*, E10.3, 5X, *V2 =*, E10.3, 5X, *H3 =*, E10.31 
1 lOX, *V3 =*, E10.3, 5X, *H4 =*, E10.3, 5X, *V4 =*, E10.3) 

AA = O. 
AY = O. 
AYY = O. 
A = B1*(T1+T6)/2. 
Y = (T1**2+T6**2+T1*T6)/IT1+T6)/3. 
AA = AA + A 
AY = AY + A*Y 
AYY = AYY + A*Y*Y 
A = «8-B7)/2.-81)*T2 
Y = T2/2. 
AA = AA + A 
AY = AY + A*Y 
AYY a AYY + A*Y*Y 
A = 63*T3 
Y = I.)-T3/2. 
AA = AA + A 
AY = AY + A*Y 
AYY = AYY + A*Y*Y 
SY = I.)-T2-T3 
SX = (B/2.-B1-B5-B3)/2. 
S = SQRTtSY**2+SX**2) 
A = 2.*S*T4 
Y = T2+SY/2. 
AA = AA + A 
AY = AY + A*Y 
AYY • AYY + A*Y*Y + A*SY**2/12. 
A = H1*V1 
Y = T2+Vl/3. 
AA = AA + A 
AY = AY + A*Y 
AYY = AYY + A*Y*Y 
A = H2*V2/2. 
Y = T2+V2/3. 
AA = AA + A 



AY = AY + A*Y 
AYY = AYY + A*Y*Y 
A = H3*V3/Z. 
Y = T1+V3/3. 
AA = AA + A 
AY = AY + A*Y 
AYY = AYY + A*Y*Y 
A = H4*V4 
Y = D-T3-V4/3. 
AA = AA + A 
AY = AY + A*Y 
AYY = AYY + A*Y*Y 
YM = AY/AA 
R = AYY - AA*YM*YM 
ST = R/YM 
S6 = R/(D-YM) 
PRlNT 1040, AA, YM, R, ST, S6 

1u4U FURMAT (I lOX, *PROPERTIES OF HALF SECTION*I 
1 15X, *AREA =*, E10.31 
1 15X, *DISTANCE FROM TOP TO CENTROID =*, E10.3 I 
1 15X, *SECOND MOMENT OF AREA =*, E10.31 
1 15X, *SECTION MODULUS (TOP) =*, E10.31 
1 15X, *SECTION MODULUS (BTM) =*, E10.3) 

AA = Z.*AA 
AY = 2.*AY 
AYY = Z.*AYY 
A = 67*T2 
Y = TZ/Z. 
AA = AA + A 
AY = AY + A*Y 
AYY = AYY + A*Y*Y 
YM = AY/AA 
R = AYY - AA*YM*YM 
ST = R/YM 
SB = R/(D-YM) 
PRINT 1050, AA, YM, R, ST, SB 

1050 FORMAT (/10X, *PROPERTIES OF FULL SECTION*I 
1 15X, *AREA =*, E10.31 
1 15X, *DISTANCE FROM TOP TO CENTROID =*, E10.3 I 
1 15X, *SECOND MOMENT OF AREA =*, F10.31 
1 15X, *SECTION MODULUS (TOP) =*, E10.3/. 
1 15X, *SECTION MODULUS (BTM) =*, E10.3) 

GO TO 10 
END 

211 
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Unconstrained NLP Algorithm OPTMSE 

(Powell's Method) 

These instructions describe how to use the computer code to execute Powell's 

algorithm as programmed by Alan Brown. 

1. Structure of the Program 

1.1 Main Program (OPTMSE). The main program initializes the counting 

indices, introduces the initial step size by 

STEP = 1.0 

and causes the following function values and time printouts to be 

activated after completion: 

(a) Time beginning 

(b) Time ending 

(c) Number of stages 

(d) Number of functional evaluations in linear searches 

(e) Value of f(~), the objective function 

(f) Value of the components of ~. 

Place ICONVG = 1 if one pass through the Powell algorithm is 

sufficient. Place ICONVG = 2 if the final solution is to be 

perturbed, a new solution sought,: and an extrapolation between the 

two solutions carried out. 

1.2 Subroutine POWELL. This subroutine carries out the Powell 

algorithm. Place the desired accuracy in the fractional change 

in f(~) and x as the first statement, such as ACC = 0.00001 

(see TEST below). 

1.3 Subroutine TEST. Executes the test for convergen~e on both 

[f(~k+l) _ f(~k)]/f(~k) and r~k+l _ ~k]/~k (as well as ~f(~) and 

~~ if f(~) or x O. 

1.4 Subroutine COGGIN. Executes the unidimensional search to minimize 

f(~) in a selected search direction. The initial step size is 

fixed by 
STEP = 1.0 

Termination is based on the fraction change in f(~) in statement 27. 

Note: Subroutine GOLDEN in the Davidon-Fletcher-Powell code is 

compatible with this code and may be used in lieu of COGGIN. 
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1.5 Subroutine FUN. Contains the function to be minimized. 

Place f(~) below the comment card FUNCTION 1 as 

FX = •..• 

2. User Supplied Information 

215 

2.1 Place the objective function, f(~), to be minimized in subroutine 

FUN ( see 1. 5) • 

2.2 Place the initial values of the elements of x and the number 

of independent variables in BLOCK DATA as follows 

DATA X(l), X(2), X(3)/3.0, -1.0, 0.0/ 

DATA N/3/ 

(or add, N/3/ to the end of first da ta entry). 

NOTATION 

Comment cards in the code explain most of the pertinent notation. 
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PROGRAM OPTMSE(INPUT,OUTPUT, 
COMMON IONEI X,y,5,FX.FY,N'KOUNTS'~IN'NnRV'H,SIb'DE~G 
OIMENSION X(lO)'Y(lO),S(lO),SIG(10)'OE~G(lO)'H(10'lO) 

C.""OPTIMIZATION BY TH~ PO~E~~I METHOD.~ ••• 
C·.· NDRY IS A REDUNDANT PARAMETER WITHIN T~E POWE~~ METHOD 

KOUNTS.O 
ICONYG.Z 
STEP-l.O 
~IN·O 
CA~L. SECONO(Al) 
CA~L. POWE~~(STEP,ICONVG' 
CA~~ SECOND(AZ) . 
PRINT flOO,Al 
pRINT 601'KOUNTS,~lN'FK'(X(I',I.l,N) 
plUNT 602, A2 
CA~L. EXIT 

6QO FORMAT(14H T'M~ IS NOw .,F20.3) 
601 FORMAT (III IlO,48H FUNCTION EVA~U'TIO>;S wITHIN POwE~~ ROUTINE AND 

1 Il0,47H FUNCTION EYA~UATIONS OURING THE ~INE SEARC~ES. 
2 II 18H FUNCTION YA~UE 8 'E20.8 
3 II 18H VARIAB~E YA~UESJ· I (K,!!fO.a ,) 

602 FORMAT!III 14H TIME IS NOW. , '20.8' 
END -
SUBROUTINE POWE~~ (STEP,ICONYG) 
COMMON 10NEI X,y,S,Fx.F"N'KOUNT'~lN,>;D~v.OIRECT'BIFORE,'IRST 
DIMENSION X(10j.Y(10),S(10)'DIR£CT(10.10),8tFORE(10)"tR5T(1~' 

1 .W(10),StCND(10) 
EQUIVAL.ENCE (W,SECNOI 

C ••• N • THE NUMBER OF VARI~B~E8. 
C KOUNT • THE NUMBER OF ,UNC'IONS EVA~UATIONS NOT IN ~lNEA~ SEaRCH. 
C ICONVG • THE ~INA~ CONYERGINCE TEST DESIREO. 
C - 1. TERMINATE AS SOON AS TESTl~' IS SATISFIED. 
C 8 2, AS SOON As THE: T[STING CRIT[ItU ARE SATISFIED INCREASE 
C A~L. THE VARIAB~ES BY 100ACC ANO SOL.V~ pROBL.!M AGAIN. 
e THEN PERFORM A ~INE ShACH BETWEEN Ti'iE so~uTIONS IF OIFFEREN:r 
C SO~UTIONS ARE DEEMED TO BE FOUND. 
C STEP • THE INltIA~'STEP SIZE. 
C ACC • THE REQUIRED ACCURAC¥ IN THE FU~C'IO~ A~D VECTOR YA~UEI. 
C INSERT IPRINT-l FOR COMP~ET! PRINT OUT ~R IPRINT • Z FINA~ 
C lANS~ER ON~Y 

Ace - .0001 
IPRINTel 
NTRY.l 
Nl11N .. l 
sTEPAaST!P 

C .i. SET UP THE INITIA~ DIRECTION MATRIX (USING UNIT VECTORS). 
DC 2 I-l.N 
00, 1 JI!:l. ~ 

1 DIRECT(J.I)80. 
2 DIRECT(I.I)81, 

C •••. e:YA~UATED THE FUNCTIO'll AT THE INlTh1o.1 YA"UI~! YA~U!S. 
100 CAL.L. FUN(X,FX) 

KOUNT.KOUNT·l , 
C ••• SAVE THt FINA~ FUNCTION VA~U! (~1) AND T~! FINA~i VAAIABIo.E YA~UES 
C (BEFORE) FROM THE PREVIOUS CYC~E. 

pRINT 36 
36 ~ORMAT(8x.*FX.'12X •• XC1) •• 14x,.X(Z) •• 12~ •• K(3' •• 13X'.K(~) •• 12X.·x( 

15)·.14X •• X(6)·~) 
3 ~l.Fx 

DO 4 I-l.N 
4 eEF'ORE(I)8X(1) 



GO TO (801.8021. IPRI~T 
801 PRINT 901.FX,IXI!),Ial,N) 
901 FORMAT 1/15E16"'1 

C *.- START SEARCHING HERE. 
!!!02 SUM-Of 

C AT THE END OF THE CYC~[. SUM wILL CO~TAIN THE MAXIMUM CHANGE IN 
C THE fU~CTION YALUE-FO~ ANY SEARCH DIREC'lO~' AND ISAYE INDICATES 
C THE DIRECTION VECTOR TO wHJCH IT CORRESPONDS. 

DO 9 I-l.N 
C S CONTAINS THE INITIA~I STEP SIZES IN T"! I.TH OIRECTION. 

DO 5 J a l.N 
5 S{J).DIRECTIJ,I).STEP 
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C FIND THE MINIMUM IN TH! I-'H DIRECTION. AND THE CHANGE IN fUNCTInN 
C yAL.UE. 

CAL.L COGGIN 
AaFX .. FY 
III'{A-SUM) 7.7,6 

6 !SAVE-I 
SUMaA 

C TRANSFER THE N~W FUNCTION AND YARIABL.E VALUES TO FX AND X. 
7 00, 8 Jal.N 
8 X{J)aY{J) 
9 FX-FY 

C * •• NOW INYESTIGATE WHETHER A NEW SEARCH OIR!CTION SMOULD BE INCORPOA· 
C AT ED INSTEAD O~ THE ISAVE DIRECTION. 

,-Z.FX 
00 10 la1.N 

10 w(I).2.0*X{I)-BEFORE{I) 
CALL FUN O",J) 
KOUNT.KOUNh 1 
A_F3 .. Fl 
III'",) 11.19,19 

11 A.i.o-11I'1-2.U.F2.F~)*((F1-'2_SUM)/AI**r 
IF{A-SUM) 12.19.19 

C *i- A NEW S~ARCH DIR!CTION IS REQUIRED. '~RST REMOyE ROW ISAYE. 
12 IF{ISAYE-Nl 13,15,15 
i3 00 14 I.ISAYE.N1 . 

11-1+1 
DO 14 J.l.N 

14 OIRECT{J,I).UIR!CT'J'II) 
C SET TH! H-TH DIR!CTIO~ VECTOR EQUAL TO T~E ~ORMALISED DIF'ERE~CE 
C B!~WEEN THE INITIAL AND FINAL YARIA8LE VALUES FOR LAST C~CLE. 

15 A-O. 
DO' 16 J.1,N 
OIRECTIJ,N).X{~)-8EFOR!IJ) 

16 A.OIRECT{J,N)**e.A 
A-l.O/SQRT(AJ 
DO 17 J_l.N 
OIRECTIJ,N).DIRICT{J'NI*A 

i7 SeJ).OIRECTIJ,N)*STEP 
CALL COGGIN 
FX~Fy 

00· 18 I.1.N 
is x{I)·Y(I) 

C ... TEST FOR' CONVERGENCE. 
19 CALL TESTC'1,'K.eE'ORE~X"LAG.N.ACC1 

IF(FLAG) 22,Z2,20 -
C*** CONYERG~NCE NOT yET ACH!IYEO. COMPUTE: A ~EW STEP StZE AND 
C GO BACK TO 3. 

20 IF(Fl-FX)121.120,120 
111 STEP •• 0 •• *SQR1CAsslFl.;X») 

GO TO 123 



218 

120 
123 

21 

c··· c 

STEP.0 ••• SQRTeF1·FX) 
IFeSTEPA.STEP) 21.j.3 
STEP.STEPA -
GO TO 3 
CONIIERG!NCE ACHEI vEO. I F I CONVGa2' I ""C~EASe:. AL.L. VIR U8L.£~ BY 
lO-ACC AND GO BACK~TO 3. 

22 GO TO c23.24).ICONVG 
23 RETURN 
2~ GO TO e25.21"NTRY 
2S NTRY.2 

DO 26 h1,N 
FlRST(PdII) 

~6 XII)-XtII+ACC*10. 

C *it. 
C 

FFIRST-FX 
GO TO 100 
CONIIERGENCE ATTAINED USING TWO 01"E~e:~T STIRTINij POINTS. CONSTR~C 
UNIT VECTOR i~~W!EN SOLUTIONS AND SElRCH DIRECTION FOR A MINI~U". 

27 FSECNOa'x 
A-O. 
DO 28 h1.N 
SECNO(II.XII) 
$(I).'IR$TII)·SECNDCII 

28 AaA+$ll).*2 . 
IF(AI 23,i3,29 

29 AaSTEP/SQRT(A) 
DO 30 b1,N 

30 S Cl) as C I I .A 
CALL. COGGIN 
TEST IF NEW POINT IS SU"I,IENTL.Y C~OS!i TO EITHER OF TH£ TWO 
SOL.UTIONS. IF So RETURN. 
CAL.L TEST('FIRST,F~.FIRST.Y.FLAG.N~ACC' 
IFeFLAG) 32.J2,31 

31 CAL.L. T!ST('SECND,FY.S!CNo.Y.'L.'G.N~ACCt 
IFiCf"L.ACU 32.32.34 

32 DO 33 I-l,N 
33 )( ( 1).y C IJ 

FX-Fy 
RETURN 
FINAL. SOL.UTION NOT ACCURAT! tHOUGH. ~EPLACE THE FIRST DIRECTION 
VECTOR By INTER.SOLUTION VECTOR CNO~~A~~SEOI AND RECYCLE 

C *it. 
C 

3~ AaA/STEP . . 
DO' 35 hl.N 
DIRECTeI.1)aiFIRSTeI'·SECHDCI»*A 

35 FIRST(I)aSECNoel) 
GO TO 3 
EtliO 
SUBROUTINE TEST eFI ." .RI .R,.FLAG,H,. ACC,) 
DIMENSION RI(~0).~F(10) 
FI..AG .. 2. 
IF(ABS(FI)·A~C) 2.2.1 

1 IF(ABS((FI.FF)/FI)~ACC1 3.3.7 
2 IFi(ABS(FI·prF)·~CCI 3.3.1 
3 00 6 Ia·l./II 

IF~ABS(RICI».ACC) 5.5.4 
4 IF(ABS«RI(I).RF(I»/~i(I».ACC) 6'6,7 
5 I";(AE;SC~I(I)-R~<I».ACC') 6 .. 6.7 
6 CONTINUE 

FL.AG ... a. 
7 REITURN 

END 
SUBROUTINE COGGIN 
COMMON IONEI X,Y.~,fX.FY'N.KOUNTSfLIN.NnRV'H,S'G'O!LG 
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C ••.• DIMENSION XIIO)'YIIOI.SIIO).SleCIO)'OE~GCIO"HII0'lg) 
TME INITIA~ VARIABLE VALUES ARE IN x. AND THE CORRESPON l~G 

C .~. FUNCTION VALUE IS FX.· 
C·.· THE SEA~CH DI~~CTION VECTOR IS S. A~D TH! INITIAL STEP SIZE STEP. 
C ••• ~IN IS USEO TO COUNT THE NUMBER or 'UNCTto~ EVALUATIONS A~O N IS 
C ••• THE NUMB[R OF VARIABLEs. -

FA-FB·FC.FX 
DA-De-DC.O. 
STEPal.O 
O-STEP 
1<--2 
M-O 

C ••• START THE SEARCH THE BOUNO, THE MINll4UIII 
1 DO Z I-l.N -
2 VII)-XtI)+O.5CI) 

CALI.. FUNCV,F) 
K·I(+l 
LIN-LIN·l 
IF,IF .. FA) 5,3,' 

C ••• NO CHANG! IN 'UNCTION VALUE. RET~RN wITH vICTOR CORRESPO~OING Tn 
C 'UNCTION VALut OF EA, BECAUSE IF THE FuNeTION VALUE IS I~OEPENDE~T 
C of TMIS SEARCH OIRECTION, THEN CHANGES IN THE VARIABLE VA~UES MAv 
C uPSET THe: MUN PRO~RAI4 CONVERGENCE T!STl~G. 

3 00·. I-l.N 
• YII)-XII)+DA·SII) 

"V-FA 
RUURN 

C ••• THE FUNCTION IS STILL DECREASING. I~CR!&SE' THE STEP SIZE, 8Y 
C DOUBLE THE PR~VIOUS INCAEASE IN STEP SIZ!. 

5 FC-F8 S F8-'A S FA_I" 
DC-De 5 OB-OA S DA_D 
o-Z.O*O+STEP 
GO TO 1 

c *i. MINIMUM IS 80UNDED IN AT LEAST ONE Dl_ECTION. 
6 I"CKI 7,8,9 

C MINIMUM IS BOUNDED IN oNE DIRECTION ONLW. REVERSE THE SEARCH 
C DIRECTION AND RECV~LE. 

7 Fi-F . 
08-0 S D-.U S STEP •• &TlP 
GO TO 1 

C MINIMUM IS BOUNDED IN BOTH, DIRECTIONS AFTEQ ON~Y T~OI'UNCTION 
C EVALUATIONS tONE EITHfR SIDE OF TME ORI8tN). PROCEED TO THE 
C PARABO~IC INTERPOLATION. 

S Fe-FB S Fa-'A S- FA.' 
DC-DB I OB-DA S DA.O 
GO TO Zl . 

C THE MINIMUM IS BOUNDED AFTIR AT LE.ST TWO "UNCTION EVAL~ATIONS IN 
C THE SAME DIREC~ION. E~ALU'T[ THE FUNCTION AT sTEP SIZE-IOA·DB)/z. 
C THIS WI~L YEIL~ 4 'QUA~LV SPACED POI~TS BOUNDING THE MI~~~U~. 

9 DC-DB S oa-OA S DA_D 
FC-FB S FB.,A $ 'A.' 

10 0-0.5*(OUOB) 
00 11 l.l.N 

il V(II.X(I)+O*S«II 
CALL FUN(y,F) . 
LIN-LIN+l 

C ••• NOW HAV~ THAT FA~FBc,c AND THAT 'A.'~'C ASSUMING THAT THE 
C FUNCTION IS UNIMODAL. REMOVE EITHER POl~T A OR POINT 8 IN SUCH i 
C WAY THAT THE ~UNcTtON is BOUNDED AND Fl)'ec,C tTHE CORRESPONDINI 
C STEP SIZES ARE DA~DB>DC OR DA~DBcOC 1. 

}2 IF« 10C.D) *CO·08), 15'13.18 
C ••• · LOCATION 0, MINIMUM IS LIMIT!O BY ROUNDING ERRORS. RETURN WIT~ B. 
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13 DO, 14 hl.N 
14 YIII.XCII.OS-SIII 

n'.FB 
RETURN 

C ••• T~E POINT 0 IS IN THE RANGE OA TO OS. 
15 IF~F.FB' 16.13.17 
16 Fe-Fe S Fe.' 

DC-DB S oe-o 
GO TO 21 

17 FA.F 
OA*O 
GO TO 21 

C •• 0 T~E POINT 0 IS I~ T~E RANGE DB TO DC 
18 IFCF.FB) 19.13.20 
19 FA-Fe S Fa., 

Ohoe S 08.0 
GO TO 21 

20 Fe-F 
oe-o 

C -.- NO. PERFORM THE PARABOLIC INT!RPO~ATIO~. 
21 A-FA.(08_0C,.~B.(0~-OA).FC.(OA.08) 

IF:(A, 22.30,22 
22 D-O.S.C(Oa.D8·~C.OC)·'A.(DC-OC-OA-DA).FB.IOA.OA·UB.OBI .'e)/A 

C CHECK THAT THE POINT Is GOOD. IF 50. [¥A~~ATE THE FUNCTIO~. 
IFIIOA.O).IO-D~), 13.13.23 

~3 DO 24 Z.l.N 
l4 YCI)-XCI).O-SII, 

CAL.L FUN I Y,'l 
LlN-L.I~·1 

C ••• CHECK FOR CONVERGENCE. IF NOT ACHEIVEO. R!CYCLE. 
IFHBSIFa,-o.ooOOl) 25.25,26 

25 A-1.0 S GO TO 27 
1!6 Aal.0/F8 
~1 IFI(ABSI(FB.F)·~, ... 0001) 21"28,12 

C ••• CONVERGENCE AeHEIVEO. RETURN wITH TM! SNALL.ER OF F A~O F8. 
28 IF,(F·FB) 29.13~13 ' 
29 FY-F ~ 

R[!TURN 
C .i. THE PARASOLIC JNTERPO~ATION WAS PAEVENTEO SY THE DIVISoR BEING 
C ZERO. IF THIS IS THE FIRST TIME THAT IT HAS HAPPENED. TRY AN 
C INTERMEDIATE STEp SIZE ANO RECYCLE} OTHERWISE 9I~E UP AS IT L.OOKS 
C LIKE A LOST CAUSE.' 

]0 IF(M) 31,31,13 
31 "'-"'.1 

GO TO 10 
END 
BI..OCK DATA 
COM"'ON 10NEI X.y.S.FX.FY.N.KOUNTS.~IN.NDRV.H.SI8.0ELG 
OIMENSI ON X (10 j • Y C1 0) ,5 I 10) • SIli (10) 'DELS 11 0) • H 110.10) 
DATA X(1)/40.0/,N/ll 
[NO ' 
SUBROUTINE FUN(X,FX, 
DIMENSION XC10) 

C 'UNCTIO~ 1 
paO.02S16 
Ta~ 11, 

C INSER~ SUBROUTINE To COMPUTE C 
8·a600./C4 •• 1·P·T··I·ll0.5.1P·T) •• 1.1.561~T) 
C_110.2_21.11.!lopr-S*,.l.33iT.1.66'*8,/15.0 S FX_C 
PR,INT 1.P,T ,B,C 

1 FORMATC5X'.P.·'Fl0.5'5x,.INITIA~ T •• "40.2.·B-.'El0.3,iC-.~EIO.l/) 
RETURN 
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Optimization Method of NeIder and Mead (SIMPLEX) 

Instructions to Introduce Data into the Work 

The Data Cards are as follows: 

7 
1. 8 

9 
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2. Punch NX, the number of variables in the objective function in format 

(IS) in col. 1-5 right justified, and STEP, the step size in format 

(FlO.S) in columns 6-15. In the absence of other information select 

STEP = min (0.2 ~ d
i 

' d
l

,d
2

, ... ,d
n

) 
n i=l 

where n = no. independent variables and d. is the possible region for 
~ 

search for the variable x .. 
~ 

3. Punch the initial guess for each variable in format (FlO.S). 

Cards 2,3 can be repeated changing the step size and intial variables 

as desired, but after last card of type 3 must come: 

4. Blank card 

6 
S. 7 

8 
9 

The card (SUM(IN) = f(x)), the third last card in the deck, must be changed 

for each different function. Allowance has been made for a 50 dimension 

problem, i.e., X(l) to X(SO). 
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PROGRAM $IMP~[XIINPUT.OUTPUT) 
C ••••• OP~IMIZATION BY THE NELDER-MEAD M!~~OO ••••• 
C NX IS THE NUMB~R O~ INOEPENDENT VAR1A8~EI. 
C STEP IS THE INITIA~ ST!P SIZE. 
C XII) IS THE ARRAY OF I~ITIAL GUESSES. 
C DATA CARDS ARE AS FOL~oWS. 
C CARD NO. PARAMETERS 
C 1 NX 
C 1 STEP 
C 2 XII) 
C CARD 3 IS BLANK. 

FO"MAT 
t5 
"10,15 
"10.5 

CO~UMNS 
1 TI'iRU !5 
6 THRU 15 
1 THRU 10 

e TO OPTIMIZE THE OBJECTIVE FUNCTION FOR A~OTHER SET OF PARAMETERS 
C REPEAT CARDS 1 AND 2 ONLY. 
C FOR PROPER PRINTOUT OF DESIRED XII) ARR6V. FORMAT STATEMENTS 103 
C AND 101 MUST SE REVIS~O ACCORDING~¥. 

DIMENSION Xl(SO,50I, X(50), SUMISO) 
COMMON/ll x,Xl,NX,STEP.K1,5UM,IN 

1 FORMATIII,FI0.S) 
100 READ1, NX,STt~ 

H';(NX) 998,999.998 
998 READ 2, IX(II,I.l,NX) 

2 FORMATII0FI0.51 
AI..'A-l.0 
eEiTA-o.5 
GAMb2.0 
oIFER • O. 
X,...~ • NX 
IN - 1 CALL lUNA 
PRINT 102,SU'Hll,(XCI"I-1,NXI 

PRINT lO02,STEP 
CALL SECQNO(T1ME) 
PRINT 1 O!St TIME 

lOS FORMATI/!OX,liHTIME IS Now,F10.3,BH SECONDS/) 
PR~NT 103 .-

103 FORMAT(~X,14HFUNCTION ijALUE'15X,3HX1 •• 20X,3HX2.'iO~'3HX3.,lOX,3Hx4 
1-,16X,12HFUNC~ CHANGE) 

102 FORMATclH1,IZX,23H~UNCTION STARTING VALU!,F10.S,I,.THE X ARRAV I~. 
1.I,5X,10CEll.·,2X» 

1002 'ORMATI12X,.ST~P ••• F6.2) 
1(1 • NX • 1 
1(2 • NX • 2 
1(3 - NX • 3 
I(~ • NX • 4 
CALL START 

~5 DO 3 I • 1, K1 
00 It J a· 1. NX 

4 XIJ) • XIII ,J) 
IN - I 
CALL SUNR 

3 CONTINUE 
c SELECT LARG[ST VALUE OF SUMCI) IN SIMPLEK 

21i SUMH • SUM (1' 
INDEx • 1 
DO 7 I ., 2. Kl 
I'iISUMll) ,LE.SUMH) 90 TO 7 
SUMH • SUM I %) 
INDEX II! I 

7 CONTINUe: 
c SELECT MINIMUM VALUE 0' SUM(I) IN SIMP~EK 

SUML - SUM (1) 



KC)UNT • 1 
00 8 I • 2. 1\ 1 
IFiCSUML.,L.E,SUMCI" GO TO 8 
SUML. ill SUM e I I 
t<OUNT • I 

8 CONTINUe: 
C FINO CENTROID OF POINTS ~ITH I DIFFERENT THAN INDEX 

DO 9 J •. 1. NX 
SUM2 • 0, 
DO' 10 I • 1. I< 1 

10 SUM2 • SUM2 • Xl(I.JI 
xl1K2.JI al./XNX*ISUMZ • XlIINOEX.Jll 

C FJNO REFL.EC,ION OF HI~H POINT THROUGH CENTROIO 
XlIK3'JI • 11, • AL.F"ixlCK2.J) • AL.'A*Xl~INOEX'Jl 

9 XIJl • XlCI<3,JI 
IN' • 1<3 . 
CAL.L. SUM,. 
IFIISUM (1<3) .L. T ,SUML.J GO TO 11 

C SEL.ECT SECOND L.ARGEST VALUE IN 5IMPL.[K 
IFCINOEX.EQ,11 GO TO ,. 
SUMS • SUM (l I 
GO TO J9 

,8 SUMS. SUMCZI 
39 D~ 12 I • 1. 1<1 

I'~CINDEX .. ll.[Q,DI 10 TO 12 
I,ijSUMCIl,L.!.SUMSI GO TO 12 
SUMS. SUM U I 

i2 CONTINUE:-
I'I(SUMI1<31,GT.SUMSI GO TO 13 
GO, TO 14 

C ;ORM EXPANSION 0' NEW MINIMUM IF AEFL.ECTION HAS PROUUCEO ONE MINIMUM 
11 DO' 15 J • 1. NX 

xl (K4.JI • C 1 .. GAMAI.Xl IKZ.JI • GAMA*K1 CI(3'JI 
i5 X(JI • Xlll<4.JI 

IN • K4 
CAL.L. SUMR 
l'iISUM(1(41,L.T e SUML.) GO TO 16 
GO' TO U 

i3 IFIISUM(I<31,GT.SUMHI GO TO 17 
DO' 18 J • 1. NX 

18 XlIINOEX.Jl • XICKJ.JI 
17 00· 19 J • 1. NX -

xl(K4.Jl • 8ETA*XlIIND£X.JI • II, ... aETA~iKIIK2.JI 
19 x IJI • Xl Ct(4.JI 

IN • 1<4 . 
CALoL. SUM" 
IFI(SUMH,eT ,SUM IK411 GO To 16 

C ~EOUCE SIMPL.EX eY HALoF I' REFL.!CTION HAPPEN! TO PROOUCE A L.ARGER VAL 
CLUE THAN THE MAXIMUM • 

00' 20 J • 1. NX 
DO' 20 I • 1. K.1 

!O xl1I.JI • 0.5.IX11~.Jl • XleI<OUNT,J,1 
DO 29 I • 1. 1<1 
DO' 30 J • 1. NX 

30 xeJI • Xl(1 • ..I) 
IN II I 
CAL.L. SUMR 

29 CONTINUE 
GO· TO 26 

i6 DO 21 J • 1. NX 
xlIINOEX.Jl • X1CK4.JI 

21 xeJI • XleINOEX.JI· 
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IN • INDe:X 
CALL SUMR 
GO' TO 26 

}4 DO 22 J - 1, NX 
xllINDEX,JI - X1CK3.J) 

!2 X (J) • )(1 CINIlEX,J) 
IN • INDEX 
CALL SUI4R 

!~ DO 23 J • 1. NX 
23 X (J) • Xl (K2.J) 

It\4 • 1<2 
CALL SUI4R 
DIFER • O. 
DO 24 I - 1. 1<1 

!4 DIFER • DIFER • (SUNCI) • SUMCK2»**Z 
DIFER .1,/XNX*SQRTCDlr!RI 
PRINT 101. SU~L. (llCI(OUNT.J). J- 1.NXI. DI'ER 

101 FORMATC2C2x.El'.6).3(7X.E16.6).12X.E16.6) 
IF: COIFER.BE,!.OOOl) BO TO 28 
CALL SECONDCTI"E) 
pRINT lOS.TIME 
GO To 100 

999 CONTINuE, 
END 
SUBROUTINE ST_RT 
DIMENSION ACSO.50). Xl(50.50). X(IO). SUM(!Ol 
COMMON/ll x,Al'NX.,TEP.Kl.SUM.IN 
VN' • NX 
STEPl • STEP/CYN*SQRTra,»*CSQRTCYN • 1,~ • YN • 1.) 
sTEP2- STEP/(YN~SQATC2.')*1SQRT(YN • 1,) • 1.) 
DO- 1 J • 1. NX 

1 An.J) • 0, 
00 2 I ., 2. 1<.1 
00' 2 J • 1. N~ 
A (I.J) a' STEPi 
L • I • 1 
A cI ,L) .' STEP 1 

2 CONTINUEI 
00· 3 I .' 1. 1<.1 
00 3 J .: 1. NX 

3 X1CI.J) .. xeJ) • A(ItJ) 
RETURN 
ENIl 
SUBROUTINE SUMR 
COMMON/ll X,Xl.NX.5TE',Kl,SUM.IN 
DIMENSION X1CSO.50;. X(50). SUMeSO) 
81 - X Cl) 
B2 • X(2) 
83 • 1((3) 
D • XC.) 

C INSER~ SUBROUTINE TO COMPUTE C 
SUM tIN) • C 
RETURN 
END 
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SUbROUTINE TO CALCULATE. THE ObJECTIVE FUNCTION 
FOR 2-SPAN DOUBLE BOX GIRDER BRIOGE 

NOTATION 

CONSTANTS 
B TOTAL WIDTH 
B6 WIDTH OF CAST-IN-PLACr STRIP 
T4 WEB THICKNESS 

VARIA8LES FROM MAIN PROGRAM 
81 WIDTH OF CANTILEVER OVERHANG 
82 FIRST INTERIOR SPAN OF DECK 
83 WIDTH OF BOTTOM SLA8 
D DEPTH OF SECTION 

QUANTITIES CALCULATED 
A AVERAGE SECTION AREA 
AS CABLE AREA 
C OBJECTIVE FUNCTION 

B = ::>0. 
B6 = 2. 
T4 = 1.0833 
GO TO 5 

2 PRINT 2iJOC, B1, B2, B3, D 
2000 FORMAT (*Bl 82 83 D =*, 4E12.2) 

CALi... eXIT 
5 CONTINUt. 

TIl = .7 
10 F1 = .025*(1.+T11)*81**2 + 26.*(B1-2.)/IB1+2.6875l 

IF (d1.LE.8.) GO TO 20 
F1 = F1 + 26.*181-8.)/(81-3.3125) 

2U T1 = .167 + .1268*SQRTIF1) 
E = ABSIT1-T11) 
IF (E.-.v01) 40,40,30 

30 TIl = T 1 
GO TO 10 

40 IF (T1.LT •• 5) T1=.5 
W = 8-2.*Bl-4.*T4 
B5 = W-2.*B2 
T5 = O. 
IF Ib5.LE.U2) GO TO 70 
T51 = .5 

50 F5 = .OI25*T51*~5**2 + .52*(85+2.) 
T5 = .167 + .1268*SQRTCF5) 
E :; ABS ITS-T51 ) 
IF ([-.vOl) 70,70,60 

60 T51 = T5 
GO TO 50 

70 CONTI NUE 
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T21 = .5 
8U F2 = .0125*T21*B2**2 + .52*(R2+2.) 

5T2 = T21**3/B2 
5 = SQRT( (D-T21-.5)**2+( (H2-H3)/2.+T4)**2) 
5T4 = .75*T4**3/S 
F2 = (5T4*F2+ST2*Fl)/(ST2+ST4) 
T2 = .167 + .1268*SQRT(F2) 
E = ABS!T2-T21) 
IF (E-.OOll 100,100,90 

90 T21 = T2 
GO TO 80 

100 IF !T2.LT •• 5) T2=.5 
IF (T2.LT.T5) T2=T5 
AA1 = 81*(Tl+.5)/2. 
II = (T1**2+.5*Tl+.25)/(Tl+.5)/3. 
AA2 = «8-B6)/2.-B1>*T2 
l2 = T2/2. 
AAT = AA1 + AA2 
AlT = AA1*ll + AA2*l2 
AA3 = B3*.5 
l3 = D-.25 
AA4 = 2.*S*T4 
l4 = (U-.5+T2}/2. 
All = AAT + AA3 + AA4 
Al = AlT + AA3*l3 + AA4*l4 
DCl = Al/All 
H = u-.~*DCl-l.00~ 
A5 = All/(19.2*H) 
Al = 2.*All + 86*T2 
BMD = 820.*(Al+.113*(B-Z.» 
BMS::: tl50.*All*(1.-(DCl-.67)/H) 
BMU = 8MD + 25260. - R~S 

T31 = 1. 
J = 0 

110 DM = D-.5*T31-.67 
T3 = 8MU/(1322.*DM*B3) 
E = A85(T3-T31) 
J = J+l 
IF (J. G T .20) GO TO 2 
IF (E-.GOl) 130,130,120 

120 T31 = T3 
GO TO 110 

130 IF !T3.LT •• 5) T3=.5 
ASU = BMU/(31100.*DM) 
IF (A5U.GT.AS) AS=ASU 
Q = 1./12. 

140 Q = Q+l./36. 
DM = D-.92-1.7*Q*(D-l.34) 
BMU = 661.*DM*83 
BivJX = Bj'ID*11.-5.*U+4.*Q**2) + 12630.*(1.-Q) - R~':S*(I.-Q) 

IF (BMX.GT.BMUl GO TO 140 
AA3 = B3*T3 
S = ~QRT( (D-T2-T3)**2+( (B2-83)/2.+T4)**2) 
AA4 = 2.*S*T4 
AT = 2.*AAT + 86*T2 
A2 = AT + 2.*(AA3+AA4) 
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A = Al + CAZ-All*Q/Z. 
C = 5.345*A + 343.*AS + .031*!R+3.*D+IO.I*D 
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SUBkUUTINE TO CALCULATE THE OBJECTIVE FUNCTION 
FUk 2-SPAN MULTI-CELL BOX GIRDER RRIDGE 

NOTATION 

CONSTANTS 
B TOTAL WIDTH 
NW NUMBER OF WERS 
T4 WEG THICKNESS 

VARIABLES FROM MAIN PROGRAM 
B1 WIDTH OF CANTIL~VER OVlRHANG 
6~ FIRST INTERIOR SPAN OF DECK 
63 WIDTH OF BOTTOM SLAB 
U DEPTH OF SECTION 

uUANTIT1ES CALCULATED 
A AVERAGE SECTION AREA 
AS CABLE AREA 
C OdJECTIVE FUNCTION 

B = ~0. 
NW = 4 
T4 = 1.0833 
GO TO :, 

2 PRINT 2000, B1, 82, B3, D 
2uuu FORMAT (*81 u2 83 D =*, 4EI2.2) 

CALL EXIT 
5 CUNTINUl 

T11 = .7 
10 Fl = .025*(1.+Tl1)*B1**2 + 26.*(Rl-?I/(nl+2.6R7~1 

I F (tl1. L E • 8 .) GO TO 2 ° 
Fl = F1 + 26.*(Bl-S.)/(Pl-3.31?5) 

20 T1 = .167 + .1268*SQRT(Fl) 
E ::: AbS<TI-Tll) 
IF (E-.LJC!ll 40,40,30 

30 T11 = Tl 
GO TO 10 

40 IF tT1.LT •• 5) T1=.5 
W = b-2.*B1-NW*T4 
B5 = (W-2.*B2)/(NW-3) 
T5 = O. 
IF (B5.LE.B2) GO TO 70 
T51 = .5 

5U F5 = .0125*T51*65**2 + .52*(B5+2.) 
T5 = .167 + .1268*SQRT(F5) 
E = AbSCT5-T51) 
IF (E-.OOl) 70,70,60 

60 T51 = T? 
GO TO :'0 

70 CUNTINUE 



T21 = .5 
80 F2 = .0125*T21*82**2 + .52*(P2+2.) 

5T2 = T21**3/82 
5 = SOkT( IO-T21-.5)**2+( (8-63)/2.-Bl)**2) 
5T4 = .75*T4**3/S 
F2 = (ST4*F2+ST2*Fl)/(ST2+ST4) 
TL = .167 + .1268*SORT(F2) 
E=ABSIT2-T21) 
IF (E.-.uOll 100,100,90 

'Ju T21 = Tt: 
GO TO 80 

luO IF 1T2.LT •• 5) T2=.5 
IF 1T2.LT.TS) T2=T5 
AA1 = 81*(T1+.5) 
Zl = (T1**2+.5*Tl+.25)/(Tl+.5)/3. 
AA2 = (B-2.*61)*T2 
Z2 = T2/2. 
AT = AAI + AA2 
AZT = AAl*Zl + AA2*Z2 
AA3 = 83*.5 
l3 = D-.25 
AA4 = ((NW-2)*(D-T2-.5l+2.*Sl*T4 
Z4 = (D-.5+T2)/2. 
Al = AT + AA3 + AA4 
Al = AlT + AA3*l3 + AA4*l4 
OCI = Al/Al 
H = U-.5*DCl-l.005 
AS = Al/(38.4*H) 
BMD = 820.*(Al+.113*(B-2.)) 
Sf-1S = 425.*Al*(1.-(DCl-.67)/H) 
bil,lU = 8i'lD + 25260. - 8MS 
T31 = 1. 
J = 0 

110 UM = 0-.5*T31-.67 
T3 = BMU/(661.*D~*B3) 
E = AbS(T3-T31) 
J = J+l 
IF (J.GT.20) GO TO 2 
IF ([-.001) 130,130,120 

120 T31 = T3 
GO TO 110 

l30 IF (T3.LT .. 51 T3=.5 
A5U = BMU/(31100.*DM) 
IF (A5U.GT.AS) AS=ASU 
Q = 1./12. 

140 CJ = (.)+1./36. 
DM = D-.92-1.7*Q*(D-l.34) 
BMU = 330.5*DM*B3 
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BMX = BMD*(1.-5.*~+4.*Q**2) + 12630.*(1.-Q) - BMS*(I.-Q) 
IF (BMX.GT.BMU) GO TO 14C 
AA3 = B3*T3 
S = SORT( IO-T2-T3)**2+( ([1-B3)12.-Bl )**2) 
AA4 = ((NW-2)*(D-T2-T3)+2.*S)*T4 
A2 = AT + AA3 +AA4 
A = Al + (A2-Al)*Q/2. 
C = 5.345*A + 343.*AS + .C31*(6+3.*0+10.)*D 
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SUBR0UTINE T0 CALCULATE THt OBJfCTIVf FUNCTION 
FOR 3-SPAN DOUBLE BOX GIRnFR RRIDGE 

1\10TAT101,< 

CUNSTANTS 
B TOTAL WIDTH 
B6 WIDTH OF CAST-IN-PLACF STRIP 
T4 WEB THICKNESS 

VARIABLES FROM MAIN PROGRA~ 

Bl WID1H OF CANT1LEVfR OVERHANG 
B2 FIRST INTERIOR SPAN OF DECK 
83 WIDTH OF HOTTOM SLAR 
U DEPTH OF SECTION 

~UANTIT1ES CALCULATED 
A AVERAGE SECTION AREA 
AS AVERAGE CARLr AREA 
C adJECTIVE FUNCTION 

B = 56. 
B6 = 2. 
T4 = 1. 
GO TO ? 

2 PRINT 2uOO, Ul, B2, 03, D 
20v0 FORMAT (*61 H2 63 D =*, 4[12.21 

CALL EX IT 
5 CONTINUl 

TIl = .7 
10 Fl = .025*(1.+Tl1)*Bl**2 + 26.*(H]-2.1/(Rl+2.68751 

I F ([< 1 • L E • 8 • 1 GO TO 2 (1 

F1 = Fl + 26.*IBl-8.)/(nl-3.31251 
2J Tl = .167 + .126R*SQRTIFll 

E = ABSITI-Tlll 
IF It-.GOl) 40,40,30 

30 T 11 = T 1 
GO TO 10 

4u IF (Tl.LT •• 5) Tl=.5 
W = 6-2.*81-4.*T4 
B5 = W-2.*B2 
T5 = c. 
IF (~5.LE.B21 GO TO 70 
T51 = .5 

5U F5 = .0125*T51*65**2 + .52*(B5+2.) 
T5 = .167 + .1268*SQRT(F5) 
E = ABS(T5-T51) 
IF (E-.GOl) 70,70,6U 

6U T51 = T5 
GO TU ?U 

70 CONTI NUE 

.' 
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T21 = .5 
eo F2 = .0125*T21*B2**2 + .52*(B2+2.) 

ST2 = T21**3/B2 
S = SQRT«D-T21-.5)**2+( (R2-B3)/2.+T41**2) 
ST4 = .75*T4**3/S 
F2 = (ST4*F2+ST2*F11/(ST2+ST4) 
T2 = .167 + .126A*SQRT(F2) 
E = A BS ( T 2 - T 2 1 ) 
IF (E-.OOll 100tlOO,90 

90 T21 = T2 
GO TO 50 

1uO IF (T2.LT •• 5) T2=.5 
IF !T2.LT.T5) T2=T5 
AA1 = B1*(T1+.5)/2. 
II = (T1**2+.5*T1+.25)/(T1+.5)/3. 
AA2 = «B-B6)/2.-B1)*T2 
l2 = T212. 
AAT = AA1 + AA2 
AlT = AA1*ll + AA2*l2 
AA3 = B3*.5 
l3 = D-.25 
AA4 = 2.*5*T4 
l4 = (D-.5+T2)/2. 
All = AAT + AA3 + AA4 
Al = AlT + AA3*l3 + AA4*l4 
DC1 = Al/A11 
BMU = 1C12.5*A11 + 5344. 
T31 = 1. 
J = 0 

110 DM = D-.5*T31-.46 
T3 = BMU/(661.*DM*B3) 
E = ABS(T3-T31) 
J = J+1 
IF (J.GT.2C) GO TO 2 
IF (E-.OOll 130tl30tl20 

120 T31 = T3 
GCJ TU 110 

130 IF (T3.LT •• 5) T3=.5 
ASU = BMU/(31100.*DM) 
DM = D-.71 
BMU = 330.5*DM*B3 
Q = .05 

14(J Q = Q+.U5 
BMX = l012.5*A11*(1.-Q)**2 + 5625.*(.95-Q) 
IF (~MX.GT.BMU) GO TO 140 
AA3 = B3*T3 
l3 = D-T3/2 
S = ~QRT(~D-T2-T3)**2+( (E2-B3)/2.+T4)**2) 
ftA4 = 2.*5*T4 
l4 = (D-T3+T2'/2. 
A21 = AAT + AA3 + AA4 
Al = AlT + AA3*Z3 + AA4*l4 
DC2 = Al/A21 
Al = 2.*All + B6*T2 
A2 = 2.*A21 + A6*T2 
A = Al + (A2-AI,*Q/2. 
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ASI = .0386*All/(DC2-.461 
IF (ASU.GT.ASII ASl=ASU 
AST = .43*ASI 
DEC = 1)-.5-DCl 
AS21 = .15 
J = 0 

150 BMS = 8980.*AS21*DEC 
BMU = 445.5*(Al+.113*(B-2.11 + 16850. - 396.*A11 + RMS 
DM = D-.5-26.*AS21/B 
AS2 = BMU/(34340.*DMI 
E = ABS«AS2-AS211/AS211 
J = J+l 
IF (J.GT.2U) GO TO 2 
IF (E-.002) 170,170d60 

160 AS21 = AS2 
GO TO 150 

170 ASB = .475*AS2 
AS = AST + ASS 
C = ?345*A + 343.*AS 

,. 
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