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PREFACE

This report is the third in a series of reports from Research Project
3-8-68-118 entitled "Study of Expansive Clays in Roadway Structural Systems."
The report uses the theoretical results of the two previous research reports
(Nos. 118-1 and 118-2) in developing one and two-dimensional computer programs
for solving the concentration-dependent, partial differential equation for
moisture movement in expansive clay.

A numerical method is used in which errors made at one time step do not
grow with additional steps forward in time. This property, called stability,
is very important in solution of the highly nonlinear flow problems encountered
in unsaturated soil.

This project is a part of the Cooperative Highway Research Program of the
Center for Highway Research, The University of Texas at Austin, and the Texas
Highway Department in cooperation with the U. S. Department of Transportation,
Bureau of Public Roads. The Texas Highway Department contact representative

is Larry J. Buttler.

Robert L. Lytton
Ramesh K. Kher

April 1969
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ABSTRACT

This report describes two computer programs for determining changing
moisture distribution with time. Program FLOPIP2 is arranged to work one-
dimensional problems and computer Program GCHPIPl solves moisture distribution
problems in two dimensions. The equation governing the flow of moisture is a
concentration-dependent, parabolic, partial differential equation which is
solved numerically using the implicit Crank-Nicolson method of marching for-
ward in time.

Although it is stable in ohe-dimensional problems, the Crank-Nicolson
method can become unstable in two-dimensional problems, depending upon the
relative size of the components of the permeability tensor. This rare form of
instability is predicted theoretically and observed in one of the example
problems.

Example problems are worked to demonstrate the capabilities and breadth
of application of the computer programs and to prove the validity of the
approach., The one-dimensional example problems are concerned with matching
measured field data and with presenting the results of a parameter study of
various suction and permeability factors. The field data can be duplicated
to within very close tolerances.

The two-dimensional example problems are arranged to demonstrate the
versatility of computer Program GCHPIPl. Problems solved include a two-
dimensional consolidation problem, ponding problems, and a problem of pre-

dicting moisture distribution within a concrete highway bridge girder.

KEY WORDS: moisture movement, expansive clays, discrete-element analysis,
computers, permeability, suction, ponding, Crank-Nicolson method, unsaturated

permeability, compressibility.
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CHAPTER 1. INTRODUCTION

The purpose of this report is to present numerical methods of solution to
the differential equations which describe mathematically the movement of
moisture in one and two-dimensional regions of clay soil.

The basic numerical method used is the discrete-element approach, which is
similar in many respects to the numerical method used to solve for the deflec-
tions of beams, slabs, and grid beams described in several reports of Project
3-5-63-56 (Refs 26 and 27). The greatest difference between the two rests in
the fact that a beam or slab differential equation is of fourth order, i.e.,
involves fourth derivatives, while the flow differential equation is of second
order. The one-dimensional flow equation is solved herein by computer Program
FLOPIPZ and the two-dimensional solution is accomplished by computer Program
GCHPIPL.

This report consists of eight chapters. The second chapter presents
briefly the moisture flow equation to be solved. A more detailed treatment of
this subject is contained in Research Report 118-1, "Theory of Moisture Movement

' The third chapter outlines the numerical technique used to

in Expansive Clays.'
form discrete-element analogs to the differential equations of flow. Chapters

4 and 5 discuss the two and one-dimensional moisture distribution computer pro-
grams, respectively, detailing the forms of input and output information., Chap-
ter 6 presents the results of a study made of field experimental data collected
by Donald R. Lamb and others at the University of Wyoming. These data were
assembled from readings of moisture and density nuclear depth probes. The
chapter is valuable because it shows a technique for using the computer to
develop realistic field soils data. Chapter 7 presents results of two-
dimensional problem solutions and demonstrates a rare form of instability of
the numerical method used to march forward in time. This instability is pre-
dicted theoretically in Chapter 3. These two-dimensional problems involve
solutions of flow problems in both rectangular and cylindrical coordinates.
Chapter 8, the concluding chapter, summarizes the findings and capabilities

presented in this report and suggests areas for use of the computer tools



developed in Project 3-8-68-118, '"Study of Expansive Clays in Roadway Struc-

tural Systems,'" for predicting moisture movement in clay.



CHAPTER 2. THE FLOW EQUATIONS

In Chapter 5 of Research Report 118-1, a detailed derivation of the flow
equations was given. In this chapter, these equations will be summarized and
their discrete-element forms will be given. In the latter part of the chapter,
boundary conditions will be considered. These conditions will involve defini-
tions of soil suction which are given in detail in Chapter 3 of Research

Report 118-1.

The Flow Equation in Rectangular Coordinates

The flow equation is derived from a combination of the continuity equa-
tion and the tensor form of Darcy's law. The element used to derive the
equations is given in Fig 1(a). The continuity equation developed from this

element 1is

& (o) = -3 vy (2.1)

1

where
p = the mass density of liquid,
0 = the volumetric water content of water,
. . . th . .
v, = the velocity in the i direction.

Darcy's law in rectangular coordinates is as follows:

oH

v, T - kij S;T (2.2)
J
where
kij = the permeability tensor,
oH . . . .th ;
3%, = the force potential head gradient in the j direction.
3
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(a) Rectangular element.
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(b) Cylindrical element.

Fig 1. Elements used to derive equations,



Although the total head is a function of all the variables included under
the term "suction" and of temperature in addition, the moisture distribution
programs given in this report use suction alone. Thus the force potential
head used in this report is more restricted than the broadest possible defini-
tion which includes temperature effects. Using T for the suction, desig-
nating the three-direction as the direction opposite to the pull of gravity,
and assuming that the average water density does not change greatly within a
soil region either in time or space, the flow equation in rectangular coordi-

nates becomes

T )
i3 ox, + kg (2.3)

o/ |
rt @
n

o/
ol |0/
VS

A further assumption is that suction is a unique function of water con-
tent. Although this is not true, because of known hysteresis effects, it is
certain that changes of suction with water content in a certain direction, say
drying, do follow a unique curve so that long-term one-way changes of suction
may be treated as if suction and water content were related by a single curve.

Given this assumption, the time derivative is found to be

% _ 2937
= 27 (2.4)

from which comes the form of the equation used in this report

ok

Q oT
ot k

ox ij ox, + kiB
1 ]

3
o (2.5)

This equation is presented in its discrete-element form in a subsequent

section of this report.

The Flow Equation in Cylindrical Coordinates

The element from which these relations are derived is shown in Fig 1(b).

The continuity equation in cylindrical coordinates is



% %; (pur) + % %E (pv) + %; (pw) = - é&%%l (2.6)

Darcy's law in cylindrical coordinates is of the form

o _ T Tag
v ki1 k2 Kyg dr
1 3H
vil= oo lkyy Ky kg - 55 (2.7)
2H
v kyp Ky Koy dz

The combination of these two equations with the assumptions made in
developing the flow equation in rectangular coordinates, and the designation
of the direction opposite to the pull of gravity as the three-direction,

gives the three-dimensional flow equation in cylindrical coordinates:

k
oT JT 1 T 12 d7 oT
QT ot ( ~ L 9 OT 4 22 oT oT
t 5 < rt ) < k1sr T 8 T M3z T K3 )

k
+ 9% % o ( k,, O 4 2297 9T 4y )

w215t T 3B T3 3z T ks
d 3r . 532 a7 31
oT O k oT 24 o7 o7 )
* 36 3z < 135 T T 38 T K333z F K3 (2.8)

The axially symmetric condition occurs when all derivatives with respect

to B are equal to zero. This is the equation which is used in this report

for flow in cylindrical coordinate systems:

409 Ty 2T,y ( ST 41 ) ] (2.9)

The discrete-element form of this equation is given below.



Discrete-Element Representation of Flow in a Rectangular Region

Each pipe segment shown in Fig 2 has one or two permeability coefficients,

If a principal permeability is aligned with the pipe direction, then

11 1
and

k12 = 0

If the principal permeability is at some angle, the pipe increment will have

two permeability coefficients.
The pipe increment i,j running in the y-direction, has permeability

components

= Ky, .
k211,j 221,j

and

K921,

The differential equation for transient flow in these pipes is as follows:

or _ ot T or (5_'f )]
ot 30 3% L “115x T Ra \ 5y *!
ot o [ oT ( oT ) ]
— = k,_ =+ —+ 1 2.1
T3 oy L 21 8% T2 \ 5y (2.10)
The suction at a point 1i,j will be denoted To s With the suction

3

and permeability conventions set, the finite-difference form of Eq 2.10 may
be written virtually by inspection of the discrete-element representation in

Fig 2. The superscripts k and k+l indicate the time step.
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Fig 2. Discrete-element representation of
flow in a rectangular region.



k+1  _k k
- T
1, .] ’Tizi = ( ﬂ) ]-_ [_ - 1'111 + Tla]
h, 36 /; 4 hy 114, § h_
K K K g
+ k ( i:j i+1:_j ) - k ( ix]‘-l ii.] >
11i+1, 3 h 121, § h
x y
'Tli( i 1 li i+L
* k9541, 5 ( b, )t ( k121,15 F K121+, ) ]
k k
- T
f(Z) LT« ( i-l,i+i,j>
98 /; 5 b L 72185\ h,
_Tk Tk -T + Tk
+ k ( 1,1 i+1;j ) -k ( lai"l 1,1 3\
211, j+1 h_ 22,3 b /
'TI; it . i+1
s 1,1 -
* Kypi, 41 ( b, ) + ( ko215 ¥ Xo24, 541 > ] (2.11)

For convenience, coefficients of like terms may be collected and the

collection itself designated as follows:

h k k
- _t él.) [ C12i,1 . “22i.1 )
A1Lj 2 < % /. .\ hh T hn (2.12)
i,j X'y
h k k
_ Mo ) ( 11i,3 | 211, )
B, 2 < 3 /. .\ "hh T Thh (2.13)
1,] X X y X
h k
- _ _£_< ot N/ Fua,g L 11,4
i,] 2 \3 /. .\ "hn h_h
1,1 X X X X
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k k
124, 12i+1, i
) (2.14)
X'y X'y
oy - EL <g-_> (k2li,i +k211,1+1
i,j 2 368/ . . h h h h
i,] y % y X
N k201,45 X221, 441
h h h h (2.15)
vy yy
h k k
t / dr 11i+1, j 211, 3+1
o — a———— ] + 2
D, > ( 30 ), . ( ) b h (2.16)
i,] X X ¥y X
h
P - ot (g;) ( “l2iv1,5 , ko2i, 11 ) 2.17)
i,] 2 \39 /. ., hh h h )
i,] Xy Yy
h
- - _t ( g;) ( _ klZi,j + k121+1,i
3 2 o) A h h
1,71 0 i,] x x
k k
22, 221, i+1
clal 222 ) (2.18)
y y
If these substitutions are made into Eq 2,11, the result is
R R N ) . LI
1,] 1,] 1,] 1&.]"1 1] l"ls.]
k k
- 2(CX, .+ cCY., )T, . +2D, .7 .
(c i,] 1,3) i,] i,j i+l,]
k
+ 2 2F, (2.19)

E, T, . .+
i,3 1i,j+l i,]

The method used to solve systems of equations such as this is discussed in the

next chapter.
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Discrete-Element Representation of Flow in a Cylindrical Slice

The equation for flow in a cylindrical continuous medium is Eq 2.9. This
development derives a finite~difference equation which corresponds to a discrete-
element representation of the continuous medium, a sketch of which is shown in
Fig 3. Again, very nearly by inspection, the finite-difference equation may

be written as follows:

Skl ok Lk K
_i,i  i,i _ Or ll: K ( i-1,1 i, )
h 90, . r 111, 3 h
t i,] r
k k
-T + T
1,1-1 7 k,j ) _ ]
HESETSE ( h k13,3
k k
-7 ks
+ (.a_'r\ .];_[ - k ! i'lsj + i,] )
26 . h 111,35 \ h
i,j r
N I L L
K ( i,] 1+1,])_k ( i,j-1 1,1>
11i+1,j h_ 131, j h,

'Tlic i TL;+1 i 1
* K351, < b ) + < k131, 5 F K13i41, 3 ) J

2z

k k
-7 T
PE), By (TR
38 i3 h, 314,j h,
k k k
-T T -T
+k ( —L. i+1,j> k ( i,T-1+T,1>
311, §+1 \ . 331, j h_

Tk Lk

i, i,i+1 ) + ( . ) ]
+kaa a1 ( h K331,5 % X334, 511 (2.20)
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As in the rectangular case, coefficients of like terms may be collected and

defined as given in Eqs 2.21 through 2.27.

h k
A, , = = ( _B_T) TR . 5% *331,3 (2.21)
i,] 2 \38 /, . rh h h h h .
1,] z rz z z
h k k k
- -t ﬁ) [ 11i, , ~11i,3i , _31i,i 1
Bi,j 2 (\ae . . T Teh TThn (2.22)
1,] r rr zZTr
CR - i ( ot ) [ ) klli,j + klli,j + klli+1,j
i,] 2 \ 230 /, . rh h h h_h
1,] r rr rr
k
- k13i,j + €131, ; 413441, 7 (2.23)
rh h_h h_h J :
z r z z'r
cz = h_t ( ot [ + k311,j + kSIiLj+1
i,] 2 \ 2 /, |, h_h h h
i,] Zr zZr
k k
33i,1 331, j+1
the tTun (2.24)
zZ Z zZ Z
h k k -
= _t (987 11341, i 314, j+1
%1, 5 2 (ae R ekt (2.25)
1,] rr zZ T
h k k
9 > 13i+1, j 33i, 4+l
= £t (=T it+l,§ i, ]
B, = (5 ) | Al 2 (2.26)
1,J r z VA VA
_ B/ oar k13i,j k13iLj k13i+1,j
F, . = 2— a—e' + - - o + =
o d i,j r r
k k
331, i 33i, i+l ]
T (2.27)

h
z
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If Eq 2.20 is rewritten using these newly defined coefficients, it is
found that the result, Eq 2.28, is of the same form as the rectangular coordi-

nate Eq 2.19.

Atk A pap, 4K
i,j i,] i,j i,j-1 i,j i-1,j
- ZECR. + cz, .]'rk _+ 2D, 7%
i,] i,] K, j i,j i+l,j
+ 2F k + 27 (2.28)

- -T . 3 *
i,j k,j+l i,]

This leads to the conclusion that both rectangular and cylindrical region
problems may be solved with the same computer program, provided the coeffi-
cients A, ; through Fi ; are appropriately computed. As mentioned before,

b

b
discussion of the solution to a system of such equations is given in Chapter 3.

Boundary Conditions

In a mathematical sense, only two types of boundary conditions may be
considered: a specified value of the variable on the boundary and a specified
gradient of the variable perpendicular to the boundary. The first of these is
termed a Dirichlet problem and the second a Neumann problem by mathematicians.
The use of the term "boundary conditions'" in its engineering sense requires
determination of physical quantities which exist on the fringes of an area of
interest. All of the engineering boundary conditions to be considered may be
expressed as a boundary value or a boundary gradient. A set of typical prob-
lems, shown in Fig 4, will permit easier discussion of these boundary condi-
tions.

(1) No Flow. This is a condition in which the gradient normal to the

boundary is zero.

(2) Symmetry or Mirror Image. No flow will cross a line of symmetry.
The normal gradient must be zero on such a boundary.

(3) Seal. A watertight seal will permit no flow. The normal gradient
must be zero.



Evapo- Transpiration

No Flow

T O
-t
-s—3 Suction

1

"'ﬁéndfnq @

[
Water Table @

15

Temperature

Rainfall

!
Evaporation X1} i

No Flow @

Infiltration

|
Symmetry @
e

Fig 4. Boundary conditions.
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(4) Water Table. At a water table no suction other than solute suction
exists. If a water table is known to exist in a clay formation, a
convenient, though not necessarily correct, assumption would be that
the suction is zero on that boundary.

(5) Ponding. At the surface while water covers it, the suction in the
soil can be assumed to be zero or some value dictated by a difference
in ion concentration from ordinary soil water. The most convenient
value is zero.

(6) Suction. If a constant water content is maintained at some depth
below ground, then the suction will remain relatively stable. The
value of suction corresponding to this constant moisture content may
be set. If the moisture content on the boundary changes with time
in a known way, then the corresponding suction may be set at the
appropriate time.

(7) Evaporation and Infiltration. This condition can be handled in
either of the two ways: by specifying a known suction which cor-
responds to the condition of soil moisture humidity or by specifying
the gradient which corresponds to the net inflow or outflow. Richards
(Ref 18) discusses this problem and chooses the gradient method.

Some of the considerations he presented are given here.
The total moisture entering or leaving the soil is the algebraic sum of
infiltration (+) and evaporation (-). This sign convention requires nega-
tive gradient into the soil. Infiltration will be denoted as I and evapora-
tion as E , and each is expressed in units of length per time increment, e.g.,
in/hr. The time and length units should be the same as the units being used to
express suction and permeability.

Infiltration is a topic studied by hydrologists who recognize that it is
affected by soil type, surface roughness and vegetation cover, antecedent
moisture conditions, and ground slope. Rainfall is disposed of on the surface
as runoff, surface storage, and infiltration. Ideally, if there were no sur-
face storage, then a runoff coefficient and an infiltration coefficient which
add to one could be defined. The coefficients represent the fraction of rain-
fall which becomes that component of surface water disposition. No table of
typical values is given here because of the many different methods used by
hydrologists to estimate runoff characteristics of small areas., It is evident,
however, that with a tight, dry, smooth clay soil on a moderate slope the
infiltration factor is close to zero. On a rough-surfaced, open-structured
soil with a flat slope and surface cracks and slickensides, the infiltration
coefficient will be closer to 1.0. If the total rainfall is R and the

infiltration coefficient is Ci , then I = CiR
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Evaporation is more difficult. It is based on the difference between
soil-moisture vapor pressure and atmospheric vapor pressure according to a
statement attributed to Philip by Richards (Ref 18) in referring to smooth

bare ground. For this condition

E = K(p - pa) (2.29)
where
K = mass transfer coefficient dependent on climatological
considerations,
p = vapor pressure of soil moisture,
P, = atmospheric vapor pressure.

Similarly, for saturated soil

Esat N K(psat B pa) (2.30)

The ratio of the two equations gives an expression for evaporation:

sat (Pg ¢ = Py '

Dividing each term of the fraction by the saturated soil vapor pressure cor-

responding to 100 percent soil-moisture humidity gives

H - Ha
E = Egae ( 100 - H, ) (2.32)
where
H = relative humidity of soil moisture,
Ha = atmospheric relative humidity.

Attempts have been made among climatologists interested in the agricul-

. . 0.75 . . .
tural sciences to estimate ESat = 0.4 Epan , which applies to & certain area
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of Australia. This equation is of the same form as proposed by Thornthwaite

(Ref 21) to describe total evaporation including the effect of transpiration:

E, = kT 2.33
t e (2.33)
where

Te = temperature in degrees centigrade,

k,n = constants calculated from a temperature-efficiency index,

Et = total evaporation.

Other work indicates that potential evaporation should be considered a function

of wind speed in a form like Dalton's law of partial pressure:

E = fE(u)(p - p) (2.34)

One of the most recent approaches, which gives excellent prediction, is
an energy balance method reported by van Bavel (Ref 22). This includes the
factors of wind speed, latent heat of vaporization, sensible heat, and a term
which lumps together all energy inputs such as radiative flux, soil heat flux,
heat storage changes in vegetation or ponded water, and energy used in plant
photosynthesis. Latent heat of vaporization is the quantity of heat required
to change a unit weight of water into water vapor. This heat is absorbed by
the water without change in temperature. On the other hand, a sensible heat
change can be detected with a thermometer or other temperature measuring
device.

The velocity with which moisture enters or leaves the ground is

_ _ o1 (5_7_ )
vy, = I -E = ky 3-+ky Sy 1 (2.35)
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Set the x-gradient to zero and get

I-E+k,y, 31
—2 - = (2.36)
22 y

which gives the proper sign and magnitude for the required gradient.
The other method also uses Eq 2.35 but assumes that vy and 1 are
known or can be estimated. Then Eq 2.32 is used to give an estimate of the

soil-moisture humidity:

(I - v

E
sat

2)
(100 - H)) + H_ (2.37)

jas]
I

The relative humidity is then used in the equation

e . H
T = — ln— 2.38
mg 100 ( )
where
R = the universal gas constant,
Te = the absolute temperature,
m = the molecular weight of water,
g = the acceleration due to gravity,
T = the suction,

This suction can be set on the boundary where infiltration and evaporation

are taking place and can be changed as these conditions change. Equation 2,38

is taken from the condition of change of free energy in an isothermal process:
dF = wvdp (2.39)

and

mgpv = RT (2.40)
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P
_ RT, 4
F-F —& (2.41)
(o] mg P
pO
RT
= — 1n & (2.42)
mg  p,
RT
= @ M Too (2.43)

In the equations written above

p = vapor pressure of soil water vapor,

v = volume occupied by the water vapor,

P, = vapor pressure of free water,

ﬁ— = the relative humidity of soil water, T%B
o}

(8) Evapo-transpiration. Evapo-transpiration is the process of water
transport from soil, through plants, to the atmosphere. This is
a serial flow process in which the flow rate is controlled at the
point of greatest resistance to water movement.

The same reasoning applies to this boundary as in Condition 7. Rainfall
infiltration will generally be higher because the soil is more loose, but the
transpiration from plants may counterbalance these, depending on the nature of
the vegetation. Qualitatively, it is known that a large tree keeps the soil
within and around its root zone in a rather dry condition. When the tree is
cut down, the subsequent moisture gain causes a heave in the soil. This has
been the sad experience with roads built across the location of old hedgerows.
In attempting to derive vegetation moisture requirements, agricultural
scientists have developed tables of transpiration ratios which give the weight
of water transpired compared to the weight of dry plant material above ground.
In a more recent development, Gardner (Ref 8) has proposed that the water

intake rate of plants in volume of water per unit time per unit volume of soil

A8
At

is
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T -7

A6 _ P m (2.44)
At R + R

P s

where

Tp = the matrix suction of the plant,
Tm = the soil matrix suction,
Rp = the resistance to water movement in the plant,
R = the resistance to water movement in the soil.

S

His experimental results show fair agreement with his predicted results. Ehlig
and Gardner (Ref 6) then showed experimental relations and some theoretical
explanation of plant suction and transpiration rate. The plant suction is, of
course, dependent on the soil suction and this system is tied together with
continuity relations of water intake, storage, and transpiration. An analog
model of the entire process has been proposed by Woo, Boersma, and Stone
(Ref 23) in a paper which includes a thorough discussion of the transpiration
problem.

The eight boundary conditions just discussed compose a fairly exhaustive

list of conditions which may occur on the boundary of a soil region of interest.

Internal Conditions

Internal conditions are those which occur within a soil region of interest
and in principle are no different from boundary conditions. For example, a
known gradient or suction (such as from a root system) may occur within a soil
region being studied and any computational process should be able to handle
such interior complications.

One of the benefits of using the numerical solution process discussed in
the next chapter is that it permits the inclusion of internal conditions with

relatively little complication.
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CHAPTER 3. THE NUMERICAL METHOD OF SOLUTION

In Chapter 2, it is shown that whether rectangular or cylindrical coordi-
nates are chosen for a problem, the finite-difference equation representing

change of suction with time is of the form

Al ke, ok k

. . . LT . LT, .
i,j i,] i,j i,3-1 i,j i-1,3

-2 [ CX.  +cY. . ] £ s TE
i,j i,] i,] i,j i+l1,j

k
3.1
+ 2Ei,jTi,j+1 + 2Fi’j (3.1)

The type of partial differential equation for this process of suction
changing with time is called a parabolic equation. Two sets of information
must be known for this type of equation to be solved: (1) the initial condi-
tions and (2) the boundary conditions. Initial conditions specify the original
value of T at each point in a region at the time chosen for the start of the
problem. Boundary conditions specify the value or gradient of T on the
boundaries of a region at each step in time. This parabolic partial differen-
tial equation is, of course, different from a Laplace equation in which the
time derivative is zero. 1In the Laplace equation, values computed for the
interior of a region do not change with time. Only one set of information is
required for solution of a Laplace equation problem: the value or gradient of
the variable of interest on the boundaries of an area. An example of a problem

described by a Laplace equation is a steady-state seepage problem.
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Forward-Difference Method

k+
If Eq 3.1 is used to solve for Ti % , then the expression becomes
b
LR YO L S T
i,j i,j i,j-1 i,j i-1,7
-2 [ X, .+CY, . -= ] fF .
1,] 1,] 2 1,]
k k
+ 2D, T, . 2E. T, . + 2F, . 3.2
i,j i+l,] i,j i,j+1 i,] (3.2

If values for T at time step k are known at each point, then T at time
step k+l can be computed by Eq 3.2. This procedure is termed forward-
difference method and is the method used by Richards (Ref 18) in his computer
program. From a computational standpoint, this is a very convenient method,
but it has the disadvantage that unless the coefficients like A, ., are less
than 0.25, errors between actual and computed values can become v;ry large--
and CYi . should be less

s ] ’
than 0.125 for the numerical solution to remain stable as time increases. The

a condition termed Munstable." The terms CXi

value of T at one time step depends solely on the five surrounding values of
T at the previous time step. A graphical representation of this method is
shown in Fig 5. The coefficients of each applicable T term are shown
enclosed in the diagram.

Convergence of a numerical scheme is assured if the numerical values
obtained approach the exact solution of the differential equation as the incre-
ment size is decreased. Though other definitions of convergence are used, this
appears to be widely accepted. A clear discussion of both stability and con-
vergence of a numerical approximation of a parabolic equation is given by Kunz
(Ref 12). Although the difference equation considered by Kunz is a function of
x and t alone, the method of proving convergence and finding the condition
for stability is the same as is used when a function of x, y , and t 1is
considered. The forward-difference method is convergent and stable for coef-

ficient values less than the amounts previously mentioned.



Fig 5.

Forward-difference operator.
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Crank-Nicolson Method

The Crank-Nicolson method was proposed for use in the solution of heat
flow problems (Ref 4) and normally has the advantage that any size of time
step may be chosen and the process will still remain stable. When compared
with the forward-difference method, it has the disadvantage of being a more
complicated computational procedure.

The Crank-Nicolson method requires a change from Eq 3.1 as shown in

Eq 3.3. A graphical representation of the operator is given in Fig 6(a).

1 1
TR e i LAl
i,j i,] i,j 1,3-1 i,j i-1,j
r 7kt
- 2 i CX, + CY J T N
L i,] i,] i,j
ks k+s
+2D. T2 4+ 2E, 7. ° . 4 2F, . 3.3
i,j i+1,j i,j i,j+1 i,] (3.3)

Because the values of T are not computed at the half-time step, it is

further assumed that

x
i

_ % ( el Tg ) (3.4)

This approximation is inserted in Eq 3.3, and the form of the Crank-Nicolson
method that is actually used in computations is found in Eq 3.5. The actual

operator used i1s shown in Fig 6(b).

T S T [cx. + Cy. ] ko
i,j i,j i,j i,3-1 i,j i-1,j i,j i,j i,j
k k k+1
ea T T
PO, T BT e T AT g
+8, ot [ CX. .+ CY, . ] 7kl
1,] 1']-3.] 1,] 1,] 1,]
+Dp, ;tktl g okl 4 oop (3.5)

i,] i+1, j i,j i,3+1 1,]
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(b) Crank-Nicolson operator.
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Fig 6. Crank-Nicolson operator as applied to
discrete-element representation.
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A demonstration of the stability of the forward-difference method is not
given here. A demonstration of the stability of the Crank-Nicolson method
will be sketched briefly. With the following simplifications, the demonstra-

tion will be more straightforward:

h = h = h
X y
kg = Ky 5y
DT
kla—e' D
k = one time increment

In its simplified form, Eq 3.5 may be written

=

T(xay>t+k) - T(X>y:t) = 4+ '—!2:" ‘212 [ T(X,Y‘h,t)

=3

+ T(x-h,y,t) + T(xth,y,t) + T(x,y+h,t)
- 4T(x,y,t) + T(x,y-h,t+k) + T(x-h,y, t+tk)

+ T (xth,y, t+k) + T(x,y, t+k) J (3.6)

The following substitutions are made and the equation is manipulated

into the form shown in Eq 3.8.

T(x,y,t) = eYtX(x:}’) (3.7
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St |yt
ey(t+k) e‘yt

D_r [ X(X’Y'h) + X(X‘h,_l) + X(x+h,y) + X(x,y+h)
2 X(x,y) l

-4X (x,¥) ]
X(x,y)

o} (3.8)
In Eq 3.8, ¢ 1is a constant. The function X(x,y) must be found from
the initial boundary conditions. Two somewhat austere cases are shown in

Fig 7. TFor the condition shown in Pig 7(a), the function X(x,y) 1is of the

form:

L C
X(x,y) = E%— cos 2%5 cos E%Z (3.9)
X y

For the condition shown in Fig 7(b) the function is

CL

- nix . nny niy ]
X(x,y) cos —I; [ E;X sin Ly + Ty cos Ly (3.10)

which can be reduced to the following form:

X(x,y) = A cos 2%5 cos ( E%Z -y > (3.11)
X y
where
CL
y = arc tan ( —2 )
nuTy
A = some constant.

Generally speaking, the function X(x,y) will be of the form
X(x,y) = A cos ax cos By (3.12)

This general relation may be substituted into Eq 3.8 to find an expres-

sion for the constant ¢
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Two cases of boundary conditions.
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¢ = - 2Dr |:sin2 % + sin’ —Bz—h] (3.13)

The constant ¢ 1is set equal to the time-dependent fraction in Eq 3.8 to

obtain

b + sin

)
)

b [

1 - 2Drv(sin2 %?
7 oh (3.14)
2

+ sin

2 gn
2
1 + 2Dr (sin 2 %?

This form is substituted into Eq 3.7 to obtain Eq 3.15, a finite Fourier

series which expresses T as it varies with x , y , and ¢t

)cosa('

=
=Z |+
~——

>

M N
T(x,y,£) = Y ¥ Aij cos g (
=0

i=0 j

1 - 2Dr (sin2

) (3.15)
1 + 2Dr (sin

where
M = number of x-increments,
N = number of y-increments,
A,., = constants.
1]

In order for a method to be stable, it must produce bounded results as ¢t
approaches infinity. In most real cases, the constants Ai' are bounded and
the only term which affects stability is that in brackets. JBecause the terms
D, r , and (sin2) are all positive, the term in brackets is always less
than one. Thus, as t approaches infinity this term remains bounded.

Thus, the Crank-Nicolson method will allow stable solutions of this type
of numerical, parabolic, partial difference equation regardless of the time
step chosen. It must be recalled that the cross permeability terms were set
at zero for this development. 1In the next section, the effect of including

all of the terms of the permeability tensor will be showm.
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Stability of Crank-Nicolson Method with Tensor Form of Permeability

As in the previous section, the difference equation form of the Crank-

Nicolson method is written as a function of x, y , and t as follows:
= oYt
T(x,y,t) = e X(x,y) (3.16)

With the aid of the following definitions

h
r = _—
2
oT
b = 11<ae>
Lo Sz
ki1
K
Lo 22
K11

an equation similar to Eq 3.8 may be written in two parts:

SY(EHK) o vt
e'y(t-}-k) + eYt

- ¢ (3.17&)

and

_ Dr T (Hm)X(x-h,y) + (mtn)X(x,y-h) + (I4+m)X(x+h,y)
¢ = 2L X(x,y)

+ (mF)X(x,v+h) - 2(1+2mrn)X(x,y) ]

X%, v) (3.17b)

Again recognizing that the function X(x,y) will be of the form

X(x,y) = A cos ox cos By (3.18)
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it is found that the constant ¢ 1is

2 2
¢ = - 2Dr [ sin %F + n sin %? +m ( sin2 %? + sin2 %? > ] (3.19)
The term in brackets must always be positive in order for the method to be
stable. It is apparent from a Mohr's permeability circle that m may be

negative and thus the stability requirement becomes

2
m ( sin2 %? + sin2 %? ) + sin2 ¢h + n sin %? >0 (3.20)

The sine term ratio { 1is defined as follows

2
sin %?
y o= 7 ah (3.21)
sin T

In addition to ¢ , the positive angle € 1is defined as the angle mea-
sured counterclockwise from the major principal permeability to the horizontal.

With this definition, the cross-permeability term is

k k

11 - 22
ky, = - (———2-— ) tan 2€ (3.22)

and the quantity m may be written as a function of n and £ .

m = ( - %‘+ % ) tan 28 (3.23)

The stability condition becomes

2(1
tan 2€ < (1 +(¢)t1n?)n) (3.24)
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which indicates that instability is a function of n ,

following table gives ranges of angles £

pated for various values of n

and

£ , and

for which instability may be antici-

The

TABLE 1. RANGES OF ANGLES FOR INSTABILITY OF THE METHOD
VALUES OF ¢
Angles
1 1 1
n Range 1 > 4 8 0
from
+45° to  +45° +45° +45° +45° +45°
1
-45° to  -45° -45° -45° -45° -45°
+45° to  35%47" 36°39" 37%14" 37935! 379591
1
2 -45° to -54°13" -53°921" -52%6" -52%95" -52°01"
+45° to 29°13" 31%3" +33°%06" +33%2" 34°43"
1
4 (o] (o] (o] (o] (o] (o]
-45 to -60°29" -58°17" -56°54" -56°08" -55°17"
+45° to 26°04" 29°09" 31°02" 32°%04" 33°11"
1
8 (o] (o] (o] (o] (o] (o]
-45 to -63%56" -60°51" -58°58" -57%56" -56°49"
+45° to 22°30" 26°34" 29°00" 30°19" 31%3"
0
-45° to -67°30" -63%26" -61°00" -59%1" -58°17"

In addition, Fig 8 shows graphically the safe ranges of direction for the

maximum principal permeability with respect to the horizontal for

v =1

The stability condition may be written as a function of the major and

minor principal permeabilities for two different angle ranges.

range is

- 90° < 28 <+ 90°

The first
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in which the stability condition is

k.o + k
1 2
K -~ R sec 28 > tan 2¢ + I_Iig -1 (3.25)
1 2
The second range is
90° < 28 < 180° and
- 90% > 28 > - 180°
in which the stability condition is
k. + k
i — sec 28 < tan 2t + A 1 (3.26)
k, - kK, 1+

These guidelines will point out conditions in which instability can

develop before a problem is submitted for solution to the computer.

Method of Solution

At each mesh point of a region of interest, an equation like Eq 3.5 may
be written. The complete collection of all such equations, with boundary con-
ditions included, will form a system of linear algebraic equations which must
be solved simultaneously. The methods proposed by mathematicians and engineers
to solve systems containing large numbers of equations exhibit considerable
variety and ingenuity. In discussing the classes of methods, Forsythe and

Wasow (Ref 7) stated:

Methods for solving a given computational problem are ordinarily
divided into direct and iterative. Direct methods . . . are those which
would yield the exact answer in a finite number of steps if there were no
round-off error. Ordinarily the algorithm computation procedure- of a
direct method is rather complicated and non-repetitious. Iterative
methods, on the other hand, consist of the repeated application of a sim-
ple algorithm, but ordinarily yield the exact answer only as the limit of
sequence, even in the absence of round-off error. . . . Iterative methods
are preferred for solving large '"sparse'" systems because they can usually
take full advantage of the numerous zeros in the coefficient matrix ,

both in storage and in operation.
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The term '"sparse' refers to the fact that each equation written contains
unknowns in the immediate vicinity of the point about which the equation is
written. Thus, in each equation the coefficient of all other unknowns in a
region is zero and the preponderant number in any such coefficient matrix is
zero. Furthermore, if points are numbered row-wise and column-wise, then the
nonzero coefficients will be arranged in diagonal fashion, symmetrically or
nearly symmetrically positioned around the main diagonal. Out of the many
available methods, an alternating-direction-implicit iterative method was
chosen for this study.

The discussion of this method will be much clearer if operators are used.

In the discussion to follow, the symbols defined below will be used.

T = the collection of Ti 3 operated upon

o _ ( or_ ) - L g2 .
oxX. kil ox - h2 6x ~

With this notation, Eq 3.5 may be written as

2\(:k+1 Ik)

<

SN—
~
N

2
T - T =
Tkl T ik r<6x+6

In this case, the subscripts k and k1 1indicate the time step. If

all X-operators on T are collected on one side of the equation, Eq 3.27

k+1
results
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Similarly, if all Y-operators on T

T4l 2Te collected on the left,
Eq 3.28 is found

2 2 (n+d)
57 + - ) r(n¥s
x S T ) Ten

(3.28)

MR

P )
2y / ~k

MR

r 2
(1-F8 )T = (1#

The problem to be solved involves marching a step forward in time: given
lk , find Ik+1 . The coefficients represented by the operators are set. Any
acceleration parameter must be added. The acceleration parameter is a number
added to an operator to increase the speed of convergence of an iterative pro-
cess. Addition of an acceleration operator Vv to Eq 3.27 and u to Eq 3.28

gives the iterative process used in this study and given in Eqs 3.29 and 3.30.

r 2 \ (nt+t 2
- — - : = T
(1 G b v )T <1+ 5, ) T

NG
R

r 2
+<E5y TV kel (3-29)

TN
—
[}
NR
on
<N
1
S——
+
—
PN
—
+
|
on
+
N R
on
“ON
~_~
;;_—'l

2 =
+ ! Lol ) 7 (0F%) (3.30)

The superscripts n , n+: , and nt+l refer to iteration number. Itera-
tion should continue until the difference between the values of T computed on
the first half iteration are within some specified tolerance of those calcu-
lated on the second half iteration in the y-direction. One cycle of this
double~-sweep process is termed an iteration., It is apparent that if E%+1 =
the true value of T at time step kt+l , and the error in the computed value
of T is

~

() 7
e+l ~kHl T Akt
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then the difference between the true solution and that computed by Eqs 3.29

and 3.30 is given in operator form by

(36-0)
(n+%) 2 7y (n)
&+l - 7 r 2 Rkl G-3D)

p 1 - 5 + v )

\ X
and

r 2
(n+l) _ (E S T W ) (n+3) (3.32)
S+l / r 2 R+l '
\ 1 - 3 6y + 1 )

In each case, if the numerator is set equal to zero, the error at the

next half step would be zero. This is no mathematical proof, but in operator

form it suggests a relation that has been found to be useful. 1If

v T +-rz-5}27 (3.33)
and

L = +§62 (3.34)

then the error should decrease provided the approximation is good enough. To

get the best approximation, one assumes that the latest computed values of

Ti ; are the best, applies the operator, and divides by Ti ., at the point
2 2
in question. Thus, if Tk+1 is the value of T, , at a particular point
l,
i,i,
2_(n)
1 5.7
(n+s) _ r 2~k.+1
v, = 3 (3.35)
l’.] 2 T(n)



40

and

527 (0HE)
(n+l) _ I “xoktl 3.36
b, 5 2 7 (nHh) (3.36)

The operator form becomes complicated at this point and it is more convenient
to return to explicitly stated formulas. The alternating-direction approach
separately considers flow in the x-direction and then in the y-direction. The
limit of this sequence of double sweeps of computation is the condition in
which T computed in the x-direction (TX) -equals the T computed in the
y-direction (TY) . A physical representation of the alternating-direction
process is shown in Fig 9. At each intersection of an X and Y-pipe at a
mesh point, the two are connected by tubes with valves on them. Storage of
water at each point is represented by a sump. It is interesting and perhaps
significant to note that the dimensions of the parameters y and v are
square inches or square centimeters per unit area of soil region. These param-
eters may be regarded as valve openings which allow flow from one pipe to
another. For this reason, the parameters , and v have been termed "valve
setting - x'" and 'valve setting - y' with the appropriate abbreviation. The

expressions for these terms are shown in Egs 3.37 and 3.38.

VSX, ., =
1,]
- ) T .
Tl T % e P i, e Jo.3m)
L Txi,j,k+1
vsy, | =
i,]
T - T + E TY :
o A T e T Y ke J(3 38)
= .
- Y1, 3,k

The equations for each half iteration take the form:

b = d

T T T
8711kl TP gk STk i
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in which, for

3.42:

The coefficients

3.46.

the x-iterations, the coefficients are given in Egqs 3.39 through

= -B; . (3.39)
= 1+ CX; 5+ vsyi, (3.40)
= D, (3.41)
b1 = TX""k+l

T AL gLkl T [ VY, 5 T YLy ] Tkl

B Y ek Y AT, 51,k

$By Tt (LECK oy T

+ Di,jTi'f'].,j,k + Ei,jTi,j+1,k + 2Fi,j (3.42

for the y-iterations are given below in Eqs 3.43 through

= Ay (3.43)
= 1+ CY. .+ VSX, (3.44)
i,j i,]
= -E, , (3.45)
i,j
= L
Y+l Yoo
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T VsSX, ., - CX, )TX. .
j i,j Xi-l,j,k+1 + ( i,] 1,3) i,j,k+l

+ 0
1,350, 5,01 T A5, 501,k

+ B +(1+CX, .+cCY, )T

3 .T- » . . -
i,j i-1,j,k i ] i, 37 i,j,k

+D 2F (3.46)

1,574, 5,k T By iTe, ek T O2Fy

The quantities involving Tk are known and remain constant throughout
the iteration process. The definitions of the valve-setting terms show that
the TY terms in Eq 3.42 and the TX terms in Eq 3.46, when added to the
appropriate valve-setting term, will be zero. The valve setting is not a
mathematically precise quantity, however. It depends for its accuracy upon
the degree of accuracy in the previously computed values of TX or TY as
the case may be. Thus, in a computation process a little judgment must be
built into the procedure. It has been found useful, by trial and error, never
to allow the value of VSX or VSY to be negative. If a computed value of
valve setting is negative, then it is set to zero and the TX or TY terms
on the right side of Eqs 3.42 and 3.46 will add to a value other than zero.
Some intuitive.or empirical reasons can be given for not allowing the valve

settings to become negative:

(1) There is no physical significance for a negative area.
(2) The negative factor appears to force TX and TY apart rather than
pulling them together.

One other limitation should be followed at present. There is no reliable
guideline to which kinds of problems may be worked using this 'maturally deter-
mined valve setting' and thus it appears success can only be guaranteed if the
problem to be solved is relatively well-behaved. 1If there is a problem in
which 7T 1is expected to change by a large amount in one time step, one may
expect to have difficulty, even though at times he may be pleasantly surprised.
In the case of more ill-behaved problems, it is safer at the present time to
use the more established methods of computing valve settings such as the
Peaceman-Rachford or Wachspress parameters. The formula for the P-R wvalve

settings is



”

2i-1
= v = b ( a > 2m 4
By i b (3.47)
where
b = the largest eigenvalue of both the x and the y-

coefficient matrix,

a = the smallest eigenvalue of both the x and the y-
coefficient matrix,

m = an integer chosen so that
2m
a
32<2-1>,
i = an integer that varies from 1 to m .

The Wachspress formula

by = v, = b ( z )m' (3.48)

where in this case M = an integer chosen so that

o lp
\Y2
T~
N
1
—
~

The computed valve settings are used cyclically until acceptable closure has
been achieved.

The preceding discussion is deliberately not mathematical. The problem
described in Chapter 2 is not susceptible to the precise analytical treatment
that mathematicians have given to the alternating-direction method for a some-
what restricted set of conditions. For example, Forsythe and Wasow show that
the "Peaceman-Rachford method,'" of which Eqs 3.39 to 3.46 are an example, will
converge for any positive valve setting provided all of the eigenvalues of both
the x and y-coefficient matrices are positive. Young and Wheeler (Ref 24)

prove convergence for the process for any set of positive valve settings
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provided the x and y-coefficient matrices are commutative and are similar
to diagonal matrices with positive diagonal elements in addition to meeting
the requirements of Forsythe and Wasow's proof.

Commutative matrices will give the same result when they are multiplied
together regardless of the order in which they are multiplied. Thus if there

are two matrices M and N , then they commute if

Forsythe and Wasow comment that "this commutativity is a very exceptional
property, occurring only for rectangular {regions]."”

The analytical problem is a difficult one. The results that have been
achieved lend assurance that the alternating-direction scheme is a powerful
method which is characterized by rapid convergence when compared with other
iterative schemes. Additional assurance may be gained from the fact that
alternating-direction methods have been used to solve a variety of problems
involving both second and fourth-order partial difference equations (Refs 10,
11, and 19) for which no proof of convergence exists. Young and Wheeler state,
", the Peaceman-Rachford method has been found to be extremely effective
even in cases where commutativity does not hold."

Even in those cases in which convergence can be proven, the positive
valve settings may be chosen wisely to achieve a faster rate of convergence.
The Peaceman-Rachford and Wachspress parameters computed from Eqs 3.47 and
3.48, respectively, are attempts at choosing values which will accelerate the
convergence.

Systems of equations like Eqs 3.39 to 3.46 may be solved simultaneously
by a procedure which Young and Wheeler credit to L. H. Thomas (Ref 20). Given

a system like

T T T =
371 PP Tt ST 4 (3.50)

a systematic method of applying Gauss elimination would give equations like

T, = A, .+ B, T, (3.51)
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T = T
i Ay B Tin (3.52)

Substitution of Eq 3.51 into Eq 3.50 results in the following equations:

4 " 2
A % % Fas, (3.53)
i i7i-1
-C.
B = — L (3.54)
i b, + a_B, ‘
i i7i-1

Boundary conditions are special cases of this general form as will be shown in

the next section.

Representation of Boundary Conditions

As previously discussed in Chapter 2, boundary conditions may fall into

oT oT
two types: a specified value of T and a specified gradient g; or g; .
Suction specified. In this case, Eq 3.52 would show that
T = A 4+ BT .
o o Bo 1 (3.55)

Because TO must remain the same regardless of what the numerical value of

Tl is, this condition is enforced by setting

A =7 (3.56)
B =0 (3.57)
The same reasoning applies to a value of suction set on the interior of a

region,

Boundary Gradient Specified. Although the point seems trivial, it must

be mentioned that in the discrete-element representation of the transient flow
problem, gradient does not exist at a point. Rather, it occurs between mesh

points. Thus, when a gradient is specified it must be taken to apply a certain
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rise or drop of suction in a certain pipe increment. If gradient at a point
is desired, it must be viewed as the average gradient on each side of the point.
An illustration of the pipe increment and point gradient is given in Fig 10,

For representing boundary gradients, the point form was chosen for this

study. Thus, it is found that

ot ~ 1 [ -1 0O 4 _o0 1 }
( & >AVG 2 h R (3.58)
X X
which produces the result
or
= = T - o 3.59
1T T 1 "y ( ox > (3.59

If each of the pipe-increment gradients is also set equal to the average

gradient, then the following two equations are derived:

oT
T = -h(——) (3.60)
-1 o X ox AVG
AT N
1. = T +h (— (3.61)
1 o X ox }AVG

which in turn give the constant values

A, = -h ( a%:) (3.62)
- AVG

B, = 1 (3.63)

A = T (3.64)
[s] O

B = 0 (3.65)



49

ot
2 —_—
A+ A+ 20 ( -

o
]

B (3.66)
-1 >AVG

B. = 0 (3.67)

The same set of equations applies at the other boundary where x has its
maximum value. Analogous equations may be developed for a specified gradient
in the y-direction.

The value To may be specified or it may be computed from flow conditions
in the y-direction, This latter is the way the gradient boundary condition is
used. The value of To is allowed to change, but its relation to surrounding
values of T 1is not. An example of this is the use of the line of symmetry
as a boundary. A mirror image is assumed to exist on each side of a line of
symmetry. The point gradient is thus zero and no flow takes place across this

type of boundary.

Internal Gradient Specified. Only the gradient along a particular pipe

increment is considered here. If a point gradient is desired, then that gra-
dient should be specified for the pipe increments on each side of the point of
interest. The discussion to follow is concerned with specifying a gradient
along pipe-increment i . This is shown in Fig 11,

According‘to the standard procedure given in Eqs 3.53 and 3.54, the coef-

ficients Ai-l s Bi-l s Ai , and Bi will be computed. For convenience, a
coefficient Ci-l is defined as

Ci-l = bi-l + ai-lBi-Z (3.68)
so that the other coefficients will be

d a A
_ i-1"i-1"1-2
Ai-l = C (3.69)
i-1

and thus

T. = A, + B, T, (3.70)
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The final result that is desired is that
or
T = - — T
i-1 ( 3x >i hx + i (3.71)

The coefficients A Ai , and Bi contain information

. b B- b
i-1 i-1
carried from the boundary to the points i-1 and i by virtue of the elimina-

tion process. If the coefficients and B, were simply reset to

A
i-1 i-1
reflect the relation given in Eq 3.71, the continuity of the elimination pro-

cedure from one boundary to the other would be interrupted. To avoid this

difficulty a special procedure must be used. A fictitious suction ti-l is
added to Ti 1 and subtracted from Ti . The fictitious suction is of suf-
ficient size to cause the difference in Ti 1

the desired gradient. The size of this fictitious suction is established from

and Ti to be in accord with

the relations which must be satisfied simultaneously: continuity of the elim-
ination process and establishment of a desired gradient. These two relations

are specified in the following two equations:

T = 1-1 T
i1 T Mt ot Bia’ (3.72)
i-1
oT
T = - | — T
i-1 ( ox >. hx + i (3-73)
1
Solving these two equations for ti-l gives
= G| - ot ) b oA (=B T (3.74)
i-1 i-1 ox /; x  i-l i-1774 |

This same amount is subtracted from T, in the following fashion:
i

(3.75)
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-1 oT
A B L+ (B) e 0 v,
i it ¢ [ S PR R e . by - (A =B, D7

+ BT (3.76)

After some manipulation, new coefficients Ai s B£ , and C£ are found to be

C
‘o !‘—.]— !'_]_ < ) oT 1
Ay cr LAY A it e By (3.77)
1 1 1
By
Bi = (3.78)
1
;0
c, = 1+ c, (1 -3, (3.79)

The continuous "flow" of the elimination process is preserved with the

computation of these coefficients. At this point, the new values of Ai

1
and B;_l may be set in accord with the requirements of Eq 3.71:
‘ - T \
Ai-l o7 ( ox ). hx (3.80)
1
B! = 1 (3.81)

i-1

and both continuity and desired gradient are established.

Special Conditions for Large Suction Change

Practical experience with problems run on a computer have shown that it
is possible to get answers that are obviously incorrect because of truncation.
Truncation error is the amount by which the numerical answer fails to repre-
sent the exact answer. The large truncation errors have occurred in problems

describing the sudden wetting of very dry soils where suction changes abruptly
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from a very low value to a very high value in a distance that is sometimes

shorter than a "reasonable' increment length.

Three elements are involved in this truncation error:

(1) Permeability is highly (factor of 100 to 1000) dependent on suction.

(2) Suction gradients are large.

(3) The product of permeability and suction gradient is water velocity,

which need not be very large.

Because diffusion of water is based on a gradient of water velocity it is
necessary that water velocity be accurately determined. Where there are large
changes of suction in a short distance it has become quite clear that unrea-
sonable answers can result.

There are at least three ways to attempt to correct this situation:

(1) Use a smaller mesh size.

(2) Use a higher order difference equation to represent the gradient.

(3) Fit a polynomial through the points and get a gradient by differen-

tiation.

The first method is always preferable because of its simplicity and should
be used wherever possible. Variable increment lengths have aided in the
solution of such problems.

All of the equations programmed for the CDC 6600 computer use the concepts
stated in this chapter. 1In Chapters 6 and 7, example problems will be worked
to demonstrate solutions to problems of concern to engineering in which the

transient flow of water in unsaturated soils is an important factor.
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CHAPTER 4. THE TWO-DIMENSIONAL COMPUTER PROGRAM

This chapter outlines the capabilities of the computer program developed
for studying transient moisture movement through clay soils. It is the final
program in a series which started with GRPIPEl (GRid PIPE 1) and included
CYLPIP1 (CYLindrical PIPe 1) before arriving at the present version which is
GCHPIPl (Grid-Cylindrical-Heavy Soil PIPe 1). The program is written in
FORTRAN language for the Control Data Corporation 6600 computer at The Univer-
sity of Texas Computation Center. An austere version of FORTRAN has been main-
tained to permit easy conversion to other types of machines. A guide for data
input is included as Appendix 2. As will be seen by referring to this appen-
dix, there are nine tables of input data. Each of these tables will be

explained in this chapter, in the order in which they appear.

Problem Identification Cards

These cards are included before the data for any table is read into the
machine. The first card is in an alphanumeric format which allows 80 columns
of run information. The second card includes five spaces for alphanumeric
characters to be used as the problem number. The last 70 spaces on the card

are for problem identification.

Table 1. Program Control Switches

The format for this card is seen in Appendix 2. 1In the first six spaces
of five columns, the hold option for Tables 2 through 7 may be exercised by
placing a 1 in the appropriate position. This keeps the data from the previous
problem. The initial conditions put into the computer in Table 4 are not
stored for recall. The data that is kept from the previous problem are the
most recently calculated set of suction and water content values. As stated
before, the keep options occupy the first thirty spaces on the control switch

card.

55
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The next six five-column-wide spaces specify the numbers of cards to be
read in Tables 2 through 7. There is one exception: the number of cards in
Table 4A is specified in that position reserved for Table 4.

In column 65, the switch KGRCL is set. This switch specifies whether the
problem has rectangular or cylindrical coordinates. The number 1 specifies a
rectangular grid, while a 2 tells the computer that the problem to be solved
is in cylindrical coordinates.

In column 70, the switch KLH is specified. The number 1 in that column
denotes a "light" soil. 1In this case, compressibility effects are neglected.
If a 2 is inserted, Subroutine HEAVY is called, which permits consideration of
the soil-suction change as a function of overburden pressure, soil compressi-

bility, and porosity.

Table 2. Increment Lengths and Iteration Control

For the most part, this table is self-explanatory. (See the Input Format,
Appendix 2.) The first card has space for the inside radius of a cylindrical
problem to be specified. If KGRCL has been set at 1, however, this space may
be left blank. Also, a closure tolerance is specified on this card. The clo-
sure tolerance is a relative one based on a fraction of the computed TY (FOR-
TRAN for TY). That is, the error at each point must be within a specified
fraction of the value of suction at that point. The closure signal printed at
the successful conclusion of computations on a particular time step signifies

one of two things:

(1) Actual closure has been achieved at each point of a region.

(2) The number of iterations allowed for each time step has been completed.

A glance at the monitor data will indicate which has occurred. 1If condition (2)
occurs, then an explicit forward-difference estimation of the new T at each
point not closed is made. This estimation uses both the values of T for the
previous time step and the most recently computed values of TX and TY . If
many such closures occur, it may be desirable to shorten the time increment to
assure stability of the estimation process.

The second card in Table 2 requires a list of four monitor stations to be
specified, The values of TX and TY at these points for each iteration

will be printed out at each time step for which output is desired.
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The third card in Table 2 permits some experimentation with the form of
the equation which is being solved. 1If a 1 is set, the transient flow equa-
tion, Eq 3.5, is specified. If a 2 is inserted, the time derivative term is
set to zero by making the 1l's in Eqs 3.40, 3.42, 3.44, and 3.46 equal to zero.

In most circumstances, the transient flow condition should be specified.

Table 3. Permeability

The tensor form of permeability has been programmed and provision has
been made for using unsaturated permeability. A different set of principal
permeabilities, directions, and coefficients for determining unsaturated per-
meability may be read in at each point of a soil region. There are three
essential parts of the card which specifies permeability: (1) the specified
rectangular region, (2) the two principal permeabilities and their directions,
and (3) the coefficients for determining unsaturated permeability. Each of

these will be discussed separately.

Specified Rectangular Region. The first four spaces give the corner

coordinates of the region within which the permeability data applies. The
first two numbers specify the smallest x and y-coordinates and the next two
specify the largest x and y-coordinates. Permeability is a property of a
pipe increment between mesh points. Because of this, permeability should be
specified for all pipe increments that extend one increment beyond each bound-
ary point. Thus, if a region extends from coordinates (0, 0) to coordinates
(10, 10) , the permeabilities should be specified for pipe increments (0, O0)
to (11, 11) . This is in accord with the stationing system illustrated in

Figs 2 and 3 in Chapter 2.

Principal Permeabilities and Their Directions. The principal permeabili-

ties are given in the next three spaces in order: Pl , P2 , and ALFA . The
quantity Pl is the principal permeability nearest the x-direction and ALFA

is the angle in degrees from Pl to the x-direction with counterclockwise

angles positive. The quantity P2 1is the principal permeability at right

angles to Pl . The permeabilities specified should be the saturated perme =
abilities. They will be corrected downward by the three unsaturated coefficients
found in the next part of the card if the water content of the soil drops below

what has been termed in Research Report 118-1 as "final saturation.”
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Unsaturated Permeability Coefficients. The form of unsaturated permeabil-

ity recommended by W. R. Gardner (Ref 9) has been programmed. This is of the

form:

k
= S8t (4.1)

unsat n
T +1

b

Since much of the published data on unsaturated permeability are in the units of
centimeters, a conversion factor may be included which transforms the inches of
suction used in this program to the centimeters from which the constants b

and n are derived. The expression programmed is

k
= ——Sat (4.2)

unsat n

where a 1is normally equal to 2.54 cm/in.

One note of caution is required before leaving this section. The data
read in at each point are added algebraically to the data already stored at
that point. At the start of a problem all data at each point are set to zero.
Either positive or negative values of permeability, angle, or unsaturated
permeability may be read in at each point; but the computer will use the alge-

braic sum of all data furnished it for each point.

Table 4. Suction-Water Content Curves

Table 4 data consist of two parts: the first part is concerned with
specifying numbered single-valued suction-volumetric-water-content (pF-g) relations
and other pertinent soils data; the second part establishes the rectangular
regions within which each numbered pF-® curve applies. No hysteresis effects
are considered in these relations., Tlis is not a serious limitation, however,
because the pF-8 relation specified for a point may be an approximation of a
scanning curve. The greatest difficulty introduced by this limitation occurs
when the trend of moisture change is reversed, and a new pF-© curve must be
followed. This can be handled by stopping one problem, holding all previous

data, and changing the appropriate pF-8 curves to represent the new scanning
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curve, B. G. Richards notes (Ref 18) that in many cases, changes of moisture
content are in one direction over a long period of time and thus the hysteresis
effect may be neglected. Young's (Ref 25) discussion of the infiltration
problem gives an important exception to this rule. Scanning curves may be
estimated from experimental data in the manner demonstrated in Research

Report 118-1.

Input Soils Data. Certain soils data must be included on each card in

Table 4. The computér assigns a number to each card in the order in which the
cards are read. The data on each card include the following:

(1) number of separate rectangular regions to which the following data

apply, LOC ,

(2) maximum pF , PFM,

(3) pF at the inflection point, PFM - PFR ,

(4) exponent for pF-curve, BETA |

(5) air entry gravimetric water content, WVA ,

(6) exponent for the water pressure - total pressure relation, Q
The shape of this curve could be assumed to be the same as that of
the shrinkage curve,

(7) the slope of the water pressure - total pressure curve at zero
water content, ALFO . It is probably safe to assume that this
value will always be zero.

(8) porosity at air entry point, PN ,
(9) slope of the void ratio-log pressure (e-log p) curve AV ,

(10) saturation exponent relating the degree of saturation to the factor
Xg » which is assumed (perhaps erroneously in some cases) to range
between zero and one, R ,

(11) the soil unit weight in pounds per cubic inch, GAM , and
(12) the gravimetric water content at final (or suction-free) saturation,
WVs
If the overburden pressure and compressibility of the soil are not to be
considered, i.e., if the switch KLH has been set to 1, then only items 1, 2,
3, 4, and 12 need to be read in. The form of the assumed relations among these

soil variables is discussed below.

The PF - Water-Content Relation, The assumed form of the pF-€ relations

is an exponential curve, the slope of which is the ordinate of a pF-slope
curve. The cumulative area under the pF-slope curve is the percent of final
saturation. Both curves are needed to explain the assumed pF-® relations. The

pF-slope curve is shown in Fig 12(a) and the pF-% final saturation curve is
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shown in Fig 12(b). The pF-slope curve may be intuitively related to the pore-
size distribution of the soil. The point of inflection of the pF-% final
saturation curve rests on the line between 100 percent final saturation and
maximum pF . Any inflection-point pF , maximum pF , and exponent BETA ,

may be specified to give the shape of pF-Y curve desired. The final saturation

water content must be specified as well.

Subroutines SUCTION and DSUCT have been written to deal with these rela-
tions. SUCTION operates when a water content is known and a value for suctionm,

ot
as well as —7 , is desired. DSUCT is called upon when a suction is known and

Fol¢]
T . .
a water content and 56 is desired.
The Water Pressure - Total Pressure Relation. This relation is discussed
in some detail in Chapter 4 of Research Report 118-1. The quantity apo is

defined in that report as follows:

apo = %ﬁ t = 0 (4.3)
where

u = excess pore water pressure,

p = total pressure,

t = time after the initial change of water pressure.

It is assumed that the apo relation has approximately the same shape as the
slope of the shrinkage curve which is given in Chapter 4 of Research Report

118-1. The equation which has been programmed to express this relation is of

the form
Q-1
WV
= + 1 - -_— 4.4

Olpo O[pod O[pod WVA ( )
where

o od = the slope of the water pressure-total pressure relation,

P at zero water content,
WV = water content,
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WVA = air entry water content,

Q = an exponent drawn from the shape of the shrinkage curve.
Differentiation of this curve produces a slope and the
Q-1 exponent given in Eq 4.4
The value of apo is assumed to be 1.0 at water contents above air entry.
All computations involving the water pressure-total pressure relation are
programmed in Subroutine HEAVY which is called only when switch KILH 1is set

at 2.

The X-Saturation Curve., This computation is made in Subroutine HEAVY

which is called only when switch KLH 1is set at 2. The limitations on the
relation between the unsaturated stress parameter XE and the degree of sat-
uration S 1is discussed in Chapter 4 in Research Report 118-1. The assumed
form of the relation is undoubtedly too simple to include all cases, but it is

programmed as the exponential function given below:

R
Vv R
= R o W - |8
g = 5 T {7100 x POR n (4.5)
where
XE = the equilibrium unsaturated stress parameter,
8 = the volumetric water content, decimal,
VW = the volumetric water content, percent,
n,POR = the porosity of the soil, decimal,
S = the degree of saturation, decimal.

This calculation is made only if the water content is less than air entry
water content. Although it is slightly in error, the porosity is assumed to
remain constant once the water content falls below the air entry point. Above

the air entry water content, the porosity is assumed to have the form

_ PN + A6
POR = WY (4.6)
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where

v -V
W WA
A8 = —To5 (4.7)
PN = the porosity at air entry,
VwA = the volumetric water content at air entry.

An appropriate value of the exponent R should be determined after con-
sulting experimental results, but a value between 0.5 and 2.0 would cover
many cases reported in the literature. In all of these computations, the soil
unit weight and a solid specific gravity of 2.70 are used to convert gravi-

metric into volumetric water content.

The Compressibility Relation. The computations involving this relation

are contained in Subroutine HEAVY. The basic relation used is Eq 4.16. Some
other equations must be considered first. The plot of void ratio and the
logarithm of pressure gives a straight line over a fairly wide range of pres-
sures as long as soils are either preconsolidated or normally consolidated and

not in an intermediate pressure range. The relation normally used is

e-e = -CC log10 E— (4.8)
o}
where
e = vyoid ratio,
p = Dpressure,
CC = slope of the e-log p curve.

The derivative of this expression gives

de _ _ ¢ (4.9)
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In Chapter 4 of Research Report 118-1 reference was made to Blight's

compressibility coefficient ¢ (Ref 2), as defined in the following equation:

QVT
v C cbp (4.10)
T

If it is assumed that the change of total volume is equal to the change

of void volume, the equation can be rewritten as

(1 - n)he = cbp (4.11)
and thus

be _ ¢

Ap T (4.12)

Equations 4.9 and 4.12 may be combined to give an expression for Blight's

compressibility ¢ in terms of the slope of the e-log p curve:

0.43scc(n -1

c = 5 (4.13)

This relation and one more to be developed below will be included in the
compressibility correction term for the slope of the pressure-free suction-
moisture curve which was discussed in Chapter 4 of Research Report 118-1.

The second relation deals with the ratio of air volume V to water

A
volume Vw .
v Yu
S S B S (4.14)
Vi Yy Vu
VT

>

n -6

(4.15)
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where

n the porosity,

"

the volumetric water content.

e

Equations 4.13 and 4.15 are to be used subsequently. It is explained in
detail in Chapter 4 of Research Report 118-1 that the rate of change of
suction with respect to water content varies with the compressibility of the

soil. This was expressed by the following relation

or _ far ar
- ®. ).

where the o subscript stands for the pressure-free relation and the p sub-
script denotes the contribution of the compressibility of the soil. This
latter term uses Eq 4.15 and is expressed in the following fashion for satu-

rated soil:

or 1 1
- = . e 4.17)
1 -
(ae)p c( e)x,E Yu
where
XE = the equilibrium effective stress factor,
Yi = the unit weight of water: independent of pressure if soil

is saturated,

In the effectively unsaturated case,

dT 1 1
T = - ———— 1+F (@, - 1) = (4.18)
28 . c(1 G)xE FS Vi
and
_ Img
RT RT
L . L —£. ° %.19)
Yy P, Mg
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where
P, = saturated water vapor pressure,
R = universal gas constant,
Te = absolute temperature,
m = gram-molecular weight of water vapor,
g = acceleration due to gravity,
Upg = ratio of total volume to water volume change,
T = suction,
F = a factor which includes air compressibility and solubility.

For the purpose of Subroutine HEAVY the F-factor is considered to be
zero. It is not judged to cause serious error but this judgment is not based
on quantitative results.

The form of the compressibility correction term as used in Subroutine

HEAVY uses Eq 4.13 and may be expressed as

orT p 1
— = + ~ ~ « = (4.20)
ae) P .43SCC(1 n) (1 G)XE Yu
. . . or
This equation is used to adjust the value of 30 computed from the pF-¢

water-content curves. The value of p 1is taken as the total overburden pres-
sure and is computed from the value of GAM read into the computer. It must
be noted carefully that this equation neglects the effect of air compressibility,

an exclusion which may be seriously in error in less saturated soils.

Location of Soils Data. The cards in Table 4 representing the different

types of soils present in a soil region specify the number of rectangular
regions occupied by the soil of each type. The soils data cards must then be
followed by exactly the same number of cards as the total number of rectangular
regions occupied by the different types of soils. These cards give the
smallest x and y-coordinate and the largest x and y-coordinate of each

region and specify the curve number which applies there.
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As an example, assume that two soils are present in a soil region. One
occupies two locations and the other occupies cne. The total number of curve

location cards should be three.

Table 5. 1Initial Conditions

Each card put into the computer has a rectangular distribution scheme for
either of two cases: water content (Case 1) or suction (Case 2). The value
at the upper right-ﬁand corner of the specified rectangular region is given
along with the x and y-slopes of these quantities. If the value in the
upper right-hand corner is smaller than any other in the region, both slopes
should be positive. If no slopes are read in, the machine will assume them to
be zero and distribute the same value of either water content or suction over
the entire region.

The values input in this manner are added algebraically to the values
already stored at each point. To avoid any complications, when a new problem
is read in, all initial values of water content and suction are set at zero.
Any subsequent additions will start from that datum.

Initial conditions are replaced in the computer memory with new values at
each time step. For this reason, the exercise of the hold option for Table 5
means simply that the most recently computed values of suction and moisture
content will be retained. A new set of initial conditions must be input if a

new start is required.

Table 6. Boundary and Internal Conditions

Five cases are permitted as boundary and internal conditions:

(1) gravimetric water content,

(2) suction,

(3) suction gradient in the x-direction,

(4) suction gradient in the y-direction, and

(5) temperature and humidity of soil water.

A rectangular distribution scheme is provided which distributes the speci-
fied quantity uniformly over the region outlined by its smallest and largest
x and y-coordinates and adds algebraically to values already stored at each

point in the region. Cases 1, 2, and 5 result in computation of a value of
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suction and a final setting of the switch KAS(I,J) to 2. Boundary and
internal conditions are computed differently based on the value of the switch
KAS(I,J) which is set for each point. The values of this switch recognized

by the computer are given below:

KAS(I,J) 1 , a regular point at which no value of suction or

gradient is set,
s, suction set,
= 3, x-gradient set,
= 4 , y-gradient set,

A discussion of these conditions and the way they are computed is given
in Chapters 2 and 3. The method of converting each of the five input condi-

tions is discussed in the succeeding paragraphs.

Volumetric-Water-Content Set. When this quantity is specified, Subroutine

SUCTION is called. It converts water content to suction according to the pF-¢
water-content relations read in as Table 4. Values of pF and %% are also
computed. Water content may be set at any point of a region.

Suction Set. The setting of this quantity requires that Subroutine DSUCT
be called to compute volumetric water content, pF , and gg from the appro-

priate input soils data. Suction may be set at any point of a region.

x-Suction Gradient Set. The x-gradient must not be set at any point on

the upper or lower boundary of the soil region. When a suction gradient is set
on the right or left boundary (excluding the corner points), a line starting at
the value of suction one station inside the boundary is projected outward to
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