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PREFACE

This report is the last of three reports dealing with the findings
of Research Project 3-5-68~117, "Development of Method of Analysis of
Deep Foundations Supporting Bridge Bents.'" The first report combines
the existing methods of analysis of a grouped pile foundation with typical
soil criteria for automatic generation of lateral soil resistance (p-y)
curves. The second report presents the methods of predicting the axial
and lateral behavior of a single pile in sand to facilitate the analysis
of grouped pile foundation.

This final report gives a new method of analysis of grouped pile
foundations. This new method eliminates some limitations inherent in
methods previously available. The evaluation of the theory for grouped
pile behavior is made by comparing analytical and experimental results.
This report also summarizes design procedures for a grouped pile founda-
tion.

The authors wish to acknowledge the technical aid given by Messrs.
Harold H. Dalrymple, Olen Hudson, and Fred Koch. The invaluable assist-
ance and advice of Messrs. H. D. Butler and Warren Grasso of the Texas
Highway Department and Mr. Bob Stanford of the Federal Highway Adminis-

tration are gratefully appreciated.
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LIST OF REPORTS

Report No, 117-1, "A Method for the Analysis of Pile Supported Foundations
Considering Nonlinear Soil Behavior," by Frazier Parker, Jr,, and William

R. Cox, presents the documentation of a procedure which was developed for

the analysis of pile supported foundations and the use of the procedure to
analyze two bridge bents that were designed and built by the Texas Highway
Department.

Report No. 117-2, "Experimental and Analytical Studies of Behavior of Single
Piles in Sand Under Lateral and Axial Loading," by Frazier Parker, Jr., and
Lymon C, Reese, presents criteria for describing families of nonlinear

axial and lateral pile-soil interaction curves for piles in sand, and solves
example problems using the proposed criteria.

Report No. 117-3F, "Analysis of Foundation with Widely Spaced Batter Piles,"
by Katsuyuki Awoshika and Lymon C, Reese, presents a theory for a grouped
pile foundation with an experimental evaluation.
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ABSTRACT

A theory for solving the displacement of a two-dimensional foundation
with widely spaced batter piles under any arbitrary static loading is
presented. The theory is capable of dealing with a highly nonlinear soil-
pile interaction system as well as the nonlinear pile material. The pile
in the foundation may possess variable sectional properties along its axis
and may have any degree of fixity to the pile cap.

The theory consists of a numerical procedure for seeking the equilib-
rium of the applied load and the pile reactions using formulated finite
difference methods to compute the pile-top reactions of an axially loaded
pile and a laterally loaded pile.

An experiment was conducted on small-sized steel pipe piles which
were two inches in diameter and embedded eight feet in a submerged, dense
fine sand. A number of single piles were tested to examine the behavior
of an axially loaded pile and a laterally loaded pile. Then, the behavior
of grouped pile foundations with four piles was compared with analytical
predictions which were based on information about the axial behavior of
a single pile and the soil criteria for a 1aterally loaded single pile.

Good agreement was obtained between theory and experiment. The
analytical procedure which is presented can be immediately useful in
computing the behavior of a pile supported foundation under inclined and
eccentric loading.

KEY WORDS: FOUNDATION, GROUPED fILES, PILES, DESIGN, COMPUTERS, BRIDGE,

OFFSHORE STRUCTURE
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SUMMARY

A theory is proposed which presents the possibility of making a very
general analysis of grouped pile foundations. The method allows the com~
putation of lateral load, bending moment, and axial load sustained by each
pile in a grouped pile foundation. The most economical design of a pile
foundation, including pile material, pile dimensions, and the arrangement
of the piles in a foundation, can be found by successive application of the

proposed analytical procedure.
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IMPLEMENTATION STATEMENT

The result of the research is materialized by developing a set of
three computer programs. A computer program GROUP is written for the
analysis or the design of a grouped pile foundation. The analysis of
axial and lateral behavior of a single pile may be made by computer pro-
grams AXP and LLP, respectively.

These computer programs are documented in the report with example
problems, so that they are available for analysis and design purposes.

The analytical procedure which is presented can be immediately useful
in computing the behavior of a pile supported foundation under inclined

and eccentric loading.
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resultant load vector on pile cap
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CHAPTER I

INTRODUCTION

Description of the Problem.

The behavior of a pile group may be influenced by two forms of group
interaction: The first form of interaction is the ''group effect" pro-
duced by piles which are in close proximity to one another. The second
form of interaction is a result of the interaction between pile tops
which are connected by a pile cap. 1In the first instance the interactive
forces are transmitted by the soil, while‘in the second form of interaction,
the forces are transmitted through the pile cap above the soil. However,
if the piles are spaced widely apart the interaction between piles is
influenced primarily by the pile cap and the group effect or the inter-
active influence of the soil is insignificant.

In this study the group behavior of piles produced by the pile cap
is described and it is assumed that no group effect is produced by the
proximity of the piles.

The aim of this research is the development of rational design
procedures for a widely spaced group pile foundation, including both
vertical and battered piles. Numerical methods are formulated in detail,
and computer programs for making the necessary computations are presented
and described. A principal phase of this reseafch is the performance and
analysis of experiments on small-sized piles. Before discussing the
experiments and the design recommendations, the problem is described fully.
A literature survey is given, and a comprehensive statement is made

concerning the mechanics of the problem.



The behavior of a pile group as considered in this study requires a
knowledge of the single-pile behavior. A companion study to this one
(Parker and Reese, 1970) is concerned with the load-displacement charac-
teristics of individual piles and detailed reference will be made to

that study where appropriate.

Review of Theories.

The development of computational methods has been limited because of
lack of knowledge about single-pile behavior. 1In order to meet the prac-
tical needs of designing structures with grouped piles, various computa-
tional methods were developed by making assumptions that would permit
analysis of the problem.

The simplest way to treat a grouped pile foundation is to assume that
both the structure and the piles are rigid and that only the axial resis-
tance of the piles is considered. The lateral resistance of piles is
excluded from the computation. Under these assumptions, Culmann (Terzaghi,
1956) presented a graphical solution in 1866. The equilibrium state of
the resultant external load and the axial reaction of each group of similar
piles was obtained by drawing a force polygon. The application of Culmann's
method is limited to the case of a foundation with three grcups of similar
piles. A supplemental method to this graphical solution was proposed in
1970 by Brennecke and Lohmeyer (Terzaghi, 1956). The vertical component
of the resultant load is distributed in a trapezoidal shape in such a way
that the total area equals the mégnitude of the vertical component, énd
its center of gravity lies on the line of action of the vertical component

of the resultant load. The vertical load is distributed to each pile,



assuming that the trapezoidal load is separated into independent blocks

at the top of the piles, except at the end piles. Unlike Culmann's method,
the later method can handle more than three groups of similar piles. But
the Brennecke and Lohmeyer method is restricted to the case where all of
the pile tops are on the same level.

The elastic displacement of pile tops was first taken into considera-
tion by Westergaard in 1917 (Karol, 1960). Westergaard assumed linearly
elastic displacement of pile tops under a compressive load, but the lat-
eral resistance of the pile was not considered. He developed a method to
find a center of rotation of a pile cap. With the center of rotation
known, the displacements and forces in each pile could be computed.

Nokkentved (Hansen, 1959) presented in 1924 a method similar to that
of Westergaard. He defined a point that was dependent only on the geometry
of the pile arrangement, so that forces which pass through this point pro-
duce only unit vertical and horizontal translations of the pile cap. The
method was also pursued by Vetter (Terzaghi, 1956) in 1939. Vetter intro-
duced the "dummy pile'" technique to simulate the effect of the lateral
restraint and the rotational fixity of pile tops. Dummy piles are properly
assumed to be imaginary elastic colummns.

Later, in 1953, Vandepitte (Hansen, 1959) applied the concept of the
elastic center in developing the ultimate design method, which was further
formulated by Hansen (1959). The transitional stage in which some of the
piles reach the ultimate bearing capacity, while the remainder of the piles
in a foundation are in an elastic range, can be computed by a purely elas-
tic method if the reactions of the piles in the ultimate stages are regarded

as constant forces on the cap. The failure of the cap 1s reached after



successive failures of all but the last two piles. Then the cap can rotate
around the intersection of the axis of the two elastic piles. Vandepitte
resorted to a graphical solution to compute directly the ultimate load of

a two-dimensional cap. Hansen extended the method to the three-dimensional
case. Although the plastic design method is unique and rational, the
assumptions to simplify the real soil-structure system may need examination.
It was assumed that a pile had only axial resistance, that is, no lateral
resistance, and no rotatiénal restraint of the pile tops on the cap was
considered. The axial load versus displacement of each individual pile

was represented by a bilinear relationship.

The comprehensive modern structural treatment was presented by
Hrennikoff (1950) for the two-dimensional case. He considered the axial,
transverse, and rotational resistance of piles on the cap. The load dis-
placement relationship of the pile tob was assumed to be linearly elastic.
One restrictive assumption was that all piles must have the same load-
displacement relationship. Hrennikoff substituted a free-standing elastic
column for an axially loaded pile. A laterally loaded pile was regarded
as an elastic beam on an elastic foundation with a uniform stiffness.

Even with these crude approximations of pile behavior, the method is
significant in the sense that it presents the potentiality of the analyt-
ical treatment of the soil-pile interaction system. Hrernikoff's method
consisted of obtaining influence coefficients for cap displacements by
summing the influence coefficients of individual piles in terms of the
spring constants which represent the pile-head reactions onto the pile
cap. Almost all the subsequent work follows the approach taken by

Hrennikoff.



Radosavljevié (1957) also regarded a laterally loaded pile as an
elastic beam in an elastic medium with a uniform stiffness. He advocated
the use of the results of tests of single piles under axial loading. In
this way a designer can choose the most practical spring constant for the
axially loaded pile head, and he can consider nonlinear behavior also,
Radosavljevié showed a slightly different formulation than Hrennikoff in
deriving the coefficients of the equations of the equilibrium of forces.
Instead of using unit displacement of a cap, he used an arbitrary given
set of displacements, Still, his structural approach is essentially
analogous to Hrennikoff's method. Radosavljevié's method is restricted
to the case of identical piles in identical soil conditions.

Turzynski (1960) presented a formulation by the matrix method for
the two-dimensional case. Neglecting the lateral resistance of pile and
soil, he considered only the axial resistance of piles. Further, he
assumed piles as elastic columns pinned at the top and the tip. He derived
a stiffness matrix and inverted it to obtain the flexibility matrix.
Except for the introduction of the matrix method, Turzynski's method does
not serve a practical use because of its oversimplification of the soil-
pile interaction system,

Asplund (1956) formulated the matrix method for both two-dimensional
and three-dimensional cases. His method also starts out from calculations
>of a stiffness matrix to obtain a flexibility matrix by inversion. 1In an
attempt to simplify the final fléxibility matrix, Asplund defined a pile
group center by which the flexibility matrix is diagonalized. He stressed
the importance of the pile arrangement for an economically grouped pile

foundation, and he contended that the pile group center method helped to



visualize better the effect of the geometrical factors. He employed the
elastic center method for the treatment of laterally loaded piles. Any
transverse load through the elastic center causes only the transverse
displacement of the pile head, and rotational load around the elastic
center gives only the rotation of the pile head. 1In spite of the
elaborate structural formulation, there is no particular correlation
with the soil-pile system. Laterally loaded piles are merely regarded
as elastic beams on an elastic bed with a uniform spring constant.

Francis (1964) computed the two-dimensional case using the influence
coefficient method. The lateral resistance of soil was considered either
uniform throughout or increasing in proportion to depth. Assuming a
fictitious point of fixity at a certain depth, elastic columns fixed at
both ends are substituted for laterally loaded piles. The axial loads
on individual piles are assumed to have an effect only on the elastic
stability without causing any settlement or uplift at the pile tips.

Aschenbrenner (1967) presented a three-dimensional analysis based on the
influence coefficient method. This analysis is an extension of Hrennikoff's
method to the three-dimensional case. Aschenbrenner's method is restricted
to pin-connected piles.

Saul (1968) gave the most general formulation of the matrix method
for a three-dimensional foundation with rigidly connected piles. He
employed the cantilever method to describe the behavior of laterally
loaded piles. He left it to the designer to set the soil criteria for
determining the settlement of axially loaded piles and the resistance of
laterally loaded piles. Saul indicated the possible application of his

method to dynamically loaded foundations.



Reese and Matlock (1960, 1966a) presented a method for coupling the
analysis of the grouped pile foundation with the analysis of laterally
loaded piles by the finite difference method. Reese and Matlock's method
presumes the use of electronic computers. The finite difference method of
analyzing a laterally loaded pile developed by them can handle a pile of
varying size and flexural rigidity in any complex profile of highly non-
linear soils. The method can account for the behavior of any soil system
providing the soil behavior can be described analytically or numerically.
Any type of boundary conditions of the pile head can be treated; namely,
the fixed, pinned, or elastically restrained pile head. A nonlinear curve
showing axial load versus pile-head deflection is employed in the analysis.
The curve may either be derived by computations based on proper assumptions,
or it may be obtained from field loading tests. The formulation of equations
giving the movement of the pile cap is donme by the influence coefficient
method, similar to Hrennikoff's method. Reese and Matlock devised a con-
venient way to represent the pile-head moment and lateral reaction by
spring forces only in terms of the lateral pile-top displacement. The
effect of pile-head rotation on the pile-head reactions are included impli-
citly in the force-displacement relationship. This convenient method, how-
ever, does not readily converge for the special case where the lateral
displacement of the pile cap is relatively small. The significance of this
method lies in the fact that it can predict the bent cap behavior contin-
uously for the incremental load until the bent cap fails by excessive move-
ment, and also, that nonlinear relationships between pile-head loads and

displacements are incorporated in the analysis.



Using Reese and Matlock's method, example problems were worked out by
Robertson (1961) and by Parker and Cox (1969). Robertson compared the
method with Vetter's method and Hrennikoff's method. Parker and Cox
integrated into the method typical soil criteria for laterally loaded
piles.

Reese and O'Neill (1967) developed the theory of the general three-
dimensional grouped pile foundation using matrix formulatilons. Their
theory 1is an extension of the theory of Hrennikoff (1950), in which springs
are used to represent the piles. Representation of plles by springs
imposes the superposition of two independent modes of deflection of a
laterally loaded pile. The spring constants for the lateral reaction and
the moment at the pile top must be obtained for a mode of deflection,
where a pile head is given only translational displacement without rotation
and also for a mode of deflection where a pile head is given only rotation
without translation. While the soil-pile interaction system has highly
nonlinear relationships, the pile material also exhibits nonlinear charac-
teristics when it is loaded near its ultimate strength. The principle of
superposition does not apply to the nonlinear system. Therefore, the
most general and advanced theory by Reese and O'Neill still has the
theoretical weakness of superposing the nonlinear soil-pile interaction

system and the limitation to the linearly elastic pile material.

Review of Experiments.

Very little experimental work has been reported on the testing of

grouped pile foundations with batter piles and under inclined loading.



As early as 1936, Feagin (1957) conducted a series of full-scale tests
on eight concrete monoliths with different combinations of vertical and
batter piles. Timber piles 32 feet in length with top diameters of 12
to 14 inches and tip diameters of 8 to 10 inches were driven into fine
to course sands containing sdme occasional gravel. The batter piles were
at 20-degree angles to the vertical. 1Inclined loading and horizontal load-
ing were both applied to the concrete monoliths. The tests supported the
qualitative description of battered piles rather than validating a theory.

In 1945 Tschebotarioff (1953) carried out lateral load tests on model
single piles and three-pile and seven-pile dolphins. The scale of the
model was 1:10. Tapered wood piles were used. The piles were driven 29
inches into a layered soil consisting of 14 inches of submerged loose
sand with a relative density of less than 20 per cent and an underlying
consolidated clay with an unconfined compressive strength of 0.15 tsf.
Tschebotarioff tried to find the soil reactions on piles and emphasized
the difference between the "in" batter and the '"out" batter piles.

Wen (1955) also used models to find the lateral and vertical load
distribution in piles of a laterally loaded bent. The model piles were
made of white oak. The piles had a 1 1/2-inch square section and were 45
inches long. He tested two- and three-pile bents. The piles were instru-
mented with wire strain gages to give the stress distribution. Dry sand
was used as the model soil. Unfortunately, no specific description is
given about the density and the angle of the internal friction of the
sand.

Prakash (1961) carried out model tests using aluminum tubes, one-half

inch in diameter. Dense, dry sand of a relative demsity of 90 per cent
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was used, filling a 48-inch-diameter by 48-inch-high tank. He instrumented
piles with strain gages. He tested four-pile foundation caps and nine-
pile foundation caps. Single piles were tested to give the comparison
between tests. Prakash's paper deals only with the behavior of piles under
lateral loading. There is no mention of the axial resistance of piles nor

the distribution of applied forces at the cap between individual piles.

State of the Art and Scope of Study.

The foregoing review of the past research shows that the most general
and advanced structural theory available at present has the theoretical
weakness of superposing two modes of nonlinear deflection of a laterally
loaded pile, and is limited to linearly elastic material.

The review of the past experimental work reveals a deficiency in
experiments on grouped pile foundations both in quantity and in quality.
The need for well-planned experiments is great.

This study is divided into two parts. Part one is devoted to develop-
ment of a new structural theory which eliminates the superposition of
two independent modes of nonlinear deflection for a laterally loaded pile
and is capable of considering nonlinear pile material.

In part two, experimental work on small-sized steel pipe piles in a
submerged dense sand is described. Emphasis in the experimental work was
on developing an understanding of the behavior of a single pile. Studies
of the behavior of a foundation consisting of a group of four piles were
then undertaken. The responses of the single piles were analyzed in terms
of the soil properties so that a contribution could bé made to establish

more general soil criteria (Parker and Reese, 1970).
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The main purpose of this study is the organization of a rational design
procedure for a two-dimensional foundation with widely spaced, battered,
nonlinearly elastic piles subjected to any arbitrary static loading. A
computer program GROUP was developed for the computation of grouped pile
foundations. A program LLP and a program AXP were written to investigate
the single pile behavior under a lateral load and under an axial load,
respectively. Combined with the criteria of typical soils for predicting
single pile behavior, the complete routine of design is presented. In
the Appendices A, B, and C the documentation of the computer programs is

given,
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CHAPTER II

MECHANICS OF GROUPED PILE FOUNDATION

A structural theory is formulated herein for computing the behavior
of a two-dimensional grouped pile foundation with arbitrarily arranged
piles that possess nonlinear force-displacement characteristics. Coupled
with the structural theory of a pile cap are the theories of a laterally
loaded pile and an axially loaded pile. 1In this chapter each theory is
developed separately. Solution of all of the theories depends on the use
of digital computers for the actual computations. Computer programs are

introduced in Appendices A, B, and C, with documentation.

Basic Structural System

Figure 2.la illustrates the general system of a two-dimensional grouped
pile foundation. A group of piles are connected to an arbitrarily shaped
pile cap with arbitrary spacing and arbitrary inclination. Such sectional
properties of a pile as the width, the area and the moment of inertia can
vary, not only from pile to pile, but also along the axis of a pile. The
pile material may be different from pile to pile but it is assumed that
the same material is used within a pile.

There are three conceivable cases of pile connection to the pile cap.
Pile 1 in Fig. 2.la illustrates a pin connection. Pile 2 shows a fixed
head pile with its head clamped by the pile cap. Pile 3 represents an
elastically restrained pile top, which is the typical case of an off-
shore bent whose piles and the superstructure consist of a unit struc-

tural system (Fig. 2.2). The pile head is fixed to the pile cap by two

13
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knife-edge supports, but the pile can be deflected freely between these
supports. The elastic restraint is provided by the flexural rigidity of
the pile itself. The treatment of a laterally loaded pile with an elas-
tically restrained top gives a useful tool for handling the real founda-
tion. The piles are usually embedded into a monolithic reinforced
concrete pile cap with the assumption that a complete fixity of the pile
to the pile cap is obtained (Fig. 2.3). However, the elasticity of the
reinforced concrete and the local failure due to the stress concentra-
tion allows the rotation of a pile head within the pile cap. The magni-
tude of the restraint on the pile from the pile cap is usually unknown;
yet it is important to check the behavior of the grouped pile foundation
for the possible range of elastic restraint.

The pile cap is subjected to the two-dimensional external loads.
The line of action of the resultant external load may be inclined and
may assume any arbitrary position with respect to the plane of symmetry.
The external loads cause the displacement of the pile cap in the plane
of symmetry, which subsequently brings forth the axial, the lateral, and
the rotational displacements of each individual pile (Fig. 2.1lc). The
forced displacements on individual piles in turn give reactions to the
pile cap as illustrated in Fig. 2.1b. These pile reactions are highly
nonlinear in nature. They are functions of the pile properties, the
soil properties, and the boundary conditions at the pile top. The
structural theory of the grouped pile foundation used a numerical
method to seek the compatible displacement of the pile cap, which sat-
isfies the equilibrium of the applied external loads and the nonlinear

pile reactions,
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Terminology

It is necessary to distinguish some of the basic terms used
throughout the study.

A grouped pile foundation consists of a group of piles and a pile cap
(Fig. 2.1a). A pile cap may be a monolithic reinforced concrete block
or, at times, a bent as it is shown in Fig. 2.2. Any structure above
the pile cap is called a superstructure.

For a pile group to Qe analyzed as two-dimensional, the group must
have a plane of symmetry, and the resultant of the applied loads must
be in that plane. The two-dimensional problem may be illustrated by
drawing an elevation of the plane of symmetry. Such a drawing is shown
in Fig. 2.la. The individual piles shown in Fig. 2.la can represent
several similar piles., Similar piles in a location in the plane of sym-
metry with the same pile properties and the same inclination are referred
to as individual pile groups. There can be more than two individual
pile groups at a location if the properties vary, or if the inclination
angle, or the type of connection to the pile cap is changed. The indi-

vidual pile group is a collection of individual piles or single piles.

Assumptions

Some of the basic assumptions employed for the treatment of the
grouped pile foundation are discussed below.

Two-Dimensionality. The first assumption is the two-dimensional

arrangement of the bent cap and the piles. The usual design practice
is to arrange piles symmetrically with a plane or planes with loads

acting in this plane of symmetry, The assumption of a two-dimensional
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case reduces considerably the number of variables to be handled. However,
there is no essential difference in the theory between the two-dimensional
case and the three-dimensional case. If the validity of the theory for
the former is established, the theory can be extended to the latter by
adding more components of forces and displacements mechanically with
regard to the new dimension (Reese and 0'Neill, 1970).

Nondeformability of Pile Cap. The second major assumption is the

nondeformability of the pile cap. A pile head encased in a monolithic
pile cap (Fig. 2.3), or supported by a pair of knife-edge supports

(Fig. 2.2) can rotate or deflect within the pile cap. But the shape of
the pile cap itself is assumed to be always the same. That means the
relative positions of the pile top remain the same for aay pile-cap
displacement. If the pile cap is deformable, the structural theory of
the grouped pile foundation must include the compatibility condition of
the pile cap itself, While no treatment of a foundation with a deform-
able pile cap is included in this study, the theory could be extended to
such a case if the pile cap consists of a structural member such that
the analytical computation of the deformation of the pile cap is possible.

Wide Pile Spacing. It is assumed at the outset that the individual

piles are so widely spaced that there is no influence of one pile on
another, Interaction between piles in a closely spaced group occurs
both under axial and under lateral loads., Such interaction is usually
referred to as group effect, While some research has been carried out
on the group effect, this phenomenon is little understood. Currently,
design recommendations for the group effect are limited to a special

case where a foundation cponsists only of vertical piles subjected oﬁ}y
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to vertical load near the centroid of the foundation. A very small
number of full-scale field tests have been performed on a closely spaced
pile group under axial load. Therefore, recommendations for design of
such groups must be considered as preliminary and tentative.

The analysis of a general grouped pile foundation involves not only
axially loaded piles, but also laterally loaded piles. The pile may be
inclined at an arbitrary angle in an arbitrary direction. There is no
way, at present, to evaldate the group effect on the behavior of closely
spaced piles subjected to lateral loading either parallel to a row of
piles or perpendicular to it,

The assumption of wide spacing of the piles in a foundation elimi-
nates from the analysis the complication of the group effect. Yet, the
analytical and the experimental establishment of the correlation between
single pile behavior and that of a grouped pile foun&ation is believed
to be the logical first step towards the more general theory.

No Interaction Between Axially Loaded Pile and Laterally Loaded Pile.

The assumption is made that there is no interaction between the axial
pile behavior and the lateral pile behavior. That is, the relationship
between axial load and displacement is not affected by the presence of
lateral deflection of the pile and vice versa. The validity of this
assumption is discussed by Parker and Reese (1970). However, if theory
were available to allow the single-pile problem to be treated as an
interaction system involving both axial andvlate}al deflection, the
present theory of a grouped pile foundation can accommodate the pile

behavior without any change.
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Two-Dimensional Grouped Pile Foundation

The equilibrium of the applied loads and the pile reactions on a pile
cap is sought by the successive correction of pile-cap displacements.
After each correction of the displacement, the difference between the load
and the pile reaction is calculated. The next displacement correction is
obtained through the calculation of a new stiffness matrix at the previous
pile-cap position. The elements of a stiffness matrix are obtained by
giving a small virtual increment to each component of displacement, one
at a time. The proper magnitude of the virtual increment may be set at

5 X . .
10 times a unit displacement to attain acceptable accuracy.

Coordinate Systems and Sign Conventions

Figure 2.4a shows the coordinate systems and sign conventions. The
superstructure and the pile cap are referred to the global structural
coordinate system (X, Y) where X and Y axes are vertical and horizontal,
respectively. The resultant external forces are acting at the origin O
of this global structural coordinate system. The positive directions of
the components of the resultant load P0 , Q0 , and Mo are shown
by the arrows. The positive curl of the moment was determined by the
usual right-hand rule. The pile head of each individual pile group is
referred to the local structural coordinate system (x'i, y'i), whose
origin is the pile head and with axes running parallel to those of the
global structural coordinate system. The member coordinate system

(xi, yi) is further assigned to each pile. The origin of the member
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coordinate system is the pile head. Its X; axis coincides with the pile
axis and the Yy axis is perpendicular to the X, axis. The X axis makes
an angle Ai with the vertical. The angle Xi is positive when it is
measured counterclockwise.

Figure 2.4b shows the positive directions of the forces, Pi s Qi ,
and Mi exerted from the pile cap onto the tbp of an individual pile

in the ith individual pile group, The forces Pi and Qi are acting

on the X and Yy axes of the member coordinate system,

Transformation of Coordinates

Displacement. Figure 2.5 illustrates the pile-head displacement in

the structural, the local structural, and the member coordinate systems.
Due to the pile-cap displacement from point O to point 0’ with a
rotation « , the itﬁ pile moves from the original position P to the
new position P’ and rotates through the same angle a . The components
of pile-cap diéplacement are expressed by (U, V, @) with regard to the

structural coordinate system. The pile~head displacement is denoted by

H

i

member coordinate system.

(u'i, v’ , @) in the local coordinate system and by (ui’ vy @) in the

The coordinate transformation between the structural and the local

structural coordinate system is derived from the simple geometrical

consideration:
TR - Z AU ¢ §)
i i
VsV F X0 v s e s e e e e e e e e e e e e e e e (2.2
i i
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where

(Xi, Yi) = location of ith pile head in the structural coordinate

system.

The transformation of pile-head displacement from the local struc-
tural coordinate system to the member coordinate system is obtained from

the geometrical relationship (Fig. 2.5b).
1 1
= A+
u u, cos A +v, sin Xi O ¢ )
v. =v' ecos A, ~u’, sin A . . . . ... ... .. ..
i i i i

Substitution of Eqs, 2.1 and 2,2 into Eqs. 2.3 and 2.4 yields the
transformation relationship between the pile-cap displacement in the
structural coordinate system and the corresponding pile-top displacement

of the ith individual pile group in the member coordinate system.

u, =Ucos A\, +V sin A, + @ (X, sin A\, - ¥, cos X)) . . (2.5)
i i i i i i i

v, =Usin A, + Ucos A\, + o (X, cos A\, + Y, sin X)) . . (2.6)
i i i i i i 1

In matrix notation

« 3 A
u, cos A, sin A X, sin A\, - Y, cos A, U1
i i i i i i i
= |-gin A A e v . .
v, sin A, cos A Xi cos ki + Yi sin ki Y 2.7)
o, 0 0 1 o
1 - [ 4
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The matrix expression above is written concisely

a, =T .0 . . . . 0 . s e e e e e (2,
1T D,i (2.8)
where
Gi = displacement vector of the head of the pile in the ith
individual pile group,
TD i< displacement transformation matrix of the pile, and
H
U = displacement vector of the pile cap.

Force. Figure 2.4 illustrates the load acting on the pile cap and
the pile reactions. The load is expressed in three components (Po, Qo,
Mo) with regard to the structural coordinate system. The reactions in
the ith individual pile group are expressed in terms of the member coor-
dinate system (Pi’ Qi’ Mi). Decomposition of the reactions of the ith
pile with respect to the structural coordinate system gives the trans-
formation of the pile reaction from the member coordinate system to

the structural coordinate system

P i = Pi cos Ai - Qi sin Ai S %) ]
, ‘
= i + A e e e e e e e e e e .
Q; = P, sin Xi Q; cos A . (2.10)
M =

P. (X. sin A - A
g & sin A - ¥, cos A)

+ A i + e e .
Qi (Xi cos A + Yi sin Xi) Mi . . (2.11)
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Matrix notation expresses the equations above

N -
P i cos 4 sin Xi oj]p

Q' |= sin Ai cos hi ofjQ. | . . (2.12)

M| |X, sin A, - Y, cos A\, X, cos A\, +Y. sin A, 1||M.
i i i i i i i i i i

\ ” ~ 2\ L.

or more concisely

ey & e
. =T P N . . . e e e . (2013
i F,i i ( )
where
?'i = reaction vector of the pile of ith individual pile group
in the structural coordinate system,
TF ., = force transformation matrix of the pile, and
i
3
?i = reaction vector of the pile in the member coordinate
system.
It is observed that the force transformation matrix T, . is

F,i

obtained by transposing the displacement transformation matrix TD i
4

Thus,

T =T R © T T3

Successive Displacement Correction Method

Figure 2.6 illustrates the successive displacement correction

method of obtaining the equilibrium of forces of a pile cap,



27

X 4
(|

R (Pg,Qp,Mg)

Fig. 2.6. Successive Displacement Correction Method



28

Force Correction Vector. After successive correction, the pile cap

moves from the initial position O to the last position O’ with new
displacement components (U, V, @), 1If the three components of the dis-
placement of a pile cap are given, the displacement of each pile head
may be computed by Eq. 2.8. Then the theories of a laterally loaded
pile and an axially loaded pile presented in the following sections may
be used to solve for the_reaction vector fi of each pile numerically.
If axial load versus pile-top displacement curves are available, the
axial pile reactions may be directly obtained by reading the curves.
The summation of the reaction vector with respect to the structural

coordinate system is given by

n

n
R = B/ = P S ¢ L
R g;% 3, B g;; I 1'F,i P ( )

where

~
]

total reaction vector with elements (PR, QR’ MR) and

o
]

number of piles in an individual pile group.

The difference between the applied load and the pile reactions or the

force correction is calculated by
dF =L -R . . . . i i i ittt i i e e e . (2.18)
where

L = load vector with three elements (Po’ Qo’ Mo) and
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dF = force correction vector also with three elements

(dP, dQ, dM).

Stiffness Matrix, Each element of the reaction vector is a highly

nonlinear function of the pile cap displacement (U, V, @). Then

Bo=P (U, 7,0 . ... ... (21D
Q=9 (W, V,@ . ... (218)
M= M (U, V, 0 L. (2.19)

The total differentiation of each of the above quantities is written out

as

oP oP oP

- R R _R
Py = x5 AU+ g dV 4 =—=da . . . ... ... ... (2.20)
dQ, = % du + %R av + % do (2.21)
R aU av W » v » e e e e e & o e o .
oM oM Fe)
I S
My = s dU+ g dV b e=md L ... (2.22)

In matrix notation

(Y [BP dp_ dP_ | ¢

R R R
dPp T v sa | |9V
3Q. . 3Q. - 3Q
TR R TR
|- s 5= el [} - @

My M My

M| | W da | @
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or in concise form

dR = K 4V . e eoe. (2.28)
where

dR = vector of the variation of the total pile reaction,

K = stiffness matrix, and

dV = displacement variation vector.

The elements of the stiffness matrix K or the partial derivatives
of the total reaction forces with respect to each element of the pile-
cap displacement are obtained by giving small displacement dX , dY ,
and d@ one at a time to the pile cap (Fig., 2.6).

Giving a small displacement dU in the X direction, three elements

in the first column of the stiffness matrix K are determined.

3, P (U+dU, V, ®) - P (U, V, @)

T 10 e e e e e e .. (2,25
3Q Q, (U+4dU, Vv, @ - q, (U, V, @

R _ "R R
ST - 10 e e e e e e . (2.26)
BMR MR (U+du, v, a) - MR (U, v, a)
S0 - a0 e e e e e e . (2.27)

The rest of the elements are obtained in a similar fashion,

Displacement Correction Vector. Equating the reaction variation

vector dR with the force correction vector dF and substituting the
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displacement variation vector dV with the displacement correction
vector dU , the necessary correction of the displacement is obtained

from Eq. 2.24,

a‘tf=1<'1d—F.....................(2.28)

The new displacement of the pile cap is given by adding the displacement
correction vector dU to the displacement vector U

The size of the stiffness matrix K 1is only three by three. There-
fore, the inversion of the matrix K is most conveniently done by the
Cramer rule. That is, the element of the flexibility matrix or the

-1
inverted matrix K is expressed by a formula.

A
..]_= ii
Kij EZElE O ¢ 1°))

where

-1 \
Kij = element in the inverted stiffness matrix,
det K = determinant of the matrix K , and
Aij = cofactor of the matrix K

Computational Procedure

The principle of the successive displacement correction method for
obtaining the equilibrium state of the applied loads and the pile reac-
tions on the pile cap has been developed in the three previous sections

of this study.
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The solution is obtained through the iterative numerical procedure.

A computer program GROUP (Appendix A) is developed for this purpose.

The logic of the computer program is described in steps in the following.

. . Give an initial displacement to the pile cap.

Compute the corresponding pile-top displacements.

Compute the pile reaction for the given pile-top displacements,
Sum up the pile reactions,

Compute the difference between the applied load and the pile
Yeactions to obtain the force correction vector,

Give small virtual displacement to obtain the stiffness matrix.
Invert the stiffness matrix to get a flexibility matrix.
Multiply the flexibility matrix (Step 7) with tha force correc-
tion vector (Step 5) to get the displacement correction vector.
Correct the pile-cap displacement by adding the displacement

correction vector,

Repeat Steps two through nine until the displacement correction

vector becomes sufficiently small.

The successive displacement correction method requires the pile-top

reaction to be solved for the forced displacement at pile top. Under

the assumption of the independency between the lateral and axial

behaviors of a pile, the pile reactions on the pile cap are conveniently

solved independently for these two different modes.

The analytical prediction of the axial and lateral behaviors of a

pile may be made by finite difference methods, The remaining portion
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of this chapter is devoted to formulation of the finite difference
methods for a laterally loaded pile and for an axially loaded pile.

The computer program GROUP is internally equipped with the finite
difference method for a laterally loaded pile but not with that for an
axially loaded pile. There are two reasons for this decision. Firstly,
the axial pile reaction versus displacement relationship is expressed by
a single curve, while the lateral and rotational pile reactions consists
of families of curves in terms of multiparameters such as the lateral
and rotational displacements and the type of pile connections to pile
cap. Secondly, the present state of knowledge about soil criteria for
an axially loaded pile does not readily allow the choice of proper soil
criteria for an accurate prediction of axial pile behavior. It may
still be more practical to obtain the load versus axial displacement
curve by such direct means as loading test than resorting to the ana-

lytical method.
Laterally Loaded Pile

The analysis of the laterally loaded pile by the finite difference
method has been undertaken extensively by Reese and Matlock since 1960
(Reese and Matlock, 1960; Matlock and Reese, 1962; Matlock, 1963; Mat-
lock and Ingram, 1963; Matlock and Hailburton, 1966; Reese, 1966; Reese,
1970; Matlock, 1970). Their work proved the versatility and the theo-
retical unequivocability of the finite difference method in dealing
with the highly nonlinear soil-pile interation system with any arbitrary

change in the soil formation and pile properties.
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There is already a computer program to solve a laterally loaded pile
by the finite difference method (Reese, 1970). However, a new solution
of the finite difference equations is necessary before it is applied to
the successive displacement method, The existing finite difference
method can solve a laterally loaded pile for given combinations of load
and moment, load and slope or load and spring constant, but not for
given displacements.

The new solution of the finite difference equations is presented in

the following section,

Differential Equations for a Beam Column

Figure 2.7b shows an element of a beam column. The basic differen-
tial equation is derived by examining this element (Timoshenko and Gere,

1961). The equilibrium for forces in y direction gives

Q-pdx - (Q+dQ) + qdx =0 or

d
Eg e O ¢~ 14)
where

Q = shear force,

q = distributed load, and

p = distributed spring force which is expressed by the soil
modulus ES

P=E ¥ v v v e i e e e e e e e e e e e e e e e s (23D
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Taking the equilibrium of moment about point n (Fig. 2.7b),

M+qu%‘- (Q + dQ) dx - (M + dM) 'de%}éd":'a

neglecting the second-order terms,

= pdy _d¥
Q P o R T (2.32)
where
M = bending moment and
P = axial force in the beam column.

Standard textbooks on the strength of material give an expression for
the moment-curvature relationship of a beam when shear and axial defor-

mation are neglected.

42
E1—§=-M.....................(2.33)
dx

Differentiating Eq. 2.32 with respect to x and substituting Eq. 2.30

the basic differential equation for a beam-column is obtained.

S5 =Ey-at+t o (B ... (2,38

Finite Difference Approximation

The beam column is divided into n discrete elements of length h

as shown in Fig, 2.7c. Stations -1, and ntl through nt+3 are imaginary



or fictitious where the actual beam column does not exist. These
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imaginary stations are necessary for technical reasons to apply the cen-

tral difference equations at all stations. The flexural rigidity at the

imaginary stations are considered zero and the deflections are set in
such a way as to satisfy the boundary conditions at the top and bottom
of the pile.

The finite difference approximation of the second derivative of y

is expressed by

2 -2y, +
a“y\_ Ykl T T Y 5
2/_ 2 « e o . . « . (2.35)
dx i h
Therefore, the moment at station i 1is approximated by
Yipp = 2y, Ty,
M= -(g1), 2 L -l L. (2.36)
i i h2

Applying the finite difference approximation also to the moment M ,

Eq. 2.34 is converted to

M, - 2M + M, 2

i+l i i-l gy _q+pSX .. ... ... (@3]
2 s 2
h dx

Substituting Eqs. 2.35 and 2.36 into the above equation, we obtain the

general finite difference expression for a beam column.

+ =f .. (.
8 Vi TPy Vit eyt Yty Yy T - - (2238)
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where

-1 =i =ntl

and where

ai = EIi-l D 1)
= 2

b, =-2EI, - 2EL ,+Ph" . . ... ... ... (260

¢, =EI__ +4EI +EI,_ - 2Ph’+Eh" (2.41)

i i+l i i-1 t s Tt T

_ 2
d, = -« 2 EIi+1 - 2 EIi + Pth e e e e e e e e e . (2.42)

E . - . * L4 - » L4 - - - * - - . - . » * - . - .
i Ii+1 (2.43)

(D
]

R T Y72

Recursive Solution of Difference Equations

Assuming that deflection Yi-1 is expressed in terms of deflections

at two subsequent stations

=A . +8B

Vi T A P B Y PO Y e e (2.45)

The deflection at station i is obtained by substituting Eq. 2.45 into

Eq. 2.38

= A + +
yi Ai Bi yi+1 Ci yi+2 L N L B O N e (2.46)
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where the continuity coefficients Ai s Bi , and Ci are expressed by

A =D, (A | E +a A ,-f) .. ... ... .. (28]

B, =D, (C, ;E. *+d) ... ... .. ........(2.48)

C, =D.e, .. R e . (2.49)
and where

D, =-1/ (B, ; B, +a,C ,+c) ... ....... (50

E,=a B, ,+b. ... ... .. ... ... (251

for -1 =i < ntl,

It is shown in the following section that the pile-top boundary con-
ditions are expressed by finite difference equations similar to Eq. 2.45
at stations -1 and 0. Then the continuity coefficients Ai R Bi R
and Ci are computed for stations 1 through ntl. The deflection at the
imaginary station Y42 and Yoz 2are assumed to be zero. Therefore,
the round-trip path of the recursive solution of a set of banded simul-

taneous equations is completed.

Boundary Conditions at Pile Top

The analysis of a grouped pile foundation requires the pile-top
reactions of a laterally loaded pile. The general finite difference
equation (Eq. 2.38) must be solved in such a way as to satisfy the
displacement boundary condition at pile top which is imposed by the
pile-cap displacement. The pile-top reactions are computed, subse-

quently, from the pile deflection at discrete stations along the pile.
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The lateral deflection at the pile top coincides with the lateral
displacement of the pile cap in the member coordinate system. However,
the slope or the rotation of the pile head is not always equal to the
rotation of the pile cap. It is dependent on the kind oZ pile connec-
tion to the pile cap. In the following, the displacement boundary con-
ditions are expressed in terms of the lateral deflection at the finite
difference station near the pile top for a pinned, for a fixed, and for
an elastically restrained connection.

Usually a laterally loaded single pile is given a lateral load and a
moment at the pile head. 1In order to facilitate the analysis of a single
laterally loaded pile, it is convenient to solve for the displacement of
a pile subjected to the force boundary conditions. The finite difference
expressions of the force boundary conditions are added in this section
after displacement boundary conditions.

Displacement Boundary Condition, Pinned Connection. A pinned pile

head cannot carry any moment. Equation 2.36 gives the finite difference

expression for this condition (Fig. 2.8a)

¥y - 2y0 + Y.< L Y3

Another condition is the deflection at the pile top.

A A I A I SR (2.53)

where

~<
]

given lateral deflection of the top of the pile.
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(a) Pinned Top a

(b) Fixed Top

Structural “a
Line ﬂ

Structural
Line

a

a
(c) Elastically Restrained Top

Fig, 2.8; Boundary Conditions at Pile Top



42

Displacement Boundary Condition, Fixed Connection, For a pile which

is perfectly fixed to an infinitely stiff bent cap, the slope at the top
of the pile is equal to the rotation angle of the bent cap. Therefore,

from the central difference expression of the slope (Fig. 2.8b),

Y179
2h

T O e e e e e e e e e e e e e e e e e e (2.58)
where
o = rotation angle of pile cap.

The other condition is the deflection at the pile top.

(2.55)

Displacement Boundary Condition, Elastically Restrained Connection.

A pile may have its top elastically restrained by a rotational spring
force which is proportional to the deviation angle 6 from the struc-
tural line (Fig. 2.8c). The structural line is fixed to the pile cap
and tangent to the pile before loading. Thus, one of the boundary con-

ditions is written

Mt
i 14
0
where
Mt = moment at pile top and
C = rotational spring constant (inch-pounds).
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The sum of deviation angle © and slope at the pile head St makes the

pile cap rotation angle @

=06+ St S VY )|

Applying a central difference expression for the slope, Egs. 2.56 and

2,57 give

2 Ch™\

/ﬁI - E;) - 2EI h + <#I + =
k. o 2 /71 o Yo o AR

+C « h2 =0 ... .. (2.58)

The lateral deflection at the pile also constitutes a boundary condition

e ¢ 9-1°))

Force Boundary Condition. If the boundary conditions are given in

terms of forces, the lateral load and the moment at pile top, these
forces are simulated by imaginary forces Zt and -Zt at station O
and at the fictitious station -1. A couple is formed, equal to the
applied moment, and a lateral load exists at station 0 of the discre-
tized model (Fig. 2.9).

These transverse forces are taken into the solution by modifying
the continuity coefficient given by'Eq. 2,47, 1t is soon observed that
the effect of the transverse load q appears only in the term of fi
(Eq. 2.44). Therefore, the continuity coefficient A 1is rewritten for

stations -1 and 0 as follows (Matlock and Haliburton, 1966)
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(a) Actual Laterally
Loaded Pile

(b) Discretized
Model

Fig. 2.9, Force Boundary Conditions at Pile Top
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A’_1=A_1+D_1 (hszt) R ¢ 1)
A’o =A +D_ (-h3zt - tht) B ¢ 3 D)
where
M,
Zt =5 e e e e e e e e e e e e . (2.62)
and where

A’ . and A’ = revised continuity coefficients and
o

Q = horizontal load at pile top.

The concentrated load Qt is equivalent to the product of increment

h and the distributed load ¢

Boundary Conditions at Pile Tip

At the pile tip a laterally loaded pile is subjected neither to a
lateral load nor to a bending moment., These force boundary conditions
may be applied explicitly to the pile tip by deriving the finite dif-
ference representations of these conditions. However, the same effect
is obtained by providing the additional fictitious station n+2 and
nt3 at the tip of the pile. These two fictitious stations assume no
lateral deflection and no flexural rigidity., The latter method is pre-
ferred in the numerical method because it eliminates the special treat-

ment of the continuity coefficients (Eqs. 2.47, 2.48 and 2.49) at the
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pile tip. Thus, the path of the recursive computation, which starts
from the pile top to make a return path at station ntl , is stream-

lined.

Solution of a Laterally Loaded Pile Problem

Once the lateral deflections at all discrete stations are calculated,
the slope S , the moment M , the shear force Q , the distributed
horizontal reaction q , and the distributed horizontal spring force
p are calculated by the following finite difference equations.

Yi+1 " Yi-1

Si S TRt et e e e e e e e (2.63)

Yier = By T Vi

Mi = - EIi h2 . e e s (2.64)
M - M
_ i+l i-1
Y =P S 7h - (2.65)
q1 s,i Yy t h2
M -2M +M
R S el e (2.66)
h
= E e N Y
Pi s,1i Yy ( )
Lateral reaction at the top of the pile is given by qoh . The

lateral reaction should be equal to the summation of soil reactions

along the pile.
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I T T P € X 1)

Check computations by a computer program showed that the inherent error

to the finite difference approximation always amounts to several per cent

for the distributed load 9 > while the summation of the soil resistance
or spring force coincided well with the shear force Q immediately below

the pile top. Therefore, the lateral pile reaction is calculated by

summing the soil resistance along the pile shaft,
Axially Loaded Pile

There are basically two analytical methods to calculate the load
versus settlement curve of an axially loaded pile. One method takes the
theory of elasticity approach, The theories suggested by D'Appolonia
and Romualdi (1963), Thurman and D'Appolonia (1965), Poulos and Davis
(1968) , Poulos and Mattes (1969), and Mattes and Poulos (1969) belong
to the theory of elasticity method. All of these theories resort to
the so-called Mindlin equation, which gives a solution for the vertical
deformation at any point in a semi-infinite, elastic, and isotropic
solid due to a downward force in the interior of a solid. The pile dis-
placement at a certain point is calculated by superimposing the influ-
ences of the load transfer (skin friction) along the pile and the pile-
tip resistance at that point. The compatibility of those forces and
the displacement of a pile is obtained by solving a set of simultaneous
equations. This method takes the stress distribution within the soil

into consideration; therefore, the elasticity method presents the
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possibility of solving for the behavior of a group of closely spaced piles
under axial loading (D'Appolonia, 1968; Poulos, 1968).

The drawback to the elasticity method lies in the basic assumptions
which must be made. The actual ground condition rarely satisfies the
assumption of uniform and isotropic material. In spite of the highly non-
linear stress-strain characteristics of soils, the only soil properties
considered in the elasticity method are the Young's modulus E and the
Poisson's ratio v . The use of only two constants, E and Vv , to
represent soil characteristics is too much of an oversimplification. In
actual field conditions, the parameter Vv may be relatively constant, but
the parameter E can vary through several orders of magnitude.

The other method to calculate the load versus settlement curve for
an axially loaded pile may be called the finite difference method. Finite
difference equations are employed to achieve compatibility between pile
displacement and the load transfer along a pile and between displacement
and resistance at the tip of the pile, This method was first used by
Seed and Reese (1957); other studies are reported by Coyle and Reese
(1966) and Coyle and Sulaiman (1967). The finite difference method
assumes the Winkler concept, That is to say, the load transfer at a cer-
tain pile section and the pile tip resistance are independent of the pile
displacements elsewhere. The finite difference method should give good
prediction of the pile behavior in clayey soils, since the shear strength
characteristics of clayey soils are rather insensitive to the change in
stress, In the case of sandy soils, however, the shear strength charac-

teristics are directly affected by the stress change due to the pile dis-

placement in another place. The close agreement between the predicﬁion
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and the loading test results in clays (Coyle and Reese, 1966) and the
scattering of prediction from the loading test in sands (Coyle and
Sulaiman, 1967) may possibly be explained by the relative sensitivity of
a soil to changes in patterns of stress., Admitting the deficiency in the
displacement-shear force criteria of sands, the finite difference method
is still a practical and potential method because the method can deal
with any complex composition of soil layers with any nonlinear displace-
ment versus shear force relationship. Furthermore, the method can accom-
modate improvements in soil criteria with no modification of the basic
theory.

In the next sections the derivation of the finite difference expres-
sions is shown. The fundamental technique employed here is the same as
that employed by previous investigations, The difference lies in the com-
putation procedure. The method shown herein gives a solution first for
the pile displacement at all stations. Then, thevpile force at each
station is calculated. Convergence of the iterative computation is

quite fast even near the ultimate load.

Basic Equations

Figure 2.10a shows the mechanical system for an axially loaded pile.
The pile head is subjected to an axial force Pt , and the pile head

undergoes a displacement =z . The pile-tip displacement is z

t tip

and the pile displacement at the depth x is =z . Displacement 2z 1is
positive downward and the compressive force P 1is positive.
Considering an element dx (Fig. 2.10a) the strain in the element due

to the axial force P 1is calculated by neglecting the second order form

ar .
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R S € N 2)
or

P=-EA9—:)....................(2.70)
where

P = axial force in the pile in pounds (downward positive),

5]
[

Young's modulus of pile material in psi, and

.
#

cross-sectional area of the pile in square inches.

The total load transfer through an element dx is expressed by

using the modulus W in the load transfer curve (Fig. Z.1la).

dP = - Bz £dX . . . . . . e e e e e e e e e e e e (2.7
or

dP _

ax - - T T T - 3
where

4 = circumference of a cylindrical pile or the perimeter

encompassing an H pile,

Differentiating Eq, 2.70 with respect to x , it is equated with Eq.

2,72,
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Fig. 2.11. Load Transfer and Pile-Tip Resistance



53

d dz _
= EA ix - M Z N A K )

The pile-tip resistance is given by the product of a secant modulus v
and the pile-tip movement Ztip . (See the pile-tip movement versus

resistance curve, Fig. 2.11lb),.

P =V z e e e e .

tip tip e e e e e e e . (2.78)

Equation 2.73 constitutes the basic differential equation which must be
solved. Boundary conditions at the tip and at the top of the pile must
be established. The boundary condition at the tip of the pile is given
by Eq. 2.74. At the top of the pile the boundary condition may be either
a force or a displacement. Treatment of these two cases is presented

later.

Finite Difference Equation

Equation 2,75 gives in difference equation form the differential

equation (Eq. 2.73) for solving the axial pile displacement at discrete

stations.

a, z,,.+b,z, +c. =z, S0 ... e e e e e e e (2.7

for 0 £i =n
where

a, = L/4EA . +EA - 1/4EA _ (2.76)

1 1°
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b=-p.zh2-2EAi................(2.77)

(o]
]

(2.78)

- 1/4 EAi+1

+ EA. + 1/4 EA,
i i-1

and where
h = increment length or dx (Fig. 2.10a).

Boundary Condition

There are two kinds of boundary conditions at the pile top. One is
the specified axial force at the pile top. The other is the specified
displacement at the pile top.

If the axial force at pile head is specified, a forward difference
equation of the first derivative of =z with respect to x gives the

condition that must be satisfied by the displacement near the pile top.

P = -«EA —8m— . . . . . . 000 e o271

where

a
Il

given axial load on the pile top.

If a displacement is specified at the pile top

T ¢ -10)

where

forced axial displacement of the pile top.

N
i
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The boundary condition at pile tip is given by the point resistance
force, Using the secant modulus v of the pile-tip movement versus
point resistance curve (Fig. 2.11b), the backward difference equation
of the first derivative of =z with respect to =x gives the force

boundary condition at the pile tip.

vzn=-m.JL—ii............. L. (2.8D)

Assuming the reduced form of the basic equation at station n-l

z = B + C Z e e e e e e e e e e e e (2,82)

Solving Eqs, 2.81 and 2.82 simultaneously for z

z = n-1 e (2.8

Recursive Solution

Assume that the basic equation 2.75 is reduced to a form

zi-l = Bi—l + Ci—l Zi N ¢ 1743

up to i-1 th station. Substitution of Eq., 2.84 into Eq. 2.75 yields

another reduced form at station i

= N
zi Bi+cizi+1""""' (2.85)
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where

o i i-l
Bi B L I (2.86)
ao
= L
Ci D ottt et e e e e e e e e e e (2.87)
D =-b, -c¢c, C, D V2% 1)

i i i-1

Applying the pile top boundary condition Eq., 2.79 or Eq. 2.80 at
station 0, all the continuity coefficients Bi and Ci are computed
for stations 1 through n. The displacement 2z at the last station n
is computed from the boundary condition at the pile tip (Eq. 2.83). All
the rest of z's are obtained by the back substitution ianto Eq. 2.84.
Once the displacement =z is obtained at all the difference stations,

the axial force within a pile is computed by Eq. 2.89

b -~ Z
B i+l ~ %i-1
Pi = - EAi 5h L %1

Equation 2,89 is the central difference expression of Eq. 2.70,
Elasto-Plastic Pile Strength

The behavior of a grouped pile foundation is influenced by the
structural strength of the pile itself. A pile in a grouped pile foun-
dation is subjected both to a bending moment and to an axial force. The
structural strengﬁh of a pile may be determined either by elastic insta-

bility or by yielding of the pile material. Elastic instability or the
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buckling of a pile is predicted by the numerical procedure developed
earlier for the laterally loaded pile as a beam column., The failure of
a pile due to the yielding of the pile material requires the considera-
tion of the interaction of the bending moment and the axial force on the
pile section.

Interaction Diagram. The interaction diagram of the ultimate axial

strength Pu and the plastic moment Mp takes various shapes depending
on the geometry of the cross-section of the pile and, more importantly,
on the stress-strain relationships of the pile materials. Figure 2.12a
shows a typical interaction diagram of a steel pile. Figure 2.12 b
shows a typical interaction diagram of a reinforced concrete pile or a
prestressed concrete pile.

The computer program GROUP can accommodate an interaction diagram
of any shape, The program GROUP has an option to generate simplified
interaction diagrams for steel piles (Fig. 2.13). 1In Fig. 2,13, My
and Pu refer to the yield moment and the axial yield load and M o
and Puo are the values corresponding to pure bending and to pure axial
loading. It is assumed that the interaction diagram is valid for both
compression and tension. The computation of Myo and Puo is made by

Egs. 2.90 and 2.91.

M =0 Z . . 0 i e i e e e e e e e e e e e e e e . (2,90
yo y

e . .
Puo y (2.91)
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(a) Steel Pile (b) Reinforced or Pre-
stressed Concrete Pile

Fig. 2.12, Typical Interaction Diagram
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Fig. 2.13. Simplified Interaction Diagram for Steel Piles
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Fig. 2.14, Moment Curvature Relationship
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where

cy = yield stress of a steel in psi,

Z = section modulus of a steel in cubic inches, and

A = cross-sectional area of a steel section in square
inches.

The relationship between Myo and Mpo is defined by a shape fac-

tor s.

Moo =S Mo oo (2092)

The shape factor s 1is a function of the shape of the steel section and

it is given for typical steel sections in Table 2.1 (Beedle, 1961).

TABLE 2.1 SHAPE FACTOR FOR STEEL PILES

Section Shape Factor s
Wide Flange (Strong Axis) 1.14
Wide Flange (Weak Axis) 1.50
Pipe 1.27
]

In Fig. 2.13 Puo and Mpo are connected by a straight line. It
is a conservative procedure, because the actual curve is always on the
right-hand side of the straight line (Beedle, 1961).

Moment Curvature Relationships. The real moment curvature relation-

ship may be represented by such a curved line as shown by a broken line
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in Fig. 2.14. 1In the computer program GROUP, a simplified bilinear
moment-curvature curve is employed as it is shown by a solid line in

Fig. 2.14. 1In the elastic range the flexural rigidity coincides with

EI , where E 1is the Young's modulus and I is the moment of inertia,
Once the full plasticity is developed in a section, the secant modulus

of the moment-curvature curve replaces the flexural rigidity.



CHAPTER III

SOIL CRITERIA FOR SOIL PILE INTERACTION SYSTEM

The structural theories for single piles presented in the previous
chapter requires soil criteria which give the nonlinear spring-force
representations of the lateral resistance and the axial resistance.

The actual pile-soil systems are complex, involving such things as
the time effect on soil behavior, dynamic or repeated loading, settle-
ment of the surrounding soil due to negative skin friction, interference
from other piles or from adjacent structures and so on. Presently
available soil criteria, however, can handle only static, short-term
loading.

In this chapter the soil criteria for lateral loading and axial
loading are presented. The soil criteria are developed for sand and for
clay, the two typical types of the soil. Other soils will normally exhibit

characteristics somewhere between those for clay and sand.

Laterally Loaded Pile

Soil Modulus

The finite difference method of solving the problem of a laterally
loaded pile is based on the assumption of the Winkler mechanism, where
the soil can be replaced by a set of independent springs. The spring
force action on a segment of a laterally loaded pile is represented by

the subgrade reaction per unit length of a pile

p=E_Yy (3.1)

61
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where
y = horizontal deflection of pile in inches
ES = s0il modulus in pounds per square inch.

The soil modulus ES is generally not a constant but is a nonlinear

function of depth x and the pile deflection vy

Eg= £ (6 ¥) o v v e (312)

If the correct relationship between p and y , and the right moment-
curvature relationship for the pile section are given, the finite differ-
ence method can describe any state of a laterally loaded pile.

Before the age of electronic computers, simplified forms were assumed
for the variation of the soil modulus Es with depth in order to get
closed-form solutions of the differential equation of the beam, or the
beam-column, on an elastic foundation. The simplest theory assumes that
the soil modulus Es is constant (Chang, 1937) or that the soil modulus
Es increases in proportion to depth (Terzaghi, 1955). In attempts to
represent the nonlinear nature of the soil reaction, various efforts were
made to express Es by an exponential function of depth and pile deflec-
tion (Palmer and Brown, 1954, and Shinohara and Kubo, 1961). The math-~
ematical treatment of these methods was cumbersome and the estimation
of the constants to be used were left to guess work. A realistic approach
to establishing p-y relationships must be based on the true load-defor-
mation characteristics of the in situ soils. The soil criteria introduced
in the following are all trying to correlate the relationship of the pile
deformatioﬁ and soil resistance with the basic soil properties determinable

by standard soil tests or methods of exploratiom.
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Clay

McClelland and Focht's Criteria. McClelland and Focht (1958) found a

correlation between a p-y curve and a stress-strain curve from the
consolidated-undrained triaxial test (QC test) on small specimens. The
approach is similar to Skempton's (1951) work on the vertical settlement
of a foundation. McClelland and Focht opened the way to developing p-y
curves for a clay where the clay consists of layers with different shear
strength characteristics. The relationship between a p-y curve and a

stress-strain curve from a QC triaxial test is expressed by

p=556bD ) (3.3)
and

y =1/2be . . . . . L. e e e e e e e e (3D
where

b = pile diameter or frontal size in inches,

OA = deviator stress in Qc triaxial test with confining

pressure as close to the actual overburden pressure as
possible in psi,

€ = strain in QC triaxial test.

The above relationship is illustrated in the nondimensional form in
Fig. 3.1.
The procedure to get a set of p=-y curves from stress-strain curves

is summarized as follows.
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Fig. 3.2, Skempton's Criteria for p-y Curves in Clays
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1. Plot a nondimensional stress=-strain curve (Fig. 3.la) with the
strain ¢ as abscissa and the ratio of the deviator stress to
the ultimate deviator stress oA/oAf as ordinate.

2. Compute the ultimate lateral soil resistance P, by Eq. 3.5.

P =5-5b0 o L (3.5)

3. Construct a nondimensional coordinate system with the ratio of
pile deflection to the pile diameter, or pile width, y/b as
abscissa and the ratio of soil resistance per unit length of pile
to its ultimate value p/pu as ordinate. (Fig. 3.1b)

4. Draw a nondimensional p-y curve, or p/pu versus y/b curve,
by transferring the stress-strain curve from Fig. 3.la to Fig.
3.1b. After the transfer, the ordinate of the curve remains the
same as the stress-strain curve, but the abscissa of the curve is
reduced to one-half that of the stress-strain curve. Any arbitrary
point a (e, r) on a stress-strain curve (Fig. 3.la) is transferred
as point a'(e¢/2, r) on the nondimensional p-y curve, where r
is greater than zero but less than unity.

5. Convert the nondimensiomnal p-y curve in Fig. 3.1b into a dimen-
sional p-y curve by multiplying the ordinate with pu (Eq. 3.5)
and multiplying the abscissa with b

6. Repeat steps 1 through 5 for various depths to obtain a set of

p~y curves along a pile.

Skempton's Criteria, which is described later, may be used for the

analytical generation of p-y curves. Skempton (1951) correlated the
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load settlement curve of a shallow foundation with the stress-strain
curve of an undrained triaxial compression test. In order to make use

of Skempton's equation to obtain p-y curves for piles in clay, one

must assume that the bearing pressure versus settlement for a long strip
footing at a great depth is identical to that for .the soil resistance
versus deflection for a laterally loaded pile. The relationship obtained
by Skempton is essentially the same as that established by McClelland and
Focht. The only difference between the two is the factor which transfers
the stress-strain curve of an undrained triaxial compreésion test to a
nondimensional p-y curve. McClelland and Focht multiply the abscissa
of a stress-strain curve with a factor of 0.5 to get the abscissa of a
nondimensional p-y curve, while Skempton uses a factor of 2.

Reese's Criteria. The criteria by McClelland and Focht considers only

a flow-around type of failure of soil in a horizontal plane around a
pile. Reese (1958) argued that the behavior of a laterally loaded pile
is greatly influenced by the soil near the ground surface which fails by
moving upward in the form of a wedge. He derived an expression of the
ultimate soil resistance for the wedge-type failure by'considering the

equilibrium of forces on the wedge.

P, = Yybx+2cb+2.83cx ... ... ... ... (3.6)
where
P, = ultimate lateral soil resistance by wedge-type failure in
pounds per inch,
y = effective unit weight of soil in pci,
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b = diameter or width of pile in inches,
x = depth in inches,
c = cohesion of a clay in psi.

He also derived an expression for the ultimate soil reaction of a flow-
around type of failure by considering the failure of the soil mass around

the pile.
pf =N cb . . . . . . . e e e e e e e e e e e e 3D
where

Pe = ultimate lateral soil resistance per unit length of pile
by flow-around type failure,
N = coefficient of the bearing capacity, whose value is usually

assumed to be 11,

The smaller value of P, and pe governs the actual ultimate lateral
soil resistance.

Reese proposed to simulate the stress-strain curves by parabolas in
the absence of Qc triaxial compression test (Fig. 3.2b). The curve is
assumed to become flat when the ultimate deviator stress is reached. The
reference point is chosen at one-half of the ultimate deviator stress,
that is, 0.5 on the ordinate, The corresponding strain 650 is assumed

to take different values depending on the type of clay. After Skempton

(1951), the following values for 650 are recommended.
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TABLE 3.1 STRAIN OF CLAY IN TRIAXIAL COMPRESSION TEST

€0 clay
0.005 brittle or stiff clay
0.02 soft clays
0.01 other clays

The parabolic stress-strain curve may be expressed by Eq. 3.8.

g

R NV > € I -) |

Orf

where

m = coefficient to define a parabola.

The conversion from the stress-strain curve to the p-y curve can
be done according to either McClelland and Focht's criteria or Skempton's
criteria.

The procedure for constructing the p-y curves out of the parabolic

shape of stress-strain curve is summarized as follows.

1. Calculate the two types of ultimate soil resistance per unit
length of pile P, and Pe using Eqs. 3.6 and 3.7 and the
best estimate of the shear strength of the clay. As it is shown
in Fig. 3.3a, Eq. 3.6 determines the ultimate soil resistance
at the upper portion and Eq. 3.7 controls the lower portion of a
pile. The smaller value of P, and Pe determines the ultimate

lateral soil resistance Py



0 Pu(Ib/in)
Pw ]
> ~o
=
Y

g

69

Shear Strength

0 of Clay, psi

-

(a) Ultimate Soil Resistance, py

Fig. 3.3.

4
P
Pu
|.OF
LIV
0.5+t Pu b
|
|
> oL -
€ O ys0 y/b
(b) Stress-Strain Curve (c) Nondimensional p-y

Curve

Reese's Criteria for p-y Curves in Clays



70

2. Determine the coefficient of parabola n for a nondimensional

p~y curve in Fig. 3.3c.

% -0 /% U - OO\

the parabola passes through the point (YSD’ 0.5). The magnitude

of the abscissa Ysq is given by McClelland and Focht
Ysq = /2 & (3.10)
or by Skempton
Y5 = 2 €ggr * ¢ oottt (3.11)
thus
n =§};—5 . (3.12)
50

3. Draw a parabola on the nondimensional coordinate system of (y/b)
and  (p/p,)-

4. Cut the parabola at p[pu = 1.0 and connect with a horizontal
line.

5. Compute the p and y values from the nondimensional p=~y curve
by multiplying the ordinate with P, determined in Step 1 and
multiplying the abscissa with b

Matlock's Criteria. Based on field tests as well as on laboratory

tests, Matlock (1970) developed soil criteria for constructing p-y curves
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for static and cyclic loading in soft clay. Figures 3.4a and 3.4b show
a summary of the procedure, both for static loading and for cyclic loading.
Matlock assumed that the ultimate resistance per unit length of pile

is expressed by Eq. 3.13.

P =N c¢cb . . . . . . .. e e e e e e e e (3.13)
u P
where
¢ = cohesion of a clay in psi,
b = pile diameter in inches,
Np = dimensionless coefficient of ultimate bearing capacity.

The value of the coefficient Np for the depth where only the flow-

around failure occurs is

N =9 . . . . . 0 e s e e e e e e (3

Near the ground surface where the overburden pressure is not enough to

prevent the forming of the upward wedge, the coefficient Np is given by

N=3+3'C—x+J§..................(3.15)

where

vy = effective unit weight of clay in pci,

x = depth in inches,

¢ = cohesion of a clay in psi,

b = pile diameter in inches,

J = dimensionless constant determined from the type of clay.
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Matlock's experimental value of the constant J ranged from 0.25 to 0.5.
Reference to Eq. 3.6 shows that Matlock's criteria is similar to that of
Reese.

Near the ground surface the ultimate resistance per unit length of
pile is determined by the lesser value of Py computed from Eqs. 3.13,
3.14, and 3.15. The p-y curve for the static loading is constructed by

the following procedure.

1. Choose €q > the strain corresponding to one-half of the
ultimate deviator stress Opg ©OF one-half of the unconfined
compression strength 9, - (Skempton's criteria give typical

values of (Table 3.1) if a stress-strain curve is unavail-

€50
able.)
2. Calculate the pile deflection Yeo which corresponds to the strain

€ on the stress-strain curve, by a formula

50
Yso = 2.5 €54 b . . . .. 0 0000 ... . (3.16)
where
b = diameter or width of a pile in inches.

3. Draw a nondimensional cubic curve

/3
E o-os 3 (3.18)

N!
u s/

between O Sp/pu <1
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4. Connect the curve with a horizontal line

P
e I £
5 (3.18)

5. Calculate the values of p and y from the nondimensional p-y
curve by multiplying the ordinate with Py and multiplying the
abscissa with Ysg

The p-y curve for the cyclic loading is constructed in a similar

manner. Figure 3.4b reflects the deterioration of soil strength by

the effect of repeated loading.

Sand

Reese's Criteria. Reese's criteria for obtaining a set of p-y

curves for sand are based on formulas for the ultimate lateral soil
resistance per unit length of pile and on recommendations by Terzaghi
(1955) for the shape of the early part of the p-y curve. The detailed
development of the formulas for the ultimate lateral soil resistance is
given by Parker and Reese (1970).

In the following, a brief summary is given of the method for deter-
mining the ultimate lateral soil resistance and for the construction of
the basic bilinear p-y curves.

The ultimate lateral soil resistance at depth is given by the equation
for a flow-around type failure of sand. The equation is derived by consid-
ering the successive failure of the square block soil elements as in the

case of clay (Reese, 1958).
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be{“i’fZKo t«'=m¢5(l<f,+1) -KA} C e e e .. (3.19)

o
Hh
]

where
Pe = ultimate soil resistance per unit length of pile in

pounds per inch,

v = effective unit weight of soil in pci,
x = depth in inches,
b = pile width in inches,

= tan2 (45o -~ ¢/2) coefficient of active earth pressure,

KP = tan2 (45° + ¢/2) coefficient of passive earth pressure,

K = coefficient of earth pressure at rest which is assumed to
be 0.5,

¢ = angle of internal friction of a sand in degree.

The examination of Eq. 3.19 reveals that the first term within the
parenthesis Kg is by far the major contributing factor in determining
the ultimate lateral soil resistance per unit length of pile. Therefore,
the ultimate lateral soil resistance by flow-around type failure Pe is
proportional to the cube of the coefficient of the passive earth pressure.

Near the ground surface the ultimate soil resistance on a pile is
obtained by computing the force exerted from a soil wedge moving upward.
The ultimate lateral soil resistance by wedge type failure P, is
obtained by differentiating the total force exerted from the soil wedge

onto the pile with respect to depth, x

Pw=Yx{b Kp - Ky

+ x tan B [KP tan o + K/ (tan ¢ - tan o ] } (3.20)
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where

- 2
B =45 +5,
o = angle to define the shape of wedge, and is assumed to be

equal to one-half of ¢

The early portion of the p-y curve is constructed from Terzaghi's
(1955) recommendation. Terzaghi used the theory of elasticity to derive
the relationship between the horizontal deflection of a vertical pile

and the soil resistance.

B = =
v ES N VA D
where
p = lateral soil resistance in pounds per inch,
y = lateral pile deflection in inches,
ES = so0il modulus in pounds per inchz,
k = coefficient of lateral soil reaction in pounds per inch3.
Terzaghi (1955) gave the values of k as Table 3.2.
x = depth from ground surface in inches.
3
TABLE 3.2 RANGE OF VALUES OF k, POUNDS PER INCH
- ——————_
Relative Density of Sand Loose Medium Dense
Dry or Moist Sand 3.5 - 10.4 12.8 - 40.1 50.8 - 101.6

Submerged Sand 2.1 - 6.4 8.0 - 26.7 32.1 - 64.1
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The procedures for constructing the bilinear p-y curves are summarized
as follows.
1. Compute the two types of ultimate lateral soil resistance per
unit length of pile by Eqs. 3.19 and 3.20 along the pile.
2. Take the smaller value as the governing ultimate value (Fig. 3.5a).
3. Choose the appropriate value of k , depending on the state of
the sand (Table 3.2).
4. Construct a bilinear p-y curve as it is shown in Fig. 3.5b.
5. Repeat Steps 3 and 4 for various depth to obtain a set of p-y
curves.

Parker and Reese's Criteria. A proposal was made by Parker and Reese

to smooth the bilinear p-y curves, obtaine y Reese’'s method,
(1970) h the bili btained b ! hod

by use of a hyperbolic function of the form

b =p canh/k—1>...................(3.22)
u \p
u
where
p = lateral soil resistance in pounds per inch,
P, = ultimate lateral soil resistance in pounds per inch,
k = coefficient of lateral soil resistance in pounds per

3
inch™ (Table 3.2),
y = lateral deflection of pile in inches.
The hyperbolic p-y curve generated by Eq. 3.22 is asymptotic to

the bilinear p-y curve obtained from Reese's criteria (Fig. 3.6).
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Summgry

The most realistic p-y curves or the lateral soil resistance
versus pile deflection curves are those based on theory as far as possi-
ble. Both the flow-around type failure of a soil in a horizontal plane
and the wedge-type failure of a soil are taken into consideration. The
wedge-type failure occurs near the ground surface. The flow-around type
failure occurs at enough depth from the ground surface where there is
sufficient restrain to prevent the upward movement of the soil.

Perhaps the most important consideration regarding p-y curves is
whether or not there are validating experimental results. Matlock's
criteria are based on a series of carefully performed experiments,
including cyclic lateral loading, and furthermore employ theoretical
expressions for ultimate resistance. Matlock's criteria are believed
to be the best currently available for clays. Only Matlock has given
recommendations for p-y curves for cyclic loading for clays. While
Matlock's recommendations are specifically for soft clays, perhaps the
most common soil for marine structures, this idea can also be applied
with some caution to medium and stiff clays.

The only soil criteria for sand available in the literature are
those by Reese and Parker. Reese considered the flow-around type failure
and the wedge-type failure of a soil. The criteria by Parker and Reese
smooth the simple bilinear p-y curves obtained from Reese's criteria.
These criteria are weakened somewhat by a lack of experimental verifica-
tion, particularly on large-sized piles; however, theoretical computations

using these methods agree well with experimental results that are available.
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Axially lLoaded Pile

Load Transfer and Point Resistance

The finite difference method for solving the problem of an axially
loaded pile employs a set of load transfer curves along the pile and the
point resistance curve at the top of pile.

The load transfer curve refers to a relationship between the skin
friction developed on the side of a pile and the absolute axial displace-
ment of a pile section. The point resistance curve expresses the total
axial soil resistance on the base of the pile-tip in terms of the pile-
tip movement.

The properties of soil which determine the load transfer curve and
the point resistance curve may be considerably affected by pile driving.
In the case of clays, Seed and Reese (1957) reported that soon after the
pile driving a loss in shear strength was observed in clays adjacent to
the pile equal to 70 per cent of that for total remolding. They also
observed that the recovery of shear strength with the passage of time
resulted in a five-fold increase in the load-carrying capacity of a pile,
even in insensitive clays. As is pointed out by Kishida (1967), the pile
driving in a loose sand results in the increase in the relative density
and increase in the confining pressure, both of which are major factors
affecting the load transfer curves and the point resistance curve. The
action of arching observed in sands around a pile (Robinsky and Morrison,
1964) may be another important factor to be considered.

In spite of all these complex factors, presently available soil
criteria are based only on the soil properties before pile driving. 1In

view of the fact that the effect of different methods of pile installation
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on the soil properties with the passage of time are excluded from the
soil criteria, the soil criteria described in the following must be

regarded as tentative.

Clay

Coyle and Reese's Criteria. Coyle and Reese (1966) developed soil

criteria for the load transfer curves for a pile in clays.

After Woodward, Lundgren, and Boitano (1961), Covle and Reese proposed
a reduction factor K to express the relationship between the cohesion
of a clay and the maximum load transfer on a pile. Figure 3.7 shows that
the reduction factor K 1is less than unity if the shear strength of a
clay is over 1,000 psi. Similar observation is also made by Tomlinson
(1957).

Coyle and Reese expressed the rate of load transfer developed on the:
side of a pile as a function of absolute pile movement. Curves were
given for various depths. (Fig. 3.8).

The procedure for developing a load transfer curve for the side of
a pile is summarized as follows:

1. GEstimate the distribution of cohesion of the clays along the

length of the pile from available soil data.

2. Compute the maximum load transfer as a function of depth from

Fig. 3.7.

3. Select the curve A, B, or C in Fig. 3.8 depending on the depth.

4. Multiplying the ordinate of the selected curve in Fig. 3.8 with

the maximom load transfer obtained in Step 2, compute a load

transfer curve.
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5. Repeat Steps 2 through & for varying depths to obtain a set of
load transfer curves along a pile.

Skempton's Criteria. The point resistance curve for a pile in a clay

may be generated by Skempton's (1951) criteria. Starting with the theory
of elasticity, Skempton found a correlation between the load-settlement
curve of the shallow foundation and the stress-strain curve for the
undrained triaxial compression test. The validity of the same correla-
tion for a deep foundation was attested by examining the effect of the
foundation depth on the pertinent variables in the basic equation. The

correlation is expressed by simple equations.

z

= =2c¢ (3.23)

b
o

€ = A v o e e e e e e e e s e e e e (328
E

where

z = settlement of a foundation in inches,

b = diameter of a circular foundation in inches,

€ = dimensionless strain in the undrained triaxial compression
test,

Op = deviator stress of the undrained triaxial compression test
in psi, with the ambient pressure as close as possible to
the overburden pressure,

E = Young's modulus of the soil or the secant modulus in the

stress-strain’' curve.
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1f a stress-strain curve from undrained triaxial test is available,
it is readily transformed to a point resistance curve as it is described
in the early part of this Chapter. If no stress-strain curve is available,
a parabola is assumed in a similar fashion as it is shown in Figs. 3.3b °

and 3.3c.

Sand

Meager studies have been made for sands to establish generally
applicable soil criteria for generating a set of load transfer curves
along a pile and a point resistance curve at the tip of the pile. Two
soil criteria are described, as follows.

Coyle and Sulaiman's Criteria. Coyle and Sulaiman (1957) experimen-

tally investigated the load transfer curves of a pile in sand. The
ultimate load transfer or skin friction on the side of a pile wall is

expressed in the simplest form by

= t T )
Tf KO Yy X tan § ( )
where
Tf = maximum load transfer on the pile in psi,
KO = earth pressure coefficient whose value may lie somewhere

between the active earth pressure coefficient KA and

the passive earth pressure coefficient KP ,
v = effective unit weight of the soil in pci,

x = depth from the ground surface in inches,

§ = friction angle between the pile and the contacting sand.
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Assuming that the earth pressure coefficient Ko is equal to one
and the friction angle is equal to the angle of internal friction of the
sand before disturbance, Coyle and Sulaiman found the relationship
between the load transfer of a pile in a sand and the pile displacement.

Their conclusion, however, is contradictory to the experimental
observation by Parker and Reese (1970). Coyle and Sulaiman state that
at shallow depth there is a considerable increase in the actual maximum
load transfer over that calculated by Eq. 3.25 with the assumption of
constant KO and constant § throughout the length of pile. They
further assert that the maximum load transfer is reached at the lower
portion of the pile with smaller pile displacement than at the upper
portion of the pile. The observation by Parker and Reese indicated
that the actual maximum load transfer at shallow depth is close to that
obtained from Eq. 3.25 with the same Ko and § at all depths. Parker
and Reese also found that the pile displacement necessary to reach the

maximum load transfer increases linearly with depth.

Parker and Reese's Criteria. Empirical criteria were established by

Parker and Reese (1970) for generating a set of load transfer curves along
a pile in sand. The criteria correlates the load transfer curve with the
stress-strain curve of a triaxial compression test. Their criteria
includes a recommendation for the estimation of point resistance curve.

The stepwise description of the procedure for generating a set of load
transfer curves and a point resistance curve is given in the following.

1. Determine the relative density of sand and the stress-strain

curve of a triaxial test with the ambient pressure equal to the

overburden pressure.
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Obtain the correction factor for the maximum load transfer as

a function of relative density of sand (Fig. 3.9).

Obtain modified correlation coefficients, which relate the
deviator stress in the triaxial test with the load transfer

on the side of the pile. The modified correlation coefficient
for uplift loading is calculated by dividing the value obtained

by Eq. 3.26 with the correction factor (Step 2).

U, = Ne o (3.26)
2
tan” (45° + ¢/2) - 1
where
Ut = correlation coefficient for uplift loading
Nt = tension skin friction coefficient which is a function

of the earth pressure coefficient and the friction
angle. The value of 4.06 is assumed by Parker and

Reese.

The modified correlation coefficient for a compression pile is
calculated by dividing the value of Eq. 3.27 with the correction

factor (Step 2).

U = Ne N < JFY )
¢ 2
tan~ (45° + ¢/2) - 1
where
U = correlation coefficient for downward loading,
c
N = compression skin friction coefficient which is a
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function of the earth pressure coefficient and the
friction angle. Parker and Reese assume the value
5.3 or the value computed from 7.0 - 0.04 x.

4. Compute a load transfer curve from a stress-strain curve.
Multiplying the deviator stresses with the modified correlation
coefficient (Step 3), the values of load transfer is obtained.
The displacement of the pile is computed by multiplying the
axial strain in the triaxial test with the value ottained from

Eq. 3.28 or 3.29

R = 0.15+ 0.012x . . . . . . . « .+ .« .« . .(3.28

Rc =0.4+0.016x . . ... ... ... ... .(3.29
where

Rt = factor correlating upward pile‘movement to axial strain,

Rc = factor correlating downward pile movement to axial strain.

5. Repeat Steps 1 through 4 for depth up to 15 times the pile diameter
The curve for this depth is used for the remainder of the pile.

6. Construct a point resistance curve by combining anv one of the
bearing capacity formulas with the theory of elasticity solution
for the settlement of a rigid footing on an elastic material
(Skempton, 1951).

Meverhof's Criteria. After Skempton, Yassin, and Gibson (1953),

Meyerhof (1959) proposed a simple criterion (Eq. 3.30) for generating

a point resistance of a pile in sands.
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z =_Pp O ¢ D8 113
30 Phu
where
z = settlement in inches,
P, = base pressure in psi,
b = diameter of the base in square inches,
pbu = unit ultimate bearing capacity in psi.

Considering the diversity of values of Phu by various bearing
capacity formulas (Vesié, 1963; McClelland, Focht, and Emrich, 1969),
the unit ultimate bearing capcaity of a pile point may be readily
obtained from the empirical relationship with the standard penetration

test (Meyerhof, 1956).

Phu = BON . . . . ... ... s sy e e .. (33D
where
N = number of blows per foot penetration in the standard
penetration test.
Summary

A set of load transfer curves along a pile in clays can be computed
from the criteria by Coyle and Reese. A point resistance curve for a
pile in clays can be constructed from Skempton's criteria.

The load transfer curves along a pile in sands should be computed by

the procedure given by Parker and Reese. A point resistance curve for a
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pile in sands may be computed either according to the recormendation by
Parker and Reese or according to Meyerhof's criteria.

Existing soil criteria can only make a rough prediction of the axial
behavior of a pile. For a more accurate prediction of axial behavior of
a pile, future development is needed of the theory for the mechanism of

load transfer and of point resistance.



CHAPTER IV

DESIGN OF EXPERIMENT

Aim and Outline of Experiment

The experiment was conducted to develop information on the behavior
of single piles in sand (Parker and Reese, 1970) and on the behavior of
grouped pile foundations. Results from the tests of the single piles
were used in the theory for the behavior of grouped pile foundations
(Chapter II) and analytical predictions were made which were then com-
pared with the experimental results. The aim of this program was to
provide an evaluation of the theory of grouped pile foundations.

The experiment consisted of two phases. First, a number of single
piles were tested to obtain necessary information on the load displace-
ment relationships of axially and laterally loaded piles (Chapter V),
In the second phase, grouped pile foundations were tested under various
types of static loads. Results from the tests of the grouped pile
foundations were compared with the analytical predictions (Chapter VI),

Although it was desirable to perform the experiment on full-scale
piles in a variety of typical soils, economic considerations required the
experiment to be limited to small-sized piles, which were steel pipe
piles of two-~inch diameter. These piles were embedded eight feet in a
submerged dense sand.

The design of the experiments are briefly described in the following.

Test Setup

The test was carried out in a reinforced concrete tank (Fig. 4.1).
A temporary shed was built over the tank to shield the test piles and

93



’ Loading Beam

J Load Jack  =di
Cell . _ “

|2 ft

—

Cross

276

E3€(]n1247
1

l

Load
Cell

EJCICk

Pea Gravel =

25 ft

Fig. 4.1.

Test Setup




95

equipment from the weather. The inside dimensions of the tank were 10
feet wide, 12 feet deep and 25 feet long. The wall thickness was eight
inches.

A four-inch diameter drainage pipe was installed diagonally on the
bottom of the tank. The drainage pipe was placed in a six-inch thick
pea gravel layer, and was connected to a two-foot diameter sump at a
corner of the tank., A small submersible water pump provided drainage
which was necessary during the placing of the sand.

Four eight-inch wide channels were fastened to the tank wall with
anchor bolts to provide the loading anchors (Fig. 4.1). A moveable
loading beam was placed atop two cross beams, Vertical jack reaction
was taken by the loading beam. Horizontal jack reaction was taken by
the sidewall of the tank.

For vertical loading a double-acting hydraulic jack was used. The
jack was capable of developing 37 kips with 6-inch travel. Horizontal
load was supplied by a similar jack but with maximum capacity of 9.5
kips. The hydraulic pressure was given by an electric power pump. The
exact load was monitored by reading a digital voltmeter hooked to a load
cell; operators regulated the o0il flow to maintain the load at the
desired level. The control of the o0il flow was domne through adjusting

a series of valves,

Piles
The dimensions of test piles were determined after a series of con-
siderations to the lateral and axial behavior of a small-sized pile in

sand.
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While the tests did not attempt to model a prototype, it is instructive
to consider some ideas on the modeling of piles. Shinohara and Kubo
(1961) derived the scale factor for the flexural rigidity EI of a
laterally loaded pile in sands for the two limiting cases. The first
case assumes the lateral soil resistance per unit length of pile is

proportional to depth x

p=K xb . ... .00 0000 e L6
o
where
p = lateral soil resistance per unit length of pile,
Ko = coefficient of the lateral soil reaction,
b = width of pile.

Then the scale factor for EI 1is expressed as follows.

-1
= AA
AEI NKO kx b Yy e €3

where
A = scale factor for the subscripted quantity.

In the second case the lateral soil resistance per unit length of pile

is assumed to be proportional to depth x and pile deflection ¥y

p = KO XY b oo s e e e e s e s e e e e e B
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The corresponding scale factor for EI is expressed by Eq. 4.4,

Ny = A xxsxb...................(4.4)
(o]

Shinohara and Kubo indicated two alternatives to satisfy the modeling
law Eq. 4.2 or Eq. 4.4. The first choice is the use of a geometrically
similar model in the identical soil, in which the model pile must be
made of more flexible material than the prototype pile. The second
choice is the use of geometrically and materially similar model pile,
for which a denser sand is used as a model soil. A practical modeling
is made by combining these two choices, where a model pile is made of
more flexible material and installed in a denser sand. This work by
Shinohara and Kubo helped in the final selection of pile dimensions and
soil properties, as well as the state of the sand.

Another guideline for the proper selection of the pile dimensions
is obtained from examining the simple case of a laterally loaded pile
in a soil with a uniform soil modulus ES . The closed form solution

of this pile singles out a parameter B (Chang, 1937).

ES
B = 4’ZET Y ()

The dimension of the parameter B is the reciprocal of length. It is
easily checked that the pile can be regarded as semi-infinitely long if
its length is at least four times the reciprocal of B . If the soil

modulus ES is assumed to be proportional to depth x , the soil
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modulus at the one-third depth of the first stationmary pcint of the pile
may be used for the equivalent uniform soil modulus.

A rule of thumb for the dimension of an axially loaded small-sized
pile is given by Vesid (1965) who stated that the pile diameter of the
model foundation must be at least 1.5 inches or about the size of the
Dutch Cone Penetrometer to be quantitatively ureful.

A seamless steel tube of two-inch outside diameter with 0.065-inch
wall thickness was selected to make all of the piles usec in the test.
The size of the tube satisfies the rule of thumb given by Vesic. In
terms of the parameter B (Eq. 4.5), a pile embedded eight feet in a
dense sand has a length of approximately five times the reciprocal of B

The tube has a cross-sectional area of 0.380 inchz. Its radius of
gyration is 0,698 inch. The moment of inertia is 0.185 incha. The
weight of the tube is 1,29 pounds per foot. A tensile test was performed
on a strip cut from one of the piles. The yield stress was found to be
64 ksi and the ultimate stress was 78 ksi. Young's modulus of the
steel was 29 x 106 psi.

The arrangement of test piles and test foundatioms is shown in Fig.
4.2, The minimum distance between the piles was set 2 feet or 12 times
the pile diameter to eliminate substantially any interference from other
piles, The distance between the tip of pile and the base of the sand
layer is 2 feet and 6 inches or 15 times the pile diameter. This dis-
tance was thought to be sufficient so that the effect of the underlying
pea gravel layer on the pile behavior was negligible.

Twelve single piles and two grouped pile foundations with four piles

were tested. The pile numbers are shown circled in Fig. 4.2. Figure 4.2
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also shows the sequential test number and the type of test performed. The
axial loading tests, both upward and downward, were carriaed out on ver-
tical piles, The lateral loading tests were performed not only on the
vertical but also on the in-batter and out-batter piles. The batter

piles have either 1 to 6 batter or 1 to 12 batter.

All the piles in the two foundations, designated Cap 1 and Cap 2 in
Fig. 4.2, were designed to have fixed connections with the pile cap. To
insure the fixed connection the pile head was clamped by a pair of steel
angles welded on the side of a heavy steel channel which composes the
pile cap. The gap between the pile and the steel angles was filled with

epoxy resin. The rigid pile cap weighed about 500 pounds.

Measurement

Measurement of the displacement was done by dial gages. The measure-
ment of the axial and bending strains in the pile was made by metal foil
strain gages.

Detailed description of the instrumentation of the metal foil strain
gages is given by Parker and Reese (1970),

The principle of computing the two-dimensional displacement of any
arbitrary reference point of pile cap from the dial gage readings is

given in Appendix D,

Sand

A sand was preferred to a clay as a test material because of the
controllability and the reproducibility of the state of sand.

The state of sand was made as dense as possible, following the

modeling law given by Shinohara and Kubo, The sand was fully submerged,
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because the test setup did not allow for keeping the sand always dry.
The standard method of placing sand is described by Parker and Reese (1970).

All the piles were installed and held at the scheduled positions when
the sand fill reached a thickness of 2.5 feet. Thereafter, the compaction
was done around the embedded piles for the remaining sand layer of eight
feet in thickness.

The sand is classified as subangular to slightly subrounded, poorly
graded, fine sand. The general properties of the sand are listed in

Table 4.1.

TABLE 4.1 PROPERTIES OF SAND
Effective Size DlO' « « « « +« .+ . . . .0.08-0.09 mm
Uniformity Coefficient. . . . . . . . . . . . . 2.4
Specific Gravity GS e e e e e e e e e e e .. 2,679
Minimum Density Yoin® ¢ ¢ ¢ 1.32 g/cm3 (82.4 pcf)
Maximum Density Yoax' © ° .1.64 g/cm3 (102.3 pcf)

The in situ density of sand was uniform throughout the layer and
remained constant through the test period. The dry density of the sand
before the test was 100 pcf. After the test period, the average density
was 101 pcf.

The angle of internal friction of the sand ¢ was measured, using
air-dried samples and also using undisturbed samples taken from the tank

five months after the beginning of the test. Direct shear tests and tri-

axial compression tests were performed on the air-dried samples of various
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densities (Fig. 4.3 and 4.4)., Both types of tests gave an angle of
internal friction ¢ of 41° for the sand at a density of 100 pcf. Ten
undisturbed samples in a submerged state were tested in a triaxial com-
pression device, using varying confining pressures and back pressures.

Figure 4.5 displays the test results, In Fig. 4.5 o, 1is the axial

1

compression in psi and 03 is the confining pressure in psi. If no

cohesion is assumed for the sand, the mean angle of internal friction is
computed as 47°.

There is a considerable difference in the measurement of ¢ between
the air-dried samples and the undisturbed specimens. The problem of
in situ strength of the sand will be discussed later in the analysis of

single piles.
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CHAPTER V

ANALYSIS OF EXPERIMENTS ON SINGLE PILES

Two kinds of experiments were performed on single piles, axial
loading and lateral loading. Axial loading tests were performed only
on vertical piles, with ﬁhe load being applied both downward and upward.
Lateral loading tests were performed on vertical, in-batter and out-
batter piles. The axial behavior and the lateral behavior of a pile are
treated independently according to one of the basic assumptions that

there is no interaction between these two types of behavior.

Axially Loaded Pile

/

In the analysis of grouped pile foundations, it is only necessary to
have curves giving the axial load versus the displacement of the top of
the pile.

The first portion of this section is devoted to a study of load
displacement curves to find representative curves for the analysis of
grouped pile foundation., In the latter half of this section, an analysis
is made to explain the considerable influence on load displacement curves
of load transfer along the sides of the pile.

Parker and Reese (1970) established an empirical correlation between
load transfer curves for the test piles and stress-strain curves from

triaxial compression tests.

Axial Load Versus Pile-Top Displacement

The test piles were usually loaded in increments, with a constant

load being held until the movement of the top of the pile had stabilized.
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In some instances the load was increased continuously until failure by
plunging of the pile. 1In another instance the load was increased
cyclically,

Figure 5.1 is a semi-logarithmic plot of an example time-settlement
relationship for incremental loading. The plot shows that, for the
larger loads, settlement continues with time. Figure 5.2 is a plot in
the normal scale of the pile-top movement for every five minutes, showing
that, after about 30 minutes, the rate of pile-top displacement drops
sharply to the level of about 5 x 10-4 inch per five minutes. A pile
was regarded as stable when the rate of movement dropped to this level.

Figures 5.3 through 5.8 show plots of the axial load versus pile-top
displacement for each of the axially loaded piles. The downward-loading
curve is plotted in the fourth quadrant in accordance with the usual
sign convention, The upward-loading curve is plotted in the second
quadrant to be consistent with the former. This rule of plotting is
kept for the rest of the analysis.

Examination of these curves for axial load versus pile-top displace-
ment reveals some of the characteristics of the axial behavior of the
pile.

1. There is a marked difference between the virgin loading curve

and the subsequent loading curves. Tests 5, 6, and 7 in Fig.
5.5 show that the ultimate uplift resistance is one-half of that
for the virgin loading. Test 2 (Fig. 5.3), Test 4 (Fig. 5.4),
Test 8 (Fig. 5.5), Test 18 (loop landings) Fig. 5.6b) and Test

16 (Fig. 5.7b) show that if a pile is failed once, the ultimate
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bearing capacity in the reversed direction of loading is reduced
to less than one-half the original value, and the rate of dis-
placement becomes far greater than for the first loading. Test

9 (Fig. 5.5) indicates that downward ultimate bearing capacity is
restored by jacking the pile 1.5 inches in the ground, but the
rate of displacement is much greater than for the virgin loading.
The envelope of the cyclic virgin loading curve, such as Test 3
(Fig. 5.4), Test 10 (Fig. 5.6a), or Test 11 (Fig. 5.7a), is
similar to the virgin loading curve of Test 1 (Fig. 5.3), Test

5 (Fig. 5.5), or Test 23 (Fig. 5.8) in which the load was increased
continuously.

Comparison of the virgin downward-loading curves of Test 1 (Fig.
5.3), Test 3 (Fig. 5.4), Test 10 (Fig. 5.6a), and Test 23 (Fig.
5.8) with those of the virgin upward loadings, Test 5 (Fig. 5.5)
and Test 11 (Fig. 5.6a) show that both of them are similar in
their shapes.

The ultimate resistance of the pile increased with the passage of
time., Figure 5.9 shows the plotting of the ultimate resistance

of the bearing and uplift piles. It shows that the ultimate pile
resistance increased 50 per cent in the time span of 3 months over

the first test which was conducted soon after sand placement.

These observations on axial pile behavior stress the importance of

awareness of loading history and the time of testing in applying the test

results to the analysis of grouped pile foundations.
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Load Transfer

Experimental Load Transfer and Point Resistance. Experimental load

transfer curves are obtainable from axial forces computed from the
measurement of axial strains along the pile by strain gages and from
axial pile displacement obtained by the integration of the axial strain.
Figure 5.10 illustrates a typical example of axial force computation at
five gage locations. The solid lines in Fig. 5.10 show reéults obtained
from loading measurements, and the broken lines show those from unloading
measurements. The locked-in axial force in the pile after the removal

of load, which was common throughout the experiments, is illustrated

in Fig. 5.10.

Figures 5.11 and 5.12 are the load transfer curves computed by Parker
and Reese (1970) for a bearing pile and for an uplift pile, respectively.
The load transfer curves are developed at the five locations of the
strain gages.

The point resistance is the unit vertical soil resistance on the
base of the pile as a function of the settlement of the pile tip. Since
no direct measurement of the point resistance was made, a point resis-
tance curve can only be obtained by extrapolating the experimental axial
force distribution curves.

The linear extrapolation of the bottom two measuremenis of the axial
force gives a maximum point resistance of only about 160 pounds. The
distance between the bottom strain gage and the tip of the pile was 12

inches or 6 times the pile diameter., The accuracy of the extrapolated
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value of the point resistance may be somewhat questionable, but it can be
said with certainty that the point resistance accounts for a quite small
share of the total axial pile resistance.

Figures 5.13 and 5.14 compare the actual top displacement with the
theoretical predictions made from the experimental load transfer curves
(Figs. 5.11 and 5.12) and the assumption of no point resistance. The
discrepancy between the experimental curve and the theoretical prediction
may be attributed to the following reasons. First, there are inevitable
experimental errors in the measurement in the axial force. Secondly,
the number of gage locations were so few that errors were introduced
in the numerical integration of axial strain. The comparison is also
indicative of the sensitivity of the prediction of pile-top displacement

to the accuracy of the load transfer curves.

Analysis of Load Transfer. The maximum value of the load transfer

on a pile in a cohesionless soil is assumed to be expressed by a linear

function of depth (Eq. 5.1)

T = KO yxtand £ . . . . . . . . . . . . .. . ... (5.D
where

T = total load transfer in pounds per unit length of pile,

KO = pondimensional coefficient of earth pressure on the side

of a pile whose value lies somewhere between the active

earth pressure coefficient K and the passive earth

A
pressure KP s

v = effective unit weight of sand in pcf,



SETTLEMENT, in.

COMPRESSIVE LOAD, Ib
0 1000 2000 3000 4000

123

5000

0.05—
Prediction from

Experimental Load
Transfer Curves

Test 1O Pile 5

0.10 | I

Fig. 5.13. Prediction of Load-Displacement Curve from
Experimental Load Transfer Curves,
Uplift Pile



124

l
Actual
|
— t oo
\
\
\ v
\
\
\
\
\
\\
\ Prediction from
Experimental Load
Transfer Curves
— —10.05
\
\
\
\
“
~
N
Test || Pile 4
| | | l\.""‘\ 0
5000 4000 3000 2000 1000 0
Uplift Load, b
Fig. 5.14, Prediction of Load-Displacement Curve from

Experimental Load-Transfer
Curves, Uplift Pile

UPWARD DISPLACEMENT, in.



125

x = depth from ground surface in feet,

§ = friction angle between the sand and the pile wall whose
value is greater than 0 but smaller than the angle of the
internal friction of the sand ¢ |,

£ = circumference of the pile in feet,

In this case where point resistance is negligible, the ultimate
bearing capacity of a pile in a sand is dependent on the relationship
expressed by Eq. 5.1. The equation has two quantities, namely Ko and
& . The maximum ultimate bearing capacity is computed by assuming the
upper limit values for Ko and 6 . If the angle of internal friction
of the sand is 41° as it was measured on air-dried samples, the maximum
ultimate bearing capacity is 4,350 pounds. In this computation, Ko
was taken as equal to Kp , with a numerical value of 4.8, and § was
taken as equal to ¢ , with a numerical value of 41°.

The actual loading tests gave ultimate bearing capacities ranging
from 3,600 pounds at the beginning of the test period to 5,400 pounds at
the end of the period (Fig. 5.9). The value of 5,400 pounds exceeds by
about 25 per cent the value computed from Eq. 5.1.

One explanation for this lack of agreement is that the soil itself
increased in strength and at the end of the test period had a strength
greater than that for a ¢ of 41°. The strength of a sand may be
increased either by an increase in the angle of internal friction or by
the development of cohesion due to chemical action. An increase in the
angle of internal friction, however, is ruled out, because measufement

of the in situ density of the sand was almost identical before and after
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testing. It is thought that no appreciable cohesion developed in the
sand, because examination of the sand at the end of the tast period
failed to reveal any substantial unconfined compressive strength.

Another explanation for the lack of agreement is that there was an
increase in bond at the soil-pile interface. There is a strong possibility
that the sand in the vicinity of the piles changed in properties because
of corrosion of the pile méterial. The retraction of piles after the
test program showed rusting on the walls of the piles. The piles had
been sand blasted before installation. It was also observed that the
sand in the vicinity of each pile had changed color to a dark gray.

These observations give credence to the idea that chemical action pro-
duced a bonding at the pile-soil interface and perhaps also between

soil grains in the vicinity of the pile wall. This hypothesis is sup-
ported by the fact that a great reduction in the axial pile resistance
occurred as a result of the virgin loading. Therefore, the major factor
contributing to the increase in the ultimate bearing capacity of the
piles under axial load is thought to be the increased bond at the soil-
pile interface.

The effect of the increase in the bond on the ultimate bearing
capacity may be accounted for by an increase in the apparent angle of
internal friction., If the apparent angle of internal friction is assumed
to have increased to 47°, good agreement is obtained between the ultimate
bearing capacity observed at the'end of the test period aand the ultimate

bearing capacity computed from Eq. 5.1,
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The discussions above conspicuously point out the difficulty of the
theoretical determination of the ultimate pile resistance. The present
state of the art is such that the ultimate resistance of a pile may only

be approximated by theoretical computations,

Conclusion

A series of axial loading tests on single piles revealed the charac-
teristic behavior of axially loaded piles. This behavior is important
in the analysis of the experiments on grouped pile foundations. Specific
observations are:

1. The ultimate bearing capacity of the axially loaded piles in sand
increased with the passage of time. This increase is probably
due to the development of a chemical band at the pile-soil inter-
face.

2. Each loading cycle leaves some permanent set.

3. The envelope of a load-displacement curve is smoothly curved.

In each loading cycle except the first one, the early portion
of the curve is almost straight until it touches the envelope.

4, 1If a pile is once failed, there is a drastic change in the be-
havior of the pile. Generally, the ultimate axial resistance
is reduced and the rate of pile-top displacement is increased.

5. There is some variation in the virgin ultimate axial resistance
of piles tested even with a short span of time.

6. The analytical method can describe only the limited aspect of
the complex axial behavior of a pile.

7. More careful test planning is needed to determine the load
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transfer and the point resistance in the test piles more

accurately.

Laterally Loaded Pile

In the analysis of grouped pile foundations, it is necessary to have
curves giving lateral pile-head deflection and the pile-head rotation as
a function of pile-head loading. Such curves can be computed from the
theory of the laterally loaded pile if curves are available for points
along the pile giving soil resistance versus pile deflection (p-y curves).
In the research study, p-y curves were obtained from results of experi-
ments with instrumented laterally loaded piles. As discussed previously,
other investigations have given recommendations for the theoretical
development of p-y curves,

The analysis of laterally loaded single piles in the following com-
pares the experimental pile behavior with the predictions made from the
use of p-y curves derived from experiment and also with predictions
made from theoretical p-y curves. The effect of batter on the lateral

soil resistance curves is also included in the analysis.

Measurements of Displacement and Moment

All the lateral loading tests were performed in a period of a month
at the later stage of testing. |

Figures 5.15 through 5.20 show the lateral displacement and the
slope of Pile 20, Pile 19, and Pile 18 measured at the point of horizon-
tal load application, which is about eight inches above the ground sur-

face. Pile 20 was vertical, Pile 19 and Pile 18 both had a 1 to 6
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batter with Pile 19 being in-battered and Pile 18 being out-battered.
The distinction of in-batter and out-batter is made with regard to the
direction of horizontal load. (The terms "“in-batter" and '"out-batter"
are defined by sketches in the figures.)

The horizontal load was increased or decreased in increments. The
criterion for the stabilization of the lateral displacement of pile head
under a constant load was set to be 3 x 10-3 inch per 5 minutes.

Figures 5.21 and 5,22 summarize the measurements of displacement and
slope of Pile 1, Pile 2, and Pile 3. Pile 1 was a vertical pile. Pile
2 and Pile 3 were in-batter and out-batter piles with a 1 to 12 batter,
The static load on these piles were also increased and decreased in
steps. The plot shows only the envelopes of the displacement curves.

Pile 1, Pile 2, and Pile 3 were instrumented with strain gages to
give bending strains. A typical family of bending moment distribution
curves is shown in Fig. 5.23., The points of the maximum moment and the
first zero moment shifted slightly downward as lateral lcad was increased.
The plot of maximum bending moment of these three piles in Fig. 5,24
indicates that the lateral load versus the maximum bending moment rela-
tionships are still linear at 450 pounds lateral load. The largest bend-

ing stress in the pile is about 50 ksi.

Experimental Lateral Soil Resistance Curves

Experimental p-y curves are shown in Fig. 5.25. These curves
were computed by Parker and Reese (1970). The computation was done by
two different methods. One of the methods resorted to the numerical

integration and differentiation of the bending moment distribution curves
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to obtain the pile deflection and the horizontal soil reaction per unit
length of a pile. The other method involved the application of the non-
dimensional analysis of a laterally loaded pile developed by Reese and
Matlock (1956).

The experimental p-y curves are given to the depth of 24 inches,
Below that depth the magnitude of thé lateral pile deflection was insig-
nificant, The experimental p-y curves indicate that the ultimate
lateral soil resistance was developed to the depth of approximately 12
inches. It is also observed that there is a considerable difference in
p-y curves between an out-battered pile (Pile 1) and a vertical pile
(Pile 3).

The prediction of pile-head deflection from these experimental p-y
curves, agrees well with the actual deflection curve (Fig. 5.26). The
prediction of the maximum bending moment in the pile, which is another
important quantity to describe the laterally loaded pile behavior, gives
only two to five per cent discrepancy from the actual measurement for

the maximum lateral load at pile top (450 pounds),

Theoretical Lateral Soil Resistance Curves

Some discussion is necessary concerning the selection of the value
of the angle of internal friction to be used in the theoretical analysis
of behavior of the piles under lateral loading. In Chapter IV it was
reported that the value of ¢ for air-dried samples was 41° at 100 pcf
as obtained from triaxial tests and direct shear test. A value of ¢ of
47° was obtained from triaxial tests on specimens trimmed from the soil

removed from the tank at the end of the test program. The average dry
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density of these specimens was about 101 pcf. The difference in the value
of ¢ obtained from the two test series is partly due to differences in
density, the main difference is thought to be related to the differences
in the test procedures., The average angle of internal friction of the
soil in the tank is thought to lie between 41° and 47°.

Studies of single pile behavior by use of the bilinear p-y curves
(see Fig. 5.27) showed that close agreement between theory and experiment
was obtained if the average angle of internal friction was selected as
47° (Fig. 5.28). This close agreement was desirable since it allowed
the group behavior to be studied analytically without substantial error
being introduced because of erroneous computation of single pile behavior.

Parker and Reese (1970) recommended p-y curves quite similar to
the bilinear curves employed in the analysis except that a hyperbolic
function was used to obtain a transition between the two straight lines.

Since the improved hyperbolic p-y curves were not available at the
time of analysis, they are not used for this analysis. Future analysis
should employ the hyperbolic curves for reasons given by Parker and
Reese (1970).

The difference in behavior between the two vertical piles, Pile 3
(Test 17) and Pile 20 (Test 13) is attributed to the difference in pile
locations. A series of tests, Test 13 (Pile 20), Test 14 (Pile 19), and
Test 15 (Pile 18), were performed on piles on the southern end of the
tank (Fig. 4.2), while the other series of tests, Test 17 (Pile 3),

Test 20 (Pile 2) and Test 21 (Pile 1) were performed on piles on khe

northern end of the tank (Fig. 4.2). Figure 5.28 shows that experimental
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curves of piles on the northern end are indicating larger pile-top
deflection than the corresponding piles on the southern end.

The piles on the northern end were subjected to the disturbance by
the running water, Although care was taken, water supplied to the tank
caused a few inches scouring of sand on the northern end. Consequently,
the sand was disturbed at shallow depth., The characteristics of the soil
near the ground surface are most crucial in determining the behavior of
a laterally loaded pile.

The variation of pile top deflections due to the batter angle will

be discussed in the next section,

Effect of Batter

Kubo (1962) investigated the effect of batter on the behavior of
laterally loaded piles, He modified the lateral soil resistance curves
of a vertical pile with a modifying constant to express the effect of
the pile inclination. The values of the modifying constant as a function
of the batter angle were deduced from model tests in sands and also from
full-scale pile loading tests. The criterion is expressed by a solid
line in Fig. 5.29,

Plotted points in Fig. 5.29 show the modification factors for the
batter piles tested in these experiments, The modification factors were
obtained for two series of tests independently. As it is described in
the preceding section, one series of tests was carried out on the northern
end and the other on the southern end; each of them showed slightly dif-

ferent trends,
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The experimental modification factors were obtained after a few
trial and error comparisons of the horizontal pile-top displacements at

the maximum load between a vertical pile and a battered pile.

Figure 5.29 indicates that for the out-batter piles, the agreemént
between the empirical curve and the experiments is good, while the in-

batter piles in the experiment did not show any effect of batter.

Conclusion
The following conclusions are made concerning the analysis of experi-
ments on laterally loaded single piles.
1. Both theoretical and experimental lateral soil resistance curves
can give sufficiently accurate prediction of pile behavior.
2. The effect of disturbance of sand at shallow depth by the run-
ning water was evident.
3. The experiments support Kubo's rule for modifying the lateral
soil resistance curves of out-batter piles,
4, The experiment did not reveal any difference between the behavior
of a vertical pile and an in-batter pile under lateral load.
Since all lateral loading tests were performed in the relatively
short time span of one month, no effect of time on the lateral behavior

of piles can be adequately studied.



CHAPTER VI

ANALYSIS OF EXPERIMENT ON GROUPED PILE FOUNDATION

The principal objective of the experiment is establishing the
correlation between single pile behavior and the behavior of a grouped
pile foundation. The loading conditions on the grouped pile foundations
were designed in such a way as to cover all the conceivable cases of
static loading on the foundation.

The most important behavioral quantity of a grouped pile foundation
is the displacement of the pile cap under the given load. The load-
displacement relationships obtained in the experiment are compared with
the analytical prediction.

The distribution of forces on individual piles in a foundation is
another behavioral quantity to be examined. Unfortunately, almost all
the strain gages on the piles were damaged during the five months sub-
mergence in the water, Comparisons were made between theory and experi-
ment for those piles where there were surviving strain gages.

There were two test foundations, each consisting of four piles, They
are designated Cap 1 and Cap 2 (Fig. 4.2). Cap 1 was tested under verti-
cal, lateral and inclined loads. Cap 2 was subjected only to inclined
loads. The analysis of test results is presented first for Cap 1 and
then for Cap 2,

The analytical prediction of the behavior of the pile caps is com-

puted by the computer program GROUP (Appendix A). The computation is
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based on the experimental load-settlement curves of single piles and on

theoretical lateral soil resistance curves.

Cap 1

The grouped pile foundation, Cap 1, consisted of two vertical piles
and two batter piles with 1 to 12 batter (Fig. 4.2).

The loading history of Cap 1 is shown in Fig. 6.1, Depending on the
type of loading, the test is divided into three phases; namely, combined
loading (Test 22-1), vertical loading (Test 22-2) and lateral loading
(Test 22-3), 1In addition to the varying load, Cap 1 was subjected to a
dead load of 500 pounds imposed by the self-weight of the cap.

Test 22-1., The foundation was loaded by four cycles of vertical

load at the center of the pile group. During the last two cycles, the
vertical load was kept constant at the maximum, and lateral load was
applied on the level of pile tops. Under these loadings none of the
piles in the foundation were loaded up to failure,

Figure 6.2 shows a plot of the vertical component of the pile-cap
displacement. The upper half of the graph shows the vertical displace-
ment curve for the vertical loading and unloading without lateral load
on the pile cap. The lower half of the graph shows the vertical load
9 kips or 12 kips, The experimental curves are shown as solid lines.

Figures 6.3 and 6.4 show the horizontal and rotational components of
pile-cap displacement, respectively, The displacement curves are shown
only for lateral loading with a constant vertical load of 9 kips or 12

kips. The displacement curves for vertical loading are not shown,
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because the horizontal and rotational components of pile-cap displacement
are only nominal under the vertical load alone.

The prediction of the pile-cap displacement employed the load-settlement
curve of Test 23 on Pile 7 (Fig. 5.8). Test 23 was conducted soon after
Test 22 on the grouped pile foundation Cap 1. Considering the change in
load-displacement relationships with time (Fig. 5.9), Test 23 is con-
sidered to be the best representation of single pile behavior for use in
making analysis of Test 22, Theoretical bilinear lateral soil resistance
curves developed in the previous chapter (Fig. 5.27) were used for com-
puting the lateral behavior of the vertical piles in the foundation.

The modification of the lateral soil resistance curves for the out-batter
pile was made in accordance with Kubo's criterion (Fig. 5.29). The out-
batter pile in Cap 1 has 1 to 12 batter or a 4°46' batter angle. The
correction factor for this angle is 0.86. The soil resistance curves

for an out-batter pile were obtained by applying the correction factor
uniformly to those of the vertical pile.

In Fig. 6.2, the analytically predicted vertical displacement curves
are fitted to the third and fourth cycles of vertical loading. In each
of these loading cycles a good agreement is obtained between the analytical
prediction and the experimental vertical displacement curve. The experi-
ment shows that the grouped pile foundation Cap 1 had considerable amount
of permanent set in the vertical displacement after the third loading
cycle.

Figure 6.5 illustrates qualitatively the mechanism of the large

permanent set of the vertical displacement after the third loading
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cycle. Due to a vertical load Po (Fig. 6.5a), Pile 1 and Pile 2 take

the paths Oa1 and Oa2 in the axial load versus displacement curves

(Figs. 6.5b and 6.5c). When a horizontal force QO (Fig. 6.5a) is
added to the foundation, the paths of load displacement curve of each

individual pile move to points b1 and b2 . If all the loads PO

and QO are removed from the foundation, the paths go to points C1

and C2 . If it were not for the horizontal load Qo , the path of

. ' '
Pile 2 would be 0a2c2 2c2

ated in Pile 2 because of the horizontal loading on the foundation,

An excessive permanent set ¢ is cre-
which subsequently increased the permanent set of the vertical pile cap
displacement.

The effect of permanent set in the axial behavior of a single pile
is not manifest on the horizontal component of the pile-cap displacement
(Fig. 6.3). Considering the small batter angle of Pile 2, the horizon-
tal component of the permanent set in the axial pile displacement may
be regarded as negligibly small.

On the other hand, the permanent set in the axial pile displacement
is affecting the rotational displacement of the pile cap (Fig. 6.4). 1In
the third loading cycle where the vertical load on the foundation was
kept constant at 9 kips, a good correspondence is obtained between the
experimental curve and the analytical prediction of rotation of the
pile cap. However, in the fourth loading cycle, in which a constant
12 kip vertical load was maintained on the foundation, the experimental
rotation angle is far greater than the analytical prediction because of

the hysteresis in the axial displacement of pile,
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Test 22-2. 1In this phase of testing, Cap 1 was loaded with only the
vertical load at the center of four piles. The vertical load was increased
until it reached the ultimate.

Figures 6.6 shows the three components of pile-cap displacement for
Test 22-2, The analytical prediction was computed by making use of the
load settlement curve of Test 23 on Pile 7 (Fig. 5.8) and the theoretical
lateral soil resistance curve in Fig. 5.27. These are the same condi-
tions as those used for the prediction of Test 22-1,

The analytical prediction of the vertical pile-cap displacement agrees
well with the experimental curve (Fig. 6.6a).

Considerable discrepancies are observed between the analytical pre-
dictions and the experimental curves of the horizontal and rotational
components of pile-cap displacement (Figs. 6.6b and 6.6c). There are
several conceivable causes contributing to these discrepancies.

First, it must be considered that the pile cap moved during the
previous test 0.7 inch in the positive direction or to the right in Fig,
6.5a. The permanent set in the horizontal displacement during the previous
Test 22-1 was about 0.1 inch in the positive direction. The predicted
horizontal displacement of the pile cap is 0.15 inch to the negative
direction. The discrepancy in horizontal displacement curve in Fig.
6.6b may be attributed to the error in the alignment of load or to the
tilting of vertical load in the counter-clockwise direction. No imme-
diate assessment can be made as to the effect of lateral loading of a

pile in the reversed direction.
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Second, consideration may be given to the disturbance in the axial
behavior of a pile. Pile 2 in the grouped pile foundation Cap 1 (Fig.
6.5a) was subjected to an axial load almost equal to the ultimate bearing
capacity during the previous test, while Pile 1 was subjected to an axial
load well below the ultimate. Subsequently, the axial resistance of Pile
1 was reduced. The effect of reduced axial resistance in Pile 1l is
reflected in the backward turn of experimental horizontal displacement
curve near at the ultimate vertical load on the foundation (Fig. 6.6b).

The third reason may be found in the difference of load displacement
curve between Pile 1 and Pile 2. During the previous test, Pile 1 and
Pile 2 followed the load-displacement paths Oa,b, and Oa,b , respec-

171 22
tively (Figs. 6.7a and 6.7b). The new path for Pile 1 should be blcl
in Fig. 6.7a. The new path for Pile 2 is assumed to be expressed by
b2d2 in Fig. 6.7b which has smaller ultimate value than the virgin
curve 0a2c2 . Although Pile 1 may have larger ultimate bearing capac-
ity than Pile 2, the load displacement curve of Pile 1 starts having
steep slope much earlier than Pile 2. The discrepancy in the rotation
curves (Fig. 6.6c) which start from a little over one-half the ultimate
vertical load on the foundation, is indicative of the early occurrence

of steep slope in the load displacement curve of Pile 1.

Test 22-3. This is the last test performed on Cap 1, which was

loaded only by the horizontal force at the level of the pile top.
Figure 6.8 shows the displacement of the foundation. The solid
lines indicate the experimental curves and the broken lires express the

analytical computation.
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As it is discussed in Chapter V, the axial resistance of a pile is
greatly reduced when a pile is loaded in the opposite direction of the
previous loading to failure. Figure 6.9 plots the analytical computation
of the axial forces on pile tops. It indicates that Pile 1 is subjected
to uplift force immediately after the application of the horizontal load
on the foundation.

Pile 1 has been loaded to failure in Test 22-2 under a downward load.
Therefore, it is proper to use the uplift force versus pile-top displace-
ment curve of Test 2 on Pile 9 (Fig. 5.3) for Pile 1. The uplift loading
test, Test 2, was conducted on a pile which was once failed by a down-
ward load. The analytical prediction of pile-cap displacement uses the
same downward axial load versus displacement curve and the lateral soil
resistance curves as Test 22-1 and Test 22-2,

Good correspondence between the analytical prediction and the experi-
mental displacement curves is obtained (Fig. 6.8). The failure of the
foundation is caused by the excessive horizontal displacement of the
pile cap. The axial forces on pile tops are far below the ultimate

axial pile resistance.

Cap 2

The grouped pile foundation, Cap 2, consisted of four batter piles,.
A pair of piles makes 1 to 12 batter to the vertical and the other twc
piles make 1 to 6 batter to the vertical. Their arrangement is shown
in Fig. 4.2,

Cap 2 was subjected to a dead load of 500 pounds and to an inclined

load which made an angle 12° to the vertical, The inclined load had a
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slight eccentricity of 0.43 inch with respect to the reference point on

the origin of the structural coordinate system, which was selected at the
center and the bottom base of the pile cap. The inclined load was increased
incrementally in cycles until the foundation failed. The inclination

angle 12° was chosen on the conception that both the vertical bearing
capacity and the maximum lateral resistance of a pile might be fully
mobilized at the time of foundation failure.

Displacement. Figures 6.10, 6.11, and 6.12 show the experimental

load-displacement curves in solid lines and the theoretical prediction
in broken lines. The analytical prediction of the load-displacement
curves was made from the load-settlement curve of Test 23 on Pile 7 (Fig.
5.8) and the theoretical lateral soil resistance curves shown in Fig.
5.27. These conditions are identical to those which are used for Cap 1.
The analytical prediction of vertical displacement of grouped pile
foundation, Cap 2, coincides with the envelope of experimental curve
(Fig. 6.10). The experimental vertical displacement curve in Fig, 6.10
shows some irregularities in the first two loading cycles. These irregu-
larities may be attributed to the variation in the axial behavior between
individual piles., Although it is assumed in the analysis that two sym-
metrically arranged piles are acting in an identical manner, in actuality
there must be some variation between two symmetrical piles. This assump-
tion is verified by the observed rotation of the pile cap not only in
the plane of symmetry, but also in the other planes where no rotation
was assumed. The magnitude of pile-cap rotation in other planes some-

times reached as high as the rotation in the plane of symmetry.
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The comparison of analytical prediction with the experimental
horizontal and rotational displacement curves (Figs. 6.11 and 6.12) shows
a disparity for the higher loads. This disparity was caused by the change
in the inclination angle of the resultant of applied load on the founda-
tion, The inclined load on the foundation was given by a vertical jack
and a horizontal jack attached at the center of four piles. The horizon-
tal displacement of the pile cap gave some tilting to the vertical jack,
The tilting of the vertical jack tended to become greater, because the
loading beam for the vertical jack lacked stiffness against the horizon-
tal force. Therefore, the inclination angle of the resultant of load on
the foundation was greater at higher load than that assumed for the ana-
lytical computation,

Force. Figure 6.13 illustrates a typical example of pile reactions
and force distribution within the piles, computed by the analytical
method. The example shows the case where the foundation is subjected to
an inclined load of 8,900 pounds which is about one-half the ultimate
load. The axial soil reactions at pile tip shown in Fig., 6.15 do not
mean that these forces really exist, but it merely indicates the assump-
tion of uniform distribution of axial force in a pile, which was made to
facilitate the computation of laterally loaded piles as a beam column.

The analytically computed pile forces are compared with the experi-
mental measurements made by strain gages installed six inches below the
pile tops. Figures 6.14, 6,15, and 6.16 show the load versus axial force

and the bending moment relationships at these gage locations,
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Since the gages are installed at the pile portions which stand above
the ground surface, the summation of axial forces in four piles must be
equal to the vertical component of the resultant load., The axial forces
in Fig. 6.14 are computed by applying the same normalizing factor to the
two axial strain measurements in such a way as to produce equilibrium
between the load and the pile reactions. The normalizing factor varied
from one loading step to the other., Generally speaking, the normalizing
factor becomes close to unity when the load is large. Still, in some
instances the factor varied as much as 10 per cent from unity at large
loads.

After the normalization of the data, the experimental measurements
coincide with the theoretical prediction precisely except near the ulti-
mate load.

The moment in the piles is computed from the bending strain measure-
ment. In the absence of a proper way to calibrate or normalize the field
data, the experimental moment is calculated by simply applying the labora-
tory calibration factor to the measured bending strain.

The comparison between the theoretical and the experimental moment
at the gage location discloses that the computed values form the envelope
for the experimental load versus moment curves (Figs. 6.l5 and 6.16).

For either pile the agreement between experiment and theory is good in

the first three loading cycles. The deviation of the experimental value
from theory is rather great in the last loading cycle in which the founda-
tion was leaded to failure. This finding is consistent with the observed

larger horizontal displacement of the pile cap.
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Discussion

The analysis of experiments on grouped pile foundations validates
the analytical method of predicting the behavior of grouped pile founda-
tions. If proper information is furnished, the analytical method is
capable of making accurate predictions.

The experiment revealed that the accuracy of prediction is greatly
dependent on the axial behavior of a pile. Referring to the single pile
tests, the axial behavior or, in this case, the axial load versus pile-
top displacement curve varies with the passage of time. It may change
drastically depending on the past loading history on the pile. All these
changes occurred for a pile in a sand. Seed and Reese (1957) report that
the piles driven in clays showed changes in their axial behavior with
the passage of time. Therefore, the importance of recognition of the
axial loading history and the time of loading with regard to the time of
pile installation must be stressed for any type of soil for making a
realistic prediction of behavior of a grouped pile foundation.

The lateral behavior of a pile is prescribed by a set of p-y curves
or lateral soil resistance versus pile deflection curves given along the
length of the pile. The analytical prediction employs rather simple
bilinear p-y curves generated after Reese's criteria. Reduction to the
lateral soil resistance for out-batter piles was made according to Kubo's
criteria, As the close prediction of laterally loaded single piles was
made by these p-y curves, no evidence was found in the analysis of
grouped pile foundations that these p~y curves are affecting the accuracy

of prediction of behavior of a grouped pile foundation. The analysis of
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the experiment is limited to the case of a submerged dense sand. However,
presently available soil criteria are assumed to be capable of providing
sufficiently accurate p-y curves. With regard to the accuracy of p-y
curves, it must be remembered that the error in p-y curves has only
reduced effect on the prediction of pile-top reaction versus displacement
relationship.

Experimental errors were induced by the misalignment of the applied
load on the foundation. This problem can be solved by measuring the exact
line of action of the load.

Variation between two symmetrical piles caused some experimental
errors, However, its effect was not so great as to jeopardize the assump-

tion of two-dimensionality of the foundation.



CHAPTER VII

NUMERICAL EXAMPLES

Comparative analysis of some characteristic quantities are made for two
examples of grouped pile foundations. 1In the first example, the effect of
variation in the axial load settlement curve on the behavior of a grouped
pile foundation is investigated. In the second example, the effect of the
pile-top fixity to the pile cap on the total pile-cap displacement curve
is examined.

The data coding and the computation results for the typical computer

runs are given in Appendix A.

Example 1. Test Grouped Pile Foundation, Cap 2

Figure 7.1 shows the geometrical configuration of Cap 2. It consists
of four steel pipe piles of two inches in diameter which are arranged
symmetrically with respect to the plane of symmetry. These piles are
rigidly connected to the pile cap. The pile properties are described
in Chapter IV. Each individual pile group consists of two identical
piles of 108 inches in length. All the piles are standing approximately
12 inches above the ground surface.

Cap 2 is subjected to a load inclined approximately 12 degrees in
addition to a dead load of 500 pounds in the plane of symmetry. The
resultant of the applied load is acting about 0.5 inch off the origin O
of the structural coordinate system (X, Y), which is arbitrarily chosen
at the center of the pile cap and level to the pile tops (Fig. 7.1) The

load was increased incrementally until the foundation failed.
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The soil was uniform and homogeneous throughout. It consisted of a
submerggd dense sand with an angle of internal friction ¢ of 47° and an
effective unit weight vy of 62.6 pcf. A set of theoretical lateral soil
resistance curves along a vertical pile are generated automatically by
the computer program from the soil properties. No modification of the
curves is made for an in-battered pile. The set of curves for the out-
battered pile are modified. The modification of the lateral soil resis-
tance curves is made according to Fig. 5.29. The modification factor for
a l to 6 batter, or 9°28' batter angle, is 0.73.

The computed vertical displacement curves of the pile cap are shown
in Fig. 7.2. Case A was computed by making use of the axial load dis-
placement curve of Test 22 on Pile 7 (Fig. 5.8). The ultimate bearing
capacity in this test was 5,400 pounds. Case B was computed for Test 10
on Pile 5 (Fig. 5.6a) with the rest of the data remaining the same as
Case A, The ultimate bearing capacity in Test 10 was 4,600 pounds. In
Case C, the axial load displacement curve was replaced with that of Test
1l on Pile 9 (Fig. 5.3), in which the ultimate bearing capacity reached
only 3,600 pounds.

The vertical displacement curves for Cases A, B, and C in Fig. 7.2
are almost similar to the cérresponding axial load-displacement curves
of single piles., It is proved quantitatively that the variation in the
axial load displacement curve of a single pile is reflected by a similar

variation in the prediction of behavior of grouped pile foundations.
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Example 2. Copano Bay Causeway Bent

This example was taken from Parker and Cox (1969), who dealt with
the foundation of one of the bents in the Copano Bay Causeway Bridge on
Texas State Highway 35.

Figure 7.3 shows the configuration of the foundation. It consists
of six 18-inch square prestressed concrete piles of 93 feet in length,
which are assumed to be rigidly connected to the pile cap. Individual
pile groups, Groups 1 and 4, consist of only one pile battered 1l:4 in
the plane of symmetry. Individual pile groups, Groups 2 and 3, consist
of 2 piles battered 1:6 away from the plane of symmetry. However, Groups
2 and 3 are regarded as vertical piles, because the projection of these
piles on the plane of symmetry is vertical. The distance from the pile
top to the assumed scour line is approximately 10 feet.

The origin 0 of the structural coordinate system (X, Y) is chosen
at the center of the cap and level to the pile tops,

The foundation is subjected to a vertical load of 844 kips and a
horizontal load of 36.4 kips at the top of the bent which is 38.5 feet
above the origin 0 of the structural coordinate system, which subse-
quently causes a moment of 1.68 x 104 kip-inch around the origin O
The computation is done for a constant vertical load of 844 kips and for
a varying horizontal load at 38.5 feet above the origin 0 . The hori-
zontal load was increased until the foundation failed.

Figure 7.4 shows the section of the prestressed concrete pile. The
prestressed concrete pile has an 18-inch square section with ten 0.5 inch

diameter 270 k strands. The final prestress on the concrete was 718 psi.



178

O ft

60 ft

Scour Line

Very Soft
Silty
Sandy
Clayey
Muck
Jwe¢= 92
pcf
c= 3.8psi

Very Soft

Sandy Clay

3‘“1»-‘- 92
pet

¢ =15 psi

Pile

Group |

Fig. 7.3.

Pile
Group 2
Eievation

Pile
Group 3

» Y
M=1.68 x10%
K-in.

Pile
Group 4

Plane of
Symmetry

T
10 ft

w
Q
@

-:”'—.'—.’!"
(o]

Copano Bay Causeway Bridge Foundation



AXIAL PILE-TOP DISPLACEMENT, in.

Downward

2.5in.

Fig. 7.4.

25in.

rq—

in
‘_

i
r

4»
g

\
- ——o—
H

-

|

—

L
I

Section of Prestressed Concrete Pile

e | 8 in—»

AXIAL LOAD, Kip

100

200

300
I

400
|

o © ©o
o H N
I !

o
@
I

o
I

Fig. 7.5,

Axial Load versus Pile-Top Displacement

179



180

The compressive strength of the concrete is assumed to be 6,000 psi. The
moment of inertia of the section if 8,600 inches4, The Young's modulus

of the concrete may be computed from the formula, Eq. 7.1;

E=57,400/0c....................(7.1)

where

E

Young's modulus of concrete in psi, and

g
C

compressive strength of concrete in psi

The concrete of 6,000 psi compressive strength gives the Young's modulus
4,44 x 106 psi. In this case the pile is regarded as linearly elastic
throughout, with the assumption that the maximum stress in the pile is
always in the elastic range.

The result of an axial loading test is given in Fig. 7.5. Judging
from the resistance of the pile-head connection to the pile cap, no
uplift resistance from each pile is assumed, as is shown in Fig. 7.5.

The theoretical lateral soil resistance curves for a vertical pile
is generated automatically by the computer program from soil properties.
The modification of the curves for the batter piles is made according
to Fig. 5.29. The modification factor for the 1 to 6 in-batter and out-
batter piles are 1.30 and 0;73, respectively.

The horizontal displacement of the pile cap is shown in Fig. 7.6.
The other components of displacement, vertical and rotational, are not
shown because these components are of secondary importance for this

loading condition,
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In Fig. 7.6, Case A is computed for the case where all the pile tops
are fixed to the pile cap. Case B shows the horizontal displacement
curve for the other extreme case where all the pile tops are connected
to the pile cap by pins.

The actual fixity of the pile top to the pile cap may be assumed
somewhere between these two limiting cases. The failure of the founda-
tion for Cases A and B is caused by the failure of the piles in the
axial bearing capacity. The ultimate horizontal load for the Cases A
and B are almost the same, however, the difference in horizontal dis-
placement between the two is great. The ultimate horizontal load for
Case A is slightly less than that of Case B. The difference is due to
the smaller lateral soil reaction for Case A, in which the axial pile

resistance has a greater role in achieving the equilibrium of forces.



CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are made from the analysis of grouped pile

foundations,

1. The numerical successive displacement correction method is an
effective way to solve the problem of a two-dimensional grouped
pile found?tion under an arbitrary static short-term loading.

2. The plan of the experimental program was adequate for demon-
strating the validity of the theory for the behavior of a grouped
pile foundation.

3. Single pile behavior as determined by experiment was used in the
theory for grouped pile behavior and the theory predicted the
behavior of the grouped pile foundation which agreed well with
the behavior of the grouped pile foundation determined by
experiment.

4, The analyses of the experiments revealed that the accuracy of
prediction of the behavior of a grouped-pile foundation is
critically affected by the accuracy of prediction of the axial
behavior of single piles.

5. The theory for the behavior of an axially loaded pile in sand
can describe only in a limited way the actual behavior,

6. The analyses of the experiments revealed that the presently
available theory for a laterally loaded pile in sand can give
sufficiently accurate predictions of the lateral behavior of

single piles for use in the analysis of grouped pile foundations.
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70

The modification for an out-battered pile can be made accurately
by Kubo's criteria, while in-battered test piles did not show

the effect of batter,

It is recommended that grouped pile foundations be designed by using

the procedure listed below.

1.

80

Determine subsoil conditions using standard techniqﬁes in engi-
neering practice.

Generate lateral soil resistance versus deflection curves (p-y
curves) using soil criteria described in Chapter III. (The
computer program GROUP can generate p-y curves automatically
if soil properties are specified.)

Modify p~-y curves for out- and in-battered piles by Kubo's
criteria,

Conduct axial loading tests at the site to obtain curves giving
axial load versus displacement or make the best estimate of
such curves using available theory.

Estimate the load on the foundation,

Choose a pile arrangement, pile material, and pile dimensions.
Run the computer program GROUP for the solution with the informa-
tion obtained above.

Repeat Steps 6 and 7 to improve the solution.

Computer programs LLP and AXP may be used for the analysis of the

lateral and the axial behavior of a single pile, respectively.

Future research is recommended in order to be able to make a more

accurate prediction of the behavior of a grouped pile foundation.

Specific investigations which need to be carried out are:
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Performing similar studies to those reported herein on grouped
pile foundations in clays.

Investigation of the '"group effect!" between piles.

Development of more accurate methods for predicting the behavior
of an axially loaded pile.

Examination of the interaction between the axial and lateral
behavior of a pile.

Experiments on the full-sized grouped pile foundations.
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APPENDIX A

COMPUTER PROGRAM GROUP

A.1 Description of the Program

The computer program GROUP can be employed to solve for the behavior
of a two-dimensional grouped pile foundation. The program is written in
FORTRAN IV. It solves for the displacement of the pile cap and for the
distribution of forces among and within piles for a given load. The
program must be furnished with information on the load, the arrangement
of individual pile groups, the dimensions and material properties of the
piles, the axial pile-top displacement curves, and the lateral soil
resistance curves or the soil data for the automatic generation of the
lateral soil resistance curves.

The program consists of the main program GROUP and the subroutines
MAKE, FVEC, AXIAL, LLP, MCURV, SOIL 2R, and MULT. The general flow dia-
gram of the program is given on the next sheet. The function of each
subprogram is described below briefly.

The main program GROUP reads in and prints out all the data which
are commonly used by all the subprograms. This program performs the
operation of seeking the equilibrium between the external load and the
pile reactions by the successive displacement correction method.

The subroutine MAKE generates the theoretical lateral soil resistance
curves from the soil data. Reese's soil criteria for sand and for clay

that are introduced in Chapter IV, are the basis for this program. The
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original program was written by Parker and Cox (1969). Some modifications
to the program were made.

The subroutine FVEC solves for the axial and lateral reaction and for
the moment at the top of individual piles.

The subroutine AXTAL interpolates the axial pile top reaction from
the axial pile top displacement curve.

The subroutine LLP solves for the lateral reaction and the moment of
a laterally loaded pile for the given displacement by the finite differ-
ence method.

The subroutine MCURV calculates the flexural rigidity EI at all the
stations. If an interaction diagram of the yield axial force and the
plastic moment is given, the subroutine resets the EI value for the
plastic hinges.

The subroutine SOIL 2R interpolates the lateral soil resistance at
each station from a set of lateral soil resistance curves given along the
pile.

The subroutine MULT is a short program to perform the matrix multi-
plication.

Inside the program the partial derivatives are computed for an
increment of 10“5 times unit displacement. Prior to the iteration, a
pile cap is given an initial displacement of 0.0l times unit displacement
in the X and Y directions. The tolerance for the convergence of dis-
placement i§ set as 10—5 times unit displacement. The iteration in the
main program GROUP is stopped after 100 times. The iteration in the sub-

routine LLP is stopped after 1,000 times.
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On the following pages are given the flow diagram of each subprogram,
the glossary of notations, the listing of the program, the coding form

of the input data, the example data coding and the example problem runms.
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FLOW DIAGRAMS FOR PROGRAM GROUP

General Flow Diagram

MULT
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Flow Diagram for Main Program GROUP
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198 Flow Diagram for Subroutine FVEC
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Set force vector = 0
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311
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Flow Diagram for Subroutine AXIAL
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Flow Diagram for Subroutine MAKE
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Flow Diagram for Subroutine LLP
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Flow Diagram of Subroutine MCURV
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A.3 Glossary of Notations for Program GROUP

A(507) continuity coefficient

AGAM average soil density

ANUM(20) alphanumerical variable to read in the title of run

AREA (20, 5) cross-sectional area of a pile

AV(10) Terzaghi's A coefficient

B(507) continuity coefficient

BM(507) bending moment in a pile

BULT (20, 5, 20) ultimate moment in a beam-column

Cc(507) continuity coefficient

COF(3,3) cofactor of matrix SK

CURV(507) curvature of pile

DBM(507) shear force in a pile

DDV(3, D correction vector for pile~cap displacement

DFV(3, 1) difference between load vector and pile reaction
vector

DIS1(10, 10) distance from ground surface to the top of a soil
layer

DIS2(10, 10) distance from ground surface to the bottom of a

soil layer

DIST (10, 10) distance from ground surface to the depth when a
stress-strain curve of triaxial test is given

DISTA(20) Y coordinate of pile top (+ to right)

DISTB(20) X coordinate of pile top (+ downward)

DPS(20) _ distance from pile top to soil surface

DTC(10, 20) distance from ground surface to where a lateral

soil resistance curve is generated
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DV(3, 1)
DY (507)

EP50

ES

FDBET (20)
FKO(10)

FP(10, 10, 15)
FV(3, 1)

GAMMA (10, 10)
HH(20)

HHNN (20)
ICON(10, 10)

II(5)

INFO (10, 10)

KA(20)

KAR

KAX

KDENSE(10, 10)

KEY

KFLAG

KIC, KID, KIE,
KIF, KIG, KIH

displacement vector of a pile cap
slope of a pile

strain in triaxial test corresponding to one-half
of the ultimate deviator stress, Ty

soil modulus or slope in the early portion of
lateral soil resistance curve or secant modulus
of lateral soil resistance curve

elastic rotational restraint on pile top
coefficient of earth pressure at rest, K
strain in the triaxial test

load vector

effective unit weight of a soil, v’

increment length of a discretized pile

total length of a pile

code to specity the consistency of a clay

number of points in an axial pile-top displacement
curve

switch for inputting stress-strain curves of
triaxial test

number specifying the axial pile-=op displacement
curve to be used

signal to notify the failure in axial soil resistance

signal to notify the axial load in excess of pile
strength

code to specify the state of sand

a signal to notify the error in SOIL 2R and the
failure in convergence in LLP

a signal to notify the end of run

input switch for TABLES C, D, E, ¥, G, and H



KNPL

KOC, KOD, KOE,
KOF, KOH, KOJ

KP (20)

KS(20)

KSS(20)

KTYPE(20)
MPLAST
NC(5)

NDS (20)

NINI (20, 5)

NKS
NN (20)

NOC(10)

NP (5, 20)
NPILE

NPOINT (10, 10)

NSOILP
NSTYPE (10)
P(507)

PC(5, 20, 25)
PDV(3, 1)

PHI(10, 10)
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number of individual pile groups

output switch for Tables C, D, E, F, G, H, and J

index specifying the pile to be used

index specifying the set of lateral soil resistance
curves to be used

index specifying the soil data to be used for
generating a set of theoretical lateral soill resist-
ance curves

number specifying the pile material

signal to notify the formation of plastic hinges
number of lateral soil resistance curves in a set

number of different sections in a pile

number of interaction diagrams of ultimate axial
load and ultimate moment

number of sets of lateral soll resistance curves
number of increments into which a pile is divided

number of theoretical lateral soil resistance
curves in a set which are generated from soill data

number of points in a lateral soil resistance curve
number of types of pile

number of points in a stress-strain curve of a
triaxial test

number of soil profiles

number of soil layers

axial force in a pile

lateral soil resistance per unit length of pile
pile top displacement vector

angle of internal friction of a sand, ¢
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POTT (20)

PUF

PULT (20, 5, 20)
PUW

PX

Q(10)

R(507)

REACT (507)

RES (507)
RRI(20, 5)
RV(3, 1)

RVI(3, 1)

RV2(3, 1)

RV3(3, 1)

s@3, 1)

SDIS
SHEARS(10, 10)

SIG50

SIGD(10, 10, 15)
SIZE(20, 5)
SK(3, 3)

SRES

8S8S(5,2T)

number of piles in an individual pile group

ultimate lateral soil resistance by flow-around
failure

ultimate axial load on a beam-column

ultimate lateral soil resistance by wedge failure
axial pile reaction

lateral soil resistance

flexural rigidity of a pile, EIL

lateral pile reaction

lateral soil resistance on a pile

flexural stiffness, EI

pile reaction vector

pile reaction vector for virtual cap movement
in X direction

pile reaction vector for virtual cap movement in
Y direction

pile reaction vector for virtual cap rotation
pile reaction vector

distance from ground surface

shear strength of a clay

one-half of the ultimate deviator stress, Op
in triaxial test

diviator stress, GA , in the triaxial test
width of pile

partial derivatives of pile reactions

summation of lateral soil resistances along the
pile

axial pile top load



SWGAM

TC(20)

THETA (20)
u(3,3)
UT(3, 3)
XRI(20, 5)

XS(5, 20)

XX1(20, 5)

XX2(20, 5)

Y(507)

YC(5, 20, 25)
YIELD(20)
YOUNG(20)

YY(507)

22Z (5, 25)
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sum of soil weight

alphabetical designation of pile top connection
to pile cap

batter angle (+ counterclockwise from vertical)
force transformation matrix

displacement transformation matrix

moment of inertia, I

distance from ground surface to the lateral soil
resistance curve

distance from top of pile to top of pile sections

distance from top of pile to the bottom of pile
section

lateral pile deflection
lateral pile deflection
yield stress

Young's modulus

dummy to preserve the previous lateral pile deflec-
tion

axial pile-top displacement
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A.4 DATA CODING FOR PROGRAM GROUP

Since the program GROUP must deal with a great number of data, careful
data preparation and the correct data coding are essential for the compu-
tation.

The data are classified into the following groups.

TABLE A Title of each run

TABLE B Input and Output switches

TABLE C Load on pile cap

TABLE D Arrangement of individual pile groups

TABLE E Pile properties

TABLE F Axial pile top displacement curve

TABLE G Lateral soil resistance curve

TABLE H Soil data for theoretical lateral soil resistance curve

Input and output switches in TABLE B are necessary to eliminate inputting
the identical data for the repetitive run. By setting the switch properly
only the changing data have to be head in and printed out. If no new data
are supplied, the data for the previous run are kept and used for the new
run.

The general deck structure of the data is illustrated in the following.

Deck Structure of Input Data
TABLE A TITLE OF RUN, necessary for each rum
Card AI one. card
TABLE B INPUT OUTPUT SWITCH, necessary for each run

Card BI one card



TABLE C

If

Card

TABLE D

If

Card

Card

TABLE E

If

Card

Card

Card

If

Card

Card

TABLE F

If

Card

Card

Card

TABLE G

if

Card

Card

Card

Card

LOAD ON PILE CAP

Bl = 0, skip to TABLE D

CI omne card

INDIVIDUAL PILE GROUP ARRANGEMENT
B2 = 0, skip to TABLE E

DI omne card

DITI Dl cards

PILE PROPERTIES

B3 = 0, skip to TABLE F

EI one card

EIT one card

EIITI one card
ES =1, 2, 2, or 5, skip E4 and E5

EIV one card

EV El4 cards
AXTAL PILE TOP DISPLACEMENT CURVE
B4 = 0, Skip to TABLE G

FI one card

FITI one card

Fl sets

FIII F3 cards

LATERAL SOIL RESISTANCE CURVE
B5 = 0, skip to TABLE H

GL one_card

E3 sets

GII omne card

GIII one card —-
G3 sets

GIV G5 cards e

Gl sets

209

El sets
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TABLE H SOIL DATA FOR THEORETICAL LATERAL SOIL RESISTANCE CURVES
If B6 = 0, Skip TABLE H
Card HI one card

Card HII one card

Card HIII H3 cards
Hl sets
Card HIV one card

If H13 - 0, skip HS5 and H6

H4 sets
Card HV one card

Card HVI H15 cards

To start a new run go to TABLE A. To terminate the run, add two

blank cards at the end of data.
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Data Coding Form for Program GROUP

The data cards must be stacked in proper order, as it is shown in the
description of the data deck structure. Some of the cards have to be
removed depending on the type of problem. All ten-space words assume
E10.3 format (for example, +1.234F+05). All words with less than five
spaces assume integers (for example, 6.17).

Each card is identified by an alphanumeric sign with Roman numerals
(that is, BII, CIII, etc.). Each datum in a card is designated by an
alphanumeric sign with Arabic numbers (for example, D3, E4 ).

The maximum value a datum can take is indicated in the following
when it is necessary. 1In order to take larger values than ind icated,
the dimension statement in the program must be revised.

TABLE A Title of run

Card AI
Al 1 to 80 alphanumeric description of each run.
TABLE B 1Input and Output Switch
Enter 1 for inputting new data or listing the
data and computation results. Enter O for

skipping the input or listing. If there is
no data input, data from the previous run are

used.
Card BI
B1 5 Input TABLE C Load
B2 10 Input TABLE D Arrangement
B3 15 Input TABLE E Pile

B4 20 Input TABLE F Axial Displacement Curve
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B5

B6

B7

B8

B9

B10O

Bl1

B12

B13

25

30

45

50

55

60

65

70

75

Input TABLE G

Input TABLE H

Output
Output
Output
Output
Output
Output

Output

TABLE C

TABLE D

TABLE E

TABLE F

TABLE G

TABLE H

TABLE J

Lateral Soil Reaction Curves
Soil Data

Load

Arrangement

Pile

Axial Displacement Curve
Lateral Soil Reaction Curve
Soil Data

Computational Results on a
Laterally Loaded Pile

Table J lists the computation results on the axial and lateral

behaviors of single piles.

The output switch controls the listing of

distribution of deflection, slope, moment, shear and soil resistance

along the piles.

TABLE C Load on Grouped Pile Foundation

Card CI

Cl

c2

C3

1

11

21

to 10 Vertical load, pound (downward +)

to 20 Horizontal load, pound (from left to right +)

to 30 Moment, inch-pound (counterclockwise +)

TABLE D Individual Pile Group Arrangement

Card DI

D1

Card DII

D2

1

3

to 5 Number of individual pile groups (maximum 20)

to 5 Pile head connection to pile cap. Enter PIN
for pinned connection, FIX for fixed connec-
tion and RES for elastically restrained con-
nection



D3 6 to 10
D4 11 to 15
D5 16 to 20
D6 21 to 25
D7 26 to 30
D8 31 to 40
D9 41 to 50
D10 51 to 60
D11 61 to 70
D12 71 to 80

TABLE E Pile Properties

Card EIX
El 1 to 5
Card EII
E2 lto 5
E3 6 to 10
E4 11 to 15
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Number of piles in the individual pile group.
(no restriction in number)

Index for pile. Enter E2.

Index for axial pile-top displacement curve.
Enter F2,

Index for the set of lateral soil resistance
curves, Enter G2. If the set of curves is
generated from soil data (TABLE H), assign
successive sequential number to the set after
data in TABLE G.

Index for the soil data for the theoretical
lateral soil curves. Enter H2,

Pile~top location, vertical coordinate, inch
(downward from origin +)

Pile-top location, horizontal coordinate,
inch (right-hand side of origin +)

Batter angle of pile, radian (counterclock-
wise from vertical +)

Distance from pile to ground surface, inch
Spring constant for an elastically restrained

pile top, inch-pound. Can be left blank for
PIN and FIX in D2,

Number of different types of pile (maximum 20)

Sequential number assigned to the pile

Number of different sections in the pile
(maximum 5)

Number of increments by which the pile is
divided into finite elements (maximum 500)
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E5

E6

E7

E8

Card EII1

E9

Elo0

Ell

E12

E1l3

Card EIV

El4

Card EV

E1l5

E1l6

TABLE F Axial Pile-Top

Card FI

Fl

CARD FII

F2

16

21

31

41

11

21

31

41

to

to

to

to

to

to

to

to

to

to

1l to 10

20

30

40

50

10

20

30

40

50

11 to 20

lto 5

lto 5

Code for pile type. Enter 1 for wide flange
(strong axis), 2 for wide flange (weak axis),
3 for steel pipe, 4 for others with interac-
tion curve and 5 for others without interac-
tion curve. Interaction curve refers to a
diagram of ultimate axial force and ultimate
moment in a beam column.

Total length of the pile, inch
Yield stress of pile material, psi

Young's modulus of pile material, psi

Distance from pile top to top of uniform
section, inch ‘

Distance from pile top to bottem of uniform
section, inch

Width of pile in the section, inch

Crosg-sectional area of pile in the section,
inch

Momegt of interia of pile in the section,
inch

Number of points in the interaction diagram
(maximum 20)

Start from (Pu, 0) and end at (O, MP)

. Ultimate axial force in a pile, pound

Ultimate moment in a pile, inchi-pound

Displacement Curve

Number of curves (maximum 5)

Sequential number assigned to the curve



F3 6 to 10
Card FII1

F4 1l to 10

F5 11 to 20
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Number of points in a curve (maximum 25)

Axial load on pile top, pound (downward
load +)

Pile-top displacement, inch (downward dis-
placement +)

TABLE G Lateral Soil Resistance Curve

Card GI

Gl lto 5
Card GII

G2 lto 5

G3 6 to 10
Card GIII

G4 1 to 10

G5 11 to 15
Card GIV

G6 1 to 10

G7 11 to 20

Number of sets of curves (maximum 5)

Sequential number assigned to the set

Number of curves in the set (maximum 20)

Depth from ground surface to curve, inch

Number of points in the curve. Curve input
starts from ground surface and ends at pile
point or deeper.

Lateral soil resistance, pound per unit
length of pile

Lateral pile deflection, inch. Point input
starts from (0, 0).

TABLE H Soil Data for Theoretical Lateral Soil Resistance Curve

Card H1 l to 5
Card HII
H2 1 to 5
H3 6 to 10

Number of soil profiles for which a set of
curves are generated (maximum 10)

Sequential number assigned to the soil
profile

Number of curves to be generated
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H4 11
Card HIII
H5 1
Card HIV
H6 1
H7 11
HS 21
H9 31
H10 45
H11 51
H12 65
H13 70
Card HV
H14 1
H15 11
Card HVI
H16 1
H17 11

to

to

to

to

to

to

to

to

to

to

to

to

15

10

10

20

30

40

50

60

10

15

10

20

Number of different soil strata in the
profile (maximum 10)

Depth from ground surface to point where a
curve is generated, inch. Start from ground
surface and end at pile tip or deeper.

Depth from ground surface to top of soil
stratum, inch

Depth from ground surface to bottom of a
so0il stratum, inch

Effective unit weight of soil, pcf. H9 and
H10 are needed only for a sand.

Angle of internal friction of a sand, degree.
Code for the state of sand. Enter 1 for a
dense sand, 2 for a medium sand, and 3 for a
loose sand.

Shear strength of a clay, psi

Code to specify the consistency of a. clay.
Enter 3 for a stiff clay, 2 for a medium
clay, and 1 for a soft clay.

Switch for inputting stress-strain curves

from triaxial test. Enter 1 for input, O
for no input.

Depth from ground surface to pcint where the
soil specimen was sampled, inch

Number of points in a stress-strain cufve

Deviator stress, psi

Strain. Point input starts frcem (0, 0).



217

A.5 Listing of Program GROUP
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PROGHAM GROUP{INPUT,QUTRUT)Y
DIMENDTON ANUM(20)y FV(341)s SK(393)s DFU (3,11, COF (343},

i
Z
CCMMON

[V

COMmMUN

1
CoM40nN

i

P
COMmON

H
CCMMUN

& -

COMMUN
COMMON
FORMAT
FORMAT
FORMAT
FCRMAT
FORMAT
FoRmAT
FORMAT
FOHRMAT
FOHmMAT
FORMAT
FORmMAT
FORMA T
FCRMAT
FORMAT
FORMQI

501
B2
5043
504
Sub
5006
5y
508
S09
51¢
511
51
513
S5i«
515

1
516 FORMAT
g1 FORMAT

1
§18 FORMAT
Q19 FORMAT
520 FORMAT
1
621 FORMaAT
522 FORMAT
923 FORMAT
1
524 FORMAT
$529 FOHMAT
526 FORMAT
527 FORMAT

1
528 FORMAT
529 FORWAT

]
530 FORMAT
531 FORwAT

e~~~ o~ .~ e~ W

PEVI(391) e HHNN(20) sDDV(39]1)a Auiidey), BV]1(3vl)e RVa(341)
y RV3(3s1)
RLCCKRL 7 TC(20)s PUTTI(2D)y KP(Pn)e Ka(20)y KH(20)s
KSS(20)y DISTR(20), DIKTA(20ys THETA(20),
UPS{(2n) s FUBET(28)» KNp]

NN(Z0) e HH{20)y NDSPNye KTYSFLE0)Y YIELDI(P0) s
YOUNG{20)

XX1{(204s Sie XX2(20s S)4 RRI (DU, S5y¢ XRTI (20, S
SIZE(20e5) 0 ApFA(P0.S), PULT(2n95,20) ¢
BULT(20+5020), NINT(2D,5)

NC(5), XS(5420)s NP(5420)y Yr(8y2n925),
PCiSepne2s)

NOC{1a)s NSTYPE(10)s NTC(10920) 9 GAMMA(10470)
PRI(10410) 9 KNENSF(10410) s SHEARS(LlUs10)9s TCONI
10010)y INFO(10010), PTS1(10,10)y D.LS2(10410)
BIST(19010)9 NPOINT(10,10)s <1RD{10010415),
FP(10410915)
HLCCKRT / KFLAGy KEYs KOJy KaYs waR
ALCCRY /7 11(D)y 22418y 25y sS8(Gy 25y DV (39
1H1)

20a8% )

AISe 10Xe 715

41093 IS5 )

Pre Ry 515 SF1043 )

415, 3£10,3
4E1003 )

2E10e3 )
Floed
Sxe €0a4 )
//7 SXe 16HTABLE C LOAD ) '
7 11Ky SHy LOAD,LB, 6X, 9KHH { 0AP LB, ax, 12HMOMENT,(B=IN)
5Xs 3E15¢3 )
777 Sky 3BHTABLE D

RLCCKZ 7/

RLOCAKI /

RLCCKS /

rLCCne /

13

ARRANREMenNT OF PILE GHOUPS

7 Xy 4THGROUP  cONNECT NO AF PTLE PrLF NO L=S cURVE )
v 20Hp-Y CURVE Sal| DaTA )

Xy 15, 6X, A3, 5Ky I5, 6Xy 15, 4X, Ig, 7%, .5, 5X, 15 )

7/ 1X9 oHGRUUPy gX THVERTyINs 8X, &HHORs TNy 34
9-SLOPE 9RADY 3Xs QHGROUAND,TNe 6X, RHSPRING )

Xy 19, TX, 5€712¢3 )

777 Xy 2THIABLE E PILE rImMenSIONS )

/ Xy €HPILE , SHSEC 4 sHInC o BHMATFRIAL® SX»
OHRLENGTH,INy bXy SGHYTIELNWPRT, 10xs SHESPSI )

777 9Ky 3THTARBLE F AXIAL LOADN VS qETTLEMENT )

/ BXs BSHCURVEs I3+ 10X, 13HNUM aF POINTS 4 I3 )

12X SHPOINTy SXs 13HAYTAL LOAD,LBy Ty
13HSETTLEMENTHIN )

10Xs IS¢ S9Xs F11e39 Xy E1lea )

/77 99Xy 22HTABLE G P=Y CIIRVES )

/ TXe 3HSETs I3y 10Xs 13HNUM OF CURVEg, I3

AKXy SHCURVE, I3, 6Xy 20MDISTANCE FROM TOP,IN» E10e3, 4%
13HNUM OF POINTS, 13 )

12Xy SHPQINTs OXy 4HPy| By 18¥9s &HYSIN )

10Xs 3SH(C L0AD b ARRANGEMENT E PrLF ’
. 31HF L~-S G P=Y H SnrTL J LLp) 3

Sxe 315 I8y 2%, 3E19,31 )

FlUe3y 19
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532 FORMAT ( SE10.3 )

533 FORMAT ( 4E1043y ISy SXy Elueds 215 )

935 FORMAT ( /77 DXy 41HTARLF H SOIL NATA FOR AUTU p=Y CURVES )
(

536 FORuAT

/ Xy THPROFILE, I3y 8%, 13dnUM OF CIRVES, [3s 85X,

1 13HNUM OF STRaTAs 13 ) .
37 FQRMAT ( AXy 42rUISTANCES FROVM PILF TnP TO Pey CURVFStINCH )
538 FORMAT ( 10Xe SHCURVEs Xy LIFLOCATIONeIN )
539 FORMAT ( AXy 43MSTRATUM TYPE GAMMARCF PHY«DEG VENS
L 29H5HEARYPS]  CONGIST <=S rURVE )
540 FORMAT ( 10Xe I5e 6H SANDs 2E11e3s 14 )
541 FORMAT ( 10Xxs INe 6M CLAYy E11e3y 17vs F1leds 4%s 159 6Xs I8 )
S4c FORMAT ( 88X, THSTRATUM, 13y 5Xs 2oMDISTAMCE FRoM TOPsIN, E1]1.39
i Sxs 13HNUM OF POINTS, 17 )
543 FORMAT ( 10X+ SHPOINTs 10Xy 10HSTRESS,PSte 14X, AHSTRAIN )
B4« FORMAT ( 10Xe ISy SXy €113 )

B4 FOR4AT

TX SPILE® 2X SFROMOIN® 5X #TneTa® 7X aDeIN® BX #asIn2®

i BeAYINZy TXs SHIWTNA

546 poRmAT { RX, 7HSTHATUMO 11X, THFRON'IN’ T7Xe 5q0Tos Ny )

547 FORMAT ( 10X 2E1543 )

S48 FORMAT ( /// 5Xe 3ISHTABLF 8 INPUT ANA OUTPHOIT SWITCHe gXy
i 19HUIF 1 YESe IF 0 NO) )

%549 FORvAT ( , TXe 41RTARLE C ] E F 6 H J )

55y FORMAT { 7X, SHINPUT, 915 )

551 FORMAT ( 7Xe OHOUTPUTs QI5 )

55¢ FORMAT ( 11Xs 1YHINTERACTION DIAGRAM, 10xe 13HaUM OF POINTS, 13y /
i 16Xe THPUL TILBs Txs 10HMULToINeLn )

553 FORMAT ( y1Xs 39RLINEARLY ELASTIC PILF MaTERIAI )

558 FQRMAT (s 7Xs 13mnNumM OF CURVES, 13 )

559 FORYAT ( 7/ TXs llnnum OF SETSy 53 )

56U FORWAT ( , 10K, 19HNO OF ITERATION, 12 )

5S4 FORMAT ( , gXs 19RSTHESS STRAIN CURYE

564 FORMAT ( / gXe GIMVERTICALIN HORIZONTAL #IN KNTATIONRAD )

565 FORMAT ( SXe 3E153 )

S60 FQRwAT ( s/7/7//7 10X, 3SHRILE CAP DISP_ DOFS NOT CONVFRGE AFTER
1 14h100 TTERATIONS )

S67 FORWAT ( /7777 10Xy IGHPETERMINANT OF STIFFNESe MATonlIXA IS 2RO )

S70 FORMAT ( Sy L5y SELZ243 )

576 FoRMAT (277 SAe 19MCOMPUTATION RESULTS

77 FORMAT ( 20Xs 49H(DENSITY OF SaNnD 1 DENSE 2> MpDIUM 3 (00SE)
i )

578 FORMAT ( 2gXe SOMH(CONSISTENCY OF CLAY | STIFF 2 MgDIUM 3 qOFT )
1 )

579 FORMAT ( / 10Xs 44H(MATERIAL 1 STEEL H, ? STErFL H(WEAK AXIS)s
1 10HSTEEL PIPEy 7/ 20X, 27H® OTHERg WITH INT DIAGRAM,
2 sy 29HS OTHERS WITRWOUT 1+T nTAGRAM) /)

58¢ FORMAT ( /// SXs 4)HTABLE I DISPLACEMFNT Of GROUPED PILE

1
58] FQRMAT

(

10HFOUNDATION )

277 SXe 42HTABLE J COMPUTATION ON INDIVIUUAL PLIE )

CoumwewSTART INPUTTING DATA
NSQILP = ¢
Ce====INPUT TABLE A (TITLE OF RUN)
100 REAU S02¢ ( ANUM(I)y I = 1y 20 )
NKS = g
Ce====INPUT TABLE B8
REAQ 503¢ KIC»
1 KGCoy
ITEST
{ ITEST

(SWITcH FOR INPUT AnD al/TPUT)
Kils KIEy KIFs K1Gy KTMe
K0Us KOFy KOF+ KOG KOMHe x0J
= KIC » KID ¢ KIE & KIF « XIG « KIH

If EGe 0 ) GO TO 9999
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Cwem==INPUT TaHWLE C {LOAD)
IF ( KIC +EGe 0 ) 6o TO 102
RERD 504, Fv(ly 1)y Fv(2, l)s Fy(3, 1)
few===InPUT TAHLE U (PILE GROUP ARRANGFWENT)
10e IF ( «ID +EGe O ) 60 TO 103
READ 503, kAPL
LO 1ué I = 19 mNPL
READ 505, TC(l), IPOTT, KP(l)y KA(T), K& T), KaS(I), VISTR(I),

1 DISTA(I)s THETA(I)Y DPS(1)e FNFT(])
POTT (1) = 1POTY
104 CONT INUE
fame==InPUl Tan g E (PILE DIMENS]ONS)
103 IF ( KIE «Ede ¢ ) 60 TO 115

READ 503, NPILE
£C0 113 1 = s NPILE
READ S06s I0Ps NUS(I)s NN(I)e KYYPE(T)y WmeNN(Tyvs YIFLUCI) s YOUNG(I)
HHTUI) & HHNN(TY , NN(I)Y
INCEX = nNUSUIY
BO 118 ¢ = 1y INDEX ‘
READ 932y XX1{Is J)9 XX2(Ie J)o SIZE(Ty s AREA(Is J)v XRI(Te J)
REKICle J) = XRI(Is J) & YOUNm(T, 1
MATL = KTYPE(T)
GO To ( 1i7. 117, 117, 118, 116 ), MATL
118 CONT INUE
REAU S03s NINT(Ls J)
INT = RINT(TY @)
REAI} 508‘ { pULT‘l' J, Ky HULT(I. JQ K). K = 19 INT }

60 1n 116
117 CUNT INUE

GO TO ( 185 186y 187 ) MATL
165 SF = 1.16

G To 188
lgb SF = 150

) GO To 188

187 SF 3 1.27
188 CONTINUE

MINT (e J) & 2

PULT(Ty Js 1) = AREA(I¢ Jy @ YIFiD(D)

RULT Ly Vg 2) 2 2,0 % SF a vrELn(I) & xal(1s J) /
1 SILE(1, )

RULT(Ie Jo 1) = 0,0

PULT (s Js 2Y = 0eV

116 CONTINUE
114 CUNT INUE :

g=====InPUT TAARLE F {aXxiat, LOAD VS SETT) EMpnNT)
115 IF ( KIF «EGie 0 ) GO TO 105

READ 903, NKA
DO 106 1 = ] NKA
REAU 503y IDENs 1I(D)
INDEX & II(I)
READ 508y ( SOS(IUENs JUys ZZZUIDENy Jys 3 = 1 INDEX )

100 CONT INUE
Cm=====InPUT TAB E G {P=Y CURVES)
105 IF ¢ KIG «EGe ¢ ) G0 TO 107

READ 503, NKS
DO 108 I & 19 NKS
REAU 503, IDOPY, NC(I)
INDEX = NCI(T)
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GO 112 J ® 1 INDEX
READ 531y XSC(IDPYy J)» NP(IUPY, 0)
CINCEX2 = NP (IDPY, J)
REAU 5n8s ( PCCIDPYy Jy K)o YC(IDPYs iy k) K x 1¢ INUEXD )
112 CONTINUE

10v CONTINUE
gm====1INPuUl TABLE H (SOIL DATA FOR AUTHMATTC GENeRATINN OF P=Y CURVE)
107 IF ( KIW +EQe 0 ) Gn TO 109

HEAL 503, NSOILP
DO 11n I = 1s NSOILP
KEAD 503+ NG NOCUI)s NSTYPE(D)
INLCEXR = NOCI(T)
READ 509y ( LTC(Is J)s g = Ly INDEX )
INDEX] & NSTYPE(D)
U0 111 v = 1 INDEX)
REAU 533 DISI(Ie J)y NIS2(Le Jyys GAy PY, KDENGE (I, J}o
i SHEARS(Is )y TCON(Is J)s INFO(TY O)
PHI(1ls J) = PT / 574296
BAMMA (T, J) = GA s 1728,0
[F C INFO(Iy J) 4EQ, o ) GO TO 114
REAU 531 DIST(Is U)s NPOINT(Le O)
INDEXZ ® NPUINT(Is J?
REAU 508 ( SIGU(Is Je Kye FP(I, Jy Kyy K = 1y INDEX2 )

111 CUNTINUE
11v CUNTINUE
10v CONTINUE

¢==="=AUTOMATLIC GENERATION OF P=Y CURVFS
IF ( xIr «ECs 0 ) Go TO 202
DU <gp 1 = 1 KNPL
IF ( KSS(I) LEGe © ) gO TO 200

CALL‘MA§E (.1
200 CONT INUE
Cum=m=ST AT OF PRINTING OUT TwWg INPUT paATaA
Cmme==OUTPUT TaABLE A (TITLE OF RUN)
202 PRINT Syy
PRINT S10s ( ANUM{I)s T & 19 20 )
Cmmw==0yUTPUT TABLE d ( SWITCH FOR INPUT ANN DUTRENIT)
PRINT S48
FRINT 549
PRINT 550, KICy K10y KIFEy KIFy KIG, KIH
PRINT 551, KUCs KOOy KOE, KUFs KOGs KnH, KOJ

PRINT 529
Ce~===0UTPUT TpaLE C (LOoam
IF ( x0C «EQes 0 ) @gn TO 170
PRINT 541
PRINT 12
PRINT S13y FVI{le L) FVI2s 1)9 FV(3e §)
Comm=ed(TPUT TARLE U (PILE GROUP ARRANGEMENT)
170 IF ( KOC +EQe 0 ) G0 TO 171
PRINT Si4
PRINT 515

DO 199 1 = 19 KNPL
(POTT & POTT(D)
PRINT 816, Is TC(I)y IPATTs KP(1)y Ka(l}, KS(Iyy KSg(D)
199 CONT INUE
PRINT 817
DO 198 I = 1+ KNPL ,
198 PRINT s5l8, Iv DISTR{I)e DISTA{I)s THETA(I)s nPS{I}s FDRETI(T)
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Cowew=QUTPUT TARLE E (PILE DIMENSTNNg,
171 IF ( KOE «EGe 0 ) 6a TO 176

PRINT 3.9

PRINT §2¢

PRINT 53p¢ ( 19 NOS(I)e NN(I)s KTYPE(T)y 4HNN(T)y YTELD(1)
1 YOUNG([)s I = Yy NPILE )

PRINT 579

PRINT 545

VO 197 I = 1y NPILE
INCEX = NUS(I)
LO 196 J = 19 INDEX
PRINT 570y I9 XX1(Is J)y XX2(Is J)e STZF(Ts J)e AREA(Ly U)o
1 XRI(1s )
MATL = KTYPE(I)
IF ( MATL «FGe S ) 60 TU 175
INT = NINT(1e J)
PRINT 552. INI
PRINT 547, ( PULT(I, Jy K)y BULT(I, J, Kyo K = 14 INT )

GO Tu 196
179 PRINT 553
19¢ CONT INUE
197 CONT INUE
C=====0UTPUT TppLE F (AXIaAl, LOAD VS SETTLEMFNT)
170 IF ( «OF «EQGe 0 ) Gn TO 173
PRINT 521

PRINT 558, AKA
LO 17¢ 1 = 1 NKA
PRINT 522, I I1(I)
PRINT 523
INCEA = II(T) ‘
PRINT 524, ( Je SSS(Is J)s ZZZ(1y Jde J = Lo INDFX )
174 CONTINUE

ce=====0UTRUT TARLE 6 (P=Y CURVES)
173 IF ( KOG ¢Ehe 0 ) Gn TO 177
MAX B NKS

LO 183 I 3 ls KNPL
IF ( KS(1? ,GEs MAX ) MAX = KS(])
183 CONTInyE
PRINT 525
PRINT 559, MAA
PRINT 526, Iy NC(I)
INCEX = NC(])
DO 178 U = 19 INDEX
PRINT 527, (9 XS(ls U)e NP([sy Uy
PRINT 528
) INCEX2 =& NP(I, )
PRINT 524, ( Ky PC(Is Jy K)o YC(Iy Jy Kyy K = 19 INDEAZ )
178 CONTINUE

C=====0UTPUT TaglLE H (SOIL DATA FOR AUTAMATTC GEMERATION OF Pey CURVES)
177 IF ( KOk «EQe 0 ) Gn TO 300
PRINT 535

DO 182 I = 19 NSOILP
PRINT 536, Is NOC(I),y NSTYPE(I)
PRINT 537
PRINT 538
INGEX s NOC(I) .
PRINT S44s ( Jo DIC(1s U)o J 38 1y INDFX )
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190

184
18¢

300

PRINT 539
INCEX] = NSTYPE(I)
UV 190 v * 19 INDEX}
GA B GAMMA(Ty gy & 1728,0
PI = PrI(l, J) # 57,296
IF (Pl +EQ, 0 ) 60 TO 19)]
PRINT S4gy Jv Gas PIy KNDENSE(Is J)

GO T 190

PRINT S41, Je¢ GAy SHEARS{(Is J)s ICON{TH
CONTINUE

PRINT &77

PRINT 578

PRINT 544

PRINT 5244 ( Jo DISI(Ie Jis QIS2(Ty Jyo
B0 1da 4 & 9 INDEX)
IF ¢ INFO(I, J) LEQ, 0 ) GO TO 1Ra4
PRINT 561
PHINT 542¢ yo DIST(Ie J)o NPOINT(Iy I
PRINT 543
INDEXAZ ® NPOINT (e U}

PRINT 524+« { Ko SIGU(Is Js K)» EP(TIs 1e w)s K g 19 INUEX2 )

oy INeOtly J}

R R

COn I INUE
CONTINUE
=====SET INITI4L DISPL VECTOR NV AND CONST:NTg

KFLALV = 0
TOL = eU0001
KEY & ¢
KSW 2 h
ITER = 1
pvile 1) = 0,0
nyize 1) = 040
DV(3’ 1} = Da0

novils 1) =2 yannl
novigs 1) 2 papnl
npvide 1) = 0,0

Caww=aCGRRECT THE HENT GYISPLACFMENT

35y
302

U0 352 I = )¢ 3

nVile 1) = OVITs 1) ¢ DDV(Iy 1)
rm===scOMPUTE PILE REACTIONS FOR

catL FVEC ( RV )
IF ( KEY «€EGe 1 ) 60 TO 9993

IF { xAX +Eue 1 ) Bn TO 999y
IF ( xAR +E0e 1 )} Go TO 9999

1F ( KFLAUG LEQs 1 ) GO TO 1p0

THE NFW DISPLACEMENT

INDEX1 )

Co====rOMPUTE THE ULFFERENCE RETWEEN | 0AD AND RFACTIAN

33

UQ 330 1 & Ly 3

PEVELe L) = FV(Te 1) = RV(I, 1)

CONTINUE
IF { KEY #EQe 1 ) Go TO 999g

c=====COMPUTE PART1AL DERIVATIVES

NELTA = 0,00001

nvile 1) & DV(1s 1) ¢ DELTA
CALL FVEC ( Rvy )

Nvelsy 1) DV(le 1) = NELTA

DV(2s 1) = DV(2, 1) + DFLTA

it

CaLL FVEC( RVE )
NDVI2r 1) = OV(2y 1) = DELTA
DV(3s 1) = Oviay 1) +

0.001 » DFLTA

223
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CaLL FVEC ( rv3 )

IF ( KEY «ECe | ) B0 TO 9999
LO 31n 1T = 1y 3
SK{Is 1} = (=av(Iv 1) « RVI(Ys Y} ) 7/ DFLTa
SK(Is 21 = (waviIs 1) & RV2(Ts 1) ) 7/ DFLTA
SK(Iv 3) = (=AV(Is 1) « RV3(Ty 7V ) 7/ ( Qendl # DELTA )
31¢ CONT INUE

po=m==INVERT STRUCTURAL STIFFNESS MATRIX Sk

COF(ls 1) & Sk(2s &) # SK(3y 3) « SK(2s 2) * SK(2s 3)
COF ({ly 2) = SK(?s 3) # SK(3y 1) = SK(2s 1) ®* SK(3y 3)
COF(ly 3) = SK(2y 1) ® SK(3, 2) = SK(2s 2) * SK(3y 1)
COF(2y 1) = SK(1s 3) # SK(3y 2) = SK(ys 2) * SK(3y 3)
COF(2y 2) = Sk(ls 1) # sK(3y, 3) = SK(¥y 3) ® SK(3y J)
COF(2s 3) = SK(le 2} % SK(3, 1} = SK(1y 1y ® SK(3, »)
COF(3y 1) = SK(1y &) # SK(2, 3) = S5Klyy 3) * SK(2s »)
COF(3s 2) = SKrls 3) & §K(24 1) = SK(1s 1) * SK(2s
COF (39 3) = SK(1s 1) % SK(2s 2) = SK(ys 2} * SK(2s ])
PET = 040
LU 320 NCUL = 1, 3
320 NET ® CET « SKt1s NCOLY * Coe(]1. NCOL)H
LF ( NET eNEe 0,0 ) 60 TO 321
pRINT 567
Cu To 999y
321 UO 322 nRUW = 1, 3

DO 322 ACUL = 1y 3
SK (NKQws NCOLY = CUF (NCOL, NROW) / DET
322 CONT INUE
c=====cOMPUTE pISFLACEMENT CORRECTION
CALL MULT ( DUVe SKe UFys 1)
Co===uCHECK CONVERGENCE OF REACTIUN
£0 335 1 = 14 3 .
IF ( aBS ( DUV(Is 1) ) +GEs TOL 3 GO TO 334

335 CONTINUE
G0 To 360
331 ITER 3 ITER #
IF ( 1TER +GE. 100 3y GO TQ 332
GO Tp 350
332 PRINT 566
GO T0 9999

360 PRINT 50]
PRINT S10s ( ANUM(I)s T = s 20 )
PRINT ST6 :
PRINT S8
PRINT 564 -
PRINT 565, OVIils 1)s DOVI(2y L) DV(3,y 1)

KFLAG = |
PRI~T 59, ITER
PRINT &8
60 T0 380
99389 CUNTINUE

END
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SUBROUTINF FVEC ( VECTOR )

DIMENSTION VECTOR(3Is1)s U(343)e UT(Is1e (3% 1)y US(3s 1)

COMMON / BLCUNL 7 1C(€0)y PUTT(20) s KP(Pr1s KA(Z20)y KS(20)

1 KSS(2n)y UISTR(2n), DIGTA(20yy THETA(20),
uPS(2n)y FOBET(20) e Knp

COMMON / RLOCKT / XKFLAGy KEYs KnJs KAYs waAR

COMMON / aLOCKB / Y(507)s ES{507)s R(=07y. MPLASTs MUFPs He HFZ2s No

1 NP4y RFACT(507)s BM(Sn7)

COMMON /7 pLOCRrY 7/ [1(5), ZZL{(5, 25), ©S§(G, 251, DV(3s 1)

COMMON / NATAL 7 POVI3, 1)

UO J1a 1 = 19 3

310 VECTUR(Is 1) = 0.0
LO 31} I = L+ kNPL
U1y 1) s COS(THMETA (L))
H{lsy 2) 3 ~SIN(THETA(I))
Ulls &) = g,
J(29 1) = =y(ls 2)
ey 2) = U(ly 1)
'1(2' J) = 0.0
{3y 1) a DISTA(L) ® U2, 1) « nISTA(T) ® U(l,y 1)
{3y 2) = DISTR(I) * U(ys 1) ¢ nTSTA(T) # (2 1)
11(3s 3) = 1,0

U0 32n v = 14 3
DO 32n K = 1y 3
32y HT(JY &) = UlKy J)
CALL MULT ( PUVy UTy DV, 1)
CALL AXIAL ( Ls PX ) .
CALL LLP ( ls» PUVI2s 1)y PDV(3s 1) Prse SRES)
S{le 1) 8 PX & pOTT(D)
S(2y 1) = SRES @« POTT(I
S(3v 1) = HM{4) % POTT(I)
CALL MULT ( Ube Us Se 1)
Lo 312 J & Ly 3
3le VECTOR(Js 1) = VECTOR(Je 1) « Us(Js 1y
311 CONT T UE
RETUKN
END
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562
5643

317

"30é

304

3us

SUBROQUTINE aXIAL ( T+ PX )

COMMUN 7 ALLCCK]L 7/ TC(20) s POTT(20)y KD(P2A)y KA(2D) s KS(20)
KSS(20)s VISTR(20)s UTeTA(?9y 4 THETA(20)
UPS(2n1s FDBET(20) 4 KNmy

COMMON s RLCCKRT / KFLAGs KEYs KOJy KAYe woH
COMMON / RLCCRY 7/ 11(9%)e ZZL(Se 25)y <SS (Rs 2GSy VI3 1Y
COMMON / DATAL 7 POV(3,
FORMAT ( s/ SX #FAILURKE IN GEARING BTLE G6rOlIPa [5 )
FORMAT ( s/ SA SFaILURE IN PULL oUT oTLE GoUUPe Iy )
IF ( eDvly 1) (NE, 317
RETUKRN
ND & Ka(l)
IT = [1{(ND)
KAK & 0
VO 302 4 = 2y |7
IF ( ppv(ly 1) o Es ZZZ(NDs J) ) &0 +n 3073
CONTINUE
PRINT 5862y 1
KAR * ]
RETURN

IF ( Ppv(le 1) LGE,
PRINT 863, 1
KAK = ]
RETURN
KKK % | = ]

) a0 ¥0 304

PX 3 SSS(NDs kKK) * { SSS(NN. J) = SSe(NUs KAK) )

{ PDv(is 1
ZZZ(NDy KKX) }

RETURN
END

= ZZZ(NDys xwK) Y /7 ( 2Z72(NDv J) =

L)
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SUEROUTINE MARE ( NOP )

DIMENSION FROUL10) s AVI1nyy w(10)

COMMON / RALCCKL / TC(201y PUTT(20)s kKo{2n)e KA(2N) s KS(20)s

1 KSS(20)s UISTR(20),y NIcTA(Z203y THETAL(Z20) s
UPS(2q)s FUBET(2n)s KWL

COMMON 7/ glLOCKE / NNE20)e HR{20)e NDS(20)« KTYRE(20) 9 YIELD(20)»

1 YOUNG (20)

CoMmCnN 7/ 8LCCK3 / AX1(20s S)e XX2(20s S), RRI(20, 5y XRI(20, S)»

1 SIZE(20+5)s AREA(20,5)¢ PULT (205,200

2 BULT (2095020}, NINT(20,5)

COMMON / RLOCKS / NC(5), XS5(5¢20)9 NP(Se2n)s Ye(Be20925),

1 ?C(S.?n.z::g

COMMUN s RLECCKRE / NOC(1n)s NSTYRE (103, DT (10420) s GAMMA(10,10)

PHIC10910)9 KRENSE(10910n) s SWHEARS(10e1n) e 1CONI

102101y INFOL109103, N1sl (10,100, DIS2(10,10}

DIST(10,10), NPOINT, 1n 10}, <IGD(10410,15),

FR{1ns10945)

& b o

Cc=~===SET CONSTANTS
MOF & kP (NOP)
NSET 8 KS{(nOP)
KSCIL = €SS INOS)
NSTYPEX = nSTYpr(KSOILY
NOCA = NCC(KSOTL)
NDSX & NUS(MOP)
NCINSET) ® nOCX
C=====5TART GENEWATING A SET OF PeY CURVES
U0 553 JJK = Ly NOCX ]
XSINSETe IJ4n) = OTC(KSOILs T 1K}
Cem===I0ENTIFY THE SO0IL LAYER
U0 512 IFS =& 1 NSTYPEX
IF { DIS2(KSQILs IFS) = DTC(KSOIL. Ti%) ) &1Pe §l3y 513

512 CONT InUE
cmee==I0EnTIFY 1F THE LAYER IS SAND OR CLAY
513 Ir { PHI(ASQIL, IFS) +EWe 0 ) GO TO 528

g=====P=Y CURVES IN A SAND
e=====SET (UEFFTCIENT OF EaRTH PRESSURE aNn SLNAPE OF FIRST PORTION OF PeY CURVE

8l4 IF ( KOENDE(KSOILe IFS) oEQG, 1 } rO vn 501
60 Tpn 502
501 FKCUIFS) B ey
Ay(lrs)y = 15V0,n
GO To 510
502 1F ( KDENSE(KSUILe IFS) «8Q, 2 } /0 TN S03
Gu To Seb
503 FKULLFS) & 0445
AVIIFS) = 600,90
60 To Sl
504 FKO(IFS) u 0.5¢
AVIIFS) ® 200,90
510 CONT INUE

gc====~COMPUTE ,VE DENSITY FOR cal G OVERBURNEN PRESSUAE
SWGAM 3 0,0
SDIS 3 0,0
0O S18 II1 = 1 1IFS
SWGAM = SWGaM « GAMMA(KSOTIL, Irv) * ( DIS2(KSOILs 110) =
1 0Isl(KsnlIle 111y .
SDIS = SOYIS + ( DIS2(KSOIL, tIYy =~ DIS1{KSalL, III} )
516 CONTINUE
AGAM = SWGAM / SDIS
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Com==m(CWO0SE PILE DIAMETEQ
U0 519 IPT = Ly NOS
IF { xX2(MOPy [PT) = UTC(KSOILv TIUKY 1 819, 520, 920
519 CONT INUE
Seu HIA ® STZE(MOPs [PI)
Cm====cOMPUTE ALPPRA AxD ES
ALPHA s PH[(KSDILs IFS) /7 2,-
FS = { AV(IFS) e ApaM « DTC(KSOT!O LJdw) ) 7 1le35
r==w==paY CURVE WITH SLOPE ZERO
[F ( ES ) 596, 596, 5§95

596 PCINSETY [JRy 2) = 040
YC(NSETs [JKs 2) = 140
GO To 597
C=====CcOMPUTE TwO ULT REG AND SELECT THE SMaLLe® ONE
595 PHIP B 0.7854 « PHI(KSQILy IFS) 7 2.9

PHIM = 0aTH54 « PHL{KSOTILs IFS) 7 2.0
PHI0 = PRI(KSOILs IFS)
ALPHA z 045 # PH]0Q
CP = TaN(PHIP) @ & 2
CA TaN(PuIM) o & 2
TP = TAaN(PHIUV)
TE = TaN(PyIP)
TA = TaN(ALPHA)
CPZ 3 CP » CP
CP3 = CPZ @ (p
XX & PTCAKSOILs [JK) »
PUW = aCaM ® Xx ® ( DIA * ¢ rP =« CA ) ¢ X)X ® TR #
L * TA « 0,8 % (TP = Ta ) y )

PUF * aGAM ® DIA ® XX # ( CPa ¢ FrP2 @ TP + TP = CA )

IF ( ouw = »UF ) %25, 526y 526

525 PC(NSETy 1JKy 2) ® PUW
GO TO s27
526 PCINSETY IJke ) = PUF

r=====cOMPUTE Tug PUInTS ON P=Y CURVE )
527 YC(NSETs 1JKe 2) 3 PCINSETs TUK, 2) / ES

597 YCINSETy IJKs 1) = (140
PC(NSETs LUKy 1) = 0,0
YC{NSETy IUKy 3y = 100 # DY
PCINSEly IJxy 3) = PCINSET, 1JUK, 2)

NP (NSETe [yKk) = 3
GO Tn 553
c-----P-Y CURVES IN CLAYS
C=====ChECK IF STRESS=STRAIN CURVES ARE aVaTLaal.E OR NOT
528 IF  INFOUKSOQILs IFS) ) 529, 529, San
Cem===NQ STRESS=STRALN CURVES ARE AVATLARLF

C===="=aSSUME STRESS=STRAIN CURVES ACCORDING TO THE CANSISTENCY OF gLAY
529

IF ( ICONIKSQILy IFS) +EQe 3 ) 6O To =30

6o T1o 531
53¢ EP50 = Q.02
GO To 934
8§31 IF ( ICON(KSQILe IFS) +EQs | ) GO YO 832
GO To S33
53¢ FPS0 = 0,005
G0 TU 8§34
533 £pS0 = 0,01

c==="=cOMPUTE AVE DENSITY FOR ¢ALC OVERBURPEN BRESSUnE
834 SGAM = 0.0
SDIS = 0,0
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i

Du 537 111 = Ly IFS
SGAM = SGAM + GAMMA
DIS1(KSOTL
SUIS = SPIS ¢
CUNT INUE
AGAM = SGAM / snlS

C=====CHOOSE PILE DIAMETER

539
G4y

0O 539 IPI =& 1y NDSX
IF ( xX2(M0Py IPT) = UTC
CONT THUE

nIA = SIZE(MOP, IPT

229

(KSOIL, 170y & ( DYSP(KSOLL,Y I11) =
I11
{ DIS2(KSOILe TITY = DIS](KSAlLY TIL) )

(XKSoILs TiK) 3 539, s4&pn, 540

)

¢=====cCOMPUTE Two ULT REG ANp SELECT THE SMalLLpR ONE

Cm=~===COMPUTE POINTS QN

541

542

543

561
562

544

3
l

PUn 3 AGAM # pTA *
IFS) # DIa +
1JK)

PUF & [le0 & SHEARS

SIGH0 = SHEAKS (KSOILs

Az 2,0 % ( ALOGLOC

FPIOU 3 1Qe0 %@ A

NIFF = EPLO0 /7 10,0
( PUF = puw ) 541, 54
PaY CURVE
12
TJKe
TJKs
IJK,
IJK
jESL Y

IF

MPCINT =
PCINSETy
DC(NSET
yC (NSET,
YC{NSET,
NP (NSETs

60 Ty 546
SsTUP = 9.0

UO 543 1TU =& Ly 9
FP = STUP & DIFF
STUP = STUP = 1,0
PsC & ALCGlo(SIG50)
SIGA = J0,0 #+ pSD

12)
11)
12}

11)
= 12

NCITY) = 5,5 & gIGA
IF ( puw = GgUITO) ) S43y
CONTINUE

NIFF = DIFF 7/ 1040

STUP = 9.0

Co 561 170 = 1y 9
EP = STUP o DIFF
STUP = STUP = 1,0
#SC ®» ALOG1o(S1G50)
SIGA = 10,0 ## pSD
a{ITU) & $5,5 @ gIGA
IF { pUw = glIT0) ) 561
CONT INUE
NP (NSET
PC(NSET
YC(NSET
PC (NSET
YC(NSET
GO Tao 546
MPOINT = 12 = 170
KZ 8 MPOINT = )
PCINSETs IJKe MPOIN
YCINSETY IJKy MPOIN

IJK) = 3

IJKky 3) =
IJKy 3) =
TJKy 2y =
IJKy 2y =

DTC(KSOILs T, K) ¢ 2¢0 ® SHEARS(KSOIL?Y
2¢B3 ® SHFARS(KSOIi+» IFS) ® DTC(xSOTL,

(KSOTLs IFS) # DIA
IFS)

2.0) ) & ALORIO(EP=()

ly H42

PUF
PUF
10,0 « NDTA
59100 4 nlaA

+ 05 ® | AINGIO(FP) » ALOGIO(E®RSD) )
® DIA
S44, 545

* 08 ® ¢ AINGLO(FP) = ALOGYQ (EPSQ) )
% DIA

562, 562

PUW

1040 ® D12
Puw

EP & D1A

T) = PUW
T) = 10,0 * nrA



230

545

546

593

547
594

548

549
59¢

582

583

IJKy KF) = ( DTA ® nIFe ® ( 2.n ® SIUP + 3,0 )

pC(NSETy IJUKy X2) = pUw
YCINSETs IJKy x2) = EP # nIa
NP (NSETs IJK) = MPOINT
GO To 548
MPCINT = 13« 17N
KF & MPUINT = 1
PCINSETs IJUKes MPOINT) = PUW
PCINSETs 1JKe KF) = PUy
YC(NSETy IJKy MPOINT) & 10.0 # nYA
YC(NSETy
/7 2,0
NP INSETy TUK) a MPQOINT
CONTINUE
YCINSETy IUKe 1) & Def
PCINSETy IJKy 1) = 04
IM B NP (NSETs 1JK) = 2
1F IM = 1 ) 5%, 594, 593
TI”E s 1-0

DO 547 JT = 2,4

IM

FP = DIFF # Timg
TIME = TIME ¢ 1,0

ABC = aLQGlO(SIGS50) + 0.5 » ¢ A NGlO(rP)

NSIG = lu,0 ## aAHC

OPCINSETs
YC (NSETs

CONTINUE
CONTINUE
GO0 To 583
g=====cOQMRUTE POINTS ON Pe=Y CURVE FROM STRFSS~QTRAIN CcUHVE
DO 549 IPT = 1, NDSX

IF ( xX2(MOPs IPT) =~ DTCI(KSQIL,.T)K) ) 549, 592, 592

CONTIMUE
DIA = SIZE(MOPy IPT)

PC(NSET»
YCINSET

IJKy JT) ® 8,5 # n1a & NSIG

LJky JT)

IJKy 1) =
IJKy 1) =

MZ = NPOINT (KSOIL,
00 55 JT = 29 MZ

YC(NSET)

PC(NSETy IJKy JT) = 8,5 @ DA @« SIGD(kSoIL, IFSs, JT1)

CONT INUE
1E 8 NPOINT(KSOILs IFS) + )

YCINSET
1E1 = 1E

IJKe JT)

1JKy IE)

= 01a & EP

0,0
0,0
IFSy

2 DIa # FP(KSATLe

%= 10,0 » DA

IeSy, JT)

PCINSETs IJUKs TE) 3 PC(NSETs IJxs IEl)

NP{NSETy

CONT INUE

RE TUKRN
END.

1JK) = 1€

= ALOGI0(ERPSO)

)

)
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SUBROUTINE MULT ( Ay By Co ISIZ2E )
DIMENSTION A3y 3)9 B3y 3)y C(3, 3)
Uo 1’) I -4 1'
wo 12 gy & 1y ISIZE
A{Ts J) = 040
L0 S K= 103
AMIe J) 3 A(Iy ) + B(Ts K) & C(Xe J)

5 CONT IMYE
10 CONTINUE
RETUKN

END
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SUBROUTINE LLk ¢

ITYPEy YTe ALPHAs PX, SBFS )

lDlMENSION A{S07)* B(507)y C(S0T7)* DY(=07)+ DBM(5AT) s RES(507)

COMMON /7 uwpoCnl 7/

i
2
COMMON

1
COMMUN

1
2
COMMUN
COMMON
1
COMMUN
520 FCRmAT
5§51 FORMAT
]
592 FQRMAT
593 FORMAT
8§54 FORMAT

1
555 FQRMAT
886 FORMAT
58y FOHMAT
1501 FORMAT
1502 FORMAT
1
1503 FORMaT
1506 FORMAT
1507 FORMAT

—

YY(5YT7)y p(50T)
TC(20)s PUTT (20} KB (PAYY KA(ZN), KD(20)y
K§5(2n0)y VISTR(29), DIQTA(20y, THETA(20),

OPS(2pn) % FOBET(2n)s KNpl

RLOCKRZ 7/ NN(20)y HH(20)s NDS(20)e KTYDE(20)s YIELD(20)
YQUNG(20)

RLOCK3 / XX1(20y S)9 Xx2(20y S), RRI(20y S)» XR1(20, 5)
SIZE(2095) 9 AREA(20+5), PULT(2095420)
BULT (2095920}, NINT(20,5)

RLCCRT / KFLAG, KEYy KOJy Kavy wxaK

HLOCKRE / Y (507), ES(S07), R(=07), MPLAST, MOP, H, HEZ, N,
NP4y REACI(S507)s AMISNT)

NDATAL /7 PDVI(3y 1)

10X #NO OF ITERATION® 15
10X #STA# 4X oXyIN® 8X #Y,INo Ay #0Y/nXe TX ®*MJLA=IN® 5X

#DN/UX® TX @P L R/IN® )
TXs 15y 2Xy 6E1243 )
7 LUX #PILE TP DISPLACEMENTS anD REACTIONS® )
13X #XsIN® Y #Y,IN® gX *ny/nNye TX sAXIAL'LB® 4X
# AToLHY 6X ®*BM LB=1N® )
10Xs 6E12.3)
77 Lux *LATERALLY LCADED PliEs
/7 10% *PLASTIC HINGE e FORMeD N GRNUPe 1g )
/7777 0% *gl nOES NOT COVER ToTaL LENGTH OF PILE® t5 )
7777/ L0k #NO CLOSURE aF A L1 P AFTER 1000 1TERATIONS®
10X #PILE GROUPe 13 )
/7 (X *PILE GROUP®* I3 )
/ 85X #PLASTIC WHINGES AT STATIONe )
Toxe 1415 )

C==="=START EXECUSIUN OF PROGRAM
C=====COMPUTE CNNSTANTS AND TINDEXES

“0F ® xP{1TYPF)
TTER = 1

x = 1

TOLP = 0400001
PIN ® INPIN

FIX & 3HFIX

6 = FLORET(ITYPE)
o' MH(MOP)

N o= NN(MOP)

b2 8 H % H

HEZ 38 M ® M

HEI = HEZ ¢ W
HES = mEZ # HE2
pp3 8oy o+ 3

Nph 3TN+ 4

NPS 2 N ¢+ 5§

MPE BN O+ 6

MPT 8 N o+ 7

Cemme==C| EaN THFE STORAGE PLACES
0O 1000 J = ls NPT

1000

R{J) % Qa0
Y{g) = 0.0
ES(J) =2 0,0
pry) = 0,0

CONTINUE
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C=====COMPUTE INITLIAL ES (ES = KX» K a 1,0) AMn FLEXnKaL STIFFNESS EI = R
00 lanl J = 4, Np4
XJ o= 0= 4
plJ) = Px
FS(J) 8 10 # x,) @ H
R(J) 3 RRI(mMOP, 1)

1001 CONT [ MUE
¢=====SET RECURSICN COEFFICIENTS AT STATIONS 1, 2 ANN 4
A(l) = 0,0
w(l) = O.U
c(l)y = 0,0
A(2) = 04,0
K(2) = 0,0
c(2) = 0,40
A(4) = YT
R(4) = 04,0
Cta) = 060

(e====RECURSTON CCEFFICIENT AT STaTION 3
IF € TC otde FIX ) @gn TO 1011
{F ( TC JtW, PINy 60 TO 1012
Cuem===fASTICALLY RESTRAINED TOP
DENOM = g # H ¢ 240 % R(4)
A(3) = (4,0 & R(4) % YT o 2.0 & ALPHA & G * HE2 )
1 UENOM
(3) = Qe0
r(3) =2 (G % H « 240 ® R(4) y /7 NENOM
GU Tn 1013
C=====FIXFL TOP
1011 A(I)
q(3)
G
GO Tn 1013
Com=wa=p INNED Tnp
1012 A(3)
R(3)
c(3)
1013 CONTTIMUE
¢=====CCMPUTE RECURSION COEFFICIENTS AT alL ST TIONS
1023 U0 1029 J = 5y NPS
AA H(J =1)
RR “2e0 # W(y =1) = 2,0 @ p(Jy + P()) * WEZ
cC R(J = 1) ¢« 4,0 ® Q(J) &« R( ] +1) o 2.0 ® P(J) & HEZ
1 +ES(J) * HES
Do =2eU% R(J) = 200 # R(J +1) ¢ P(Jy ® HE2Z
£E R(d +1)
(=====cOMPUTE RECURSION COEFFICIENTS AT EacwH STaTION J
£ 3 ARA ® B(J = 2) ¢+ BB
NEROM 3 E # B(J=]). ¢ Ap @ C(.1=2) ¢ CC
“IF ( DENOM (NEe 0 ) GO TO lp2l
re=w==IF DENOM 1S ZERO HEAM DOES NOT EXIST m 3 n

2.0 % ALPHA ® K
00
1.0

2¢0 & YT
000

na U0
GO To 1022
102l n a8 =1e0 7/ DENOM
1022 c(d) = 0 ® g€
B(J) =D ® (g @ Ctd=Y) ¢ Dn )
AlJ) 3 D % (F # A(Jsly « AA ® A(J=2) )
1029 CONTINYE

c=====PRESERVE PREVIOUS Y AND COMPUTE NEW Y
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‘ U0 1535 J 3 45 NP4
103 YY(J) = Y(J)
Y(APO)} ® (0,0
Y(P\Pf) 8 0,0
DO 1c3n L o= 3y NPT
JEN ¢ ¥ = |
YUJ) 8 ALY & B(J) ® Y(Je1) & Co 1) % y(ue?)
1030 CONT IMUE
(=~===RESET El vaLULS
CalLl. MCURv
IF € <aXx +Efie 0 ) 60 TO 1031
RETURN -
1031 CONTITHUE
C==="=CHECR FUr CLOUSURE OF DEFLECTION Y AT ALL STaATInNS
LU 1040 U = 4y NP4
IF ( ABS ( YY(Y) « Y(J) ) +GE, TnALP )y GO v0 l0%0
104v CONTINUE
IF ( kFLAG LEle ¢ ) GO TO 1039
If ( »mPLAST LEQ. U ) GO TO 1039
PRINT sBna, ITYP§

103Y CONT F1aUE
60 To 106v
LOSU TTER & ITER »

IF ( TTER L Ee 1000 } GO TO 1051
PRINT 1527, 11VYpE
kEY = 1
RETURN
C=====COMPUTF wFW SET OF E£S VALUES
1051 CALL S0Iu 2R { [TrPE )

Gy Tn l0é3
Cme==wcOMPUTE S OFEs sMy SHEAR ANU REACTION
106u CONT IMUE

KM(Z) 3 040
RM(NPE) 3 (40
LU 1071 J = 3¢ wpS
nY () 3 0 Y(Uel) = Y{gal) ) 4 o
RM(J) 2 = R{J) # ( Y(J=1) = 2,0 & Y(Jy « Y(J*1) ) , HE2
1071 CONTINUE '
U0 1nT7e J =2 3¢ NPS
DBMIY) 2 = ( Bu(Jgsl) = BM{ge1) ) /7 H2 ¢ P(jy) ® DY(y)
1072 CONT INUE
Cmew==Qih UP SNIL RLACTION
Lo 1008 J = 4, NP4
1009 RES(J) 3 ES(Y) # Y(J)
QRES = an
DO 1100 K = 49 NP4
IF ( K +EWwe % ) GO TO 1109
IF ( K +E@s NP4 ) g0 TO 1309
SRES a3 SHES + RES(K) #

GO TO 1100
1109 SRES = SRES * RES(K) # W / 2.0
1100 CONTINUE

IF ( KFLAG LEG. 0 ) 6O TO 1078

PRINT 1507, I1YPE

PRINT 853

PRINT 554

PRINT 55%, POV(le 1)y Y(4)y DY(4)s PY, SAFSs Buls)
IF ( xOJ +EQe 0 ) GO TO 1075
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C=====rrIy1 OUT ALL TRE ¢ ILE STAT{ONS
PRINT 8536
PRI~T 851
DEM (%) ® SKRES
Cu 1973 J s &, npe
1STA = J = 4
Z1 = ISsTaA
x 3 L] ® p ,
PRINT 852, ISTAs Xy Y( ) UY(Jd)s RM( 1)y NBM(Jyy RES(J)
1073 CONT tHuE
QQIN‘I 520 ITCR
1075 CONT INUE
RE TUKN
END
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SUBRCOUTI~NE MCURY
DIMENSTON CURV(507)
COMMON / aLCCR1 7 TC(20), POTT(20), KO(Pn)s KA(PN)y KS(20),

1 KSS(20) s LISTR(20)y DIQTA(20ys THETA(20)
P4 DPS(20)s FUBEY(20), xNDI

COMMON /7 sLCCR2 / NN(20)s HHE20)9 NDS120)« KTYPE(Z20) e YIELD(3p)
1 ‘ YQUNG (20)

COMMUN / ulLCCKI /7 XX1(209 5)9 XX2(20s 5)y RRLI(20s S)s XRI(20s S)»
1 SIZE(2n¢5)y AREA(2n,5), PULT (20+5,20)
2 BULT(2095+20)y NINT(20,53)

COMMON / RLCCKT / KFLAG, KEYs KOJs KAvs waR
COMMCN 7 RALCCRB 7/ Y(507), ES(S507)s R(S07y, MPLAST, wUFy» Hy HE2s No
i NP4s REACTI(S07)s BM({Sp7)
COMMCN 7 naTALl 7 Ppv(3, 1)
501 FOR®AL ( ///7 SX #AXIAL LOAD EXCEEDS PTLE STRENATH®
C=====SET CUNSTANTS
AX = AsS ( PUV(3s 1) )
KAX 2 0
HATL 3 KTYPE (MOP)
NDSA = NOSIMOP)
MPLAST = ¢
IF ( MATL +EQe 5 ) GO TO 101
GU To 102
Cm===~LINEARLY ELASTIC PILE MATERILAL
104 CONT INUE
UU 110 1 3 49 NPa
X 5 [ = 4
xSTA = X @ H
LU 111 & = [v NOSX
IF { xx2(MOPs J) +GE. XSTA ) GO Th 172

111 CONT THUE
11¢ (I} = RRY(MOP, J)
110 CONTInUE
RETUHN
c==="=pILINEARLY ELASTIC PILE MaTERIAL
102 CONTINUE

VO 120 I = 49 NP4
2 0 ylle)) « 2,0 * Y(1) ¢+ viiay) ) 7 HE2
Cukvi(ly a Aa8g ( C )
cm===wcHECh IF aXIAL LOAD EXCEEDS PILE STREMGTW
IF ( AX eLE. PULTL{ MDPy 19 1) ) Gn T 121
PRINT 541
KaxX = |
RE TUKN
121 CONTINUE .
c==="=DETERMINE TrRE PILE SECTION
X & | « 4
XSTA = X # y
U0 122 J = 1e NDSX
IF ( XX2(MOPy J) «GE. XSTA y GO To 1513
122 CONT INUE
123 Q(I) 8 RRI(MOP, J)
INT 3 NINT(MOP, J)
LY 139 K B 29 INT
IF ( pULTIMOPY v K) «LEe AX ) G0 TO 131
13v CONT INUE _ '
131 BMP 2 pULT(MOPy Je K) o ( RULT(MOPy U, K=1) = BULT(MOP, J
i vy K} ) & ( AKX » PULT(MAPy Jy 'K) ) /



2 { PULT(Mgps Jy Kael) = pULT(MOPY

Cm=e==CHECK IF ~MOMENT EXCEEDS PLASTIC MOMENT
oMz K(I) ® CURV(I)
IF ( aM 46T, BMP ) 6o TU 133

GO0 To 120
133 R(1) = BMP / CuURVI(I)
MPLAST = 1
120 CONTINUE
RE TURN

EAD

Je K)

)

237
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suBrOUTINF gOIL 2K ( nNOP )
DIMENSTUN EST(20)
COMMON / RLCCKL /7 TC(20)y POTT(20)s KP(2n)s KAT20)s KS(20) 0

1 KSS(20)s UISTA(20), DIGTA(20)s THETA(20)
2 UPS(20)s FUOBET (20), KNDI
COMMUN / RLCCR2 / NN(20)s HM(20)s NDS(2n0)s KTYRPE(20)s YIELD(20),
1 _ YOUNG (20)
COMMUN /7 ALCCRS / NC(S)y XS(5420)9 NP (5420)9 YA(5e2n925),
1 PC(5,20925)
COMMUN / o CCRT / KFLAG, KEYs KOJ, KaXy waR
COMMUN / RLOCKRB 7/ Y(507)s ES(S07)s R(507)s MPLASTY MOPs Hy HE29 No
1 NP4y REACI(507), RM(507)
3000 FORMAT( /7 92n P=Y CURVES DO NOT gXTenp THe LENGTH OF THg PILE
1 ) '

Co==m=SET CUNSTANI
NSET = KS(NOP)
C=====START CUMPUTING ES VALUES

K = &
U0 3090 J = 4y NP4
7) =5 J - 4

7 2 4J % n = DPS(NUP)
C=====CHECK TF THE STATION IS ABOVE GROUND <URrFaCE 1F SO SET €S =
IF ( ;) 3010, 3015, 3015

3010 FS(J) = U4
GO 19 309
Ce====FINU THE Pey LUKWVES LOCATING ABQVE ANNP BFLOW TWE GIVEnN STATION
3015 [F ¢ XS(NSETs K) = 7 ) 30204 3027+ 3030
3020 K = A & |}

' IF ( K = NC(NSET) ) 30194 3915, 3025
3025 PRINT 3000

KEY = |}
3026 KETURN
3027 M s N
GO Ty 3035
3030 M3 N e ]
3035 YA =2 ABS ( Y(J) )
IF ( vA = 1,06=10 ) 3036y 3937, 3n37
3036 YA S‘A 0E=10
c=m===FIND PNINTS seAING aND aMEAU OF BIVEN Y An EACu P=Y CURVE ANp COMPUTE
c ES ON EacH cYMVE BY LINEAR INTERPOLATTOM
3037 VO 3070 1 = My K
L = I4
4040 IF ( YC(NSETs Iy L) = YA ) 23045, 3055, 306n
3045 L e L+
IF (1. = NP(NSET, 1) ) 3040, 3040, 3n50
305V Pl = PC(NSETy 1, L=1)
GO Tn 3065
3095 Pl 3 PCINSETs 14 L)
GO To 306>
306V Pl = PCINSETy T4 L) = ( PC(NSET, Is L) = PCINSET, I, L=D1)
i ) % ( YC(NSETs Iy L) = YA ) /7 ( YCINSETs I,y L) =
2 YC(NSETs 14 L=1) )
3065 £ST(L) = PY / va
3070 CONT INUE

C=====INTEHPOLATE BETWEEN CURVES FOR ES VALIE
IF ( K = M ) 3075, 3075, 30p0
3075 ES(J) = EST(K)
GO T0 309v
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3080 ES(J) & ( EST(K) =~ ( EST(K) - FQT(M) y # ( XO(NSET, K) =
1 2) /7 ( XS(NSET» K) ~ X&(NSET, M) ) }

3090 CONTINUE

RE TUKN

END
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A.6 Example Run

for Program GROUP

Some of the typical runs for the two examples in Chapter VII are

shown in the following,

Example

1. Cap 2.

The example runs show two cases,

1.

2.

Example

The

Foundation is subjected
Foundation is subjected
the ultimate.

2, Copano Bay.
computation is made for
Foundation is subjected
Foundation is subjected

the design lateral load

-1.68 x 107 inch-pounds.

only to the dead load, 500 pounds.

to an inclined load very close to

two cases of loading in the foundation.
only to the vertical load, 844 kips.
to both the vertical load, 844 kips,

86.4 kips and the design moment
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CAR 2 ULTIMATE RFARING CAPACITY 5400 LR
TAHLE n INPUT AND CUTPUT SWITew (IF 1 YFes 1F 0 Np)
TAHLE C D E F G H J
INPUT 1 i 1 1 1 1
OuUTPUT 1 1 1 | 1 | 0
{c LOAD U ARRANGEMENT g PILE F L=S a4 P=Y H SOIL J LLP)
TABLE ¢ LOAD
v LOaDsLE H LUADSLE  MOMENTsLB=IN
Se000E+02 Os O
TAHBLE 0 ARRANGEMENT UF PILE GROUPS
GROYP CONNECT NO OF PILE PILE NO Le=S cURVE
1 FIX 2 1 ] 2 1
2 FIX 2 1 1 1 0
GRoUP VERT, IN HOR,IN  SLOPE,RAP  @ROUND,IN SPRING
1 ) 225E+0 652E=01 1.200F+01 Oe
2 0, -}:225E+0} .ézsqng.og ,.%oog:gg 0,
TABLE F PILE DIMENSIUNS
PILE SEC INC MaveKIaL LENGTH, IN Yirlo,PSI E+Ps!
| 1 3¢ 3 1.080E%02 6.,400F+0% 2.,900E07
(MATERTAL 1 STEEL My 2 STEEL H(WEAK AXIS), STpFL PIPE

4 OTHERS WITH [

NT DIAGRAM: g5 OTHERS WITHOUT INT OIAGRAM)

PILE FROM,IN TOsIN Dy IN Ay INDA,TNZ 1,IN&
1 O 1,080E+02  2,000E+¢00 3,800E=pl 1,850EwDl
INTERACTION DIAGRAM NUM OF POINTS 2
PULTsLB MULTs IN=LR
2,43CE404 Qe
Oo 1¢504E+04
TABLE F AXTAL LOAD VS SETTLEMENT
NUM OF CURVES 3
CURVE 1 NUM OF POINTS 15
POINT AXIAL LOADsLE SETTLEMENT 4 IN
l ~5,4U0E*0I =2,000Ee01
2 w54 UOE*03 ~1s000E=nl
3 «54000E403 w7,200E=02
4 «4,000F+03 wb600E=02
) w3, 000E+03 «2,800E~02
6 w2, 000E¢03 “1,600E=02
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7 =1,000E+03 »4,000Eun3
8 0, 0,
9 1.000€E+03 44.000E=n3
10 2.000E+03 1:600E=n?2
11 3.000E*03 2¢B00E=pn2
12 4sQUOF*03 4e600F=n2
13 Se000E*03 T+200E=pn2
14 Se400E*03 1e000Emnl
15 5.400E*03 24000Een]
CURVE 2 NUM OF POINTS 13
POINT AXIAL LUAD,LB SETTLEMENT ,tN
i =b,500E+03 =2,000€¢01
2 wb,6U0FE*03 =8.700E=n?
3 b ,2V0E+03 =T4000Ean2
4 =3,000E+03 *44000Ewn?2
5 =2,000E+03 “2:200E=n2
6 =1,000£+03 =T«000F=03
7 0. 0,
9 2,0008+03 2,200€-02
10 3,000g+03 4,000E=n2
11 4.200F*03 T«000E=n2
L2 4 6V0E*03 8.700Ewn2
13 4ebUOE*03 2¢000E+nl
CURVE 3 NUM OF POINTS 1}
POINT AXTAL LUAD,LB SETTLEMENT, IN
1 =3,600E*03 '200008"01
2 -3.4002‘03 ‘4.5°0E.Q2
K| =3,000E+03 =3,300Ew02
“ w2 U00E*QD =1.300Eun2
) wl O0U0E«0Q «2,000E=n3
] 0, 0,
7 1.0U0E+03 2,000E=03
o 2,000g+03 1,300E.02
9 3,000g+03 3,300E.02
10 3,400g+03 4,500E-n2
11l 3,600FE«03 2,000E401
TABLE 6 P=Y CURVFS

NUM OF SETS 2

SET 1}
CURVE 1
POINTY
1
2
CURVE 2
POINT
1
2
3
CURVE 3
POINT
i
2
3
CURVE 4

NiM OF CuRVES 6
DISTANCE FROM TOPLIN 0o

PsLp YoIN

O 0, .

0. 2,000E4n1
DISTANCE FROM TOP,IN 6.000F*00

Pel YeoIN

Oe 0.

G, 480E+00 S,BOOE-QZ

F.4BOE*00 2.000E+0]
DISTANCE FROM TOP,IN 1.200F¢0)

PslLs YsIN

Oe 0, .

3.,350E¢0) 9,50pE=n2

3.350F¢0] 2.000E+01

DISTANCE FROM TOP,IN 1.800E+01

NUM OF POINTS

NUM OF POINTS

NUM OF POINTS

NUM OF POINTS
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1

o

3

CURVE b
POINT

i

4
3
curve 6
POINT
i

4
3
SET 2

CURVE |
POINT

TABLE W
PROFILE 1

Polts

Os

Te2%0E*0]

Te290F (0]
DISTANCE FROM

Pylb

Qe

1e260E02

1.290E %02
DISTANCE FROM

Pelo

0
1.5641E403
1,541E+03

YeIN

1

14370E=nl

2,000FEenl
2e400F+0]

YoIN

TOP4IN

o,

1e260E=n]

200005601
9e600E+01

YoIN

0,
5470Eanl
2.000E+0]

TOP,LIN

NUM CF CURVES &

DISTANCE FROM
Peln
Ce
O
O :
DISTANCE FRQOM
Pel
0.
1.284E«Q]
1e286E *0
DISTANCE FROM
Pl
Oe
4,9595€4+0]
4e5H95E*(])
DISTANCE FROM
Peld
Oe
G,932E )
9,932E+0]
DISTANCE FROM
Pelp

0
1.730E402
le730E %02

DISTANCE FROM
Pslos

Oe
2e113E+03
2.,113r403

SOIL DATA FOR aUTQ

NUM OF CURVES

TOPLIN (e
YsIN
0'
1,000E400
2.000Fenl
6«000F*00
YeIN
0.
5,316FEan2
2+¢000E*n]
1e¢200E+*n1
YeIN
0,
9.512E-n2
3+000E+n1}
1+800F ¢p1
YsIN

TOP4IN
TOP,,IN

TOP, IN

0,

1,371E .01l

2+000Eenl
2¢400E+0]

YoIN

TGP IN

0'
1,790Eunl
24000E¢n]
Y.600F+*01

Yy IN

0, i
5,46G9E=n1l
2,000E+01

TOP, IN

PeY CURVES

] NUM oF STRATA

DISTANCES FaUM PILE TUP TQ pP=Y CURVESsINCH

CURVE
1
4

3
“
5
6
STRATUM
1

LOCATIONs IN

Qe ‘
6.000E+U0Q
1s200€401
14800E¢ 01
2.400&001
Ge600E+0L
GAMMA s PCF
6,260E¢0]

PHI,DEG DENS SHFAR,PSI
4,680F«01 i

AEIM

NUM

NUM

NIM

NEHIM

Ni M

NIIM

(Y[RL]

1

oF

OF

OF

OF

OF

Of

OF

OF

247

POINTS 3

POINTS 3

POINTS 3

POINTS 23

POINTS 3

POINTS 3

POINTS 13

POINTS 13

~ONSIST SeS CURVE
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(UDENSITY UF SaND 1 DENSE 2 MEDTIM 3 LOOSE)
{CONSTSTENCY OF CLAY 1 STIFF 2 MEptuM 3 SOFT )
STRATUM FROMs IN TOyIN

l Os 9.600E¢n1



CAP 2 ULTIMATE RFARING CAPACITY %400 LR

COMPUTATION RESULTS

TARLE 7T DISPLACEMENT OF GROUPER PILE FOUNPATTON

VERTICALIN  HORTZCNTAL s IN ROTATION,RAD
6+027E=04 =2e3ubF=03 =2+ 182E~p5

NO OF TTERATION 2

TasLE U COMPUTATION UN INQIVIODUAL PILE

PILFE GRUUP 1}

PTILE TOP UlSPLACENENTS AND REACTIUNS

A IN YoIfi LY /DX AXTal sln LaTolB
4,794E-06 22,641 0Ea03 «2,17TE=0S 1,198E4n2 & T49E,00

PILF GRUUP ¢
PILE T0P nISPLacEMENTS aNp REACTIUNS

X iN YeIN uY/nX AXIAl 'l LaTslg
S.272E=t% «2,202E.03 -2.197E-05 1,§1a5‘a? =% 000E+0QU

249

BMy| B=IN
-7.786E001

MR,
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Cap 2 INCLINED LOAC\&S VARIED

TAdLE o INPUT AND QUIPLT SWITCH (IF 1 YFsgy
TABLF c n E t c H J
INPUT 1 0 0 0 0 i}
ouTPUT 1 0 0 0 0 0 1

(C LOAD U ARRANGEMENT ¢ PILE F L=S

TABLE C L0au

v LOADsLm H Luadsln MOMENT LB IN
1« 7T7E* 94 s TyoF*3 Te800E+03

G

tF 0

PuY

N

H SoTL

J LLP)



caP »

INCLINED DAL

COMPUTATIUN HESULTS

TagLE 1

VERTILALIN

IS VARIED

DISFLACEMENT OF GROUPEN PILE FOUNNATYOM

5,094E<01

NG QF ITERATION

HURTZUNTAL s IN
1e431k 400

ROTATLONRAD

=2, 855Fan?

251

TaBLE . COMPUTATTON UN INUDIVIDHAL PILE
PILE GROUP |
PILE 10F 0ISPLACENMENTS aNp kEaeTIUNS
Xy LI Y (N DY /DX aAxlar oL LaTelp AM,L8=IN
l1e83E+u0 1.271E+00 =2, RS6E=02 S5,60nEen? 6 040E408 1,095E404

LaTERALLY LUADER FILE
STa As (N Tein pY/oX MeLp=IN OM/A PeLB/IN

o e Lacl1Ee00 «2,956Fn02 1,0053Ee0%  6,n40E+02 0,

1 d,0ulE+00 Lo194E400 =3,496Eapn? R,147E+03  6,n33Eeg2 o0,

2 To200FE %y L1eglPE4gp =3,945E=gp  R,247E¢p3 6,n033Ep2 0

3 1.0F0F¢g1  B,T04E=0l -4,197E=02 »,2¢%E403  6,p33E+02 0.

4 LeasgE*qy [4166Emp] =44 249Empyp =74395E%02  5.941E¢p52  S54136E+q0
5 1e%00F¢01  9,645Eag]  24,101E=02 «3.64nEe03  S5.817Eep2  1,284E40l
f 2. 1%0E* 49213Emp]l =3,765E~02 wk,373E*(3 4,798Ee 02 A.270E+pl
! 2.920E401 24934Eap] w3,203Eepz R,578E+3  3,190Eep2  S5,662E+01
B Z.BEQES 0 12863Eag]l ~2,042Emp2 -0,93RE+p3  5,75vEegl  B,864E401
v 3,240F 4901 1.632Eai]l @lo¥72Ew02 «1.np2E+06 =2,540E402 B,a4T6E«0l
1o Je2U0E* D] 4e432E2(2 =]14339Ew(? «A,B72FE¢(3 «&,p43Eeq? 6,281 1E+01
1t J,9EUF 01 O A4LEaDd <B,043E-n3 «7,05+03 =5,750E+02  7,600E400
12 4,32UE+N]1 =1, 360E=02 <3,985E=03 a5,064E+03 5,5T9E+02 L1,70TE«CL
13 4 ,680Ee0] =€, 18%Fa0? ul,222E«03 .3,191Ee03 o4 721€e02 L3,060Ee¢0l
14 S,040Fe0] «2,239Ean? 4, l08Fa04 o1.697E+403 3,547E402 &3,461E601
15 5,400F901] =l,AB5E-02 1,193F=03 oc,2n5E402 «2,351E+02 3,186E401
16 S 700Fe01] -1,380E-02 10 3BSE=03  4,hRARE40] =1,321E+02 L2,534E+01)
17 €L IZ0F+01 =¥, 872E-03 1,241E=03  ,B48E+07 <5,491E+01 L1,757E+01
18 Gy +BUF*0] =4,8T]1Ea03  9,469E=04  4,9n3E€02 =4,852E+00 <1.035E+01
19 b, HR0E+0] =c,u54E-03 6,297E-n4 4,551E+02 2,73BE+401 L4,604E400
20 T,200F¢01 =3,372Ew04  3,DB4Fwps  3,53RE«02  3,224E+0]1 aBe144E-0L
21 T.580E¢01  D.,298Ew04  1,602Fe04 »,370E+02  3,12BEs+p1 1.346E+00
22 T.92UE+D] B, 164E-04  3,555€.05 j.34hE+02  2,488Eeq1l 20208€400
73 H4280F+0) (WBLTE=(4 w2,947E=05 §.917E+01 1,69UE+01 2e228E+ (0
24 B,640F+ 0] D)4 Zw04 wS,328E«(5 1.1RNE+ 01 9,633E+00 1,R0YE+ 00
25 9,000€E01 J,9BlEw(d W5,313E=0S L].226E+01 4,125E+00 1.25VE+00
26 5.360E%0}) Co2)lTE=(4 wh 231Ew0S «],997E+0] S5.661E=nl T.281E=01
27 S«720E%0]) Y e346E=0S w2,9D8EwS  «y ,799E*01 ~1.321E%00 3.205E=01
28 1eDUBE*Y? BeT70TE=(S =] ,JEBE=pS «1,161E*01 «1,954E+00 3,112E=02
29 1+ 044E*%02 “4.n00E~05 =1.4)}B8E~05 =4.67RE*00 '%-6995‘00 =1+785E~01
v 1.UB0F402 @7, 34 Fw0S wl,201fefS «f4 wly17BEw0]l &3,610E=01
NO OF ITERATION -}
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PILE GROUUP 2
PILE TOP ULSPLACEVMENTS AND REACTIONS
XoIn YeIN DY /nx AXIAI #Ln LaTyln BMgi B=IN
Je906E~02  1444UE+00 =2,A56E=02  3,614E+n3  6,714Ee02 |.2]BE+04

LaTERALLY LUAVED FI1LE
STA Xs [N Ys [N oY/DX Myl q=IN OM/DA Pel B/IN

W Oe 10440E400 w2,856Ffup? Te?1AFE*04 6,71%E+02 0.

H 3,600E+00 1,322E400 w3,977€ap2 9,34nE+03 6,70%E 402 0.

2 T4200F+00 1o182E+00 wbolUBE=02  £,620E¢03  6,709E+07 Oe

3 1.,080F «0 140328E400 =4 ,437E=p2 2e844E+03 6,702E+02 0.

4 leb4yuF+g] Bo626E=p] =4,267E=p2 4+378E%07 6.n37E+g2 3.792E¢00
5 1,800F+01 O, 9T6Em(]l w4 ,497E.02 op,5»23E¢n3 6,398 402 9,48pE 40U
& 2+160€+0 Dy 3BEEm)] =4,234E=02 -5,339E+p3 5,797E+p2 2.389E+0}

7 24220F ¢0 34928Emp] «3,793E=p2 7.793E403  4,e24E402  4,)12BE+pl
A ZUHBOE‘OI 506576"01 .3020?E'02 =04 68RE+0 3 20716&’(}2 6e462E+01
9 3.,240E+0) Lobl9Ew(] =2,928Fafi2 i ,0%3E404 =1,393E¢n1 9.,3B4E+01
10 3,600E+01 Sy JOBEwN? w] HI0Ew0Z =1.,072E¢04 «3,330E402 8,368E401
11 JeYOUE*0]  Jeul4EmNZ  w1e196E02 R 6403 «D,428E402  3,2BREsqI
12 4,320E¢0)1 wC€,4%TFw03 a6,U32Ea03 ~h,620E403 w5,96BE402 o2,R92E400
13 440U0F 4] =l 90%Em02 w3,086Ea03 o4,580E403 wH, 4796402 o2.424E401
14 Se0Q0E+0] =2e405Em(2 w6,332E=04 «p TREF403 =4,430E¢02 ~3.36]1E¢0]
1% Se4U0E+0] =2e361EmDZ  T,514E~04 =1,377E407 «3,219E+02 23.433E+01
16 5.7605‘01 =] Y24Ewii2 10353E-03 'hﬁ?;lﬁE‘OZ w2y GCE+02 «2.9T4E+01L
17 6.120E40]1 =~l,387Ew=02 1,445€-03 1e47IE+02 wl, 1106402 «2,268E¢01
18 6,480E¢0]1 ~9,4%4Ew03  1,2D53Fe03  4,215E¢02 w=4,349E401 o1,527E404
19 6,840Ee0] b, H40Bup3 9 ,404E.04  4,937E407 ol h4TEanl  L8,799E400
2n Te20U0E*01 =Ze030E=03  6,306E=04 4 ,474E¢02  2,269E401 =3.874E4+00
21 T ObUE+p] =2,999Eapw 3,041Ea~04 T o2 3,07vE+p]1 .5,996Ew01
22 T.720F +91) 59,9178 «p4 1,685Fapné 2,388E4+02 2,955k 401 1.237E+00
23 8,280E+0)1 Y,135€.0%  4,289E.pS 1 ,38AEe02  2,37¢Eep)  1,993E400
24 €,640E¢p)  Y,005Eep4 <2,578E.05  £,6n5Ee0]1 1,647Esql  2,046E400
2% 9.0U0E*0 le2T19Empe  «5,4458E.0% 1+997E 401 9.69iE+g0 1+720E+00
2bh 90 JOOE‘QI bQNBSE"Ol‘ '5.923E-05 -q.lft#E*OO ‘*'3‘.95;"00 102“8E"00
27 94 T20F+01 Jo015E= (04 =5,299E=05 wy,.344E¢0} T.220E=p1 7.6TIE=p]
24 1. QUBE+02 LePTOEm4 w4, 453E=05 <1,1791E+0) wl.pbUEe00  3,346E-0]
29 le44E+02 =14919Em5 w3, 874E=05 w&,S4RE4QD ~1,76%E400 -5,233E«02
30 1, 0B0E+072 =1,%20€=04 w3,088FE=05 an, w9, 038Fe0]l o4,PB1E=0l
NO OF JTERATION #
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COPAND BAY VERTLeAL LOAD ALONE FIXFD fONMECTTON
TABLE W INPUT ann GUIPUT SwlTCH {IF 1 YFcy TF 0 NA)
Tadl F o D £ F G H J
INPUT | 1 1 1 { 1
OUTPUT 1 1 | i 1 1

0
(c LUAD L ARRGNGE™ENT  F PIILE F L=S  n Pay A SOJL JLLP)Y

TABLE ¢ LCAU
v LOAD.LA H LJausin MOMENT o LBwIN
Heba(E+ (Y Oe O
TaskE 0 ARHANGEMENT UF PILE GROUPS
GROUP  (UNNEC] NO OF PILE PILE NGO L=S CURVF
1 FiX 1 1 i 1 1
2 FLx 2 1 1 1 1
3 FIX 3 1 1 1 1
4 FLx 1 1 i 1 1
sROUR VERT, IN HOH,IN  SLOPE,RAR  aROUND, IN SPRING
1 i) «1,260E402 ~2,44NE=01  ],200F.07 O,
2 0, =3, D00EW01 U, 1.200¢,02 0.
3 Ve 9 4G00E+0] 0, 1.200E.02 Qo
4 Ue le26(Ee4p2 2eb4nE=g) 1+200F 407 Qe
TaskE F FILE PIMENSIUNS
PILE skC INC MaveEkIaL LENGTHIN YTeln,Psl E4Ps1
1 1 3y & 1s11AE+¢3 6on00F+03 4,440E+06

(MATERTAL 1} STEEL "M, 2 STEEL H{WEAK aXISy, STpFL ®IbnF
4 OTHERS WITH INT DTAGHAMY 5 OTHFRS WwITAOUT TNT DlaGRaAM)

PILF FHUM;IN TO,IN Uy IN A TNDA,Y 2 1,1iN4

1 lelloges03 1, ROUE+Q1 3., 24nE+n? H 60DEL03
xthAPLY ELaSTIC PILE MATERTAL

TABLE F AXLAL LOAD VS SETTLEMENT

NUM OF CURVES )

CURVE 1 NUM QF POINTS 11
POINT AXIAL LUADLE SETTLEMENT TN
1 00 '2.000E001
2 O Q.
3 4n000F¢04 3000“5.62
% BeUUQE*Q4 4anD0E=n2
5 1.00V0E*05 S.000Ewp2
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6 1,2U0F 0% 6,000Fan2
7 Fe4UGE*05 1.,400Em=n1
4 2eolOF+(8 lehODFanl
o 2o HUOF*US 1.900F=n1
10 3.0U0F %05 6,500 =n]
14 3,00Qr %05 1,000Eenl
TABLE 6 Pey CURVFS
NUM OF SeTs 1
SFT 1 Nuu CF CiRVES 9
CURVE |} DISTARCL FKROM TOPLIN (s MM OF POINTS 3
POINT Pl YsIN
L [{ g,
é 3,00Q0e=02 4 ,320Fwn?
3 3.,500F=02 1,800E+n2
CURVE ¢ DISTARCE FROM TOP,IN 6,000E«01 MM OF POINTS 12
POINT Pelo YyIN
1 0 0,
Pd 6.201F =02 1.440FEanl
3 8.055!"'02 ZOBBGE"’\I
‘!‘ I'Ud“F-Ul 4.3205-"1
5 12926~y 5,760FEar]
& 1s4U0r=01 7¢200E=p1
1 Lo 3ap=01 Bef40Ewnl
u leb2 /=01 1.008E+00
9 1., 7111F=y] 1,152€+00
10 1.8 /HE=U] 1e294Een0
11 149505 =u] le4b0Eeny
12 leY80E=0] 1.800E+n2
CURVE 4 DISTARCE FROM TOP,IN 64100E+01 MM OF POINTS 12
POINT Pl YolIN
i O 0,
2 2.319r a2 1,440Ewn]
3 3;30‘3&:*02 ZQSSOE-ﬂI
4 4e1dlE*Q2 4e320E=n]
5 GelnyF*g2 5e760E=n]
& S5e3c0F*02 Te200Ewn]
7 Se.HeBE*)2 BeR4nE=n]
B bez¥5E*(2 14008E+q0
9 6o T3PE*Q2 14152E+n0
1v Te138e%02 14296E+n0
1l TeblaE*02 1¢440E+n0
12 Tebedr+eng: 1.B00E+n2
CURVE 4 DISTANCE FROM TOP,IN 94£00E+01 MM OF POINTS 12
POINT PslD Yo IN
1 De 0. ‘
2 2,37196+02 1,440Eanl
3 3, 305K+ 02 2.,880Eanl
4 4elC1E*Q2 4e320E=nl
-] 4eT0YE+Q2 SeT760Emnl
) 5,320E¢02 T«200E=n]
7 5,828 +02 Be640E=n]
8 6 2YDE+UZ 14008E+00
9 6, 130E+02 1,152E00
lu 7.1386*02 IQZQGEOQO
11 T.524E402 1,440E4+00
12 T,524F« 02 1,800E«n2
CURVE 5 DISTANCE FROM TOP.IN le320E+(2 NUM OF POINTS 12



POINT

N~ X~V U FLAM-

—

CURVE 6
POINT

ANr~—C T O~VO U & Wiv -

Pt Pt Pt

CURVE 7
POINT

CE~NCU £ WIN-

10

11

1¢
CURVE 8
POINT

CURVE 9
PCINT

& Wn -

Pyl

(U
P2e319E 02
Jedobhr ez
4,lclrep?
4o T1O9r ¢2
Sedeyl *J2
SeHZHE*(2
6.295F %02
6,/ 30F el
7,138 402
T.9C4F 02
7,9€4 402

DISTANCE FROM

Pol®

Ue
2.3719c+y2
30 305F *y2
GelclE*y2
4 ,799¢ +02
S5.3c0kE +02
S, HEBE +U2
6,299E+02
e TINE*YZ
Tel3HE *@2
T e924F %2
TeD24FE*(2

DISTANCE FHOM

PelL®

Oe
2.3’95002
3.305F ¢y2
4e121F %02
GelD9E*()2
S «320E %02
5.828F +y2
6e299E+Y2
6o 1 30F+02
Te l3Bre02
TeDcar+i2
T.oc4F U2

DISTANCE FROM

Pyl

O

24379E 02
34305k %02
4,121F 02
4o 729+ 02
Se320F ¢u2
5,848F+02
662958 402
6.,T30F*y2
T.138E¢02
7924t *02
T524E+02

DISTANCE FROM

Pslts

0.
9.392E+02
1 ¢3¢8E*03
1527E£%03
1.,878E¢03

Y, 1N

0,
1l,440Fan1
2.RRNE=nl
4,320Fanl
Se760F=nl
Te200F=0n]
80640E‘ﬂ]
1,157€4n0
10296E0n0
1,4406400
1,800E.n2

TUPLIN lebBUFen?

Y,IN

0.
1.‘4”E-01
2.880E=r]
4.32”E'01
SeT6NEanl
Te?N0E=n]
a.ﬁ“nE-nl
1.008E+n0
14152E+n0
1+296E+n0
1e440E¢n0
loROOE‘ﬂZ

TOPGIN 2e040F+n2

Yy IN
0

4:44oE-n1

2+RB0E=n]
40320E=n]
SeT60E=n1
7 «200E =n1
80640E-ﬂ1
1,008E+n0
1,157E«n0
102°6E0ﬂ0
le440EenD
1.80”6002

TOP,IN 2.400F+02

Yy IN

0,
2.880E=n1
4,320E=n]
S5¢760E=nl
7.200E-n1
8.640E-ﬁl
1.008E+n0
1.152E¢h0
1.296E0n0
1:440E+n0
1.800E+n2

TOPLIN 9,960FE+02

YoIN

O.
1,440E«nl
2.88pE=n1
4,320E=n1
SeT760Eenl

MM OF ROINTS 12

MM OF POINTS 12

aiIM OF POINTS 12

NiUM OF POINTS 12

255
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6 2.lU0K+03 7.,200E=n]
7 2e3VU1E*03 Beb4nE=n]
) 2eénhr*y} 1e00RE+n0
9 2eH20E+(03 1¢1572F+n0
10 2.818E+03 1296E+0n0
11 2.910E+y3 1e440E+n0
1¢ 2e9170E+y3 1.B00E+n2
TABLE nr SOIL DATA FUx 3UTQ Pa=Y CURVES
PROFILE 1 NU~ 0OF LUKVES 9 NUM nF STRaTA 13

OISTANCES FROM Pl g ToP TQ P=Y ~URVESYINEH

CURVE LOCATTON iy

! Oe
2 GeNOOE<UL
3 6elnOE*U]
4 QebNNE*Y]
5 1e320E%02
6 1eHROE*UZ
{ 2+040FE %02
8 2e400E*uUC
v Qe960F +u2

STRATUM TYPE GaAMMA +FCH PRI LDEG  DENS SHFAR,PSI  ~NMSIST  SaS CIIRVE
1 CLuY Qs 1.000?-03 3 -
2 CLaY 3,000t+0} 3,200e4+00 3 -0
3 CLaAY 3.n00k*01l 1,200r«01 3 =0

(UENSTTY UF Sanp 1 DENSF 2 wmEnT!Mm 3 LNOSE)
(CONSTSTENCY OF CcLAY 1 STIFF 2 MENTIIM 3 SOFT )

STRaTUM FRUMs [N . TOs N
i 0. 6,000Een]
é 6,0U00t+0] B,94nE+n?
3 B, 940Ur «02 1,00nE4n3
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COPAND paY VERTICAL 0su alLUNE FIXED cONMERTION

COMPUTATION RESULTS

Taul€ 1 DISFLACEMENT OF GROUPED PILE FOUNNATTON

VERTICALyInN  HORTZONTAL Y IN ROTATION RAD
7TeS42E=(¢ -6 032508 1e998€=0R

NGO CF ITERATION 3

TanlE U COMPUTATTION un INDIVIDUAL PILE

FILFE GROUUP

PILE TOP UISPLACEVENTS anp RFACTIUNS

Xe IN Yy IN UY /X AXT4al +Ln LaTsln gMy 1 g=1IN
T.319e-v2  ),Feck=02 |,000E=08  1,39RE+nS 3 792F.0¢ 5,105E+04

PILF GROUP 2
PILE 10P LISPLACENENTS any WFEACTIUNS

Xo N YoIN ‘ VY /DX AXIAl sl LaTeln #My R=IN
T.a542E-y2  S,0%1E-15 1,n00E=08 1,4318+45 2, 195E.02 4 ,P68E+00

PILE GROUP 3
PILE TOP UISPLACENMETS AND REACTIUNS

Xo|n YeIN 0OY /DX AXTAL LA LaTsLlR HMs| B=TN
TeSagtE=02 S.uYlE«1% 1. 000E=08 1,431EnS 2,196E.02 4e268E+00

PILE sRUUP &

PILE [OP ylSPLACENENTS aND KEACTIUNS

X8 IN YeIN UY/snpX AX
1e319€=U2 =] ,B22E=02 1.0N0E=~08 1,

L

D
i

- 3
~ =
De
-
M

BMe | B=IN
+02 wB5,103Ee04
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COPANG BAY CESIGHN LOKY FIXED CUNNECTTIAN

TABLE o 1NEUT ann CUlPuT SwITeH (IF 1 YFSs TF 0 NA!
TABLF ¢ o £ F 6 H
INPUT 1 1] 0 1 G 0
ouTeuT 1 0 & 0 0 0 1

(c LGaD U ARRANGEME T F PILE F L=S r Py M OS0TL J LLP)

TAHLE C LOAU

v LUAD.LH HoLUacsLe MOMENT LBWIN
Red4EL QY Fe 0% * 04 «)ls0B0EsD7



COPAND BAY

LESIGN LO&U

COMPUTATIUN RESULTS

TABLE 1

vERTICAL ¢ IN

FIXED CUNNECTION

DISPLACEMENT OF GROUFEN PILE FOUNNATTON

1.649E=02

NG OF ITEmATIOW

TAHLE J

RILE GROUP

HUHTZONT ALY IN
9!214€‘UZ

ROTATION RAD

9. 399EL 05

COMPUTATICN UN INDIVIDuAL PILE

1

PILE TOP UISPLAGEMENTS anND KEACTIONS

259

YelN DY/nX AXI Al oLm LaTeln BMILB-[N
“e04TE=U2  1,050E=01 =9,400E=05  8,005Eens  1,942E403  2,507E+05

LaTEKALLY LOADED FILE

STa Xe(n Yoin Y/ DX weLp=IN UM/OA PoLB/IN

¢} Je 1.’_)505-(11 -9.‘0005*05 ?.5975;0‘3 1096£E¢G3 0.

1 3.720E001 ".n‘i‘)ﬁ-t}? -3.027E-{)6 1.77QE¢05 I.Q4ZE¢Q3 0.

z Teb40E*n]  BegS51E=02 =644402E=04  1enssE*05 1 e942E*g3 s

A 10116F 407 6,424E=02 <5,p00E=04  a.0akE+ns  1,942E+493 0.

“ 1 M4HBE +p7 4 4BTE )2 bt ,YIFEwpé Wi ,315E ¢04 1,04 4E «03 2 HOBE 02
5 1.860F g2 2.70%Eape w4 ,220Ew0s .y 127Fe0% 1o110E +p3 44 TPEsgl
7 2.2320 402 1o34TE-02 -3, Ug6E-nd  -1,272E 403 =1,357E%p2  2.220E401
7 EQOU“EQCZ “obJQE-U3 -]e a7 35-04 .1.09§E005 wﬁ-ﬂ91E¢02 7.‘95E’00
A 2,970F 402 =4,650Eaps  29,039E=05 7,87nEens  =B,142E4p2 L7,682E=0]
9 3,39BE+np  =2,036E-03 a3,471Eap5 4 AGPEega o7 o189E402  24,355E 400
1u 3,72uE«02 =3, 048E .03 1,012E06  op,4R2E+04 o 3935002 5 3716400
11 6e092F o072 =2e360E=(3  14717E=05 -R.346E+03 -3.a81Ee02 =5.062E+00
12 4o404FEsp2 =l TTpE=g2 2e006Euns 1e179E+N3 =1 A10E*n2 =3,910E+0U
Ye 49d30E+02 =1.023E-03  1,751€=05 Re2a7E403 =6,229E+0] =2,505€+00
14 S,2V8E+02 =4,6T76E=04 1,205E=05% 5,914E+013 7.741E+00 1,257E+00
15 5,5HQE+02 =l,264Emnb  6.842E=06 4.7R4E+03 I A00Ee01 -3,70VE=0l
16 5.932E¢02 *01465-05 2.&88E-06 1.17“5*03 4.244E+01 1.313E_01
17 6,324E402 YL, B595E-05 6,03LE-p7 1 F46E«D3 3,392E+01 30269601
1H 6,690E402 Y, uB3E«yS  wb4,33T7E~pn7 heNAIEL02  2,168Ee+q1l 3.312E=01
19 7.0°3F002 0¢368E=05 wT7,4%1F=n7 2.8A0E+01 1.091g+01 2.675g=01
2n Te44YF*02 JeS54TE=yS -605588-{}? -3 QRCE* 02 3,589E+00 le464E=0l
21 Te8l2F*g2 1048 [E=0% =4e3T4E=pT7 =24421E%02 =3.363E=01 6eabTE=p2
22 BolB4E*02  2,928E-06 <=24290E=07 =~1.85RE*02 «1,790E+00  1.348E=02
23 8.55&E002 =2 228E=D8 -8.48[8-08 -j.1615¢gz '1.84UE¢00 -1.Q78E-02
24 Be92BE*+02 =3¢382E=06 w7,025E=09 =6¢939E*01 ~1,320E*00 <le720E=02
an S.300E+02 =2.748E=pb  2,295E=n8 7,214E+01 =7,277E=g] <1.463E=-02
26 90672E402 =le0lS5E=yt  2,648Eag8  4¢B891E*QD =2,82¢€=g] =9431BE~03
27 1,004€403 =7,783E.07 1,971E.0B 0,015E+00 «2,49¢E-02 .4,517€.03
2R 1,042E+403 =2,G86E«07 1,197E-08 £ BAGE+DD 8.253E-02 o_1,26VUE=03
29 1,0796403  L,126E=07  7.193E.09 2,047E+00  9,383E-02  7,062E~04
3n l 116F+03  3,286E~07 5,757E-09 ¢,349Eelé4 o, n08E-02 2,130E-03
NO OF ITEHAVIUN )
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PILE GROUP 2
PILE TOP LISPLACENENTS AND REACTIUNS
XelN Yo IN uY /DX AXIAl slr LaTsbB dMs| B=IN
6eBO3E=V2  O,Z1%E=02 =5,400E=05 1,321E+a8 ] ,652F«03 2.198E+05
LATERALLY LUADED PILE
STA XeIN YeIN DYZDX Msl_n=IN DM/DX Pei B/ N
0 0o Ye214Ew(2 w9,4U0E=05 Pe13IRE*0S 1.,#52E+03 0.
1 3,720F«n ,4TTEa2 w2,719€=g4 1.574E+05 1.652E+03 Os
? 74408 *0) (+192E=(p2 =3,886E=ns ReAZIE*04 1.652E¢p3 Os
3 1ellbE*n2 5 ,586E=02 wb,436Eaqs P Y Y I XL 1.692E+p3 O
4 144B8E«;2 3 ,HI2Em(2 wh 4 I05Eand 1,90 E+Q4 1,652E+0g3 2¢499E=02
5 1,80U0E+p?2 £,339Ce02 w3 0T5E=0é .1,n26Ee05 9,327 +p2 3,864E401
6 2,232E+02  1,157Ew(? =2,029E=04 «),]1?1E405 <1,410E¢02 1,912E+01
4 2.0UV4E« 02 3,023Ew03 w]1,022E=N6 o0 4nPE+04 =b,149E002 6,317E400
H 2o FIBE®L? =3,574Ew0é wB,305Ex05 —6,795E406 «7,170E¢02 .8,218E-0!
9 3,348BFE4N2 = 106Ew(d w2 945E=09 wa 2n9E+04 wb,293E+02 w3 HIZE+0O0
10 3,7€UF¢02 ~<,688E=03 1,089E=06 «2,1476+04 =4,7U%+02 &4,849E+00
11 4oUYEF*02 =CoR4BEm(3 | ,937E«NS =7,nT74E+03 -3, N1BF+02 L4,420E+00
12 4,484E 402 =1,545E=03 1.824E=05 1e1RSE*03 w],561E402 W34412E00
13 4 836E+np =B HBQE=p4 1e236E=n5 GeTYRE*D3  w5,219E+01 «2.174Eep0
14 Se208F¢0p =4,020E=p%  14092E=n5 ®,276E+03  B,q88Cegp =1.081Eeq0
15 SooF0E+02 =Lle0S0E=0e  S,939E=nb  4,195E+403  3,421E+01 =3,075E=01
1A SeYSZE*O? 34989E=(5 2e966E~pb 2eT2OE %03 3,758 +9]) 1e263E=01
17 6,384E+np 8 ,589E«(S  5,427E=p7 1e405E¢03 2,.978E+p1  2,926E=01
18 henSBE* 2 Bep26Em0h  whag4}Emp? 5 JRT7E*p? 1e890E ¢} 2e92TE=p}
19 TebBE+02  5e583E=0% w6.041E=p7 1+5n2E*0] 9.6175%00 2+170E=01i
2n T.440E« 02 J4(BOEw(S w5, 796EwgT? 3 ,RASF+02 3.,0135+00 1,273E=-01
21 T.812E+02 102?15‘05 ~3,831E=07 -?o]ﬁQE"OZ -3.86°E-ﬂ1 5e¢549E=02
2% 8,184+ 0? CeIVCEMDH ] IBEE=NT ~1.618E+02 =1,620E¢00 1.083E=02
23 Bo596Ee 2  ~2en83E-6 27,230E-0B ~9,A2REs0] =1,634Eeg0 <1.009E-02
24 By9EYE+ )2 =3d.udBE=Qb wd,04TE=09 =g P1E+Q]l =1,16UE+00 w]1¢539E=-¢2
25 G,300E+02 =L 42BEwOb  2,I00E=08 =),0n4E+¢0] =6,33VE=0]1 al1,293E-02
2h G,6T2E+02 =1.465E=p0 2¢360E=n8 46691E+00 =2,40%E=0] WB.)153E=p3
217 1e004Ee3 =0,725€ap? 1, 737E-98 A,174Ee00 =1,801E=02 .3,903E-03
28 1e0%2E+03 =1,735Eagp? 1,0%4E«p8 .09 7E+gg 7,546 w0? w1,049E-03
29 1,079E403 1,045E=07 6,205F=09 2601E*00 B,277TE=p2 6 ,562E-04%
30 1e1i6E*g3 cedB2E=g7 4+93BE=p9 wp. 3,861E=g? 1+879E-03
MO OF ITERATION 3
PILF GROUP 3
PILE TOP OISPLACENVENTS aND REACTTUNS
Xy IN Yol “DY/pX AXIALILR LaTelB BMy B~ IN
B,495E=lz 9,214E=02 =9,400E=0% 1,574E+a% 1,643E403 2,19BE+05
LaTERALLY LOADED FILE
STA Ko [N Yo IN pY/ZoX Mol R=IN DM/DA Psi B/ 1IN
0 0 P,214E202 ~9,400E-05 ».,13RE+05  1,643E+03 0,
1 3,TE0F+01 B4TTEm(2 w2,T19E-p4 1.5Y5E+08 1,643E+03 0.
F] T 440E+QY Tol91Ew(2 «3,887E-04 n,RA37E+04  1,643Ee03 0,
3 1.1165’02 50585E"0£ '4.438E-O4 ?.dl\?E‘Oh luﬂ4JE’03 O
4 1.488Ee02  3,B90Ewp2 w4,35TEand <3,973E¢04  1,643E+03  2.497E-02
5 1,860F02 2,336Ean2 w3,6T7E-04 =1,0PTE+0S  9,244E+02 3,860E401
6 2.,232g+02 1,194E=02 w2,030E-06 ~1,127E+05 a1,483E402 1,907E+01i
7 2.,004E+ (2 3,798 Em(i3 ]l OZ2E=04 w0,477E404 =0,190E+02 6.,258E+00
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NO OF 1TexafTOoN

RPILF GROUP

STa
0

NI IE -

140B0E~01

261

2.9T6F402 =D,232E=04 wB,292E=05 «48,8n1F404 «7,208E¢02 oB8,6406E«0l
J,348E40p =2 ,3T6Ea(d  «2,92BE«0S i 271E%06 «6,311E¢p2 a3,925E«00
3. /CUE*0?2 =24702E=y3 1e054Ewnt  wp,14nE406 «4,TLIE+Q7 <6,673E+00
4,09CE+02 =2,2D23E=(3 1e951E=05 w?7,n37E403 =3,017E+02 <4.6436E+00
4,404F 42 ~leY4dE=ni 1¢d33E=05 1e209E*07 =1,550€402 w3.420E+00
4 836F4(2 «b BU4E.u4 1,942Ew05  4,755E+03 &5,19%E+01 .2,175E400
Se2UBF*0p =4,y(9E=p4 1eUSSE=NS  §,244E+03  8,965E«00 wl.078E«QU
5,580F¢02 «l,035Ew04 5,.943E=0b LoP1PES03 3,462E+01 L3,031E-Dl
5,992E+02 4, 12505 2,599E-nb 2.T3RE«03  3,78BbE«01 1.306F=01
6,32é4F+02 B aH6E-0% HeJd1BE=Q7 1e475FE+073 2,992E+01 2.959E01
B.nY6E+)2 By BLEm()S w4y 3BE=n7 Re10NE+0? 1.A%4E 0] 2494TE=01
Te008F*+p2 54007Ew(h  wb TOSE=n7 1e1muE*0] 9.401E%00 2e179€E=01
T,640E¢02 I yYyEapd W5, 834E=q7 wy,973€¢02 2,97TEegn  1.275E-gl
TaHl2E%n? LegbbE=y5 =3,846E=n7 =p.]67E¢g2 =4,722E=91] 5¢629E=02
B, 184E+? Ce2BIEm(6 w],990E=nT wj R4sEsd? =],640E+q¢ 1.081E=02
Be9bbE*ps  =ca]41E=(h =T IBBE=B wa,a57E%0) ~leh47E400 =1.037E=02
He92BE4p =34, ,05E=bd wby(1IEw(9 w4¢255E*0] =1.160E400 «1.4558E=02
S IU0E+0? =L, 447Emqb 2142Em08 w0,RAPE400 =6,33YE=0]l =1,303E=02
G,6T2E¢0? =l,4T1Ewpn 24 3BBE~B 44Ba1Ee0l) =2,394E=0] «8,18%E=04
1,004E¢03 =0, 7TIHELO? 1 ,748E.0B8 A ,230E+400 «1,465€<02 .3,899E€.03
1, U%2E+ 03 =1, 7U7Ex0Q7 1,U47E« (08  £,15RE¢00  7,700E=02 .1,032E-03
1,079E+ 03 11 712Eey? 6, 196E=09 2.670E« 04 8, 137¢tep2 6,73% w04
14 116Ep3 2,508Ewq? 4,920FE=09 wb4ebT76E=]14 3,5943E~02 14H93Ew03
3
i
PILE TOP ulSPLACEMENTS ANy REACTIUNS
Yo IN ) Y /nx AXTaIsLn LaTelRH HBMs| B=IN
6,80 7E«02 ~9,400E=08  1,97nEenS 1,135,403  1,452E.05
LaTERALLY LOADEN FILE

Xo [N YohN pY/pX MelLg=IN oM/ DA Pei g/ In
0o O, B0TEmDP?Z w9 ,400EunS 1 4B2E+05 1,135E+03 0.
3,T20E+01 0,199E=02 w2,143E=qn4 1en1RE+QS 1,13%E403 0.
Te440E*) DellIEwp2 w2,919Ewp4 S.786E*04 1.135E+93 O«
1,119E402  4,023Em02 w3,804E.04 1,376E«04 1,139€+03 0,
1,48BE+n2 ColB4Em? w3,175E=04 w=3,143E¢04 1,134E+03 1+788BE-02
LHOUE®D2  1,660Ee(2 =2,053Ew06 w7,57RE+06  6,p4U0E+02  2,743Ee0l
2,23¢ge02  B,105E.u3 .1,886E.04 .R,164E+04 o1,353E402 1,339E401
2.6U4E+0? £e90/EmN3 =] l58Emnbs wc,RG1E+064 =4,p33E¢02 4,241E€+00
2,976FE 407 w4, 919Ew(4 aDH,893Fu(S w4 RARIE404 «5,271Ee02 .8,120E-01
3,348E¢02 =147B0E=03 «2,002E=05 =3,003E+06 =4,5T2E402 2,942E400
3,J20E+02 =1,981E=3 1699TE=nf =1 e5nPE+04 =3,38BE402 w34426E400
4 ,092E 407 =l H3%E-p3 1o104E =05 =i 793E403 =2,192E+02 «3.219E400
4 ,484E+)p =1 ,|15E=g3 1+4345E =05 100RSE403 =l ,099E 402 «2.462E400
4e830E%02 =0e340E=g4  14119E=05  34548E%03 =3.489E40] «]14552E+00
S.208E¢02 =2 H]1F9E=qa Te296E=yb 2,83RE+(3 B,12VE400 wT7,879€E=p]
5,580E402 =0, 893Ea)5 4 ,239E=pb 1,052E+03 2,897E491 2,01RE-0l
Se902E402  Je34TEw(S  1,795Ewpb  1.98RE¢03  2,775Eep} 14 060E=01
E,324E40y  ©,462Ex08  3,438E=g7 1¢073E¢03  2,16%Esp] 20202€E=01
6,696E407  5,905€a05 .3,238E-0? 1,57AE«02 1,359E«01 2,153E.01
To00BE+02  24(593Ew09 w4 99BE=N7 ~2e3RE+00 6.,651E¢00  1.57SEwol
T.440E+02 2yP09Em05 w6,253E=p7 a1.044Ee02 2,020Ee00 9.114E-02
T H1ZE%02 B,B83Em06 w2,7T7S5E=07 =1,597°E+02 =3,903E=01 A ATBE=02
8,184E+02 1,6%CEu(t w1l ,418E=07 o1,193E+02 «1,235k400 6,699E.03
B,556F4n2 «l,008Ewpb «0,994Emn8 ok, 931E+0]1 =1,209E¢00 .8,080E«03
8,928E402 «2,270Ea06 o1,543E209 .3,00n6Ee0]l o8 44lE.01 .1,154E.02
GIVUES02 =1, 783Eu(b - ]} ,028E=N8 g (5356400 =4,529E«0]l w9,4690E~03
9,612Fe02 =l ,059E«06 1,757E=08 2, 8RAE+00 =l ,669E0] L5,R90E~03
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27 1,0U04E+03 =+,756L-q7 1,26GEa(8 A 130E+00  =5,9BUE=03 .2,760E-03
L] lau42E+03 =1l,147E=07 71,503E=09 6e573E%00 5.HE9E=02 «6,933E=04
29 Le0T9E+03  8.260E=08  4¢377E=n9  1,9n04E*00  6,149E=02  S,]190E=0%
30 1.116F+G3 €e109E=07 3,450E=n9 bebTHE=14 2,625E=-02 1,376E=-03
MO OF JTERATION 3

NOTE: As stated on pages 45 and 46 of this report, the lateral reaction at
the top of the pile is obtained by summation of soil reactions along the
pile (Eq. 2.68). The shear at other stations is obtained by difference
equation techniques (Eq. 2.65). Because of the two computational tech-
niques, there may be, in some instances, too large a difference between

the shear at the top station and that at the next station below. Experience
has shown that such a difficulty is encountered rarely and apparently is
associated with problems that are ill-conditioned. When such a difficulty
occurs, two steps can be taken to resolve the difficulty. The first step

is to rerun the problem with a larger number of increments. The input merely
needs to be modified. The next step is to use a finer closure tolerance
(TOL and TOLP in the program) and a higher precision in computing deflection
and shear. In order to take the latter step, it will be necessary to make
adjustments in the internal program. The use of one or both of these

techniques should eliminate the difficulty.



APPENDIX B

COMPUTER PROGRAM LLP

B.1 Description of the Program

The program LLP solves for the deflection and for the distribution of
forces in a laterally loaded single pile for a given pile-cap displace-
ment or for given pile-top forces.

Simple bilinear moment-curvature relationships can be used for non-
linear pile material. Thus, the behavior of a laterally loaded pile can
be predicted even after the formation of plastic hinges in the pile.

The program LLP consists of the main program LLP and the subroutines
MCURV and SOIL 2R. The main program LLP performs the data input and out-
put and solves the finite difference equations, the theory of which is
given in Chapter III. The subroutine MCURV computes the flexural rigidity,
EI, of the pile and resets EI for the plastic moment. The subroutine
SOIL 2R interpolates the soil modulus or the secant modulus of the
lateral soil resistance curve.

The main program LLP is used in the program GROUP (Appendix A) as a
subroutine. The description of subroutines MCURV and SOIL 2R have already

been given in the section on program GROUP (Appendix A),
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B.2 Flow Diagram for Program LLP

Flow Diagram for Main Program LLP

Start

Read and print data jj

No

Set constants and starting values

So 1029 for all stationsj
/ T

Compute continuity coefficients

Yes

Top station

Modify continuity No
coefficients to
satisfy b.c.

1029

Compute pile deflection y

Call MCURV to reset EI

No

y converged

\J Reset ES

Compute slope, moment, shear, and reaction

Print computation results\]
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B.3 Glossary of Notation for Program LLP

A(507) continuity coefficient

B(507) continuity coefficient

BC1l, BC2 first and second boundary condition

BM{(507) bending moment in a pile

C(507) continuity coefficient

DBM(507) shear in a pile

DPS distance from pile top to ground surface

DY (507) slope of a pile

ES(507) secant modulus in a lateral soil resistance
curve

G spring constant for the elastic restraint on
pile top

H increment length of a discretized pile

KODE code to specify the displacement boundary con-

dition or the force boundary condition

KTYPE code to specify the pile material

MPLAST signal to notify the formation of plastic hinges
N number of elements in a discretized pile

NC number of lateral soil resistance curves

NDS number of different sections in a pile

NEWPL input switch for new pile data

NEWPY input switch for a set of new lateral soil

resistance curves

NP(20) number of points in a lateral soil resistance
curve

P(507) axial force in a pile



PC(20, 25)
PX

R(507)
RES(507)
RRI (5)

RUN (20)
SIZE (5)

TC

XRI(5)

XS (20)

XX1(5)

XX2(5)

Y(507)

YC (20, 25)
YIELD(5)
YOUNG

YY (507)

lateral soil reaction

axial load on pile top

flexural rigidity EI at discretized stations
lateral soil reaction per unit length of a pile
flexural rigidity EI in different pile section
alphanumeric variable to store :he tifle

width of a pile

alphabetic code for pile top counnection to pile
cap

moment of inertia

distance from ground surface to depth where a
lateral soil resistance curve is given

distance from ground surface to the top of a
pile section

distance from ground surface to the bottom of
a pile section

lateral pile deflection

lateral pile deflection

yield moment

Young's modulus of pile material

dummy to store the previous computation of y
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B.4 Data Coding for Program LLP

The input data for the program LLP are classified as follows.

TABLE A Title of the run

TABLE B Boundary condition and input switches

TABLE C Pile properties

TABLE D Lateral soil resistance curves

For the repetitive run with the same pile properties or the same
lateral soil resistance curves, TABLE C or TABLE D can be omitted by
setting the input switches properly.

The general deck structure of the input data is shown in the following.

Deck Structure of Input Data for Program LLP

TABLE A TITLE OF RUN, necessary for each run

Card AI one card
TABLE B BOUNDARY CONDITIONS AND INPUT SWITCHES, necessary for each

run

Card BI one card
TABLE C PILE PROPERTIES

If B6 = 0, skip TABLE C

Card CI one card

Card CII C3 cards
TABLE D LATERAL SOIL REACTION CURVES

If B7 = 0, skip TABLE D

Card DI one card

Card DII one card

D1l sets

Card DIII D3 card
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To start a new run, immediately continue TABLE A of next run. To

terminate the run, attach two blank cards at the end of deck.
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Data Coding Form for Program LLP

The general instructions for data coding may be referred to A4,

TABLE A Title of Run

Card Al

Al

1 to 80

Alphanumeric description of each run

TABLE B Boundary Conditions and Input Switches

Card BI
Bl 1 to 10
B2 11 to 20
B3 21 to 30
B4 33 to 35
B5 40
B6 45
B7 50
B8 51 to 60

B5 specifies the type of boundary conditions to be
entered in Bl and B2, 1If B5 = 1, displacement b,c,.
must be entered. If B5 = 2, force b.c. must be
entered.

First b,c., Enter lateral pile top deflection, inch
(to right +) if B5 = 1, Enter lateral force,
pounds (to right +) if B3 = 2,

Second b.c. Enter slope of pile cap, radian (anti-
clockwise +) if B5 = 1., Enter moment, inch-pound
(anti~clockwise +) if B5 = 2,

Axial load on pile top, pound (downward +)

Code to specify the type of pile connection to pile
cap. Enter PIN for a pinned-connection., FIX for

a fixed connection and RES for an elastically re-
strained connection. Leave blank for B5 = 2,

Code to specify the type of b.c. to be entered in
Bl and B2, 1If B5 = 1, displacement b,c. are
specified. If B5 = 2, form b.c. are specified,.

Switch for inputting pile properties., If B6 = 1,
TABLE C must be furpished. If B6 = 0, TABLE C is
skipped.

Switch for inputting lateral soil resistance
curves, If B7 = 1, TABLE D must be furnished. 1If
B7 = 0, TABLE D is skipped.

Spring constant for the elastic restraint by pile
cap, inch-pound. Leave blank for B4 = PIN and FIX,
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TABLE C Pile

Card CI
Ccl 1
c2 11
C3 16
c4 21
c5 31
Cé 41

Card CII
Cc7 1
cg 11
co9 21
Cl10 31

to

to

to

to

to

to

to

to

to

to

Properties

10 Total length of pile, inch

15 Number of increment by which a pile is divided into

finite elements (maximum 500)

20 Number of different sections in the pile (maximum
5)

30 Young's modulus of pile material, psi

40 Ultimate moment, inch«pound. Ultimate moment must

correspond to the axial force in B3,

50 Distance from pile top to ground surface, inch

Different sections in a pile are listed from top
to bottom.

10 Distance from pile top to top of a pile section,
inch

20 Distance from pile top to bottom of a pile section,

inch
30 Width of pile in the section, inch

40 Moment of inertia in the section, inch

TABLE D Lateral Soil Resistance Curves

Card DI
D1 1

Card DII
D2 1
D3 11

Card DIII
D4 1
D5 11

to

to

to

to

to

5 Number of curves (maximum 20)

10 Depth from ground surface to point where a curve
is given, inch

15 Number of points in a curve (maximum 25)

10 Lateral soil resistance, pound per inch

20 Lateral pile deflection, inch
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B.5 Listing of Program LLP



272

PROGRAM LLPLINPUTYOUTPUT)
VIMERSTON A(DYT) e H(50T), C(507g'7UY(Q97)- BM(g07), LEM(S0T),
0

1 RES(SuT)y YY(SoT)y P( Yo ¥YRT(B) s RIN(EN)
COMMUN /7 RUCGCAL / He Ny NDSy XX1(5)s ¥X2(S)y RRI(p), SIZE(S),
1 HEZs NP4y DPS»e YIELN(Sys YOUMG
COMMON /7 RLCCKZ 7/ NCs XS(20)s NP(20), Y (209250 PC(2U425)
COMMUN / RLCCRI 7 Y(50T), ES(507)s R(B07y, MPLAST
501 FORMAT ( 2084 )
50¢ FORMAT ( 3E1039 2Xy A3y 3190 F10.3 )
503 FCHMAT ( El10e3y 215, 3103 )
S0¢ FORMAT ( SE10e3 )
509 FOR@AT ( 15
Syt FORMAT ( Fl0eds IS )
SGT FORmMAT { 2E1Ue3 )
510 FORMAT ( 1H1s 95Xe 2044 )
S11 FORMAT ( /7 SXy «|HTARLE 8 PILE TOP FONDITION pNU INPUT
1 6HSWITCH )
51¢ FCRYAT (7 12Ay BHUEF4INy SXs SHSLOPF, 6x. 10HAXTAL LoLH,
i 9h CONNEC ¢+ SKHCNDE s aHTC 6&HY=D ’
- 2HSPRING M/RAD
513 FQRMAT € 10xe 3Elle3y 2Xy A3y 1y, 315, 3ys E11,3 )
S14 FQOR4AT (7 12Ay LOHLAT [ 4{B 4 12HRM | Bartn o VIHAXIAL LR o
i BHCONNEC 4 SHCODF » GHT=C s SHT=D

e 12HSPRING M/RAD )
515 FORMAT ( / 15Ay 4LHICOPE = | FOR GIVEN SpT OF nEF AND SLOPE) /
1 I15Xy 43H(CODE ® 2 FOR GYVEN SET nF LOAD AND MOMENT))
516 FCR«AT ( 15Xe 40N (T=Cy T«D IF 1 NEw NATA ARE FyRnISHEU IF 0 NO &
1 LINCATA INPUTY )
52u FURMAT ( /77 95Xy 42HTARLE C PREVICUS PI|'F PROPERTIFS ARE USFD )
521 FCKMaAT ( 277 29Xy 2THIARLE C PILF PROpFRTIES )
52¢ FOR®AT (s TAr 10HLEMGTH IN 9 J0HINCRFMEMT 4 TuSFCTION, TX,
1 SHEPSLs AXs DHEL,IN )
523 FORMAT ( S5X» Blleds I6y 19y 2E15e3 )
524 FOR4AT (7 SX 9HSECTION » LIHFROMGIN v SHTAsTNy 6Xy
1TIRNIOTH,. TN * 9HTsTN4 o 11Hu LT IN=LB
AXe 19 3%y B5F11.3 )
/77 2Ry 3THTARLE D PREVIOUS Pey CURVFS ARF USED )

1
525 FCORMAT
Q340 FOoRmal

o — —

$31 FORMAT /77 Xy 39MTARLE D Pay C1IRYES N oF CURVES, 13 )

53z FORHAT / Lurs SHCURVE, 139 TXs 2qHNTST FROM pILE TUFsINy Ejle3s
1 Sxy 12mMNO OF POINTS, I3 3

533 FORMAT ( 15Xe SHPOINTs 9Xs 4HY SNy 10Ye TRPeLHZIN )

534 FORMAT ( 13Xs 15s 2Xy 2F15.,3 ) ,

540 FORMAT ( /77 5Ks 3BHDOES NOT CONVERGE AFTFR 999 ITERATIONS )

541 FORMAT ( /77 9Ky 2SHPLASTIC HINGES ARF FARMED )

542 FORMAT ( /77 9%y 20HNUMRER OF ITERATIANS, IS5 )

S50 FCRWMAT ( s//7 dKy 31HTARBLE E COMPUTATINN REQU TS )

SS1 FCRMAT ( s 6Xs 3HSTAy 1nXse 4HXeTNy BX, 4HYeINy TXs SHOY/DXy 11X,
| 1HMe TXs SHOM/DXs SXy THPs1 RZIN )

S82 FORMAT ( 4Xe 195 2Xy 6812.3 ) ,
583 FORMAT ( z/77 1Xy 25HSUM OF SOIL RESISTANAFEILABY Ellen )
Ce====xgEal IM INPUT DaTA
100 READ 50le ( RUN(I)s I = 1y 20 )
(=====~==~PIE TOP CONDITION aND INPUT SWITcH )
REAU 502y BCle BC2s PXy TCe KODEs NEWDL, NEWPY, G
1f { KODE 4EQe 0 ) GO TO 9999
IF ( NEWPL LEW, 0 ) GO TO 191
READ S03s HNhe Ny NDSe YNUNGs DPS
XN 8 N



273

ow N/ XN
LU 122 1 = 1y NOS
REAU on4s AX1I(D)s XX2(I)y SIZE{T)» XmT{(1y. YIEL DI(D)
nRIGLY 3 ART(I) % YOUNG
102 CONTINUE
161 IF ( ~EwPY LEQs ¢ 3 60 10 1n3
REAUD 5098, NC
LU 16 I 8 [ NG
HEAD 9g6s XSUL)y NP(I)
INGEA = NPUT)
READ S0Ty ( YU(Ly J)e PC(ly Ve J 2 }, INDEX )
104 CONT [NUE
163 CONTINUE
feww==pRInT QUT INFUT DATA
PAINT SLo, ( RUN(EYY T = 15 20 )
PRINT S11
IF ( xgUE +£Gs 1 ) 60 Tu 111
G0 TH 11e
111 PRINY 517
PHINT 513, BCly BC2y PX, TCs KODEs NEWPL, NEWPvy G
Go 1nh 113
112 PRIuY Sla -
PRINT 13, BCle BC2y PXy TCo KODE s NEuPL; NEWRys G
113 COnTINUE
PHI~T 515
PRINI 516 «
IF { NEWPL EU. 0 ) GO TO 120
wy Tn 121
120 PHI I 8520
Gy Ta 12¢
121 pPrRInT 82}
FRINT 822
PHINT 5234 RN Ny NDPSs YOUNGs DPS
PRINT S52¢
PRI®T 829, ¢ Ly Xx1 (1) xX2(1), SIZE(T)y xRI(Iye YIELD(I})y 1 = 19
1 DS )
18¢ CONT [ yUE
IF  MEWRPY JEG. 0} g0 10 130
Go 1o 131
130 PRINT 835
oU To 134
131 priIpl 831, nC
LO 133 1 = )9 NC
PRI=T 6832e 19 AS{1)y NP(I)
INCEXA 3 NP{])
pRINT 8533 5
PRINY G344 ( Jo YCUIs J)y PCUIs L)y J = 7+ INDEX )
133 CONTIMUE
13¢ CONTINMUE
cwwme=STaART EXECUSIUN OF PROGRAM
C=====COMPUTE CONSTANTS AND INDEXES
ITER 2 1
£ =
ToLP = 0.,00001
PIN ® JHPIN
FIX ® 3MFIX
H2 = H ¢ M
HEZ ® M % H
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HE3
HE 4
NP3
NP4
NPS
pPé
NP7
(www=eCl EAR THE ST0X
Lo loo00 J
R{J)
yi{y)
£s{J)
P{J)
1009 CONT IMUE
C=====COMPUTE 1]ITla
bg 1lool 4
{J =
o)
£S(J}
Qiyl
1001 CONTTHUE
Cm====SET HECUKSICN
A(l)
(1)
cty
A(2)
R

M E U

B nou

o e

~S>NPW %

AGE PLACES
a3 ls NPT
3 Qeg

0.0
= U.O

0.0

L ES (ES 3 KXo K = 1.0) ANn FLEXtIRAL STIFFNESS EI = R

= 43 NP4
J - 4
= PX
2 l,0 ® X)) oM
= RRI(1)

CU%FFICIENTS AT STATIONS |, 2 AND &
H] e

0,0
Qe
Oey
0.0

PR AN

c(2)
=== cMPUTE RECUKD
1123 vo lu2e
4A
_g
cC

0.0
N CORFFICIENTS AT aLL STaTIONS
3, NPS
R{J ~1)
2.0 ® H{J =1} » 2.0
Ri{J = 1) & 4,0 % R(J)
YES(J) * nE4
ND & =24U0% w{J) = 240 & R(J 1)
FE & R(J +1])
(=m===COMPUTE KECUKSION COFFFTCIENTS aT Facw STATION U
F = AR # B3(J - 2} + BB
DENOM = € @ B(Jm]) + Aa ® C{i=p) + CC

10

[ .

* Qlyy + P # WE
e R{J +1) o 2.0 & P(J) = HE?

"

+ PGy & Hg2

LF { DEROM NEs ¢ } 60 TO 1021
g==="=1F ygbknNO™M 1S ZERQ dEamM DOES NOT gXIST n = n
N o= 0.0
60 To 1p2e
1021 0= =le 7/ DENOM
1022 c(J) 3 D & EE
R{J) = 0 & (E &« C(J=1) ¢ DN )
Af(J) 2 U o (E & A(Jal) ¢ AL & A(J=2) )
IF ( J «NEe 3 ) 6O TO 1024
IF ( ®KOLE +EG. 2 } GO TUu 1028

c=====STATION 3 FCH GIVEN DEFLECTION sN5 SLAPE
IF { TC +EQs FIX ) GO TO 1031
IF ( TC «EQ. PIN) GO TO 1012
(emmmeceeee=a=g ASTICALLY RESTRAINED TOP
NEANOM = G % 5 & 2,0 % R(4)
A(3) 3 ( 4,0 # R(4) % RCl = 2,0 & BC2 # G & NE2 ) , DENOM
R(3) = Qa0
c(3) = { G #* H = 240 * R(s)
GO To 1¢l3

Y /7 DENOH



r‘-mnm--------FI‘&EO TOP

1011 B(3) = =2,0 % REC2 & M
R(3) = 0.0
c(3) = 1.0
CU I lols
(mmemomeenm=ewP INNEY TOP
1012 A¢3) 3 2,0 % gel
8(3) - 000
C{3) = =1,¢
60 T 1013
1013 CONT [ MUE
GO Tu }joev
C=====STRTION 3 FCKR GIVEN LOA() ANU MOMENT
1025 A() = A(3) + p # HEI & BC?2 7 H
GO 9 lpév
1024 IF ( J +nNEy & ) 6D YO jy29

IF ( KOUE «€Gs 2 ) 6N TO 1027
C=====5TaTlON & FQOR GIVEN DEFLECTLON aAND SLNPF
A(4) = BCl
R(&4) 3 0.0
Cc(4) s 0,0
GO To leey
CummmaSTATION 4 FCR GIVEN LOAD ANU MOMENT
1027 a(4) = A(4) = D # HE3 & ( RCa /7 W + HBrl )
102Y COMY INUE
C=====PRESERVE PREVIOUS Y anp CcOMPUTE NEW Y
DO 1238 § = 44 np4
1935 YY(JE 3 Y
vy(nPOY = 0,0
Y(NPI!) = Ve
LU 1930 L = 3¢ NR7
J= N e B ow
Y(J) 3 ACU) ¢ B(J) ® Y(Jel) & Cta) ® v(0+2)
103u CONT INUE
c====~RESgT gI VaLUtS
CALL MCURV
C=====CRECK FOR cLUSURE OF perLECTION Y AT aLL STATINNS
UuC 19540 J = 45 NP4
IF ¢ aBS ( YY(J) = Y(J}) } ,BE. TNLP ) GO TO 1080
10%v CUNT INUE
GO 19 1060
105¢ ITER = [TER ¢
iF ( 1TER LLEe. 999 3 GO TQ 1051
PHRINT Bén
60 Ty 999y
ge==m=CMRUTE MEW SET OF ES VALUES
1051 Capy SnlL 2K

G0 To 1023
g=====COMPUTE SLOPEs» @M AND SHEAR
106¢ CONTINUE

BM(2) = 0,40
AM{NPE) 3 0,0
B0 1071 J = 3+ WNPS
RES(J) = EStJ)y # Y{U)
AY(J) 3 ( Y(Je)) = Yidml) ) 7 HD

BMUJ) 3 = R{J) # { Y{Jm)l) = 240 ® Y(Jy ¢ Y(J*]1)

1071 CONTINYE
L0 1072 J m 34 NPS

275

y / RE2
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NBNM(J) 3 = ( BM(J*]) = BM(J=y) ) s H2 + Piy)
1972 CUNTINUE
Cam==wSiymM LP SHYL REACTION
SRES = 0,40

LO 1100 K = 4y NP4
1F { K +EuWs 4 ) GO Tn 1109
IF ( x +t4¥, NPy ) GO TO 1109
SRES = SKRES + RES(K) # 4
6o Tn 1100
1109 SRES = SRES + RES(K) & W / 2,p
110V CONT ITNUE
Ce=====PRI~N] QUT aLl THE PILE STATLONS
PRINT Shby
PRINT 85
ngv (@) B SRES
Ug 1073 J & 4y NP4
1STA = ) = 4
71 = ISTA
X = {1 #* H )
PRINT 5524 ISlas Xs Y(I e DY(J), BMIJ)s ARM(J), RES (J}
30?3 CONY‘NUE
PPINT 5h3, SRES
prInT 84, ITeR
LF ¢ »PLAST LEQ, 0 ) GO TO 1n7s

PRINT 541
1074 GO To 100
9999 CONTINUE

END

« DY(H
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Sys=CyuTiuF dCyRy
DIMENSTON CURV(S50T)
COMaUN / 3LOCAL 7 Hy Ny NDSe XXT1(5)e xX2:5)9 RnI(S), S1Z2E(5),
1 HE2y NP4y DPS, YIELN(5). YOUNG
COMAUN 7/ ALCCAZ2 7/ NCo XS{20)s NP(20)y YO (20925vy PC(2V925)
COMMUN /7 HLCCAS / Y(507)s ES(S507)9 R(RNTys MPLAST
50U FORMAT ( 2777 5X %E1 VALUE UOES NOT ¢nVFn THE plIlLEe )
fewmweSt ] CONSTANTS
APLAST =& 0
reme=wcOoMPUTE CURVATURE FROM STA 4 TO NP4
vU 120 1 = 4y npPe
Ca { y(I+l) = 2,0 # v(I) ¢ v{(T21) ) , HEZ
CURVII) = ABS ( C )
12¢ CONT INUE
Cuwe===lal ¢ NEW FI ValUE
Y 2 Uel)
Lo 136 1 = 44 wP4
LU 1np J = 1* NDS
IF ( X%2{Y) «GEs %X ) GO TO 101
100 CONTINUE
104 D1y = RRp(p
AMF 3 YIELO(J)
c=====COMPUTE CHRVAIURE CORKESPONUING TO M /LT
CURVP = dMR /7 R(1)
Cow===CRECK PLASTIC STAIE
IF € cURY L) «GE «CURVP ) GO TO 110

G0 Ta 111
11u {1} = BMP / curvVi{l)
MPLANT = |
111 CONYTNUE
X =2 A ¢ R
13¢0 CONTINUE
KETUKN

EnD
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SuBHLUTInE SULL 2R

CIMENSTOw EST(27)

COMMEN / 3 CCRL / me Ny NDSe XX1(B)y ¥X2¢5)s RRI(S), SIZE(S),
1 HEZy NP4y DPS, YIELN(5). YOUNG

CoMmUn / JLCCA2 / NCy XS(20) s NP(20)y YC(P0325y¢ PC(2Vs25)
CoMMUN 7/ RLCURS / Y(507)y ES(S0T7)s R(ROTye MPLAST

3000 FuRMﬂT( -t P=Y CURVES DO NOT ¢XTeuD THe LENGTR OF THe PILE
1
4001 FORﬁﬂT( /39 aatauPROGLEM IS ARANDANEO##gw#s / )
C=====STAK1 COwPUTING ES VALUFS
X = €
LO 3030 J = 44 npe
70 B 0 = 4

7 s LJ & 1 o= BPS
(umm=—cpp ok IF THE ST4TION IS Ag0VE GROUND _UBREACE TF S0 SET £S a g
IF 7y 3010, 3015, 3015
391 FES(J) & a0
Gy To 309V
c=====FINg THE P=Y CURVES LOCATING ABNVE ANn RFl.OW THE GIVEN STATION
3015 (F C ¥vS(K) » 2 ) 3020y 3027, 303n
402y K = % + |
IF  x = wEC ) 3015, 3019 3025
3929 PRInT 3000

PRINE 300
1026 RETUHIY
3n2? 4B N
U o 303%
‘!03&‘ 4 m N o-
3035 YA ® AMS ( Y(y) )
IF { vya = 1,0E=10 ) 30304 3937, 3037
3930 YA = loOE"ln
C=====FIty YOI4TS BEAIND aNN AHEAU OF GIVEN Y nn EACW P=Y CURVE ANP COMPUTE
c ES UM EACH CUMVE oY LINEAR (NTERPOLATION
3031 Vo 3170 1 = Me K
Io® 2
404y [F ¢ yCily L) =« YA 3 3045, 3058, 106a
1040 1 = L « |
PF 4 = NP (L) ) 3040y 3040, 30850
305y Pl = BC([s L=1)
GU To 3065
3089 Pl = Prlls L)
Gy To 3065
1060 ) 2 PClls L) w PCUTs L) = PetYy L=y) ) #(YC{1e |) = Ya
1 1/ U YCUye L) = YCUTe =1y )}
065 FST(L) = pl / va
gl CONT InNUE

Cm====IRTghPOL,ATE pET4EEN CURVES FOR gS VaL'lE
IF ¢« = m ) 3075, 3075, 3080

3019 FS(J) a EST(K)
GU T 3090
3080 ES(J) 3 ( ESTI(K) = { EST(K) o« FeT(M) y # ( AG(K) = 7 ) /
1 ( XS(K) = XS(M) ) )
309¢ CONTINUE

RETURN
EAD
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B.6 Example Run for Program LLP

Computations for one of the laterally loaded test piles (Test 17,
Pile 3) are shown in the following.

The properties of the test pile are described in Chapter IV. A set
of experimental lateral soil resistance curves (Fig. 5.25) is used. The
ultimate moment Mp is arbitrarily set as 5,000 inch-pound for an axial
force of 1,000 pounds.

The computation is done for four different types of boundary condi-
tions at pile top.

1. Horizontal pile-cap displacement, 0.2 inch

Rotation of pile cap, 10-3 radian
Type of connection to pile cap, pinned
2, Horizontal pile-cap displacement, 0.2 inch
Rotation of pile cap, 10-3 radian
Type of connection to pile cap, fixed
3. Horizontal pile-cap displacement, 0.2 inch
Rotation of pile cap, 10-3 radian
Elastic restraint from pile, cap inch-pound per radian
Type of connection ‘to pile cap, elastic restraint
4, Horizontal load on pile top, pound
Moment around pile top, inch-pound
Next follows the listing of the input data for four consecutive runs

and their computation results.
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LATFRaL SUIL RESISTANCE CUHVE FrROM TEST

17 PILF 3

O1sPL B,Ce PINNED

SPRING M/RaAD

TAHLE PILE TOP cONUITIUN AND INPUT SWITeH
DEF 9 IN SLNFE axlaL sl CONNEe r~ODF T=C TeD
2eVU0E=Ul 1,000E=03 1.000F+03 PIN 1 1 1 Ve
(CoDEt = 1 FOR vIVEN SET aF DEF AND SL0PRPE)
\CCPE = 2 FO% wIVEN SET OF LUAD AND MOMENT)
(T=Cy TaD 1F | NEW DATA ARE FURNYSHED TF o NO 1aTa INPUT)
TABLE € PILE PROPERTLES
LENGTHe IN [NCHEMENT SECTION EePSI Gl o TN
le0b0E+02 =] 1 24900E+Q7 R,00nF+00
SECTION  FROM, N 10, IN WIDIH.IN 1,tN& M LTy IN=LB
1 U, l,0406+02 2,0V0E+00 1,RS50F=01 <Eo400F+03
TABLE » P=Y CURVES NC OF CURVES 6
CURVE ] NIST FwOM PILE TOPyIN 0, . NO OF PUINTS
POINT Vo IN P*LR/IN
1 De 0,
2 1e0VOF=0] Qo
3 2e0U0FE=U] Oe
4 3eUUOF™0]) o
o) 1eQUOK*¢1 Qe
CURVE 2 nIST FHOM PILE TOPsIN 6,000c400 M0 OF PUINTS
POINT YoIN PsLB/IN
1 O (1Y
2 2,000E=02 7.500E400
3 6,5V0E=02 1,250E+n1
4 3. 0U0E=0Q] 1¢600E*01
9 140UQE*0] 1.000E+01
CURVE 3 NIST FROM PILF TOPsIN  1e4200F+07 nO OF POINTS
POINT Yy IN PsLB/IN
1 0o , 0o
2 2.900E-02 2¢000E+01
3 4.500E=02 3.000E+0]
4 2¢0V0E=0] 4¢400E*0]
] 1.000£%01 4.,400E+01
CURVE ¢ NIST FROM PILE TOPsIN 14R00F+07 MO OF PUINTS
POINT Yo IN PeLB/IN
1 0. 0.
2 2.000E=02 3.000E+01
3 SOOUOE-OZ 4.300E’01
4 1.000FE=01 S+800E+01l
9 1+0V0E*0] Sed00E+N]
CURVE 5§ NIST FROM PILE TOPsIN 24005407 w0 OF POINTS
POINT YoIN PILB/IN
1 Oe O



2 2,000€=02 3,000E«n1

3 3,500E=02 S.V000E+0]

4 S5¢0U0E=02 6-6005001

5 1.000E+01 6.0600E+0]

CURVE ¢ DIST FROM PILE TOPyIN 9.600F+03
POINT YoIN PsLB/IN
1 0, .

2 2.0V0E=02 3,000E+01

3 3.500E=02 S.U00E*0]

4 S.000€E=02 6,600E+01

5 1°0V0E*0]) 6:000E%0]

TABLE € COMPUTATION RESULTS

STa XeIN Yo lIn DY/DX M
9 U 2,0U0E=01 =1,036E=02 l.101E09
1 2,080E+00 1,764€=01 =1,030E=02 <3,1A1E N2
2 4e)60E*00 1e271E=01 =1.012E=02 =6e319E¢n2
3 6,240€+00 1,393E=0]1 «9,813€=03 =9,472E4+22
4 Be320E%00 1:103E=0] =6,385£=03 =),262E«13
5 1,0640E40] 9,730E=02 <B,A36E=03 ],572E4n3
6 Le248BE*0) TeY96E=02 =B,171t=03 =]1,RR9E+n3
7 1,456£+0] 6,331E=02 =7 _403E=03 =2,103E.03
8 1,684E401 4 ,B76Ea02 «6,552€203 2,2A5E,03
9 1.872€+0] 3,009€=02 =5,648£=03 «2,300E403
16 2,080E401 2,528Tk=02 «4,726E=03 =2,376E,03
11 2428BE+Q] 1.639E=02 =3,826E=03 =2,74BF¢n3
12 2,496E+01 9,352E=uld =2,985f=03 <2,070E,n3
13 2,704E0] 3,9/8E=03 =2,2328-03 ] ,814E,03
14 €,912E+401 6,714E=(0> =] ,584E=03 =1,510F 03
15 3,120E40]1 =2,010E=03 =],006L=03 =1,P44E¢n)
16 3,32BE*0] =4 ,2P4E=)3 «6,159E=04 «9,74TE4n2
17 © 34536E*%0)] =5.172E=03 =2,850£=04 <=7.321E+n2
18 3eT44E*0] =5.470E=03 =4,]1B3E=05 =5,755E+n2
19 349526401 =5,346E-43 1.269E=04 <=3,4R0E4n2
20 40160E40] =44942E=03 2,38TE=04 «2,079E+02
21 4,36BE40)] <4,3706=03 2.943E=06 =9,948E,n1
22 4¢576E¢0] =3,718E=03  3,174E=04 =]1,976E4n]
23 4,784E¢01 <3,050E=03  3,163E=04 3,605E401
24 449928401 «2,410E=03 2,933E=04 7,2n4E4N]
25 9,200E+0]1 «1,829€=03 2,615E=04 9,232FE+0]
26 D,408E401 =1,323F=03 2,241E=04 1e0nTELN2
27 5,616E+40]1 -8,973E=04 1,851t=-04 1.00n3E 402
28 S,824E¢0] 5.92BE=04 1.674E=04  G,471F 40l
29 0,032E40]1 =2,841E=04 1,128E=06  8,422E4nl
30 0,240E40] -8,343E-y5 . 8,246E=05 T.262E4n1
31 b,448E+y]) 5,888E=05 §,679E=05 6,nnlEenl
32 L.656E¢0] 1¢528E~=04 3,586E=05 4e795E4n]
33 6,B64E+0] 2.081E=06 1,943E=05 3,AR3E4n]
34 TenT2E401] 2¢336E=04 T.046E=06  2,7h3E.01
35 7,280E+0]1 2.374E=04 =],826E=06 1.R73E4n]
36 1,488E40] 2,760E=04 =7 ,774E=06 1,195E,n1
37 1,696E+01 2,050€=04 =1,13BE=05 /,635E,00
38 1¢904E*01  1,7BTE=04 =1,318E=05 2.641E4+00
39 B,1126+01 1.,502E=04 «=],365E=05 «1,988E.nl
40 Be320E401 1e219E=04 =1,321E=05 =2,0%BE+00
4] 6, ,528E+0] Y,585E=05 =1,221E=05 «3,176E,00
42 B,736E+01 7.1126=05 <=1,091E£=05 =3,575E,00
43 8,944E¢01 4,987E=05 =9 526E=06 =3,589E.n0

283

NO OF PUINTS g

DM/0X
1.6817g¢02
1.,616E+02
1e416F*02
1e416F¢02
1409F*02
1¢34TE 02
1e194F+02
9,489F+vl
f.010F+01
1.6315‘01

=1,]1T6E+V]
=7¢730F%Ul
=1,122F¢02
=1e321F¢V2
=1385F+02
=1 ¢345F +02
=1,237FE+02
=je090E*y2
- -?38"01
-7.5505’01
=54945F*y1]
=6,493F¢ 0]
‘1:231E’01
=2, 17S5F+ 01
=1¢323F+01
-ﬁ.62°"00
=1.703F+V0
1,T760E+00
4,022E+V0
R ,328F+V00
<,901F+00
Ee940F+00
Re609F*+00
2. 046E+00
QQ3S7E’00
3.623F+00
2.900€«00
2¢227E+00
1e629F*00
1.116F+U0
£e913E=01
3.525€=01
0.297FE=02
=G S5TTF=02

PyLR/IN
0, ’
0,
Oe

Oe
7067‘5'01
5.{925000
9.495E+00
1,412E+01
1,934E+01
2.2T6E+ 0]
2,346E+ 0]
2e033E+0]
1,322€401
5,967E+00
10007E-ul
=3,915€+00
=6 ,426E+00
'70758E.00
=8,205E*00
'80019E’00
=T.413E%00
=6,555E¢ V0
-50q77E’00-
=4 5T4E+00
=3,616E%00
=2, T44F+00
=1,984F+00
=] ,366E40Y
-8,392E-01
=4 ,262E=01
-1,251E=01
8.833E-02
2.2925'01
3,121E=01
3.504E=0]
.3.5605'01
3,390E=01
3,075F=01
2¢680E=01
2.253E=01
1.,829€=01
1,429€«01
1,06TE=~01
T.481E=02
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44
45
46
«7
4B

50

SUM OF SC0IL AESISTaNCE LK

¥ 152E+0)
Y.360E+0]
P.B6HE O]
Y.TT6E* O
9,984£+%0)
1.0196+02
Lend0c*02

I, 149605 .8 213Ewg6
14571E=05 =7 n72E=q6
PeUlOE=036 =, 165E=06
G, Y43E=06 =5 ,5]15E~06
=2, 08TE=0S =5, 1]1E=06
“3,0C0E=05 =4,916E=06
=4e132F=05 =4,964E=06
10417E002

NUMHER OF [TERATYIOANS 7

-3.?365*30
'906A6E¢00
=2.013E.00
=1e344E+ 0D
-7.§Q6E_ﬁ1
“? ORP2FLO]
-0e

-:ﬂ.?E?F‘-Ul
-2,963F=0]
-?.?“1?*0}
=2.118f=01
=D 637F=U1]
-1.325['01
=(eGA3V=y?

4 T24E-02
2,356E~2
3,105E~03
=1.491F=n2
“301315“92
wh KBlp=-02
-6¢{95F'U2



LATERAL SOIL RESISTANCE CURVE FROM TEST 17 PILF 3 NIcPl. H,Ce
TASLE R PILE TOP CONUITION aND INPUT SwlTeH
DEF 4 IN SLOPE AXIAL Leltd CONNEC cODF T=C Tab SP
24VU0E=01 1,000E=03 1,000F+03 Fly 1 0 0 Ua

TABLE C

TaglE b

TasLE F

v
-
>

VO ~NTU S WN—O

(CCDE = 1 FOR WIVEN SET nF DEF AND SLOPF)
(CODE 3 2 FOR WLVEN SET OF LUAD AND MOMENT)
(T=Cys T=D TF 1 NEW DATA ARE FURNTSHED 1F n NO nata INPUT)

PREVIOUS PILE PROPERTIES aWE USED

PREVIOUS P=Y CUKVES aRe USED

COMPUTATTON RESULTS

£ 1IN
Oe
2,080E*00
4,160E+00
©.240E+00
8,320E+00
1.040E’01
le248BE*U]
l.4S6E+(]
1l ,664E+0)
1,872F+vu]
2.080E+0)
2,288E+0)
2,456E¢0)

2.T06E*y)

2.912E+01)
3,120E+01
Je328E*()
3,536E+0]
3.,744E+y1
3,952g+01
4,160E+%0]
4,368E+0)
h,B5T6E+V])
4.784E+()
4,992E%01]
5,200E+0Q1
5.408&’01
5.616E’01
5¢824E%0)
6,032€+01
©,240E+0])
6,448E+0)
6.,656E+0)
6,B64E%0)
T.0726%01
7.280E+0)

yeoIN
2+000£=01
1e935E=01
1,838E=01
1. 7126=01
los°4t'01
le4)1E=01
1.249E'01
1,093E=¢1
5.5098-02
7.103&-02
Se039E=02
4,214FEan?
3,0BE~(Q2
24073E=02
1.2585'02
6 ,0U2E=03
1e918Eeg3
-1. 395&‘03
=3,581E=¢3
=4 ,800F=03
-504“3E-03
e85 ,9106F=93
=5,236F=03
e44T31E=93
-4.lU4E.03
3,429 E=03
=2¢703E=¢3
=2e¢142E=03
=1e5Y0E=03
-1,117€=03
_7.25TE=04
-4, 104E=(4
=1+ 791E=04
-5 .839E-06
10143E-04
1eBB4F =04

Dys0x
1(000&'03
=3,900£=03
-5,391E=03
=6,5826~-03
-70471=103
-B,060E=03
=A,352E=-03
=R ,36(0E=03
-8,105E=¢03
-7,619E=03
-6,945E=03
-6 _,133£=03
=5,242€=-03
=4,327t=03
=3,6444E=03
=2,634E=03
=1.923E=03
-]1,322e=03
=8,321E=04
=4 ,474c=04
-1.577E-04

4,972E=05

1.8486E=04
2.722E=04
3.131E=04
3,223E=04
3.,n93E=04
20"205-04
2¢465E=04
2.074E=04
1, 684E_04
1.,316k=04
9,869E=05
7.028E=905
4,67T0E=05
2.78pE=95

M

5.000E¢n3
§4232F 03
3,469F N3
PeBAGF LN
leOn6ELN3
1.190FEen3
YeTh2F 02
-3.344E002
-Q.7°1E¢ﬂ2
=1,52TE 3
=1 ¢982F &n3
=P 2 E 03
=2.365E.0n3
«2.352F +n3
=2.205F 403
] 4973E,03
~1¢696E+4n3
=1.4n5€403
«1,122E4.03
=8 .6P0E4Nn2
=ho3A2SE4N2
-4.377E¢ﬁ2
2 TREE 402
=1¢57%9E+n2
=5e79%9E e 0]
1.037E0”1
SehgTEen]
Be4c0Esenl
SeR76Een]
1.,075E,02
9 ,R95E,01
9,058E+01
7.944E401
6.7075001
Seb4alFenl
442R5E+n1

DM/UX
Qe069F UL
Q4R65F+U2
2, hOBEYLZ
1.66RF+ U2
q.661F+uC
2.596p+02
1.436F+0U2
2e174E+02
P, 187TE+02
2.,754F+02
1e629F +02
0,305F+ul
2.,319E+y1

=4e231E4y1
-00466E‘Ul
-1.2505‘02

1e383F*02

~1e392E% U2
«1e314F+u2
'10182E’02
'IQOZIE‘UZ
=R SUSF+uU]
w5 A28F+0]
=5e273E%u1
«q,894F*0]}
«2,719E+v1l
-1.753E’U1
anRE2F*+00
=40061FE*00

1.616E=01
2,038F«00
4 R21E*U0
GeTS0F*U0
£eNIBE*UO
& eBT1E*U0
T4400F*U0

285

FIXED

RING M/RAD

PyLR/IN

Oe
0.
0.
0.
7.392F=01
S.44TE+00
9.976E* 00
1,519E+01
2.,210E+0Q1
2,818E+01
3,788F+q]
3,426F+p1
3,791F+0]
3.054F*01)
1.,932F+01
9,903FE+00
2.878F+gp
©2,097E«00
S ,3T72E+00
w7 ,P89E%00
=8,164F*00
=8,274E+00
=7 ,854F+00
«7.097E* 00
-6,155E+00
=5,143E+00
=4,7144E%00
-30213E000
'2.384E’UO
«l,675E+00
-1,090F+00
=6,246F=0]
=2.686F=0]
-8,758€-03
1e700E=01
2.826F=-0n1
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36

38
39
40
41
42
41
44
5
46
47
«8
49
50

SUM OF SOIL RESISTaANCELB

7,488E+01
14696E*(]
7,904£401
8,112E+0]
be320E%01
8,528e%01
6.736E*0]
Be944E*0]
Y,152€+01
9.360E%0]
9,568E+0]
9.TT6E*0]
9,984E+0]
1.019t+02
l-(j40l’.”02

2.270E=04 1.324E=05
2e435E=04  2,501t=06
2.3%4E=04 <6, 00TE=06
2.22TE=04 =9, 8B4E=06
1e983F=04 =1,271E~0S
1+698E=04 =1,400E=05
1e4U0E™04 =1.423E=05
leluoE=04 =1,379E=05
B.204E=05 =], ,298E=0S
5+059E=05 =]1,206E=05
3,246E=05 =],]120E=05
9,982E=0h =]1,051E=05
«]14+12BE=05 =1,005E~-0S
=3,184E=05 =9 glér=q6
=5,212E=95 =9,751E=06
3¢669F¢02

NtI4BER OF [TERATIOARS 24

PLASTIC HINGES ARF FORMEW

3e22TE4n]
203;5E001
1,5€9¢€,01
9.,571E+n0
4+90]1E+n0
1¢694F+00
=Se092F=n]
=1e791F4n0
-203‘0E000
=2 +390E +n0
=2,0%1Fen0
=1¢8n0F+n0
=8 ,R28E.n]
'303R2E-ﬂ1
'5-378E-13

4o T49F +U0
4e012F %00
2.258F+00
1eRB1F*00
1¢307FE*00
ae234F=V]
4¢324F=01
Ye310£=vl
=Re6H22F=V2
=24251F=01
=2¢913F=vl
=2,893F~y1
-9.?205-01
=0,106F=02

3,435E=01
3.,653E=01
3,5891fF=-01
303405-01
2.974E=01
2.54TE=01
24100E"n1]
1,459E=01
1.?40E'01
8.4B8E=02
4 ,R69E~-n2
1.497€E=02
-106935-02
-407765'02
=7.R18E=02



LaTERaL S0l RESISTANCE CURVE From TEST 17 PILE 3

Tagle o

TagLe ¢

TABLE

Ta8LE &

n
-
pd

LD~ PN~ O

PILE TOP cONUITION aNp TNPUT SwiTem

DEF 4 IN
2.U00E=0L

SLOPE
1.000ﬁ”03

AxIaL LeL8 CONNEC
100005*03

RE¢g

1 0

(CCDE = 1 FOR VIVEN SET nfF DEF AND SLOPE)
(CODE = 2 FOR wIVEN SET OF LUAD AND MOMENT)

{T=Cy Twd IF 1 NEW DATA ARE FURNISHED 1F o NO DpTA InNPUTH

PREVIOUS PILE PROPERTIES ARE USED

PREVIQUS P.Y CURVES ARE USEUL

COMPUTATION RESULTS

X IN
(1Y
2,080E400
bol60Eryp
6,240E+00
B,320E400
1,040E+0)
Le2aBE* g
1,456E401
L, h64E*Y1
1.HT2E40
2+080E*y)
¢,288E+01
2a496E*U]
2.7&4&‘01
2+4912E %0
3 E’O
32358601
3,536E+01
3, 746E+(1
3,952E+01
4,1606+01
4,368+ 01
b ,STOE+y)
4,784E*y]
4,992E+01
Se200E*0)
5,4086401
5.616&*01
D,824E43
6,932E+0]
Q!E‘OE.OI
B, 44BE+0])
b,696E+0)
6, B64E+0]
1,0726+01
7T,280E401

YelIN
2¢000E=0]
1, Bi3fag]
1e0C1E=D1
1.4&76‘01
le30F=01
1 099E=01
g07§8£'02
7.,0711Fu02
50558E-02
4e212E=072
JeudBE=yp
2.0{15""02
1280F=p2
6,031E=03
2e015E=g3
-legbjE=93
w3 4eDE~Y3
wb OFIE=03
~54E209E=g3
=a5.,3/6E=03
=5,11l4E=y3
-l 529w 03
-400&15‘03
-303°“ﬁ'03
“20714E‘03
=2+1U8E=p3
-105°7E-03
=] 104E=03
-?AZlOE'04
b, 102E=Q4
=14B28E=04
w121 8E=(5

10D 3E=04

1,7966=04

2,199E=(4
2e34BE=(4

OY/DX
“#,R17TE=03
-3 ,1186=03
-G, 261L=03
=9 2464E=03
—9.0686:03
-8, 734E-93
-80247E-03
-7,%519E-03
-6, 872E=03
“60ﬂ35t'03
-501“6§'03
-4 2495=03
-3,385E~-03
-2 .594C=~3
=1.A97t =33
*1e3 8;‘03
~HR, 2604LE~(4
=4 481t-04
-1.,627t=04

4, 211E=05
1.796E=04
2,628E=06
3,040E=04
3. 140E-0¢
3.n20E=04
2.758E-04
2. 414E=04
2.n34E=04
1.653E=04
1. 294E=04
9c711E-05
6,926E=05
4,610E=05
2,753E05
1,321E05
2.holE~=06

M
GeB1T7F4n2
S T20F 42
14618F4n?

=2 ARBF 02
=k SPOHF N2
S Y LY PR
“1ehs8BF 43
~1,7RBE N3
2, 065F 413
=2e083F4n3
-20312E¢J3
=2 ,209E 403
=2¢165E4n3
=14911F4n3
'1.5&2E403
'10379E¢03
“1e1n3E4n3
w8 4nSF N2
=h 4P3IBE L2
b, IDBE L NE
wP JTR&4F 4012
-1.510E¢”2
-5 ,945F 401
Ban1BEen0
S43e8E,n1
Be166Een]
9,500E,.n1
G ,990F4n]
9 .,664E,.01
8,8&3F4n]
7.7Q5E¢01
6,5RZE.n1
Se36HELn]
4t?14E001
3,175F .01
2e276E401

ronF T=C

Tl
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0lzP; R,Ce RESTRAINED

SPRING M/RaD

U 1.00DE+0S

PM/UX
1+BBOF*02
1 RB0F U2
1 «RBQF*yE
188 0F 02
1«R7T2F+02
14810F* 02
1sH56F+02
1.40TEsV2
1 0%4RF+ Y2
zeR18F %yl
E,TT85E*40

-h.692F’Ul
-0 ,183F+y}
-y PlOF*U2
=y +345F *y2
=1038TE* U2
'1.?845002
=1,197F+ 02
‘icﬂOlF‘Ua
-0, 34640
ko TOQF +u]
-t,189p+Ul
«1,840F+Jl
-2, 688F+y]
-1s74QE+u]
~neBTGE*0Q
=4e141F*4U0
2e556F =02
2BT2FE 400
4e64BE+(0
B EB1FE 400
QORHSF.QG
neT4QE+Q0
R,295€+00
4 ,h12E400
1.963F‘UO

pylLR/IN
Qe
0,
O

Oo_
T.132F=01
5,238E+00
9.5B1E* 00
1,443E+01
2,003€E+01
2«482E‘h1
2.557E¢01
2.,509E+01
1.R10E*01}
9,946€4 ¢
Jep2eFtuo
'%.5925‘00
- .1385’00
o7 049E+Nn0
=T .936E*00
«8 AGGE+ (00
wT A4T1E00
-6 ,943F+ 00
=6,031F«00
5, n46E*(0
-“.072E*00
“3e162E%00
‘203515‘00
=1 .656F +(0
=1.n82E+00
=6,243E=0}|
=2, 742E=01
=1,R27TF=02
1.880€E-01
2,6%4E=01
3,798E=0]
3,518E=01



288

36
37
38
39
40
41
42
43
44
45
46

48
49
50

SUM OF SOIL SESTSTANCEsLR

1.4BBE+(]
T.696£+01
T.904E+01
8.112E%01
b,320E+01
B,528£40)
bn736E‘Ul
B,944E+0)
9,152E+01
9.360E£+0)
Fe56HE*(]
9.TT6E*0)
9.584E*0]
l1eyl19€E*02
10405402

2+3UBE=04 =4,732E=06
2.148E=04 =9 ,490E=06
1:914E=04 =),219E=05
1eO4lE=04 =1,334E=(5
14399E=04 =1,339E=05
leUB4E=04 =]1,272E=(5S
842Y6E=95 =]1.163E=0S
6.006EL=05 =3),p36E=05
3,9Y8TE=05 =9 _097E=06
24222E=05 =7,96BE=06
GeleTE=06 =7,050E=06
=T+lUBE=(Q6 =K,3H1E=06
=1 ,982E=05 =5_,961E=06
=3.1Y]E=95 =5,756E=¢6
=4,3T6F=05 =5 ,701E=06
1.,880F4+02

NUMBER OF JTERATTONS 8

1e527E4n1
9G272F N0

4eARIE LN

]-294E000
=1e12TE N0
=2¢485F 40
=3«177F+q0
'3-3‘9E0ﬂ0
=3,148F 400
=2 ,676F 400
=2+058E+n0
“1eA04E 4n0
‘7-7#8E-91
=2e840F enl
=2,6089E.13

1-?37E’UO
24542 +00
1e90BF*UQ
1e353F+U0
R,B54F=v1l
GeN43E~01l
?-057E-01
'1-738E-02
=), 133€=01
«2.702€=v1
=4+153E-vl
=2 ]4TE=(]
= o T2TE=01
=1920F"vl
=7.397E=02

3.463€E-0]
30?23E'Ul
2.RT1FE=01
2.462E-01
2.03BE=01
1.626E=01
1e244E=0]
9-610E-02
5,98l1E=02
3-333E-02
1e0n09E=p2
~1enb6E=Q2
=2.973E=02
-4-736F-02
-6 ,rR65E=(Q2



LATERaL SOIL HESISTANCE CURVE FrROM TEST 17 PILF 3 FORCF R,Coe
TABLE R PILE TOP CONUITION aND IMPUT SwITCH
LAT Lol KM LB=IN AXIAL Lold CONNEC rOhp TeC
14000E+ D2  1,5006403 1,000F+03 ] 0 0 O,
(CODE = 1 FOH LIVEN SET ofF DeEF AND SLopE)y
(CODE = 2 ¢OR GIVEN SET OF LUAD AND MOMENT)
{T=Cye Tml) IF 1 NEW DATA aF FURNISHED TF A NO 0aTa INPUT)
TABLE ¢ PHEVIOUS PILE PROPEMTIES aRE USED
TABLE n  PREVIQUS Pay CcUKRVES ARE USFED
TABLE €& COMPUTATTION HESULTS
STA X IN yolN DY/0x M DM/UX
0 Oe 2a040E=y2  9,635t=04 1e5n0E+n3 yenl3Fey2
1 2,080E+00 2e18bE~y2  4,225E=04 1eP91lFend 1en13F*u2
2 4,160E400 ?.,2¢2E=02 =3,7]16E=05 1en01F 403 1.013F¢u2
3 0,240E+00  2.110E=02 =4,152E=04 R A04FE .02  1,n}3F+u2
4 H,320E+90 2e049E=02 =7,112E=g4 6.576Fan? 100BE*U2
5 Let4QE*0]  1.875F=02 =9 253E=08  4,470F 402  9,T49E+Q]
6 1,248E+y) 1.0046=02 =1, 3608=03  2,4R2F,2 a,972Esul
7 1,456E401  1,494E=02 -1,122E«03  A,923E,n1 7 ,R4)Fe0]
8 1,664E40] 12 l9BE=(2 «1,115t=03 <R, 289E,n) 4,386F+01l
9 1.,872c%01 9,081 =03 =] ,064E=03 «2,n10Fe02  4sTUGE+UL
10 2e0BQE*U]  Te949E=(3 ~9,792E=04 =2,87BFE.n2 24994E*0l
11 2,288F+0] 5, 645E=03 =B, 515E=04 «3,P08E,02 1.428F+ 01
12 2,096E+0] 4 UuTEey3 =7,206E=06 =3,4cTE,L02 1112F¢ U0
13 2,704:+0] 20647TE=03 ~5 AH3L«04 =3,372E,02 =n,907E+uD
1% 2,912E+01 10900£203 =4 ,626Em04 =3,171F402 «1.54T7E+u]
15 3,120E+0) To2EYE=04 =3 4¥0E=(4 =2,T74TE4P2 =1,503F¢01
16 3,328E%01 12 U7TE=06 =2,505E=04 =pya334E4n2 =2,n33E+U1
17 3,536E40] w3,1736=04 =] HB82E«04 =1,912E402 =2,000E¢01
18 3,744E%)] =5,720F =04 =] ,019c=04 =] ,509F4n2 =i B57F4v]
19 J,952E40] =T.431E=04 =B, 044b=08 o] ,144Fen2 =1h4SF*01
20 4,160E40) «B,ylBE=gd -] 22TE=0S «8,254F.01 =1,.,408E+ul
21 4e36BE*Q] ~T+Y4]E=04 1.456E=05 =5,585FEe0]1 =1e159F%0l
22 44576E%n) =TW413E=y4 3,202E=05 =3.45hEen]l ~04197E*UD
23 4o THGE* Y] =6.00%E=04  4,205E=05 =~1.745E+n1 =TeqloE*UD
24 4,992E401 «5,004E=064  4,639Ew05 «4,923E.00 =5,098E+400
25 5,200E40)] «4,009E=04 4 _658E05 3,935F,n0 =3,482E+00
26 Se49BE+(] «3.726E=04  4,392E=05 9,T=4Feng =2¢170F*00
27 S5.616E%0] wp.ED2E=04 3.949E=05 14315401 =14144E%00
28 SeH24E*0] =2.083E=04  3.,409E=05 1448401 =a¢T44E~01
29 €,032E%0] =]e%33E=g4 2.,R3TE=g5 1+485F4n] 1eT42E"0]
30 ©,240E+0] =9.033E=45 2.276E=05 je4nTEecl e 38BE=u1l
3 6,448BE+()] 4, ,B06E=35 1.757E=05 1+270E4n1 7.556F=0u1l
32 6,656E40]1 =147€3E=05  1,298E=05  1.1n0Fenl Re5B4E=0]
33 5, BEGES Q] 5.334€=06 9, ,066E=06 G,1R3FE.n0 ReTO9E=D1
34 T n12E+01 2.099E=05 B _A53E=06 7.301E400 pRe306F=9]
3s 7,2B0E40) 2,96BE=(S 3 _310€=06  S,72TELN0  7,584F=0l

289

TeD SPRING M RAD

PelLB/IN
Qe
0o
0,

O
40029E'01
Z,R1ZE+ DY
4,.660E+00
6,212E+00
7,784E%00
B,390E+00
8-052E’00
T,n00E« 00
5.663E¢00
3.971E«0¢
2,339E+00
1, n84E+00
1,815€=01
=4 ,789€ =01
=8 ,AROE=0]
=1.115€%00
-1,203E+00
=1.1%1E%00
=1e112E%00
=8 ,913E~¢1
-H,495E=01
-7.3188‘01
=5,.68%9E=]
-4,578E=01
'30?255'01
=2.150E~0]
=14355€=y1
-7 4299F=02
w2 G84E=02
8.”005"03
3.073E=(2
4,452E~-02
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36
37
k1.
39
49

42
43
44
4s
48
47
48
49
So

SUM NF SOTL HESTSTANCE LK

7T,48BE+0}
T.696E%0)
T904E+0]
B,112E+0]
8,320E%0])
B,528E+%y)
B.736E%y1
B,944E*0]
9,1526%91]
Y.360E+¢0)
9,56BE+0)
Y, TT6E+y]
¥,984E%0]
1,019e¢02
leg4gE*y?

NUMBER OF TTERATIONS )

See note on page 262

3.4&0&'05 10?76&'06
30541E'05 '207725'08
3.414E-05 =9, HH2E=07
3.130E=0% =] ,592E=06
24792E=95 =1,921t=06
203515-05 =2+ 04BE=0b
1.YU0E=0S =2,n38BE=06
1lo4B3F=0S =) ,945E=06
1e 0¥ 1E=05 =1,B09E=06
Te3V1E=06 =} ,665E=06
3.,706F=06 =] §34E=06
9,188FE=07 =1,432E=06
=1e971E=)6 =), 364E=06
=4, 7976=06 <] 330£-06
=T.opsk=-06 =),321E=06
1.613Fs02

4.7R0F 400
7+303F 400
1.9&25090
14182E400
BebtFanl
1e141F=nl
=1sh4bEan]
=3.2n0F w01
=3,7eBF 01
=3, NA5EN]
-?.2n55-01
=1.292Fan]
b JARTQF 02
'6|7§ZE-14

‘:SeﬁF-Ul
T 499F=0 ]
GeblbE=ul
7.3935'01
70476F‘01
) +AB3E=01
1+ N23F=ul
6-953E'02
00378F'03
=1.903F=02
~3s684F =02
-4 +429F~u2
-6.?65E'02
-1+303E=02

5,139€=-02
5:311E'02
5.1226=02
4 ,,95F=n2
4 ,128BE~02
49602
2.850E~02
24224E~02
10637E'02
1,095F=02
5.979E=n3
10378E'03

=2.,956E=y3
-7.1365“03
~1y126E=02



APPENDIX C

COMPUTER PROGRAM AXP

C.1 Description of the Program

The computer program AXP solves for the pile~top displacement and for
the axial force within a single pile for a given pile-top load or for a
forced pile-top displacement,

The program consists of the main program AXP and the subroutine
TRANS, The theory of infinite difference method employed in the main
program AXP is developed in Chapter IV, The subroutine TRANS interpo~
lates the load transfer and the point resistance from the given curves.

The program AXP is capable of dealing with both downward loading and

upward loading.
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C.2 Flow Diagrams

Flow Diagrams for Main Program AXP

Start

Read and Print Data \j

No

Set constants and starting values

Compute AE

Compute continuity coefficients

Compute axial pile displacement along the pile

Displacement
converged

Call TRANS to com-
pute load transfer
and point resist-
ance

Yes

Compute axial force
along the pile
i

i
i

Print out computation results ]

Stop



Flow Diagram for Subroutine TRANS

Start

Locate two load transfer curves
above and below the station

Interpolate in each load transfer curve

Interpolate between two load transfer curves

Compute point resistance by interpolating the point
resistance curve
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A(103)

AE (103)

AREA(5)
B(103)

BC
BETA(103)
CIRC(5)

DEPTH(11)

DISPL(L1, 20)

GAM

H

HN

INC

KEEP

KFLAG

KPOINT

NBC

NDS

NLT

NPOINT(11)

PER(103)

PR(20)

C.3 Glossary of Notation for Program AXP

continuity coefficient

product of cross-sectional area of a pile and
the Young's modulus

cross-sectional area of a pile
continuity coefficient

boundary condition at pile top

gsecant modulus of load transfer curve
circumference of a pile

distance from pile top to depth where a load
transfer curve is given

pile displacement

secant modulus of point resistance curve
increment length of a discretized pile
total length of a pile

number of discretized element of a pile

input switch for repetitive data

signal to notify the excessive pile displacement

number of points in a point resistance curve

code to specify the force boundary condition or

the displacement boundary conditicn
number of different sections in a pile
number of load transfer curves

number of points in a load transfer curve
perimenter of pile at discrete station

point resistance



Q(103)
SETTL (20)
TITLE (20)
TR(11, 20)
XX1(5)

XX2(5)

Y (103)

YR (103)

YOUNG

295

axial force in a pile

pile tip settlement

alphanumeric variable to store the title of run
load transfer on a pile

distance from pile top to top of a pile section

distance from pile top to bottom of a pile
section

axial pile displacement

dummy to keep the previous axial pile displace-
ment

Young's modulus
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C.4 Data Coding for Program AXP

The input data for the program AXP consists of the following groups.

TABLE A Title of the run

TABLE B Boundary condition at pile top

TABLE C Pile properties

TABLE D Load transfer curves

TABLE E Point resistance curves

TABLES A and B must be furnished for each run. TABLES C, D, and E
can be omitted for the repetitive run by properly setting the input
switch, in which case the data from the previous run are used,

The general deck structure of the input data are shown in the following.

Deck Structure of Input Data for Program AXP

TABLE A TITLE OF RUN

Card AI one card
TABLE B BOUNDARY CONDITION AT PILE TOP AND INPUT SWITCH

Card BI one card
TABLE C PILE PROPERTIES

If B2 = 0, skip TABLES C, D, and E

Card CI one card

Card CII C3 cards
TABLE D LOAD TRANSFER CURVES

Card DI one card

Card DII one card

D1 sets

Card DIII D3 cards



2597

TABLE E POINT RESISTANCE CURVE
Card EI one card
Card EIT E1l cards
To start a new run immediately continue TABLE A of next run, To

stop the run add two blank cards at the end of data deck.
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Data Coding Form for Program AXP

The general instructions for data coding may be referred to A.4.
TABLE A Title of Run
Card Al
Al 1 to 80 Alphanumeric description of each run

TABLE B Boundary Condition and Input Switch

Card BI
BlL 5 Code to specify the type of boundary condition to
be entered in B3. 1If Bl = 1, force b.c. is entered.
If Bl = 2, displacement b.c. is entered.
B2 10 Switch for inputting the subsequent data. If B2 =1,

TABLES C, D, and E must be furnished., If B2 = 0,
no input for TABLES C, D, and E, in which case the
data from previous run are used.

B3 11 to 20 Boundary condition. Enter axial load on pile top,
pound (downward +), if Bl = 1, Enter pile top dis-
placement, in (downward +), if Bl = 2,

TABLE C Pile Properties
If B2 = 0, skip TABLES C, D, and E
Card CI
Cl 1 to 10 Total length of pile, inch

C2 11 to 15 Number of increment by which the pile is divided
into finite elements (maximum 100)

C3 16 to 20 Number of different sections in the pile (maxi-
mum 5)

C4 21 to 30 Young's modulus of pile material, psi
Card CII

Different sections in a pile are listed from top
to bottom
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C5 1 to 10 Depth from ground surface to top of a pile section,
inch

C6 11 to 20 Depth from ground surface to bottom of a pile
section

C7 21 to 30 Cross-sectional area, inch
C8 31 to 40 Perimeter of pile, inch
TABLE D Load Transfer Curves
Card DI
D1 l to 5 Number of load transfer curves (maximum 10)
Card DII
The load transfer curve is listed from pile top to
tip or deeper. For the pile portion standing above

the ground surface, assume 0 load transfer.

D2 1 to 10 Depth from pile top to point where a curve is given,
inch

D3 11 to 15 Number of points in a curve (maximum 20)

Card DIII

List the point in the order of from negative or
zero displacement to positive displacement.

D4 1 to 10 Load transfer, psi (acting upward on pile wall +)
D5 11 to 20 Pile displacement, inch (downward +)
TABLE E Point Resistance Curve
Card EI

El 1 to 5 Number of points in the curve (maximum 20)
Start listing the point from (0, 0)

Card EII
E2 1 to 10 Point resistance, pound (upward +)

E3 11 to 20 Pile tip movement, inch (downward +)
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C.5 Listing of Program AXP
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PROGRAM AXP (INPUT,uuTPuUT)
OIMENSION TITLE(20)y XX1(5)s XX2({5)y aRFA(S), ~IRCIS)s YK{103)

1

A{103), B(103),y AE(103y. Q(1ad)yy pER(1D03)

COMMON s RLGCK]1 / INCy TNCls Hy RETA(103y. GAM, TNCzs INC3, KFLAG
COMMON / BLOCKZ 7 NLTs NDEPTH(11)? NPOTNT(11)s THRIL1y 20) s
1 DISPL(11+20)y KPOINTy 0120y, SETTL(Z2U)y Y (103
C=====AXTALLY LOACEV PILE whITTEN BY KATS AwOSuIKA AHGUST 1970
c NHC = | FOR LUAD AT PILF TOP  NBC = » Fn’ ISoL AT PLLE TOP
501 FQRMAT 2044 )
Sue FORMAT ( 4E10e3 )
503 FORMAT Fl0.3y 215, E10,3)

S04 FORMAT
509 FQRuAT
506 FCORuaT

1
S07 FORMAT
508 FORMAT

—~ o~

5091FCQMAI
$1U FORmMAT
1

S11 FORMAT
512 FORMAT
513 FORMAT
514 FQRMAT
515 FORMAT
$20 FORMAT
S22 FORMAT
524 FORMAT
530 FoRmAL
S31 FORMAT
532 FCRRT
533 FORMAT
534 FORMAT
539 FORMAT
536 FQRwmAT
537 FORMAT
54U FORmAT
541 FORMAT
$4é FOR#AT
Cm====8TaR] REA
100 rEAU S01,
READ 5139

IF

IF ¢
REAL 503,
REAL 502

——

S S~ .~ e g . . .y~~~

1Hls SX9 2044 )
//710Ay 16HLOAD AT PILE TOP, F18, 1y &4 B )
7 114y 9HLENGTH,INs 4X, 11HINCRF4ENT , 13uNU OF SECTION,
BXe GHYUUNGIPSI )
BXs L1503 SXs IS5 BXe ISy TYr F1543 )
/7 13Ky TRSECTION, 6Xy THFROM,IN, 10X, SHTO,IN, 8X,
IHAREASSQING 66Xy gHCIRCHIMy TN )
12%y I3 3Xy 4E15.3 )
/ 9Xs 3MSTAy 6Xy BrDEPTHsIN, TX, HHDIGPLsINe TX,
BHFORCE, LR, 4Xs 11H_ TRANS,?SI
AXs (5 4E1%43 )
7/ 10Rs 27HMODULUS UF POINT RrSISTANCE, F16,3% TH LRr/IN )
?ISQ E10'3 )
7/ 10As 1SHND OF ITERATION, 15 )
/ 1UAy 24MDISP ACEMENT AT PYE TNPy F15,3, 61 INCH )
15 )
Flreds 15
PEIU3 )
/77 SXs 20WL0OAD TRANSFER cURVES )
10As 16HNUMKER AF CURVESs IS )
8Xs 159 12HUEPTHsINCHy E1143, 4¥s 13HnUm OF POINTS, I5 )
32ry HHLCADGPST, 12XKs gHDTISP] o Tn )
/777 SRy 22KRPOINT RESISTANCE rURuF )
10Xy [ oHAUMBER OF POINTS, IS )
2Txy 13IMRESISTANCEGL By 9X, 11HTT® MOVFsIN )
152y 159 2E20,3 )
77777 SXy 4OHPQEVIOUS pATA FaR pILE anD SO1L ARE USEDs//)
/77 9Xe 3THCOMPUTATION NF DIGPACEMENY AND FURCE )
77777 %Xy 39HDOES NOT CONVERARE AFTER 1000 TTERATIONS )
DING VAT
{ TATLE(I)s T = 19 20 )
NECs KEEP, BC
RC k@, 0 ) GO TO 9999
KEEY «EQ@es 0 ) GO TO 169
Hhy INCoe NDS. YOUNG
{ XAL(D)y XX2(1)s AREA(I)y rlRer(l)y v = 1, NDS )

C===*=REay IN LOAC TRANSFER CURVES

HEAD S20+

NLT .
NLTE 3 NLT « )

LU 171 1 = 29 NLTI

READ 522,

READ 923,
171 CONTI

DEFIH(I) s NPOINT(I)

INCEA & NPOINT(I)

t TR(Is J)o DISPLILIs JYs J e 1, INDE¥ )
NUE

ge=====REau IN POINT RFESISTANCE CURVE

READ D520
REAL 523y

KFOINT
 Pr(I)s SETTL(I)s I = }+ KPOTNT )
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164 CONTINUE
ComwewwDRIN] QUT DaTA
PRINT Sva, ¢ TITLE(D)y 1T = 1y 20 )
1IF { NBC oEGe 1 ) 60 TO 104
LU 10 109
104 PRINT 508, wC
GO I'n lae
105 PRILT 515, KC
106 CONTInUE
IF ( KEEP «FGs 0 ) 60 TU 161
GO To 162
161 PRINT B&g
G0 TO 163
162 CONTINUE
PRIN! SUs
FRINT 507, KNe INCy NDS, YOUNG
PRINT S08
PRINT S509¢ t Lo XX111)e xX2(I)s ARFA(T)y FIRC(T)s I = 1y NDG 3
C=====PRIn! OUT LCAU TRANSFER CURVES
PRINT 830
PRIMT 831, NLT
DU 107 I 3 24 NLTI
1 R S |
PRINT 532, L1Mle DEPTH(1), NPOINT(I)
INCEX & NPOINT (YD)
PRInNT 533
PRINT §374 ( Je TH{Is J)y DISPL{Ts JYo J & ls INPEX )
107 CONT INUE
C=====PRIn[ OQUT PCINT RESISTancE CURVE
PRINT 534
PRIAT 535, kPUIAT
PRINT B34
PRINT 837y ( Ls PRITYs SETTL(I)y 1 ® 19 wPOINT )
163 CONTINUE
Cmmwe=SET INITIAL valLyES aAND CONSTANTS
KFLAL = ¢
INCL = INC ¢ )
INCE = INC ¢ 2
INC3 =2 INC + 3
ITER = O
TOL = 0400000001
GAV = 1000000,0
XINC a3 INC
H 3 AN / XINC
HEZ2 3 ¢ % ¢
NEPTH({1) = =1,0
MNPCINT (1) = 2
TR(1* 1) = 0.0
TRiley 2) B8 0.0
DISPL(lsy 1) = «10040
DISPL(lY 2) = 10040
O 101 1 = 2¢ INCZ
RETAL(L) = 0,0
YK(I) 3 Qa0
X1 3 [ = 2
7 = Al # H
LU 1n2 J & 1l NOS
1F (7 JLEe XX2(J) ) GO TO 103
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102 CONT INYE

103 AE(I) = YQUNG & AREA(D)
PERK (L) = CIrCt

101 CONTINUE

AE (L) = AE(2)
AE(INC3) = AE(INC2)
Cew===STAxT SOLUTION OF DIFFERFENCE EQUATION
lle CONTINUE
DO 119 I = 24 INCZ
AR = 0,25 » AE(T¢1) + AE(I) o 0,25 # AE(I=})
RE = =RETA(I) & PER(I) # WE2 = 2,0 # AE(D)
CC ® m(e25 & AE(I+1) ¢ AE(T]) ¢ pne25 ®# AF(1al)
IF (1 EGe 2 ) GO To Ll10
G0 To 111
110 IF ( NHBC +EGe 1 ) GO TO 114
GO To 115
114 NENOM o ey
Al2) = BC # w /7 AE(2)
B(Z) = 1.0
60 To 119
115 Al2) = BC
B(Z2) & (a0
G0 Ty 119
111 I¥ (1 JEW. INC? ) 60 TO 112
NENUM & =HB = CC* d(l=1)
A(I) = CC ® a(1=1) / DENOW
B{I) = AA / DENOM

60 To 119
Co====CALC Y AT LAST STaTION
1ie NEANOM = GaM # o / AE{INC2) ¢ 1l.n = R{INC])
Y({INC2) 2 A(INC1) / DENOM
119 CONT INUE

Co====SOLVE FUOR ¥ AT ALL STATIONS
LO 129 I = 1 INC
J 2 INCe = 1
Yiu) 3 A(J) + B(J) % Y(dsl)
129 CONT INUE
Cu~w==CHECK CONVERGENCE OF Y
DO 130 I = 29 INCZ
NDD = aBs ( Y(1) = YK{1) )
IF ( DDD «GE. TOL ) GO TO 131
139 CONTINUE
GO To 141
131 CALL TRANS
IF ( KFLAG JEGe 1 ) GO <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>