g,

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report Nec.

953-6

2. Government Accession No.

3. Recipient’'s Catalog No.

4. Title ond Subtitle

Actuator Program For
Frontage Road Control

5. Report Date
October 1974

6. Performing Organization Code

7. Avthor's)

Byron White

8. Performing Orgonization Report No.

953-6

9. Performing Organization Nome ond Address

Texas Transportation Institute
College Station, Texas 77843

10. Work Unit No.

11. Controct or Grant No.

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

Federal Highway Administration
Department of Transportation
Washington, D. C. 20590

4. Sponsoring Agency Code

15. Supplementary Notes

Research Study Title:

Dallas Corridor Study

16. Abstroct

A computer program that will operate in minicomputers located at diamond
interchanges along the frontage road of North Central Expressway in Dallas
is described. The minicomputers, referred to in this report as actuators,
will be part of a larger computer control system that will coordinate the
operation of the frontage road signals. This report describes the actuator
program both functionally (i.e., for the traffic engineer's information)

and technically (i.e., for the computer specialist's information).
program logic, which is shown in detailed flow charts, may be useful in
other computer controlled traffic applications.

The

17. Key Words . :

Actuator, minicomputer, program
telemetry, task, frontage road
system, diamond interchange;
emergency controller

4

18. Distribution Stotement

19. Security Classif. {of this report)

None

20. Security Classif, (of this page)

None

21. No. of Pages 22. Price

fForm DOT F 1700.7 (s-69)

ACTUATOR PROGRAM
FOR FRONTAGE ROAD CONTROL

Prepared by

Byron White
Systems Analyst

Texas Transportation Institute
Texas A&M University
College Station, Texas

October 1974

Prepared for
Federal Highway Administration
Department of Transportation
Contract No. DOT-11-7964

TABLE OF CONTENTS

1.0 TINTRODUCTION . e e e e e e e e e e

1.1 Background
1.2 Scope of Report e e e 8 s s e e .
1.3 Structure of Report
2.0 TFUNCTIONAL DESCRIPTION OF ACTUATOR PROGRAM . .,

2.1 TInitialization and Restart . . . « . « « .+ + .

2.2 Task Control . s e e s e e e e e e e e

2.3 Telemetry Control e e e e e e e e e .

2.4 Detector Processing . « ¢« ¢« + &« ¢ + o+ 4 .

2.5 Signal Light Processing . . « .« « « « ¢« « « &

2.6 Emergency Control o e e e e s

3.0 TECHNICAL DESCRIPTION OF ACTUATOR PROGRAM

3.1 Actuator Computer Hardware Description
3.2 Programming Problems, Constraints and Notes . .
3.3 Program Segments 0 and 8, Common Definitions . .
3.4 Program Segment 1, Common Subroutines . .
3.5 Program Segment 2, Initialization, Interrupt, Task
3.6 Program Segment 3, Magnetometer Processing (TASKO)
3.7 Program Segment 4, Detector Processing (TASK1) .
3.8 Program Segment 5, Signal Light Processing (TASK2)
3.9 Program Segment 6, Emergency Control (TASK3) . . .
3.10 Program Segment 7, IDLE TASK . « « &+ « « « & . .
4.0 PROGRAM TESTING . +. & + &« « « & o o s o & .

4.1 Program Configuration« « « « « .« . .
4,2 Program Checkout Variables . + + « « + o« « o &

4.3 Checkout Procedure . . . + « « « & « & .

LUt
e * e »
S WO

o
o

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D -~
APPENDIX E
APPENDIX F
APPENDIX G

REFERENCES .

PROGRAM LOADING AND OPERATION
Program Preparation
Loading the Actuator . . ¢« « + « « « &+ « &

Pin Matrix Operation e e e e e
Clearing a '"'Stall Alarm" Condition « e e

ACTUATOR PROGRAM FLOW CHARTS

ACTUATOR PROGRAM "COMMON' DEFINITIONS

INPUT/OUTPUT BIT ASSIGNMENTS
TELEMETRY FORMAT BIT ASSIGNMENTS
ACTUATOR PROGRAM SEGMENTS
ACTUATOR PROGRAM LISTINGS

SYSTEM CONFIGURATION PARAMETERS

Control .

PAGE NO.

ABSTRACT

A computer program that will operate in minicomputers located at
diamond interchanges along the frontage road of North Central Expressway
in Dallas is described. The minicomputers, referred to in this report
as actuators, will be part of a larger computer control system that
will coordinate the operation of the frontage road signals. This report
degcribes the actuator program both functionally (i.e., for the traffic
engineer's information) and technically (i.e., for the computer specialist's
information). The program logic, which is shown in detailed flow charts,

may be useful in other computer controlled traffic applications.

DISCLAIMER

The contents of this report reflect the views of the author who is
regponsible for the facts and the accuracy of the data presented herein,
The contents do not necessarily reflect the official views or policies
of the Federal Highway Administration. This report does not constitute

a standard, specification or regulation.

1.0 INTRODUCTION

1.1 Background

"Actuator" is the term applied to the minicomputers located in control
cabinets at each frontage road intersection. Each actuator is a general pur-
pose programmable computer known as a Nova 1210 manufactured by Data General
Corporation. The actuators have three broad purposes:

1. To communicate the status of the intersection hardware to
the network control computers.
2. To control the traffic signals as commanded by the network
control computers.
3. To serve as a back-up controller in the event of a communi-
cations failure with the network control computers.
The use of an actuator at an intersection was described by Charles W. Blumentritt
in Reference 6. Many of the concepts used in the current actuator program were
derived from that report.

1.2 Scope of Report

This report describes the computer program for the frontage road actuators.
No attempt is made to cover other parts of the frontage road system. Figure 1.1
shows the relationship of the actuators to other frontage road control system
components. Reference 3 describes each element of the control system in detail.

The actuator program was constructed in a modular fashion that will permit
its use in the future arterial intersection actuators with very minor changes.
These changes will be to various tables that define detector inputs, signal

light outputs, and emergency control logic.

Page 1

HOST
COMPUTER

1/0
COMPUTER

DATA
SET

Page 2

FRONTAGE ROAD CONTROL SYSTEM

DATA
SET
SATELLITE
ARTERIAL NETWORK
FREEWAY CONTROL | CONTROL
MULTIPLEXER COMPUTER MULTIPLEXER | COMPUTERS
ACTUATOR ACTUATOR
INTERSECTIONS NO. | o o o o - NO. IS
FIGURE 1.}

1.3 Structure of Report

Section 2 is a functional description of the actuator program. That is,
it tells what the program does but does not go into detail about how each
function is accomplished. It is intended for all readers of this report.

Section 3 is a technical description of the actuator program. It is
intended for the computer systems analyst or programmer who is interested in
the details of how each specific task was accomplished.

Section 4 describes the testing procedure that was used to verify the
various program functions.

Section 5 is a detailed description of the program loading and operating

procedure for the actuator once it is installed in the field.

Page 3

2.0 FUNCTIONAL DESCRIPTION OF ACTUATOR PROGRAM

Figure 2.1 is a block diagram of the inputs and outputs of the actuator.
It is the function of the actuator program to react in a timely manner to all
the inputs such that the proper outputs are produced. The following para-
graphs describe the various subfunctions of the actuator program.

2.1 1Initialization and Restart

When the program i1s first started or when power 1s restored after an
electrical power failure, the program must be initlalized. This consists of
placing the intersection on flash, synchronizing the communications with the
arterial multiplexer, setting program variables to their initial wvalues, and
initiating the various program tasks.

2.2 Task Control

The actuator program consists of several tasks, each with different pri-
orities and execution rates. For example, speed detector processing is a high
priority task that is executed every .0l second, while stop-line detector pro-
cessing executes at a lower priority and less often. It is the job of task
control to schedule each task for execution at the proper time and to oversee
the execution of all tasks. It is the "operating system" for the actuator.

The task controller is also responsible for resetting the stall alarm, a device
that causes the intersection traffic lights to flash if it is not periodically
pulsed by the actuator.

2.3 Telemetry Control

The telemetry control section of the actuator program is responsible for
all communication with the arterial multiplexer computer.
Communication is over a voilce-grade telephone l1ine with a data set, con-

sisting of a transmitter and receiver, at each end. Transmission and reception

Page 4

TELEMETRY
INPUT

CABINET AND
SIGNAL STATUS
SWITCHES

MAGNETOMETER
DETECTORS

LOOP
DETECTORS

PIN
MATRIX

SIGNAL LIGHT
CONFIRMS

ACTUATOR

B TELEMETRY
OUTPUT

SIGNAL
LAMPS

STALL

— ALARM

ACTUATOR

FIGURE 2.1

INPUT/OUTPUT -~GENERAL

by the actuator can be simultaneous, since its transmitter and receiver
operate at different frequencies.

All data is transmitted and received in a serial fashion. The timing
and packing/unpacking of each data bit is done under actuator program control.
This allows for complete flexibility in the telemetry message format, size and
speed.

The telemetry messages are sent and received in an asynchronous manner.
Therefore, there must be a way for the receiving computer to distinguish the
start of a message. This is done in the actuator by sending two consecutive
stop bits ("1" bits) at the end of the message, and a start bit ("O" bit) at

the start of the next message. A typlical message might be diagrammed thusly:

FIRST LAST §TOP
DATA DATA BITS
BIT 7 MSEC. LIS A,
———— z) 1 L [
1) 14 1
SERIAL BIT «f—
STREAM

4£f)' \ —~
START BIT

9 DATA BITS
Each message is 12 bits in length., Each bit is sent in 7 milliseconds (.007

second) for a message transfer time of 84 milliseconds, or about 12 messages
per second.

The actuator receives telemetry data from the arterial multiplexer con-
tinuously. The input data is generally a command directing the actuator to
perform certain functions. The most commonly sent command directs the actuator
to place the traffic signals in one of the permitted configurations. Appendix

D shows the meaning of all input bits.

The actuator sends telemetry data to the arterial multiplexer continuously.

This output data consists of intersection status information, such as traffic

Page 6

signal status, detector actuations, etc. Appendix D shows the meaning of all
output bits.

The actuator checks each telemetry input bit for transmission errors, such
as telephone line noise, and informs the network control computers if any are
encountered. Also, each input message has a check or parity bit that should
make the total number of one bits in the message an odd number., 1If the number
of one bits 1s even, the entire message is ignored. For security purposes, the
actuator will not act upon a command from the network control computers until
two identical commands are received consecutively.

2.4 Detector Processing

As Figure 2.2 shows, there are three types of detectors used in the front-
age road system. The method of processing each type is given in the following
paragraphs.

2.4.1 Magnetometers

These detectors are located about 300 feet back from the intersection stop-
line in each approach lane. Each time a thicle activates one of these detectors,
a volume bit is set in the telemetry output word for that detector. The time
that the detector is occupied by each vehicle is used to update an average speed
for each approach to the intersection. This new average speed is also sent via
telemetry, but only if it is different from the previously sent average speed
for that approach.

2.4.2 Loops

These detectors are located at the stop-lines for each approach to the
intersection and in left-turn bays 1f present. A volume bit is set in the
telemetry output word whenever a vehicle enters the loop. An occupancy counter

is incremented every .05 seconds that the vehicle is in the loop. Whenever this

Page 7

g 28eg

FIGURE 2.2

TYPICAL FRONTAGE ROAD INTERSECTION DETECTOR LOCATIONS

@ MAGNETOMETER

@ ===f» PEDESTRIAN

PUSHBUTTON

occupancy counter overflows (currently every 5 seconds), an occupancy bit is
set for telemetry output.

2.4.3 Pedestrian Pushbuttons

Pedestrian pushbuttons are located on each corner of the frontage road
intersection. Whenever a pedestrian activates the pushbutton, a volume bit
is set in the telemetry output.

2.5 Signal Light Processing

This is the most critical task of the actuator program, since it directly
affects the safety of both vehicular and pedestrian traffic. For this reason,
much effort was expended in making this portion of the program extremely flex-
ible and self-checking.

2.5.1 Signal Hardware

The signal hardware consists of:

1. Red, green and amber lights.

2. Walk and don't walk lights.

3. Solid state switches that permit the actuator to switch
AC power to the traffic lights.

4. Flash circuitry that allows the actuator to place the
signals in flash mode.

5. Sensor circuits that allow the actuator to sense the
on/off status of the switches that control the traffic
lights.

2.5.2 "Phase" Versus "Movement Approach"

There are two generally used methods for describing the configuration of
the traffic signals at an intersection. Assume a simple intersection that has

traffic signals for the following traffic movements:

Page 9

4 5 — -

Il LEFT TURN 2. LEFT TURN 3. EASTBOUND 4, WESTBOUND 5. SOUTHBOUND 6. NORTHBOUND
EAST BOUND WEST BOUND

In the "phase" method, the intersection might be described as 5-phase

because the following five signal configurations are allowed:

—_—

In the "movement" method, the intersection would be described as 6-move~-
ment since signals exist for six separate traffic movements as shown above.

However, the following configurations would be allowed:

2 3 4 5

m__..

That is, the fiye valid phases as well as each separate movement alone would
be allowed.

The network control computers must communicate to the actuator the desired
state of the traffic signals. If the "phase' method were used, the commands

might appear as follows:

Page 10

Time (Sec.) Command Desired Configuration
0 Phase 1 _/'/
1 Phase 1 4 r
- Phase 1 _—"5‘(’

10 Phase 4 Ambers
- Phase 4 Ambers
14 Ph 4 -
ase n

The rules for the actuator to use under this 'phase' method would be:
1. Remain in commanded phase as long as that phase
number is being received.
2, When a different phase number is received, display
the appropriate ambers for a preset time. Then
display the greens for the new phase. Ignore new
commands during amber display, since each phase must
be retained for a minimum time period.
If the "movement" method were used the commands would be:
Time (Sec.) Command Desired Configuration
0 Movements 1 and 2 _/('/'
1 Movements 1 and 2 _/' ’/

- Movements 1 and 2 _’ r

10 Movements 3 and 4 Ambers
- Movements 3 and 4 Ambers
14 Movements 3 and 4 =

—

The rules for the actuator to use under this "movement'" method would be:
1. Display the green movements given in the command

unless they conflict.

Page 11

2. When a different command is received, display ambers for
the movements that existed in the old command but are not
in the new command. Display green movements in the new
command unless they conflict with the ambers.

The "movement" approach is by far the more flexible of the two methods,
since it allows each possible green movement to be displayed separately or
in conjunction with other valid green movements. The following example in
Table 2.1 illustrates this flexibility. 1In the example, the movement method
allowed the main street greens to be displayed 3 seconds earlier than the
phase method. This is due to the fact that the phase method does not allow
each movement to be controlled individually, and thus the amber required to
go from phase 1 to phase 3 had to "time-out" before a new command could be
accepted.

The "movement' method was therefore used in the actuator for the fol-
lowing reasons:

1. Each movement can be controlled independently of all
others.

2, Each movement may have its own times - minimum, maximum,
extension, amber.

3. The intersection may be allowed to '"rest" in all red. Then
only a movement with demand may be displayed. This feature
might be used during periods of light traffic.

2.5.3 Signal Light Confirm Checking

Hardware to allow the actuator to sense the on/off state of the solid
state switches that control the traffic signals is a standard part of each

intersection. This allows the actuator program to determine if the signal

Page 12

TABLE 2.1

EXAMPLE: At t = 0, movements 1 and 2 are displayed. When demand ends on movement 1, it is desired
to begin movement 4. When demand ends on movement 2, it is desired to begin movement 3.
Assume 4 second ambers.

€1 28eg

Time (Sec.)

Situation

Movement Method

Phase Method

0 Demand on Command movements 1 & 2 Command phase 1
movements 1 & 2 /r‘ /r
1 Demand ends Command movement 2 Command phase 3

on movement 1

)

mels

Demand ends

on movement 2

Command no movements

AMBER AMBER

Amber in progress

Cannot accept new command

U df—————

Command movement 4

-
@AMBER

Command phase 4

-

AMBER

Command movements 3 & 4

-
—

-

Amber in progress

© Wt o

Command movements 3 & 4

—»>

Command phase 4

—

lights are operating as commanded. The state of all signal lights is sampled
every 0.1 second and the following action is taken 1f any error persists for
two consecutive samples:
1. If any green is on when it should be off, put intersection
on flash.
2. If any green is off when it should be on, send error
indication via telemetry.
3. If any red is on when it should be off, send error
indication via telemetry.
4., If any red is off when it should be on, put intersection
on flash. |
5. 1f any amber is on when it should be off, put intersection
on flash.
6. If any amber i1s off when it should be on, send error
indication via telemetry.
That is, any error that might lead a driver to believe he has the right-of-
way when he doesn't will cause the intersection to flash.

2.5.4 Command Decoding and Changing Signals

The portion of the actuator program responsible for actually controlling
the signal lights can accept commands from two sources. Under normal circum-
stances, commands are received from the telemetry input stream, These command
codes are decoded according to the chart in Appendix D. However, under abnormal
circumstances such as when communications via the telemetry link are inter-
rupted or after an electrical power failure, signal commands are accepted from

the emergency control section of the actuator program.

Page 14

In either case, the commands are checked for validity. Any attempt to
terminate a green movement before an absolute minimum time expires is invalid.
Any attempt to turn on conflicting greens 1f of course invalid. After the
command is checked, the signals are changed according to the rules given for
the "movement' method described in 2.5.2. That 1s, ambers are displayed for
a set time for each terminating green movement, and new greens are displayed
as soon as possible without causing conflicts. Whenever a new green is dis-
played, the pedestrian WALK light controlled by that green is displayed for
a set time.

Before any change is made to the signal lights, the following checks
are made on the new outputs:

1. Will the outputs cause a valid (i.e., nonconflicting)
green configuration to be displayed?
2. Will the outputs light one and only one color per
traffic movement?
If either test is negative, the actuator program performs an abort, which
causes the Intersection signals to flash.

2.5.5 Other Functions of Signal Control

The signal control section of the actuator program is also responsible
for:

1. Placing the intersection on flash if so commanded via
telemetry input or by a manual flash switch on the
intersection cabinet door.

2, Sending the intersection status to the network control
computers via telemetry (i.e., green configurationm,

flash status).

Page 15

3. Sending the status of various switches via telemetry
(i.e., police-panel switches, cabinet door ajar, inter-
connect functions).

4. Informing the network control computers if the last
command received was accepted or rejected.

5. Turning all signal lights dark if the signal shutdown
switch on the police~panel 1s set.

2.6 Emergency Control

This section of the actuator program drives the signal control section
in emergencies, i.e., when telemetry input commands are invalid or non-
existent,

2.6.1 Flash Control

When the intersection i1s placed on flash for any reason, a flash timer
is initialized to time-out the flash. Emergency control is responsible for
counting-down this timer and terminating the flash mode at the proper time.
The various ways that intersection flash is initiated are:

1. Restart after a power failure. Flash is terminated
after the restart flash time expilres.

2. Signal confirm error. TFlash is terminated after a
minimum flash time expires. However, if such errors
occur too frequently, the intersection will be placed
on "permanent" flash until the program is reinitialized.

3. Manual flash switch in the cabinet is set. Intersection
wlll flash for a minimum time, and then remain flashing

until the switch is reset.

Page 16

4. Telemetry input flash command. Flash will stay on for
a minimum time, and then continue until teiemetry input
command indicates 'no-~flash."
After the flash is terminated, the emergency signal control mode is initiated.

2.6.2 Emergency Control Patch Panel

Located on the front panel of the actuator is a 'patch panel or '"pin
matrix" that can be read by the actuator. By inserting or removing pins from
the panel, one can change the various times used by the emergency control sec-
tion. Appendix C shows the bit assignments of the panel and Section 5 gives
detailed instructions on how to use the panel, Briefly, the pin matrix allows
the operator to vary the maximum, minimum and extension times for each phase
used by emergency control. In addition, the actuator console data switches
are used to change the amber times for each movement.

2.6.3 Emergency Control Logic and Phasing

The emergency control logic for the actuator is very simple for two
reasons:

1. The actuator memory size is very small (2048 words) and a
more sophisticated control algorithm would require more
memory.

2. There was no need for a more sophisticated technique, since
the emergency control logic will only be used as a back-up
controller when the network computer communication link is
broken,

The signal phasing selected was basically that described in Reference
2, and is commonly known as "TTI Phasing." 1In the actuator program, the

phases are numbered as shown in Figure 2.3.

Page 17

PHASE

WEST SIDE EAST SIDE

NO. ("A" SIDE) ("B" SIDE)
¥
—>
I -
2 —D
; +— <t
x~ —D
4 <t—— 4
x .
G+— A
5 ——>
6 __}7
X —PD >
7 L/Q | N

FIGURE 2.3 EMERGENCY CONTROL PHASING
PAGE 18

Phase 7 is used at only one intersection, Forest Lane, which has a two

way frontage road on the west side. The rules used by the actuator in ef-

fecting emergency control are:

1.

Whenever it is necessary to begin emergency control, begin
with phase 1 if the intersection is on flash. Otherwise,
begin with the phase that includes all movements that are
currently green at the intersection. If no such phase
exists, enter flash mode for the minimum time period.

The maximum, minimum, extension and amber times will be
selected from the computer front panel. However, phases

2 and 5 will have maximum = minimum time with no extension
allowed. The times for phase 7 at Forest Lane will be
stored in the actuator.

Each phase will be displayed for the minimum time. There-
after, each actuation of the appropriate stop-line loop
detector (marked with an asterisk in the phasing diagrams)
for that phase will cause the phase to be displayed for
one extenslon interval from the instant of actuation.
However, 1f after the minimum time has expired no actu-
ation occurs during an extension interval, that phase will
be terminated. The clearance interval will be displayed,
after which the next sequential phase will begin.

As mentioned in Section 2.5.4, walk light processing is
handled in the signal processing section. The emergency
control section simply commands the signal control section

to display the appropriate green lights for each phase.

Page 19

Emergency control is invoked under the following circumstances:
1. After flash mode is terminated for any reason.
2, If a new valid telemetry command is not received for a
60 second period.
3. A command is received via telemetry to begin emergency
control.
Emergency control will continue in effect until neither event listed
in items 2 and 3 above i1s present and the current emergency control phase

has reached termination.

Page 20

3.0 TECHNICAL DESCRIPTION OF ACTUATOR PROGRAM

The flow charts in Appendix A have been carefully constructed to be an
accurate description of the actuator program for frontage road control.
Scattered throughout the flow charts are narrative comments that explain the
function of a group of boxes. These comments can be perused for a general
understanding of the program flow. Thils section should be used along with
the flow charts and program listing in Appendix F to obtain detailed knowl-
edge about the internal structure of the actuator program., It should be
noted that the program logic described in this section and in the flow charts
could be applied to any computer used for traffic control, not necessarily
Nova computers.

3.1 Actuator Computer Hardware Description

The specifications for the actuator and related 1/0 equipment are given
in Reference 3. The computer hardware characteristics are listed here for
convenience.

1. The actuator is a general purpose minicomputer manufactured
by Data General Corporation. It is commonly referred to as
a Nova 1210 and is described in Reference 1.

2, The CPU has a general instruction set common to all of the
Nova computers.

3. It is equipped with a 16~-bit word, 2K (2048 words) read/
write core memory.

4, The memory cycle time is 1.2 microseconds. Arithmetic,
logical and branch instructions require 1.35 microseconds,

memory reference with accumulator 2.55 microseconds, memory

Page 21

10.

increment and decrement 3.15 microseconds, and I/0 instruc-
tions either 2.55 or 3.15 microseconds.

A real-time clock is provided that is capable of generating
interrupts at any of the following program selectable fre-
quencies: AC line frequency (60 Hz), 10 Hz, 100 Hz, or
1000 Hz.

Power fallure protection is provided. This insures that

an eléctrical power failure does not affect memory. It
also causes a processor interrupt when power begins failing,
and causes an automatic restart at location O when power is
restored.

Four 16-bit accumulators are provided. They are referred
to as ACO, ACl, AC2 and AC3. The last two, AC2 and AC3,
can also be used as index registers.

Page 0, which is the first 256 words of memory, can be
directly addressed from anywhere in memory. There are
three other direct addressing modes that allow an instruc-
tion to address 256 locations relative to 1) the program
counter, 2) AC2 or 3) AC3.

Any memory location can be indirectly addressed from any-
where in memory.

Each actuator has a standard front console. This console
cqntains data entry and function switches that permit manual
operation of the computer. Also provided is an automatic
program load switch which is used to initially load a boot-

strap loader.

Page 22

11. A plug is provided for connecting a portable paper tape
reader, which 1is used to load programs into the actuator.
in conjunction with the front console.

12. An 8x8 "pin matrix" is located on the actuator front panel.
Grounding pins can be inserted into any of the 64 slots for
external parameter programming. The actuator program can
input the matrix as four 16~-bit words. They are used to
select signal 1light timing values.

13. Digital input/output registers are provided as shown in
Appendix C. They are used to interface the actuator with
the intersection hardware,

1l4. A telecommunications interface is provided between the
actuator and a volce-grade telephone line. This allows
a 1-bit input and 1l-bit output for the actuator to communi-
cate with the network control computers.

15. A stall alarm is provided that must be pulsed periodically,
or the intersection flasher in the cabinet will be acti-
vated and any outputs by the actuator to the signal lights
will be ignored. The actuator resets this alarm by doing
an output to address 578. Once the stall alarm is activated,
a manual reset must be done before the actuator can operate
the signals.

3.2 Programming Problems, Constraints and Notes

The main problem in programming the actuator was that only 2K words of

memory were available. However, since the processor speed was much faster

Page 23

than necessary, it ‘was possible to make extensive use of subroutines and pro-
gram loops to conserve core. This allowed the program to contain all the
required functions for communicating with the network control computers, as
well as a traffic responsive emergency (back-up) traffic control section.
Currently the program uses all but 128 words of memory. Timing tests have
shown that only about one-third of the available time (i.e., CPU speed) is
required under the most extreme conditions.

Another constraint was the the program should be flexible enough for
use at many types of intersections with a minimum amount of alteration.
This necessitated the "task" method that is described later. Each separate
program function, such as telecommunications, speed detector processing,
emergency control, etc., was coded independently from other tasks. Also,
all detector bit assignments, emergency control phasing, and other inter-
section-related data were defined in tables. Thus, for conversion to
another type intersection, such as an 8~phase, all that 1s required is to
change these tables and the intersection—-dependent tasks.

A problem arose as the result of having a Nova 1200 computer with an
ASR 33 teletypewriter as the only program preparation and checkout device
available., With its low speed (10 characters/second) paper tape reader,
punch and printer, the ASR 33 was not suited for long input tapes. It was,
therefore, necessary to break the actuator program up into several different
segments that could be updated and assembled independently. The program
segments are shown in Appendix E. The Data General Nova Paper Tape Editor
program was used to prepare and later make changes to the tapes and punch
new tapes. The Data General Nova Extended Assembler was used to assemble

the individual tape segments after editing. Both of these programs are

Page 24

described in Reference 4. All programming described in this report was done
in Nova Assembly Language.

3.3 Program Segments O and 8, Common Definitions

Program segment 0, as seen in the listings, defines all "common" data
and variables, most of which are in page 0. Generally, this is data that
is referenced by more than one task or program segment. In some cases, it
is an array that must be indexed using AC2 or AC3. Every element defined
in this segment 1s listed as an entry point. All other program segments
are prefixed during assembly by segment 8 which defines all the 'common"
data as externals. Thus, all program segments have access to the 'common"
data in segment 0. Appendix B describes all "common' data in alphabetical
order. Program segment 8 also contains the definitions of input/output de-
vice codes used by the various tasks.

There are various parameters located throughout the actuator program
that might be described as system configuration parameters. These define
such things as the number of tasks, the number of bits in a telemetry message,
the minimum intersection flash time, etc. These parameters as well as their
location in the program are described in Appendix G should it ever be necessary
to alter them.

3.4 Program Segment 1, Common Subroutines

These are useful subroutines that can be called indirectly through a trans-
fer vector in page 0. The method of call, calling arguments and register usage,
are given in the program listings. The function of each subroutine is described
in detail. Many of these subroutines are reentrant, which means that multiple
tasks can use them independently.

3.5 Program Segment 2, Initialization, Interrupt, Task Control

Page 25

3.5.1 Initialization Section

The initialization section, entry point INITR, is entered after an initial
program load or when power is restored after an electrical power failure., This
section 1s responsible for assuring that the restart 1s carried out in an orderly
manner. First a 5 second delay loop is entered to allow the real time clock to
stabilize. During this loop the signals are placed on flash. All tasks are
initialized to start at theilr original addresses, the telemetry section is
initialized, and the real-time clock is restarted at 1000 Hz. A wait loop is
then entered until the first real-time clock interrupt occurs.

3.5.2 Interrupt Section

The interrupt section, entry point INTRP, is entered whenever any inter-
rupt occurs since its address is stored in location 1. The hardware stores
the contents of the program counter (PC) in location 0 when an interrupt
occurs. The interrupt routine tests the device flags to determine what type
of interrupt occurred and takes actlon as follows:

1. Power failure interrupt - A jump to the restart routine
(INITR) is placed in location 0. The intersection signals
are placed on flash. Then a CPU halt is executed to await
the power failure.

2, Undefined interrupt - If the interrupt is not caused by power
failure or the real-time clock, the device code on the inter-
rupt line is read and inserted into an instruction that clears
that device's busy/done flags. Interrupt is enabled and the
return is made to the interrupted PC.

3. Real-time clock interrupt - This section is executed every

millisecond when the done flag is set for the real-time clock.

Page 26

Two main functions are handled in this routine, telemetry

processing and task control.

a. Telemetry processing - There is a one bit input and one
bit output for two way communication with the network
control computers. These bits operate the data set
receiver and transmitter which are connected to a two
wire telephone line., Full duplex operation, i.e.,
simultaneous transmission/reception, 1s accomplished
by using separate frequencles for transmitting and
receiving. This one data bit interface means that all
communication must be in a serial fashion. The actuator
software is responsible for formatting the serial data
bits into a meaningful message.

(1) Telemetry format - Both input and output use the
same message slze and bit rate. A typical message
is shown in Figure 3.1. A message 1is continuously
sent and received at the bit rate shown (7 milli-
seconds) such that a new message occurs every 84
milliseconds. The timing is handled by the actuator
software, The various messages that can be sent are
shown in Appendix D. Since the telemetry input/out-
put is done in a serial fashion under software control,
independently of telemetry hardware, it is possible
to alter the message size, format and rate simply by
changing the program. Currently the telemetry messages

consist of 3 synchronizing bits and 9 data bits. Nine

Page 27

SERIAL BIT STREAM
DIRECTION OF FLOW

CHECK CHECK THESE
THESE - BITS

nin (M__R_K_) BITS ‘ I I——A—__ﬂl '

A rMNe
2
STOP BITS
"O" (SPACE) ol
—— 7
CHECK <7Dl
THESE MILLISECONDS
BITS
> ST
g ART
® BIT
N
[+ ¢}
FIRST
DATA LAST
BIT DATA
) BIT

84 MILLISECONDS

BIT TIME = 7 MILLISECONDS = 143 BITS/SECOND = 12 FRAMES/SECOND

FIGURE 3.1 TELEMETRY DATA FORMAT

bits were needed in order to send all of the inter-
section status information upstream to the network
computers. If in the future it is decided that less
status information will suffice, it will be possible
to revert to the more standard 8-data bit format by
altering the program.

(2) Telemetry input - This section is entered upon each
real-time clock interrupt (1 millisecond). The pro-
cessing proceeds as follows:

(a) When a start bit (space) is received (i.e., a
1 to 0 transition in the bit stream) check the
next five millisecond samples. If any 1 bits
occur, set an error flag.

(b) Sample the third millisecond of each data bit.
Then test the 4th and 5th millisecond samples.
If either 1is different from the 3rd, set error
flag.

(c) For each data bit that is "1", complement the
parity cell. After the last data bit check the
parity cell., If it is not "1". set the parity
error bit in telemetry output and set error flag.

(@) Check the 2 through 12 millisecond samples of the
stop bits, If any discrepancy occurs (i.e., "O"
bits), set a resync. flag and set the command

reject bit in telemetry output.

Page 29

3

(4)

(e)

(£)

(8)

After the last stop bit sample, check the error
flag. If set, set the command reject bit in
telemetry output. If not set, compare the cur-
rent input word to the previously received input
word. 1If they are equal, store the full telemetry
message in the telemetry input buffer and proceed
to (f). If they are unequal, skip steps (f) and
(8).

If the input word requests an abort/stall, call
subroutine ABORT.

If the input word requests a telemetry resync.,

set the resync. flag.

Telemetry output - This section is entered every 7th

time (i.e., 7 milliseconds) through the real-time

clock interrupt routine. The processing proceeds as

follows:

(a)

(b)

(c)

If the resync. flag is set, output a continuous
""",

If any bit is set in the priority output word
(Output Format 15), send the word and clear the
bit.

If output buffer (TOBUF) is not empty, remove
and send first word from it. Otherwise send

Output Formats 0, 1 and 2 sequentially.

Telemetry Input/Output Buffering - The events that

the actuator program is responsible for communicating

Page 30

to the network control computers will occur in a
random, asynchronous fashion. Many such events will
occur simultaneously or in a very short time span.
An example would be that several vehicles might
activate various detectors simultaneously. Since a
new telemetry word can be sent only every 84 milli-
seconds, some means must be provided for queueing
or stacking messages to be sent. The same argument
also applies to telemetry input, since messages might
be received faster than they can be processed. For
these reasons, a technique referred to as '"circular
buffering" was used for queueing telemetry messages.
A circular buffer can be diagrammed as shown in
Figure 3.2. Two subroutines are provided in segment
1 for adding or removing words from the buffer.
(Note: (A) = contents of A).
(a) Subroutine PUT - Puts words into buffer as

follows:

(a~1) Set w= (IN) + 1. 1If w = FIRST,

w = (FIRST).

(a-2) 1If w = (OUT), buffer is full.

(a=3) Store word into (IN).

(a~4) Set IN = w,
(b) Subroutine GET - Fetches word from the buffer

as follows:

(a=1) 1If (IN) = (OUT), buffer is empty.

Page 31

BUFER:

BUFER+n

FIRST:

IN:

OUT:

BUFFER AREA.
SIZE = n+l WORDS.
CAPACITY = N WORDS.

BUFER

BUFER+x

BUFER+y

POINTER TO FIRST OF BUFFER.

POINTER TO NEXT AVAILABLE
INPUT SLOT IN BUFFER.

POINTER TO NEXT AVAILABLE
OUTPUT WORD IN BUFFER.

FIGURE 3.2 CIRCULAR BUFFER FORMAT

PAGE 32

(a-2) Load word from (OUT).
(a-2) Set OUT = (OUT) + 1. 1If (OUT) = FIRST,
OUT = (FIRST).

This circular buffering technique allows each
task that places words into a buffer and the task
that removes words from the buffer to act independ-
ently of each other, since each task manipulates its
own pointer (IN or OUT). The subroutines PUT and GET
are totally reentrant which means that they can be
called from multiple tasks independently. Very little
overhead 1s involved in buffering since PUT requires
only 12 words and GET requires 11 words.

Task Control Processing - There are five separate tasks in
the actuator program, TASKO, TASK1l, TASK2, TASK3 and IDLE.
TASKO has the highest priority, IDLE the lowest. All of
the tasks except IDLE are executed on a timed basis. TFor
example, TASKO is executed every 10 milliseconds. IDLE is
actually a "background job'" that uses any excess CPU time
that the other tasks do not need. It was used only for
checkout purposes (see 3.10) and is not a part of the
operational program.
(1) Task description - A task is a section of code that
has an entry point, or starting address, performs

a repetitive function every time frame, and termi-

Page 33

nates with a call to a task scheduler. A task might

be diagrammed as follows:

TASKn: INITIALIZATION
LOOPn: REPETITIVE CODE
JSR @ZWAIT
JMP LOOPn

Initially, the task will be entered at TASKn. This
portion of code can be used to initialize task vari-
ables. The code beginning at LOOPn will be executed
every time the task 1s activated (i.e., at the task
repetition rate). The instruction JSR @ZWAIT indi-
cates to the task scheduler that the task is complete
for the current frame. The JMP LOOPn will be the

first instruction executed at the beginning of the

next time frame, and simply defines the task loop

that is to be repeated. An example of a task is the
section of code that processes the vehicle magnetometer
detectors (TASKQ). It is entered every 10 milliseconds
to scan these detectors and to compare their current
status to their status during the previous scan, and

to take appropriate action when any change occurs.

Then the task 1s terminated until the next 10 milli-

second frame.

Page 34

XEQPR:

STATE:

(2)

Task control parameters - There is a group of
variables in page O used for task control storage.
These variables are described generally in Appen-
dix B.
(a) Executing task index or priority (XEQPR) -
This is a one word variable that contains
the index of the currently executing task.
During task control processing it is loaded
into AC2 for the purpose of indexing the task

control arrays described below.

0 1y 2, 3 | 4 I 5 6 i 7 1 8 \ 9 " 10], lll 12l lBl 14l 15
TASK INDEX
The values are:
TASKO = -4, TASK1l = -3, TASK2 = -2
TASK3 = -1, IDLE = 0 (checkout only).
(b) Task state (STATE) - This is a four element array
that gives the current status of each task.
0,1 2,3, 4,5,6, 7

2 1
8 I 9 | 10 I 1117 1 | 3l 14 1 15

l | 1

STATE OF TASKO

STATE OF TASK1

STATE OF TASK2

STATE OF TASK3

Page 35

TIMER:

The values are:

0: Task is dormant. Used for checkout only.

1: Task is waiting for timer overflow.

2: Task timer has expired. Task is either

pending or in execution.

n (greater than 2): Timer for the task over-
flowed n ~ 2 times without the task
calling the scheduler (JSR @ZWAIT).

That is, n — 2 interrupts were missed.
NOTE: 1IDLE is always assumed to be in STATE = 2

and therefore has no STATE entry.
(c) Task timer - A four element array that contains
a software timer for each task. Each timer is
decremented every millisecond. When a timer
reaches 0, the task STATE is incremented and
the timer is recycled to the repetition time
(see CYCLE) for the task.
0

I 1 ! 241 3 1 4 i 5 i 6 I 7 1 8 1 9 { 10 i 11 | 12 [13 | 14 { 15

TIMER FOR TASKO

TIMER FOR TASK1

TIMER FOR TASK2

TIMER FOR TASK3

The values represent the number of milliseconds

remaining in the current frame for each task.

Page 36

CYCLE:

PCSAV:

(d)

4 5 6 7, 8 9 10

NOTE: IDLE does not require a task timer.
Task repetition time (CYCLE) - A four element
array that contains the number of milliseconds
in a time frame for each task. This value is
loaded into TIMER whenever the TIMER value

reaches 0.

11 12 1
|||1L11|113|4115

REPETITION TIME FOR TASKO

REPETITION TIME FOR TASK1

REPETITION TIME FOR TASK2

REPETITION TIME FOR TASK3

Values can range from 65,535 down to 1 millisecond.

NOTE: No CYCLE value is required for IDLE.
(e) Task execution address and carry state (PCSAV) -

A five element array that contains the current

program counter value as well as the state of the

carry bit for each task.

O;lAlAJ 2 | 3 | 4 | 5 | 6 { 7 t 8 | 9 | 10 { 11 | 12 | 13 | 14 15
PC FOR TASKO C0
PC FOR TASK1 C1
PC FOR TASK2 C2
PC FOR TASK3 C3
L PC FOR IDLE (CHECKOUT ONLY) i cIDLEI:

C, = carry bit for TASKn.

Page 37

AOSAV -
A3SAV

(f) Accumulator save area (AQSAV - A3S5AV) - A
group of four five element arrays that con-
tain the accumulator register values for each

task.

ACn FOR TASKO

ACn FOR TASK1

ACn FOR TASK2

ACn FOR TASK3

ACn FOR IDLE (CHECKOUT ONLY)

(3

Task interrupt processing - When the real-time clock
interrupt occurs (every millisecond), a scheduler
flag, SCEDF, is first tested. If it is non-zero

the task scheduler was interrupted, so no registers
are saved since the scheduler will be reentered at

the end of interrupt processing anyway. However, if
SCEDF = 0, all registers are saved in the task control
arrays PCSAV -+ A3SAV indexed by (XEQPR), which always
contains the index of the currently executing task.
After telemetry processing, all entries in the array

Page 38

(4)

(5)

TIMER are decremented. If any TIMER entry is

0, it is recycled to the frame time and the
corresponding STATE entry is incremented to
indicate that the task is awaiting execution.
Task scheduling and execution - The scheduler
flag, SCEDF, is then set and interrupt is
enabled. The task scheduler is entered. It
simply searches the STATE array from top to
bottom until an entry >1 is found, indicating

a task awaiting execution. The index of that
task is placed in XEQPR, the registers are
loaded from that task's entries in the AQSAV -
A3SAV arrays, carry is loaded from PCSAV bit 15,
and the execution is begun at the address in
PCSAV bits 0-14 after SCEDF has been cleared.

If no STATE entry >1 is found, one of two alter-
natives is selected. 1In checkout mode, XEQPR is
set to 0 and the above logic is followed, thus
causing IDLE to be executed wherever it left off.
In operational mode, a single instruction JMP .
is executed, which simply waits for the next 1
millisecond interrupt. The scheduler flag (SCEDF)
is left set so that registers will not have to be
saved when the interrupt occurs.

Task completion - After a task completes pro-
cessing for each time frame, it calls subroutine
WAIT (JSR @ZWAIT). This subroutine disables

Page 39

interrupt and stores the address of the call +1
(which is in AC3) and the carry bit into the PCSAV
array entry for the calling task. No other registers
are saved at this point. Therefore, when the TIMER
for the task expires, indicating the start of a new
time frame, execution of the task will begin at the
instruction following the JSR @ZWAIT. In the current
actuator tasks, this instruétion is always a branch
back to the repetitive portion of the task, although
it does not have to be. For example, a task could

be set up as follows:

TASKn: INITIALIZATION
OoDD: PROCESSING FOR ODD FRAMES
JSR QZWAIT

PROCESSING FOR EVEN FRAMES

JSR @ZWAIT

JMP ODD

It should be noted that the accumulators ACO - AC3
cannot be expected to have the same values after
the call to WAIT that they had before the call,

since WAIT does not save these registers.

Page 40

After saving PC, subroutine WAIT decrements
the task's STATE entry, which indicates that the
task has completed the current time frame's pro-
cessing and is awaiting the next frame. The task
scheduler is then entered as described in (4)
above. This allows the next highest priority
task that is awaiting execution to be serviced.

3.6 Program Segment 3, Magnetometer Processing (TASKO)

This task is executed every 10 milliseconds. It is responsible for reading
the current status of input Z and comparing it bit by bit to the wvalue read in
the previous 10 millisecond period. Two conditions are tested for each bit:

1. A1l to O transition - This indicates that a vehicle just
left the detector's area of influence. A bit is set in
the common word "VOLUM" to indicate the passage of a
vehicle. This word will be processed later in TASK1
(see 3.7). Also, the vehicle occupancy time is moved
from the array SPCEL to the corresponding entry in the
array SPTAB. The SPTAB array will also be processed in
TASK1. The entry in SPCEL is zeroed in preparation for
the next vehicle.

2. A continuing 1 bit - This indicates that a vehicle is
currently over the detector. The SPCEL entry for this
detector is incremented by 1, thus accumulating occupancy

in 10 millisecond units.

Page 41

The question might arise as to why some of the magnetometer processing

is deferred to TASK1l, The reasons are twofold:

1.

The telemetry output detector volume bits are more easily
assembled and buffered from one task. Since TASKl has to
process Z + 1 and Z + 2 volumes, it is the logical place
to handle the Z volumes.

The average speed calculations require a multiplication
for each detector occupancy. The actuator does not have

a hardware multiply instruction, so a subroutine is used
for this purpose. Several magnetometer actuations in the
same time frame might cause such calculations to extend
beyond the end of the TASKO frame, especially if the time
frame were lowered from its present value. Therefore, the
average speed calculations are handled in TASK1 which

operates less frequently and at a lower priority.

3.7 Program Segment 4, Detector Processing (TASK1)

This task is executed every 50 milliseconds. Its functions are:

1.

To set telemetry output volume bits in array OVOL when a
0 to 1 transition occurs on any detector bit for input
Z+ 1.

To increment an occupancy counter for each continuing 1
bit for the loop detectors in input Z + 1.

To set telemetry output occupancy bits in word OOCUP when
any of the occupancy counters for input Z + 1 overflow,

and to reset these counters to their initial values.

Page 42

To set telemetry output volume bits in array OVOL when a

0 to 1 transition occurs on any pedestrian pushbutton bit

for input Z + 2.

To set telemetry output volume bits in array OVOL for all bits

that are set in the common word "VOLUM." These bits were

set by TASKO for 1 to O transitions over the input Z

detectors.

To calculate average speeds for the four approaches to the

diamond intersection. The process is as follows:

a. A bit set in VOLUM indicates that a vehicle just left
the speed detector. Therefore, TASKO has also placed
the occupancy time of that vehicle in the proper entry
in the array SPTAB. The occupancy, or trap time, repre-
sents the time in .01 second units that the vehicle
occupled the detector. If the vehicle length were
known, an exact speed could be computed, but for our
purposes an average vehicle length of 18 feet has been
assumed.

b. Let t = occupancy time from SPTAB. A test is made to
see if 20 < t < 1800, which represent a range of 1 to 90
feet/second. If t is outside this range, it is ignored.

c¢. Let v = current average trap time (occupancy time) for
the approach direction of this detector. If (v + 30) < t,
set t = (v + 15). This produces a dampening affect that
prevents one slow vehicle from drastically altering the
average speed if it is slower by more than .3 seconds

over the average.

Page 43

d. If t > 128, set A = 128, Otherwise set A = t.

e. Calculate the new average trap time v=v + A (t - v).
128

The multiplication is done by a subroutine and the division
by shifting.

f. This method of computing average trap times was developed
for use in the Dallas North Central Expressway Ramp Control
Program. It is described in detail in Reference 5.

7. After all average trap times have been computed, a table look
up is done using the table SPCOD to translate each of the four
average trap times into 4-bit speed codes.that can be sent via
telemetry. However, a new speed code is sent only if it differs
from the previously sent value for the approach, as given in the
array TOUTW.

8. The array OVOL and the word OOCUP are then placed in the telemetry
output buffer in four bit groups. The format of these words is
shown in Figures 3.3 - 3.5. After each 4-bit group is placed in
the buffer, the four bits are zeroed in preparation for the next
frame. Should the telemetry output buffer be full, these bits
will not be zeroed and thus they will remain set until a sub-
sequent frame occurs when the buffer is not full. See the listings
for subroutine PTMDT.

3.8 Program Segment 5, Signal Light Processing (TASK2)

This task is executed every 100 milliseconds. Its main purpose is to act
as a software interface between other parts of the actuator program and the

traffic signal lights. The specific functions accomplished are;

Page 44

Gy 93eyg

INPUT
WORD
LOCATION

TELEMETRY
OUTPUT
LABEL

TELEMETRY
OUTPUT
FORMAT #

11 12 13 14 15
.
Z Z yA Z Z Z Z Z Z VA Z Z Z+1 Z+1 2+1 Z+1
BIT BIT | BIT BIT BIT BIT BIT BIT BIT BIT BIT BIT{ BIT BIT BIT BIT
0 2 3 5 6 8 9 11 1 4 7 19 0 3 6 9
< HAS- | WAL~ FOR-
KELL NUT * EST
yA Z+1 LANE
BIT | BIT | #x | 231
12 > BIT
: 8
* VOL VOL VOL | VOL VOL VOL VOL VOL VoL VOL VOL VOL| VOL VoL VOL VoL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
.
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

*
[

= HASKELL, Z, BIT 13
*% = MOCKINGBIRD AND FOREST LANES, Z+1, BIT 5

FIGURE 3.3 OVOL BIT ASSIGNMENTS

9% aleg

INPUT
WORD
LOCATION

TELEMETRY
OUTPUT
LABEL

TELEMETRY
OUTPUT
FORMAT #

1

0 1 4 2 3 4 5 6 7 10 11 13 14 15
Z+1 742 |z+2 | z+2 | z+2 | z+2 | z+2
BIT gt | BrT | BIT | BIT | BIT | BIT
11 9 7 | 10 3 1 4 //////
PED | PED | PED | PED | PED | PED
VOL cxT |cxr | ckr | okt | ckr | ckrT
17 #1 #2 #3 #4 #5 #6
13 \ 13 13 14 14 14 14

FIGURE 3.4 OVOL+1 BIT ASSIGNMENTS

LYy @3eg

f
INPUT Z+1 | 7241 {z+1 | 2+1 | z+1 Z+1 | z+1
WORD { | BIT | BIT | BIT | BIT | BIT BIT | BIT
LOCATTON : 3 12 0 11 9 6 5
.
4
TELEMETRY 0CCUP JoccuP |JoCCUP Joccur| oCcCuP OCCUP JOCCUP
OUTPUT < 5 "A" { "A’JT - "Al_l ~ !!Al!: |3&!v’ !'IB!"K \‘)‘! l-.‘
LABEL EB LTEB] SB JLTWB | WB NB |LTEB
LOOP |LOOP |LOOP |LOOP |LOOP 1L0OP |LOOP
-
TELEMETRY
OUTPUT 7 7 7 7 8 8 8
FORMAT

FIGURE 3.5 OCCUP BIT ASSIGNMENTS

To form the logical "OR" of the current loop detector input
word (Z + 1) with the common word LOOP. The word LOOP will

be processed by TASK3.

To read the current status of the AC sensors for all signal
lights. These bits are then compared to the last output word
bits for each of the three outputs (red, amber, green). Errors
are processed as described in 2.5.3. A '"serious" error, such
as an illegal green light on, causes the intersection to be
placed on flash for the minimum time if the error persists

for two consecutive samples. Any type of signal confirm error
causes the flag CNFER to be set. Also, if either of the police-
panel switches '"signal shutdown" or "manual flash" is set, the
subroutine STFLS is called to set up the signal output words

to their flash configuration.

To decrement a timer (STMR) for each green light or walk light
that is on. This is an "absolute minimum" timer that is set
whenever the green is first turned on. The green is not allowed
to be turned off until 1its timer decrements to 0, Whenever the
timer for a walk light decrements to 0, the walk light bit is
immediately turned off and the "don't walk" light turmed on.

To decrement a timer (STMR) for each amber light that is on.
This amber time is set whenever a green light is first turned
off and the corresponding amber is turned on. When the amber
timer reacher O, the amber light is turned off and the corre-

sponding red light is turned on.

Page 48

8‘

To decrement the telemetry input error timer (ERTIM). If this

timer ever reaches 0, it 1s reset to 1 and a telemetry input

error flag (TMERF) is set to 1. As long as new valid telemetry

input commands are being received at least every 60 seconds,
this error flag will not be set.

To encode the status of the current green AC sensors into the

codes shown in Appendix D for future telemetry output.

To remove a word from the telemetry input buffer and process

it. The processing proceeds as follows:

a. If the input word is input format 0 (i.e., input bit 3 = 0),
the "on-line request" bit is first tested. If it is set and
the intersection is currently in flash mode, a command reject
flag (CMRJF) is set and the entire command is ignored. If
the input "actuator flash" bit is set, then subroutine STFLS

is called to place the intersection on flash.

b. If the input word is input format 1 (i.e., input bit 3 = 1),

the mode is tested. If the intersection is on flash or under
emergency control, the command reject flag (CMRIF) is set.
The codes for the "A" and "B" intersections are then decoded
into a green movement command, as shown in Appendix D. An

illegal code results in CMRJF being set. The movement that

each bit of this decoded command controls (as well as the bits

of the signal output words) is shown in Figure 3.6. The de~-
coded signal command is stored into COMCD.
If the intersection flash bit is set, skip to #13 below. If the

emergency control mode is set, the emergency command in ECOMC is

Page 49

BIT NO. MOVEMENT

0 "A." %
1 | "A" -—D
2 "All

3 npn g__
4 ngh %

5 an 4_-
6 - ng" D

7 an_ﬂ

8 nAM (FOREST LANE ONLY)
9 Al (PED WEST SIDE)

10 "g" <}—{> (PED SOUTH SIDE)
<+

11 "All

12 UNUSED
13 '""B" (PED EAST SIDE)

14 ngn <> (PED NORTH SIDE)
15 "B"H (PED SOUTH SIDE)

(PED NORTH SIDE)

FIGURE 3.6 SIGNAL OUTPUT BIT ASSIGNMENTS

Page 50

10.

11.

12.

placed into COMCD, thus replacing any telemetry input command
that might have been received.

If any bit set in COMCD (which contains the desired green move-
ment bits) corresponds to a bit set in the current amber light
status word (ASTA), the entire COMCD is ignored and a command
reject flag (CMRJF) is set.

The desired green bits in COMCD are compared to the current
green bits in GSTA. Any 1 to 0 transitions between GSTA and
COMCD are stored into NAMS, indicating new amber bits. For
each bit in NAMS, the corresponding green timer STMR is tested
to see 1f the green has been on for the required minimum time.
If any bit in NAMS fails to pass this test, the command reject
flag 1s set and the entire COMCD is ignored.

For each bit in NAMS, the amber time for that movement (AMTM)
is stored into the corresponding signal timer (STMR). Then
NAMS is OR'ed with ASTA and the result stored in ASTA. The
complement of NAMS is AND'ed with GSTA and the result stored
into GSTA. Thus, the terminating greens are removed from GSTA
and the new ambers are included in ASTA.

Any O to 1 transitions between GSTA and COMCD are stored into
NGRN, indicating new green bits. Subroutine TVALD is then
called twice, once to process the green bits for the "A"
intersection and once for the "B" intersection. This sub-
routine picks off each bit of NGRN and tests to see if it

could be turned on in GSTA without causing any conflicts

Page 51

13.

14.

with the current green and amber lights at the intersection.

This is accomplished'by searching a table of valid greens for
each side of the intersection. Any invalid bit is ignored,

but this does not invalidate the entire command. Instead,

each bit in NGRN is tested separately and whenever a valid

one is found, it is set in GSTA and reset in RSTA (red light
status). Also, whenever a new green bit is set in GSTA, the
corresponding "walk" light bit is also set in GSTA. The "don't
walk" bit in RSTA is cleared if the corresponding walk bit is
set. The pedestrian minimum time (PDMNT) for fhe new green
movement is stored into the proper signal timer (STMR) and
pedestrian timer (PTIMR).

The new signal status words, RSTA, ASTA and GSTA are then

moved to the signal output words ROUTP, AOUTP and GOUTP. The
exception is when the signal shutdown switch on the police-panel
is set in which case AOUTP is zeroed. RSTA and GSTA will have
previously been zeroed by subroutine STFLS in this case.

If any telemetry input was received during this time frame, the
command reject flag (CMRJF) is tested. If it is set, the current
input word is compared to the last input word of the same format
type that was rejected. 1If they are the same, no action is taken.
Otherwise, the command reject bit is set for telemetry output.
The same procedure is followed for a valid command that was
received, i.e., a command acknowledge bit will be sent via telem-
etry output if the command is not the same as the previously
acknowledged one of the same format type.

Page 52

15.

16.

If more words are in the telemetry input buffer, go back to

#7 above. Otherwise, the signal output words AOUTP, GOUTP

and ROUTP are checked for validity as follows:

a. GOUTP is compared to a table of valid green bits (VALGN).
There must be at least one entry in VALGN that has a 1-bit
wherever GOUTP has a l-bit.

b. Unless flash mode is set, each bit position of AOUTP, GOUTP
and ROUTP must contain exactly one bit that is set. This
insures that one and only one light will be on per signal
head.

c. Any failure of tests a or b will cause an internal program
abort, which will cause the signals to flash.

d. If tests a and b are successful, the words ROUTP, AOUTP
and GOUTP will be output to the signal light digital out-
put registers V, V + 1 and V +2 respectively.

The following telemetry data is then assembled into the proper

output format and stored into the output buffer if a change

has occurred:

a. The current signal light status codes as shown in Appendix D.

b. Signal confirm error bit.

c., Cabinet door ajar switch.

d. Emergency control mode status.

e. Intersection flash status,

f. Status of the temperature, signal shutdown, manual flash,

and manual cabinet switches.

Page 53

g. The four interconnect function switches for Haskell and
Fitzhugh.
h., The status of the telemetry output buffer overflow flag.

i. The status of the abort/stall input bit.

3.9 Program Segment 6, Emergency Control (TASK3)

This task 1s executed every .5 second. Its main purpose is to take over

control of the signal lights under abnormal circumstances. The specific func-

tions are:

Read the four pin matrix words on the actuator front panel. If
bit 15 of the first word (input Z + 8) is 0, skip to #4 below.
Unpack each pin matrix word by calling subroutine UNPKM. This
subroutine shifts out each phase time, adds an appropriate base
value to it and stores the result in the proper timing array
for maximum (MAXT), minimum (MINT), or extension (EXTT) times
in .5 second units.

The amber times for movement numbers 0-8 in .5 second units

are read from the console data switches. Each amber time is
computed by shifting out two bits, adding a base value, multi-
plying by 5 to obtain .1l second units, and storing the result
in the amber time array (AMIM).

Determine 1f moré than the permissible number of serious signal
confirm errors have occurred by comparing CNFLS to MAXCF (see
Appendix G). If so, a "permanent flash flag" (PERFL) is set.

A confirm error timer (CNERT) is decremented. If it is 0, the
number of serious confirm errors in CNFLS is cleared and CNERT

is recycled to its initial value (see CNFTM in Appendix G).
Page 54 ‘

If the permanent flash flag (PERFL) is set, subroutine STFLS

is called to enter or retain flash mode and TASK3 is exited.

The flash timer FLTIM is decremented. If it is non-zero,

subroutine STFLS is called and TASK3 is exited.

The flash status bit (bit 15 of common word ASTA) is tested.

If it is 0, skip to #9 below. If it is 1, indicating flash

is in progress, a determination must be made whether or not

to terminate flash. The logic used is:

a. If the last input format O telemetry command had the
actuator flash request bit set, leave the flash bit alomne
and exit TASK3.

b. Otherwise, clear the flash bit in ASTA. Set all red bits
in RSTA, set the emergency command ECOMC to O, indicating
all red, and set the emergency mode flag EMMOD., Set the
emergency phase number EPHSN to 1 and begin emergency con-
trol (#15 below). Note that if the flash mode was caused
by the police-panel flash switch, the above action will be
negated by TASK2 when it reads the status of the switches.

If the actuator is not in flash mode, the telemetry input error

flag (TMERF) and the emergency control request bit in the latest

telemetry input format 0 are tested. If neither is set, skip to

#10 below. Otherwise, the emergency mode flag (EMMOD) is tested.

If it indicates that emergency control is already in progress,

skip to #11 below. If emergency mode is not in effect, the

emergency command (ECOMC) is set to the current status of the
signal lights (GSTA). A search is then made of a phase table

Page 55

10.

11.

12.

13.

(PHAST) to determine if any emergency phase has all of the green
bits set that arelcurrently on. If so, the phase number for that
phase 1s stored into EPHSN and emergency control is begun (see
#15 below). If not, flash mode is entered by calling subroutine
STFLS and TASK3 is exited.

If there is no request present to begin emergency control, the
emergency control flag (EMMOD) is tested to determine if emer-
gency mode is currently in progress. If not, TASK3 is exited.

If emergency mode is in progress, the current red light status

in RSTA is compared to the complement of the desired green bits
in ECOMC. If they are not the same, TASK3 is exited.

Whenever the green lights are in the commanded emergency control
state, a phase timer PTIM is incremented. If PTIM is not greater
than the minimum time for the current phase (EPHSN), TASK3 is
exited. Otherwise, PTIM is compared to the maximum phase time.
If the maximum time has been reached, skip to #14 below.

If the phase timer PTIM is somewhere between the minimum and
maximum phase times, the decision whether or not to extend the
phase is made. This is done by testing the status of the appro-
priate loop detector bit for this phase in the common word LOOPS.
(As stated in the TASK2 description, the status of the loop detec-
tors is "OR'ed" with LOOPS every 100 milliseconds). If the bit
in LOOPS 1is set, it is cleared and the phase is extended by
skipping to #16 below. Otherwise, a green extension timer GRTO

is decremented. If the timer has not reached 0, TASK3 is exited.

Page 56

14, 1If the phase is due for termination because the maximum time
has expired or because an extension interval has passed with
no loop detector actuations, a test is made to determine if
emergency control should continue. If either the telemetry
error flag or the telemetry input emergency control request
bit indicates that emergency control is no longer necessary,
the emergency mode flag (EMMOD) is cleared and TASK3 is exited.
Otherwise, the phase number in EPHSN is incremented to the
next phase, or recycled to phase 1 if the last phase is being
terminated.

15. When a new emergency phase is initiated, the phase timer PTIM
is cleared and the green bits for the new phase are stored in-
to the emergency command word ECOMC.

16. When a phase extension is desired or a new phase is begun,
the extension interval time is stored into the green exten-
sion timer GRTO. TASK3 is then exited.

3.10 Program Segment 7, IDLE TASK

This task is used only during program checkout. It can operate in either
of two modes:

1. As a background task that uses any available time while the
other actuator tasks are active., This mode is in effect when-
ever the actuator program is started at entry point INITR.

2. As a stand-alone job that uses all of the CPU time. This mode
is initiated by starting the CPU at entry point IDLE. It is

generally used in this fashion to make program patches and

Page 57

IDLE is basically an interactive teletype program that requires 200

initialize checkout variables before starting the actuator

program,

8

The program operation is as follows:

1.

When the program is initially entered an "*" is output to the

teletype printer. This is a cue to the user that the program

is waiting for teletype input.

Each character from the keyboard is checked as it is typed.

The

expected input format is:

a.

The first five characters represent an octal memory address.
A non-octal character in any of these positions 1s illegal.
Exception: A "." as the first character is interpreted as
"the last address + 1."

If the next character after the address field is a carriage
return (CR), the contents of the octal memory address will
be monitored for change. Each change will cause the con-
tents to be printed as six octal digits followed by a (CR),
line feed (LF). This monitor sequence can be terminated

by initiating another keyboard input sequence.

If the character following the address field is a space
(blank), then the next six characters are expected to be

an octal value that will replace the contents of the octal
memory address. The entire input must terminate with a
(CR). 1If the input is valid, the new value will be loaded

into the memory address and the contents of the memory

Page 58

words.

address will be monitored for change as described in b

above.

d. Any illegal character that occurs during the input will
cause the sequence (CR), (LF), "*" to be output and a
new input sequence to be initiated.

Examples:

a. 01234(CR) - Monitor the contents of location 012348.

b. 00002b177775(CR) - Load -3 into location 2.

c. 00600b000000(CR) - Load 0 into location 6008.
.b000001(CR) - Load 1 into location 6018'

.b177777(CR) -~ Load - 1 into location 6028.
. (CR) - Monitor location 603g.

d. 008 - Input will be terminated here since an 1llegal
character was read.

e. 01234b00000(CR) ~ Input will be ignored since only five

characters of the new value were provided.

Page 59

4.0 PROGRAM TESTING

4.1 Program Configuration

Since the programming of the actuators was done before any actuators were
installed at the intersections, it was necessary to perform the checkout on a
leased Nova 1200 computer with 8K of memory and an ASR 33 teletype. The check-
out version of the program was identical to the operational version, except that
it was assembled with the system configuration parameter "DEBUG" equal to 1.
This causes the program to behave differently in the following respects:

1. All instructions to read digital input registers into
accumulators were replaced with instructions to load the
accumulator with the contents of memory locations desig-

nated as '"debug input registers."

For instance, instead of
using a DIA instruction to read input Z, there is a LDA
instruction from location "ZODBG" in TASKO.

2. The task IDLE was run as a background job to allow for
teletype interaction during checkout.

3. The clock frequency was changed to 10 Hz. This allowed events
to occur slowly enough that they could be observed by monitoring
the proper words on the teletype.

4. The instructions to write digital output registers were not
executed.

5. A simulated telemety input word (STMIN) was provided in memory
that could be changed using the teletype. Every telemetry frame
time, this word was loaded into a simulated input shift register
(TMINW). Every bit time, a bit was shifted from TMINW to simu-
late the serial input bit stream.

Page 60

6.

A simulated telemetry output word (STMOT) was also provided
that could be monitored on the teletype. It was updated
every telemetry frame time with the current telemetry out-
put word.

Code was assembled in the task control logic for timing the
various tasks. Error checking was incorporated to "halt" if

any task ever exceeded its allotted time frame.

4.2 Program Checkout Variables

The variables that were monitored or altered during checkout were:

1.

ZODBG - Simulated input register Z (magnetometers). Program
segment 3.

Z1DBG - Simulated input register Z + 1 (loops). Program
segment 4.

Z2DBG ~ Simulated input register Z + 2 (pedestrian buttons).
Program segment 4.

Z3DBG -~ Simulated input register Z + 3 (cabinet switches).
Program segment 5.

DBGAN - ''Debug" green AND word. This word is "AND'ed' with
the previous green light output word to produce a simulated
AC sensor input V + 2. A "0" in any bit position will simu-
late a failure for a green light to turn on.

DBGOR - 'Debug" green OR word. This word is "OR'ed" with the
previous green light output word to produce a simulated AC
sensor input Z + 6. A "1" in any bit position will simulate

a failure for a green light to go off.

Page 61

10.

11.

12,

13.

14.

15.

16.

17.

18.

DBRAN

"Debug" red AND word.

DBROR ~ "Debug'" red OR word.
DBAAN - "Debug' amber AND word.

DBAOR

"Debug' amber OR word. All of the above are in
program segment 5,

Z8DBG - Simulated input register Z + 8 (pin matrix word 1).
Program segment 6.

Z9DBG - Simulated input register Z + 9 (pin matrix word 2).
Program segment 6.

Z10DB = Simulated 1nput register Z + 10 (pin matrix word 3).
Program segment 6.

Z11DB - Simulated input register Z + 11 (pin matrix word 4).
Program segment 6.

STMIN - Simulated telemetry input word. Program segment 2.
STMOT - Simulated telemetry output word. Program segment 2.
TETIM - A four element array that contains the task completion
time for each task. Subroutine WAIT stores the value of
timer 4+ n into TETIM + n when TASKn completes each frame.
CLOKF - The real-time clock frequency code. 0 = 16 Hz,

1 =10 Hz, 2 = 100 Hz, 3 = 1000 Hz.

4.3 Cﬁeckout Procedure

The checkout was carried out in three distinct phases:

1.

Phase 1 ~ This phase was basically a test of the interrupt
and task control logic, although it was also necessary for
the tasks themselves to operate for timing purposes. The

test procedure was:

Page 62

Set CLOKF for 1000 Hz.

Set all simulated input variables to the wvalues that
require the most time consuming processing. For
instance, the speed detector bits in ZODBG were all

set to ones, as were the loop detector bits in Z1DBG.
This caused the occupancy counter logic to be entered
every cycle.

Set STMIN to an input format 1 command. This caused
TASK2 to have to read, decode, and process the command
every cycle.

The program was started and the task completion times
in TETIM were monitored. Any excessive times in TETIM
would have indicated a task was taking too long to com-
plete. Some errors were uncovered and corrected during
this test. The test was successfully completed with the
result that the lowest priority task (TASK3) was always
completed in less than 10 milliseconds of its allotted
500 millisecond time frame. The telemetry output word
STMOT was also monitored for the proper configuration.
The IDLE job was then replaced with a loop that incre-
mented a double word counter. The actuator program was
started as before and allowed to run for 15 minutes.
The double word counter was then used along with the
execution time of the loop to compute the CPU time
available during the actuator program execution. The
result was that 10 minutes, or two=thirds of the total

time, was available.

Page 63

Phase 2 - This was a test of the performance of the actuator
when no telemetry input was being received. The test proce~
dure was:

a. Set CLOKF to 100 Hz.

b. Set STMIN to all ones, thus simulating a dead telemetry
input line.

c. Monitor the telemetry output word STMOT. The result
should be:

(1) Two frames of all ones (resync.).

(2) Output format O with the restart bit set.

(3) Output formats 1 and 2 with signal codes = 0.

(4) Output format 0 with the actuator flash bit set.

(5) After relative 15 seconds of flash, output format
0 with emergency control bit set.

(6) Output formats 0 and 1 should be sent with the
signal codes indicating that the emergency phases
1 through 6 are cycling. Each phase should last
the minimum time with 4 second ambers. Also, monitor
the output words ROUTP, AOUTP, GOUTP to insure that
the proper signal light bits are being output.

d. Set Z1DBG = all ones. All phases except 2 and 5 should
increase to the maximum time. Occupancy bits should be
output every 50 seconds.

e. Set Z2DBG = all ones. Proper walk lights should come on at
beginning of phases and last for 5 seconds. Check ROUTP,
AOUTP, and GOUTP for proper output bits.

Page 64

Reset Z1DBG and Z2DBG to zero. Phases should return to
minimum times and walk lights should stay off.

Set the manual flash bit in Z3DBG. Check proper TM
output and proper signal outputs.

Set CLOKF = 10 Hz. Set ZODBG = all ones, then all zeros.
Cheék telemetry output. Should get speed and volume bits
for all magnetometer detectors.

Repeat above for Z1DBG and Z2DBG. Check telemetry volume
bit outputs.

Set individual bits in Z3DBG and check proper output
telemetry bits.

Simulate signal confirm errors by setting various bits

in DBGAN, DBGOR, etc. Check for proper telemetry and
signal outputs.

Set each detector input bit individually in ZODBG, Z1DBG
and Z2DBG and test for proper telemetry volume, speed,
occupancy, or pedestrian outputs,

Set the occupancy counters to overflow in one count, set
all loop detector bits in Z1DBG, and check for the buffer

overflow bit in telemetry output.

Phase 3 - This phase was a test of the actuator program during

communication with the network computers. The procedure was:

a.

Set CLOKF to 10 Hz. Set STMIN to all ones to simulate a
resync. condition.
Set STMIN with stop bits = 0 and test for telemetry output

resync.

Page 65

Set STMIN with incorrect parity and test for proper
telemetry output.

Send abort/stall bit in STMIN. CPU should halt. Reset
ASTLF.

Set CLOKF = 100 Hz and restart.

Set perform resync. bit in STMIN. Test telemetry output
for resync. mode.

Set actuator flash bit in STMIN. Test for actuator going
to flash mode.

Send all red command in STMIN. Should get command reject
in STMOT.

Send "no-flash" command in STMIN. Should go into emergency
control mode.

Send "on-line" bit in STMIN, followed by all red command.
Should get command acknowledge.

Send all combinations of signal codes in STMIN. Check
reactions of signals and telemetry output.

Set CLOKF = 10 Hz. Restart.

Bring up various combinations of greens by sending commands
in STMIN. Attempt to end some greens too soon. Should get
command reject.

Attempt to turn on some greens while corresponding amber is
on. Should get command reject.

Attempt to bring up some greens that would conflict with
current greens, Command should be ignored until current
greens have been on for their minimum time.

‘Page 66

p. Attempt to send illegal command codes in STMIN. Should
get command reject.

q. Repeat k - p with all pedestrian pushbutton bits set
in Z2DBG.

r. Change the pin matrix settings in words Z8DBG, Z9DBG,

Z10DB, Z11DB, and the console data switches. Check for
proper signal timings.

8. Change CLOKF = 1000 Hz. Check for proper signal operation
during both emergency and on-line modes.

t. Alternate between on-line and emergency modes by the various
means available (i.e., dead telemetry, on-line request bit)
and check for smooth transitions.

u. Unplug the CPU with the comsole switch in the LOCK position.
Plug it back in and check for proper restart of the actuator
program.

Of course, many other less formal tests were performed during
the debug phases of actuator programming. However, it was felt
that the tests described here showed that all required functions

of the actuator were operational.

Page 67

5.0 PROGRAM LOADING AND OPERATION

5.1 Program Preparation

This procedure is accomplished on any off-line Nova. Each of the program
segments 0 through 6 is assembled using the extended assembler to produce
relocatable object tapes. These tapes are then loaded and linked using the
Relocatable Loader (see Reference 7) as follows:

1. Respond with carriage return to SAFE =,

2. Set the address of the word RRFLG + 1 (see listing of
program segment 0) into the console data switches. Select
loader mode 3.

3. Successively load each object tape in the paper tape reader
and select loader mode 1 (teletype reader) or 2 (high speed
reader).

4, After the last tape has been loaded, select loader mode 6 to
produce a loader map listing.

5. Select loader mode 8 to terminate the loading process.

6. Load the high core binary format punch program (see
Reference 8) using the binary loader, and use it to
punch memory from address 0 through NMAX as printed on
the loader map. Punch location 3 as the starting address
on the tape.

7. Splice a copy of the Nova 800/1200 program load tape on the
first of the absélute actuator tape just punched.

5.2 Loading the Actuator

The tape produced in the above steps will be loaded into each actuator.

The procedure is:
Page 68

Move the switch inside the computer cabinet from ''NORMAL" to
"FLASH." Place the police-panel SIGNAL FLASH and SIGNAL SHUT-
DOWN switches down.

Move the pin from position F-7 to position 3—7 of the pin
matrix.

Connect the paper tape reader. Turn computer key to "ON"
position. Place appropriate intersection tape in reader,

move reader switch to "RUN."

Set the console data switches to 128 (switches 12 & 14).

Press "RESET" and "PROGRAM LOAD" switches.

Binary loader will be read and computer will halt with 1218
displayed in the "ADDRESS" 1lights (Bits 9, 11, 15). Set

data switch 0 and press "CONTINUE."

After the tape is read, the computer should reset the ''STALL
ALARM" and turn all display board lights dark. At this time
place the amber times in the console data switches as shown

in Figure 5.2.

Remove the pin from pin matrix position B~7 and place it in
F-7. Turn the computer key to "LOCK.'" Disconnect the paper
tape reader.

Monitor the display board for proper phasing and timing. If
all is well, place the police panel FLASH switch up and the
computer cabinet switch to NORMAL. The signals should continue
to flash and the display board should go dark.

When traffic subsides place the police~panel FLASH switch down.
There will be a 1-10 second delay before the flash terminates.

‘Page 69

10. Walk around the intersection to check for proper signal
operation.

11. Be sure the computer key is in the LOCK position before
leaving the intersection.

5.3 Pin Matrix Operation

The grounding pin matrix on the actuator front panel is used in conjunc-
tion with the computer console to select various times associated with the
signal light operation. A pin inserted in a slot produces a binary "1" input
to the actuator, and the absence of a pin in a slot produces a binary '"0".
Figure 5.1 shows the layout of the pin matrix and the assignment of each group

of pin slots. The definitions are:

1. MAX(n) = Maximum phase time in seconds for phase n.

2. MIN(n) = ﬁinimum initial interval in seconds for phase n.
3. EXT(n) = Extension time in seconds for phase n.

4., TIM(n) = Total phase time in seconds for phase n. This is

used only for the two overlap phases 2 and 5 which have no
extensions.

5. READ MATRIX (Position B-7) = Remove pin from here when
changing pin matrix values. Insert pin here to cause
actuator to use new values in pin matrix and data switches.
The pin should be left in for about 1 second and then removed.

The amber times for each traffic movement are selected by using the console
data switches as shown in Figure 5.2, These times are in .5 second units.
Each of the timing parameters will have a base value added to it as it

is read from the pin matrix and data switches. These base values and param-~

Page 70

ROW #

COLUMN #

0 1 2 3 4 5 b 7
MAX(1) MAX(1) | Max(1) MAX (1) MAX(1) | Max(1) | MIN(1) MIN(1)
23 24 23 22 21 20 23 22

MIN(1) MIN(1) | EXT(1) EXT(1) EXT (1) READ
21 20 2% 21 20 MATRIX
MAX(3) Max(3) | MAx(3) MAX (3) MAX(3) | MAX(3) | MIN(3) MIN(3)
25 24 23 22 21 20 23 22
MIN(3) MIN(3) | EXT(3) EXT(3) EXT(3) | TIM(2) | TIM(2) TIM(2)
21 20 22 21 20 22 21 20
MAX (4) MAX(4) | Max(4) MAX (4) MAX(4) | MAX(4) | MIN(4) MIN(4)
2° 2t 23 22 21 20 23 22
MIN(4) MIN(4) | EXT(4) EXT(4) EXT(4)
21 20 22 21 20
MAX(6) MAX(6) | MAX(6) MAX(6) MAX (6) MAX(6) | MIN(6) MIN(6)
29 ot 23 22 21 20 23 22
MIN(6) MIN(6) | EXT(6) EXT(6) EXT(6) TIM(5) | TIM(5) TIM(5)
21 20 22 2.1 20 21 20

FIGURE 5.1 PIN MATRIX LAYOUT

PDomrwm 71

Z/ @8eg

0o, 1 2, 3 4, 5 6, 7 8 , 9 10 , 11 12, 13 14, 15
MOVEMENT #0 |MOVEMENT #1 | MOVEMENT #2 | MOVEMENT #3 | MOVEMENT #4 | MOVEMENT #5 | MOVEMENT #6 | MOVEMENT #7
AMBER TIME | AMBER TIME AMBER TIME | AMBER TIME AMBER TIME | AMBER TIME | AMBER TIME AMBER TIME
"All "A" "A" "A" "B" "B“ "B" "B"

FIGURE 5.2 DATA SWITCH ASSIGNMENTS FOR AMBER TIMES

emeter ranges are shown below:

Parameter Base Value Parameter Range
MAX 1 second 1 - 64 seconds
MIN 1 second 1 - 16 seconds
EXT 1 second 1 - 8 seconds

TIM (Phases 2 & 5) 1 second 1 - 8 seconds
AMBER 3.0 seconds 3.0 - 4.5 seconds

Therefore, if all pins for the parameters are removed and all data switches
are set to 0, the parameters will assume the base values shown above when a
pin is placed in position (B-7).

At Forest Lane, the MAX, MIN and EXT times for phase 7 must be stored or
assembled into the MAXT, MINT and EXTT arrays respectively in program segment
6. The amber time for movement 8 must also be stored or assembled into
AMTIM + 8 in segment 0.

5.4 Clearing a '"Stall Alarm" Condition

An actuator hardware problem may cause the stall alarm light in the
cabinet to come on. If so, it will be necessary to perform some manual oper-
ations before restarting the actuator.

1. Turn the mode key to the ON position.

2. Press the RESET switch.

3. Examine the contents of memory location ASTLF (see the
loader map). Record the value.

4. Deposit zeroes in ASTLF.

5. Turn the mode key to the LOCK position.

Page 73

6. Restart the actuator at location 3.
7. Reset the stall alarm.
The recorded value of ASTLF may make it possible to track down the cause of

the failure.

Page 74

6.0 REFERENCES

"How to Use the Nova Computers." Data General Corporation, October, 1972.

"Operational Study of Signalized Diamond Interchanges." Charles Pinnell
and Donald G. Capelle, Texas Transportation Institute. Reprint from
Highway Research Board Bulletin 324 (1962).

"Proposal to the State Highway Commission for the Construction of Instal-
lation of Frontage Road Traffic Control Equipment in Dallas County, Texas."
Texas Highway Department Project #T9001(9), 1972,

"Introduction to Programming the Nova Computers.' Document #093-000067-00,
Data General Corporation, 1972.

"Description of Digital Computer Control Program for the North Central
Expressway Ramp Control System.'" Charles W, Blumentritt and William R.
McCasland, Texas Transportation Institute Research Report 836-2., July,
1972.

"Functional Specifications for a Prototype Actuator Device." Charles W.
Blumentritt, Texas Transportation Institute, January, 1970.

"Relocatable Loader." Document #093-000039-00. Data General Corporation,
1969.

"Binary Format Punch." Document #093-000001-00. Data General Corporation,

1969.

Page 75

APPENDIX A

ACTUATOR PROGRAM FLOW CHARTS

1.

2.

3.

FLOW CHART

TABLE OF CONTENTS

NOTES ON THE FLOW CHARTS

PROGRAM

O L o0

PROGRAM

Q O AN oo

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

SEGMENT 1 - SUBROUTINES

STPRI . . « « & ¢ ¢« o ¢ o
PUT e e v e e e e e e
GET e e e e e e e e
STFLS . . « ¢« v v ¢« & o + &
ABORT . . « . « v ¢ + « &
PISUB . « ¢« ¢ ¢« ¢ o & &

SEGMENT 2 - INTERRUPT ., .

Initialization and Restart
Interrupt Processing . . .
Telemetry Input Processing
Telemetry Output Processing
Task Timer Control
Task Scheduler
Subroutine WAIT

SEGMENT 3 - TASKO (SPEEDS)

SEGMENT 4

TASK1 (DETECTORS)

SEGMENT 5

TASK2 (LIGHTS) .

SEGMENT 6 TASK3 (EMERGENCY)

SEGMENT 7

IDLE . . .

PAGE NO.

A-10
A-11
A-13
A-22
A-26
A-27
A-28

A-29

A-31

A-39

A-55

A-63

NOTES ON THE FLOW CHARTS

The symbol indicates a connector on the same page with label A.

The symbol indicates an off-page connector with label A

located on page n.

Program loops are shown enclosed within a broken line box.

PROGRAM SEGMENT 1

SET BITS IN TELEMETRY
TOP- PRIORITY OUTPUT WORD.

CALL WITH ARSUNENT WALUE
IN ACCUMULATOR O.

SUBROUTINE
STPRI

FORM LOGICAL OR
OF CALLING
ARGUMENT WITH
PRIORITY OUTPUT
WORD

STORE RESULT
IN TELEMETRY

PRIORITY QUTPUT
WORD

RETURN

SUBROUTINE
PUT

SET
Nz IN¢ |

SET N TO NEXT
INPUT LOCATION
IN BUFFER

18
N> END
OF BUFFER

PUT DATA WORD IN CIRCULAR BUFFER.
CALLING ARGUMENTS INCLUDE POINTER
TO FIRST OF BUFFER, AND WORD TO BE

STORED INTO BUFFER.

18
N= QUT
(NEXT OUTPUT
LOCATION

YES _

TAKE BUFFER
FULL

RETURN

N= ADDRESS
OF FIRST OF
BUFFER

STORE CALLING
ARGUMENT DATA
WORD INTO
{iN)

SET
INs N

(NEXT INPUT
SLOT IN BUFFER)

TAKE NORMAL
RETURN

SUBROUTINE

18
IN = QUT

(IS BUFFER
FULL)

YES

TAKE BUFFER
EMPTY

RETURN

S8ET ACCUMULATOR
0s {OUT)

(FETGH NEXT
OUTPUT WORD)

SET
N=OUT ¢}

(NEXT OUTPUT
LOCATION)

EB N) END
\”UFFSR
NO
SET
Ns= ADDRESS OF v
FIRST OF ’
BUFFER
SET
OUT = IN
(NEXT OUTPUT
LOCATION)

TAKE NORMAL
RETURN

FETCH DATA WORD FROM GIRCULAR
BUPFER. CALLING ARGUMENT 18 A
POINTER TO FIRST OF BUFFER. RETURNS
DATA WORD IN ACGUMULATOR

SET-UP ACTUATOR FLASH MODE.
CALL WITH FLASH TIME IN ACCUMULATOR O,

SUBROUTINE
STFLS

I8
DESIRED
FLASH TIME
20

FLASH IN
PROGRESS
(IS FLASH BIT -

SET IN ASTV

YES '

SET DESIRED FLASH
TIME = MINIMUM
FLASH TIME

(10 8EC.)

1S
DESIRED
FLASH TIME
LESS THAN CURRENT
TIME IN FLTIM

SET FLTIM =
DESIRED FLASH TIME

— Y

CLEAR GREEN
AND RED OUTPUT
STATUS WORDS

(GSTA 8 RSTA)

SET FLASH BIT
IN AMBER OUTPUT

STATUS WORD
(ASTA = 1)

<

RETURN

A-6

ACTIVATE ABORT/STALL MODE BY
SETTING ABORT FLAG AND PERFORMING HALT.

SUBROUTINE
ABORT

SET ABORT/STALL
FLAG TO ADDRESS
OF CALL t1
(ASTLF = AC3)

HALT

SUBROUTINE

PTSUB

v

SAVE ACO IN
ENFLG

POSITION 4 DATA
BITS, OR WITH
FORMAT BITS AND
STORE IN POTWD

LAST OUTPUT
OF SAME
FORMAT

RETURN

*

CALL PUT

PUT POTWD
INTO TELEMETRY
OUTPUT BUFFER

SET LAST
OUTPUT VALUE
OF THIS FORMAT
= POTWD

PLACE DATA WORD IN TELEMETRY OUTPUT

BUFFER. CALLING ARGUMENTS INCLUDE

THE 4 TELEMETRY DATA BITS TO 8F PLACED

IN BUFFER, AND THE ADDRESS OF THE TELEMETRY
OUTPUT FORMAT WORD. ACCUMULATOR 0=0

W THAT THE WORD IS TO BE PLACED

IN R IF DATA BITS ARE NON-ZERO . ACCUMULATOR
O =-1 INDIGATES THAT THE WORD IS TO BE PLAGED
IN BUFFER IF CHANGED FROM LAST OUTPUT VALUE.

INCREMENT
BUFFER OVERFLOW
FLAG

(BOFLG)

RETURN

CLEAR LOWER
4 BITS OF
DATA WORD

RETURN

AR

PROGRAM SEGMENT 2

INITIALIZATION
AND

RESTART

INNIBIT ALL
INTERRUPTS
EXCEPT
POWER

FAIL

STALL FLAG
8ET

OUTPUT FLASH
8IT TO

8IONALS

DELAY FOR

& SEC. TO ALLOW
REALTIME CLOCK
TO STABILIZE

EMPTY TELEMETRY
INPUT /OUTPUT
BUFFERS

S8ET STATE
OF EACH TASK
= ACTIVE

THIS SECTION IS EXECUTED AFTER A RELOAD
OR AFTER A POWER FAILURE

SET TASK
ADDRESSES TO
S8TART OF
EACH TASK

SET TASK
TINERS TO
CYCLE VALUERS

Y

CLEAR TELEMETRY
INPUT MODE

(TMODE = 0)

27
@3CED

(ENTER TASK SCHEDULER)

YES

v

SET LOC. 0 =
BRANCH TO
INITIALIZATION

AND RESTART
ROUTINE

OUTPUT FLASH
BIT TO
SIGNAL

LIGHTS

THIS SECTION 18 EXECUTED WHEN
INTERRUPT ANY INTERRUPT OGCURS,

PROCESSING

18
POWER
FAIL FLAG

SET FOR THE
CcPU

THE STALL
FLAG SET

YES

RALT

THE REAL-
TIME CLOCK
DONE FLAG
SET

NO

CLEAR BUSY AND
DONE FLAGS FOR
DEVICE CAUSING
INTERRUPT

\ 4

ENABLE
INTERRUPTS

RETURN TO

INTERRUPTED
PROGRAM

A-11

(REAL- TIME GLOGK INTERRUPT)

THIS SECTION EXECUTES EACH
MILLISKCOND.

CLEAR DONE AND
SET BUSY FLAG

FOR REAL-TIME
CLOCK

IS
SCHEDULER
FLAG (SCEDF)
SET

SAVE REGISTERS
IN TASK CONTROL
8LOCK OF

EXECUTING TASK

ENABLE
POWER FAIL
INTERRUPT

RESET THE

STALL ALARM

A-12

TELEMETRY INPUT PROGESSING

READ
TELEMETRY
INPUT BIT"

DECREMENT
INPUT TIMER:

TMINT = TMINT =i

4 , 20

INTLM 15

@

s .

19 ‘osropl
8 lps'ropl

A-13

INTLM MODE O
INITIALIZE TELEMETRY

SET RESTART
FLAG (RRFLO)

Y

S8ET EXTERNAL
RESYNC FLAG
(EXRSY)

Y

8ET ICNTR TO
NUMBER OF CON-
SECUTIVE INPUT

COMMANDS REQUINED
(NCCOM)

Y

TMODE = {

22

A-14

MODE |
WAITING FOR START BIT

TMINT =
BITTM -2

TMODE = 2

IGNOR=0

22

OUTPT

A-15

MODE 2
DURING START BIT

1S

NO CURRENT

v

IGNOR = |

INPUT=
START BIT

YES

NO

YES

TINPT = O
CPARY:= 0
TMODE = 3

v

TMINT =5
N= NBITS

22
OUTPT

A-16

NO

YES

TMINT =
BITTM -5

NOTE : BITTM = BIT TIME

v

VALU =

CURRENT
INPUT BIT

v

TMODE =

22
OUTPT

A-17

DURING DATA BIT

IS
CURRE
INPUT BIT
=VALU

NO

v

IGNOR = |

7 YES
CPARY =
CPARY & VALU
| YES
SHIFT BIT
FROM VALU NO
INTO TINPT
SET PARITY
BIT IN
v TELEMETRY Y
— oUTPUT
Y IGNOR = |
Nio YES +l
o TMODE = 5
TMINT = 3
TMODE = 3
TMINT =
>- 22
OUTP

A-18

NO

W

YES

MODE 5
PREPARE FOR STOP BITS

TMODE = 6

v

TMINT =
2%BITTM-3

’
ouTPT

A-19

MODE 6
DURING STOP BITS

NO’V

RESYNC FLAG = |

TMODE = |

y

S8ET COMMAND
REJECT BIT IN
TELEMETRY OUTPUT

YES
LAST INPUT (LINPT)

LINPT = TINPT ICNTR = ICNTR-1

SREJT

21

[CaLL PUT_
PLACE INPUT
WORD (TINPT)
INTO TELEMETRY
INPUT BUFFER

THE TELEMETR
INPUT BUFFER
FULL

A-20

SREJT

SET COMMAND
REJECT BIT
IN TELEMETRY
OUTPUT

e

NO
FORMAT BIT

]

YES
STALL INPUT
BIT SET

STALL FLAG
(ASTLF) AND
HALT

THE RESYNC

INPUT BIT

SET

SET THE
EXTERNAL
RESYNC FLAG

4’

_¥

TMODE =-|

OUTPT

TELEMETRY OUTPUT PROCESSING

YES

RESYNC FLAG
SET

v

RESYNC FLAG
=0
_ TMOUNT =
| TMOUNT -l
EXTERNAL

RESYNC FLAG=0

v

BIT N=2,
OUTWD= ALL I'S
STFLG=0
TMOUT = RESYNC

IS
TMOUNT
<0

NO ’F

TMOUNT= BITTM

OUTPUT BIT ©
OF OUTWD,
SHIFT LEFT
AND RESTORE

v

BIT N=zBIT N-I

IS
BIT'N

© No__

YES TIMRS

BIT N =NBITS +3

A-22

NO

v

OUTWD =
PRIORITY

OUTPUT WORD

CALL _GET _
OUTWD s NEXT

WORD FROM
TELEMETRY

PRIORITY
OUTPUT WORD=0

OUTPUT BUFFER

EMPTY
25

¥

A-23

@ OUTPUT BUFFER EMPTY

STFLG = STFLG+!

v

OUTWD =
TELEMETRY
OUTPUT WORD 2

OUTWD =

TELEMETRY
OUTPUT WORD |

1

\ 4

OUTPUT WORD O

>3
STATUS
SEND)
FLAG
¢ STFLG=1
OUTWD =
TELEMETRY

FLAG SET

A-24

CLEAR RESTA
FLAG, SET
RESTART BIT
IN OUTWD

w INTERNAL RESYNC REQUESTED

RESYNC
FLAG=0

v

OUTWD=
TELEMETRY
OUTPUT WORD O

WITH RESYNC
BIT SET

["ADD START AND
STOP BITS TO
OUTWD AND

POSITION FOR
OUTPU

26

A-25

TiIMRs| TASK TIMER CONTROL

N=0
{TASK INDEX)

Y

TIMER(N) =
TIMER(N) = -I

NO

YES

TIMER(N) =

CYCLE(N) v
{RECYCLE TIMER)

v

STATE (N) =
STATE (N) +1

(INDICATE TASK
PENDING EXECU-
TION)

*

N=N+I
(INCREMENT
TASK INDEX)

LARGEST

TASK # 27

GSCED

A=26 \/

ENTER SCHEDULER

SET SCHEDULER
FLAS

(SGEDF =1)

ENABLE
ALL
INTERRUPTS

N=0
(TASK INDEX)

{is TASK PENDING EXECUTE HIGHEST PRIORITY TASK

EXECUTION)

A NeNa !

(INCREMENT

TASK INDEX) SET EXECUTING
TASK® =N
(XEQPR =N)

N > LARGEST
TASK ¥

RESTORE ALL
REGISTERS
FROM TASK
CONTROL
BLOCK (N)

CLEAR
SCHEDULER
FLAS

(SCEDF 20)

ENABLE REAL- TIME
CLOCK FOR 1000 HZ

BEGIN
EXECUTION
OF TASK (N}

A-27

(TASK COMPLETION SUBROUTINE)

SUBROUTINE
WAIT

CALLED BY EACH TASK

AT COMPLETION OF EACH
DISABLE TIME FRAME'S PROCESSING
INTERRUPT

TASK
(N= XEQPR)

SET N sEXECUTING
#

Y

SAVE CALL I
(GI<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>