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constants can be determined by fatigue tests, but elimination of these 
fatigue tests is desirable. As the name implies, these constants are 
properties of the material in which cracking occurs. Dr. R. A. Schapery 
of Texas A&M University has recently developed a theory using material 
properties to determine the two material constants for viscoelastic 
materials. The material properties used in his theory are creep 
compliance, D(t), tensile strength, a , and fracture energy, r. This 
investigation explains what these pro~erties are and shows how these 
properties are determined and applied to predict the reflection cracking 
life of an overlay. 
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PREFACE 

This report gives a complete description of reflection cracking due to 

thermal cycling. It tells what the important material properties are and 

shows several new ways of measuring them, including the use of the duomorph 

and the measurement of crack lengths with ultrasonic waves. 

The report presents the results of a series of reflection cracking tests 

that were run on the TTI Overlay Tester. Various thicknesses of overlays 

that were made with different viscosities of asphalt as well as some that 

were reinforced with various fabrics were tested and their results are re­

ported herein. A viscoelastic theory which has been proposed to predict 

crack growth is presented and partially validated. Methods of reducing 

overlay tester data to determine the important material properties are given 

in this report. 

This report is the fifth in a series of reports from the study entitled, 

11 Flexible Pavement Evaluation and Rehabilitation.~~ The study, sponsored by 

the State Department of Highways and Public Transportation in cooperation 

with the Federal Highway Administration, is a comprehensive program to de­

velop new means of evaluating flexible pavements, predicting their per­

formance and distress, and determining optimum management strategies for their 

rehabilitation and maintenance. 
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DISCLAIMER 

The contents of this report reflect the views of the authors who are 

responsible for the facts and the accuracy of the data presented herein. 

The contents do not necessarily reflect the official views or policies 

of the Federal Highway Administration. This report does not constitute 

a standard, specification or regulation. 

ABSTRACT 

An experimental testing procedure has been established in this re­

port, for quantitative analysis of overlays designed to reduce reflection 

cracking. From this testing procedure the overlay scheme that shows the 

most resistance to cracking can be chosen. The procedure uses crack propa­

gation tests on overlay samples which are conducted on a machine called the 

11 0verl ay tester. 11 This machine was speci fica lly bui 1 t to simulate the 

displacements resulting from temperature changes in the cracked or jointed 

pavement or base materials that are beneath an overlay. 

Various types of overlay samples were investigated on the overlay tester. 

These include samples \'lith fabric, such as 11 Petromat, 11 and samples composed 

of different grades of asphalt, AC-5, AC-10, and AC-20; various gradations, 

open graded, dense graded, and hot sand mixes; and different overlay 

thicknesses of one, two, and three i~ches. 

In order to design an overlay, determining its proper thickness and 

reinforcing as well as the quantities of the constituents used in the mix, 

its reflection cracking life must be predicted so that the proposed overlay's 

resistance to cracking can be easily seen. One way to determine the fatigue 
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life is to perform fatigue tests on overlay samples using the overlay 

tester. These tests can be time consuming and costly. Another method 

to find the fatigue life is to use a method of stress analysis that 

considers the concentration of stresses near the crack tip, known as 

11 fracture mechanics ... To use fracture mechanics, two material constants 

have to be determined. These material constants can be determined by 

fatigue tests, but elimination of these fatigue tests is desirable. As 

the name implies, these constants are properties of the material in 

which cracking occurs. Dr. R. A. Schapery of Texas A&M University 

has recently developed a theory using material properites to determine 

the two material constants for viscoelastic materials. The material 

properties used in his theory are creep compliance, D(t), tensile 

strength, a , and fracture energy, r. This investigation explains m 

what these properties are and shows how these properties are determined 

and applied to predict the reflection cracking life of an overlay. 
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IMPLEMENTATION STATEMENT 

The results of a series of tests of overlay samples which were per­

formed on the TTl Overlay Tester are given in this report. The samples in­

cluded some with 11 Petromat 11 and other fabrics; different overlay thick­

nesses of one, two, and three inches; different grades of asphalt, AC-5, 

AC-10, and AC-20; and various gradations of aggregate, open-graded, dense­

graded, and hot sand mixes. 

Material properties that are relevant to cracking resistance are given 

and a method of using them to calculate the reflection cracking life of an 

overlay is presented. Example calculations are shown. 

The methodology that is presented in this report is intended to be a 

testing and analysis service that TTl can perform for the Texas SDHPT. 

The service is intended to assist the Materials Division (0-9) in assessing 

the efficiency of and in developing specifications for new materials that 

are proposed for use in overlays in various locations around the state. 

This methodology will be fully implemented when the Texas SDHPT begins 

to use TTI's testing and analysis service on a regular basis. 
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CHAPTER I 

INTRODUCTION 

The primary objective of this research is to establish an experi­

mental test procedure for quantitative analysis of overlay methods 

designed to reduce, eliminate, or delay reflection cracking. From such 

a testing procedure the overlay scheme that will most likely be success­

ful in the field can be determined, and some pre-construction guidance 

on rehabilitation projects can be given to the Texas State Department 

of Highways and Public Transportation (SDHPT). 

Experimental tests performed on the overlay schemes are a special 

kind of fatigue test, and these tests are conducted on a machine called 

the "overlay tester". The overlay tester was specifically built to 

model the displacements in the pavement or base materials that result 

from stresses induced by temperature changes (thermal stresses). 

This type of cracking that occurs in asphalt overlays is more 

commonly known as "reflective cracking". It is caused by the cracked 

underlying pavement or base course contracting during drops in tempera­

ture during which restraining stresses are developed along the under­

side of the overlay (1). If these restraining stresses are greater than 

the tensile strength of the asphalt, cracks will form above the existing 

ones. From these thermal cracks other branch cracks develop and these 

continue to grow into what is known as "alligator cracking" (2). Water 

can intrude into these cracks which in turn leads to loss of bond between 

l 



the overlay and the original pavement and could also cause ~ocalized 

loss of subgrade support. 

The direction in which the thermally induced cracks propagate are 

from the original pavement then up through the overlay, or the cracks 

may initiate in the base course and then propagate upward through the 

pavement. The latter behavior of crack initiation in the base course 

was observed by Carpenter, Lytton, and Epps (3). They reported that 

transverse cracking in pavements in west Texas resulted from the ther­

mally active base course materials subjected to freeze thaw cycles which 

were found to be more susceptible to cracking than the asphalt concrete 

surface. Lime- and cement-stabilized base courses also cause reflection 

cracking due to their shrinkage and their thermal cycling. Based on 

the above observations of pavement cracking, the overlay tester was 

constructed so that this cracking behavior could be simulated. 

Many asphalt overlay schemes have been developed ta try to stop 

reflection cracking or at least minimize it. Some of these schemes 

tried are listed below: 

1. Improved mixes for resurfacing. These include softer asphalts 

and ti1e use of rubber and polymer-asphalt additives. 

2. Intervening layers such as granular materials and open-graded 

asphalt mixes. 

3. Stress-relieving interfaces, rubber tire-aggregate mixes, 

and some proprietary methods such as "overflex 11
• 

4. Reinforced layers of asphalt concrete that are reinforced with 

wire mesh or a fabric such as "Petromat". 

In this investigation two main groups of tests were performed on 

possible overlay schemes. The first group of tests investigates the 
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performance of various fabrics, using fatigue tests, that are used to 

make the pavements more resistant to cracking. In the second group of 

tests a study is made on the behavior of cracking in asphalt overlays 

with "hard" and "soft" asphalts and "high" and "low" asphalt contents on 

open graded, dense graded, and hot sand mixes. Also the effect of 

cracking, in a standard ASTM dense graded asphalt mix, on three different 

thicknesses of one, two, and three inches is investigated. All of the 

above tests are performed at a constant temperature of 77°F (25°C). 

For a study concerned with the evaluation of fatigue and fracture 

resistance of asphalt concrete, two approaches can be used, the pheno-

menological approach and the mechanistic approach. 

The phenomenological approach was developed by Monismith (4-11), 

Pell (12-14-), and others by empirically relating the fatigue life (Nf)' 

the number of load applications to failure of the pavement, to the 

maximum tensile stress (a) or tensile strain (E) occurring on the 

underside of the pavement caused by traffic loads; 

for controlled stress tests 

and 

for controlled strain tests. 

The constants c1, c2, m1, and m2 are determined experimentally from 

simply supported or cantilevered asphalt concrete beams. Since the 

constants C and m vary with the type of test and boundary conditions, 

Ramsamooj (15) argued that they cannot be considered as true material 

3 



constants. Also, the phenomenological approach cannot take into account 

the crack initiation and propagation; in other words it cannot explain 

crack growth (16). 

By using fracture mechanics to predict fatigue life and to explain 

crack growth, a mechanistic model was developed at Ohio State University 

(15, 17, 18). From fracture mechanics, fatigue life can be described by 

the process of crack initiation, crack growth, and ultimate fracture: 

where 

K = stress-intensity factor; this controls the rate of crack 

propagation since K takes into account the effect of 

external loads and geometry that intensifies the stresses 

near the crack tip (19, 20). 

Kic = critical stress-intensity factor; when K = K1c a crack 

propagates at an uncontrolled rate, like fracture that 

occurs in glass. 

a = crack length 

Aandn = mater··ial constants. 

From fatigue tests performed on metals, Paris and Erdogan (19) have 

shown that A, n, and K are related by the power law equation, 

(1-1) 

da where dN is the change in crack length per cycle. Taking the log of 

both sides of the power law equation gives, 
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da 1 og dN = 1 og A + n 1 og K 

da This is an equation of a straight line and from a plot of log dN versus 

log K, the material constants A and n are determined graphically. Log A 

is the 11y-intercept 11 and n is the slope of the line. 

Schapery (21) recently presented a theory of crack growth in 

viscoelastic materials in which he found a relationship between the 

material constants A and n and the properties of the material in which 

the crack is propagating, 

and 

where 

A = f (om' 11, v, D(t), r, w(t), M) 

n = f (m), 

om = maximum stress a material can withstand before separation 

of the material occurs 

11 = an integration of stresses near the crack tip over a small 

region ahead of the crack tip known as the 11 failure zone ... 

11 has the property that when it is multiplied by a con­

stant, ~. the product is equal to the stress-intensity 
'IT 

factor K. 

v = Poisson's ratio of the material 

D(t) = creep compliance as a function of time, t, found from 

simple shear or uniaxial tension tests. 

r = 11 fracture energy .. , which is defined as the work done 

(applied force times the resulting displacement) on a 
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material to increase its surface area, a unit area (this 

results from crack growth), and can have the units of 

lb-in 
in 2 

w(t) = the wave shape of the stress-intensity factor, K, i.e. 

K0 sin ~~tt' which represents a sinusoidal fluctuation 

with amplitude K0. 

bt = the period of the cyclic loading, that is the time 

required to complete one cycle of loading. 

m = the slope of the log D(t) vs. log t curve at the time, t, 

required for the crack to propagate the length of the 

failure zone. 

The advantage of using Schapery•s theory is that the constants A and n 

can be found by knowing the material properties as listed above instead 

of performing very time consuming fatigue tests to determine them 

experimentally. The results of fatigue tests at different temperatures 

and sample geometries can be predicted directly as can the fatigue of 

actual highway pavements. The importance of various material properties 

(e.g. asphalt, aggregate) can be determined explicitly rather than 

relying on extensive series of fatigue tests. If Schapery•s theory can 

be shown to apply to reflection cracking fatigue, a number of mathe­

matical inferences will be immediately available for purposes of 

designing optimum surface courses and overlays to delay, reduce, or 

prevent reflection cracking. 

This leads to the second objective of this investigation, which is 

to verify Schapery•s theory applied to asphalt concrete so that the 

fatigue life of a potential overlay scheme can be predicted numerically 
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based on material properties instead of having to rely only upon a series 

of fatigue tests which are costly in time and money and whose results 

cannot be applied directly to field conditions. 

In the next section the concepts of fracture mechanics and their 

role in predicting the fatigue life of materials will be presented. 

Schapery•s theory will then be presented and a review of previous 

research done to design asphalt mixes resistant to fatigue failure and 

cracking along with field tests will be given. The concluding section 

gives the experimental procedure, testing apparatus~ and methods used 

for material characterization for evaluating overlays along with the 

data obtained from the tests. 
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CHAPTER II 

FRACTURE MECHANICS 

Basically, fracture mechanics explains why a structural member will 

fail (fracture) at a load (stress) much smaller than the load (stress) 

it was designed for. The explanation for this behavior is the existence 

of flaws (cracks) in the structure which created stress concentrations 

which in turn cause crack propagation resulting in failure. 

There have been many structures which have failed under applied 

loads much smaller than the allowable designed loads which were based 
' on large safety factors (22). The consequences of these failures some-

times resulted in the loss of human lives. Between 1942 and 1952 seven 

Liberty ships had broken completely in half which was caused by stress 

concentrations at square hatch corners. In the mid 195o•s two Comet 

aircraft failed catastrophically while at high altitudes, and from 

investigations the cause was blamed on small fatigue cracks originating 

from rivet holes near openings in the fuselage. Bridges have also 

failed catastrophically such as the Point Pleasant Bridge at Point 

Pleasant, West Virginia resulting in the loss of 16 lives in 1967. In an 

attempt to prevent such failures from occurring, researchers have devised 

a structural analysis which considers crack growth as a function of the 

applied loads and this type of structural analysis is referred to as 

.. fracture mechanics ... 

Fortunately when pavements fail due to cracking, the results are 

not as serious as would be in other types of structures. The advantage 

of applying fracture mechanics to asphalt concrete pavements is that the 

rate of crack growth, caused by environment or traffic loads, can be 
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determined and in turn the life of the pavement can be predicted as will 

be shown later in this section. 

The first analysis of fracture behavior for materials containing 

cracks was made by Griffith in 1920 {23). Griffith postulated that for 

brittle materials, fracture (unstable crack growth) occurs when the rate 

of decrease in elastic strain energy due to an incremental increase in 

crack length is equal to or greater than the rate of increase in surface 

energy due to an incremental increase in crack length. Elastic strain 

energy is the area under that portion of the stress-strain curve for 

which Hooke•s law is applicable. 

Griffith considered an infinite plate of unit thickness that 

contains a through thickness crack of length 2a and is subjected to a 

uniform tensile stress, a, applied at infinity as shown in Figure 1. 

The total potential energy of this system is 

where 

u = u u + u o a y 

U
0 

= elastic strain energy of uncracked plate 

Ua = decrease in the elastic strain energy caused by 

introducing the crack in the plate 

Uy = increase in the surface energy caused by the formation 

of the crack surfaces, and stored on the surfaces of the 

crack. 

Using a stress analysis that was developed by Inglis (24), Griffith 

showed that 
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C1 

y 

-a a 

C1 

Figure 1. Plate With Infinite Dimensions Used in Griffith's Theory. 
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2 2 
1Tcr a ua = 

E 

U is equal to the product of the surface energy density of the material, 
y 

y, and the new surface area of the crack, 

U = 2 (2a )y 
a 

The total elastic energy of the system U is now 

2 2 
1Tcr a + 4a y 

E 

A crack will grow rapidly if more elastic energy is released than can be 

stored on the crack surfaces. Thus the critical condition for crack 

growth in Griffith•s theory is when the rate of elastic energy release, 

aua , is equal to the rate of surface energy storage, aua , and the net 
aa aa 
rate of change of total energy, ~~ , is zero. This condition is obtained 

by setting the first derivative of U with respect to crack length, a, 

equal to zero: 

au = 0 = + 4y 
a a 

which is rearranged to: 

2 
1T cr a = 2y (2-1) 

E 

The left hand side of the above equation has been designated by Irwin 

(25) to be the 11 Crack extension force 11 
--

11 G11
• It represents the 
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elastic strain energy per unit crack surface area that is available for 

infinitesimal crack growth. 

For the plate with a crack all the way through its thickness such 

as Griffith used in his analysis, Irwin defined the stress-intensity 

factor, K, for that system to be: 

K :: a faiTT 

Irwin (25) showed the following relationship between G and K: 

2 
1Tcr a 

E 
- G 

K = IGE 

for plane stress and for plane strain conditions: 

K = I GE/(l-v2) 

with v being Poisson's ratio. 

(2-2) 

(2-3) 

(2-4) 

The energy-balance approach to crack growth, Griffith's theory, 

defines the conditions necessary for unstable crack growth that is 

typical in brittle materials. Griffith's theory does not apply to 

analysis of stable crack growth such as from fatigue loading. The stress­

intensity factor, K, is applicable to stable crack growth and has helped 

in understanding the phenomena of stable crack growth and at what 

conditions unstable crack growth occurs. 
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In order to establish a stress analysis for cracks in an elastic 

solid, Irwin (26) defined three ways in which a crack may grow. Consider 

an element at the crack tip as shown below: 

ax stress not shown. One way for the crack to extend into the element 

is if a is the largest stress on the element or when all stresses y 

except a are zero. 
y 

MODE I. 

This defines Mode I (or Opening Mode) type crack displacements. 
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Mode II (or Shearing Mode) type crack displacements occur when 

•yx is the largest stress on the element or when the other stresses are 

zero. 

MODE II. 

For Mode III crack displacements to take place the T stresses yz 
need to be dominant, or all other stresses zero. 

MODE III. 
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Irwin then set out to find the stresses and displacements in the 

vicinity of each of the three crack tips that were formed by the above 

three different modes of crack extension. He accomplished this by using 

the theory of elasticity and a method developed by Westergaard (54) for 

representing the Airy•s stress function in terms of complex variables 

which takes into account the boundary conditions of the crack. The 

stresses and displacements near the crack tip for Mode I along with the 

coordinate system used are: 

O'y 

X 

KI e [1 sin Q_ sin 3e) (J = cos 2 X v'2-rrr 2 2 

KI e [1 + sin 9 . 39] 
cry = cos 2 2 s1n 2 
~ 

KI 
sin 9 9 cos 3e 

'xy = 2 cos 2 2 /21rr (2-5) 
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az = v (ax + cry) , TXZ = -ryz = 0 

KI ~ a 
[1 - 2v + . 2 ~] u = G cos - s1n 2 

KI ~ sin ~ [ 2 - 2v - 2 t] v = G cos 2 

w = 0 

\) = Poisson's Ratio 

G = Shear Modulus 

For a derivation of the above equations refer to Appendix A (p. 114). 

The Mode II and Mode III stresses and displacements are not shown here; 

for these equations, see Barsom (22) or Paris and Sih (27). 

When e is equal to zero the stresses for Mode I crack extension 

Eq. (2-5) reduces to: 

= 
KI 

ax 
l2iTr -rxy = 0 

(2-6) 

This will allow a clear explanation of what a stress-intensity factor 

is. Consider the infinitely large plate of unit thickness, used in 

Griffith's theory, shown in Figure 1 {p. 10). The stress-intensity 

factor for this system was defined in Eq. {2-2). Substituting a~ 

for K in Eq. (2-6) for the oy stresses yields: 

a = 
y 

By keeping a constant and varying a, the behavior of the stress-intensity 
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factor, K, on the stresses, ay' near the crack tip can be seen in 

Figure 2. In Figure 2 the two curves for the two different crack 

lengths have an identical shape but different magnitudes of ay stresses. 

The stress-intensity factor tells what the magnitude of these stresses 

are; it does not have any bearing on the distribution of these stresses. 

The distribution of these stresses is invariant in all structural com-

ponents subjected to this type of deformation and the magnitude of these 

stresses is described by a single parameter, K. 

Unstable crack growth occurs when the stress-intensity factor 

reaches a critical value, Krc· Krc represents the ability of a material 

to withstand a given stress magnitude at the crack tip and to resist 

unstable crack growth. Also, Krc is known as the 11 fracture toughness 11 

of the material and its value depends on the particular material, 

loading rate, and temperature. 

The general relationship among material fracture toughness (K1c), 

nominal stress (a), and crack length (a), for the cracked plate used in 

Griffith•s theory, is shown schematically in Figure 3. Note that there 

are many combinations of a and a that will fall on the Krc curve to 

cause unstable crack growth. 

Barsom (22) made an analogy between the parameters applied load (P), 

nominal stress (a), yield stress (ays) for a uncracked material, and the 

parameters for a cracked material, applied load (P), stress-intensity 

factor {K), and the critical stress-intensity factor (Kic). In the 

uncracked material, as the load is increased the nominal stress increases 

until failure (yielding at ays) occurs. For a material with a crack, as 

the load is increased the stress-intensity factor increases until 
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X 

Figure 2. Effects of Crack length on the Stresses Near the Crack Tip. 

Increasing fracture toughness, 

Krc 

a 

Figure 3. Relationship Between Fracture Toughness (K1c), 

Nominal Stress (cr), and Crack length (a). 
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K1 = Kic at which unstable crack growth occurs. As is done in conven­

tional stress analysis, the design stress (cr) is kept below the yield 

stress (crys), the KI level in a structure should be kept below the Kic 

value. 

If a structure containing a crack is subjected to several Mode I 

deformations say by a combination of uniform tensile loads, concentrated 

tensile loads, and bending loads, then the total stress-intensity factor 

can be obtained by adding the stress-intensity factors that correspond 

to each of the loads. For structures that are subjected to loads causing 

Modes I, II, and III type crack displacements, the stress-intensity 

factors of these different modes cannot be added. In this case the 

crack extension force, G, for each mode can be added to obtain the total 

crack extension force. 

The complete useful life of a structure is the time required for 

the crack to initiate (appear) and the time it takes the crack to grow 

to critical dimensions at which unstable crack growth occurs. For 

asphalt concrete pavements crack initiation and stable crack growth may 

be caused by: 

1. cyclic stresses -- traffic loads 

2. aggressive environment -- freeze-thaw cycles and large amplitude 

temperature cycles which drop below the temperature at which 

stresses in the asphalt concrete will relax to zero during 

the cycle 

3. the combination of cyclic stresses and aggressive environment. 

Since the above causes of stable crack growth depend on the magnitude 

of the stresses at the crack tip, the rate of stable crack growth depends 
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upon K
1
• Therefore fracture mechanics can be used to analyze the 

behavior of a structure throughout its entire life. 
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CHAPTER III 

FATIGUE CRACK GROWTH 

The data from stress versus number of load applications (S-N)curves 

are not realistic enough to use for predicting the fatigue life of a 

material, unless the fatigue test specimen and the member it is modeling 

are identical; they are the same shape, the crack geometries are the 

same, and the same type of load application and strain history. 

The fracture mechanics approach uses fatigue-crack-growth tests 

performed on samples subjected to constant-amplitude cyclic-load fluctua­

tions or to constant-amplitude cyclic-displacement fluctuations. For a 

particular number of elapsed load cycles, N, the corresponding crack 

height, a, is measured. From several test specimens with various initial 

crack lengths a plot of 11 a11 versus 11 N" is made as shown in Figure 4 

for constant cyclic load tests. 

Paris and Erdogan (19) have shown that the curves in Figure 4 

reduce to a single curve when the data are represented in terms of crack 

growth rate per cycle of loading, ~~, and the fluctuation of the stress­

intensity factor, ~KI. When ~~and ~KI are plotted on log-log paper for 

the entire life of a material the plot in Figure 5 is obtained. 

In Region I the stress-intensity factor is small enough so that no 

crack growth occurs. 

Stable crack growth occurs in Region II. This region is a straight 

line on log-log paper and is represented by Paris and Erdogan's power 

l da n 
aw, d N = A ( K) • 

In Region III the stress-intensity factor is equal to the critical 

stress-intensity factor and unstable crack growth occurs terminating 
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Figure 4. Crack Length (a) Versus Number of Load Applications (N) 

for Constant Cyclic Load Tests. 

da 
dN 

Region II I 

Region II 

{ Region I 

Figure 5. Crack Growth Rate per Cycle (da/dN) Versus Stress-Intensity 

Factor Fluctuation (AK1) for the Entire Fatigue Life. 
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the fatigue life of the material. 

The number of cyclic load applications a material can withstand is 

determined from the above power law equation: 

where 

da 

(3-1) 

a0 = the crack length at which stable crack growth occurs. 

a1 = that crack length at which unstable crack growth occurs 

for constant load tests (controlled load tests). 

For constant displacement tests (controlled displacement tests), 

a1 is the thickness of the material for which the crack has to propagate 

through to reach a free surface. As will be seen later from the test 

data, unstable crack growth did not occur for the controlled displace­

ment tests performed on the overlay tester. 

23 



CHAPTER IV 

SCHAPERY 1 S THEORY ON CRACK GROWTH IN VISCOELASTIC MATERIALS 

Schapery (21) derived an equation relating the velocity of a 

crack to the material properties of the material in which the crack is 

propagating due to Mode I type displacements. Basically, Schapery's 

theory is based on three assumptions (these assumptions will be explained 

in more detail later): 

1. Stresses and displacements very close to the crack tip can 

be represented by Barenblatt's crack tip model (28). 

2. The second derivative of the logarithm of creep compliance 

with respect to logarithm of time is small for linear visco­

elastic materials. This means that the curvature in the master 

creep compliance curve in Figure 25 (p. 78) is small which will 

allow certain equations to be simplied and the mathematics 

required to solve them not rigorous. 

3. Failure can be defined by the work done to fail {pull apart) 

a11 strands in a region of small cross-sectional area known 

as the "failure zone" in Barenblatt's crack tip model. The 

work done in this failure zone to create a unit area of crack 

surface is termed the "fracture energi' and is designated by 

"r". 

Barenblatt's crack tip model is shown graphically in Figures 6 and 7 

where 

a = crack length 

a = length of failure zone 

E;l = x-a 
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p 

Figure 6. Geometry for Barenblatt's Crack Tip Model. 

e, 

Y~(oa :::x :s a) 
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~ 

~a1 
cry (x ~ a, y = 0) 

~ a 

Figure 7, Stress Distribution in Barenblatt's Crack Tip Model 
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E; = a-x 

crf = tensile stresses in the failure zone, failure stress 

cry = tensile stresses in the material ahead of the 

failure zone called the linear continuum 

Barenblatt (28} showed that the stresses in the linear continuum due 

to the combined action of the failure stress in the failure zone and 

the applied loads will be finite if and only if 

dE; 

This will be referred to as the finite stress equation. 

Schapery normalized the integrand by letting 

n l - a 

f 
crf 

-
am 

where crm is the maximum of crf with respect to E;; 

a/a 

11 - f 
0/a 

[~ . a) 
1 

crf 
d~ f f(n • a) dn -V} a 

crm 0 rn 

With another change of integration, 

n· = 2 ;n-
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dn' = ~ (2) = 

allows the integrand to be expressed by 

2 

f f dn' 

Note that f ~ 1, and I1 will then be less than or equal to 2. 

Substituting the normalized integrand into the finite stress 

equation results in: 

2a. 
1T 

From this equation the length of the failure zone can be determined, 

The displacement near the crack tip, as a function of creep 

compliance and failure stress with respect to ~' will now be defined 

so that the failure criterion in statement 3 above can be applied. 

Williams (29) gave a solution for the displacement v0 near the 

crack tip due to loads acting on a linear elastic material for which 
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where 
2 

ce = 4{1 - " } 
E 

" = Poisson's ratio 

8 = distance between crack tip and nearest geometric 

feature (free surface or opposite crack tip) 

0(~/8) = a term of order (~/8) 

H(~) = the unit step function: 

0, (~ = a-x) < 0 
H( ~) -

1, (~ = a-x) > 0 

Barenblatt (28) also gave a solution for the crack tip displacement 

resulting from the failure stress, of' acting alone on a linear elastic 

solid: 

c e 

21T 
H(~) 

a 

} "f (I;') .en 

0 

The resultant displacement, v, of the top crack face near the crack 

tip due to the applied loads and to of is obtained by adding vf to v
0 

and then use the finite stress equation which yields: 

a 

[
2Vf- ln l d<' 

ce 

~ of(~!) 
~ + ;r-

v = H(~) 
2n ~- ~ 

0 
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For stationary cracks, the above elastic displacement is used to 

obtain the viscoelastic displacement by applying the classical corre­

spondence principle plus Laplace transforminversion. To obtain the 

viscoelastic crack tip displacement equation for a moving crack, the 

extended correspondence principle presented by Graham (30) .must be 

applied to get: 

v = 

where 

1 

271' 

, = variable of integration and ranges from t 1 to t. 

t 1 = time when the crack tip first reaches a point x. 

t = current time. 

(4-1) 

Since the time integration is to be evaluated for a constant x, ~ 

for moving cracks must be expressed in terms of x and • 

~ = ~ (x, T) = a (t) - x 

When a(t1) = x, ~(x, t 1) = 0. Let the time required for the crack to 

propagate an amount a be designated as (t2 - t 1). For this short period 

of time, a(t) can be approximated as: 

. 
with a being the crack tip velocity at time t 1. 
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This allows ~ to be written as: 

~ (x,t) = a(t) - x 
X 

~ (x,t) :¥4 + (t - tl) a - x 

~ (x,t) :¥ (t - t 1) a 

~ (x,t) :¥ bt a 

When the viscoelastic displacement equation, derived from Graham•s 

extended correspondence principle, is evaluated at points near the crack 

tip (O ~ ~ <<~),the following approximation of the crack face displace-

ment equation can be used: 

v :¥ -
~ 3 / 2 C (bt) H(~) ef 

where Cef(t) is defined by Schapery to be the 11 effective .. compliance 

and is written as: 

t 

c .c(t) l t-312 ( c (t - p) r;;- dp 
e1 - 2 J v 

0 

with p - T - tl 

1 

and I2 f ( ~~) j]J_ • 
- in 

0 

30 
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In order to see the behavior of the "effective" compliance, it is 

rewritten using a logarithmic time scale by letting 

p = Q_ 

v t 

L = log t 

t = log (1 - p ) v 
A 

Cv(L) - Cv(t) 

to get 

0 

Cef(t) = ~ (in 10) j( Cv (L+i) 

Schapery plotted the weighting function, 10i(1-10i}112 designated 

w, against i to show the narrow range for which w differs from zero, 

and he concluded that Cef(t) depends on only a small part of the total 

creep compliance curve. He also pointed out that w varies significantly 

only over a 1.2 decade range from (log t - 1.2) to (log t). Since there 

is very small curvature of the creep compliance curve over this 1.2 

decade range, Schapery represented the creep compliance over this range 

by the power law: 

C (t) = C tn v 1 

He selected the exponent n, the 1 og-1 og slope of the creep compliance, 

to be determined at the time, t= L- 0.48, since -0.48 is approximately 

the centroid of the weighting function, w. Conveniently, 0.48 = log 3 

and by definition L = log t, L - 0.48 becomes log(t/3). So now, n is the 
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slope of a line drawn tangent to the log-log plot of Cv(t) at t/3. 

The coefficient c1 is simply the value of the compliance where the 

tangent line intercepts the log t = 0 axis. 

The convolution integral, 

t 

J Cv ( t - p) IP dp , 

0 

in the effective compliance equation can now be evaluated by using the 

power law and treating n and c1 as constants, with the following result: 

t~aking use of the power law again, 

where 

A 
n 

C (A 1/n t) 
v n 

3h r(n + 1) 

4(n+~)r(n+~) 

r(n) is the Gamma function: 
00 

r(n) - ~ tn- 1 e-t dt 

0 

Now with the convolution integral evaluated, the approximate 

displacement equation (Eq. 4-2) is now written as: 
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v ~ -

where 

1/n 

a 

These approximations were applied to the original equation (Eq. 4-1) 

which gives: 

-c ( t) 
v ~ H(t;) _v __ dt; I 

21T 

(4-3) 

Now, the failure criterion that was listed as the third assumption 

will be applied. As was stated earlier, fracture energy, r, is the 

work done (force · displacement) on a material to increase the surface 

area of the material a unit area. This allows the fracture energy to 

be defined by the action of the failure stress, crf' on the material 

inside the failure zone: 

where 

r = J 
0 

vm = that amount of displacement which causes separation of 

the material. 
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Schapery rewrote this equation so that the viscoelastic displacement 

equation (Eq. 4-3) could be used to evaluate the fracture energy: 

a. 

r = j 
0 

av 
dt,: 

dt,: 

To evaluate the above integral, Schapery defined an auxiliary 

function v , a. 

where 

v a. 

v = displacement in Eq. 4-3 

a. . 
a 

. 
Note that a./a is the time it takes the crack tip to propagate the length 

of the failure zone, a.. With the aid of the auxilary function, r can 

be divided into two parts by adding and subtracting v , a. 

a. 

I 
0 

a. 

I 
0 

av a. 

34 
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Schapery found that the integral rb is very small compared to r , 
. a 

and therefore rb can be ignored. By using the auxiliary function defined 

above along with Barenblatt•s finite stress equation and ignoring rb' 

the fracture energy is defined as: 

or cv 

again 

and 

r = 

-
( ta) 

t a 

a 

8r = 
K 2 

I 

- An 

da 
- dt 

1/n 

(4-4) 

a 
. 
a 

To solve Eq. (4-4) for the tip velocity, ~~, the power law form 

of Cv(t) = c1tn is used: 

n 
1/n 

An a 
= c • 

1 
a 

Substituting 7T [ Kr ]
2 

2 crm I 1 
for a which was derived from the finite 
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stress equation gives: 

n 

cv(i.J = cr •n [ ~(a: 1 1J
2

] (~~r 

Br = 
( KI )2 

n 

(~~) = 

Taking the n th 

n 

c1 An [ ~ (o:\f] (~~yn 

n 

( K )2 

[ f (am\)] I 
C1 An 

Br 

root and collecting terms gives: 

A 1/n 
n 2 I 2 

am 1 

Schapery rewrote this equation in the form of Paris and Erdogan's 

power law equation, ~~ = AKn: 

da = dN 
'IT 

2 I 2 
6crm 1 

( ) 

2(1+1/m) 
X KI 

max (4-5) 
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where 

m 
= D0 + D2 t 

D
0 

is the initial compliance, m and D2 are respectively 

the slope and the log t = 0 intercept of a line drawn 

tangent to a double log plot of (D(t) - D0) at time 

t/3; t is the time it takes for the crack tip to 

propagate the length of the failure zone, a. 

~t = the period of the cycle. 

w(t) = the wave shape of the stress-intensity factor. 

K1 = the amplitude of the oscillating stress-intensity 
max 

factor. 

Comparing Schapery•s power law equation to that of Paris and 

Erdogan•s : 

A = 

and n = 2(1 + 1/m). 

2 - \) ) 
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CHAPTER V 

STATE OF THE ART 

Effect of Mix Variables on Fatigue and Cracking Resistance in 

Asphalt Concrete Pavements 

In an effort to design an asphalt concrete mix that would exhibit a 

high resistance to cracking and a long fatigue life, many researchers 

have investigated those parameters in a mix highly resistant to cracking 

and fatigue. These mix parameters include aggregate characteristics, 

asphalt content and type, air void content, fibrous and polymeric addi­

tives, chemical treatments such as sulfur, and others. In this section 

only the first three mix parameters listed above will be discussed since 

this research did not include tests to study the performance of the other 

mix parameters. 

There are conflicting views as to the influence of the aggregate 

type on the fatigue life of the asphalt mix. From con:rolled stress 

tests, Pell and Taylor (21) found that uncrushed gravel compared to 

crushed roc:', for well graded aggregates, has little influence on the 

fatigue life oi- the mix. The same results were obtained from tests 

performed by Epps nnd Monismith (11) on dense graded asphalt mixes with 

various types of aggregates such as crushed granite, l~mestone, and 

river gravel. These tests showed that aggregate type has little 

influence on the fatigue life. However, experiments performed by 

Jimenez and Galloway (31) led to conclusions that the type of aggregate 

determines the amount of asphalt that can be placed in a mix. These 

test results showed that mixtures containing rough-textured aggregates 
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can hold more asphalt and have longer fatigue lives than mixes with 

smooth textured aggregates. 

Results from investigations on the effects of aggregate gradation 

on fatigue life have led to the follwing views. Based on controlled 

stress tests performed by Epps and Monismith (11), Pell (14), and Bazin 

and Saunier (32), for the same asphalt contents, dense graded mixes have 

longer fatigue lives than the open graded mixes. Pell (13) and Kirk (33) 

performed controlled strain tests on mixes with various aggregate 

gradations. Kirk reported aggregate gradation has very little influence 

on the fatigue life, whereas Pell observed significant influence of 

gradation on fatigue life. 

The effects of asphalt hardness on fatigue life of asphalt mixtures 

using controlled strain tests were observed by Epps and Monismith (11). 

They found that as the asphalt hardness is increased, the mixture 

stiffness increases which results in a lower fatigue life. Santucci 

and Schmidt (34), also using constant strain tests, reported that the 

softer the grade of asphalt, the better the fatigue resistance of the 

mix. 

For controlled stress tests the opposite trends that were noted 

above between asphalt hardness and fatigue life were observed. Jimenez 

and Galloway (31) found from their controlled stress tests that asphalt 

mixes made with soft asphalts have a lower endurance under repetitive 

loads than mixes with harder asphalts. Similar results were obtained 

from tests conducted by Vallerga, Finn, and Hicks (35) which showed 

that mixtures with higher stiffnesses related to harder asphalts used in 

the mixes gave longer fatigue lives than mixes with low stiffnesses. 
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As for the concern with the effects of air voids in a mix, Pell and 

Taylor (12) reported that the fatigue life and stiffness of an asphalt 

concrete mix are reduced when the air void content is increased. 

Other researchers such as Saraf (36) and Majidzadeh et al. (37) 

have taken the route of fracture mechanics to explain the sensitivity 

of the above various mix parameters to evaluate and explain the fatigue 

life of asphalt concrete mixes. Particularly they investigated the 

effects that the different mix parameters have on the material constants 

da n A and n used in Paris and Erdogan' s power 1 aw, dN = AK . In order 
da to obtain the relationship between the rate of crack growth (dN) and 

the stress-intensity factor (K), Saraf and Majidzadeh et al. used 

basically the following procedure: 

1. From fatigue experiments, plot a graph of crack length versus 

the number of load applications (a vs. N) and obtain an 

exponential form, a = a0e(DN)n where a0, 0, and N are 

regression constants, and N is the number of load applications. 

2. With the aid of a boundary collocation computer program or a 

3. 

finite element program, develop a relationship between crack 

lengths and the corresponding stress-intensity factors. 

da Obtain the dN - K relationship. First differentiate with 

respect to N the exponential equation that was derived in 

Step 1. For a specific N, ~~ is calculated. Also, a 

(crack length) is found from the a-N exponential equation 

for that particular N. Using this a, K is found using the 

da relationship derived in Step 2. Plot the calculated dN and 

its corresponding K on log-log graph paper. 
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4. Finally, determine the material constants A and n from the 

plot of log ~~ versus log K. A will simply be the 

"y-intercept" and n is the slope of the curve. 

From the procedure listed above Saraf found the parameter A to 

be affected by the viscosity of the asphalt binder used in the mix, 

a decrease in viscosity gave an increase in A. Increasing A leads to 

a reduction in the fatigue life for controlled stress tests. Majidzadeh 

et. al. found that the value for A for open graded slag aggregate mixes 

was higher than the A value from the design mixes with a dense gradation. 

Since these were also controlled stress tests, the fatigue life of the 

open graded mix was shorter than that of the dense graded mix. They 

also investigated the influence of the asphalt viscosity on A. 

They reported that A changes very little for asphalts with penetra­

tion grades 60-70 (AC-40) and 85-100 (AC-20), but at higher penetrations 

of 120-150 (AC-10), softer asphalts, the A values are higher which 

resulted in a lower fatigue life than those exhibited by the stiffer 

asphalts. 

Majidzadeh et. al. did not investigate to see what effects the 

mix variables would have on the exponent n. Instead, after the fatigue 

data were obtained they found by statistical analysis of the data that 

the best fit, using Paris and Erdogan's power law, with a high 

coefficient of correlation (r2) was obtained using n = 1.0 and in some 

cases n = 2.0. Therefore, they assumed that the mix variables affect A 

and not n. They also investigated three different regression models 

for describing the relationship between ~ and K. 
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The four term model, 

had the disadvantage in th~t the four constants are hard to relate to 

the mechanical properties of asphalt concrete. However, they found this 

model to give the best fit to the data out of all the models they 

considered. 

For the three term model, they attempted to use 

However, they found this to be inconsistent with those data and dropped 

this equation from their investigation. 

The second term model, 

was found to be very consistent with the data, but it was still hard 

to relate the two constants, A1 and A2, to the material properties of 

the asphalt mix. 

Majidzadeh et al. then tried to relate Schapery•s crack growth 

theory, Eq. (4-5), to their own experimental data. They reported that 

the constants A and n determined from Schapery•s model did not match 

the experimentally determined A and n values from their fatigue tests. 

In their material characterization tests, they performed compressive 

creep tests and used these results (compressive creep compliance) to 

calculate the A and n values described by Schapery. However, Schapery 
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in deriving Eq. (4-5) used the creep compliance found from uniaxial 

tension creep tests since these tests model the displacements that occur 

in Mode I type crack extension. This discrepancy may explain the 

conclusion reached by Majidzadeh et al. 

In another study, Majidzadeh (38) investigated the use of Petromat 

fabric in an asphalt mix to increase its fatigue life. Experimental 

tests were performed on asphalt beams resting on an elastic support 

(gum rubber) to simulate the road structure. Asphalt beams with and 

without fabric were subjected to fatigue testing using dynamic loads of 

140, 170, and 200 pounds. The fabric was placed in three different 

locations, upper third, mid depth, and lower third. For loads of 170 

and 200 pounds the position of the fabric had very little effect on 

the fatigue lives. In other words the fatigue life of beams with fabric 

in the lower third position was about the same as those beams with 

fabric in the upper third position. But for the 140-pound load, the 

effects of fabric position were readily recognized when compared to the 

fatigue life of beams with no fabric: 

1. 400% increase in fatigue life when the fabric was placed in 

the upper third position, 

2. 800% increase when placed at mid-depth, and 

3. 1100% to 1300% increase when fabric was placed in the lower 

third position. 

Asphalt beam specimens with two layers of Petromat fabric and a 

tack coat of asphalt between them were also tested. Test results showed 

that for loads of 140 pounds the double layer of fabric increased the 

fatigue life three to four times over the life of asphalt samples with 
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one layer of fabric. 

Further tests were conducted at various temperatures which showed 

that the fabric•s effectiveness increases significantly as the test 

temperature decreases due to the increase in stiffness of the asphalt 

mixture and fabric. 

Field Performance of Asphalt Overlays with Fabric 

The Texas State Department of Highways and Public Transportation 

(SDHPT) have recently evaluated several different overlay designs that 

were made to reduce pavement cracking in District 6. Four of these 

overlay designs were compared by Huffman (39), as follows: 

1. Section 1 - the control section which is the usual district 

design of a one-course surface treatment underseal with two­

inch hot mix asphalt concrete (HMAC) followed by a one-inch 

wearing course. 

2. Section 2 consists of HMAC followed by a sealing membrane of 

Petromat fabric with a one-course surface treatment, and then 

a cne-inch HMAC wearing course. 

3. Section 3 is a one-course surface treatment over the existing 

pavement v:ith a 3/4-inch overlay of plant mix seal. 

4. For Section 4 an underseal of Petromat fabric and one course 

surface treatment overlaid with a 3/4-inch plant mix seal. 

The above test sections were part of an actual hishway pavement on 

I-20 and were subjected to a severe winter, hot summer, and at the time 

of their report, back into winter again. They observe~ that Sections 1 

and 2 have out performed Sections 3 and 4. For Sections 3 and 4 there 
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is a difference in the amount of cracking between the sections with and 

without the fabric underseal; sections with the fabric underseal have 

fewer cracks than the sections without it. Of the four sections tested, 

Section 1, the control section with no fabric, showed to be the most 

resistant to cracking. 

Donnelly et al. (2) reported on a full sca1e test with an overlay 

using Petromat fabric on an Interstate between Eagle and Dowd, Colorado. 

Prior to the application of the fabric and overlay, the existing 

pavement•s cracks were filled with a cationic asphalt emulsion. After 

five years since application no cracks have reflected through the fabric. 

Test installations of overlays with Petromat on four locations in 

California show that they are performing better than the adjacent control 

sections of equal overlay thicknesses without the fabric as reported by 

Bushey (40). Observations from these tests show that for overlays with 

fabric, better results are obtained when placed over alligator type 

cracking instead of over transverse and longitudinal cracks. Also it is 

more effective in retarding fatigue cracking due to traffic loads than 

it is in inhibiting thermal cracking. Also the Petromat overlays used 

in moderate or warm climates appear to perform better than those in 

cold environments. 

In a report by the Federal Highway Administration (FHWA) (1) about 

reducing reflection cracking in asphalt overlays, it is stated that the 

Florida Department of Highways observed from cores taken over the cracks 

in the Petromat overlay that these cracks were not reflected but occurred 

in the top one-inch course above the fabric. Also in this FHWA report, 

it was reported that in Wyoming, Petromat helped to reduce reflection 
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cracking for about two years. About a year•s time after the Petromat 

had been placed, tensile stresses that have built up due to temperature 

changes resulted in some cracking but less than the cracking in the 

control section with no fabric. For the next year the low temperatures 

encountered during January added additional tensile stresses which 

allowed the Petromat section to catch up to the control section as to 

the number of cracks. It was also reported that in Wyoming increasing 

the thickness of the overlay has more influence on reducing reflection 

cracking than does incorporating Petromat in the overlay. These 

observations were also made by another field test reported by Gulden (41) 

where a fabric was placed in three different overlay thicknesses of 

two, four, and six inches on I-85, 30 miles north of Atlanta, Georgia. 

After fifteen months of service the two-inch thick overlays were 

cracked, but the cracks seem tighter and smaller than the test section 

with no fabric of the same thickness. The four- and six-inch thick 

overlays with fabric showed no cracking after the fifteen-month service 

period. 

Summary 

Experimental tests performed by Majidazadeh et al. on asphalt 

concrete beams with fabric tested at various temperatures showed the 

fatigue life of these beams increased with decreasing temperature. 

Contrary to the results of the field tests performed ir California, 

Wyoming, and the field test reported by Gulden, these lab experiments 

showed that overlays with fabrics exhibit a shorter fatigue life due 

to thermal stresses than the overlays that mainly are subjected to 
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traffic loads. 

Another point that needs to be high-lighted is the difference in 

test results obtained by performing controlled stress tests as compared 

to those produced from controlled strain tests. The reason for 

performing controlled stress tests is to model traffic loads and the 

reason for conducting controlled strain tests is to model the displace­

ment in pavements. Controlled stress tests usually result in shorter 

fatigue lives. Neither of these types of fatigue tests directly 

addresses the problem of reflection cracking, as does the series of 

tests to be reported subsequently. 
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CHAPTER VI 

MATERIALS AND APPARATUS 

Asphalt Concrete Overlay Test Samples 

Pertinent information on the materials used in making the test 

samples and the sample sizes are presented in Tables 1 and 2. 

As can be seen from Table 1 three fabrics were tested to see how 

well they help in resisting fatigue cracking. These fabrics are: 

1. a fabric material composed of two fibers: 

polypropylene and the other is a polypropylene 

fiber covered with a nylon sheath, 

2. a nonwoven polypropylene fabric, and 

3. a woven polypropylene fabric. 

Asphalt beam control samples with no fabric were made with the same 

asphalt content, gradation, and aggregate type as those beams with the 

above fabrics embedded in them. This was done so that the fatigue lives 

of beams with and without fabric could be compared and the effects of 

the fabric would then be apparent. 

The 11 0verlay samples 11 in Table 2 were used to determine the effects 

of thickness and asphalt content on the fatigue life. Also from these 

test results, the stress-intensi~y factors determined experimentally 

are compared to the stress-intensity factors calculated by the computer 

program developed by Chang et al. (42). 

Table 2 also gives results of the tests performed to measure the 

effects of 11 hard 11 and 11 Soft" asphalts with "high" and "low" asphalt 

contents on open-graded, dense-graded, and hot sand mix overlay materials. 
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~ 
1.0 

Test 
Number 

1 

2 

3 

4 

--~-

Table I. Constituents of Fabric Test Samples and the Test Results. 

Nf 
u Cycles Asphalt Type Number Gradation Crack of to and and 

Opening Samples Samples Failure Aggregate Content 
(Inches) Tested (Inches) (Average) Type (By Wt. of Agg.) 

t 

r 0.055 5 2155 
0.065 5 975 
0.075 5 500 Dense 

Graded 
Based On 

0.065 4 3 X 3 X 15 765 ASTM D-1663 AC- 10 
-5A 3.8% 

0.055 4 1241 Standard 
Usi.ng 

River Gravel 
0.055 5 750 

1 
0.065 3 115 
0.075 4 42 

-- - -

Fabric 
Type 

r 
1 

t 
2 

3 ,-
No 

Fabric 

l 
-----· ---- ----------



t.l 
0 

TEST 

N1J48ER 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

u 
NUMBER 

CRACK OF 
OPEIII~ SAMPLES 

(INCHES) TESTED 

0.030 2 

0.030 2 

0.030 2 

0.030 2 

0.030 2 

0.030 2 

0.045 2 

0.045 2 

0.045 2 

0.045 2 

0.045 2 

0.045 2 

0.045 2 

0.045 2 

Table 2. Constituents of Test Samples and the Test Results. 

-

Nf EXPERIMENTAL SHAPERY'S SIZE ASPHALT TYPE 
CYCLES GRADATION 

THEORY OF AND VALUES 
TO AND 

SAMPLES FAILURE AGGREGATE 
CONTENT 

A n A n 
(INCHES) (AVERAGE.) TYPE (BY WT. OF AGG.) 

1 X 3 X 15 5 

1 
l 0.122 0.193 2.88x 10-7 4.86 

- r-
AC -10 

2 X 3 X 15 285 1.49 X 10-6 2.82 6.42 X 10-8 4.86 

DENSE - r- LOW - 3.5% 

3 X 3 X 15 425 GRADED 1 1.20 X 10-6 2.35 6.42x10-8 4.86 
BASED ON 

r 1 X 3 X 15 10 
ASTM D-1663 

0.0291 0.424 1.07x10-7 4.86 -SA 
STANDARD - AC- 10 

2 X 3 X 15 2100 USING 
HIGH- 5. 5% 

2.78x 10-8 4.08 5.01 X 10-9 4.86 
LIMESTONE -

3 X 3 X 15 VERY AGGREGATE 1 1.40 X 10-8 4.29 s. 01 x 1o·9 4.86 
HIGH 

l 3 X 3 X 15 840 AC- 20 1. 53 X 10-8 3.84 7.57 X 10-12 5. 75 
11ED - 4. 5% 

3 X 3 X 15 1330 AC- 5 2.14x 10-8 4.63 2.31x10-8 4.99 
MED - 4.5% 

HOT SAND MIX AC- 20 8.46 X 10-6 2.68 X 10-1Q 3 X 3 X 15 235 65% _ W.CRETE MED - 5% 
2.11 5.75 

SAND 

3 X 3 X 15 700 30%- FIELD SAND AC- 5 2. 73 X 10-6 4.32 3.63x10-6 4.99 5%- FILLER MED - 3. 5% 

3 X 3 X 15 75 OPEN AC- 20 ---- -- ---- --GRADED LOW - 2 % 
LIMESTONE AC- 20 3 X 3 X 15 852 HIGH- 4 % ---- -- ---- --

90%- 3/4" AND AC- 5 3 X 3 X 15 230 1/2" AGGREGATE Ull- 2% ---- -- ---- --
10%- #30 SIEVE AC- 5 3 X 3 X 15 1275 SIZE HIGH- 3 % ---- -- ---- --

-- ---

E(t) - PSI 

BACK CALCULATED 
FROM FINITE 
ELEM. PROGRAM t 

(AVERAGE) (SEC) 

2863. 7 X 10-4 

1889. 1.4 X 10-3 

3056. 2 X 10-J 

1509. 1 X 10-3 

3613. 1.3 X 10-J 

832. 2.7x10-3 

----- ----

----- ----

----- ----

----- ----



To make the asphalt overlay test beams a 11 Soil Test 11 model CN-425 

kneading compactor machine was used. The beams were compacted in three 

one-inch lifts at a temperature of 250°F using a constant pressure of 

175 psi on a two-by-three inch tamping foot. For the samples with a 

fabric, the fabric was first saturated with asphalt then applied to the 

sample after the first one-inch lift was compacted and then the next 

two one-inch lifts were applied. 

For the first overlay sample compacted from each group of samples 

made with identical asphalt contents, asphalt binder, gradation, etc., 

the density of each of the three lifts was determined gravimetrically 

in air and water. If the samples from each lift were not equal in 

density, the number of tamps per layer, by the kneading compactor, was 

changed to achieve uniform density. 

Overlay Tester 

The overlay tester is a fatigue testing machine designed to model 

displacements caused by thermal stresses in asphalt pavements resulting 

from cyclic changes in the ambient temperature. 

There are two versions of the overlay tester. The original version 

used a mechanical linkage system driven by an electric motor through 

a gear box so that various speeds could be used to crack the asphalt 

overlay beam samples. The overlay samples were epoxied to a split plate 

making sure that the sample was centered over the split, and then these 

were bolted down to the two platens of the overlay tester as shown in 

Figure 8. One platen is fixed, the other is connected to the linkage 

Which is constructed so that the circular motion from the gear box is 
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transformed into a linear oscillating motion which causes the platen 

to move back and forth horizontally. The maximum crack opening, the 

distance between the two platens, could be set for any amount between 

0.0 and 0.10 inch~ 

A strip chart recorder was used to record the load and crack 

opening which were measured by a load cell and LVDT (linear variable 

differential transformer) respectively. The crack height was measured 

on both sides of the overlay samples using a pair of vernier calipers. 

Only the overlay samples with fabric embedded in them were fatigue 

tested on the original overlay tester. After analyzing the data from 

these tests it was found that the crack opening varied through out the 

test for each sample; in other words these tests were not controlled 

strain tests. To correct this problem the overlay tester was modified 

by substituting a hydraulic servo-control mechanism for the mechanical 

linkage, gear box, and electric motor. This is the second version of 

the overlay tester and a picture of it is shown in Figure 9. Along 

with this change over, the load and crack openings were then recorded on 

a x-y plotter, see Figure 10, instead of the strip chart recorder. 

Crack height measurements were still observed and measured visually 

using a pair of vernier calipers. Those overlay samples listed in 

Table 2 (p. 50 ) were tested on this second version of the overlay 

tester. 
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Ftgure 9, Second Version of the Overlay-Tester. 
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Measurement of Crack Lengths by Ultrasonic Techniques 

As mentioned before the crack lengths were measured visually with 

a pair of vernier calipers, and to use these calipers accurately the 

location of the crack tip had to be known but the crack tip was often 

hard to locate. To alleviate this problem so that accurate crack length 

measurements could be made, the application of ultrasonics was attempted 

in order to measure the crack length electronically. 

Ho (43) has used and described a procedure using ultrasonics to 

measure crack lengths in aluminum alloy fatigue samples. The basic 

procedure used is to pass a sound wave through the material with a 

crack by using an electro-mechanical device known as a piezoelectric 

crystal. When the sound wave passes over the crack, part of the wave 

is attenuated and the remaining wave continues on and is monitored by 

another crystal. This received signal is related to the crack length 

determined from calibration tests. 

A piezoelectric crystal has the property that when a pressure is 

applied to it an electric charge is set up on both sides of the crysto 1 

and this property is known as the piezoelectric effect. If an 

oscillating electric charge is applied to the crystal instead of a 

pressure, the crystal vibrates and this is referred to as the reversP 

piezoelectric effect. When a crystal which exhibits the reverse 

piezoelectric effect is mounted on a sample of material, the crystal' 

vibrations produce sound waves that propagate through the material. 

These sound waves cause particle movement which results in a force tha~ 

impinges on the other piezoelectric crystal mounted at the other end 

of the material sample. This crystal then develops an electric charge 
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due to the force, and the amount of this charge is read on a voltmeter. 

The laboratory setup used to measure the crack lengths in the 

overlay samples ultrasonically is shown schematically in Figure 11. 

The crystals are disc-shaped with a two-inch diameter and are made of 

a ceramic material. These crystals are not epoxied to the asphalt 

sample, but are encased in a brass housing and this housing is epoxied 

to the sample for acoustic coupling; a cross sectional view is shown 

in Figure 12, and a photograph of these parts are shown in Figure 13. 

The cap is recessed so that the crystal will be free to vibrate 

in the vertical direction; however the sides of the crystal are 

restrained so that all of the energy vibration is directed in the 

vertical direction. 

A variable frequency oscillator is used to control the frequency 

of vibration of the transmitting crystal. The crystal is operated at 

resonant frequency since the maximum energy can be transmitted at 

resonance. 

The ends of the test samples are cut at 45° angles since from 

previous experimentation it was found that best results are obtained 

when the crystals are placed at these angles, as shown in Figure 14. 

The following procedure was used to calibrate the voltage readings 

of the receiving crystal to the crack lengths. At the start of the 

calibration test, the transmitting crystal is vibrated at resonant 

frequency and does so throughout the test. A voltage reading is taken 

on a sample without a crack, and this voltage reading corresponds to 

zero crack length. After this a saw cut is made in the sample. For 

testing purposes the 11 crack 11 is a cut made in the sample (see Figure 14) 
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Various frequency 
oscillator 

Tran smi tt i ng --~ 
transducer 

Figure 11. 

Asphalt beam 

~Receiving transducer 

Schematic of the Ultrasonic Crack Length 

Measurement Apparatus. 

----Insulation 

l:lr;...._----=;rt'llllf-t---- Tr an sd uc er cap 

Figure 12. Cross-Section of Ultrasonic Transducers. 
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by a masonry diamond saw blade since the length of a saw cut can be 

measured more accurately than an actual crack using a pair of vernier 

calipers. Another voltage reading is taken which corresponds to the 

depth of the saw cut measured by the calipers. This is repeated several 

times until the saw cut is nearly through the sample. 

Three asphalt overlay beam samples were tested using the above 

procedure to compare repeatability of the voltage readings. The voltage 

readings of the three samples were all normalized by dividing them by 

the voltage reading taken of the sample v1ithout a saw cut. To construct 

the calibration curve shown in Figure 15, the normalized voltage 

readings were plotted against their corresponding crack lengths, 

measured by the calipers. 

This calibration curve was then checked by performing a fatigue 

test on a sample using the overlay tester. The crack lengths determined 

by ultrasonics were compared to the measurements made visually of the 

crack with the calipers. Crack lengths found from using the calibration 

curve did not match the visual measurements and this discrepancy was 

large; the crack lengths determined from the ultrasonics calibration 

curve were much smaller than what was visually observed. 

The discrepancy might be explained by the method used to construct 

the calibration curve. Recall that a saw cut was used instead of an 

actual crack to find the relationship between voltage and crack length. 

An actual crack forms from forces and displacements applied to the sample 

and these affect the sound waves propagating through the material by 

attenuating the waves. This attenuation along with the attenuation 

caused by the crack itself results in a received voltage output much 
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smaller than that voltage output for a saw cut of the same size as 

that of the crack in the fatigue sample. The small voltage reading used 

to determine the crack length from the calibration curve results in a 

crack length smaller than what it actually is. 

A calibration curve should therefore be constructed using the loads 

and displacements causing crack growth and not a saw cut. To record 

accurate crack lengths for construction of a calibration curve, pictures 

should be taken of the crack whenever voltage readings are recorded. 

This may resolve the difference between ultrasonic crack length 

measurements and those measured visually. If this problem can be 

resolved then all of the measurements taken from the overlay tester are 

in the form of voltage output which will then allow complete data 

acquisition to be done by a micro-processor. 

Duomorph 

The duomorph is a device used to measure the time dependent 

modulus, E(t), of the viscoelastic materials such as asphalt. Details 

of the duomorph apparatus have been presented by Boggess and Noel (44) 

and others (45, 46), so only a brief and basic description of the 

apparatus will be given here. 

The duomorph consists of two piezoelectric crystals, about the 

size and shape of a coin, epoxied together in such a way that when 

excited electrically one crystal will contract and the other will 

expand to form a spherical dish shape in one direction. When the 

polarity of the excitation is reversed the bending forms the same shape 

but in the opposite direction. These crystals are completely embedded 

63 



into a material for which the modulus is to be determined, and how 

much these crystals bend in a material is indicative of the material •s 

modulus. 

Strain gages are used to monitor the amount of bending, and a 

hysteresis plot of excitation versus bending in the shape of an ellipse 

is produced on an oscilloscope. The shape of the ellipse is an 

indication of the viscoelastic properties of the material and is recorded 

by simply taking a picture of it at various frequencies and excitation 

voltages so that a complete characterization of the material can be 

made. Figure 16 shows a schematic of the duomorph apparatus, and 

Figure 17 shows an ellipse that would be viewed on an oscilloscope 

along with the dimensions required to determine the modulus. 
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Oscilloscope 
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Figure 16. Schematic of duomorph apparatus. 
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Figure 17. Duomorph Output as Viewed on an Oscilloscope. 
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CHAPTER VII 

PROCEDURE 

Material Characterization Using the Duomorph 

The method used for reducing the duomorph output to calculate the 

tensile relaxation modulus, E'(t), relies on the results of an analysis 

done by Schapery ( 46). The modulus is found by using the following 

equation: 

where 

M'E t 3 
E' = c 

12(1-}) r3 

E' = tensile relaxation modulus 

Ec = modulus of crystal; for PZT-4 crystal material 

use 9 x 106 psi, and for PZT -5 materia 1 use 

12 x 106 psi 

t = thickness of duomorph crystal 

r = radius of duomorph crystal 

v = Poisson's ratio of the crystal which is 0.33 

M' = the value read from Figure 18, entering in with 

V H 
H2VA where VA and HA are taken from the duomorph 
2 A 

output (ellipse) when the crystal was excited in 

air. 

Three different size crystals were used to obtain the moduli at 

various temperatures as shown in Figure 19. Crystal 1 was used for 

temperatures ranging from 70°F to 80°F, Crystal 2 for 50° to 70°F and 
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Crystal 1 
0.750 11 0.0. x 0.160 11 Thick 

Crystal 2 Crystal 3 
1.00 11 0.0. x 0.050 11 Thick 1.50 11 0.0. x 0.16" Thick 

Figure 19. Ouomorph Crystals 



Crystal 3 for temperatures between 0°F and 50°F. These crystals were 

completely submerged into the asphalt to be characterized and excited 

at frequencies of 100, 10, 1, and 0.1 Hz for various temperatures. 

Using Schapery's relationship between time and frequency, 

time = 0.1 
frequency 

the modulus versus time for constant temperature was plotted for three 

asphalts, AC-5, AC-10, and AC-20 which are shown in Figures 20 through 

22. 

By shifting these curves horizontally with respect to one of the 

curves chosen as reference, for a particular asphalt, a complete modul'lS-

time behavior curve at a constant temperature was constructed and is 

referred to as the "master curve". This technique is based on the 

principle of time-temperature correspondence (47). Figure 23 shows ~nG 

master curves for the three asphalts tested. 

The time-temperature correspondence principle states that t ~ 

are two methods that can be used to determine a viscoelastic material's 

behavior at long times. First, the material's response (load ~ersus 

deformation data) can be directly measured at long time~' whic:h hec; 

very time consuming. The second method requires raising the temperat>· · 

of the material and then measuring the material's response. Sh1fcin~ 

this curve horizontally to the right of the curve tested at the lowe 

temperature results in an exact superposition of the curves in the 

regions where the modulus values overlap and an extension of the curvF~ 

measured at a higher temperature to modulus values lower than those 

measured at the cooler temperature. The time-temperature con·es :. jc 
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principle states that this extension is identical to that which would 

be measured at long times. 

From the E1 (t) master curve, Figure 23 (p. 74), the creep compli-

ance, D(t), master curve was constructed. This was achieved by first 

fitting a power equation to the E
1

(t) data: 

log E
1 (t) = log B + m log T 

or 

E 
1 

( t) = B tm 

I 

Once m is known, the creep compliance for any time, t, used in the E (t) 

master curve can be calculated using the relationship: 

D(t) sin m1r = 1 
m1r I 

E ( t) 

The creep compliance master curves are shown in Figure 24. 

The procedure used in constructing the E
1

(t) and D(t) master 

curves for the AC-5 grade asphalt is shown in Appendix B (p. 121). 

Stress-Intensity Factors for the Asphalt Overlay Samples 

Determined from finite element program. Stress functions of the 

types suggested by l~estergaard provide a large number of solutions for 

two-dimensional crack problems. One such function shown in Appendix A 

is K = a ~ For three-dimensional crack problems, exact solutions 

in closed form are few in number. In general, unless the crack can be 

regarded as in a material with infinite dimensions, compact analytical 

solutions of the crack stress fields are not available, and numerical 
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methods are required to determine the stress-intensity factors. 

One such numerical method, that was described by Chang (42) is a 

constant strain finite element program which incorporates a hybrid crack­

tip element for calculating stress-intensity factors. This program was 

used in determining the K-values of the asphalt overlay samples for various 

crack lengths. Two values were found that, at a constant depth of sample, 

are invariant for various moduli, crack openings, and loads. One of these, 

K/P, is found by dividing the stress intensity factor by the load remain­

ing in the uncracked area. The other, 2K/Eu, is found by dividing twice the 

stress-intensity factor by the product of the modulus, E• ~ and the crack 

opening, u. These values are plotted against the crack lengths normalized 

by the depth of the overlay sample, a/d, as shown in Figures 25 and 26 

for one-inch, two-inch, and three-inch thick samples. 

Determined experimentally. From experimental observations, Irwin 

(25) found that crack growth could be regarded as a rate-controlled 

process driven by a force which he termed the "crack extension force". 

Irwin assumed that this crack extension force was Griffith•s strain­

energy-release rate which Irwin designated as "G", seeEq. (2-1). The 

crack extension force, G, was further described by Irwin to be the 

irreversible strain-energy loss per unit of crack extension. Figure 27 

will help to explain what is meant by "irreversible strain energy loss". 

Figure 27 is a typical plot of load versus crack opening made by x-y 

plotter of an overlay sample being fatigued on the overlay tester. The 

area bounded by the load-crack opening curve for cycle N and the x-axis 

is the work done (strain energy) on the sample to extend the crack a 

certain amount. For the cycle, N + 1, the area bounded by this curve 
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and the x-axis is less than the area associated with the previous cycle, 

and the resulting crack extension is less than what it was for cycle N. 

The difference in areas under these two curves, the shaded region in 

Figure 27 (p. 80), is the 11 irreversible strain energy loss 11 associated 

with the area of crack extension which is found by subtracting the two 

crack heights measured at the end o~ cycles N and N + 1 and multiplying 

this difference by twice the width of the sample. 

is: 

where 

A simple mathematical representation of the crack extension force 

au 
G = aA 

au = a A the rate of change of strain energy with respect 

to the cracked surface area. 

The procedure used to find G is as follows. U is first found, from the 

recordings of load versus crack opening made by the x-y plotter, by 

using a planimeter to determine the area bounded by the curves and the 

x-axis, and the cycle, N, at which the recordings were taken were noted. 

Then a simple power equation was fitted through the U-N data which gave 

an equation of the form 

U = aNb (7-1) 

where both a and b are regression coefficients. This power equation was 

differentiated with respect to N to give: 

(7-2) 
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The next step taken was to find the relationship between the cracked 

surface area, A, and the number of cycles, N. The cracked surface 

area was found from the crack length measurements, made by the vernier 

calipers, and multiplying this by twice the width of the asphalt over­

lay sample. A power equation was used again to find the relationship 

between the N-A data which gave: 

This equation was differentiated with respect to A: 

The final step to find G is to multiply the two differentiated 

equations, Eq. (7-2) and Eq. (7-3), together: 

au aN 
G = aN . aA 

au = a A 

By substituting a power relationship of cracked surface area to the 

number of cycles, 

into Eq. (7-3) to give 

( J 
d-1 

aN f 
aA = c·d eN 

allowed G, Eq. (7-3), to be evaluated at any cycle, N. 
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The power equations that were used in fitting curves to the data, 

to find the above relationships, resulted in good correlations based on 

their coefficients of determination (r2) values which were usually 

above 0.900. Since good correlations were obtained with these simple 

power equations no other regression models were tried. 

Once the G is found, the stress-intensity factor can be determined 

by using Eq. (2-4) for plane strain conditions. As can be seen from 

this equation, the material •s modulus must be known. To choose the 

correct modulus Schapery•s theory needs to be used; the modulus is 

that value read from the master curve, Figure 23 (p.74), for some 

time, t, which the crack requires to propagate over the length of the 
. 

failure zone, a, divided by three. Recall that t = a I (3a) where a is 

the velocity of the crack. To use this procedure for determining t 

requires a measurement of a to be made during the fatigue test which is 

a very formidable task. Another approach had to be used to determine 

the modulus. 

The following method was used to determine the modulus. Knowing 

the crack height and the thickness of the overlay sample, a K/P value 

was found using Figure 25 (p. 78). From the load versus crack opening 

recordings made during the fatigue test, the 1oad for that particular 

crack height was determined and multiplied by the K/P value to calculate 

the stress-intensity factor. Entering into Figure 26. (p. 79) with the 
I 

same a/d ratio used before, a 2K/E u value was obtained. Since K has 

already been determined and u is the crack opening which is also known, 

the modulus, E
1

, was easily solved for. 
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The modulus found by using the above procedure is assumed to be 

equal to that modulus determined by Schapery•s crack growth theory. 

This assumption is reasonable since all of theE's, determined from 

Figure 26 (p. 79) were found to fall on the straight line region of the 

master curve, Figure 23 (p. 74), and therefore also Figure 24 (p. 76), 

which was used in deriving Eq. (4-5). 

Using these E' values, the crack extension forces, G, were obtained 

by using the stress-intensity factors found from Figure 25 (p. 78) and 

the equation: 

(7-5) 

where v, Poisson's ratio, was taken to 0.400. The G values based on 

Eq. (7-5) will be referred to as Gfe' that is the crack extension force 

found from Chang • s finite e 1 ement program as opposed t:) G which is exp 
the crack extension force determined experimentally. These values, Gfe 

and Gexp; were compared to one another by computing the percent 

difference: 

% Di ff. = 
G - G exp fe 

Gfe 

da 
K Relationship of Crack Growth Rates and __ ~:t_ress- Int~nsit,t_f9~t()rS_)_ d~-=--

The rate of crack growth per cycle was obtained by first fitting 

a power equation to the crack height (c) - cycle (N) data: 

c = (7-6) 
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and then differentiated with respect to N which yielded: 

de = 9• h N h-1 
dN (7 -7) 

For a particular cycle, N, Eq. (7-6) was used to determine the crack 

height, then Figure 25 (p. 78) was used to get K/P value for that crack 

height. From a graph of load, P, versus N, the load for that particular 

cycle was determined and multiplying it by the K/P value, the stress­

intensity factor was found. Using Eq. (7-7) the rate of crack growth, 

for the cycle of interest, corresponding to the stress-intensity factor 

found for the same cycle. This procedure was repeated for various other 

cycles throughout the fatigue life of the sample and then these values 

were plotted on logarithmic paper as shown in Appendix C (p. 127) for test 

numbers 5 through 14. 

The coefficients A and n used Paris and Erdogan's power law 

equation were obtained by fitting a power equation to the ~~ - K values. 

Values of A and n are presented in the power law equation itself as 

shown in Appendix C and also in Table 2 (p. 50) for those samples which 

~~ - K plots could be made. 

Determination of the Parameters Used in Schapery•s Theory 

As was shown by Schapery, the coefficients A and n in Paris and 

Erdogan's power law for crack growth were related to the material 

properties in which the crack propagates: 

'IT [ (1-:2; 02 rm [ t w(t)2(1+1/m) dt] 

(7-8) 
A = 

6 2 I 2 0 m 1 
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n = 2(1 + 1/m) (7-9) 

The maximum stress that the samples can withstand before failure, 

am' was found by taking the largest load recorded by the x-y plotter 

for the first or second cycle of loading, and dividing this by the area 

occupied by the aggregate in a cross-sectional plane of the sample. 

The area of aggregate was found by taking the volume of aggregate, used 

in making the asphalt overlay sample, and dividing it by the length of 

the sample. Values of a ranged from 20 psi to 65 psi depending upon m 
the constituents of the asphalt concrete mix. These values were compared 

with tensile strengths of some asphalt samples obtained from direct 

tension tests performed on the Instron Machine and close agreement was 

observed. 

Reasonable values of I1 can be taken to be any value between one 

and two. For the analysis done here, I1 was arbitrar:ly assigned a 

value of 1.5. 

Poisson's ratio, v, was taken to be 0.400. 

The f~acture energy, r, is defined as the work done on a material 

to produce a unit area of crack surface. Values of r were found from 

the early portions of the fatigue tests. The load-crack done on the 

material which was determined by finding the area between the curve 

and the crack opening axis using a planimeter. Using Eq. (7-6) to 

find the crack heights at the beginning and the end o~ the cycle for 

which the work done on the sample was determined from, and then taking 

the difference of these two crack heights and multiplying by twice the 

width of the sample gave the cracked surface area associated with the 
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work done on the sample for that cycle. r was then found by dividing 

the work done for that cycle by the cracked surface area produced 

during that cycle. 

From the compliance curve in Figure 24. (p. 76), o2 and mare 

found; o2 is the compliance at the time equal to one second and m is 

the slope of the straight line portion of the curve which extends 

-4 from t= 1 sec. to about t= 10 sec. 

Values of o2 and m are shown below for the three asphalts tested: 

Asphalt 02 ( p~ i) m Grade 

AC-5 4.66 X 10 -2 0.669 

AC-10 3.44 X 10-2 0.700 

AC-20 7. 65 X 10 -3 0.533 

For the integral in brackets in Eq. (7-8), w(t) is the wave shape 

of the stress-intensity factor which is sinusoidal as shown in Figure 28, 

and the equation of this sine curve is: 

sin 0 < t < 5. sec. 

w(t) = 
0 5 < t < 10 sec. {7-10) 

This equation was integrated over the period of the cycle, 6t, which is 

ten seconds: 

5 

I [ ]

2{1+1/m) 
. 27ft 

s1n 11) dt + 
10 2{1+1/m) 

1 ( o J dt 
0 5 {7-11) 
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The above integral was evaluated numerically using Simpson•s rule and 

the results are presented below for the three asphalts: 

Asphalt Eq. (7-ll) 
Grade 

AC-5 1.72 

AC-10 1.72 

AC-20 1.59 

Values of the parameters used to evaluate the equations derived 

from Schapery•s theory, Eqs. (7-8) and (7-9), are shown in Table 3. 
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Table 3. Values of the Parameters Used in Schapery•s Theory. 

l 
I 

I 1 I ( l_bi ~}-"-) I 

r 02 
2 (1 + ~) 

t.t 

(fs,) m 1 I 2(1+1) 
m w(t) m 

Eq. (7-9) 0 

A 

Eq. (7-8) 

r ~~ r 2.88 X 10-7 

-

6 2 -8 .4 X 10 

I 6.42 X 10 -8 

1. 07 X 10-7 
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CHAPTER VIII 

RESULTS AND DISCUSSION 

Performance of Fabric Materials 

As seen from Table 1 (p. 49), asphalt overlay samples with Fabric 1 

have the longest fatigue life of the three fabrics tested. Fabric 2 

overlay samples have the second longest fatigue life and Fabric 3 

samples have the lowest life of the fabric samples. The control samples, 

those with no fabric, failed sooner than the samples with fabric. 

For the samples with Fabric 1 and 2 tested at a crack opening 

. set for 0.065 inch or more, when the crack reached the fabric it 

began to propagate horizontally for a short distance while a crack would 

initiate at the top of the sample and propagate downwards to the crack 

at the fabric. This behavior was observed in the field by the Florida 

Department of Transportation as mentioned before. Overlay samples made 

with Fabric 3 did not exhibit the above trends, and there is only a 

small amount of difference between the fatigue lives of the Fabric 3 

samples and the control samples. 

In all of the fatigue tests performed, these fabrics did not tear 

apart for the crack openings (displacements) they were subjected to. 

This can be attributed to the fact that the fabric material can sustain 

those displacements that cause cracking to occur in the asphalt concrete. 

The rate of crack growth is much slower in the samples with fabric than 

the control samples since the fabric prevents the asphalt concrete from 

opening up to those displacements causing faster crack growth. The 

crack was noted to stop momentarily at the fabric until the fabric was 
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stretched enough to allow the displacements in the surrounding asphalt 

concrete to cause crack growth immediately above the fabric. This 

permitted the crack to propagate to the top of the sample as was 

observed in Fabric 3 samples or meeting the crack propagating down from 

the top as was the case with Fabrics 1 and 2 samples. 

Majidzadeh (38) concluded that for the best performance (longest 

fatigue life), the fabric should be placed in the lower third portion 

of the sample where the stress-intensity factors are a minimum. Recall 

that Majidzadeh et al. modeled traffic induced loads; whereas, in this 

report loading due to thermal changes was being modeled and the region 

where the stress-intensity factors are a minimum are in the top third 

of the sample as was done for the tests performed on the overlay-tester. 

Bushey (40) reported that overlay sections in the field with fabric 

performed best in moderate or warm climates, and field tests performed 

in Wyoming (1) showed that after two years time the overlays with 

fabric caught up with the overlays without fabric of the same thickness 

as to the number of cracks. The tests performed on the samples listed 

in Table 1 (p. 49) were conducted at a temperature of 77°F, so no 

comparison between the field observations and the results from the 

overlay tester on the effects of temperature can be made. 

Effects of Thickness and Asphal~ Content on the Behavior of Cracking 

in the Overlay Samples 

Looking at Table 2 (p. 50) for test identification numbers 5 

through 10 shows that thicker overlay samples have longer fatigue 

lives and increasing the asphalt contents also results in longer fatigue 
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lives for the various thicknesses. The effects of thickness on the 

constants A and n used in Paris and Erdogan's power law are very small 

for the two- and three-inch thick samples, but for the one-inch thick 

samples they differ considerably from the others. The values of A and 

n, for the one-inch thick samples are not sound because the crack pro­

pagated so rapidly during the tests making the crack height measurements 

inaccurate. So, for a particular asphalt content, thickness does not 

affect A and n based on the results from the two and three inch thick 

samples. 

When the asphalt content is increased the parameter A decreases 

and n increases. The trend which A takes is consistent with the 

findings made by Majidzadeh (37); they kept n constant in the power law 

equation using values of 1 and 2 for n to determine A. This makes A 

solely dependent upon the material properties, so they could not 

report upon the effects of the mix variables on n. Also from Table 2 

(p. 50), low values of A and high values of n are associated with long 

fatigue lives. 

The values of A and n determined from Schapery's theory are seen 

to be in close agreement with those found experimentally for the samples 

with high asphalt contents. When the asphalt content is decreased, 

the difference between theory and experiment become significant. 
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Effects of 11 Hard 11 and 11 Soft 11 Asphalts With 11 High 11 and 11 LOW 11 Asphalt 

Contents in Various Graded Mixes on the Cracking Behavior in the 

Overlay Samples 

Referring to Table 2 (p. 50) and test identification numbers 11 and 

18 the effects of asphalt grade on the fatigue lives of these samples 

show that the stiffer the asphalt the lower the fatigu9 life. These 

trends also occurred in the hot sand mixes and in the open graded 

mixes. Santucci and Schmidt (34), Epps and Monismith (11) all reported 

the same observations, as was just described, for controlled strain 

tests; however Majidzadeh et al. found that the samples made with 

softer asphalts, such as with AC-5, had short fatigue lives, but these 

results were obtained from controlled stress tests. 

The effects of 11 high 11 and 11 lOW 11 asphalt contents on the open 

graded mixes, test numbers 15 through 18, show again that the higher 

the asphalt content the longer the fatigue life. The open graded mixes 

and the hot sand mixes exhibited shorter fatigue lives than the dense 

graded mixes. No comparison can be made between the hot sand mixes 

and the open araded mixes since these samples did not have identical 

asphalt contents. 

Epps and Monismith (11) and others (13, 14, 32) have also found 

that for the same asphalt contents dense graded mixes have longer 

fatigue lives than the open graded mixes. 

Experimental values of A show that they are affected by aggregate 

gradation and not by the grade of asphalt used in the mixes made with 

the same asphalt content, and the experimental values of n are affected 

only by the asphalt grade for these samples. Schapery's A and n values 
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agree fairly closely with the experimental values for those samples 

made with the soft asphalt, AC-5. 

Crack Extension Forces - G; Experimental and From the Finite Element 

Program 

The percent difference between the experimentally and numerically 

determined crack extension forces have a range of 90% to 0% for all the 

samples tested in Table 2 (p. 50) except the open graded samples. The 

difference between the Gexp and Gfe values are the largest in the early 

portion of the fatigue tests, where the stress-intensity factors are 

large. Toward the end of the fatigue tests when the stress-intensity 

factors become small, the differences between G and Gf also become exp e 
small. 

For the majority of the fatigue tests performed, the crack extension 

forces found from experiment are larger than those values determined 

numerically. This means that the rate of the irreversible strain-

energy loss per unit crack area is larger than what the numerical 

values suggest. The heat generated in the crack tip region could 

probably be the cause of this larger rate of energy loss. There is 

convincing evidence that in viscoelastic materials, such as in asphalts, 

the heat buildup in the crack tip region under cyclic loading cannot 

be ignored (48, 49). Researchers (50, 51) have reported that these 

materials can undergo such extensive softening, as a result of heat 

generated due to cyclic loading, that failure occurs by excessive 

deformation and crack propagation becomes virtually impossible because 

the material flows rather than fractures. Therefore the difference 
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between G P and Gf might be reduced significantly if the rate of 
ex e 

cyclic loading is reduced, from 0.1 Hz say to 0.01 Hz or something 

even lower, so that the heat generated at the crack tip will be kept 

to a minimum. 
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CHAPTER IX 

DESIGN EXAMPLE FOR PREDICTING THE REFLECTION 

CRACKING LIFE OF AN ASPHALT OVERLAY 

Two methods will be used to predict the average fatigue life of 

the overlay samples with the test identification number 12. One 

method uses A and n values found from the fatigue tests and the other 

method uses A and n values calculated from Schapery•s theory. The 

method using the experimental A and n values will be performed first. 

Paris and Erdogan•s power law based on the experimental values 

is: 

da = 2.14 X 10-8 K4·63 
dN 

and solving for dN gives: 

da 
dN = 

2.14 X 10-8 K4· 63 

To find the number of cycles to failure, Nf' the above equation has 

to be integrated between crack length limits a0, the initial crack 

size, and af' the crack size at which the sample completely separates 

in two which is the sample's thickness (3 inches): 

Nf a - 311 

f-

f f da 
dN = 

2.14 X 10-8 K4. 63 
1 ao 

This integral was solved numerically using Simpson's Rule and also by 

replacing da/dN with Aa/AN: 
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D. a 
D.N = 

2.14 X 10-B K4· 63 

The latter numerical method is shown in Table 4, and its procedure 1s 

as follows: 

1. Assume the following: 

a. ao = 0.300 inch 

b. u = crack opening which is 0.45 inch 

c. E1 =relaxation modulus which is about 1500 psi. This 

value was found using the method described earlier by 

calculating the asphalt tensile modulus, E'(t), for 

various crack lengths over the fatigue lives of the 

samples and then averaging them to get 1500 psi. 

d. af = 3 inches 

e. d = thickness of sample which is 3 - inches. 

2. Assume an increment of crack growth, D.a. For this example 

D.a = 0.1. Note that the accuracy would be increased slightly 

by using smaller increments of crack growth. 

3. Determine K by using the 2K/Eu- ajd relationship in 

Figure 26 (p. 79). 

4. Calculate N for the increment of crack growth. 

5. Repeat the above steps until ~ = 3 inches. 

The total life to propagate a crack from 0.3 to 3.00 inches as 

shown in Table 3 (p. 90) is 1820 cycles. Using Simpson•s Rule gave 

a total life of 1440 cycles which is closer to the average fatigue 

life of 1330 cycles. 
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Table 4. Fatigue-Crack-Growth Calculations Based on Experimental Results. 

t:..a 
t:..N = 

2.14 X 10-8 K4·63 

a1 a2 aavg 

··~ 2K K t:..N EN 

(in) (in) (in) EU (psi /Trl) (cycles) (cycles) 

0.3 0.4 0.35 0.12 0.71 23.2 2.2 2.2 
0.4 0~5 0.45 0.15 0.64 20.9 3.6 5.8 
0.5 0.6 0.55 0.18 0.59 19.2 5.3 11.2 
0.6 0.7 0.65 0.22 0.54 17.6 8.0 19.2 
0.7 0.8 0.75 0.25 0.51 16.6 10.5 29.7 
0.8 0.9 0.85 0.28 0.48 15.7 13.6 43.2 
0.9 1.0 0.95 0.32 0.45 14.7 18.4 61.6 
1.0 1.1 1. 05 0.35 0.43 14.2 21.6 83.2 
1.1 1.2 1.15 0.38 0.42 13.7 25.5 108.7 
1.2 1.3 1.25 0.42 0.41 13.2 30.3 139. 
1.3 1.4 1. 35 0.45 0.39 12.7 36.2 175.2 
1.4 1.5 1.45 0.48 0.38 12.4 40.5 215.7 
1.5 1.6 1. 55 0.52 0.37 12.1 45.3 261.0 
1.6 1.7 1.65 0.55 0.365 11.9 49.0 310.0 
1.7 1.8 1. 75 0.58 0.358 11.7 53.0 362.9 
1.8 1.9 1.85 0.62 0.35 11.5 57.4 420.3 
1.9 2.0 1. 95 0.65 0.348 11.4 59.7 480.0 
2.0 2.1 2.05 0.68 0. 342 11.3 62.2 542.2 
2.1 2.2 2.15 0. 72 0.34 11.2 64.8 607.0 
2.2 2.3 2.25 0.75 0.339 11.1 67.6 674.6 
2.3 2.4 2.35 0.78 0.338 11.0 70.5 745.1 
2.4 2.5 2.45 0.82 0.335 10.9 73.5 818.6 
2.5 2.6 2.55 0.85 0.333 10.8 76.7 895.3 
2.6 2.7 2.65 0.88 0.330 10.7 80.1 975.4 
2.7 2.8 2.75 0.92 0.316 10.3 95.5 1070.9 
2.8 2.9 2.85 0.95 0.292 9.5 138.9 1209.8 
2.9 3.0 2.95 0.98 0.213 6.9 610.5 1820. 
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The same procedure was used to find the life of the samples using 

Schapery's values of A and n. From Table 5 a life of 750 cycles was 

obtained and then using Simpson's Rule a fatigue life of 573 cycles 

was found. 

To use the above procedure for actual overlays in the field, in 

Step 1 of the above procedure, the crack opening, u, would have to be 

detennined from the coefficient of thermal expansion or from previous 

observations and experience. To determine a value of the resilient 

modulus, E', engineering judgement is required. Reasonable values 

of E'(t) might be obtained by using the following procedure based on 

Schapery's theory. Referring to the dashed line curve in Figure 28 

(p. 88), there is a narrow region of time, Jt1 - t 2J, at which the 

stress-intensity factor has values large enough to cause crack growth. 

By multiplying the abscissa scale by ~~ (t.t is the period of the 

cycle) allows it to be represented in terms of radians, i.e. the t(secl 

scale is converted to the 0 (radians) scale. This enabled a relation-

ship to be established between t, t.t, and s: 

') 

'-TI t 
t. t 1 = 1T - - s 2 

Subtracting these equations from one another gives: 

= zs 
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Table 5. Fatigue-Crack-Growth Calculations Based on Schapery•s Theory. 

!J.a 
tJ.N = 

2.31 X 10-8 K4· 99 

a1 a2 aavg "?< 2K K !J.N 2:N 

(in) (in) (in) Eu (psi nn) (cycles), (cycles) 

0.3 0.4 0.35 0.12 0. 71 23.2 .7 . 7 
0.4 0.5 0.45 0.15 0.64 20.9 1.1 1.8 
0.5 0.6 0.55 0.18 0.59 19.2 1.7 3.5 
0.6 0.7 0.65 0.22 0.54 17.6 2.6 6.1 
0.7 0.8 0.75 0.25 0.51 16.6 3.5 9.7 
0.8 0.9 0.85 0.28 0.48 15.7 4.7 14.3 
0.9 1.0 0.95 0.32 0.45 14.7 6.5 20.8 
1.0 1.1 1.05 0.35 0.43 14.2 7.7 28.5 
1.1 1.2 1.15 0.38 0.42 13.7 9.2 37.7 
1.2 1.3 1.25 0.42 0.41 13.2 11.1 48.8 
1.3 1.4 1.35 0.45 0.39 12.7 13.4 62.2 
1.4 1.5 1.45 0.48 0.38 12.4 15.1 77.4 
1.5 1.6 1.55 0.52 0.37 12.1 17.1 94.5 
1.6 1.7 1. 65 0.55 0.365 11.9 18.6 113.1 
1.7 1.8 1. 75 0.58 0.358 11.7 20.2 133.3 
1.8 1.9 1.85 0.62 0.35 11.5 22.1 155.4 
1.9 2.0 1.95 0.65 0. 348 11.4 23.0 178.4 
2.0 2.1 2.05 0.68 0.342 11.3 24.1 202.5 
2.1 2.2 2.15 0. 72 0.34 11.2 25.2 227.7 
2.2 2.3 2.25 0.75 0.339 11.1 26.3 254.0 
2.3 2.4 2.35 0.78 0.338 11.0 27.5 281.5 
2.4 2.5 2.45 0.82 0.335 10.9 28.8 310.3 
2.5 2.6 2.55 0.85 0.333 10.8 30.2 340.5 
2.6 2.7 2.65 0.88 0.33 10.7 31.6 372.1 
2.7 2.8 2.75 0.92 0.316 10.3 38.2 410.3 
2.8 2.9 2.85 0.95 0.292 9.5 57.2 467.6 
2.9 3.0 2.95 0.98 0.213 6.9 282.2 750. 
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(9-1) 

where t is the time it takes the crack to propagate over the failure 
a -

zone divided by three (t = a/3a). As seen in Table 2 (p. 50) the 
a 

t's, corresponding to the moduli back calculated using the finite 

element program, have a narrow range and the average value of these 

t's is 1.52 x 10-3 seconds. Substituting this average time value in 

for t and 10 seconds for ~t in Eq. (9-1) allows 8 to be solved 
a 

for: 

n cycles 
8 = 6575 radians - cycle 

This permits Eq. (9-1) to be rewritten as: 

t = 

~t ( sec ) 
cycle 

(
Q_)) 
..J L..; 

Knowing any period, ~t, for the wave shape of the stress-intensity 

factor (K/Kmax)' tis calculated from Eq. (9-2) and entering into 

Figure 26 (p. 79) with this value the modulus is found which corresponds 

to a temperature of 77°F to wtdch an overlay can be subjected. 

For temperatures other than 77°F which an overlay can be 

subjected to, Eq. (9-2) needs to be adjusted. This is accomplished 

by dividing t by some "horizontal shift factor", aT, associated with 

the ambient temperature of the overlay. The value of aT is found from 
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a plot of log aT versus temperature as shown in Figure 29 (p. 104) for 

the three asphalt grades. Now the time, t, and the modulus, E'{t), can 

be found for any temperature by using the following equation: 

t = (9-3) 

along with Figures 26 and 29 (pp. 79 and 104). This equation should 

be verified by performing fatigue tests on the overlay tester at 

various temperatures and cyclic periods (~t). 

103 



TEMPERATURE ( F0
) 

Figure 29. Log aT Versus Temperature. 
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CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

Agreement between the crack extension forces G p and Gf may ex e 
be improved by using the procedure developed by Irwin and Hells {52). 

Applying this procedure to asphaltic concrete entails using several 

asphalt concrete samples of the same dimensions with various size 

11 Cracks 11
• These 11 Cracks 11 are actually saw cuts of various depths 

similar to that shown in Figure 14 (p.60). Each sample is loaded 

until a certain displacement (crack opening) is achieved, and the 

load-displacement data are recorded by an x-y plotter. The area 

under each load-displacement curve is found to determine the strain-

energy, U, and the corresponding crack surface area, A, which is 

height of the saw cut times the sample's width. A power law equation 

is fitted to the U-A data and differentiated with respect to A to 

obtain the crack extension force. This procedure should reduce the 

effects of the heat generated at the crack tip since the samples are 

loaded monotonically instead of cyclic. 

A more concentrated effort should be made to use ultrasonics 

in measuring crack lengths since this will allow a micro-processor to 

gather all the data and perform the necessary calculations for deter-

mining the experimental values of A and n expediently, so that the 

overlay scheme most resistant to cracking in the field can be deter-

mined rapidly. Using the calibration procedure by taking photographs 

of an actual crack instead of using saw cuts should result in an 

improvement. 
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Fatigue tests performed on the samples imbedded with various 

fabrics should be done again using the new version of the overlay 

tester that was used in testing those samples listed in Table 2 (p. 50). 

From these tests the effects of the fabric on the material constants 

A and n would be seen, and possibly, from the results of such a 

study, Schapery's theory could be modified to take into account the 

material properties of these fabrics so that values of A and n can be 

numerically determined. 

The experimental values of A were found to be affected by asphalt 

content and aggregate gradation but invariant to the thickness of 

the sample and the grade of asphalt used. Asphalt content and the 

grade of asphalt used in the samples seem to be the only variables 

affecting n; the thickness of the samples and their gradation have 

very little influence upon n, if any. Previous observations of Table 2 

(p. 50) revealed that samples with large values of A and small n 

values had shorter fatigue lives than the samples with smaller A 

values and larger n values. 

Numerical predictions of the fatigue life of overlays can be 

made reliably using experimental values of A and n. Even the values 

of A and n derived from Schapery' s theory can predict overlay life 

reasonably well. The numerical procedure is simple to program even 

on a hand-held calculator as were the Simpson's Rule computations 

reported herein. The fatigue lives found by using Simpson's Rule 

results in smaller values compared to those determined from the 

trapezoidal rule as presented in Tables 4 and 5 (pp. 99 and 101). 
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A more accurate procedure for determing the maximum stress, 

am, and the fracture energy, r, can be obtained by performing direct 

tension tests on tensile specimens of the overlay samples using the 

Instron Machine. The tensile strength of the specimens can be taken 

to be om' and during a tensile test the Instron has the capability 

of recording the applied load and resulting displacement from which 

r can be found. Tensile specimens of the proposed overlay from which 

om and r are to be determined should have dimensions of one-by-one-by­

six inches, and the rate at which these specimens are loaded on the 

Instron should be the same as the rate of loading at which the overlay 

samples will be subjected to on the overlay tester. This procedure 

is an attempt to reduce the effects of the heat generated at the crack 

tip on a and r. m 

The experimental testing procedure for quantitative analysis 

developed and reported herein is capable of determining material 

properties for overlays. From this investigation, the values of A 

and n based on Schapery's theory agree well with the experimentally 

determined values for asphalt mixtures using a high asphalt content 

and soft grades of asphalt such as AC-5. Better agreement between 

experiment and theory, for mixtures using lower asphalt contents and 

stiffer asphalts, may be achieved by performing the fatigue tests at 

a slower cyclic rate to minimize heat generation at the crack tip. 

These slower rates are felt to be more representative of the conditions 

and behavior of cracking occurring in the field. Schapery's theory 

appears to work well in predicting the reflection cracking life of an 

overlay. The material properties used in Schapery's theory are 
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considerably easier to measure than a series of overlay fatigue 

tests and they can be extended to predict reflection cracking life 

of overlays in the field. It was for this purpose that this study 

attempted to see how well Schapery•s theory works in predicting 

cracking life. 
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APPENDIX A 

CRACK TIP STRESS ANALYSIS 

Starting first with the differential equations of equilibrium for 

plane stress as can be found in any text on the theory of elasticity 

(see Higdon and Stiles (53)): 

a ox 
+ 

hxy 
= 0 ax ay 

a•xy + ~ = 0 ax ay 

= 

Using the strain displacement equations for plane stress, 

= 

= 

= 

av 
ay 

av 
ax + l!!. 

ay 

and using Hooke•s Law, the compatability equation is obtained 

The solution to any given problem (solving for ox, oy, and •xy) must 

satisfy both the compatability equation and the equations of equilibrium. 
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By writing the stresses as derivatives of an Airy stress function, 

the equations of equilibrium are automatically satisfied: 

=D_ 
ay 2 

ax 
= 'xy (A-1) 

Solving a problem in plane elasticity entails finding an Airy 

stress function, ~' that represents the loading of the structure 

(boundary conditions) and satisfies the compatibility equation. The 

chosen Airy stress function will satisfy compatibility if it is harmonic, 

that is, it must satisfy Laplace•s equation, •i ~ = 0. 

To solve for the stresses in a structure containing a crack, 

Irwin used an Airy stress function in terms of complex variables, 

z = x + iy, developed by Westergaard (54), 

for Mode I type crack displacements, where 

z = 
dZ z dZ z· dz = dz = 

and 

a(Re Z) 
= 

a (Im Z) = Re Z ax ay 

~_(_I_!Tl _ __lj 
ay 

= alB~ __ V 
ay = Im Z 
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Substituting $I into Eq. (A-1) and using Eq. (A-2), the stresses 

resulting from $I are 

I 

ax = Re ZI y Im z1 

a = Re ZI + y Im z1 ( A-4) y 

•xy = - y Re z
1 

The next step is to define a function z1 so that it satisfies the 

boundary conditions of the problem of interest. For example, consider 

the plate used in Griffith's theory with a crack of length of 2a and a 

uniform stress applied at opposite ends of the plate, as in Figure 1 

(p. 10). The function 

az 

[ J 
1/2 

(z - a) (z + a) 

(A-5) 

solves this problem of a stress free crack at -a < x < a, y = 0. This 

function reduces to the boundary conditions of uniform biaxial stress, 

a, at very large distances away from the crack tip. It should be noted 

that any function, z1, which is analytic in a region except for a par­

ticular branch cut along a portion of the x-axis, will have the general 

form 

g(z) 

r ] 112 
L(z + b) (z - a) 
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Returning now to the stress function, Eq. (A-5), and letting 

~ = z-a yields: 

o(~+a) = 1 • f(~) 
I~+ 2a 1Y 

lim f(~) lim [o(c+a)] 
= I ~I -----+- 0 1~1 ~ 0 .; ~ + 2a 

f ( 0) = ora 
1'2 

(A-6) 

Recall that Irwin defined Kr =a ;an:- for the Griffith crack problem 

so that 

f( 0) = 

Eq. (A-6) may now be written as, 

= (A-7) 

This form of Eq. (A-7) is found for all stress functions for crack 

problems near the crack tip. The stress-intensity factor is readily 

solvable from Eq. (A-7) if the stress function z1 can be determined: 

lim 

1~1 ---)- 0 
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The crack tip stress field for all crack problems is obtained by 

substituting Eq. (A-7) into Eq. (A-4). Before doing this Eq. (A-7) is 

rewritten in polar coordinates, 

l; = re ie = r (cos e + i sin e) 

and noting the following relationships: 

1 

If 
= 1 = 1 

rr (cos t - i sin t) 

1 1 1 
( 3e = = cosT- i 

Vr? v' r3 e i 3e 0 

and y = r sine = 2 . e r s1n 2 cos ~ 2 

which gives values of z1 and z1 of 

and z I 

I 

= 

(cos ~ - i sin~) 

(- i) 

( 
3e 

cos 2 -
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I 

rJow substitute z1 and z1 into Eq. (A-4) 

a 2 . 8 a cos 2 - r s 1 n 2 cos 2 [- ~ (- sin 
3~)] 

After collecting like terms, ax reduces to: 

a (1 . a . 38) cos 2 - s1n 2 s1n ~ 

Similarly 

Kr 8 
( 1 + s i n ~ s i n 3

2
8 

) cry = cos 2 12-IT"r 

Kr 
sin ~cos e 36 

Txy = 2 cos ~ 12-IT"r 

The crack surface displacements near the crack tip are obtained from 

the strains and the application of Hooke's law: 

av = ~ 
ay E 

where for plain strain condition, az = v(ax +cry), and the strain now 

becomes 

= 
2 

1 - v 

E 
a -y 

v (1 + v) 

E 
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Substituting Eq. (A-4) for cry and ax, 

Then using Eq. (A-2) and Eq. (A-3): 

v = 

with 

and 

Finally, 

1 + \) 

E 

ZI 

ZI 

v = 

= 

= 

KI 
(cos t -i sin t) n-;r 

r 1/2 
(cos~+ sin t) 2 K ( --) I 2n 

2(i+v) 
~ f-C . e ( 2e) ~ 

2
n Sln 2 2 - 2v - cos ;r 

E 
Note G = 2(1 + v) can be substituted for the denominator. 

Similarly, 

Then 

u = 

u = 

1 + v 
E Gl - 2v) Re ZI - y Im zi] 

e cos -2 
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APPENDIX B 

CONSTRUCTION OF THE MASTER RESILIENT MODULUS 

AND MASTER CREEP COMPLIANCE CURVES 

The procedure used to construct a master resilient modulus curve 

and a master compliance curve will be presented in this appendix for 

the AC-5 grade asphalt. This procedure was also used in constructing 

the master curves for the two other grade asphalts, and can be applied 

to any viscoelastic material that is thermo-rheologically simple 

(the time-temperature correspondence principle can be applied to that 

material). 

As shown in Figure 20 (p. 71), duomorph tests were performed at 

various temperatures but at constant frequencies of 100, 10, 1, and 0.1 

Hz. which corresponds to times of 0.001, 0.01, 0.1, and 1.0 second 

respectively. Since the fatigue tests performed on the overlay 

tester were conducted in an environment of 77°F, the material response 

with respect to this temperature for times smaller than 0.001 second 

are needed. This response is found by shifting all of the curves, 

those above the curve marked 77°F, horizontally to the left until 

they overlap one another resulting in one curve known as the 

"master curve". 

The amount that which each of these curv~s are to be shifted 

horizontally to construct the master curve is known as the "horizontal 

shift factor" \vhich is designated "a II T • This shift factor was 

determined as follows. Referring first to Figure 20 (p. 71), three 

or four horizontal lines are drawn connecting each pair of curves. 

For each of these horizontal lines the times at which the line 
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intersects the lower temperature curve, t 1, and the higher temperature 

curve, t 2, were found and recorded in Table 6. Once this is done for 

each pair of curves, t 1 was divided by t 2 and the average quotient 

was determined. This quotient is the horizontal shift factor, aT, 

for the 60°F curve immediately above the reference temperature curve 

of 77°F. For the remaining lower temperature curves, aT was found by 

multiplying the average of t 1;t2 for the temperature in question by the 

aT value found for the immediate higher temperature shown in Table 6. 

A plot of aT versus temperature was made as shown in Figure 29 (p.l04). 

The times used to construct the master curve were found by 

dividing the times used in the duomorph tests (0.001, 0.01, 0.1, ar.d 

1.0 sec.) by aT determined for each temperature. This procedure is 

shown in Table 7, and the master curve is plotted in Figure 23 (p. 74) 

using the (t/aT) values. 

To construct the master creep compliance curve, the following 

procedure was used. A power law equation of the form: 

1 og E ' ( t) = 1 og B + m 1 og t 

was fitted to the master resilient modulus data in Table 7, and the 

regression coefficients were found to be: 

B = 55.73 

m = 0.410 

Then using the relationship 

D( t) = 1 
E I ( t) 

sin m1r 
m7T 
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Table 6. Horizontal Shift Factor (aT) Calculations for AC-5 Asphalt. 

=-=·=,== ===-=== ~===~ ==· =====c,- ~=~ =-~ ·:=. =·=·-=-=-~ =--::: -=· =:.::-.::!:--=-:=:.---:::;=:·==~=-==-:::=~·=-:=--:=.·~-~-= =---:::---:::-~ =-=--

Tl T2 tl t2 t02 
Average 

aT for T1 
(sec) (sec) 

60°F 77°F 0.008 0.001 8.00 
0.02 0.0022 9.09 
0.435 0.004 10.88 
0.09 0.0074 12.2 

Avg t_y-t2 = 10.03 10.03 60°F 

34°F 60°F 0.019 0.00108 17.59 
0.033 0.00225 14.67 
0.053 0.0045 11.78 
0.1 0.014 7.14 10.03 X 12.79 = 

Avg t_y-t2 = 12.79 128.33 34°F 

24°F 34°F 0.06 0.0014 52.63 
0.08 0.0015 53.33 
0.1 0.00205 48.78 

Avg t~2 = 51.58 6619.5 24°F 

8°F 24°F 0.24 0.001 240.0 
0.56 0.00265 211.3 
1.0 0.0062 161.3 

Avg t_y-t2 = 204.2 1,351,724.3 9°F 
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Table 7. Reduced Times (t/aT) for AC-5 Asphalt . 

..---

Temperature t t I aT E I ( t) 

(oF) (sec) (sec) (psi) 

77°F 0.001 0.001 1,657. 

(Reference 0.01 0.01 329. 

Temperature) 0.1 0.1 102. 

1.0 1.0 ----

60°F 0.001 9.97 X 10-5 4,790. 

0.01 9. 97 X 10-4 1,362. 

0.1 9.97 X 10-3 375. 

1.0 9.97 X 10-2 75. 

34°F 0.001 7.79 X 10-6 20,640. 

0.01 7. 79 X 10-5 7,080. 

0.1 7.79 X 10-4 1,080. 

1.0 7.79 X 10-3 -----

24°F 0.001 1.51 X 10 -7 65,000. 

0.01 1. 51 X 10-6 33,100. 

0.1 1. 51 X 10-5 16,300. 

1.0 1.51 X 10 -4 2,450. 

8°F 0.001 7.40 X 10-lO 160,000. 

0.01 7.40 X 10-9 114 '000 

0.1 7.40 X 10 -8 80,100. 

1.0 7.40 X 10-7 33,500. 
'--· 
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the master creep compliance values were found as shown in Table 8 and 

are plotted in Figure 24 (p. 76). 
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Table 8. Creep Compliance Calculations for AC-5 Asphalt. 

t/aT E I ( t) D(t) = 1 sin(0.410 1r) 
ffiT 0.410 1T 

(sec) (psi) (1/psi) 

10-10 181,000. 4.12 X 10 -6 

10-9 155,000. 4.81 X 10 -6 

10-8 107,000. 6.97 X 10 -6 

10-7 70,000. 1.07 X 10 -5 

10-6 40,000. 1. 86 X 10-5 

10-5 18,500. 4.03 X 10-5 

10-4 6' 100. 1.22 X 10 -4 

10-3 1,500. 4.97 X 10-4 

10-2 350. 2.13 X 10-3 

10-1 75. 9.94 X 10 -3 

1.0 16. 4.66 X 10-2 
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APPENDIX C 

da CRACK GROWTH RATES, dN , VERSUS STRESS-

INTENSITY FACTORS, K. 
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10 

do 
dN 

1.0 

0.1 

-- 0 
0 

0 

0.193 
~~ = 0.122 K 

r2=0.460 

0.01+-----------r------------. 
10 100 1000 

K ( psi\ffil) 

Figure 30. 
da 

Loq dN Versus Log K for Test No. 5. 
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1.0 

do 
dN 

.I 

.01 

d -6 2.82 
d~ = I. 49 X 10 K 

~0.892 

0 

.001;----------+-----------. 
I 10 

K {psi 'fin) 

Figure 31. Log ~~ Versus Log K for Test No. 6. 
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1.0 

do -
dN 

.I 

-5 . 2.35 
do= 120 xiO K 
dN . 

r2=0.794 

.01 

.001~---------------~~~------------------~ 
I 10 100 

K (psi.Jin) 

da 
Figure 32. Log dN Versus Log K for Test No. 7. 
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10. 

do 
dN 

1.0 

0.1 

0 

~~ = 0.0291 K O. 
424 

r 2=0.982 

oa·~--------------------------------------~ 
10 100 

K ( psi\[ffl) 

da 
Figure 33. Log dN Versus Log K for Test No. 8. 
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0.1 

do 
dN 

.01 

.001 

do -8 408 
dN = 2.78 X 10 K . 

r
2=0.915 

.emi-r---------..-----------. 
I 10 100 

K (psi fin) 

Figure 34. 
da Log dN Versus Log K for Test No. 9. 
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0.1 

do 
dN 

.01 

.001 

.OOOIT-------------------~----------------~ 
100 10 

K (psi 'illl) 

da Figure 35. Log dN Versus Log K for Test No. 10. 
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0.1 

do 
dN 

0.01 

0.001 

-8 3B4 
do = 1.53 X 10 K 
dN 

r2=0.945 

0.0001'~----------------~----------------~ 
10 100 1000 

K (psi \[1;1} 

da Figure 36. Log dN Versus K for Test No. 11. 
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0.1 
do 
dN 

.01 

.001 

0 

d -8 4.68 
_Q_ = 2.14x 10 K 
dN 

r2=0.916 

DOOIT-----------------~----------------~ 
I 10 100 

K (psi '-ffil) 

da Figure 37. Log dN Versus Log K for Test No. 12. 
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0.1 

do 
dN 

0.01 

0.001 

0 

0 

0 

-6 2.11 
_gg_= 846xl0 K 
dN . 

r2= 0.780 

ODOOI+------------------~----------------~ 
10 100 

K { psi\Jm) 

da 
Figure 38. Log dN Versus Log K for Test No. 13. 
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1.0 

do 
dN 

0.1 

0.01 

~~ = 2.73 x16
6

K
4

·
32 

r2=0.755 

0001+-----------------~-----------------. 
I 10 00 

K(psi \jln") 

da 
Figure 39. Log dN Versus Log K for Test No. 14. 
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