

CENTER FOR TRANSPORTATION RESEARCH

Objectives

Mapping georeferenced data to an underlying map e.g. GTFS shapes \rightarrow Node-link road representation

- Integrate DTA traffic model w/ transit planning model
- Validate DTA traffic model w/ GPS tracks
- Share data sources that vary by resolution & accuracy

Background

- Geometric vs. Topological
- Global vs. Local Trackpoint density
- Heuristics (overpasses, turns, speed, etc.)
- Challenge: A wrong routing decision leads to more wrong decisions. WE NEED MULTIPLE HYPOTHESES!

A Map-Matching Algorithm for Applications in Multimodal Transportation Network Modeling (15-5081) Kenneth Perrine, Alireza Khani, Ph. D., and Natalia Ruiz-Juri, Ph. D.

Trackpoint sets:

- CapMetro GTFS: 84 routes · 170 shapes · 45,476 points \cdot 1,383 miles \cdot 2 in - 3472 ft apart, avg. 161 ft
- GPS 1-Sec.: 22 routes · 44 journeys · 44,298 points · 283 miles \cdot 0 to 14 ft apart, avg. 34 ft

	Trackpoint Set	Underlying Map	Discontinuities	Routing Accuracy
#1	CapMetro GTFS	NMC CAMPO	0	95.9% *
#2	GPS 1-sec.	NMC CAMPO	0	100%
#3	CapMetro GTFS	OpenStreetMap	0	99.8% *

Example

Experiments

Maps of Austin, TX area:

- NMC CAMPO DTA:
- 11,393 nodes · 13,353 links
- OpenStreetMap:

123,046 nodes · 300,199 links

* In hand-checked cases, 3068 of 45,476 GTFS points

Conclusions

- No heuristics, multiple hypotheses, quasi-global algorithm
 - High routing accuracy at regional scale
 - Future work:
 - Observe link curvature
 - Computational speedups
 - Fixing underlying topology

Check It Out!

Source code (GPL license, Python):

http://ctr.utexas.edu/nmc/nmc-mapmatcher

Acknowledgements

This research was partially supported by the U.S. Department of Transportation through the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University Transportation Center, as well as the Capital Area Metropolitan Planning Organization (CAMPO) and the Texas Department of Transportation.

collaborate. innovate. educate.