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ABSTRACT 

In the current paper, we propose a new multinomial probit-based model formulation for 

integrated choice and latent variable (ICLV) models, which, as we show in the paper, has several 

important advantages relative to the traditional logit kernel-based ICLV formulation. Combining 

this MNP-based ICLV model formulation with Bhat’s maximum approximate composite 

marginal likelihood (MACML) inference approach resolves the specification and estimation 

challenges that are typically encountered with the traditional ICLV formulation estimated using 

simulation approaches. Our proposed approach can provide very substantial computational time 

advantages, because the dimensionality of integration in the log-likelihood function is 

independent of the number of latent variables. Further, our proposed approach easily 

accommodates ordinal indicators for the latent variables, as well as combinations of ordinal and 

continuous response indicators. The approach can be extended in a relatively straightforward 

fashion to also include nominal indicator variables. A simulation exercise in the virtual context 

of travel mode choice shows that the MACML inference approach is very effective at recovering 

parameters. The time for convergence is of the order of 30 minutes to 80 minutes for sample 

sizes ranging from 500 observations to 2000 observations, in contrast to much longer times for 

convergence experienced in typical ICLV model estimations. 
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1. INTRODUCTION 

Economic choice modeling has been the mainstay of human behavioral modeling in many fields, 

including geography, urban planning, marketing, sociology, and transportation. The typical 

paradigm is based on a latent construct representing the value or utility that an individual 

decision-maker assigns to each of many available and mutually exclusive alternatives. The 

choice of an alternative is assumed to be the result of that alternative’s utility being higher than 

its competitors in the perception space of the decision-maker. This utility itself is typically 

mapped to observed characteristics of the decision-maker (such as the socio-demographics of an 

individual in work mode choice modeling) and observed characteristics of the alternatives (such 

as travel time and travel costs by alternative modes in work mode choice modeling). To 

acknowledge that there may be unobserved characteristics of decision-makers (such as attitudes 

and lifestyle preferences) that are likely to impact choice, one of three approaches has been used 

in the literature. The first approach allows the intrinsic preference for alternatives as well as the 

sensitivities to alternative attributes to vary across decision-makers, using discrete (non-

parametric) or continuous (parametric) random distributions to capture sensitivity variations (or 

taste heterogeneity). Early examples include the studies by Revelt and Train (1996), Bhat (1997), 

and Bhat (1998), and there have now been many applications of this approach, using latent 

multinomial logit and mixed logit formulations. A problem with this approach, though, is that 

some of the attitudes may be correlated with explanatory variables. Thus, an individual who is 

environmentally-conscious (say an unobserved variable) may locate herself or himself near 

transit stations, generating a correlation between the unobserved variable and a transit travel time 

variable used as an explanatory variable. Such correlations lead to inconsistent estimation. 

Besides, this method treats unobserved psychological preliminaries of choice (i.e., attitudes and 

preferences) as being contained in a “black box” to be integrated out. The second approach uses 

indicators of attitudes directly as explanatory variables in choice models. Such a technique has 

been used by Koppelman and Hauser (1978), Bhat et al. (1993), and many other subsequent 

studies. But this approach assumes that the indicators of attitudes directly represent the 

underlying attitudes that actually impact choice, which may not be the case. Rather, the 

indicators may be proxies of attitudes that are captured with some measurement error. Ignoring 

measurement error will, in general, lead to inconsistent estimation (see Ashok et al., 2002). 

Further, the attitude indicators may be correlated with other unobserved individual-specific 
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factors that influence choice, rendering the estimation potentially inconsistent. In addition, the 

lack of a structural model to relate the attitudes to observed explanatory variables implies that the 

estimated model cannot be used in forecasting mode. The third approach is to undertake a factor 

analysis of the indicators to develop latent variables, typically using a multiple indicator multiple 

cause (MIMIC) model in which the latent variables are explained by a combination of observable 

indicators and observed (individual and alternative-specific) covariates. Essentially, factor 

analysis has the purpose of reducing the high number of correlated attitudinal indicators to a 

more manageable and relatively orthogonal set of latent variables, which are subsequently used 

as “error-free” explanatory variables (along with other covariates) in the choice model of 

interest. But such an approach, like the second approach discussed earlier, is, in general, 

econometrically inconsistent. This is because latent variables specific to individual alternatives 

(such as comfort level of traveling on a bus in a mode choice model), or latent variables 

interacted with variables that vary across alternatives (such as perceptions of security that may 

interact with the travel time on the mode), lead to heteroscedasticity across the errors of the 

alternatives in the choice model, and latent variables applicable to a subset of alternatives (such 

as the sociable nature of the individual that may affect the utility ascribed to all transit modes) 

generate correlation patterns across the errors of the alternatives. Further, if the latent variables 

are interacted with individual-specific observed variables (such as the comfort level of traveling 

on the bus affecting bus utility through its interaction with the travel time on the bus), the result 

is also heterogeneity across individuals in the entire covariance matrix of alternatives (this is an 

issue that does not seem to have been acknowledged in the previous literature). Such a complex 

covariance matrix structure across alternatives and across individuals necessitates the explicit 

consideration of stochasticity in the latent variables. 

 A rapidly growing field of study that integrates latent psychological constructs such as 

attitudes and preferences within traditional choice models takes the form of a hybrid model that 

is commonly referred to as the Integrated choice and latent variable (ICLV) model (see Ben-

Akiva et al., 2002 and Bolduc et al., 2005). In this approach, the objective is to gain a deeper 

understanding into the decision process of individuals by combining traditionally used “hard” 

covariates with “soft” psychometric measures associated with individual attitudes and 

perceptions. In this way, there is recognition that latent individual-specific variables (attitudes 

and perceptions) may be just as important as observed covariates in shaping choice and that their 
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inclusion is likely not only to shed more light on the actual decision process but also potentially 

enhance the predictive ability of the model (Temme et al., 2008, Bolduc and Alvarez-Daziano, 

2010). A typical ICLV model includes a latent variable structural equation model that relates 

latent constructs of attitudes and perceptions to observed covariates. Further, the latent constructs 

(or variables) themselves are viewed as being manifested through the attitudinal and perception 

indicator variables in a latent measurement equation model, which recognizes the presence of 

measurement error in capturing the intrinsic latent constructs. In the event that one of more of the 

indicators are not observed on a continuous scale, but observed on an ordinal or nominal scale, 

the measurement equation also serves the role of mapping the continuous latent constructs to the 

ordinal or nominal scale of the observed attitudinal indicator variables. Finally, the “soft” latent 

variables and the “hard” observed variables are used together to explain choice in a random 

utility maximizing choice model set-up.   

 While the number of applications of ICLV models has been on the rise in recent years 

(see, for example, Johansson et al., 2006, Bolduc et al., 2005, Temme et al., 2008, Daly et al., 

2012, and Alvarez-Daziano and Bolduc, 2013), the use of such models is severely hampered by 

(1) the restrictive specifications used in application, (2) the difficulties encountered in estimation, 

and (3) the amount of time it takes to estimate these models (typically of the order of a day for 

one specification run). Thus, earlier applications of the ICLV model typically use an independent 

and identically distributed Gumbel error term for the stochastic component of the utility of 

alternatives, imposing a priori the notion that, net of the latent attitudinal factors and observed 

covariates, there is no remaining correlation across the utilities of alternatives.1 Similarly, the 

error correlations in the latent variables are almost always ignored within the latent variable 

structural equation model, as has also been pointed out by Vij and Walker (2014). Such 

correlations in the latent variables may arise because of common underlying unobserved 

individual values that are precursors to attitude formation and that may impact multiple attitude 

variables at once (see Temme et al., 2008). Also, the estimation method of choice for ICLV 

models has been the maximum simulated likelihood approach, similar to those developed for the 

traditional mixed logit model with random coefficients or error components (see Bhat, 2001). 

                                                            
1 While a more general covariance structure can be incorporated through the use of normally-mixed error-
components or random coefficients (or a combination), this adds more to the integration dimension and makes an 
already very difficult MSL estimation problem more difficult, which is certainly one important reason why earlier 
applications of the logit-kernel ICLV have not introduced such general covariance structures. 
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However, while these simulation techniques work quite well for the traditional mixed logit, their 

use in ICLV models has been problematic because the integrand in ICLV models is itself a 

mixture of two probabilities (the probability of choice conditional on explanatory and latent 

variables, and the probability of the latent variable conditional on explanatory variables), which 

has to be integrated over the distribution of the latent variables conditional on explanatory 

variables. On the other hand, the integrand in the mixed logit model is simply the multinomial 

probability that has to be integrated over the distribution of the unobservables, which is far easier 

and less involved. As a result, it is quite routine to encounter convergence problems in ICLV 

models. For example, Alvarez-Daziano and Bolduc (2013) indicate that, unless the second 

derivatives of the logarithm of the likelihood function of ICLV models is analytically coded and 

provided, it is difficult to obtain convergence in ICLV models using simulation techniques. In 

this regard, they note that most software that allow for custom likelihood provision but use 

approximations to the Hessian during optimization do not guarantee convergence in ICLV 

models. This is particularly the case with many latent variables or constructs, since the number 

of latent variables has a direct bearing on the dimensionality of the integral that needs to be 

evaluated in the log-likelihood function of ICLV models. The consequence has been that most 

ICLV models in the literature have gravitated toward the use of a limited number of latent 

constructs, rather than exploring a fuller set of possible latent variables. Also, while Alvarez-

Daziano and Bolduc (2013) present a Bayesian Markov Chain Monte Carlo (MCMC) simulation 

approach to estimating the ICLV model, this remains cumbersome, requires extensive simulation 

related to the Metropolis Hastings-within-Gibbs algorithm needed to generate an instance from 

the otherwise not-explicitly-characterizable posterior distribution of the ICLV model, and poses 

convergence assessment problems as the number of latent variables (equivalent to the number of 

dimensions of integration within the classic MSL) increases (see Franzese et al., 2010 for a 

discussion of this issue). The MCMC method also becomes very challenging when there are 

several ordinal indicators of the latent variables in an ICLV model, which is why one would 

assume Alvarez-Daziano and Bolduc (2013) chose to work with all continuous indicators of 

latent variables in their study. Finally, the Bayesian MCMC methods typically parallel the 

computation intensity of classical MSL methods and so do not offer any substantial order-of-

time computational advantages.     
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In the current paper, we propose a different model formulation for the ICLV model, 

based on a multivariate probit (MNP) kernel that alleviates the specification and estimation 

challenges discussed above. To our knowledge, this is the first study to use a probit kernel within 

a general ICLV setting. In this context, it is quite remarkable that earlier and general ICLV 

formulations have not considered using an MNP kernel. We believe that this is because of a 

fixation with the mixed logit model, which may be easier to estimate than the MNP model in a 

traditional choice model when there are a number of alternatives and few random coefficients or 

error components to integrate over. But the situation changes with the ICLV model, and, in 

general, the MNP kernel is much more convenient to use. As we show in the rest of this paper, 

doing so has many advantages, especially when combined with our proposal to estimate the 

resulting model using Bhat’s maximum approximate composite marginal likelihood (MACML) 

inference approach. In particular, in our approach, the dimensionality of integration in the 

composite marginal likelihood (CML) function that needs to be maximized to obtain a consistent 

estimator (under standard regularity conditions) for the ICLV model parameters is independent 

of the number of latent variables and the number of ordinal indicator variables, and is only of the 

order of the number of alternatives in the choice model. Given that the number of alternatives in 

most applications of ICLV models is small, our formulation has a distinct advantage over the 

traditional ICLV formulation. Further, the use of our analytic approximation in the MACML 

approach to evaluate the multivariate cumulative normal distribution (MVNCD) function in the 

CML function corresponding to our MNP-based ICLV model simplifies the estimation 

procedure even further. Importantly, regardless of the number of ordinal indicators, or the 

number of latent variables, or the number of random coefficients in the choice model, or the 

covariance structures assumed in the ICLV model set-up, the proposed MACML procedure for 

estimating ICLV models requires the maximization of a function that has no more than bivariate 

normal cumulative distribution functions to be evaluated. This is quite remarkable. Additionally, 

our procedure does away with the convergence problems associated with the MSLE estimation. 

This is because of the smoothness of our analytically approximated log-likelihood surface, which 

leads to well-behaved surfaces for the gradient and hessian functions. In turn, this allows the use 

of widely available optimization software in which the Hessian is approximated numerically. In 

addition, our approach very easily handles the case of ordinal indicators for the latent variables, 

as well as combinations of ordinal and continuous response indicators, rather than, as in almost 
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all earlier studies, assuming these indicators to all be continuous (as in Alvarez-Daziano and 

Bolduc, 2013) or all be ordinal (Daly et al., 2012).  In this regard, we develop a blue print, 

complete with appropriate matrix notation, for the formulation, estimation, and software coding 

of ICLV models with a combination of two different kinds of response indicators (the approach 

is extendible even to nominal indicators, though, for focus and presentation ease, we confine 

attention in this paper to ordinal and continuous variables).2 Finally, we provide some 

computational time statistics for estimating our MNP-based ICLV model using the MACML 

procedure, and show how our approach substantially reduces the time for estimating ICLV 

models. The order of magnitude reduction in computation time can then be used by analysts to 

explore a wide array of observed and latent variable specifications, rather than examining just a 

few specifications and settling quickly on one that may not be the best.  

The remainder of this paper is structured as follows. In the next section, we formulate our 

MNP-based ICLV model. In Section 3, we discuss identification considerations and the 

estimation procedure. In Section 4, we develop the experimental design to generate a simulated 

mode choice data set that is then used in Section 5 to examine the performance of the proposed 

estimation procedure in terms of recovering parameters and evaluating the finite-sample 

behavior of the proposed estimator.  Our use of a simulated data set rather than real data allows 

us to assess the performance of our estimation approach for different sample sizes. Finally, 

Section 6 summarizes the key findings of the paper and identifies directions for further research. 

 

2. MODEL FORMULATION 

There are three components to the model: (1) the latent variable structural equation model, (2) 

the latent variable measurement equation model, and (3) the choice model. These components 

are discussed in turn below. In the following presentation, for ease in notation, we will consider a 

cross-sectional model. However, extension to the case of a panel model with multiple choice 

instances from the same individual is quite straightforward. Also, we will use the index l for 

                                                            
2 While writing the likelihood function with continuous and ordinal indicators within a traditional logit based-kernel 
ICLV setting is rather straightforward, the increase in the number of multiplicative mixing components in the 
integrand of the resulting likelihood function does make an already difficult estimation problem much more 
difficult. As discussed in the earlier section, convergence in the traditional MSL approach becomes a challenge as 
the number of mixing components in the integrand of a logit based-kernel ICLV model increases. However, the 
combination of continuous and ordinal indicators poses no additional estimation complexity in our proposed 
approach that combines an MNP kernel with the MACML estimation approach.  
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latent variables (l=1,2,…L), and the index i for alternatives (i=1,2,…,I). As appropriate and 

convenient, we will suppress the index q for individuals (q=1,2,…,Q) in parts of the presentation.  

 

2.1. Latent Variable Structural Equation Model 

For the latent variable structural equation model, we will assume that the latent variable *
lz  is a 

linear function of covariates as follows: 

,*
liz  wαl       (1) 

where w  is a )1
~

( D  vector of observed covariates, lα  is a corresponding )1
~

( D  vector of 

coefficients, and l  is a random error term assumed to be normally distributed. In our notation, 

the same exogenous vector w  is used for all latent variables; however, this is in no way 

restrictive, since one may place the value of zero in the appropriate row of lα  if a specific 

variable does not impact *
lz . Also, since *

lz  is latent, it will be convenient to impose the 

normalization discussed in Stapleton (1978) and used by Bolduc et al. (2005) by assuming that 

l  is standard normally distributed. Next, define the )
~

( DL  matrix ),...,( 21  Lαααα , and the 

)1( L vectors )( **
2

*
1  Lzzz ,...,,z*  and )'.,,,,( 321 L η  To allow correlation among the 

latent variables, η  is assumed to be standard multivariate normally distributed: ],[~ Γ0η LN , 

where Γ  is a correlation matrix (as indicated earlier in Section 1, it is typical to impose the 

assumption that η  is diagonal, but we do not do so to keep the specification general). In matrix 

form, Equation (1) may be written as: 

η αwz* .          (2) 

 

2.2. Latent Variable Measurement Equation Model 

For the latent variable measurement equation model, let there be H continuous variables 

) ..., , ,( 21 Hyyy with an associated index h ) ..., ,2 ,1( Hh  . Let hhhh δy  *zd
 
in the usual 

linear regression fashion, where hδ  is a scalar constant, hd  is an )1( L vector of latent variable 

loadings on the hth continuous indicator variable, and h  is a normally distributed measurement 

error term. Stack the H continuous variables into a )1( H -vector y, the H constants hδ  into a 
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)1( H vector δ , and the H error terms into another )1( H  vector ) ..., , ,( 21 Hξ . Also, let 

yΣ  be the covariance matrix of ξ . And define the )( LH   matrix of latent variable loadings 

  .,...,,  H2,1 dddd  Then, one may write, in matrix form, the following measurement equation 

for the continuous indicator variables: 

ξdzδy *  .                               (3) 

Similar to the continuous variables, let there also be G ordinal indicator variables, and let 

g be the index for the ordinal variables ) ..., ,2 ,1( Gg  . Let the index for the ordinal outcome 

category for the gth ordinal variable be represented by gj . For notational ease only, assume that 

the number of ordinal categories is the same across the ordinal indicator variables, so that 

}. ..., ,2 ,1{ Jjg   Let *
gy  be the latent underlying variable whose horizontal partitioning leads to 

the observed outcome for the gth ordinal indicator variable, and let the individual under 

consideration choose the gn th ordinal outcome category for the gth ordinal indicator variable. 

Then, in the usual ordered response formulation, we may write: gggg δy ~~~*  *zd ,
 

gg nggng y ,
*

1,   , where gδ  is a scalar constant, gd
~

 is an )1( L vector of latent variable 

loadings on the underlying variable for the gth indicator variable, and g  is a standard normally 

distributed measurement error term (the normalization on the error term is needed for 

identification, as in the usual ordered-response model; see McKelvey and Zavoina, 1975). Note 

also that, for each ordinal indicator variable, 

  JgggNNgggg gg ,1,0,1,2,1,0, and,0 ,  ;...  . For later use, let 

.),...,(,),...,,( 1,3,2,   G21g ψψψψψ andJggg   Stack the G underlying continuous variables *
gy  into 

a )1( G vector *y  and the G constants gδ
~

 into a )1( G vector δ
~

. Also, define the )( LG   

matrix of latent variable loadings   ,
~

,...,
~

,
~~ 

 G2,1 dddd  and let *y
Σ  be the correlation matrix of 

)
~

 ..., ,
~

 ,
~

(
~

21 Gξ . Stack the lower thresholds  Gg
gng  ..., ,2 ,11,   

into a )1( G  vector lowψ  

and the upper thresholds  Gg
gng  ..., ,2 ,1,   into another vector .upψ  Then, in matrix form, the 

measurement equation for the ordinal indicators may be written as: 



9 

up
*

low
** ψyψ ,ξzdδy 

~~~
.      (4)  

Define   .)
~

(and,)
~

( ,)
~

(,, * 







  ξ,ξξd,ddδ,δδyyy


 Then, the continuous parts of 

Equations (3) and (4) may be combined into a single equation as: 






























**

*

)(Var and ,~~) E(with
y

y

ΣΣ

ΣΣ
Σ '

yy

yy
ξ

zdδ 

dzδ
y,ξzdδy

*

*
*      (5) 

 

2.3. Choice Model 

Assume a typical random utility-maximizing model, and let i be the index for alternatives (i = 1, 

2, 3, …, I). Note that some alternatives may not be available for some individuals, but the 

modification to allow this is quite trivial. So, for presentation convenience, we will assume that 

all alternatives are available to all individuals. We also will assume fixed rather than random 

coefficients on the exogenous variables, though the consideration of normally distributed 

coefficients does not increase the computational complexity in our set-up (because of the normal 

kernel error term in the utilities, and the conjugate additive nature of the normal distribution).3 

The utility for alternative i is then written as:  

,) iiiiU  *
i z(γxβ    (6) 

where ix is a (D×1)-column vector of exogenous attributes. β  is a (D×1)-column vector of 

corresponding coefficients, i  is a )( LN i  -matrix of variables interacting with latent variables 

to influence the utility of alternative i, iγ  is a )1( iN -column vector of coefficients capturing 

the effects of latent variables and its interaction effects with other exogenous variables, and i is 

a normal error term. The notation above is very general. Thus, if each of the latent variables 

impacts the utility of alternative i purely through a constant shift in the utility function, i  will 

be an identity matrix of size L , and each element of iγ  will capture the effect of a latent variable 

on the constant specific to alternative i. Alternatively, if the first latent variable is the only one 

                                                            
3 One can also consider a skew-normal distribution for the coefficients that can accommodate asymmetric and non-
normal (but unimodal) distributions. This will still enable the application of our proposed procedure, because the 
cumulative distribution of the skew-normal takes the form of the multivariate cumulative normal distribution (see 
Bhat and Sidharthan, 2012). Alternatively, one can accommodate non-normality in our set-up by considering a scale 
mixture of normals.  
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relevant for the utility of alternative i, and it affects the utility of alternative i through both a 

constant shift as well as an exogenous variable, then iN =2, and i  will be a )2( L -matrix, with 

the first row having a ‘1’ in the first column and ‘0’ entries elsewhere, and the second row 

having the exogenous variable value in the first column and ‘0’ entries elsewhere. A whole range 

of other latent variable specifications may also be considered based on appropriately configuring 

the matrix i .  

To proceed further, let the variance-covariance matrix of the vertically stacked vector of 

errors ]) ..., , ,([ 21  Iε  be Λ .
 
The choice model above may be written in a more compact 

form by defining the following vectors and matrices: ),...,,( 21  IUUUU  1( I  vector), 

),...,,,(  I321 xxxxx DI (  matrix), and ),...,, 21  I  






 


LN
I

i
i

1

 matrix. Also, 

define the  






 


I

i
iNI

1

matrix γ , which is initially filled with all zero values. Then, position the 

)1( 1N  row vector 1γ   in the first row to occupy columns 1 to 1N  , position the )1( 2N  row 

vector 2γ   in the second row to occupy columns 1N +1 to ,21 NN   and so on until the )1( IN  

row vector Iγ   is appropriately positioned.  Then, in matrix form, Equation (6) may be written 

as : 

ε,zλxβεzγxβU **  )(   with γλ       (7)
 

Consider now that the individual under consideration chooses alternative m. Under the utility 

maximization paradigm, mi UU 
 
must be less than zero for all i ≠ m, since the individual chose 

alternative m. Let )(* miUUu miim  ,  and stack the latent utility differentials into a vector 

  



 


 miuuu Immm ;,...,, **

2
*
1

*u .  

In the context of the choice model formulation above, several important identification 

issues need to be addressed (in addition to the usual identification consideration that one of the 

alternatives has to be used as the base for each nominal variable when introducing alternative-

specific constants and variables that do not vary across the I  alternatives). First, only the 

covariance matrix of the error differences is estimable. Taking the difference with respect to the 

first alternative, only the elements of the covariance matrix Λ


 of ),,...,,( 32 I 
 
where 
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1  ii   ( 1i ), are estimable. However, the condition that 1 I0u*  takes the difference 

against the alternative m
 
that is chosen. Thus, during estimation, the covariance matrix Λ


 (of the 

error differences taken with respect to alternative m is desired). Since m will vary across 

individuals, Λ


will also vary across households. But all the Λ


 
matrices must originate in the 

same covariance matrix Λ  for the original error term vector ε . To achieve this consistency, Λ  

is constructed from Λ


 by adding an additional row on top and an additional column to the left. 

All elements of this additional row and column are filled with values of zeros. Second, an 

additional scale normalization needs to be imposed on Λ


. For this, we normalize the first 

element of Λ


 to the value of one. Third, in MNP models, identification is tenuous when only 

individual-specific covariates are used (see Keane, 1992 and Munkin and Trivedi, 2008). In 

particular, exclusion restrictions are needed in the form of at least one individual characteristic 

being excluded from each alternative’s utility in addition to being excluded from a base 

alternative (but appearing in some other utilities). But these exclusion restrictions are not needed 

when there are alternative-specific variables.  

 

3. MODEL SYSTEM IDENTIFICATION AND ESTIMATION 

For convenience, Table 1 provides a list of all matrices and their dimensions. Also, as in all 

earlier studies of ICLV models, we assume that the error vectors η , ξ


, and ε  are independent of 

each other. Let θ  be the collection of parameters to be estimated: 

, ]Vech( ),Vech( , ),Vech( , ),(Vech, ),(Vech),Vech([ )ΛΣΓ


γβψdδαθ 
 

where )(Vech α , 

)(Vech d


, and )(Vech γ  represent vectors of the elements of the α ,   d


, and γ , respectively, to 

be estimated, and  Γ)(Vech  represents the vector of the non-zero upper triangle elements of Γ  

(and similarly for other covariance matrices). The data for estimation include, for each 

individual, (1) the  ,x  and w  covariate matrices, (2) The )1( H -vector of continuous indicator 

variables, (3) the gn th outcome category for each of the g ordinal indicator variables, and (4) the 

observed choice outcome m (note that a particular empirical context may not have any 

continuous indicator variable, or may not have any ordinal indicator variable, but we will assume 

the presence of a combination of the two to reflect the general case).  
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To develop the reduced form equations, replace the right side of Equation (1) for *z in 

Equations (5) and (7) to obtain the following system: 

ξηdαwdδξη)w(dδξzdδy *
  α        (8)                         

εληαwλxβεη)λ(αwxβεzλxβU *     (9) 

Now, consider the )]1)[(  IGH  vector   U,yYU


. Define 














αwλxβ

αwdδ
B



  and  












ΛΓΓ

ΓΣΓ
Ω

λλdλ

λddd




    (10) 

Then ).( ΩB,MVN ~YU IGH                                        (11) 

All parameters to be estimated in the B  vector and Ω  matrix are identifiable by ensuring 

that Γ  is a correlation matrix, and Σ


 is diagonal with the elements corresponding to the ordinal 

variables being normalized to 1. To see this, a helpful way is to first invoke Stapleton’s (1978) 

identification conditions for the MIMIC model of Equation (8) (that includes the latent variable 

structural and measurement equations). That is, we ignore the information contained about the 

latent variables (and the parameters of the structural model of Equation (1)) through the utilities 

in the choice model of Equation (6). Then, following the excellent exposition in Stapleton (which 

we do not reproduce here to conserve on space), one can show that, under the conditions that (a) 

Γ  is a correlation matrix, (b) Σ


 is diagonal with the elements corresponding to the ordinal 

variables being normalized to 1, and (c) for each latent variable, there is at least one indicator 

variable that loads only on that latent variable and no other latent variable (that is, there is at least 

one factor complexity one indicator variable for each latent variable), the elements of the 

parameter vectors δ


 and d


, and the elements of the matrices α , Γ  and Σ


, are all (over) 

identified. Next, we proceed to the choice model component. The covariance matrix of the 

reduced form of the choice model, ignoring the covariance between the MIMIC model and the 

choice model, is ΛΓ λλ . With a general specification of Λ  (butΛ  should adhere to the 

conditions discussed in Section 2.3), and the identification of Γ  from earlier, the choice model 

can provide estimates of all the elements of Λ , but then none of the coefficients of the matrix γ  

embedded in λ  are identified from this covariance matrix. However, λ  appears both in the mean 

element αwλxβ   of the choice model component in Equation (10) as well as in the covariance 

term dλ 


Γ between the errors of the indicator equation and the choice equation. To examine 
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identification of the β  vector and the elements of the λ  matrix, it is instructive to consider the 

simple but challenging identification case when the latent variables appear in the choice model 

without any interactions with other exogenous variables (if all latent variables appear only as 

interactions and not as direct shifters of utility, then there will be effectively no common 

exogenous variable effects through the direct x  effect and through the indirect (via the latent 

variables) w  effect, and so identification of β  and λ  is immediate through the mean 

αwλxβ  ). In the no interactions case, consider the specific case when each latent variable 

impacts the utility of each alternative (this corresponds to the situation when each i  matrix is an 

identity matrix of size L, and ,γγλ ~   where γ~  is of size LI   with each row comprising the 

coefficients representing the effects of the latent variable vector *z  on the utility of each 

alternative). In this case, if there are no common variables in each row of the x  matrix and the 

w  vector, then the β  vector and the elements of the γ~  matrix are identifiable from the mean  

element αwγxβ ~  in the choice model (since α has already been identified from earlier). This is 

the most common way that identification has been achieved in most earlier ICLV studies, which 

use relatively "weak" structural equations and employ only individual-specific socioeconomic 

variables as explanatory factors of the latent variables. Alternatively, one may include common 

elements (including alternative-specific attributes in the choice model and those same variables 

in the structural model), but appropriate restrictions on the coefficients of the γ~  matrix (such as 

specifying no effects of the latent variables on one of the alternatives, and specifying generic 

coefficients across all alternatives for those variables that are common, as we do in the 

simulation study in Equation (21)) will be adequate for identification from the mean element 

αwγxβ ~  in the choice model.  Of course, if the elements of λ = γ~ can be identified purely from 

the covariance matrix element dλ 


Γ of Ω , then β  can always be estimated even if all variables 

are common between each row of the x  matrix and the w  vector. However, general and 

convenient sufficiency rules for identification are not yet available in this general case of the 

ICLV model, and it is common place to resort to the more convenient case of ignoring the 

covariance term dλ 


Γ when imposing sufficient (but not necessary) restrictions for identification. 

In this context, the issue of parameter identification in ICLV models remains an open research 

area, and few studies have discussed considerations related to the situation of overlapping 

explanatory variables in the structural equation and in the choice model. While we have provided 
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sufficiency conditions based on the mean element αwγxβ ~  in the choice model, these are 

likely to be restrictive and unnecessary because of identification possibilities through the 

covariance term dλ 


Γ . We leave a detailed examination of this issue for future research (the 

reader is referred to Vij and Walker, 2014, for a recent treatment of identification in ICLV 

models, though they do so by compartmentalizing the ICLV model into independent 

components).  

To estimate the model, we need to develop the distribution of the vector 

   *, , ,
      * *Yu y u y y u . To do so, define a matrix M  of size    IHGIHG  1 . 

Fill this matrix up with values of zero. Then, insert an identity matrix of size HG  into the first 

HG   rows and HG  columns of the matrix M . Next, consider the last )1( I  rows and last 

I  columns, and insert an identity matrix of size )1( I  after supplementing with a column of ‘-

1’ values in the column corresponding to the chosen alternative. Then, we can write 

),
~~

( Ω,BMVN ~Yu 1-IGH   where BB M~
 and .MMΩΩ ~

 Next, partition the vector B
~

 into 

components that correspond to the mean of the vectors *uyy and, , * , and the matrix Ω
~

 into the 

variances of *uyy and, , * and their covariances: 



















*

*

u

y

y

B

B

B

B
~

~

~

~
 and 























**

**

uyy

yyy

yyy

ΩΩΩ

ΩΩΩ

ΩΩΩ

Ω
~~~

~~~

~~~

~

    

      

      

**

**

**

uu

uy

uy

           (12) 

Define   *'*' uyu ,~ , so that  .)~,(  uyYu  Re-partition B
~

 and Ω
~

 in a different way such that: 























*

*

u

y
u

u

y

B

B
B

B

B
B ~

~
~

where,~

~
~

~

~

,   and    (13) 

 
      ~

    

    
  ~

  ~  ~

  ~  
**

*

* ~~~
and~~

~~
~

where,~~

~~
~

uy
u

u

yyuy

uy

yy
u

uuy

uyy

**

**

ΩΩΩ
ΩΩ

ΩΩ
Ω

ΩΩ

ΩΩ
Ω 





























       

The conditional distribution of u~ , given y, is multivariate normal with mean 

 yyuyuu ByBB
~~~~ 1

  ~~~  ΩΩ


 
and variance   ~

1
  ~  ~  ~

~~~~
uyyuyuu ΩΩΩΩΩ 


. Next, supplement the 



15 

threshold vectors defined earlier as follows:  






   ,,~

1Ilowlow ψψ , and  






  1,~

Iup 0ψψup , 

where  1I   is a 1)1( I -column vector of negative infinities, and 1I0  is another 1)1( I -

column vector of zeros. Then the likelihood function may be written as: 

  ,~~~ Pr)
~

|
~

()(   uplowHfL ψuψByθ yy  Ω  (14)  

,),|~()
~

|
~

(   ~~1  

~

duff IG

D

H

u

uuyy BuBy ΩΩ



     

 

where the integration domain }~~~:~{
~ uplowu

D ψuψu   is simply the multivariate region of the 

elements of the u~  vector determined by the observed ordinal indicator outcomes, and the range 

)0,( 1I  for the utility differences taken with respect to the utility of the observed choice 

outcome variable. (.)1 IGf  is the multivariate normal density function of dimension .1 IG  

The likelihood function for a sample of Q individuals is obtained as the product of the 

individual-level likelihood functions. If all the indicator variables are ordinal, then there is no y
 

vector and the first term in the likelihood equation above drops out. On the other hand, if all the 

indicator variables are continuous, then there is no *y  vector in the u~  vector, and the dimension 

of integration drops to 1I . 

The above likelihood function involves the evaluation of a 1 IG  dimensional integral 

for each individual. As can be noticed, the dimensionality of integration does not increase with 

an increase in the number of latent variables in the model. This has been a major restrictive 

challenge in the typical way that ICLV models have been formulated and estimated, but not 

when we change to a probit kernel as we do here in this paper. Indeed, the independence of the 

integral dimensionality from the number of latent variables is remarkable, and should 

substantially enhance the applicability of the ICLV model. However, the dimensionality of the 

integration is still 1 IG , which can be computationally expensive if there are several ordinal 

variables, or if the choice variable has a number of alternatives. So, the Maximum Approximate 

Composite Marginal Likelihood (MACML) approach of Bhat (2011), in which the likelihood 



16 

function only involves the computation of univariate and bivariate cumulative distributive 

functions, is used in this paper.4 

 

3.1. The MACML Estimation Approach 

The MACML approach, similar to the parent CML approach (see Varin et al., 2011, Lindsay et 

al., 2011, Bhat, 2011, and Yi et al., 2011 for recent reviews of CML approaches), maximizes a 

surrogate likelihood function that compounds much easier-to-compute, lower-dimensional, 

marginal likelihoods. The CML approach, which belongs to the more general class of composite 

likelihood function approaches (see Lindsay, 1988), may be explained in a simple manner as 

follows. In the multi-dimensional model, instead of developing the likelihood function for the 

entire set of the choice outcome and observed ordinal indicators at once, as in Equation (14), one 

may compound (multiply) the probabilities of each pair of the choice outcome with an ordinal 

indicator, as well as the probabilities of each pair of ordinal indicators. The CML estimator (in 

this instance, the pairwise CML estimator) is then the one that maximizes the compounded 

probability of all pairwise events. The properties of the CML estimator may be derived using the 

theory of estimating equations (see Cox and Reid, 2004, Yi et al., 2011). Specifically, under 

usual regularity assumptions (Molenberghs and Verbeke, 2005, page 191, Xu and Reid, 2011), 

the CML estimator is consistent and asymptotically normally distributed (this is because of the 

unbiasedness of the CML score function, which is a linear combination of proper score functions 

associated with the marginal event probabilities forming the composite likelihood; for a formal 

proof, see Yi et al., 2011 and Xu and Reid, 2011).  

In the context of the proposed model, consider the following (pairwise) composite 

marginal likelihood function: 
















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  





 
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g
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G

g

G

gg
ggggHCML minjnjnjfL

1

1

1 1
  ),,Pr(),Pr()

~
|

~
()( ''yyByθ Ω   (15) 

where i
 
is an index for the individual’s choice for the choice variable. In the above CML 

approach to estimating the ICLV model, the MVNCD function appearing in the CML function is 

of dimension equal to two for the second component in the equation above (corresponding to 

each pair of observed ordinal indicators), and equal to I  for the probabilities corresponding to 
                                                            
4 Note, however, that the MACML inference approach is very general and its use requires appropriate customization 
to the problem at hand. Thus, the MACML estimation we propose here is very different from the application of the 
MACML method for the simple cross-sectional multinomial probit model in Bhat (2011). 
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the third component in the equation above (corresponding to each pair of the choice outcome and 

an ordinal indicator outcome). In the MACML approach, we estimate the third set of components 

of the CML function involving the choice outcome (that is, those components that have 

I dimensions of integration) with an analytic approximation method rather than a simulation 

method. This combination of the CML with an analytic approximation for the MVNCD function 

is effective because it involves only univariate and bivariate cumulative normal distribution 

function evaluations. The MVNCD approximation method used here is based on linearization 

with binary variables (see Bhat, 2011). As has been demonstrated by Bhat and Sidharthan 

(2011), the MACML method has the virtue of computational robustness in that the approximate 

CML surface is smoother and easier to maximize than traditional simulation-based likelihood 

surfaces.5  

To explicitly write out the CML function in terms of the standard and bivariate standard 

normal density and cumulative distribution function, define ω  as the diagonal matrix of 

standard deviations of matrix Δ , );(. **
ΔR  for the multivariate standard normal density function 

of dimension R and correlation matrix *Δ  ( 11* 



 ωΔωΔ ), and );(. *ΔE  for the multivariate 

standard normal cumulative distribution function of dimension E and correlation matrix *Δ . Let 

gS  be a )1(  IGI selection matrix constructed as follows. To begin with, fill this matrix 

with values of zero for all elements. Then, position an element of ‘1’ in the first row and the gth 

column.  Also, position an identity matrix of size 1I  in the last 1I  rows and last 1I  

columns. Let  
   

 gg

gug
upg

 ~

~

,

~
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up Bψ

Ω




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ΩΩ

Ω




 , 

                                                            
5 We should point out here that it is the combination of the probit based-kernel and the MACML approach that 
facilitates things in our approach. Specifically, the use of the probit based-kernel makes the reduced form utility 
functions in the choice model normally distributed, and develops a multivariate normally distributed form for the 
overall reduced forms in Equations (8) and (9). This is critical, because the CML approach cannot be used on 
Equations (8) and (9) if there were a mixing of a Gumbel error term with a normal error term as in the logit kernel-
based ICLV model formulation (the CML as applied here is predicated on the fact that marginal distributions of 
subsets of multivariate normally distributed variables are also multivariate normally distributed).  Second, the CML 
inference approach simplifies the function to be maximized (with respect to parameters), which reduces the 
dimensionality of integration from what would be if a maximum likelihood inference approach is used (see 
Equations (14) and (15)). Finally, the analytic approximation of the MACML comes in handy to evaluate the CML 
function of Equation (15). 
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represents the thgg  element of 

the matrix  ~uΩ


. Then, the CML function to be maximized is: 
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   (16) 

In the above expression,  g  represents the thg  element of the column vector ,  and similarly 

for other vectors. The reader will note that the expression in Equation (16) involves an MVNCD 

function evaluation that is utmost of dimension I. That is the dimensionality is purely a function 

of the number of alternatives in the choice model, irrespective of the number of latent variables 

or the number of ordinal indicators involved. Further, the MVNCD function of dimension I is 

itself approximated with the analytic approach in Bhat (2011), so that only univariate and 

bivariate normal cumulative distributions need to be evaluated. Write the resulting equivalent of 

Equation (16) as )(, θqMACMLL , after introducing the index q for individuals. The MACML 

estimator is then obtained by maximizing the following function: 

log .)(log)(
1

,



Q

q
qMACMLMACML LL θθ 6  

The covariance matrix of the parameters θ  may be estimated by the inverse of 

Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005).  

   1)()( θθ GVMACML
11 )]()][([)]([  θθθ HJH ,   

                                                            
6 In the case of repeated choice data from the same individual, the set of indicator variables are typically collected 
only once for an individual, which implies that the latent variables are fixed for an individual across the repeated 
choices (such as in a stated preference experiment). The third component of the composite marginal likelihood 
function for individual q in Equation (16) then is a product across all combinations of ordinal outcomes and choice 
occasions of the joint probability of each ordinal outcome and the outcome at each choice occasion. Thus, the 
difference from Equation (16) is that there is an additional outer product over T in the third component of Equation 
(16), where T is the number of choice occasions from the individual. In addition, there will be another fourth 
component in the CML function for repeated choice occasions that corresponds to the product of the likelihoods of 
each possible pairing of outcomes in the choice occasions. But the MACML estimation of this repeated choice 
model still entails the evaluation of only univariate and bivariate normal cumulative distributions. 
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where )(θH  and )(θJ  can  be estimated in a straightforward manner at the MACML estimate 

MACMLθ̂  as follows: 

.
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The code for the MACML estimation of the ICLV model is available at 

http://www.caee.utexas.edu/prof/bhat/CODES.htm.  

 

3.2. Ensuring the Positive-Definiteness of Matrices 

The   

~
yΩ and   ~uΩ


covariance matrix in the CML function need to be positive definite. This can be 

assured by ensuring that the covariance matrix Ω
~

 is positive definite, which itself requires that 

Ω  be positive definite. From Equation (10), Ω  will be positive definite if the matrices Γ , Σ


, 

and Λ


 are positive definite.  The simplest way to ensure the positive-definiteness of these 

matrices is to use a Cholesky-decomposition and parameterize the CML function in terms of the 

Cholesky parameters (rather than the original covariance matrices). Also, the matrix Γ  is a 

correlation matrix, which can be maintained by writing each diagonal element (say the aath 

element) of the lower triangular Cholesky matrix of Γ  as 





1

1
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a

j
ajd , where the ajd  elements 

are the Cholesky factors that are to be estimated. In addition, note that the top diagonal element 

of Λ


 has to be normalized to one (as discussed earlier in Section 2.3), which implies that the 

first element of the Cholesky matrix of Λ


 is fixed to the value of one. Finally, the matrix  Σ


 is 

diagonal, and hence the Choleski matrix of Σ


 is also diagonal (and comprises standard 

deviations of ξ


). The diagonals corresponding to ordinal variables in the Choleski matrix of Σ


 

are fixed to one for identification.  

 

4. SIMULATION STUDY 

The simulation exercise undertaken in this section examines the ability of the MACML estimator 

to recover parameters from finite samples in an ICLV model of travel mode choice. The use of a 
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simulated travel mode choice exercise is valuable because the true parameters underlying the 

data generating process (DGP) are set by the analyst, and the analyst can evaluate the behavior of 

the MACML estimator for different finite sample sizes. This is important to do when a new 

estimator is being proposed. Also, the framing of the simulation in the context of mode choice is 

purely for ease in interpretation and understanding; the results from the simulation exercise 

should be applicable to any other empirical context.  

 In the simulation experiments, we consider three modal choice alternatives in a weekday 

intercity travel context: Drive, air, and bus.  

 

4.1. Experimental Design 

In the latent variable structural equation model of Equation (2), consider five latent variables as 

follows: (1) Flexibility of travel by air ( *
1z ), (2) flexibility of travel by bus ( *

2z ), (3) comfort of 

travel by air ( *
3z ), (4) comfort of travel by bus ( *

4z ), and (5) environmental consciousness ( *
5z ). 

Of the five variables above, the first four are qualitative attributes specific to two modes (air and 

bus), while the last variable is an individual-specific qualitative attribute (that does not vary 

across modes). Also, consider six variables in the observed covariate vector w  to explain the 

latent variables: (1) Frequency of air service in the weekday ( 1w ), (2) frequency of bus service 

in the weekday ( 2w ), (3) travel time by air ( 3w ), (4) travel time by bus ( 4w ), (5) Income of 

traveler ( 5w ), and (6) Educational status of traveler ( 6w ). Then, we write Equation (2) as: 
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The α  matrix indicates the observed covariates influencing each latent variable. Thus, for 

example, the first row of the α  matrix indicates that the “flexibility of travel by air” )( *
1z  is 

affected by the frequency of air service in the weekday )( 1w  and the travel time by air )( 3w .  

The second row of the α  matrix indicates that the “flexibility of travel by bus” )( *
2z  is affected 
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by the frequency of bus service in the weekday )( 2w  and the travel time by bus )( 4w . The effect 

of the frequency of service by a mode on the perception of flexibility for that mode is specified 

to be 0.5 for both the air and bus modes. Similarly, the effect of travel time by a mode on the 

perception of comfort for that mode is specified to be 0.6 for both the air and bus modes. The 

same is true for the effect of frequency of service on a mode on the comfort level of travel on 

that mode, with this parameter fixed to 0.3 for both the air and bus modes. The comfort 

perception for the bus mode )( *
4z  is negatively influenced by the income earnings of the 

individual )( 5w  (see the “-0.4” entry in the fourth column and fourth row of the α  matrix), and 

environmental consciousness )( *
5z  is positively influenced by education status )( 6w  (see the 

“0.8” entry in the final column and final row of the α  matrix). The parameters to be estimated in 

the α  matrix may be stacked up in a vector 

].8.0and ,4.0 ,3.0 ,3.0 ,6.0 ,5.0 ,6.0 ,5.0[)Vech( 87654321  α  The 

correlation matrix  Γ  of η  is specified as follows: 
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      (19) 

This generates a correlation in the unobserved factors impacting perceptions of flexibility and 

comfort for each of the air and bus modes. For ease, we maintain the same correlation 

coefficients between these two perceptions for each mode (as reflected by the value of 0.6 in the 

Γ  matrix in the first two rows). We also specify a correlation coefficient of 0.48 for the 

perceptions of comfort on the bus mode and environmental consciousness, to reflect the notion 

that those who are environmentally conscious may be more likely to view the bus mode as being 

comfortable than those less environmentally conscious. Thus, there are three parameters in the Γ  

matrix. As indicated earlier, to maintain positive definiteness, we work with the Cholesky 
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decomposition elements. Then, there are three Cholesky matrix elements to be estimated in ΓL  

( 6.0 and,6.0,6.0  Γ3Γ2Γ1 lll ), corresponding to the non-diagonal elements in the matrix 

(note that the diagonal elements are simply a function of the non-diagonal elements and are not 

estimated directly, because Γ is a correlation matrix with unit diagonals; see Section 3.2). 

Collectively, the three elements to be estimated in Γ , vertically stacked into a column vector, 

will be referred to as .Γl  

 In the latent variable measurement model of Equation (5), we assume one continuous 

indicator variable and four ordinal indicator variables: (1) Number of miles of non-motorized 

travel on a typical day y  (the continuous indicator variable), (2) Ease of use of the air 

mode )( *
1y , (3) Ease of use of the bus mode )( *

2y , (4) level of relaxation on the air mode )( *
3y , 

and (5) level of relaxation on the rail mode )( *
4y . In the simulation experiments, we set the 

elements of the δ


 vector to the value of ‘1’ for the continuous variable and ‘-1’ for the 

remaining four ordinal variables.  We assume that the number of miles of non-motorized travel 

on a typical day ( y ) is an indicator for environmental consciousness )( *
5z . The ease of use of the 

air mode )( *
1y  is a reflection of flexibility of travel by air )( *

1z , while the ease of use of the bus 

mode )( *
2y  is a reflection of flexibility of travel by bus )( *

2z . Similarly, the level of relaxation on 

each mode *
3( y  and )*

4y  is considered as an indicator variable for comfort of travel by that mode 

*
3(z  and )*

4z , respectively. Then, we write Equation (5) as:
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The δ


vector to be estimated has five elements: )1,1,1,1,1
~

( 4321  δ


, 

and the d


 matrix elements to be estimated also has five elements: 

).6.0,5.0,4.0,3.0,2.0
~

( 4321  dddddd


 The four ordinal variables are measured on a 

three point scale, so that 2,ggψ for each ordinal variable g (g=1,2,3,4), and 

.),,(  4321 ψ,ψψψψ  We set each of these thresholds to a value of 1.5. Thus, there are a total 
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of four threshold parameters to estimate (with true parameter values of 1.5) across all the ordinal 

variables.7  

The covariance matrix Σ


 of ξ


 has to be diagonal for identification, with the elements 

corresponding to the ordinal variables being normalized to 1. So, the only element of Σ


 to be 

estimated is the first element (= )
~

(Var ξ ). We set this value as 1, and estimate the standard error 

ξ
~l  (for consistency with the Cholesky matrix elements in other covariance matrices) that also 

takes a true value of 1.  

 Finally, we specify the choice model (Equation 7) as follows: 
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In the above equation, the parameters to be estimated include the elements of the
 
β  vector 

( airASC , =0.5, 0.1, busASC , 0.1TT , and 8.0TC ) and the elements of the γ  matrix 

stacked up in a vector ].3.0and,2.0,2.0,5.0,5.0,5.0[)Vech( 654321  γ 8  

                                                            
7 In our simulation experiment, we specify as many indicators as the number of latent variables. In typical models, 
the number of indicators will exceed the number of latent variables. However, the intent here is to show that our 
estimation procedure can easily handle many latent variables, as opposed to most earlier ICLV models that specify 
one or two latent variables (see Daly et al., 2012 or Bolduc et al. 2005 or Alvarez-Daziano and Bolduc, 2013). But, 
in many empirical contexts, latent variables are likely to be alternative-specific, which implies more than the 
traditional one or two latent variables. So, our emphasis in the simulation design was on incorporating five latent 
variables. On the other hand, having multiple indicators for each latent variable does not affect the dimensionality of 
integration either in the logit kernel-based ICLV model or our new model approach, though it increases the number 
of parameters to be estimated. Thus, given that we already have 38 parameters to estimate in the design, we have 
used one indicator for each latent variable to focus the simulation effort on showing how our approach is easily able 
to accommodate the realistic mode choice case of a high number of latent variables. 
8 In the general notation of Equation (7), 

 















































10000

01000

00010

10000

00100

00001

00000

and

3.02.02.00.00.00.00.0

0.00.00.05.05.05.00.0

0.00.00.00.00.00.00.0

γ
.  

  is fixed and pre-specified based on the discussion in Section 2.3 and Equation (21), and the elements of the γ  

matrix are to be estimated.  



24 

Next, we specify the covariance matrix .Λ
 
for the error vector ε  as 
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There are two Cholesky matrix elements to be estimated in ΛL  ( 0.1,6.0  Λ2Λ1 ll ). 

Collectively, these two elements, vertically stacked into a column vector, will be referred to as 

.Λl  

 To complete the simulation design, we draw values for the elements of the vector w (i.e., 

for 1w , 2w , 3w , 4w , 5w , and 6w ), and for the travel time and travel cost variables for each 

mode, from independent standard continuous uniform distributions. We consider different 

samples sizes to assess the accuracy and appropriateness of the asymptotic properties of the 

MACML estimator for finite sample sizes. In particular, we construct synthetic simulated data 

samples of 500, 1000, and 2000 by drawing the corresponding number of realizations of the 

exogenous variables. Once drawn, the exogenous variables are held fixed for the rest of the 

simulation exercise. Next, for each data sample, the mean B  and covariance matrix Ω   for the 

vector YU   for each observation are computed based on Equation (10). Then, for each 

observation, we draw a realization of YU   from its multivariate distribution. The first five 

elements of the realization of the YU  vector for each observation correspond to y , *
1y , *

2y , *
3y , 

and *
4y . The value for y  is retained as is, and constitutes the continuous indicator value for each 

observation. The values for *
1y , *

2y , *
3y , and *

4y  are compared to the threshold values of 0 and 

1.5 and, based on  this comparison, ordinal indicator variables are assigned for each of the four 

ordinal variables for each observation. Next, the last three elements of YU  correspond to carU , 

airU , and busU .  The alternative with the highest utility is selected and designated as the chosen 

alternative for each observation. With this, a complete data set for each sample size (of 500, 

1000, 2000) is generated from which to estimate the following 38 parameters: 

,,,,,,,, 87654321  ,,, Γ3Γ2Γ1 lll ,,,,,
~

4321  ,,,,,
~

4321 ddddd 4321 ψ ψψψ ,,, ,
ξ
~l ,

airASC , , ,,busASC ,TT ,TC 654321 ,,,,,  .and, Λ2Λ1 ll  

For each sample size, the above data generation process is undertaken 50 times with 

different realizations of the YU   vector to generate 50 different data sets. After each data 
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generation, we checked to ensure that there were adequate observations that “chose” each ordinal 

outcome for the ordinal indicator variables and “chose” each alternative for the choice variable. 

The estimator is then applied to each data set to estimate data specific values for the 38 

parameters. A single random permutation is generated for each individual (the random 

permutation varies across individuals, but is the same across iterations for a given individual) to 

decompose the multivariate normal cumulative distribution (MVNCD) function into a product 

sequence of marginal and conditional probabilities (see Section 2.1 of Bhat, 2011).9 The 

estimator is applied to each dataset 10 times with different permutations to obtain the 

approximation error. Thus, we run 500 estimations for each sample size (50 data sets × 10 runs 

with different permutations per data set). Given the three sample sizes, there are a total of 

500×3=1500 estimations undertaken. 

 

4.2. Performance Evaluation 

The performance of the MACML inference approach in estimating the parameters of the 

proposed model and the corresponding standard errors is evaluated, for each sample size, as 

follows: 

(1) Estimate the MACML parameters for each data set and for each of 10 independent sets of 

permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) 

estimator.  

(2) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED 

values across the data sets to obtain a mean estimate. Compute the absolute percentage 

(finite sample) bias (APB) of the estimator as: 

100
 valuetrue

 valuetrue-estimatemean 
APB  

(3) Compute the standard deviation of the MED values across the 50 datasets, and label this 

as the finite sample standard error or FSEE (essentially, this is the empirical standard 

error). Calculate the FSEE as a percentage of the mean estimate.  

                                                            
9 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 
approach. However, when we investigated the effect of different numbers of random permutations per individual, 
we noticed little difference in the estimation results between using a single permutation and higher numbers of 
permutations, and hence we settled with a single permutation per individual. 
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(4) For each data set, compute the mean standard error for each model parameter across the 

10 draws. Call this MSED, and then take the mean of the MSED values across the 50 

data sets and label this as the asymptotic standard error or ASE (essentially this is the 

standard error of the distribution of the estimator as the sample size gets large). Compute 

the ASE as a percentage of the mean estimate.  

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed 

using the MACML inference approach for the finite sample size used, compute the 

relative efficiency of the estimator as: 

FSEE

ASE
efficiency Relative 

  
      (23) 

Relative efficiency values in the range of 0.75-1.25 indicate that the ASE, as computed 

using the Godambe matrix in the MACML method, does provide a good approximation 

of the FSSE. In general, the relative efficiency values should be less than 1, since we 

expect the asymptotic standard error to be less than the FSSE. But, because we are using 

only a limited number of data sets to compute the FSSE, values higher than one can also 

occur. The more important point is to examine the closeness between the ASE and FSEE, 

as captured by the 0.75-1.25 range for the relative efficiency value. 

(6) Compute the standard deviation of the parameter values around the MED parameter value 

for each data set, and take the mean of this standard deviation value across the data sets; 

label this as the approximation error (APERR).   

 

5.  SIMULATION RESULTS 

Tables 2, 3, and 4 provide the simulation results for the 500, 1000, and 2000 observation cases, 

respectively. The tables provide the true value of the parameters (second column), followed by 

the parameter estimate results and the standard error estimate results.  

Several observations may be made from the tables. First, the MACML procedure is able 

to recover the parameters remarkably well even with only 500 observations, with the APB value 

having a mean (across parameters) value of 5.10% (see the final row of Table 2 labeled “Overall 

mean value across parameters” under the column “Absolute Percentage Bias (APB)”). The 

individual parameter APB values range from 0.3% to 14%, though even the seemingly large 14% 

APB is rather deceiving since the true estimate for this parameter (the d
~

 parameter) is 0.20 and 
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the mean estimate of the parameter is 0.228. Thus, the absolute finite sample bias is only 0.028, 

but gets inflated in percentage because of the small magnitude of the true value for the 

parameter. The APB values also, in general, reduce steadily (but rather marginally) with an 

increase in sample size. The mean APB value reduces to 4.807% (with a range of 0.133% to 

15.5%) with 1000 observations (see Table 3) and further to 4.158% (with a range of 0% to 

10.4%) with 2000 observations (see Table 4).10 Second, across the different sample sizes, the 

mean APB values for the )],,,,
~

([ 4321 dddddd


 vector elements and for the γ  matrix elements 

 ]and,,,,,[)Vech( 654321 γ  are consistently higher than the overall mean APB. In 

particular, the mean APB values for the d


vector elements are 8.413%, 8.860%, and 4.813% for 

the 500, 1000, and 2000 observations cases, and the corresponding mean APB values for the γ  

matrix elements are 7.939%, 6.035%, and 4.950%. This suggests that the coefficients on the 

latent variable vector *z in the measurement equation (Equation 5) and in the choice model 

(Equation 7) are somewhat more difficult to recover than other parameters. This is not surprising, 

since these elements enter into the covariance matrix Ω  in a non-linear fashion (see Equation 

10), and Ω  itself enters into the composite likelihood function (Equation 15) in a complex 

manner. Third, the finite sample standard errors (FSSE) clearly decrease as the sample size 

increases. As a percentage of the mean estimate, the FSSE indicates an average value (across all 

parameters) of 47.7% for the case of 500 observations, 35.7% for 1000 observations, and 22.4% 

for 2000 observations. The same trend is observed for the asymptotic standard error (ASE), with 

the ASE (as a percentage of the mean estimate) having a mean value (across all parameters) of 

52.2% for 500 observations, 37.8% for 1000 observations, and 23.2% for 2000 observations. In 

general, these results indicate good empirical efficiency of the MACML estimator, especially 

when the sample size is of the order of 1000 or more. But, the FSSE and ASE values are 

particularly high for the γ  matrix elements, with the values (as a percentage of the mean 

                                                            
10 Note that the CML estimator score functions are unbiased and the CML estimator has the asymptotic properties of 
being consistent and normally distributed under usual regularity conditions (see Bhat, 2011, Xu and Reid, 2011, and 
Bhat, 2014). Thus, it is not very surprising that the APB does not change too much with an increase in the number of 
observations (after all, we are computing the mean value of parameters across 500 realizations for each sample size). 
Indeed, this is a distinct advantage of the CML for the ICLV relative to MSL and other simulation techniques. That 
is, the CML reduces the dimensionality while retaining the consistency property of the estimator. Then, because we 
can evaluate the reduced-dimension CML function (three-dimensional in our simulation experiment) very accurately 
using the analytic approximation for the MVNCD function, we are able to recover parameters very well, as reflected 
in the small APB values regardless of sample size.  
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estimate) being 86.7% (500 observations), 69.5% (1000 observations), and 44.3% (2000 

observations) for the FSEE, and 90.1% (500 observations), 72.2% (1000 observations), and 

43.3% (2000 observations) for the ASE. This suggests some caution in estimating models with 

small sample sizes when there are many latent variables. Fourth, the FSEE and the ASE values 

are close to one another regardless of sample size, with the relative efficiency (RE) value 

between 0.75-1.25 for all parameters in the case of sample sizes of 1000 and 2000, and the value 

between 0.75-1.25 for all but one parameter in the case of a sample size of 500. Overall, across 

all parameters, the average relative efficiency is in the range of 1.06-1.10 for all sample sizes, 

indicating that the asymptotic formula is performing well in estimating the finite sample standard 

error even for a sample size of the order of 500. Finally, the last columns of the tables present the 

approximation error (APERR) for each of the parameters, because of the use of different 

permutations. These entries indicate that the APERR reduces with sample size, as expected. 

However, even for the case of 500 observations, the average APERR is only 0.030 and the 

maximum is only 0.078. More importantly, the approximation error (as a percentage of the FSEE 

or the ASE), averaged across all the parameters, is only of the order of 12% of the sampling 

error. This statistic decreases to 8% when the sample size increases to 1000 or 2000. The 

implication is that even a single permutation (per observation) of the approximation approach 

used to evaluate the MVNCD function provides adequate precision, in the sense that the 

convergent values are about the same for a given data set regardless of the permutation used for 

the decomposition of the multivariate probability expression.  

The convergence time for the proposed approach has a median value of about 40 minutes 

for the case of 500 observations, one hour for the case of 1000 observations, and 80 minutes for 

the case of 2000 observations, all based on scaling to a desktop computer with an Intel Core™ i7 

860@2.80GHz processor and 8GB of RAM. The time to compute the covariance matrix of the 

parameters was of the same order as the time for convergence. However, a more thorough 

analysis of computational times is warranted using a single machine. Further, it would be 

beneficial in a future study to run a rigorous exercise to compare, with a traditional MSL 

approach, the accuracy and econometric efficiency of our MACML estimator in finite samples, 

as well as computational times, even if with a much simpler model specification than that used in 

the current paper. Indeed, our main purpose in this study was to propose and apply the new 

method for a realistic specification rather than a “toy” specification. The important point is that 
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completing 1500 estimations of ICLV models with (a) the very general specifications for the 

covariance matrices adopted here, (b) the presence of five latent variables, and (c) the presence 

of five indicators (four of which are ordinal) is literally infeasible with the traditional logit kernel 

specification and the maximum simulated likelihood (MSL) estimation approach, at least with 

the computer hardware that we had at our disposal for this research (which is also the kind of 

computer hardware typically available to most analysts). The typical approach is notorious for 

very long estimation times (if convergence is achieved at all), with durations of 15 hours or more 

not at all uncommon. The order of magnitude reduction in computation time resulting from the 

use of our approach can then be used by analysts to explore a wide array of observed and latent 

variable specifications, rather than examining just a few specifications and settling quickly on 

one that may not be the best. 

 

6.  CONCLUSIONS 

Integrated choice and latent variable (ICLV) models are increasingly being considered in many 

fields as a means to gain a deeper understanding into the decision process of individuals as well 

as to potentially improve predictive ability. However, consideration and actual use of these 

models have been two different things in the literature. In particular, the use of ICLV models has 

been severely hampered by the difficulties encountered in usual maximum simulated likelihood 

(MSL) estimation as well as the amount of time to estimate these models (typically of the order 

of a day for one specification run, and even that for rather restrictive specifications). The reason 

for the estimation problems and computation time issues is that, in the traditional way of doing 

things, the integrand in ICLV models is itself a mixture of two probabilities (the probability of 

choice conditional on explanatory and latent variables, and the probability of the latent variable 

conditional on explanatory variables), which has to be integrated over the distribution of the 

latent variables conditional on explanatory variables.  

In the current paper, we have proposed a different model formulation for the ICLV 

model, based on a multivariate probit (MNP) kernel for the choice component. To our 

knowledge, this is the first study to use a probit kernel within a general ICLV setting. As we 

show in the paper, combining this MNP-based choice model formulation with Bhat’s maximum 

approximate composite marginal likelihood (MACML) inference approach immediately 

alleviates the specification and estimation challenges discussed above, and provides substantial 
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computational time advantages. In particular, the dimensionality of integration in the log-

likelihood function is independent of the number of latent variables, and we are able to specify 

quite general covariance structures (up to certain identification limits) in the error terms involved 

in the ICLV set-up. Further, our proposed approach easily accommodates ordinal indicators for 

the latent variables, as well as combinations of ordinal and continuous response indicators. The 

approach can be extended in a relatively straightforward fashion to also include nominal 

indicator variables.  

The paper designed a simulation experiment in a virtual context of travel mode choice, 

and undertook a simulation exercise to evaluate the ability of the MACML approach to recover 

model parameters. The simulation results show that, irrespective of the sample size used in 

estimation (the sample sizes tested were 500, 1000, and 2000 observations), the MACML 

estimator recovers the parameters of the model remarkably well. The MACML estimator is also 

quite efficient in the overall, though the results indicate the need for relatively large sample sizes. 

This is needed to pin down the effects of the latent variables in the choice model. Additional 

investigation of efficiency consideration in the context of the proposed MACML estimation of 

ICLV models is an important direction for future research. For example, an extensive simulation 

study to compare the MACML estimation of probit-based ICLV models (based on Equation 

(15)) with the MSL estimation of probit-based ICLV models (based on Equation (16)) would be 

helpful, to examine the impact of different settings (such as the number of ordinal versus 

continuous indicators, the number of latent variables, general versus independent covariance 

matrix specifications for the latent variables and/or choice alternative utilities, the number of 

choice alternatives, and varying sample sizes) on not only efficiency considerations, but also 

estimation convergence and the accuracy of parameter recovery. But, for all sample sizes, the 

asymptotic formula (based on the inverse of the Godambe information matrix) in our proposed 

MACML approach is performing well in estimating the finite sample standard errors. Also, the 

approximation error due to the use of a single permutation (per observation) in the analytic 

approximation for the MVNCD function evaluation is so small that it is a non-issue.  

There were no convergence issues in our proposed approach even though we have not yet 

coded the Hessian of the analytically approximated CML function that is maximized (rather, we 

currently use a numerical procedure to obtain the Hessian, and then use the numerical Hessian 

and the analytic gradient in the computation of the Godambe covariance matrix of Equation 17). 
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Additionally, the computational time is much lesser than for traditional logit-based kernels and 

associated MSL estimation procedures. Importantly, it is quite remarkable that this paper is the 

first study to use a probit choice kernel within a general ICLV setting, This is far more 

convenient for the usual applications for the ICLV models where the number of alternatives is 

few, and the number of latent variables can be many. Further, interactions of latent variables with 

individual demographic and other observed variables is easy to accommodate.  

In closing, it is hoped that our new ICLV formulation and associated inference approach 

will unshackle researchers and practitioners from the constraints imposed by the traditional 

ICLV formulation, and open the door for the extensive use of “soft” psychometric measures 

(along with traditionally used “hard” covariates) in discrete choice modeling. Future research 

efforts should consider the performance of our inference approach with normal and non-normal 

random coefficients, interactions of latent variables with observed variables, panel settings with 

varying numbers of observations per individual, multiple indicators per latent variable, and 

increasing number of alternatives in the choice model. However, the results in this paper paint a 

very encouraging picture for the use of the MACML method for the quick, accurate, and 

practical estimation of ICLV models with flexible and rich stochastic specifications.  
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Table 1: Matrix Notation, Description, and Dimension 

Equation Notation Represents… Dimension 

Structural 
Equation 

*z  Vector of latent variables 1L  

α  Matrix of exogenous variable loadings on *z  DL
~  

 w  Vector of exogenous variables affecting *z  1
~ D  

 η  Vector of errors in structural equation 1L  

Measurement 
Equation 

Γ  Correlation matrix of error vector η  in latent 
variable structural equation 

LL  

y
  Vector of observed latent measurement equation 

dependent variables 
1)(  HG

 δ


 Intercept vector in measurement equation 1)(  HG

 d


 Vector of coefficients representing the effect of 
latent variables on observed/latent indicators 

1)(  HG

 ξ


 Vector of error in measurement equation 1)(  HG

 Σ


 Covariance matrix of ξ


 (assumed diagonal for 
identification) 

)()( HGHG 

Choice Model U  Vector of alternative utilities 1I  

 β  Vector of exogenous variable effects on U  1D  

 x  Vector of exogenous variables in choice model DI   

 γ  Matrix of coefficients capturing effects of latent 
variables and their interactions with exogenous 
variables 









 



I

i
iNI

1

 

   Matrix of variables interacting with latent 
variables LN

I

i
i 







1

 

 ε  Utility error vector 1I  

 Λ  Covariance matrix of ε  II   
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Table 2: Simulation results for the 500 observations case with 50 datasets                      
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE) 

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

1  0.5 0.482 0.018 3.600 0.284 0.277 0.978 0.0350 

2  0.6 0.588 0.012 2.000 0.203 0.225 1.105 0.0388 

3  0.5 0.511 0.011 2.200 0.290 0.334 1.155 0.0298 

4  0.6 0.622 0.022 3.667 0.303 0.324 1.070 0.0354 

5  0.3 0.317 0.017 5.667 0.272 0.300 1.104 0.0237 

6  0.3 0.314 0.014 4.667 0.133 0.161 1.207 0.0176 

7    -0.4 -0.413 0.013 3.250 0.203 0.238 1.173 0.0246 

8  0.8 0.843 0.043 5.375 0.351 0.385 1.097 0.0201 

1l  0.6 0.573 0.027 4.500 0.266 0.296 1.114 0.0400 

2l  0.6 0.537 0.063   10.500 0.227 0.249 1.099 0.0282 

3l  0.6 0.576 0.024 4.000 0.256 0.316 1.235 0.0205 

~  1.0 1.004 0.004 0.400 0.056 0.066 1.193 0.0023 

1    -1.0 -1.029 0.029 2.900 0.231 0.255 1.104 0.0122 

2    -1.0 -1.060 0.060 6.000 0.239 0.274 1.148 0.0512 

3    -1.0 -1.027 0.027 2.700 0.262 0.279 1.065 0.0262 

4    -1.0 -1.024 0.024 2.400 0.174 0.200 1.150 0.0250 

d
~

 0.2 0.228 0.028   14.000 0.156 0.175 1.120 0.0047 

1d  0.3 0.330 0.030   10.000 0.163 0.184 1.131 0.0249 

2d  0.4 0.428 0.028 7.000 0.311 0.375 1.206 0.0780 

3d  0.5 0.512 0.012 2.400 0.342 0.395 1.156 0.0422 
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Table 2: (Continued) Simulation results for the 500 observation case with 50 datasets 
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

4d  0.6 0.652 0.052 8.667 0.211 0.268 1.268 0.0440 

1
 

1.5 1.479 0.021 1.400 0.136 0.153 1.126 0.0125 

2  1.5 1.572 0.072 4.800 0.283 0.296 1.044 0.0678 

3     1.5 1.538 0.038 2.533 0.315 0.325 1.031 0.0345 

4     1.5 1.511 0.011 0.733 0.217 0.243 1.117 0.0316 

1l     1.0 0.967 0.033 3.300 0.099 0.088 0.882 0.0012 

airASC ,  0.5 0.498 0.002 0.400 0.378 0.428 1.133 0.0174 

busASC,   -1.0 -0.997 0.003 0.300 0.476 0.569 1.195 0.0275 

TT   -1.0 -1.071 0.071 7.100 0.250 0.256 1.023 0.0298 

TC   -0.8 -0.869 0.069 8.625 0.196 0.209 1.066 0.0241 

1  0.5 0.540 0.040 8.000 0.214 0.258 1.204 0.0482 

2  0.5 0.530 0.030 6.000 0.483 0.493 1.021 0.0475 

3   -0.5 -0.496 0.004 0.800 0.212 0.257 1.209 0.0216 

4  0.2 0.221 0.021    10.500 0.244 0.287 1.174 0.0233 

5  0.2 0.222 0.022 11.000 0.327 0.269 0.823 0.0385 

6  0.3 0.334 0.034 11.333 0.297 0.326 1.095 0.0152 

1l  0.6 0.621 0.021 3.500 0.459 0.460 1.002 0.0397 

2l  1.0 0.924 0.076 7.600 0.430 0.434 1.011 0.0353 

Overall mean value across 
parameters 0.030 5.100 0.262 0.288 1.106 0.0300 
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Table 3: Simulation results for the 1000 observations case with 50 datasets  
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

1  0.5 0.496 0.004 0.800 0.136 0.161 1.184 0.0209 

2  0.6 0.574 0.026 4.333 0.158 0.193 1.222 0.0243 

3  0.5 0.454 0.046 9.200 0.180 0.208 1.156 0.0152 

4  0.6 0.537 0.063   10.500 0.176 0.194 1.097 0.0171 

5  0.3 0.311 0.011 3.667 0.211 0.222 1.047 0.0118 

6  0.3 0.319 0.019 6.333 0.189 0.206 1.090 0.0118 

7    -0.4 -0.409 0.009 2.250 0.179 0.176 0.983 0.0161 

8  0.8 0.824 0.024 3.000 0.279 0.292 1.047 0.0142 

1l  0.6 0.585 0.015 2.500 0.198 0.184 0.929 0.0187 

2l  0.6 0.606 0.006 1.000 0.154 0.134 0.870 0.0111 

3l  0.6 0.550 0.050 8.333 0.217 0.191 0.876 0.0139 

~  1.0 0.988 0.012 1.200 0.047 0.044 0.957 0.0015 

1    -1.0 -1.021 0.021 2.100 0.149 0.120 0.805 0.0069 

2    -1.0 -1.056 0.056 5.600 0.189 0.191 1.011 0.0230 

3    -1.0 -1.020 0.020 2.000 0.131 0.138 1.062 0.0141 

4    -1.0 -1.029 0.029 2.900 0.174 0.194 1.115 0.0131 

d
~

 0.2 0.231 0.031   15.500 0.079 0.090 1.139 0.0020 

1d  0.3 0.320 0.020 6.667 0.066 0.079 1.197 0.0171 

2d  0.4 0.424 0.024 6.000 0.248 0.255 1.028 0.0344 

3d  0.5 0.544 0.044 8.800 0.192 0.234 1.219 0.0251 
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Table 3: (Continued) Simulation results for the 1000 observations case with 50 datasets 
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

4d  0.6 0.644 0.044 7.333 0.226 0.269 1.190 0.0237 

1
 

1.5 1.453 0.047 3.133 0.090 0.098 1.089 0.0084 

2  1.5 1.529 0.029 1.933 0.226 0.219 0.969 0.0287 

3     1.5 1.491 0.009 0.600 0.127 0.137 1.079 0.0165 

4     1.5 1.498 0.002 0.133 0.169 0.200 1.183 0.0156 

1l     1.0 0.983 0.017 1.700 0.031 0.035 1.129 0.0006 

airASC ,  0.5 0.474 0.026 5.200 0.279 0.326 1.168 0.0119 

busASC,   -1.0 -1.036 0.036 3.600 0.316 0.306 0.968 0.0195 

TT   -1.0 -1.064 0.064 6.400 0.182 0.193 1.060 0.0201 

TC   -0.8 -0.855 0.055 6.875 0.147 0.158 1.082 0.0158 

1  0.5 0.491 0.009 1.800 0.205 0.221 1.078 0.0364 

2  0.5 0.522 0.022 4.473 0.311 0.337 1.084 0.0242 

3   -0.5 -0.521 0.021 4.271 0.227 0.234 1.026 0.0124 

4  0.2 0.220 0.020   10.000 0.164 0.188 1.146 0.0121 

5  0.2 0.220 0.020   10.000 0.305 0.299 0.980 0.0102 

6  0.3 0.317 0.017 5.667 0.187 0.183 0.979 0.0089 

1l  0.6 0.593 0.007 1.167 0.376 0.364 0.968 0.0207 

2l  1.0 0.943 0.057 5.700 0.270 0.311 1.152 0.0198 

Overall mean value across 
parameters 0.027 4.807 0.189 0.200 1.062 0.0163 
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Table 4: Simulation results for the 2000 observations case with 50 datasets  
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

1  0.5 0.4 0.019 3.800 0.098 0.103 1.051 0.0082 

2  0.6 0.563 0.037 6.167 0.135 0.141 1.044 0.0099 

3  0.5 0.448 0.052   10.400 0.100 0.118 1.180 0.0011 

4  0.6 0.562 0.038 6.333 0.101 0.113 1.108 0.0128 

5  0.3 0.290 0.010 3.333 0.068 0.054 0.806 0.0051 

6  0.3 0.278 0.022 7.333 0.075 0.076 1.013 0.0058 

7    -0.4 -0.408 0.008 2.000 0.124 0.136 1.097 0.0096 

8  0.8 0.863 0.063 7.875 0.216 0.212 0.981 0.0072 

1l  0.6 0.606 0.006 1.000 0.069 0.051 0.750 0.0139 

2l  0.6 0.623 0.023 3.833 0.096 0.089 0.927 0.0086 

3l  0.6 0.541 0.059 9.833 0.158 0.170 1.076 0.0130 

~  1.0 0.999 0.001 0.100 0.033 0.032 0.970 0.0011 

1    -1.0 -1.081 0.081 8.100 0.098 0.101 1.031 0.0031 

2    -1.0 -1.024 0.024 2.400 0.106 0.116 1.094 0.0166 

3    -1.0 -1.037 0.037 3.700 0.092 0.105 1.130 0.0108 

4    -1.0 -1.020 0.020 2.000 0.114 0.132 1.158 0.0077 

d
~

 0.2 0.200 0.000 0.000 0.052 0.058 1.115 0.0013 

1d  0.3 0.321 0.021 7.000 0.061 0.066 1.082 0.0070 

2d  0.4 0.422 0.022 5.500 0.124 0.125 1.008 0.0277 

3d  0.5 0.532 0.032 6.400 0.125 0.141 1.128 0.0174 
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Table 4: (Continued) Simulation results for the 2000 observations case with 50 datasets 
(based on a total of 50×10 runs/dataset=500 runs) 

Parameters 
True 
value 

Parameter Estimates Standard Error Estimates 

Mean 
Est. 

Abs. 
Bias 

Absolute 
Percentage
Bias (APB)

Finite Sample 
St. Err. 
(FSSE)  

Asymptotic 
St. Err. 
(ASE)  

Relative 
Efficiency 

Approxim
ation 
Error 

(APERR)

4d  0.6 0.631 0.031 5.167 0.135 0.145 1.149 0.0153 

1
 

1.5 1.461 0.039 2.600 0.056 0.066 1.179 0.0034 

2  1.5 1.493 0.007 0.467 0.109 0.129 1.183 0.0218 

3     1.5 1.503 0.003 0.200 0.113 0.122 1.080 0.0134 

4     1.5 1.483 0.017 1.133 0.120 0.141 1.175 0.0098 

1l     1.0 0.997 0.003 0.300 0.016 0.018 1.125 0.0003 

airASC ,  0.5 0.527 0.027 5.400 0.180 0.203 1.128 0.0086 

busASC,   -1.0 -1.026 0.026 2.600 0.223 0.217 0.973 0.0157 

TT   -1.0 -1.030 0.030 3.000 0.129 0.149 1.155 0.0141 

TC   -0.8 -0.821 0.021 2.625 0.108 0.121 1.120 0.0115 

1  0.5 0.481 0.019 3.800 0.141 0.168 1.191 0.0144 

2  0.5 0.474 0.026 5.200 0.226 0.230 1.013 0.0198 

3   -0.5 -0.501 0.001 0.200 0.165 0.170 1.030 0.0100 

4  0.2 0.219 0.019 9.500 0.086 0.092 1.070 0.0098 

5  0.2 0.216 0.016 8.000 0.160 0.127 0.794 0.0059 

6  0.3 0.309 0.009 3.000 0.132 0.132 1.000 0.0077 

1l  0.6 0.609 0.009 1.500 0.247 0.246 0.992 0.0183 

2l  1.0 0.938 0.062 6.200 0.265 0.311 1.174 0.0094 

Overall mean value across 
parameters 0.025 4.158 0.122 0.130 1.060 0.0105 

 


