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ABSTRACT 
This paper presents the basics of the composite marginal likelihood (CML) inference approach, 
discussing the asymptotic properties of the CML estimator and the advantages and limitations of 
the approach. The composite marginal likelihood (CML) inference approach is a relatively 
simple approach that can be used when the full likelihood function is practically infeasible to 
evaluate due to underlying complex dependencies. The history of the approach may be traced 
back to the pseudo-likelihood approach of Besag (1974) for modeling spatial data, and has found 
traction in a variety of fields since, including genetics, spatial statistics, longitudinal analyses, 
and multivariate modeling. However, the CML method has found little coverage in the 
econometrics field, especially in discrete choice modeling. This paper fills this gap by 
identifying the value and potential applications of the method in discrete dependent variable 
modeling as well as mixed discrete and continuous dependent variable model systems. In 
particular, the paper develops a blueprint (complete with matrix notation) to apply the CML 
estimation technique to a wide variety of discrete and mixed dependent variable models. 
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1. INTRODUCTION 
1.1. Background 
The need to accommodate underlying complex interdependencies in decision-making for more 
accurate policy analysis as well as for good forecasting, combined with the explosion in the 
quantity of data available for the multidimensional modeling of inter-related choices of a single 
observational unit and/or inter-related decision-making across multiple observational units, has 
resulted in a situation where the traditional frequentist full likelihood function becomes near 
impossible or plain infeasible to evaluate. As a consequence, another approach that has seen 
some (though very limited) use recently is the composite likelihood (CL) approach. This is an 
estimation technique that is gaining substantial attention in the statistics field, though there has 
been relatively little coverage of this method in econometrics and other fields. While the method 
has been suggested in the past under various pseudonyms such as quasi-likelihood (Hjort and 
Omre, 1994; Hjort and Varin, 2008), split likelihood (Vandekerkhove, 2005), and 
pseudolikelihood or marginal pseudo-likelihood (Molenberghs and Verbeke, 2005), Varin (2008) 
discusses reasons why the term composite likelihood is less subject to literary confusion.  
 At a basic level, a composite likelihood (CL) refers to the product of a set of lower-
dimensional component likelihoods, each of which is a marginal or conditional density function. 
The maximization of the logarithm of this CL function is achieved by setting the composite score 
equations to zero, which are themselves linear combinations of valid lower-dimensional 
likelihood score functions. Then, from the theory of estimating equations, it can be shown that 
the CL score function (and, therefore, the CL estimator) is unbiased (see Varin et al., 2011). In 
this paper, we discuss these theoretical aspects of CL methods, with an emphasis on an overview 
of developments and applications of the CL inference approach in the context of discrete 
dependent variable models.   
 The history of the CL method may be traced back to the pseudo-likelihood approach of 
Besag (1974) for modeling spatial data, and has found traction in a variety of fields since, 
including genetics, spatial statistics, longitudinal analyses, and multivariate modeling (see Varin 
et al., 2011 and Larribe and Fearnhead, 2011 for reviews). However, the CL method has, as 
indicated earlier, found little coverage in the econometrics field, and it is the hope that this paper 
will fill this gap by identifying the value and potential applications of the method in 
econometrics. 
 
1.2. Types of CL Methods 
To present the types of CL methods, assume that the data originate from a parametric underlying 

model based on a random ( H
~

× 1) vector Y with density function ),( θyf , where θ  is an 

unknown K
~

-dimensional parameter vector (technically speaking, the density function ),( θyf

refers to the conditional density function ),( θyX|Yf  of the random variable Y given a set of 

explanatory variables X, though we will use the simpler notation ),( θyf  for the conditional 

density function). Each element of the random variable vector Y may be observed directly, or 
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may be observed in a truncated or censored form. Assume that the actual observation vector 
corresponding to Y is given by the vector ),,,,( ~321 

H
mmmm m , some of which may take a 

continuous form and some of which may take a limited-dependent form. Let the likelihood 
corresponding to this observed vector be ).;( mθ L  Now consider the situation where computing 

);( mθ L is very difficult. However, suppose evaluating the likelihood functions of a set of E
~

 

observed marginal or conditional events determined by marginal or conditional distributions of 
the sub-vectors of Y is easy and/or computationally expedient. Let these observed marginal 

events be characterized by ( )( ..., ,)( ,)( ~21 mmm
E

AAA ). Let each event )(meA  be associated with 

a likelihood object  )(;);( mθmθ ee ALL  , which is based on a lower-dimensional marginal or 

conditional joint density function corresponding to the original high-dimensional joint density of 
Y. Then, the general form of the composite likelihood function is as follows: 

   



E

e
e

E

e
eCL

ee ALLL
~

1

~

1

)(;();(),(  mθmθmθ , (1.1) 

where e  is a power weight to be chosen based on efficiency considerations. If these power 

weights are the same across events, they may be dropped. The CL estimator is the one that 
maximizes the above function (or equivalently, its logarithmic transformation).  

The events )(meA  can represent a combination of marginal and conditional events, 

though composite likelihoods are typically distinguished in one of two classes: the composite 
conditional likelihood (CCL) or the composite marginal likelihood (CML).  In this paper, we will 
focus on the CML method because it has many immediate applications in the econometrics field, 
and is generally easier to specify and estimate. However, the CCL method may also be of value 
in specific econometric contexts (see Mardia et al., 2009 and Varin et al., 2011 for additional 
details).  

 
1.3. The Composite Marginal Likelihood (CML) Inference Approach 

In the CML method, the events )(meA  represent marginal events. The CML class of estimators 

subsumes the usual ordinary full-information likelihood estimator as a special case. For instance, 
consider the case of repeated unordered discrete choices from a specific individual. Let the 

individual’s discrete choice at time t be denoted by the index td , and let this individual be 

observed to choose alternative tm  at choice occasion t ). ..., ,3 ,2 ,1( Tt   Then, one may define 

the observed event for this individual as the sequence of observed choices across all the T choice 
occasions of the individual. Defined this way, the CML function contribution of this individual 
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becomes equivalent to the full-information maximum likelihood function contribution of the 
individual:1 

),...,, ,( Prob),(),( 332211
1

TTCML mdmdmdmdLL  mθmθ .  (1.2) 

However, one may also define the events as the observed choices at each choice occasion for the 
individual. Defined this way, the CML function is: 

)(Prob...)(Prob)Prob()( Prob),( 332211
2

TTCML mdmdmdmdL mθ . (1.3) 

This CML, of course, corresponds to the case of independence between each pair of observations 
from the same individual. As we will indicate later, the above CML estimator is consistent. 
However, this approach, in general, does not estimate the parameters representing the 
dependence effects across choices of the same individual (i.e., only a subset of the vector θ  is 
estimable). A third approach to estimating the parameter vector θ  in the repeated unordered 
choice case is to define the events in the CML as the pairwise observations across all or a subset 
of the choice occasions of the individual. For presentation ease, assume that all pairs of 
observations are considered. This leads to a pairwise CML function contribution of individual q 
as follows: 

),( Prob),(
1

1 1

3
tttt

T

t

T

tt

CML mdmdL 



 

mθ .     (1.4) 

Almost all earlier research efforts employing the CML technique have used the pairwise 
approach, including Apanasovich et al. (2008), Varin and Vidoni (2009), Bhat and Sener (2009), 
Bhat et al. (2010a), Bhat and Sidharthan (2011), Vasdekis et al. (2012), Ferdous and Bhat 
(2013), and Feddag (2013). Alternatively, the analyst can also consider larger subsets of 
observations, such as triplets or quadruplets or even higher dimensional subsets (see Engler et 
al., 2006 and Caragea and Smith, 2007). However, the pairwise approach is a good balance 
between statistical and computational efficiency (besides, in almost all applications, the 
parameters characterizing error dependency are completely identified based on the pairwise 
approach). Importantly, the pairwise approach is able to explicitly recognize dependencies across 
choice occasions in the repeated choice case through the inter-temporal pairwise probabilities.  
 
1.4. Asymptotic Properties of the CML Estimator with many independent replicates 
The asymptotic properties of the CML estimator for the case with many independent replicates 
may be derived from the theory of unbiased estimating functions. For ease, we will first consider 
the case when we have Q independent observational units (also referred to as individuals in this 

paper) in a sample ,,...,,, 321 QYYYY each qY  (q=1,2,…,Q) being a H
~

× 1 vector. That is, 

                                                            
1 In the discussion below, for presentation ease, we will ignore the power weight term ωe. In some cases, such as in a 
panel case with varying number of observational occasions on each observation unit, the choice of ωe can influence 
estimator asymptotic efficiency considerations. But it does not affect other asymptotic properties of the estimator. 
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).,...,,( ~21 Hqqq YYYqY  H
~

 in this context may refer to multiple observations of the same variable 

on the same observation unit (as in the previous section) or a single observation of multiple 
variables for the observation unit (for example, expenditures on groceries, transportation, and 

leisure activities for an individual). In either case, Q is large relative to H
~

 (the case when Q is 
small is considered in the next section). We consider the case when observation is made directly 

on each of the continuous variables ,qhY  though the discussion in this section is easily modified 

to incorporate the case when observation is made on some truncated or censored form of qhY  

(such as in the case of a discrete choice variable). Let the observation on the random variable qY  

be ).,...,,( ~21 Hqqq yyyqy Define ).,...,,( 21 Qyyyy  Also, we will consider a pairwise likelihood 

function as the CML estimator, though again the proof is generalizable in a straightforward 
manner to other types of CML estimators (such as using triplets or quadruplets rather than 
couplets in the CML).  For the pairwise case, the estimator is obtained by maximizing (with 

respect to the unknown parameter vector θ , which is of dimension K
~

) the logarithm of the 
following function: 

   

 

 












 















Q

q

Q

q
hqqh

H

h
hqh

H

hh
hqh

H

h

H

hh
hqqh

Q

q

H

h
hqhqqhqh

H

hh
CML

yyfLLyyf

yYyYL

1 1

1
~

1

~

1

1
~

1

~

1

1

1
~

1

~

1

),(where,),(

),(Prob)( yθ,

 (1.5) 

Under usual regularity conditions (these are the usual conditions needed for likelihood objects to 
ensure that the logarithm of the CML function can be maximized by solving the corresponding 
score equations; the conditions are too numerous to mention here, but are listed in Molenberghs 
and Verbeke, 2005, page 191), the maximization of the logarithm of the CML function in the 
equation above is achieved by solving the composite score equations given by: 

 ,),,(),(log),(
1

1
~

1

~

1

0  






 

Q

q
hqqhhqh

H

h

H

hh
CML yyL θsyθyθsCML   (1.6) 

where .
log

),,(
θ

θs



 


hqh

hqqhhqh

L
yy  Since the equations ),( yθsCML are linear combinations of 

valid likelihood score functions ),,( hqqhhqh yy  θs associated with the event probabilities forming 

the composite log-likelihood function, they immediately satisfy the requirement of being 
unbiased. While this is stated in many papers and should be rather obvious, we provide a formal 
proof of the unbiasedness of the CML score equations (see also Yi et al., 2011). In particular, we 
need to prove the following: 

   0







   






 




 

Q

q
hqqhhqh

H

h

H

hh

Q

q
hqqhhqh

H

h

H

hh

yyEyyEE
1

1
~

1

~

11

1
~

1

~

1

),,(),,()],([ θsθsyθsCML , (1.7) 
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where the expectation above is taken with respect to the full distribution of ).,...,,( ~21 H
YYYY  

The above equality will hold if )],,([ hqqhhqh yyE  θs = 0  for all pairwise combinations hh and  

for each q. To see that this is the case, we write: 

   


 









 qd dqy

hqqhhqqh
hqh

y

hqh
hqqhhqh dydyyyf

L
f

L
yyE hqh-hqh-

yy

qq dyy,
θ

)dyy
θ

θs
dqd-q

),(
log

(
log

)],,([ ,  (1.8) 

where hqh-y   represents the subvector of qy  with the elements qhy  and hqy   excluded. 

Continuing, 

0
































 

  

  

  







 






















)1(

1

log
),(

log

),(
log

)],,([

θθ

θθ

θθ

dyy,
θ

θs hqh-hqh-

y hqh-

qh hq

qh hqqh hq

qh hqqh hq

qh hq

y y

hqqhhqh

y y

hqqh
hqh

y y

hqqhhqh
hqh

hqh

y y

hqqhhqh
hqh

y y

hqqhhqqh
hqh

y

hqqhhqqh

y

hqh
hqqhhqh

dydyL

dydy
L

dydyL
L

L

dydyL
L

dydyyyf
L

dydyyyf
L

yyE

  (1.9) 

Next, consider the asymptotic properties of the CML estimator. To derive these, define the mean 
composite score function across observation units in the sample as follows: 

),,(
1

),(
1

qq yθsyθs 



Q

qQ
 where ),( qq yθs ),,(

1
~

1

~

1
hqqhhqh

H

h

H

hh

yy 



 
  θs . Then, 

    0 



 
  ),,(),(

1
~

1

~

1
hqqhhqh

H

h

H

hh

yyEE θsyθs qq  for all values of θ . Let 0θ  be the true unknown 

parameter vector value, and consider the score function at this vector value and label it as 

).,( q0q yθs  Then, when drawing a sample from the population, the analyst is essentially drawing 

values of ),( q0q yθs from its distribution in the population with zero mean and variance given by 

 ),( q0q yθsJ Var , and taking the mean across the sampled values of ),( q0q yθs to obtain 

).,( yθs 0 Invoking the Central Limit Theorem (CLT), we have  

)0,Jyθs 0 (),( ~
K

d MVNQ    (1.10) 

where (.,.)~
K

MVN stands for the multivariate normal distribution of K
~

 dimensions. Next, let 

CMLθ̂  be the CML estimator, so that, by design of the CML estimator, .),ˆ( 0yθs CML Expanding 
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),ˆ( yθs CML  around ),( yθs 0  in a first-order Taylor series, we obtain 

 0CML00CML θθyθsyθsyθs  ˆ),(),(),ˆ( 0 , or equivalently, 

    1),(ˆ  yθsθθ 00CML QQ ),( yθs 0 .         (1.11)  

From the law of large numbers (LLN), we also have that ),( yθs 0 , which is the sample mean of 

),,( q0q yθs converges to the population mean for the quantity. That is,  

 ),( yθs 0  ),( yθsH 0 Ed          (1.12) 

Using Equations (1.10) and (1.12) in Equation (1.11), applying Slutsky’s theorem, and assuming 
non-singularity of J and H , we finally arrive at the following limiting distribution: 

  HHJGGθθ -1-1
0CML  where),(ˆ ~ 0,

K
d MVNQ  (1.13) 

where G  is the Godambe (1960) information matrix.  Thus, the asymptotic distribution of CMLθ̂ is 

centered on the true parameter vector 0θ . Further, the variance of CMLθ̂  reduces as the number of 

sample points Q increases. The net result is that CMLθ̂  converges in probability to 0θ  as Q  

(with H
~

 fixed), leading to the consistency of the estimator. In addition, CMLθ̂  is normally 

distributed, with its covariance matrix being  ./Q-1G  However, both J and H , and therefore G, 

are functions of the unknown parameter vector 0θ .  But J and H may be estimated in a 

straightforward manner at the CML estimate CMLθ̂  as follows: 

CMLθ
θθ

J
ˆ

,,

1

loglog1ˆ 





























 



qCMLqCML
Q

q

LL

Q
, where  hqh

H

h

H

hh
qCML LL 



 
  loglog

1
~

1

~

1
, ,  (1.14) 

and 

   

CML

CMLCML

θ

θθqq

θθ

θsyθsH

ˆ1

1
~

1

~

1

2

1

1
~

1

~

1
ˆ

1
ˆ

log1

),,(
1

),(
1ˆ
























 







 




Q

q

H

h

H

h

hqh

Q

q

H

h

H

h
hqqhdqd

Q

q

L

Q

yy
QQ

 (1.15) 

If computation of the second derivative is time consuming, one can exploit the second Bartlett 
identity (Ferguson, 1996, page 120), which is valid for each observation unit’s likelihood term in 
the composite likelihood. That is, using the condition that 

       ,,,(,,(,,( hqqhhqhhqqhhqhhqqhhqh yyEyyEyyVar   00q0q θsθsHθsJ  (1.16) 

an alternative estimate for Ĥ is as below: 
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 

  


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
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


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
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
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
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h
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Q
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Q
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1

1
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1
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1

1
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1
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1

1
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1
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loglog1
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1
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CML
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 (1.17) 

Finally, the covariance matrix of the CML estimator is given by 
     

.
ˆˆˆˆ





QQ

1-1-1-
HJHG

 

 The empirical estimates above can be imprecise when Q is not large enough. An 
alternative procedure to obtain the covariance matrix of the CML estimator is to use a jackknife 
approach as follows (see Zhao and Joe, 2005): 

   ,θθθθθ CMLCMLCMLCMLCML





 


 ˆˆˆˆ1

)ˆ(Cov )()(

1

qq
Q

qQ

Q
  (1.18) 

where )(ˆ q
CMLθ  is the CML estimator with the qth observational unit dropped from the data. 

However, this can get time-consuming, and so an alternative would be to use a first-order 

approximation for )(ˆ q
CMLθ  with a single step of the Newton-Raphson algorithm with CMLθ̂  as the 

starting point.  
 
1.5. Asymptotic Properties of the CML Estimator for the Case of Very Few or No 

Independent Replicates 
Even in the case when the data include very few or no independent replicates (as would be the 
case with global social or spatial interactions across all observational units in a cross-sectional 

data in which the dimension of H
~

 is equal to the number of observational units and Q=1), the 
CML estimator will retain the good properties of being consistent and asymptotically normal as 
long as the data is formed by pseudo-independent and overlapping subsets of observations (such 
as would be the case when the social interactions taper off relatively quickly with the social 
separation distance between observational units, or when spatial interactions rapidly fade with 
geographic distance based on an autocorrelation function decaying toward zero; see Cox and 
Reid, 2004 for a technical discussion).2 The same situation holds in cases with temporal 
processes; the CML estimator will retain good properties as long as we are dealing with a 
stationary time series with short-range dependence (the reader is referred to Davis and Yau, 2011 
and Wang et al., 2013 for additional discussions of the asymptotic properties of the CML 
estimator for the case of time-series and spatial models, respectively). 

                                                            
2 Otherwise, there may be no real solution to the CML function maximization and the usual asymptotic results will 
not hold. 
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The covariance matrix of the CML estimator needs estimates of J and H. The “bread” 
matrix H can be estimated in a straightforward manner using the Hessian of the negative of 

)(log θCMLL , evaluated at the CML estimate θ̂ . This is because the information identity remains 

valid for each pairwise term forming the composite marginal likelihood. But the estimation of 
the “vegetable” matrix J is more involved. Further details of the estimation of the CML 
estimator’s covariance matrix for the case with spatial data are discussed in Section 2.3.  
 
1.6. Relative Efficiency of the CML Estimator 
The CML estimator loses some asymptotic efficiency from a theoretical perspective relative to a 
full likelihood estimator, because information embedded in the higher dimension components of 
the full information estimator are ignored by the CML estimator. This can also be formally 

shown by starting from the CML unbiased estimating functions 0)],([ yθs 0CMLE , which can 

be written as follows (we will continue to assume continuous observation on the variable vector 
of interest, so that Y is a continuous variable, though the presentation is equally valid for 
censored and truncated observations on Y ): 

00
θθy

θθ
y

0CML dy
θ

y)dy
θ

yθs









  ML

CMLCML L
L

f
L

E
log

(
log

)],([ 0   (1.19) 

Take the derivative of the above function with respect to θ  to obtain the following: 










0θθy

dy
θθ ML

CML L
Llog2

0  
θy 


 CMLLlog

0θθ

dy
θ 


ML

ML L
Llog

  (1.20) 

 ),(),()],([ yθsyθsyθs 0ML0CML0CML EE  , 

where  y)θs 0ML ,( is the score function of the full likelihood. From above, we get the following: 

  )],(),,([Cov),( yθsyθsyθsH 0CML0ML0CML  E , and 

  ]),,(),,([Cov)),((Var)],(),,([Cov 1 yθsyθsyθsyθsyθsG 0ML0CML0CML0CML0ML  
  (1.21) 

Then, using the multivariate version of the Cauchy-Schwartz inequality (Lindsay, 1988), we 
obtain the following: 

.)],([Var GyθsIFISHER 0ML    (1.22) 

Thus, from a theoretical standpoint, the difference between the regular ML information 
matrix (i.e., IFISHER) and the Godambe information matrix (i.e., G ) is positive definite, which 
implies that the difference between the asymptotic variances of the CML estimator and the ML 
estimator is positive semi-definite (see also Cox and Reid, 2004). However, many studies have 
found that the efficiency loss of the CML estimator (relative to the maximum likelihood (ML) 
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estimator) is negligible to small in applications. These studies are either based on precise analytic 
computations of the information matrix IFISHER and the Godambe matrix G to compare the 
asymptotic efficiencies from the ML and the CML methods, or based on empirical efficiency 
comparisons between the ML and CML methods for specific contexts by employing a simulation 
design with finite sample sizes. A brief overview of these studies is presented in the next section. 
 
1.6.1. Comparison of ML and CML Estimator Efficiencies 
Examples of studies that have used precise analytic computations to compare the asymptotic 
efficiency of the ML and CML estimators include Cox and Reid (2004), Hjort and Varin (2008), 
and Mardia et al. (2009). Cox and Reid (2004) derive IFISHER and G for some specific 
situations, including the case of a sample of independent and identically distributed vectors, each 
of which is multivariate normally distributed with an equi-correlated structure between elements. 
In the simple cases they examine, they show that the loss of efficiency between IFISHER and 
G is of the order of 15%. They also indicate that in the specific case of Cox’s (1972) quadratic 
exponential distribution-based multivariate binary data model, the full likelihood function  and a 
pairwise likelihood function for binary data generated using a probit link are equivalent, showing 
that the composite likelihood estimator can achieve the same efficiency as that of a full 
maximum likelihood estimator. Hjort and Varin (2008) also study the relationship between the 
IFISHER and G matrices, but for Markov chain models, while Mardia et al. (2007) and Mardia 
et al. (2009) examine efficiency considerations in the context of multivariate vectors with a 
distribution drawn from closed exponential families. These studies note special cases when the 
composite likelihood estimator is fully efficient, though all of these are rather simplified model 
settings.  

Several papers have also analytically studied efficiency considerations in clustered data, 
especially the case when each cluster is of a different size (such as in the case of spatially 
clustered data from different spatial regions with different numbers of observational units within 
each spatial cluster, or longitudinal data on observational units with each observational unit 
contributing a different number of sample observations).  In such situations, the unweighted 
CML function will give more weight to clusters that contribute more sample observations than 
those with fewer observations. To address this situation, a weighted CML function may be used. 
Thus, Le Cessie and Van Houwelingen (1994) suggest, in their binary data model context, that 
each cluster should contribute about equally to the CML function. This may be achieved by 
power-weighting each cluster’s CML contribution by a factor that is the inverse of the number of 
choice occasions minus one. The net result is that the composite likelihood contribution of each 
cluster collapses to the likelihood contribution of the cluster under the case of independence 
within a cluster. In a general correlated panel binary data context, Kuk and Nott (2000) 
confirmed the above result for efficiently estimating parameters not associated with dependence 
within clusters for the case when the correlation is close to zero. However, their analysis 
suggested that the unweighted CML function remains superior for estimating the correlation 
(within cluster) parameter.  In a relatively more recent paper, Joe and Lee (2009) theoretically 
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studied the issue of efficiency in the context of a simple random effect binary choice model. 
They indicate that the weights suggested by Le Cessie and Van Houwelingen (1994) and Kuk 
and Nott (2000) can provide poor efficiency even for non-dependence parameters when the 
correlation between pairs of the underlying latent variables for the “repeated binary choices over 
time” case they studied  is moderate to high. Based on analytic and numeric analyses using a 
longitudinal binary choice model with an autoregressive correlation structure, they suggest that 

using a weight of 11 )]1(5.01[)1(   qq TT  for a cluster appears to do well in terms of 

efficiency for all parameters and across varying dependency levels ( qT  is the number of 

observations contributed by unit or individual q). Further, the studies by Joe and Lee (2009) and 
Varin and Vidoni (2006), also in the context of clustered data, suggest that the inclusion of too 
distant pairings in the CML function can lead to a loss of efficiency. 

A precise analytic computation of the asymptotic efficiencies of the CML and full 
maximum likelihood approaches, as just discussed, is possible only for relatively simple models 
with or without clustering. This, in turn, has led to the examination of the empirical efficiency of 
the CML approach using simulated data sets for more realistic model contexts. Examples include 
Renard et al. (2004), Fieuws and Verbeke (2006), and Eidsvik et al. (2013). These studies 
indicate that the CML estimator performs well relative to the ML estimator. For instance, Renard 
et al. (2004) examined the performance of CML and ML estimators in the context of a random 
coefficients binary choice model, and found an average loss of efficiency of about 20% in the 
CML parameter estimates relative to the ML parameter estimates. Fiews and Verbeke (2006) 
examined the performance of the CML and ML estimators in the context of a multivariate linear 
model based on mixing, where the mixing along each dimension involves a random coefficient 
vector followed by a specification of a general covariance structure across the random 
coefficients of different dimensions. They found that the average efficiency loss across all 
parameters was less than 1%, and the highest efficiency loss for any single parameter was of the 
order of only 5%. Similarly, in simulated experiments with a spatial Gaussian process model, 
Eidsvik et al. (2013) used a spatial blocking strategy to partition a large spatially correlated space 
of a Gaussian response variable to estimate the model using a CML technique. They too found 
rather small efficiency losses because of the use of the CML as opposed to the ML estimator. 
However, this is an area that needs much more attention both empirically and theoretically. Are 
there situations when the CML estimator’s loss is less or high relative to the ML estimator, and 
are we able to come up with some generalizable results from a theoretical standpoint that apply 
not just to simple models but also more realistic models used in the field? In this regard, is there 
a “file drawer” problem where results are not being reported when the CML estimator in fact 
loses a lot of efficiency? Or is the current state of reporting among scholars in the field a true 
reflection of the CML estimator’s loss in efficiency relative to the ML? So far, the CML appears 
to be remarkable in its ability to pin down parameters, but there needs to be much more 
exploration in this important area. This opens up an exciting new direction of research and 
experimentation.  
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1.6.2. Comparison of Maximum Simulated Likelihood (MSL) and CML Estimator 
Efficiencies 

The use of the maximum likelihood estimator is feasible for many types of models. But the 
estimation of many other models that incorporate analytically intractable expressions in the 
likelihood function in the form of integrals, such as in mixed multinomial logit models or 
multinomial probit models or count models with certain forms of heterogeneity or large-
dimensional multivariate dependency patterns (just to list a few), require an approach to 
empirically approximate the intractable expression. This is usually done using simulation 
techniques, leading to the MSL inference approach (see Train, 2009), though quadrature 
techniques are also sometimes used for cases with 1-3 dimensions of integrals in the likelihood 
function expression. When simulation methods have to be used to evaluate the likelihood 
function, there is also a loss in asymptotic efficiency in the maximum simulated likelihood 
(MSL) estimator relative to a full likelihood estimator. Specifically, McFadden and Train (2000) 
indicate, in their use of independent number of random draws across observations, that the 
difference between the asymptotic covariance matrix of the MSL estimator obtained as the 
inverse of the sandwich information matrix and the asymptotic covariance matrix of the ML 
estimator obtained as the inverse of the cross-product of first derivatives is theoretically positive 
semi-definite for finite number of draws per observation.  Consequently, given that we also know 
that the difference between the asymptotic covariance matrices of the CML and ML estimators is 
theoretically positive semi-definite, it is difficult to state from a theoretical standpoint whether 
the CML estimator efficiency will be higher or lower than the MSL estimator efficiency. 
However, in a simulation comparison of the CML and MSL methods for multivariate ordered 
response systems, Bhat et al. (2010b) found that the CML estimator’s efficiency was almost as 
good as that of the MSL estimator, but with the benefits of a very substantial reduction in 
computational time and much superior convergence properties. As they state “….any reduction 
in the efficiency of the CML approach relative to the MSL approach is in the range of non-
existent to small”. Paleti and Bhat (2013) examined the case of panel ordered-response 
structures, including the pure random coefficients (RC) model with no autoregressive error 
component, as well as the more general case of random coefficients combined with an 
autoregressive error component. The ability of the MSL and CML approaches to recover the true 
parameters is examined using simulated datasets. The results indicated that the performances of 
the MSL approach (with 150 scrambled and randomized Halton draws) and the simulation-free 
CML approach were of about the same order in all panel structures in terms of the absolute 
percentage bias (APB) of the parameters and empirical efficiency. However, the simulation-free 
CML approach exhibited no convergence problems of the type that affected the MSL approach. 
At the same time, the CML approach was about 5-12 times faster than the MSL approach for the 
simple random coefficients panel structure, and about 100 times faster than the MSL approach 
when an autoregressive error component was added. Thus, the CML appears to lose relatively 
little by way of efficiency, while also offering a more stable and much faster estimation approach 
in the panel ordered-ordered-response context. Similar results of substantial computational 
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efficiency and little to no finite sample efficiency loss (and sometimes even efficiency gains) 
have been reported by Bhat and Sidharthan (2011) for cross-sectional and panel unordered-
response multinomial probit models with random coefficients (though the Bhat and Sidharthan 
paper actually combines the CML method with a specific analytic approximation method to 
evaluate the multivariate normal cumulative distribution function).   

Finally, the reader will note that there is always some simulation bias in the MSL method 
for finite number of simulation draws, and the consistency of the MSL method is guaranteed 
only when the number of simulation draws rises faster than the square root of the sample size 
(Bhat, 2001, McFadden and Train, 2000). The CML estimator, on the other hand, is unbiased 
and consistent under the usual regularity conditions, as discussed earlier in Section 1.4.  

 
1.7. Robustness of Consistency of the CML Estimator 
As indicated by Varin and Vidoni (2009), it is possible that the “maximum CML estimator can 
be consistent when the ordinary full likelihood estimator is not”. This is because the CML 
procedures are typically more robust and can represent the underlying low-dimensional process 
of interest more accurately than the low dimensional process implied by an assumed (and 
imperfect) high-dimensional multivariate model. Another way to look at this is that the 
consistency of the CML approach is predicated only on the correctness of the assumed lower 
dimensional distribution, and not on the correctness of the entire multivariate distribution. On the 
other hand, the consistency of the full likelihood estimator is predicated on the correctness of the 
assumed full multivariate distribution. Thus, for example, Yi et al. (2011) examined the 
performance of the CML (pairwise) approach in the case of clustered longitudinal binary data 
with non-randomly missing data, and found that the approach appears quite robust to various 
alternative specifications for the missing data mechanism. Xu and Reid (2011) provided several 
specific examples of cases where the CML is consistent, while the full likelihood inference 
approach is not.  
 
1.8. Model Selection in the CML Inference Approach 
Procedures similar to those available with the maximum likelihood approach are also available 
for model selection with the CML approach. The statistical test for a single parameter may be 
pursued using the usual t-statistic based on the inverse of the Godambe information matrix. 
When the statistical test involves multiple parameters between two nested models, an appealing 
statistic, which is also similar to the likelihood ratio test in ordinary maximum likelihood 
estimation, is the composite likelihood ratio test (CLRT) statistic. Consider the null hypothesis 

0ττ :0H  against 0ττ :1H , where   is a subvector of θ  of dimension d
~

; i.e., ),(  ατθ . 

The statistic takes the familiar form shown below: 

)],ˆ(log)ˆ([log2 Rθθ CMLCML LLCLRT           (1.23) 
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where Rθ̂  is the composite marginal likelihood estimator under the null hypothesis 

))(ˆ,( 00 τατ CML . More informally speaking, θ̂  is the CML estimator of the unrestricted model, 

and Rθ̂  is the CML estimator for the restricted model. The CLRT statistic does not have a 

standard chi-squared asymptotic distribution. This is because the CML function that is 
maximized does not correspond to the parametric model from which the data originates; rather, 
the CML may be viewed in this regard as a “mis-specification” of the true likelihood function 
because of the independence assumption among the likelihood objects forming the CML 
function (see Kent, 1982, Section 3). To write the asymptotic distribution of the CLRT statistic, 

first define 1)]([ θG  and 1)]([ θH  as the dd
~~

  submatrices of 1)]([ θG  and 1)]([ θH , 

respectively, which correspond to the vector τ . Then, the CLRT has the following asymptotic 
distribution: 

2

~

1

~
~ ii

d

i

WCLRT 


,                       (1.24)  

where 2~
iW  for i = 1, 2, …, d

~
  are independent 2

1  variates and d ...21   are the eigenvalues 

of the matrix 1)]()][([ θGθH   evaluated under the null hypothesis (this result may be obtained 

based on the (profile) likelihood ratio test for a mis-specified model; see Kent, 1982, Theorem 
3.1 and the proof therein). Unfortunately, the departure from the familiar asymptotic chi-squared 

distribution with d
~

 degrees of freedom for the traditional maximum likelihood procedure is 
annoying. Pace et al. (2011) have recently proposed a way out, indicating that the following 
adjusted CLRT statistic, ADCLRT, may be considered to be asymptotically chi-squared 

distributed with d
~

 degrees of freedom: 

CLRTADCLRT 



 



)()]([])([

)()]()][([)]([])([
1

11

θSθHθS

θSθHθGθHθS

τττ

τττττ  (1.25) 

where )(θSτ  is the 1
~
d  submatrix of )(θS  











θ

θ)(log CMLL
 corresponding to the vector τ , 

and all the matrices above are computed at Rθ̂ . The denominator of the above expression is a 

quadratic approximation to CLRT, while the numerator is a score-type statistic with an 

asymptotic 2
~
d

  null distribution. Thus, ADCLRT is also very close to being an asymptotic 2
~
d

  

distribution under the null.   
Alternatively, one can resort to parametric bootstrapping to obtain the precise distribution of 

the CLRT statistic for any null hypothesis situation. Such a bootstrapping procedure is rendered 
simple in the CML approach, and can be used to compute the p-value of the null hypothesis test. 
The procedure is as follows: 
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1. Compute the observed CLRT value as in Equation (1.23) from the estimation sample. Let 

the estimation sample be denoted as obsy~ , and the observed CLRT value as ).~( obsyCLRT  

2. Generate C sample data sets 
Cyyyy ~,...,~,~,~

321  using the CML convergent values under the 

null hypothesis 

3. Compute the CLRT statistic of Equation (1.23) for each generated data set, and label it as 

).~( cyCLRT  

4. Calculate the p-value of the test using the following expression: 

 
,

1

)~()~(1
1









C

CLRTCLRTI
p

C

c
obsc yy

 where 1}{ AI if A is true.  (1.26) 

The above bootstrapping approach has been used for model testing between nested models in 
Varin and Czado (2010), Bhat et al. (2010b), and Ferdous et al. (2010).  

When the null hypothesis entails model selection between two competing non-nested 
models, the composite likelihood information criterion (CLIC) introduced by Varin and Vidoni 
(2005) may be used. The CLIC takes the following form3: 

 1* )ˆ(ˆ)ˆ(ˆ)ˆ(log)ˆ(log  θHθJθθ trLL CMLCML  (1.27) 

The model that provides a higher value of CLIC is preferred. 
 
1.9. Positive-Definiteness of the Implied Multivariate Covariance Matrix  
In cases where the CML approach is used as a vehicle to estimate the parameters in a higher 
dimensional multivariate covariance matrix, one has to ensure that the implied multivariate 
covariance matrix in the higher dimensional context is positive definite.  For example, consider a 
multivariate ordered-response model context, and let the latent variables underlying the 
multivariate ordered-response model be multivariate normally distributed. This symmetric 
covariance (correlation) matrix Σ  has to be positive definite (that is, all the eigenvalues of the 
matrix should be positive, or, equivalently, the determinant of the entire matrix and every 
principal submatrix of Σ  should be positive). But the CML approach does not estimate the entire 
correlation matrix as one single entity. However, there are three ways that one can ensure the 
positive-definiteness of the Σ  matrix. The first technique is to use Bhat and Srinivasan’s (2005) 
strategy of reparameterizing the correlation matrix Σ  through the Cholesky matrix, and then 
using these Cholesky-decomposed parameters as the ones to be estimated. That is, the Cholesky 
of an initial positive-definite specification of the correlation matrix is taken before starting the 
optimization routine to maximize the CML function. Then, within the optimization procedure, 
one can reconstruct the Σ  matrix, and then pick off the appropriate elements of this matrix to 

                                                            
3 This penalized log-composite likelihood is nothing but the generalization of the usual Akaike’s Information 
Criterion (AIC). In fact, when the candidate model includes the true model in the usual maximum likelihood 
inference procedure, the information identity holds (i.e., H(θ) = J(θ)) and the CLIC in this case is exactly the AIC    

[  )ˆ(log θMLL (# of model parameters)]. 
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construct the CML function at each iteration. This is probably the most straightforward and clean 
technique. The second technique is to undertake the estimation with a constrained optimization 
routine by requiring that the implied multivariate correlation matrix for any set of pairwise 
correlation estimates be positive definite. However, such a constrained routine can be extremely 
cumbersome. The third technique is to use an unconstrained optimization routine, but check for 
positive-definiteness of the implied multivariate correlation matrix. The easiest method within 
this third technique is to allow the estimation to proceed without checking for positive-
definiteness at intermediate iterations, but check that the implied multivariate correlation matrix 
at the final converged pairwise marginal likelihood estimates is positive-definite. This will 
typically work for the case of a multivariate ordered-response model if one specifies exclusion 
restrictions (i.e., zero correlations between some error terms) or correlation patterns that involve 
a lower dimension of effective parameters.  However, if the above simple method of allowing the 
pairwise marginal estimation approach to proceed without checking for positive definiteness at 
intermediate iterations does not work, then one can check the implied multivariate correlation 
matrix for positive definiteness at each and every iteration. If the matrix is not positive-definite 
during a direction search at a given iteration, one can construct a “nearest” valid correlation 
matrix (for example, by replacing the negative eigenvalue components in the matrix with a small 
positive value, or by adding a sufficiently high positive value to the diagonals of a matrix and 
normalizing to obtain a correlation matrix; see Rebonato and Jaeckel, 1999, Higham, 2002, and 
Schoettle and Werner, 2004 for detailed discussions of these and other adjusting schemes; a 
review of these techniques is beyond the scope of this paper). The values of this “nearest” valid 
correlation matrix can be translated to the pairwise correlation estimates, and the analyst can 
allow the iterations to proceed and hope that the final implied convergent correlation matrix is 
positive-definite. 
 
1.10. The Maximum Approximate Composite Marginal Likelihood Approach 
In many application cases, the probability of observing the lower dimensional event itself in a 
CML approach may entail multiple dimensions of integration. For instance, in the case of a 
multinomial probit model with I choice alternatives per individual (assume for ease in 
presentation that all individuals have all I choice alternatives), and a spatial dependence structure 
(across individuals) in the utilities of each alternative, the CML approach involves compounding 
the likelihood of the joint probability of the observed outcomes of pairs of individuals. However, 
this joint probability itself entails the evaluation of integration of a multivariate normal 
cumulative distribution (MVNCD) function of dimension equal to )1(2  I . The evaluation of 

such a function cannot be pursued using quadrature techniques due to the curse of dimensionality 
when the dimension of integration exceeds two (see Bhat, 2003). In this case, the MVNCD 
function evaluation for each agent has to be evaluated using simulation or other analytic 
approximation techniques. Typically, the MVNCD function is approximated using simulation 
techniques through the use of the Geweke-Hajivassiliou-Keane (GHK) simulator or the Genz-
Bretz (GB) simulator, which are among the most effective simulators for evaluating the MVNCD 
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function (see Bhat et al., 2010b for a detailed description of these simulators). Some other sparse 
grid-based techniques for simulating the multivariate normal probabilities have also been 
proposed by Heiss and Winschel (2008), Huguenin et al. (2009), and Heiss (2010). In addition, 
Bayesian simulation using Markov Chain Monte Carlo (MCMC) techniques (instead of MSL 
techniques) have been used in the literature (see Albert and Chib, 1993, McCulloch and Rossi, 
2000, and Train, 2009). However, all these MSL and Bayesian techniques require extensive 
simulation, are time-consuming, are not very straightforward to implement, and create 
convergence assessment problems as the number of dimensions of integration increases. Besides, 
they do not possess the simulation-free appeal of the CML function in the first place.  
 To accommodate the situation when the CML function itself may involve the evaluation 
of MVNCD functions, Bhat (2011) proposed a combination of an analytic approximation 
method to evaluate the MVNCD function with the CML function, and labeled this as the 
Maximum Approximate Composite Marginal Likelihood (MACML) approach. While several 
analytic approximations have been reported in the literature for MVNCD functions (see, for 
example, Solow, 1990, Joe, 1995, Gassmann et al., 2002, and Joe, 2008), the one Bhat proposes 
for his MACML approach is based on decomposition into a product of conditional probabilities. 
Similar to the CML approach that decomposes a large multidimensional problem into lower level 
dimensional components, the analytic approximation method also decomposes the MVNCD 
function to involve only the evaluation of lower dimensional univariate and bivariate normal 
cumulative distribution functions. Thus, there is a type of conceptual consistency in Bhat’s 
proposal of combining the CML method with the MVNCD analytic approximation. The net 
result is that the approximation approach is fast and lends itself nicely to combination with the 
CML approach. Further, unlike Monte-Carlo simulation approaches, even two to three decimal 
places of accuracy in the analytic approximation is generally adequate to accurately and 
precisely recover the parameters and their covariance matrix estimates because of the smooth 
nature of the first and second derivatives of the approximated analytic log-likelihood function. 
The MVNCD approximation used by Bhat for discrete choice mode estimation itself appears to 
have been first proposed by Solow (1990) based on Switzer (1977), and then refined by Joe 
(1995). However, the focus of the earlier studies was on computing a single MVNCD function 
accurately rather than Bhat’s use of the approximation for choice model estimation where 
multiple MVNCD function evaluations are needed. 

 To describe the MVNCD approximation, let ) ,..., , ,( 321 IWWWW  be a multivariate 

normally distributed random vector with zero means, variances of 1, and a correlation matrix Σ .  
Then, interest centers on approximating the following orthant probability: 

)  ..., ,  ,  ,( Pr)( Pr 332211 II wWwWwWwW  wW .  (1.28) 

The above joint probability may be written as the product of a bivariate marginal probability and 
univariate conditional probabilities as follows (I ≥ 3): 
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Next, define the binary indicator iI
~

 that takes the value 1 if ii wW   and zero otherwise. Then 

)()
~

( ii wIE  , where (.)  is the univariate normal standard cumulative distribution function. 

Also, we may write the following: 
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where ij  is the ijth element of the correlation matrix Σ . With the above preliminaries, consider 

the following conditional probability: 
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The right side of the expression may be approximated by a linear regression model, with iI
~

 

being the “dependent” random variable and )
~

,...
~

,
~

(
~

121   iIIIiI  being the independent random 

variable vector.4 In deviation form, the linear regression for approximating Equation (1.31) may 
be written as: 

~)]
~

(
~

[)
~

(
~   ii IIα EIEI ii ,  (1.32) 

where α  is the least squares coefficient vector and ~  is a mean zero random term. In this form, 

the usual least squares estimate of α  is given by: 

iiiα 

  ,

1 ΩΩˆ , where  (1.33) 

                                                            
4 This first-order approximation can be continually improved by increasing the order of the approximation. For 
instance, a second-order approximation would approximate the right side of Equation (1.31) by the expectation from 
a linear regression model that has 

iI
~  as the “dependent” random variable and 

),
~

,
~

,
~

,,
~

,
~

,
~

,
~

,
~

( 1,21,224231,11312121   iiiii IIIIIIIIII 


iI  as the independent random variable vector, where 

.
~~~

jiji III    Essentially this adds second-order interactions in the independent random variable vector (see Joe, 

1995). However, doing so entails trivariate and four-variate normal cumulative distribution function (CDF) 
evaluations (when I >4) as opposed to univariate and bivariate normal CDF evaluations in the first-order 
approximation, thus increasing computational burden. As discussed in Bhat (2011) and shown in Bhat and 
Sidharthan (2011), the first-order approximation is more than adequate (when combined with the CML approach) 
for estimation of MNP models. Thus, in the rest of this paper, we will use the term approximation to refer to the 
first-order approximation evaluation of the MVNCD function.   
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Finally, putting the estimate of α̂  back in Equation (1.32), and predicting the expected value of 

iI
~

 conditional on 1 iI
~

 (i.e., )1
~

  ,1
~

  ,1
~

121  iIII , we get the following approximation for 

Equation (1.31): 
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This conditional probability approximation can be plugged into Equation (1.29) to approximate 
the multivariate orthant probability in Equation (1.28). The resulting expression for the 
multivariate orthant probability comprises only univariate and bivariate standard normal 
cumulative distribution functions. 
 One remaining issue is that the decomposition of Equation (1.28) into conditional 
probabilities in Equation (1.29) is not unique. Further, different permutations (i.e., orderings of 

the elements of the random vector ) ,..., , ,( 321 IWWWWW ) for the decomposition into the 

conditional probability expression of Equation (1.29) will lead, in general, to different 
approximations. One approach to resolve this is to average across the 2/!I  permutation 
approximations. However, as indicated by Joe (1995), the average over a few randomly selected 
permutations is typically adequate for the accurate computation of the multivariate orthant 
probability. In the case when the approximation is used for model estimation (where the 
integrand in each individual’s log-likelihood contribution is a parameterized function of the β  

and Σ  parameters), even a single permutation of the W vector per choice occasion may suffice, 
as several papers in the literature have now shown (see later chapters). 
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2.  APPLICATION TO TRADITIONAL DISCRETE CHOICE MODELS 
In this section, we will develop a blueprint (complete with matrix notation) for the use of the 
CML inference method to estimate traditional discrete choice models. The focus will be on two 
specific kinds of discrete choice models: Ordered-response models and unordered-response 
models. In the case when there are only two alternatives to choose from (the binary choice case), 
the ordered-response and the unordered-response formulations collapse to the same structure. 
But these formulations differ when extended to the multinomial (more than two alternatives) 
choice case. The next section provides a brief overview of ordered-response and unordered-
response model systems. Section 2.2 then focuses on aspatial specifications within each type of 
discrete choice model, while Section 2.3 focuses on spatial specifications. Section 2.4 discusses 
applications of the CML method to count models. In each of Sections 2.2, 2.3, and 2.4, we 
provide a list of references of applications after presenting the formulation and CML estimation 
approach. Doing so allows us to present the model structure and estimation without unnecessary 
interspersing with references.  The contents of the individual sections do inevitably draw quite 
substantially from the corresponding references of applications. Also, many codes to estimate the 
models presented are available at http://www.caee.utexas.edu/prof/bhat/CODES.htm (these 
codes are in the GAUSS matrix programming language). 
 
2.1. Ordered and Unordered-Response Model Systems 
Ordered-response models are used when analyzing discrete outcome data with a finite number of 
mutually exclusive categories that may be considered as manifestations of an underlying scale 
that is endowed with a natural ordering. Examples include ratings data (of consumer products, 
bonds, credit evaluation, movies, etc.), or likert-scale type attitudinal/opinion data (of air 
pollution levels, traffic congestion levels, school academic curriculum satisfaction levels, teacher 
evaluations, etc.), or grouped data (such as bracketed income data in surveys or discretized 
rainfall data). In all of these situations, the observed outcome data may be considered as 
censored (or coarse) measurements of an underlying latent continuous random variable. The 
censoring mechanism is usually characterized as a partitioning or thresholding of the latent 
continuous variable into mutually exclusive (non-overlapping) intervals. The reader is referred to 
McKelvey and Zavoina (1975) and Winship and Mare (1984) for some early expositions of the 
ordered-response model formulation. The reader is also referred to Greene and Hensher (2010) 
for a comprehensive history and treatment of the ordered-response model structure. These 
reviews indicate the abundance of applications of the ordered-response model in the sociological, 
biological, marketing, and transportation sciences, and the list of applications only continues to 
grow rapidly.  

Unordered-response models are used when analyzing discrete outcome data with a finite 
number of mutually exclusive categories that do not represent any kind of ordinality. Examples 
include mode choice data or brand choice data or college choice data. In general, unordered-
response models will include valuations (by decision-makers) of attributes that are alternative-
specific. Most unordered-response models in economics and other fields are based on the 
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concept of utility-maximizing. That is, the attributes and individual characteristics are assumed 
to be translated into a latent utility index for each alternative, and the individual chooses the 
alternative that maximizes utility. The reader is referred to Train (2009) for a good exposition of 
the unordered-response model formulation.  

In general, the ordered-response formulation may be viewed as originating from a 
decision-rule that is based on the horizontal partitioning of a single latent variable, while the 
unordered-response formulation may be viewed as originating from a decision-rule that is based 
on the vertical comparison of multiple latent variables (one each for each alternative, that 
represents the composite utility of each alternative) to determine the maximum. A detailed 
theoretical comparison of the two alternatives is provided in Bhat and Pulugurta (1998).  
 
2.2. Aspatial Formulations  
2.2.1. Ordered-Response Models 
The applications of the ordered response model structure are quite widespread. The aspatial 
formulations of this structure may take the form of a cross-sectional univariate ordered-response 
probit (CUOP), a cross-sectional multivariate ordered-response probit (CMOP), or a panel 
multivariate ordered-response probit (PMOP).  Within each of these formulations, many 
different versions are possible. In the discussion below, we present each formulation in turn in a 
relatively general form.  
 
2.2.1.1 The CUOP Model 
Most applications of the ordered-response model structure are confined to the analysis of a single 
outcome at one point in time (that is, a cross-sectional analysis). Let q be an index for 
observation units or individuals (q = 1, 2,…, Q, where Q denotes the total number of individuals 
in the data set), and let k be the index for ordinal outcome category (k =1, 2,…, K). Let the actual 

observed discrete (ordinal) level for individual q be qm  ( qm may take one of the K values; i.e., 

qm {1, 2,…, K}). In the usual ordered response framework notation, we may write the latent 

propensity ( *
qy ) for the ordered-response variable as a function of relevant covariates and relate 

this latent propensity to the ordinal outcome categories through threshold bounds: 

  kyy qqq  ,* qq xβ  if  kqqkq y ,
*

1,   , (2.1) 

where qx  is an (L×1) vector of exogenous variables (not including a constant), qβ  is a 

corresponding (L×1) vector of individual-specific coefficients to be estimated, q  is an 

idiosyncratic random error term that we will assume in the presentation below is independent of 

the elements of the vectors qβ  and qx , and kqψ ,  is the individual-specific upper bound threshold 

for discrete level k ( 0,q  and qKqqqKq  1,2,1,, ...;  in the usual 

ordered response fashion). The q  terms are assumed independent and identical across 
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individuals. The typical assumption for q is that it is either normally or logistically distributed, 

though non-parametric or mixtures-of-normal distributions may also be considered. In this paper, 

we will consider a normal distribution for q , because this has substantial benefits in estimation 

when qβ is also considered to be multivariate normally distributed (or skew normally distributed, 

or mixtures of normal distributed).  For identification reasons, the variance of q  is normalized 

to one.5 
Next, consider that the individual-specific thresholds are parameterized as a non-linear 

function of a set of variables qz  (which does not include a constant), )(, qkkq f z . The non-

linear nature of the functional form should ensure that (1) the thresholds satisfy the ordering 

condition (i.e.,< ),1,21  Kqqq   and (2) allows identification for any variables that 

are common in qx  and qz . There are several plausible reasons provided in the ordered-response 

literature to motivate such varying thresholds across observation units, all of which originate in 
the realization that the set of thresholds represents a dimension to introduce additional 

heterogeneity over and beyond the heterogeneity already embedded in the latent variable *
qy . For 

instance, the threshold heterogeneity may be due to a different triggering mechanism (across 

individuals) for the translation (mapping) of the latent underlying *
qy  propensity variable to 

observed ordinal data or different perceptions (across respondents) of response categories in a 
survey. Such generalized threshold models are referred to by different names based on their 
motivating origins, but we will refer to them in the current paper as generalized ordered-response 
probit (GORP) models. Following Eluru et al. (2008), we parameterize the thresholds as: 

)exp(1,, qkkqkq α zγk   (2.2)
 

In the above equation, k  is a scalar, and kγ  is a vector of coefficients associated with ordinal 

level 1 ,...,2 ,1  Kk . The above parameterization immediately guarantees the ordering 

condition on the thresholds for each and every individual, while also enabling the identification 
of parameters on variables that are common to the qx  and qz  vectors. For identification reasons, 

we adopt the normalization that ,1q = 1exp( )  for all q (equivalently, all elements of the vector 

1γ  are normalized to zero, which is innocuous as long as the vector qx
 
is included in the risk 

propensity equation). 
  Finally, to allow for unobserved response heterogeneity among observations, the 

parameter qβ  is defined as a realization from a multivariate normal distribution with mean 

                                                            
5 The exclusion of a constant in the vector xq of Equation (2.1) is an innocuous normalization as long as all the 
intermediate thresholds (ψ1 through ψK–1) are left free for estimation. Similarly, the use of the standard normal 
distribution rather than a non-standard normal distribution for the error term is also an innocuous normalization (see 
Zavoina and McKelvey, 1975; Greene and Hensher, 2010).  
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vector b and covariance matrix ,LL Ω where L is the lower-triangular Cholesky factor of Ω.6 

Then, we can write ,
~

qq βbβ   where ),0(~
~

ΩLq MVNβ  ( LMVN  represents the multivariate 

normal distribution of dimension L). If this multivariate distribution becomes degenerate, then 

qq  bβ , and the Random Coefficients-Generalized Ordered Response Probit (RC-GORP) 

model collapses to the Generalized Ordered Response Probit (GORP) model. Further, in the 

GORP model, if all elements of kγ  are zero for all k, the result is the standard ordered-response 

probit (SORP) model. 
The CUOP model of Equation (2.1) may be written as: 

kyy qqqq  ,
~* qq xβxb  if  kqqkq y ,

*
1,   .  (2.3) 

Then, the latent variable is univariate normally distributed as ),,(~ 2*
qqq BNy   where 

qxbqB  and .12  qq xx Ωq   (2.4) 

Estimation is straightforward in this case using the maximum likelihood method. The parameter 

vector to be estimated in the model is , ),,,,(  αγbθ Ω  where Ω  is a column vector 

obtained by vertically stacking the upper triangle elements of the matrix Ω , ,),...,,(  132 -Iγγγγ

and ),...,,( 121  Kαααα . The likelihood function )(θL  for the CUOP model takes the following 

form: 
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where  (.) is the univariate cumulative standard normal distribution function. To ensure the 

positive definiteness of the covariance matrixΩ , the likelihood function is rewritten in terms of 
the Cholesky-decomposed matrix L of Ω . The maximum simulated likelihood approach then 
proceeds by optimizing with respect to the elements of L rather than Ω . Once convergence is 
achieved, the implied covariance matrix Ω  may be reconstructed from the estimated matrix L. 

The estimation of the CUOP model presented above is very straightforward, and there 
have been many applications of the model or its more restrictive variants. In addition, there is a 
sprinkling of applications associated with two and three correlated ordered-response outcomes. 
Studies of two correlated ordered-response outcomes include Scotti (2006), Mitchell and Weale 
(2007), Scott and Axhausen (2006), and LaMondia and Bhat (2011). The study by Scott and 
Kanaroglou (2002) represents an example of three correlated ordered-response outcomes. But the 

                                                            
6 For ease of presentation, we will treat all elements of βq as random, but this is not necessary; the researcher can fix 
some elements of βq and let the remaining elements be random. Also, it should be noted that, while random 
coefficients on exogenous variables can be estimated with cross-sectional data, it is generally easier to estimate 
random coefficients with panel or repeated-choice data where the random coefficients on the exogenous variables 
are specified to be individual-specific and the overall residual error term is specified to be choice-occasion specific.  
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examination of more than two to three correlated outcomes is rare, mainly because the extension 
to an arbitrary number of correlated ordered-response outcomes entails, in the usual likelihood 
function approach, integration of dimensionality equal to the number of outcomes. On the other 
hand, there are many instances when interest may be centered around analyzing more than three 
ordered-response outcomes simultaneously, such as in the case of the number of episodes of each 
of several activity purposes, or satisfaction levels associated with a related set of 
products/services, or multiple ratings measures regarding the state of health of an 
individual/organization (we will refer to such outcomes as cross-sectional multivariate ordered-
response outcomes). There are also instances when the analyst may want to analyze time-series 
or panel data of ordered-response outcomes over time, and allow flexible forms of error 
correlations over these outcomes. For example, the focus of analysis may be to examine rainfall 
levels (measured in grouped categories) over time in each of several spatial regions, or individual 
stop-making behavior over multiple days in a week, or individual headache severity levels at 
different points in time (we will refer to such outcomes as panel multivariate ordered-response 
outcomes).  

In the analysis of cross-sectional and panel ordered-response systems with more than 
three outcomes, the norm has been to apply numerical simulation techniques based on a 
maximum simulated likelihood (MSL) approach (for example, see Bhat and Zhao, 2002, Greene, 
2009, and Greene and Hensher, 2010) or a Bayesian inference approach (for example, see Müller 
and Czado, 2005 and Girard and Parent, 2001). However, such simulation-based approaches 
become impractical in terms of computational time, or even infeasible, as the number of ordered-
response outcomes increases. Even if feasible, the numerical simulation methods do get 
imprecise as the number of outcomes increase, leading to convergence problems during 
estimation (see Bhat et al. 2010a and Müller and Czado, 2005). As a consequence, another 
approach that has seen some (though very limited) use recently is the composite marginal 
likelihood (CML) approach, as discussed next.  

 
References for the CUOP Model 
There have been many applications of the cross-sectional generalized ordered-response model. 
The reader is referred to Greene and Hensher (2010) and Eluru et al. (2008). 
 
2.2.1.2. The CMOP Model 
In many cases, a whole set of ordinal variables may be inter-related due to unobserved factors. 
For instance, the injury severity levels sustained by the occupants of a vehicle in a specific crash 
may be inter-related due to unobserved crash factors (in addition to being related due to observed 
crash factors),  as may be the injury severity level of all occupants across all vehicles involved in 
a crash. Similarly, the evaluation ratings of a student of a professor on multiple dimensions (such 
as “interest in student learning”, “course well communicated”, and “tests returned promptly) may 
also be correlated. The estimation of such multivariate ordered outcome models are discussed in 
this section. 
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As earlier, let q be an index for individuals (q = 1, 2,…, Q, where Q denotes the total 
number of individuals in the data set), and let i be an index for the ordered-response variable (i = 
1, 2,…, I, where I denotes the total number of ordered-response variables for each individual). 

Let ik  be the index for ordinal outcome category ).,...,2,1( ii Kk  . Let the actual observed 

discrete (ordinal) level for individual q and variable i be mqi (mqi may take one of Ki values; i.e., 
mqi {1, 2,…, Ki} for variable i). In the usual ordered response framework notation, we write: 

  iqiqiqi kyy  ,* qqi xβ  if  i
kqqi

i
kq ii

y ,
*

1,   , (2.6) 

where all notations are as earlier except for the addition of the index i. Define 

,),...,,( **
2

*
1  qIqq yyy*

qy qq x IIDENx~   (I×IL matrix; IIDEN  is an identity matrix of size I),

,
~

qiqi βbβ i   ),...,,(  vector),1×()
~

 ..., ,
~

,
~

(
~

21  I21 bbbbββββ ILqIqqq  (IL×1 vector), 

1(),...,,( ,
2
,

1
, 2

 II
mqmqmq qIqqi

upψq  vector), )1(),...,,( 1,
2

1,
1

1, 2
  II

mqmqmq qIqqi
lowψq  vector,  and 

let ),0(~
~

ΩLIq MVN β . Also, let )exp(1,, qkki zγ   ki
i

kq
i

kq α , and define 

,),...,,( ,),...,,(  Ii,-Kiii γγγγγγγγ
i 21132 .),...,,(and,),...,,( 121   Ii ααααα 21iKii αα  The 

qi  terms are assumed independent and identical across individuals (for each and all i). For 

identification reasons, the variance of each qi  term is normalized to 1. However, we allow 

correlation in the qi  terms across variables i for each individual q. Specifically, we define 

,)',,,,( 321 qIqqqqε    and assume that qε  is multivariate normal distributed with a mean 

vector of zeros and a correlation matrix as follows: 
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  (2.7)  

q ~  ,N 0 Σ  

 The off-diagonal terms of Σ, along with the covariance matrix Ω , capture the error 
covariance across the underlying latent continuous variables; that is, they capture the effects of 
common unobserved factors influencing the underlying latent propensities. These are the so-
called polychoric covariances between pairs of observed ordered-response variables. Then, we 

can write: ),(~ qq
*
q By ΞIMVN , where  bBq qx~  and ΣxΩxΞ  qq

~~
q . Let the vector of actual 

observed ordinal outcomes for individual q be stacked into an (I×1) vector 

) ..., . , ,( 21  qIqqq mmmm . Also let ) ..., . , ,( 21  qIqqq yyyy . The parameter vector to be estimated 

in the CMOP model is . ),,,,(  αγbθ ΣΩ  The likelihood function for individual q takes the 

following form: 
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,),|()()(
*


qy

D

I dfPL *
q

*
qqq yBymyθ Ξ   (2.8) 

where *
qy

D  is the integration domain defined as }:{*y

lowlow ψψ q
*
qq

*
q yy 

q
D  , and (.)If  is the 

multivariate normal density function of dimension I . The likelihood function above involves I-
dimensional rectangular integrals for each individual q. 

As indicated earlier, models that require integration of more than three dimensions (I >3) 
in a multivariate ordered-response model are typically estimated using maximum simulation 
likelihood (MSL) approaches. Balia and Jones (2008) adopt such a formulation in their eight-
dimensional multivariate probit model of lifestyles, morbidity, and mortality. They estimate their 
model using a Geweke-Hajivassiliou-Keane (GHK) simulator. Yet another MSL method to 
approximate the MVNCD function in the likelihood functions of Equation (2.8) is based on the 
Genz-Bretz (GB) algorithm (see Bhat et al., 2010b for a discussion). Alternatively, Chen and 
Dey (2000), Herriges et al. (2008), Jeliazkov et al. (2008), and Hasegawa (2010) have 
considered a Bayesian estimation approach for the multivariate ordered response system through 
the use of standard Markov Chain Monte Carlo (MCMC) techniques. In particular, the Bayesian 
approach is based on assuming prior distributions on the non-threshold parameters, 
reparameterizing the threshold parameters, imposing a standard conjugate prior on the 
reparameterized version of the error covariance matrix and a flat prior on the transformed 
threshold, obtaining an augmented posterior density using Baye’s Theorem for the 
reparameterized model, and fitting the model using a Markov Chain Monte Carlo (MCMC) 
method. Unfortunately, the method remains cumbersome, requires extensive simulation, and is 
time-consuming. Further, convergence assessment becomes difficult as the number of 
dimensions increase (see Müller and Czado, 2005). In this regard, both the MSL and the 
Bayesian approaches are “brute force” simulation techniques that are not very straightforward to 
implement and can create numerical stability, convergence, and precision problems as the 
number of dimensions increase. 

The CML estimation of the CMOP model, on the other hand, can be very effective and 
fast. In particular, the pairwise likelihood function for individual q is formed by the product of 
likelihood contributions of pairs of ordinal variables as follows: 
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where )(.,.,2 qig  is the standard bivariate normal cumulative distribution function with 

correlation qig , 
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and the  *Var qiy , 
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 ,Var *
qgy  and  ** ,Cov qgqi yy  terms are obtained by picking off the appropriate 22 sub-matrix of 

the larger covariance matrix qΞ  of ) ..., , ,( **
2

*
1 qIqq yyy . The pairwise marginal likelihood function 

is )()( , θθ CMOP
qCML

q

CMOP
CML LL  . 

The asymptotic covariance matrix estimator is 
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An alternative estimator for Ĥ is as below: 

 




 


































Q

q

I

i

I

ig

qgqgqiqiqgqgqiqi mymymymy

Q 1

1

1 1 ˆ

),Pr(log),Pr(log1ˆ

CMLθ
θθ

H   (2.11) 

One final issue. The covariance matrix Ξ  has to be positive definite, which will be the 
case if the matrices Ω and Σ   are positive definite. The simplest way to ensure the positive-

definiteness of these matrices is to use a Cholesky-decomposition and parameterize the CML 
function in terms of the Cholesky parameters (rather than the original covariance matrices). Also, 
the matrix Σ  is a correlation matrix, which can be maintained by writing each diagonal element 

(say the aath element) of the lower triangular Cholesky matrix of Σ  as 





1

1

21
a

j
ajl , where the ajl  

elements are the Cholesky factors that are estimated.  
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2.2.1.3. The PMOP Model 
As earlier, let q be an index for individuals (q = 1, 2, …, Q), and let t be an index for the tth 
observation on individual q (t = 1, 2, …, T, where T denotes the total number of observations on 
individual q).7 Let the observed discrete (ordinal) level for individual q at the tth observation be 
mqt (mqt may take one of K values; i.e., mqt {1, 2,…, K}). In the usual random-coefficients 

ordered response framework notation, we write the latent variable ( *
qty ) as a function of relevant 

covariates as: 

kyy qtqtqt  ,* qt
'
q xβ  if  ktqqjktq y ,,

*
1,,   ,                                                            (2.12)  

where qtx  is a (L×1)-vector of exogenous variables (including a constant now), qβ  is an 

individual-specific (L×1)-vector of coefficients to be estimated that is a function of unobserved 
individual attributes, qt  is a standard normal error term uncorrelated across individuals q and 

across observations of the same individual, and ktq ,,  is the upper bound threshold for ordinal 

discrete level k (k=1,2,…,K) for individual q at choice occasion t. The thresholds are written as 
)exp(1,,,, qtkktqktq α zγk   for k=2,3,…,K-1, with 

. 0, ,  ;... ,,1,,0,,,,1,,2,,1,,0,,   KtqtqtqKtqKtqtqtqtq   Assume that the qβ  

vector in Equation (2.12) is a time-invariant realization from a multivariate normal distribution 
with a mean vector b and covariance matrix ,LL Ω where L is the lower-triangular Cholesky 

factor of Ω.8 Also, assume that the qt  term, which captures the idiosyncratic effect of all 

omitted variables for individual q at the tth choice occasion, is independent of the elements of the 

                                                            
7 We assume here that the number of panel observations is the same across individuals. Extension to the case of 
different numbers of panel observations across individuals does not pose any substantial challenges, and will be 
discussed later.  
8 More general autoregressive structures can also be considered for 

qt  and 
qβ  to accommodate fading and time-

varying covariance effects in the latent variables *
qty  (see Bhat, 2011 and Paleti and Bhat, 2013). This does not 

complicate the econometrics of the CML estimation method, but can lead to substantial number of additional 
parameters and may be asking too much from typical estimation data sets. In this paper, we present the case of 
independent 

qt  across choice occasions and time-invariant random coefficients. 
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qβ  and qtx  vectors. Define ) ..., . , ,( 21  qTqqq yyyy matrix)1( T , ) ..., . , ,( 21  qTqq qε

matrix)1( T  )matrix1() ..., , ,( **
2

*
1  Tyyy qTqq

*
qy ,  matrix),()',...,,( LT  qTqqq xxxx 21

vector),1(),...,,( ,,,2,,1, 2
 T

qTqqi mTqmqmq upψq  )1(),...,,( 1,,1,2,1,1, 2
  T

qJqqi mTqmqmq lowψq  

vector. Also, let the vector of actual observed ordinal outcomes for individual q be stacked into a 
(T×1) vector ) ..., . , ,( 21  qTqqq mmmm . Then, we may write 

)(andwhere),(~ TTMVN IDENΩΞΞ  qqqqqqq
*
q xxbxB,By , and the parameter vector to 

be estimated in the PMOP model is  ),,,(  αγbθ Ω , where ),...,,(  1-Kγγγγ 32  and 

.),...,,( 132  Kαααα   The likelihood function for individual q takes the following form: 

,)|()()(
*


qy

D

T dfPL *
qqq

*
qqq y,Bymyθ Ξ  (2.13) 

where *y
D  is the integration domain defined as }:{*y

lowlow ψψ q
*
qq

*
q yy 

q
D  , and (.)Tf  is the 

multivariate normal density function of dimension T . The likelihood function above involves T-
dimensional rectangular integrals for each individual q. The above model is labeled as a mixed 
autoregressive ordinal probit model by Varin and Czado (2010), who examined the headache 
pain intensity of patients over several consecutive days. In this study, a full information 
likelihood estimator would have entailed as many as 815 dimensions of rectangular integration to 
obtain individual-specific likelihood contributions, an infeasible proposition using the computer-
intensive simulation techniques. As importantly, the accuracy of simulation techniques is known 
to degrade rapidly at medium-to-high dimensions, and the simulation noise increases 
substantially. On the other hand, the CML approach is easy to apply in such situations, through a 
pairwise marginal likelihood approach that takes the following form: 
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where 
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In the above expression, the  *Var qty ,  *Var qgy , and  ** ,Cov qgqt yy   terms are obtained by 

picking off the appropriate ( 22 )-sub-matrix of the larger covariance matrix qΞ  of 

) ..., , ,( **
2

*
1 qTqq yyy . The pairwise marginal likelihood function is )()( , θθ PMOP

qCML
q

PMOP
CML LL  . The 

covariance matrix of the estimator can be obtained exactly as in the CMOP case.  
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The analysis above assumes the presence of a balanced panel; that is, it assumes the same 
number of choice instances per individual. In the case when the number of choice instances 
varies across individuals, Joe and Lee (2009) proposed placing a power weight for individual q 

as 11 )]1(5.01[)1(   qqq TTw  (where the number of observations from individual q is qT ) 

and constructing the marginal likelihood contribution of individual q as: 

q
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2.2.2. Unordered-Response Models 
In the class of unordered-response models, the “workhorse” multinomial logit model introduced 
by Luce and Suppes (1965) and McFadden (1974) has been used extensively in practice for 
econometric discrete choice analysis, and has a very simple and elegant structure. However, it is 
also saddled with the familiar independence from irrelevant alternatives (IIA) property – that is, 
the ratio of the choice probabilities of two alternatives is independent of the characteristics of 
other alternatives in the choice set. This has led to several extensions of the MNL model through 
the relaxation of the independent and identically distributed (IID) error distribution (across 
alternatives) assumption. Two common model forms of non-IID error distribution include the 
generalized extreme-value (GEV) class of models proposed by McFadden (1978) and the 
multinomial probit (MNP) model that allows relatively flexible error covariance structures (up to 
certain limits of identifiability; see Train, 2009, Chapter 5). Both of these non-IID kernel 
structures (or even the IID versions of the GEV and the MNP models, which lead to the MNL 
and the independent MNP models, respectively) can further be combined with continuous 
mixing error structures. While many different continuous distributions can be used to 
accommodate these additional structures, it is most common to adopt a normal distribution. For 
instance, when introducing random coefficients, it is typical to use the multivariate normal 
distribution for the mixing coefficients, almost to the point that the terms mixed logit or mixed 
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GEV or mixed probit are oftentimes used synonymously with normal mixing (see Fiebig et al., 
2010, Dube et al., 2002).9  

In the context of the normal error distributions just discussed, the use of a GEV kernel 
structure leads to a mixing of the normal distribution with a GEV kernel, while the use of an 
MNP kernel leads once again to an MNP model. Both structures have been widely used in the 
past, with the choice between a GEV kernel or an MNP kernel really being a matter of “which is 
easier to use in a given situation” (Ruud, 2007). In recent years, the mixing of the normal with 
the GEV kernel has been the model form of choice in the economics and transportation fields, 
mainly due to the relative ease with which the probability expressions in this structure can be 
simulated (see Bhat et al., 2008 and Train, 2009 for detailed discussions). On the other hand, the 
use of an MNP kernel has not seen as much use in recent years, because the simulation 
estimation is generally more difficult. In any case, while there have been several approaches 
proposed to simulate these models with a GEV or an MNP kernel, most of these involve pseudo-
Monte Carlo or quasi-Monte Carlo simulations in combination with a quasi-Newton optimization 
routine in a maximum simulated likelihood (MSL) inference approach (see Bhat, 2001, 2003). 
As has been discussed earlier, in such an inference approach, consistency, efficiency, and 
asymptotic normality of the estimator is critically predicated on the condition that the number of 
simulation draws rises faster than the square root of the number of individuals in the estimation 
sample. Unfortunately, for many practical situations, the computational cost to ensure good 
asymptotic estimator properties can be prohibitive and literally infeasible (in the context of the 
computation resources available and the time available for estimation) as the number of 
dimensions of integration increases.  

The Maximum Approximate Composite Marginal Likelihood (MACML) inference 
approach proposed by Bhat (2011), on the other hand, allows the estimation of models with both 
GEV and MNP kernels using simple, computationally very efficient, and simulation-free 
estimation methods. In the MACML inference approach, models with the MNP kernel, when 
combined with additional normal random components, are much easier to estimate because of 
the conjugate addition property of the normal distribution (which puts the structure resulting 
from the addition of normal components to the MNP kernel back into an MNP form). On the 
other hand, the MACML estimation of models obtained by superimposing normal error 
components over a GEV kernel requires a normal scale mixture representation for the extreme 
value error terms, and adds an additional layer of computational effort (see Bhat, 2011). Given 
that the use of a GEV kernel or an MNP kernel is simply a matter of convenience, we will 
henceforth focus in this paper on the MNP kernel within the unordered-response model structure. 

                                                            
9 It has been well known that using non-normal distributions can lead to convergence/computational problems, and it 
is not uncommon to see researchers consider non-normal distributions only to eventually revert to the use of a 
normal distribution (see, for example, Bartels et al., 2006 and Small et al., 2005). However, one appealing approach 
is to use a multivariate skew-normal (MSN) distribution for the response surface, as proposed by Bhat and 
Sidharthan (2012).  
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The aspatial formulations of the unordered-response structure may take the form of a 
cross-sectional multinomial probit (CMNP), or a cross-sectional multivariate multinomial probit 
(CMMNP), or a panel multinomial probit (PMNP).   

 
2.2.2.1. The CMNP Model 
In the discussion below, we will assume that the number of choice alternatives in the choice set 
is the same across all individuals. The case of different numbers of choice alternatives per 
individual poses no complication, since the only change in such a case is that the dimensionality 
of the multivariate normal cumulative distribution (MVNCD) function changes from one 
individual to the next.  

Consider the following specification of utility for individual q and alternative i: 

),(~
~

,
~

  ; Ω0Lqiqi MVNU qqqqiq ββbβxβ   ,  (2.16) 

where qix  is an )1( L -column vector of exogenous attributes (including a constant for each 

alternative, except one of the alternatives), and qβ  is an individual-specific )1( L -column 

vector of corresponding coefficients that varies across individuals based on unobserved 

individual attributes. Assume that the qβ  vector is a realization from a multivariate normal 

distribution with a mean vector b and covariance matrix LL Ω . We also assume that qi  is 

independent and identically normally distributed across q, but allow a general covariance 

structure across alternatives for individual q. Specifically, let ),...,,( 21  qIqq qξ  ( 1I vector). 

Then, we assume Λ),0(~ IMVNqξ . As usual, appropriate scale and level normalization must be 

imposed on Λ  or identifiability. Specifically, only utility differentials matter in discrete choice 
models. Taking the utility differentials with respect to the first alternative, only the elements of 

the covariance matrix 1Λ  of )1(
~

11  iqqiqi   are estimable. However, the MACML 

inference approach proposed here, like the traditional GHK simulator, takes the difference in 
utilities against the chosen alternative during estimation. Thus, if individual q is observed to 

choose alternative qm , the covariance matrix 
qmΛ  is desired for the individual. However, even 

though different differenced covariance matrices are used for different individuals, they must 

originate in the same matrix Λ . To achieve this consistency, Λ is constructed from 1Λ  by 

adding an additional row on top and an additional column to the left. All elements of this 
additional row and additional column are filled with values of zeros. An additional normalization 
needs to be imposed on Λ  because the scale is also not identified. For this, we normalize the 
element of Λ  in the second row and second column to the value of one. Note that these 
normalizations are innocuous and are needed for identification. The Λ  matrix so constructed is 
fully general. Also, in MNP models, identification is tenuous when only individual-specific 
covariates are used (see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion 
restrictions are needed in the form of at least one individual characteristic being excluded from 



32 

each alternative’s utility in addition to being excluded from a base alternative (but appearing in 
some other utilities). But these exclusion restrictions are not needed when there are alternative-
specific variables.  

The model above may be written in a more compact form by defining the following 

vectors and matrices:
 ),...,,( 21  qIqqq UUUU  1( I  vector), ),...,,,(  qIqqqq xxxxx 321  LI (  

matrix), bxqq V  1( I  vector), qq xx  ΩΩq

~
 )matrix( II  , and IIq  (

~~
ΛΩΞq  matrix). 

Then, we may write, in matrix notation, qqq ξVU   and ).
~

,(~ qqq ΞVU IMVN  Also, let 

)(),,( 21 qqIqqq miuuu  u
 
be an (I–1)×1 vector, where qm  is the actual observed choice of 

individual q, and ).( qqmqiqi miUUu
q

 Then, ,1 Iq 0u because alternative qm  is the chosen 

alternative by individual q. 

To develop the likelihood function, define qM  as an identity matrix of size I-1 with an 

extra column of ‘-1’ values added at the th
qm  column (thus, qM

 
is a matrix of dimension 

)).()( I1-I   Then, qu  is distributed as follows: )Ξu qqB ,(~ 1Iq MVN , where qqVMqB and 

qq MΞMΞ  qq

~ . The parameter vector to be estimated is . ),,(  ΛΩbθ  Let 
qΞ

ω  be the 

diagonal matrix of standard deviations of qΞ . Using the usual notations as described earlier, the 

likelihood contribution of individual q is as below: 

      ),),(()( 1
1

*
Ξ Ξω qqBθ

q
 

IqL   (2.17) 

where .11 
qq qq ΞΞ

* ωΞωΞ           

The MVNCD approximation discussed earlier is computationally efficient and 
straightforward to implement when maximizing the likelihood function of Equation (2.17).10 As 
such, the MVNCD approximation can be used for any value of K and any value of I, as long as 
there is data support for the estimation of parameters. The positive-definiteness of Σ  can be 
ensured by using a Cholesky-decomposition of the matrices Ω  and Λ , and estimating these 
Cholesky-decomposed parameters. Note that, to obtain the Cholesky factor for Λ , we first 
obtain the Cholesky factor for 1Λ , and then add a column of zeros as the first column and a row 

of zeros as the first row to the Cholesky factor of 1Λ .  The covariance matrix in this CMOP case 

is obtained using the usual Fisher information matrix, since the full (approximate) likelihood is 
being maximized. 

Bhat and Sidharthan (2011) apply the MACML estimation approach for estimating the 
CMNP model with five random coefficients and five alternatives, and compare the performance 

                                                            
10As indicated earlier, the CML class of estimators subsumes the usual ordinary full-information likelihood 
estimator as a special case. It is this characteristic of the CML approach that leads us to the label MACML for the 
estimation approach proposed here. Specifically, even in cross-sectional MNP contexts, when our approach involves 
only the approximation of the MVNCD function in the maximum likelihood function, the MACML label is 
appropriate since the maximum likelihood function is a special case of the CML function. 
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of the  MSL and MACML approaches (though, in their simulations, they constrain Λ to be an 
identity matrix multiplied by 0.5). They conclude that the MACML approach recovers 
parameters much more accurately than the MSL approach, while also being about 50 times faster 
than the MSL approach. They also note that as the number of random coefficients and/or 
alternatives in the unordered-response model increases, one can expect even higher 
computational efficiency factors for the MACML over the MSL approach.  
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Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML) 

estimation of multinomial probit-based unordered response choice models. Transportation 
Research Part B 45(7), 923-939. 

Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate 
composite marginal likelihood (MACML) estimator for mixed multinomial probit models. 
Transportation Research Part B 45(7), 940-953. 

Bhat, C.R., Sidharthan, R., 2012. A new approach to specify and estimate non-normally mixed 
multinomial probit models. Transportation Research Part B 46(7), 817-833. 

 
2.2.2.2. The CMMNP Model 
Let there be G nominal (unordered multinomial response) variables for an individual, and let g 
be the index for variables (g = 1, 2, 3,…, G). Also, let Ig be the number of alternatives 

corresponding to the gth nominal variable (Ig 3) and let gi be the corresponding index ( gi  = 1, 2, 

3,…, gI ). Note that gI may vary across individuals. Also, it is possible that some nominal 

variables do not apply for some individuals, in which case G itself is a function of the individual 
q. However, for presentation ease, we assume that all the G nominal variables are relevant for 

each individual, and that all the alternatives gI are available for each variable g.  

Consider the gth variable and assume that the individual q chooses the alternative qgm . 

Also, assume the usual random utility structure for each alternative gi . 

,
ggg qgiqgiqgqgiU  xβ  (2.18) 

where 
gqgix is a (Lg×1)-column vector of exogenous attributes, qgβ  is a column vector of 

corresponding coefficients, and 
gqgi is a normal error term. Assume that the qgβ  vector is a 

realization from a multivariate normal distribution with a mean vector gb  and covariance matrix 

gg LL gΩ , where gL is the lower-triangular Cholesky factor of gΩ . While one can allow 

covariance among the qgβ  vectors across the coefficients of the different unordered-response 

variables for each individual, this specification will be profligate in the parameters to be 

estimated. So, we will assume that the qgβ vectors are independent across the unordered-response 
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dimensions for each individual. We also assume that 
gqgi  is independent and identically 

normally distributed across individuals q, but allow a general covariance structure across 

alternatives for individual q. Specifically, let ),...,,( 21 
gqgIqgqg qgξ  ( 1gI vector). Then, we 

assume )Λg,0(~ IMVNqgξ . Let )(*
qggqgmqgimqgi miUUu

qggqgg
 ,  where qgm  is the chosen 

alternative for the gth unordered-response variable by individual q, and stack the latent utility 

differentials into a vector   



 


 qggmqgImqgmqg miuuu

qggqgqg
;,...,, **

2
*

1
*
qgu  ]vector1)1[( gI . Let 

),...,,,( 321 
qqgIqgqgqgqg xxxxx  LI g (  matrix), gV bxqgqg  1( gI  vector) and 

qgqg xx  gqg ΩΩ
~

 )matrix( gg II  . Define qgM  as an identity matrix of size 1gI , with an extra 

column of ‘-1’ values added at the th
qgm  column.  Also, construct the matrices qgqgqg VMB , 

qgqgqgqg MΩMΩ  ~
, and .qggqgqg MΛMΛ 


 

When there are G unordered-response variables, consider the stacked 

vector1)1(
1













G

g
gI    


'

 ,...,,
'*

qG

'*
q

'*
q

*
q uuuu 21 , each of whose element vectors is formed by 

differencing utilities of alternatives from the chosen alternative qgm  for the gth variable. Also, 

form a block diagonal covariance matrix qΩ


of size ,)1()1(
11


















 



G

g
g

G

g
g II  each block 

diagonal holding the matrix qgΩ


, and the following matrix of the same size as qΩ


: 





























qGqG2qG1

q2Gq2q21

q1Gq12q1

q

Λ  ...Λ  Λ  

......

......

......

Λ  ...Λ  Λ  

Λ  ...Λ  Λ  

Λ









 

(2.19) 

The off-diagonal elements in qΛ


capture the dependencies across the utility differentials of 

different variables, the differential being taken with respect to the chosen alternative for each 

variable. It must be ensured that qΛ


 across individuals is derived from a common covariance 

matrix Λ  for the original 










G

g
gI

1

-error term vector ) ,...,,(  qGqqq ξξξξ 21 . Appropriate 

identification considerations will have to be placed on the elements of Λ . The parameter vector 

to be estimated is . ),,...,,,,...,( 21  ΛΩΩΩ21 GGbbbθ  Using the notations as described earlier, 
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and defining ),...,,( 21  qGqqq BBBB  and ,ΛΩΞ q


 qq the likelihood contribution of individual 

q is as below: 

      ),),(-()( 1
~

*
Ξ Ξω qBθ

q qIqL     (2.20) 

where 11 
qq qq ΞΞ

* ωΞωΞ  and 



G

g
gII

1

)1(
~

        

The above likelihood function involves the evaluation of a 



G

g
gI

1

)1( -dimensional 

integral for each individual, which can be very expensive if there are several variables and/or if 
each variable can take a large number of values. But, once again the Maximum Approximated 
Composite Marginal Likelihood (MACML) approach of Bhat (2011) can be used gainfully in 
this context, in which the MACML function only involves the computation of univariate and 
bivariate cumulative distributive functions. Specifically, consider the following (pairwise) 
composite marginal likelihood function formed by taking the products (across the G nominal 

variables) of the joint pairwise probability of the chosen alternatives qgm  for the gth variable and 

qlm  for the lth variable for individual q. 




 


1

1 1
, ),Pr()(

G

g

G

gl
qlqlqgqg

CMMNP
qCML mdmdL θ ,  (2.21) 

where qgd is an index for the individual’s choice for the gth variable. One can also write: 

 ),
~

),
~

(-(),Pr( 1
~

*
Ξ

Ξω qglB
qgl

qglIqlqlqgqg mdmd     (2.22) 

where 2 lg III


 ( gI  is the number of alternatives for the gth variable), 

,
~

,
~ 'ΔΞΔΞΔ qglqglqglqglqqglqgl  BB  ,

~~ 1
~

1
~


qglqgl ΞΞ

* ωΞωΞ qglqgl and qglΔ  is a II
~

*


-selection matrix 

with an identity matrix of size ( 1gI ) occupying the first ( 1gI ) rows and the 

th
g

j
jI 














1)1(
1

1

through 

th
g

j
jI 










1

)1( columns (with the convention that 0)1(
0

1


j

jI ), and 

another identity matrix of size ( 1lI ) occupying the last ( 1lI ) rows and the 

th
l

j
jI 














1)1(
1

1

through 

th
l

j
jI 










1

)1( columns. The net result is that the pairwise likelihood function now only 

needs the evaluation of a I


-dimensional cumulative normal distribution function (rather than the 

I
~

-dimensional cumulative distribution function in the maximum likelihood function). This can 
lead to substantial computation efficiency, and can be evaluated using the MVNCD 
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approximation of the MACML procedure. The MACML estimator MACMLθ̂ , obtained by 

maximizing the logarithm of the function 

 




 


Q

q

G

g

G

gl
qglI

CMMNP
qMACML

CMMNP
qMACML

CMMNP
MACML LwhereLL

1

1

1 1

1
~,, )

~
),

~
(-()(),()( *

Ξ
Ξω qglBθθθ

q

  (with the 

MVNCD approximation), is asymptotically normal distributed with mean θ and covariance 
matrix that can be estimated as:  

     
,

ˆˆˆˆ

QQ




1-1-1-
HJHG

  (2.23) 

with
 

MACML

q

θ
θθ

B
H

ˆ
1

1

1 1

1
~

2 )
~
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~

(-(log1ˆ
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
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









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  




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q

G
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G
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*
Ξ
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Ξ

*
Ξ
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 (2.24) 

An alternative estimator for Ĥ is as below: 

   
 

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θ
θ
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θ
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*
Ξ
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Ξ

ΞωΞω 

 (2.25) 

There are two important issues that need to be dealt with during estimation, each of which is 
discussed in turn below.  
 
Identification 
The estimated model needs to be theoretically identified. Suppose one considers utility 
differences with respect to the first alternative for each of the G variables. Then, the analyst can 

restrict the variance term of the top left diagonal of the covariance matrix (say )*
gΛ


of error 

differences          ,..., 11312 qgqgIqgqgqgqg g
  to 1 to account for scale invariance. 

However, note that the matrix *
gΛ


 is different from the matrix gΛ


, which corresponds to the 

covariance of utility differences taken with respect to the chosen alternative for the individual.  

Next, create a matrix of dimension 
















 



G

g
g

G

g
g II

11

)1()1( similar to that of gΛ


in Equation 

(2.19), except that the matrix is expressed in terms of utility differences with respect to the first 
alternative for each nominal variable: 
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
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 (2.26) 

In the general case, this allows the estimation of 












G

g

gg II

1

1
2

)1(*
 variance terms across all 

the G variables (originating from 










1

2

)1(* gg II
 terms embedded in each *

gΛ


 matrix; 

g=1,2,…G), and  


 


1

1 1

)1()1(
G

g

G

gl
lg II  covariance terms in the off-diagonal matrices of the *Λ


 

matrix characterizing the dependence between the latent utility differentials (with respect to the 
first alternative) across the variables (originating from )1()1(  lg II  estimable covariance 

terms within each off-diagonal matrix *
glΛ


 in *Λ


).  

 To construct the general covariance matrix Λ  for the original 










G

g
gI

1

-error term vector 

qξ , while also ensuring all parameters are identifiable, zero row and column vectors are inserted 

for the first alternatives of each unordered dependent variable in *Λ


. To do so, define a matrix 

D  of size 















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


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


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
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G

g
g

G

g
g II

11

)1(  . The first 1I  rows and )1( 1 I  columns correspond to the 

first variable. Insert an identity matrix of size )1( 1 I  after supplementing with a first row of 

zeros into this first 1I  rows and )1( 1 I  columns of D . The rest of the columns for the first 1I  

rows and the rest of the rows for the first )1( 1 I  columns take a value of zero. Next, rows 

)1( 1 I through )( 21 II  and columns )( 1I  through )2( 21  II  correspond to the second 

variable. Again position an identity matrix of size )1( 2 I  after supplementing with a first row 

of zeros into this position. Continue this for all G nominal variables. Thus, for the case with two 
nominal variables, one nominal variable with 3 alternatives and the second with four alternatives, 
the matrix D takes the form shown below: 
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  (2.27) 

Then, the general covariance matrix may be developed as .DΛDΛ * 


 All parameters in this 

matrix are identifiable by virtue of the way this matrix is constructed based on utility differences 

and, at the same time, it provides a consistent means to obtain the covariance matrix qΛ


 that is 

needed for estimation (and is with respect to each individual’s chosen alternative for each 

variable). Specifically, define a matrix qM
~

 of size 











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


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g
g

G

g
g II

11

)1( . The first )1( 1 I  

rows and 1I  columns correspond to the first nominal variable. Insert an identity matrix of size 

)1( 1 I  after supplementing with a column of ‘-1’ values in the column corresponding to the 

chosen alternative. The rest of the columns for the first )1( 1 I  rows and the rest of the rows for 

the first 1I  columns take a value of zero. Next, rows )( 1I  through )2( 21  II and columns 

)1( 1 I through )( 21 II  correspond to the second nominal variable. Again position an identity 

matrix of size )1( 2 I  after supplementing with a column of ‘-1’ values in the column 

corresponding to the chosen alternative. Continue this procedure for all G nominal variables. 

With the matrix qM
~

 as defined, the covariance matrix  qΛ


 for any individual is given by 

.
~~

qqq MΛMΛ 


 

 
Positive Definiteness 

The matrices qΛ


 and qΩ


have to be positive definite. The simplest way to guarantee the positive 

definiteness of qΛ


 is to ensure that *Λ


is positive definite. To do so, the Cholesky matrix of *Λ


 

may be used as the matrix of parameters to be estimated. However, note that the top diagonal 

element of each *Λ g


 is normalized to one for identification, and this restriction should be 

recognized when using the Cholesky factor of *Λ


. This can be achieved by appropriately 

parameterizing the diagonal elements of the Cholesky decomposition matrix. Thus, consider the 

lower triangular Cholesky matrix *L


 of the same size as *Λ


. Whenever a diagonal element (say 
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the kkth element) of *Λ


 is to be normalized to one, the first element in the corresponding row of 

*L


 is written as 



k

j
kjl

2

21 , where the kjl  elements are the Cholesky factors that are to be 

estimated. With this parameterization, *Λ


obtained as 
** LL


 is positive definite and adheres to 

the scaling conditions. Using this, one constructsΛ , and subsequently obtains qΛ


 as discussed 

earlier. The resulting qΛ


is positive definite. The positive definiteness of qΩ


is ensured by 

writing  gg LL gΩ .  

 
References for the CML Estimation of the CMMNP Model 
Bhat, C.R.,  Paleti, R., Pendyala, R.M., Lorenzini, K., Konduri, K.C., 2013. Accommodating 

immigration status and self selection effects in a joint model of household auto ownership 
and residential location choice. Transportation Research Record 2382, 142-150. 

Feddag, M.-L., 2013. Composite likelihood estimation for multivariate probit latent traits 
models. Communications in Statistics - Theory and Methods 42(14), 2551-2566. 

Kortum, K., Paleti, R., Bhat, C.R., Pendyala, R.M., 2012. Joint model of residential relocation 
choice and underlying causal factors, Transportation Research Record, 2303, 28-37. 

 
2.2.2.3. The Panel MNP (PMNP) Model 
Consider the following model with ‘t’ now being an index for choice occasion: 

 . ..., ,2 ,1, ..., ,2 ,1   , ..., ,2 ,1  ,),(~  , IiTtQqMVNU qtiqit  Ωbβxβ qqtiq    (2.28) 

For ease, we assume that all alternatives are available at each choice instance of each individual, 
and that we have a balanced panel (that is, we have the same number of choice instances from 
each individual). The first assumption is innocuous and helps in presentation. The relaxation of 
the second assumption only requires a different weight per individual, exactly as discussed 

earlier for the ordered-response case. qtix  is a )1( L -column vector of exogenous attributes 

whose first (I-1) elements correspond to alternative specific constants for (I-1) alternatives (with 
one of the alternatives being the base alternative) and the remaining variables being the non-

constant variables. qβ  is an individual-specific )1( L -column vector of corresponding 

coefficients that varies across individuals based on unobserved individual attributes. Assume that 

the qβ  vector is a realization from a multivariate normal distribution with a mean vector b and 

covariance matrix LL Ω , where L is the lower-triangular Cholesky factor of Ω . Thus, as in 

the case of the panel ordered-response model, the coefficients qβ  are considered constant over 

choice situations of a given decision maker. We also assume that qti  is independent and 

identically normally distributed across individuals and choice occasions, but allow a general 
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covariance structure across alternatives for each choice instance of each individual. Specifically, 

let ),...,( 21  qtIqtqt qtξ  ( 1I vector). Then, we assume Λ),0(~ IMVNqtξ . As usual, 

appropriate scale and level normalization must be imposed on Λ  for identifiability. To do so, we 
follow the same exact procedure as in the CMNP model. Specifically, only utility differentials 
matter at each choice occasion. Taking the utility differentials with respect to the first alternative, 

only the elements of the covariance matrix 1Λ  of )1(
~

11  iqtqtiqti   are estimable, and Λ is 

constructed from 1Λ  by adding an additional row on top and an additional column to the left. 

All elements of this additional row and additional column are filled with values of zeros. We also 
normalize the element of Λ  in the second row and second column to the value of one. 

Define the following vectors and matrices:
 

),...,,( 21  qtIqtqtqt UUUU  1( I  vector), 

),...,,( 21  qIqqq UUUU  1( TI  vector), ),...,(  qTq2q1q ξξξξ  1( TI  vector), 

),...,,,( 321  qtIqtqtqtqt xxxxx  ( LI   matrix), ) ,...,,( 21  qTqqq xxxx  ( LTI   matrix), bxqq V  

1( TI  vector), qqq xx  ΩΩ
~

 )matrix( TITI  , and TITITq  ()(
~~

ΛIDENΩΞq matrix). 

Then, we may write, in matrix notation, qqq ξ VU  and ).
~

,(~ qqq ΞVU TIMVN  Let the 

individual q choose alternative qtm at the tth choice occasion. To develop the likelihood function, 

define qM  as an ][)]1([ TIIT   block-diagonal matrix, each block diagonal being of size 

))()( I1-I  and containing the matrix qtM . qtM  itself is an identity matrix of size (I-1) with an 

extra column of ‘-1’ values added at the th
qtm  column. Let qqq VMB and qq MΞMΞ  qq

~ . The 

parameter vector to be estimated is . ),,(  ΛΩbθ The likelihood contribution of individual q 

is as below: 

      ),),(()( 1
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*
Ξ Ξω qqBθ

q
 

JqL  (2.29) 

where ),1(
~  ITJ  and .11 

qq qq ΞΞ
* ωΞωΞ        

The simulation approaches for evaluating the panel likelihood function involve 
integration of dimension )]1([  IT . Consider the following (pairwise) composite marginal 

likelihood function formed by taking the products (across the T choice occasions) of the joint 

pairwise probability of the chosen alternatives qtm  for the tth choice occasion and qgm  for the gth 

choice occasion for individual q. 
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where qtd is an index for the individual’s choice on the tth choice occasion. One can also write: 
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selection matrix with an identity matrix of size ( 1I ) occupying the first ( 1I ) rows and the 

 thIt 1)1()1(  through  thIt )1(  columns, and another identity matrix of size ( 1I ) 

occupying the last ( 1I ) rows and the  thIg 1)1()1(  through  thIg )1(  columns. The 

pairwise likelihood function now only needs the evaluation of a J -dimensional cumulative 

normal distribution function (rather than the I
~

-dimensional cumulative distribution function in 

the maximum likelihood function). The MACML estimator MACMLθ̂  is obtained by maximizing 

the logarithm of the function 

 




 


Q

q

T

t

T

tg
J

PMNP
qMACML

PMNP
qMACML

PMNP
MACML LLL

1

1

1 1

1
~,, )

~
),

~
(-()(where),()( *

qtgqtgBθθθ
qtg

Ξω
Ξ

  (with the 

MVNCD approximation). The covariance matrix is estimated as:  

   
,

ˆˆˆˆ

QQ




1-1-1-
HJHG

 

with
 

MACML

qtg

θ

*
qtgqtg

θθ

B
H

ˆ
1

1

1 1

1
~

2 )
~

),
~

(-(log1ˆ















  





 


Q

q

T

t

T

tg

J

Q

Ξω
Ξ



   
MACML

qtgqtg

θ

*
qtgqtg

*
qtgqtg

θ

B

θ

B
J

ˆ

1

1 1

1
~1

1 1

1
~

1

)
~

),
~

(-(log)
~

),
~

(-(log1ˆ

















































  



 




 





T

t

T

tg

J
T

t

T

tg

J
Q

qQ

ΞωΞω
ΞΞ



   (2.32) 

An alternative estimator for Ĥ is as below: 
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2.3. Spatial Formulations  
In the past decade, there has been increasing interest and attention on recognizing and explicitly 
accommodating spatial (and social) dependence among decision-makers (or other observation 
units) in urban and regional modeling, agricultural and natural resource economics, public 
economics, geography, marketing, sociology, political science, and epidemiology. The reader is 
referred to a special issue of Regional Science and Urban Economics entitled “Advances in 
spatial econometrics” (edited by Arbia and Kelejian, 2010) and another special issue of the 
Journal of Regional Science entitled “Introduction: Whither spatial econometrics?” (edited by 
Patridge et al., 2012) for a collection of recent papers on spatial dependence, and to Elhorst 
(2010), Anselin (2010), Ferdous and Bhat (2013), and Bhat et al. (2014a) for overviews of recent 
developments in the spatial econometrics field. Within the past few years, there has particularly 
been an explosion in studies that recognize and accommodate spatial dependency in discrete 
choice models. The typical way this is achieved is by applying spatial structures developed in the 
context of continuous dependent variables to the linear (latent) propensity variables underlying 
discrete choice dependent variables (see reviews of this literature in Fleming, 2004, Franzese and 
Hays, 2008, LeSage and Pace, 2009, Hays et al. 2010, Brady and Irwin, 2011, and Sidharthan 
and Bhat, 2012). The two dominant techniques, both based on simulation methods, for the 
estimation of such spatial discrete models are the frequentist recursive importance sampling 
(RIS) estimator (which is a generalization of the more familiar Geweke-Hajivassiliou-Keane or 
GHK simulator; see Beron and Vijverberg, 2004) and the Bayesian Markov Chain Monte Carlo 
(MCMC)-based estimator (see LeSage and Pace, 2009). However, both of these methods are 
confronted with multi-dimensional normal integration of the order of the number of 
observational units in ordered-response models, and are cumbersome to implement in typical 
empirical contexts with even moderate estimation sample sizes (see Bhat, 2011 and Franzese et 
al., 2010). The RIS and MCMC methods become even more difficult (to almost infeasible) to 
implement in a spatial unordered multinomial choice context because the likelihood function 
entails a multidimensional integral of the order of the number of observational units factored up 
by the number of alternatives minus one (in the case of multi-period data, the integral dimension 
gets factored up further by the number of time periods of observation). Recently, Bhat and 
colleagues have suggested a composite marginal likelihood (CML) inference approach for 
estimating spatial binary/ordered-response probit models, and the maximum approximate 
composite marginal likelihood (MACML) inference approach for estimating spatial unordered-
response multinomial probit (MNP) models. These methods are easy to implement, require no 
simulation, and involve only univariate and bivariate cumulative normal distribution function 
evaluations, regardless of the number of alternatives, or the number of choice occasions per 
observation unit, or the number of observation units, or the nature of social/spatial dependence 
structures.  

In the spatial analysis literature, the two workhorse specifications to capture spatial 
dependencies are the spatial lag and the spatial error specifications (Anselin, 1988). The spatial 
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lag specification, in reduced form, allows spatial dependence through both spatial spillover 
effects (observed exogenous variables at one location having an influence on the dependent 
variable at that location and neighboring locations) as well as spatial error correlation effects 
(unobserved exogenous variables at one location having an influence on the dependent variable 
at that location and neighboring locations). The spatial error specification, on the other hand, 
assumes that spatial dependence is only due to spatial error correlation effects and not due to 
spatial spillover effects. The spatial error specification is somewhat simpler in formulation and 
estimation than the spatial lag model. But, as emphasized by McMillen (2010), the use of a 
parametric spatial error structure is “troublesome because it requires the researcher to specify the 
actual structure of the errors”, while it is much easier to justify a parametric spatial lag structure 
when accommodating spatial dependence. Beck et al. (2006) also find theoretical and conceptual 
issues with the spatial error model and refer to it as being “odd”, because the formulation rests on 
the “hard to defend” position that “space matters in the error process but not in the substantive 
portion of the model”. As they point out, the implication is that if a new independent variable is 
added to a spatial error model “so that we move it from the error to the substantive portion of the 
model”, the variable magically ceases to have a spatial impact on neighboring observations. Of 
course, the spatial lag and spatial error specifications can be combined together in a Kelejian-
Prucha specification (see Elhorst, 2010), or the spatial lag could be combined with spatially 
lagged exogenous variable effects in a Spatial Durbin specification (see Bhat et al., 2014a). In all 
of these cases, the spatial dependence leads also to spatial heteroscedasticity in the random error 
terms.  

In this paper, we will assume the spatial lag structure as the specification of spatial 
dependency. However, it is very straightforward to extend our approach to other dependency 
specifications. Indeed, there is no conceptual difficulty in doing so, nor is there much impact on 
coding or computational burden. The focus on the spatial lag structure is simply for uniformity 
and notational ease. In addition to the spatial lag-based and resulting heteroscedasticity effect, it 
is also likely that there is heterogeneity (i.e., differences in relationships between the dependent 
variable of interest and the independent variables across decision-makers or spatial units (see, 
Fotheringham and Brunsdon, 1999, Bhat and Zhao, 2002, Bhat and Guo, 2004). When combined 
with the spatial lag effect, the unobserved heterogeneity effects get correlated over decision 
agents based on the spatial (or social) proximity of the agents’ locations, which is then referred 
to as spatial drift (see Bradlow et al., 2005 for a discussion). But such spatial drift effects have 
been largely ignored thus far in the literature (but see Bhat et al., 2014a). We explicitly 
incorporate such drift effects in the models discussed below. All notations from previous sections 
carry over to the sections below.  
 
2.3.1 Spatial Ordered Response Models 

2.3.1.1 The Spatial CUOP Model 
The spatial CUOP (SCUOP) is an extension of the aspatial CUOP model from Section 2.2.1.1, 
and may be written as follows: 



44 

qq

Q

q
qqqq ywy   



xβq
1'

*
''

* , kyq   if kqqkq y ,1,  
* ,  (2.34) 

where the 'qqw  terms are the elements of an exogenously defined distance-based spatial (or 

social) weight matrix W corresponding to  individuals q and q  (with 0qqw  and 1



q

qqw ), 

and   )10(    is the spatial autoregressive parameter. The weights 'qqw can take the form of 

a discrete function such as a contiguity specification ( qqw  =1 if the individuals q and q  are 

adjacent and 0 otherwise) or a specification based on a distance threshold ( 
'

'' ,/
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qqqqqq ccw

where 'qqc  is a dummy variable taking the value 1 if the individual q  is within the distance 

threshold and 0 otherwise). It can also take a continuous form such as those based on the inverse 

of distance qqd   and its power functions ),0(1)1(
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~
qqc  is a dummy variable taking the value 1 if q and q  are 

adjoining based on some pre-specified spatial criteria, and 0 otherwise). All of these functional 
forms for the weight matrix may be tested empirically.   

The latent propensity representation of Equation (2.34) can be written equivalently in 
vector notation as:  

εβ
~~byy **  xxW ,   (2.35) 

where ) ..., , ,( 21  ****y Qyyy  and ) ,..., ,( 21  Qε  are (Q×1) vectors, ) ..., , ,( 21  Qxxxx  is a 

(Q×L) matrix of exogenous variables for all Q individuals, x~  is a (Q×QL) block-diagonal 

matrix with each block-diagonal of size (1×L) being occupied by the vector qx   ( Qq ,...,2,1 ), 

and ) ..., , ,( 21  Qβ
~

β
~

β
~

β
~  is a (QL×1) vector. Through simple matrix algebra manipulation, 

Equation (2.35) may be re-written as: 

 εβ
~~by*  xxS ,  (2.36) 

where   1-
Q WIDENS   is a (Q×Q) matrix. The vector *y  is multivariate normally 

distributed as ),(~* ΞBy QMVN , where 

bB Sx  and   SIDENxΩIDENxSΞ  QQ
~~ .  (2.37) 

The likelihood function )(θL  for the SCUOP model takes the following form: 
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where ),...,,( 21  Qyyyy , ),...,,( 21  Qmmmm  is the corresponding (Q×1) vector of the actual 

observed ordinal levels, *y
D  is the integration domain defined as 
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y* QqyD
qq mqqmq   y  , and (.)Qf  is the multivariate normal density 

function of dimension Q . 
The rectangular integral in the likelihood function is of dimension Q, which can become 

problematic from a computational standpoint. Further, the use of traditional numerical simulation 
techniques can lead to convergence problems during estimation even for moderately sized Q 
(Bhat et al., 2010a; Müller and Czado, 2005). The alternative is to use the composite marginal 
likelihood (CML) approach. Using a pairwise CML method, the function to be maximized is: 
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In the above expression, q][B  represents the thq  element of the column vector B, while 'qq][Σ  

represents the thqq   element of the matrix Σ .  

The pairwise marginal likelihood function of Equation (2.39) comprises 2/)1( QQ  

pairs of bivariate probability computations, which can itself become quite time consuming. 
However, previous studies (Varin and Vidoni, 2009, Bhat et al., 2010a, Varin and Czado, 2010) 
have shown that spatial dependency drops quickly with inter-observation distance. Therefore, 
there is no need to retain all observation pairs because the pairs formed from the closest 
observations provide much more information than pairs far from one another. The “optimal” 
distance for including pairings can be based on minimizing the trace of the asymptotic 
covariance matrix. Thus, the analyst can start with a low value of the distance threshold (leading 
to a low number of pairwise terms in the CML function) and then continually increase the 
distance threshold up to a point where the gains from increasing the distance threshold is very 

small or even drops. To be specific, for a given threshold, construct a Q×Q matrix R
~

 with its 
thq  column filled with a Q×1 vector of zeros and ones as follows: if the observational unit q  is 

not within the specified threshold distance of unit q, the thq  row has a value of zero; otherwise, 

the thq  row has a value of one.  By construction, the thq  row of the thq  column has a value of 

one. Let   qq R
~ be the thqq element of the matrix R
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all individuals (observation units) that have a value of ‘1’ in the vector   ,
~

qR  where  qR
~  is the 

qth column of the vector R
~

. Then, the CML function is as follows: 
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The covariance matrix of the CML estimator is 
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However, the estimation of the “vegetable” matrix J  is more difficult in this case. One cannot 
empirically estimate J  as the sampling variance of the individual contributions to the composite 
score function (as was possible when there were Q independent contributions) because if the 
underlying spatial dependence in observation units. But a windows resampling procedure (see 
Heagerty and Lumley, 2000) may be used to estimate J . This procedure entails the construction 
of suitable overlapping subgroups of the sample that may be viewed as independent replicated 
observations. Then, J may be estimated empirically. While there are several ways to implement 
this, Bhat (2011) suggests overlaying the spatial region under consideration with a square grid 

providing a total of Q
~

 internal and external nodes. Then, select the observational unit closest to 

each of the Q
~

 grid nodes to obtain Q
~

 observational units from the original Q observational units 
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To ensure the constraints on the autoregressive term  , the analyst can parameterize

)]
~

exp(1/[1   . Once estimated, the  
~ estimate can be translated back to estimates of an 

estimate of  . 
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Spissu, E., Eluru, N., Sener, I.N., Bhat, C.R., Meloni, I., 2010. Cross-clustered model of 
frequency of home-based work participation in traditionally off-work hours. Transportation 
Research Record 2157, 138-146.    

Whalen, K.E., Paez, A., Bhat, C., Moniruzzaman, M., Paleti, R., 2012. T-communities and sense 
of community in a university town: evidence from a student sample using a spatial ordered-
response model. Urban Studies 49(6), 1357-1376. 

 
2.3.1.2 The Spatial CMOP Model 
We start with Equation (2.6) of the aspatial CMOP model in Section 2.2.1.2, and now add a 
spatial lag formulation: 

  iqiqi

Q

q
iqqqiqi kyywy  



,
1'

*
''

*  qqi xβ  if  i
kqqi

i
kq ii

y ,
*

1,   . (2.44) 

Define ,  vector),1×(),...,,( **
2

*
1 Iyyy qIqq *

qy ])(,...,)(,)(,)[( **
3

*
2

*
1

*  Qyyyyy  (QI×1 vector), 

 vector),1×(),...,,( 21 Iyyy qIqq qy ])(,...,)(,)(,)[( 321  Qyyyyy  (QI×1 vector), 

) ..., . , ,( 21  qIqqq mmmm   vector)1×(I , ),...,,( 21  Qmmmm  (QI×1 vector) , qq x  IIDENx~   

(I×IL matrix; IIDEN  is an identity matrix of size I), )~,...~,~,~(~
321  Qxxxxx  (QI×IL matrix), 

,
~

qiqi βbβ i     vector),1×()
~

 ..., 
~

,
~

(
~

21 ILqIqqq  ββββ ),0(~
~

ΩLIq MVN β  (the qβ
~

 random 

coefficients are independent across individuals),   vector),1×(Q)
~

 ..., 
~

,
~

(
~

21 ILQ  ββββ  

),...,,( 21  Ibbbb  (IL×1 vector), ,)',,,,( 321 qIqqq  qε  )',,,,( 321 Qεεεεε    (QI×1 vector), 

) ..., , ,,( 331  Iδ  (I×1 vector), and δδ  Q1
~  (QI×1 vector; Q1  is a vector of size Q  with 

all elements equal to 1). Also, define the following matrix: 

matrix).  (

~

~

~

~

QILQI 

























Q

3

2

1

x0000

00x00

000x0

0000x

x












  (2.45) 



48 

Collect all the weights 'qqw  into a row-normalized spatial weight matrix W . All other notations 

from Section 2.2.1.2 are carried over to this section, including the multivariate standard normal 

distribution specification for qε  with mean zero and correlation matrix Σ (see Equation 2.7). 

With these definitions, Equation (2.44) may be re-written in matrix form as: 
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~
[ ** 

I ,   (2.46) 

where the operation *''.  in the equation above is used to refer to the element by element 
multiplication. After further matrix manipulation, we obtain: 
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~ 1
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The expected value and variance of *y  may be obtained from the above equation after 

developing the covariance matrix for the error vector )
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The parameter vector to be estimated in the SCMOP model is . ),,,,(  δ,αγbθ ΣΩ
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likelihood function for the SCMOP model is: 
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y

D , and (.)QIf  is the multivariate normal density function of 

dimension QI. The dimensionality of the rectangular integral in the likelihood function is QI, 
which is very difficult to evaluate using existing estimation methods. The alternative is to use the 
pairwise composite marginal likelihood (CML) approach: 
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The CML estimator is obtained by maximizing the logarithm of the function in Equation (2.49).  

The number of pairings in the CML function above is   .2/)1( QIQI  But again the 

number of pairings can be reduced  by determining the “optimal” distance for including pairings 
across individuals based on minimizing the trace of the asymptotic covariance matrix (as 

discussed in the previous section).11 To do so, define a set qC
~

 as in the previous section that 

includes the set of individuals q’ (including q) that are within a specified threshold distance of 
individual q. Then, the CML function reduces to the following expression: 
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Let  W
~

 be the total number of pairings used in the above CML function (after considering the 

distance threshold). The covariance matrix of the CML estimator is 
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The sandwich matrix, Ĵ , may be computed by selecting Q
~

 )
~

,...,2,1~( Qq  observational units 

from the original Q observational units as discussed in the earlier section. Let qC~
~

be the set of 

individuals (observation units) within the specified threshold distance, and let qN ~  be the 

cardinality of qC~
~

. Let ql~  be an index so that ql~ =1,2,… qN~ . Next, define 

      .2/1~~~  ININC qqq


 Then, the J matrix maybe empirically estimated as: 

                                                            
11 Technically, one can consider a threshold distance separately for each ordinal variable, so that the individual 
pairings within each variable are based on this variable-specific threshold distance and the individual-variable 
pairings across variables are based on different thresholds across variables. But this gets cumbersome, and so we 
will retain a single threshold distance across all ordinal variables.   
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There is another way that the analyst can consider cutting down the number of pairings 
even after using a threshold distance as a cut-off. That is by ignoring the pairings among 
different individuals (observation units) across the I ordinal variables. This will reduce the 
number of pairings quite substantially, while also retaining the pairings across individuals for 
each ordinal variable (that enables the estimation of the parameters of the vector δ ) and the 
pairings across ordinal variables within the same individual (that enables the estimation of the 

parameters in the correlation matrix Σ of qε ). The CML is: 
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The number of pairings W
~

 in the CML function above is much smaller than the CML function 
in Equation (2.50). The elements of the covariance matrix may be estimated as follows: 
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or alternatively,  

.
loglogloglog

~
1ˆ

ˆ

1

1

1 1

1

1
~

1 1

CML
q

Q

q

I

i

I

ii

iqiiqi
Q

q

Q

Cq
qq

I

i

iqqiqq LLLL

W
θ

θθθθ
H














































































    





 







 

  (2.56) 

For estimating the Ĵ  matrix define q~
~
C  and qN ~  be defined as earlier and let 
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The positive-definiteness of the matrices ΣΩ and  are ensured as discussed in Sections 

2.3.1.1 and 2.2.1.2.  
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References for the CML Estimation of the Spatial CMOP (or SCMOP) Model 
No known applications. But the spatial cross-sectional multivariate count model of 
Narayanamoorthy et al. (2013) is very similar to the SCMOP model." 
 
2.3.1.3. The Spatial PMOP (SPMOP) Model 
All notations from Section 2.2.1.3 are carried over. To include spatial dependency in the PMOP 
model, rewrite Equation (2.12) as follows: 
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Also, collect all the weights qqw   into a spatial weight matrix W. The vector β
~

above has a mean 

vector of zero and a covariance matrix ΩDENI Q  (of size QT×QT), while the vector ε  has a 

mean vector of zero and a covariance matrix .QTDENI  

Using the vector and the matrix notations defined above, Equation (2.58) may be re-
written compactly as: 
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After further matrix manipulation, we obtain: 
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),
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The parameter vector to be estimated in the SPMOP model is . ),,,,(  αγbθ Ω  Let
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likelihood function for the SPMOP model is: 
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D , and (.)QTf  is the multivariate normal density function of 

dimension QT. The much simpler pairwise composite marginal likelihood (CML) function is: 
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To reduce the number of pairings, define a set qC
~

 as in the previous section that includes the set 

of individuals q’ (including q) that are within a specified threshold distance of individual q. 
Then, the CML function reduces to the following expression: 
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Let  W
~

 be the total number of pairings used in the above CML function (after considering the 

distance threshold). The covariance matrix of the CML estimator is 
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where  
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or alternatively,  
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Defining qC~
~

, qN ~ , and       2/1~~~  ININC qqq
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 as in the previous section, the J matrix maybe 

empirically estimated as: 
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One can also ignore the pairings among different individuals (observation units) across the T 
time periods. The CML then is: 
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The elements of the covariance matrix in this case may be estimated as follows: 
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or alternatively,  
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For estimating the Ĵ  matrix, define qC ~
~

 and qN ~  as earlier and let 
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References for the CML Estimation of the Spatial PMOP (SPMOP) Model 
Castro, M., Paleti, R., Bhat, C.R., 2013. A spatial generalized ordered response model to 

examine highway crash injury severity. Accident Analysis and Prevention 52, 188-203.   
Ferdous, N., Bhat, C.R., 2013. A spatial panel ordered-response model with application to the 

analysis of urban land-use development intensity patterns. Journal of Geographical Systems 
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Paleti, R., Bhat, C.R., Pendyala, R.M., Goulias, K.G., 2013. Modeling of household vehicle type 
choice accommodating spatial dependence effects. Transportation Research Record 2343, 
86-94. 

       
2.3.2. Unordered-Response Models 

2.3.2.1. The Spatial CMNP (SCMNP) Model 
The formulation in this case is similar to the aspatial case in Section 2.2.2.1, with the exception 
that a spatial lag term is included. Of course, this also completely changes the model structure 
from the aspatial case.  

,1||  );,(~
~

,
~

 ;  

  Ω0Lqiiqqq

q
qi MVNUwU qqqqiq ββbβxβ   (2.73) 

where all notations are the same as in Section 2.2.2.1.12 Let ),...,,( 21  qIqq qξ  ( 1I vector). 

Then, we assume ),0(~ ΛIMVNqξ . As usual, appropriate scale and level normalization must be 

imposed on Λ  for identifiability, as discussed in Section 2.2.2.1. The model above may be 
written in a more compact form by defining the following vectors and matrices: 

),...,,( 21  qIqqq UUUU  1( I  vector), ),...,,(  QUUUU 21  ( 1QI vector), )( 21  Qξξξξ ,...,,    

( 1QI vector), ),...,,,(  qIqqqq xxxxx 321  LI (  matrix), )(x 21  Qxxx ,...,,  ( LQI   matrix), 

and   Qββββ
~

,...,
~

,
~~

21  ( 1QL  vector). Also, define the following matrix: 

                                                            
12 One can allow the spatial lag dependence parameter δ to vary across alternatives i. However, due to identification 
considerations, one of the alternatives should be used as the base (with a zero dependence parameter). But doing so 
while also allowing the dependence parameters to vary across the remaining alternatives creates exchangeability 
problems, since the model estimation results will not be independent of the decision of which alternative is 
considered as the base. Hence, we prefer the specification that restricts the dependence parameter to be the same 
across alternatives i.  
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Then, we can write Equation (2.73) in matrix form as: 

 ,~
ξβb  xxSU


  (2.75) 

where   matrix),()( QIQIIQI  1IDENWIDENS   and W is the )( QQ   weight matrix 

with the weights qqw   as its elements. Also, ),
~

,(~ ΞVU QIMVN where bSxV   and  
 

  .SΛ)IDENxΩIDENxSΞ  QQ ()(
~ 

 Let )(),,( 21 qqIqqq miuuu  u
 

be an (I–1)×1 

vector for individual q, where qm  is the actual observed choice of individual q and 

).( qqmqiqi miUUu
q

  Stack the qu  vectors across individuals (observation units): 

]Vector1)1([),...,,( 21  IQQuuuu . The distribution of u  may be derived from the 

distribution of U by defining a ][)]1([ QIIQ   block diagonal matrix M , with each block 

diagonal having )1( I  rows and I columns corresponding to each individual q. This II  )1(  

matrix for individual q corresponds to an )1( I  identity matrix with an extra column of ‘ 1 ’ 

values added as the qm th column. For instance, consider the case of I = 4 and Q = 2. Let 

individual 1 be observed to choose alternative 2 and individual 2 be observed to choose 
alternative 1. Then M  takes the form below. 
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With the above construction for matrix M , it is easy to see that ),,(~ )1( Ξu BIQMVN where 

.
~

and MΞMΞVM B The likelihood of the observed sample (i.e., individual 1 choosing 

alternative 1m , individual 2 choosing alternative 2m , …, individual Q choosing alternative Qm ) 

may then be written succinctly as ][Prob 1)(0u  IQ . The parameter vector to be estimated is 

. ),,,(  ΛΩθ b Using the usual notations, the likelihood function is: 
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where .11  ΞΞ
* ωΞωΞ  This is cumbersome and impractical (if not infeasible) for most 

realistically-sized sample sizes. However, one can use the MACML technique. To do so, write 
the pairwise CML function corresponding to the full likelihood of Equation (2.77) as: 
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qd  is an index for the individual’s choice, and 
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and qq Δ  is a 

)1(  IQJ
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-selection matrix with an identity matrix of size ( 1I ) occupying the first ( 1I ) 

rows and the  thIq 1)1()1(  through  thIq )1(  columns, and another identity matrix of 

size ( 1I ) occupying the last ( 1I ) rows and the  thIq 1)1()1(  through  thIq )1( 

columns. 
The number of pairings in the CML expression of Equation (2.78) can be reduced as 

explained in Section 2.3.1.1. Specifically, define a set qC
~

 as in the previous section that includes 

the set of individuals q’ (including q) that are within a specified threshold distance of individual 
q. Then, the CML function reduces to the following expression: 
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The expressions to obtain the covariance matrix are exactly the same as in Section 2.3.1.1, with 
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References for the CML Estimation of the Spatial MNP (SMNP) Model 
Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML) 

estimation of multinomial probit-based unordered response choice models. Transportation 
Research Part B 45(7), 923-939. 

Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate 
composite marginal likelihood (MACML) estimator for mixed multinomial probit models. 
Transportation Research Part B 45(7), 940-953. 

Sener, I.N., Bhat, C.R., 2012. Flexible spatial dependence structures for unordered multinomial 
choice models: formulation and application to teenagers’ activity participation. 
Transportation 39(3), 657-683. 
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Sidharthan, R., Bhat, C.R, Pendyala, R.M., Goulias, K.G., 2011. Model for children's school 
travel mode choice: accounting for effects of spatial and social interaction. Transportation 
Research Record 2213, 78-86. 

 
2.3.2.2. The Spatial CMMNP Model 
Rewrite Equation (2.18) from Section 2.2.2.2 to include spatial dependency in the utility that 

individual q attributes to alternative gi  ( gi =1,2,..., )gI for the gth variable. 
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with all notations as earlier. 
gqgix  is an 1gL -column vector of exogenous attributes, 
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Section 2.2.2.2, we will assume that the )
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( qggqg βbβ  vectors are independent across the 

unordered-response dimensions for each individual. We also assume that 
gqgi  is independent 

and identically normally distributed across individuals q. Let qgm  be the actual chosen alternative 

for the gth unordered-response variable by individual q. Define the following: 
 

),...,,( 21 
gqgIqgqgqg UUUU   ( 1gI  vector), ),...,( 21  qGqqq UUUU  1

~G  vector 

,
~

1


















 



G

g
gIG   ),...,(  qGq2q1q ξξξξ ( 1

~G vector), ),...,( 21  QUUUU  ( 1
~GQ vector), 

),...,,(  Qξξξξ 21 ( 1
~GQ vector) , ),...,,(  Gbbbb 21 ( 1

~ L vector) ,
~

1


















 



G

g
gLL  

) ,...,,( 21 
gqgIqgqgqg xxxx  ( gg LI   matrix),  

 

),matrix
~~

(

0000

0000

0000

0.000

3

2

1

LG

qG

q

q

q

q 

























x

x

x

x

x











matrix),  
~~

( LQGQ 

























Q

3

2

1

0000

0000

0000

0000

x

x

x

x

x












 

) ,...,,( 1  Q2 xxxx  ( LGQ
~~  matrix),   1

~
(

~~~~ 


 LqGq2q1q β,...,β,ββ vector), and 

  Qββββ
~

,...,
~

,
~~

21  ( 1
~LQ  vector) . Let ),,(~ ~~ Λ0

GG
MVNqξ  where the covariance matrix Λ is 

to be constructed as discussed in Section 2.2.2.2. Then, ),( ~~ ΛIDEN0 QGQ


GQ
MVN~ξ . Also, 

define gg II  (
~

qggqgqg xΩxΩ matrix), and the following matrices: 
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Equation (2.81) may then be written in matrix form as: 

  ,
~

ξβb  xxSU


  (2.82) 

where   ,)(*).
~

( ~~
GQQGQ

IDENWδ1IDENS   W  is the )( QQ   weight matrix with the 

weights qqw  , and “ *. ” refers to the element-by-element multiplication of the two matrices 

involved. Also, ),
~

,(~ ~ ΞVU
GQ

MVN where bSxV   and 
 

  .(
~~

SΛ)IDENΩSΞ Q  13 

To develop the likelihood function, construct a matrix M  as follows. First, for each 

unordered variable g and individual q, construct a matrix qgM with )1( gI  rows and gI  

columns. This matrix corresponds to an )1( gI  identity matrix with an extra column of ‘ 1 ’ 

values added as the th
qgm column. Then, define the following:  

                                                            

13 One can also obtain Ω
~

as x
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The parameter vector to be estimated is . )
~~~

,
~

,( 21  δ,ΛΩ,...,ΩΩθ Gb Using the usual notations, 

the likelihood function is: 

111 and,
~

, where),),(()(   ΞΞ
**

Ξ ωΞωΞMΞMΞMVΞωθ BB
GQ

L    (2.85) 

The likelihood function is of a very high dimensionality. Instead, consider the (pairwise) 
composite marginal likelihood function. Further, as in Section 2.1.2.2, we can reduce the 
pairings by testing different distance bands and determining the “optimal” distance for including 
pairings across individuals based on minimizing the trace of the asymptotic covariance matrix.  

Define a set qC
~

 that includes the set of individuals q’ (including q) that are within a specified 

threshold distance of individual q. Then, the CML function reduces to the following expression: 

 















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θ  with ,when ggqq   where  (2.86) 

 ),),(-(),Pr( 1
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ggqqggqqB

ggqq






 Ξω
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


ggJgqgqqgqgggqq mdmdL   

 

and ,2  gggg IIJ


 ,, '
ggqq ΔΞΔΞΔ ggqqggqqggqqggqq   ggqqBB


 ,1

~
1
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
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





ggqqggqq

ggqq
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ggqq ΞΞ
ωΞωΞ



and ggqq Δ  is a GQJ


 -selection matrix with an identity matrix of size ( 1gI ) occupying the 

first ( 1gI ) rows and the 

thg

l
lIGq 








 





1)1(
1

1


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thg

l
lIGq 







 

1

)1(


columns, and 

another identity matrix of size ( 1gI ) occupying the last ( 1gI ) rows and the 
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thg
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

columns  (with the convention that 

).0
0

1


l

lI  The model can now be estimated using the MACML method. The computation of the 

covariance matrix is identical to the case in Section 2.2.2.2, with the use of ggqqL   as in Equation 

(2.86) above. Once again, the analyst can consider further cutting down the number of pairings 
by ignoring the pairings among different individuals (observation units) across the G variables.  
 
References for the CML Estimation of the Spatial MNP (SMNP) Model 
No known applications thus far.  
 
2.2.2.3 The Spatial Panel MNP Model 
Consider the following model with ‘t’ now being an index for choice occasion: 

 . ..., ,2 ,1, ..., ,2 ,1   , ..., ,2 ,1  ,),(~  , IiTtQqMVN UwδU Lqti
q

tiqqqqit  


 Ωbβxβ qqtiq    (2.87)       

We assume that qit  is independent and identically normally distributed across individuals and 

choice occasions, but allow a general covariance structure across alternatives for each choice 

instance of each individual. Specifically, let ),...,( 21  qtIqtqt qtξ  ( 1I vector). Then, we 

assume ),0(~ ΛIMVNqtξ . As usual, appropriate scale and level normalization must be imposed 

on Λ  for identifiability. Next, define the following vectors and matrices:
 

),...,,( 21  qtIqtqtqt UUUU  1( I  vector), ),...,,( 21  qIqqq UUUU  1( TI  vector), 

),...,(  qTqqq ξξξξ 21  1( TI  vector), ) ,...,,( 21  qtIqtqtqt xxxx  ( LI   matrix), 

) ...,,( 21  qTqqq xxxx  ( LTI   matrix), 

),...,( 21  QUUUU , ),...,(  Qξξξξ 21   ( 1QTI vectors),  and ) ,...,,( 21  Qxxxx  ( LQTI   

matrix). Let ),(~
~

,
~

Ω0LMVNqqq ββbβ  ,    Qββββ
~
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,
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x    (2.88) 

Then, we can write Equation (2.87) in matrix notation as: 

 ξβb  ~~xxSU , (2.89) 
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with    ).matrix()( 1 QTIQTIITQTI  IDENIDENWIDENS    

Then, ),
~

,(~ ΞVU QTIMVN where bSxV   and  
 

  .(
~

SΛ)ΩIDENSΞ Q   To develop the 

likelihood function, define M as an ][)]1([ QTIIQT   block diagonal matrix, with each block 

diagonal having )1( I  rows and I columns corresponding to the tth observation time period on 

individual q. This II  )1(  matrix for parcel q and observation time period t corresponds to an 

)1( I  identity matrix with an extra column of “ 1 ” values added as the qtm th column. For 

instance, consider the case of Q = 2, T = 2, and I = 4. Let individual 1 be observed to choose 
alternative 2 in time period 1 and alternative 1 in time period 2, and let individual choose 
alternative 3 in time period 1 and in alternative 4 in time period 2. Then M takes the form below. 
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M   (2.90) 

Let .
~

and MΞMΞVM B The parameter vector to be estimated is , ),,,(  ΛΩθ b and 

the likelihood function is: 

      ),),(()( 1
)1(

*
Ξ ΞBωθ  

IQTL   (2.91) 

where .11  ΞΞ
* ωΞωΞ   

Now, consider the following (pairwise) composite marginal likelihood function formed 
by taking the products (across the T choice occasions) of the joint pairwise probability of the 

chosen alternatives qtm  for the tth choice occasion and qgm  for the gth choice occasion for 

individual q. To reduce the number of pairings, define a set qC
~

 as in the previous section that 

includes the set of individuals q’ (including q) that are within a specified threshold distance of 
individual q. Then, the CML function reduces to the following expression: 
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*

ttqq ωΞωΞ


,, '
ttqqttqq ΔΞΔΞΔ ttqqttqqttqqttqq  


BB and ttqq Δ  is a 

)1()1(2  IQTI -selection matrix with an identity matrix of size ( 1I ) occupying the first 

)1( I  rows and the  thItTIq 1)1()1()1()1(  through 

 thItTIq )1()1()1(  columns, and another identity matrix of size ( 1I ) occupying 

the last ( 1I ) rows and the  thItTIq 1)1()1()1()1(  through 

 thItTIq )1()1()1(   columns. The model can now be estimated using the MACML 

method. The computation of the covariance matrix is identical to the case in Section 2.2.2.2 with 

the use of ttqqL   as in Equation (2.92) above. The analyst can consider further cutting down the 

number of pairings by ignoring the pairings among different individuals (observation units) 
across the T time periods. 
  
References for the CML Estimation of the Spatial MNP (SMNP) Model 
Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML) 

estimation of multinomial probit-based unordered response choice models. Transportation 
Research Part B 45(7), 923-939. 

Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate 
composite marginal likelihood (MACML) estimator for mixed multinomial probit models. 
Transportation Research Part B 45(7), 940-953.  

Sidharthan, R., Bhat, C.R., 2012. Incorporating spatial dynamics and temporal dependency in 
land use change models. Geographical Analysis 44(4), 321-349.   

 
2.4. Application to Count Models 
Count data models are used in several disciplines to analyze discrete and non-negative outcomes 
without an explicit upper limit. Applications of such count data models abound in the scholarly 
literature, both in number (a count in and of itself!) as well as diversity of topics. Applications 
include the analysis of (a) the number of doctor visits, the number of homes affected by cholera, 
the number of cancer incidents, and the number of milk formula bottles supplied to infants by 
breastfeeding mothers in the medicine field, (b) the number of crimes and the number of drug 
possession convictions in the criminology field, (c) the number of mergers and acquisitions of 
foreign direct investments, the number of faults in a bolt, the frequency of contract change 
orders, and the number of jobs by space unit in the economics field, (d) the number of harbor 
seals hauled out on glacial ice and the count of birds at sanctuaries in the ecology field, and (e) 
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roadway crash frequency, counts of flights from airports, and the number of drinking under 
intoxication (DUI) infractions in the transportation field. 

Count data models assume a discrete probability distribution for the count variables, 
followed by the parameterization of the mean of the discrete distribution as a function of 
explanatory variables. The two most commonly used discrete probability distributions are the 
Poisson and the negative binomial (NB) distributions, though other distributions such as the 
binomial and logarithmic distributions have also been occasionally considered. Several 
modifications and generalizations of the Poisson and negative binomial distributions have also 
been used. For example, in many count data contexts, there are a large number of zero count 
values. The most commonly used approach to accommodate this issue is the zero-inflated 
approach. The approach identifies two separate states for the count generating process – one that 
corresponds to a “zero” state in which the expected value of counts is so close to zero as being 
indistinguishable from zero, and another “normal” state in which a typical count model (with 
either a Poisson or NB distribution) operates. Effectively, the zero-inflated approach is a 
discrete-mixture model involving a discrete error distribution that modifies the probability of the 
zero outcome. Another similar approach to account for excess zeros is the hurdle-count approach 
(in which a binary outcome process of the count being below or above a hurdle (zero) is 
combined with a truncated discrete distribution for the count process being above the hurdle 
(zero) point. While the modifications and generalizations such as those just described have been 
effective for use with univariate count models, they are difficult to infeasible to implement in the 
case when there are inter-related multivariate counts at play (see Castro, Paleti and Bhat, 2012 
(or CPB hereafter) and Herriges et al., 2008 for discussions). Also, including spatial dependence 
within the framework of traditional count formulations is very cumbersome. To address these 
situations, we can re-formulate the traditional count models as a special case of a generalized 
ordered-response probit (GORP) formulation (see CPB). Indeed, in this re-formulation, any 
count model can be formulated as a special case of a GORP formulation. Once this is achieved, 
all the GORP-related formulations in the earlier sections immediately carry over to count 
models. In this section, we will consider a single count variable based on a negative binomial 
distribution and show its aspatial GORP formulation, because extension to include multivariate 
and spatial contexts exactly mirror the previous GORP discussions.  

Consider the recasting of the count model using a specific functional form for the random-
coefficients generalized ordered-response probit (GORP) structure of Section 2.2.1.1 as follows: 

kyy qqq  ,* qq xβ  if  kqqkq y ,
*

1,   , (2.93) 

where qx  is an (L×1) vector of exogenous variables (not including a constant), qβ  is a 

corresponding (L×1) vector of individual-specific coefficients to be estimated, q  is an 

idiosyncratic random error term that we will assume in the presentation below is independent of 

the elements of the vectors qβ  and qx , and kqψ ,  is the individual-specific upper bound threshold 

for discrete level k . The q  terms are assumed independent and identically standard normally 
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distributed across individuals. The typical assumption for q is that it is either normally or 

logistically distributed, though non-parametric or mixtures-of-normal distributions may also be 

considered. Also, ,
~

qq βbβ   where ),0(~
~

ΩLq MVNβ . *
qy  is an underlying latent continuous 

variable that maps into the observed count variable qy  ql  
through the qψ vector (which is a 

vertically stacked column vector of thresholds .) ,..., ,,,( 2101,  qqqq   The kqψ , thresholds are 

parameterized as a function of a vector of observable covariates qz  (including a constant) as 

follows (see Bhat et al., 2014b):   
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In the above equation, [.]1  is the inverse function of the univariate cumulative standard 

normal.   is a parameter that provides flexibility to the count formulation, and, as we will see 

later, serves the same purpose as the dispersion parameter in a traditional negative binomial 

model ( >0). )(  is the traditional gamma function; 





0

1)(
h

h dheh . The threshold 

terms in the qψ  vector satisfy the ordering condition (i.e., )....210, qq,q,q,q   1  

as long as  .....2101    The presence of these   
terms provides substantial 

flexibility to accommodate high or low probability masses for specific count outcomes, beyond 
what can be offered by traditional treatments using zero-inflated or related mechanisms. For 

identification, we set ,, 11 qq,     and .00   In addition, we identify a count 

value ......}),2 ,1,0{( ** ee  above which ......}),2 ,1,0{( ee is held fixed at *e
 ; that is, 

*ee    if ,*ee   where the value of *e  can be based on empirical testing. For later use, let 

),,( *21 
e

 φ  ( 1* e  vector).   

The specification of the GORP model in the equation above provides a very flexible 
mechanism to model count data. It subsumes the traditional count models as very specific and 

restrictive cases. In particular, if the vector qβ  is degenerate with all its elements taking the fixed 

value of zero, and all elements of the φ  vector are zero, the model in Equation (2.93) collapses 

to a traditional negative binomial model with dispersion parameter θ. To see this, note that the 
probability expression in the GORP model of Equation (2.93) with the restrictions may be 
written as: 
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 (2.95) 

which is the probability expression of the negative binomial count model. If, in addition, 

,  the result can be shown to be the Poisson count model.  

In an empirical context of crash counts at intersections, CPB interpret the GORP 

recasting of the count model as follows. There is a latent “long-term” crash propensity *
qy  

associated with intersection q that is a linear function of a set of intersection-related attributes qx  

On the other hand, there may be some specific intersection characteristics (embedded in qz  

within the threshold terms) that may dictate the likelihood of a crash occurring at any given 

instant of time for a given long-term crash propensity *
qy .  Thus, two intersections may have the 

same latent long-term crash propensity *
qy , but may show quite different observed number of 

crashes over a certain time period because of different *
qy - to - qy  mappings through the cut 

points ( qy  is the observed count variable). CPB postulated that factors such as intersection 

traffic volumes, traffic control type and signal coordination, driveways between intersections, 
and roadway alignment are likely to affect “long-term” latent crash propensity at intersections 
and perhaps also the thresholds. On the other hand, they postulate that there may be some 
specific intersection characteristics such as approach roadway types and curb radii at the 
intersection that will load more on the thresholds that affect the translation of the crash 
propensity to crash outcomes. Of course, one can develop similar interpretations of the latent 
propensity and thresholds in other count contexts (see, for example, the interpretation provided 
by Bhat et al., 2014a, in a count context characterized by the birth of new firms in Texas 
counties).  

To summarize, the GORP framework represents a generalization of the traditional count 
data model, has the ability to retain all the desirable traits of count models and relax constraints 
imposed by count models, leads to a much simpler modeling structure when flexible spatial and 
temporal dependencies are to be accommodated, and may also be justified from an 
intuitive/conceptual standpoint. Indeed, all the spatial, multivariate, and panel-based extensions 
discussed under ordered-response models immediately apply to count models based on the count 
reformulation as a GORP model.  
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3.  APPLICATION TO JOINT MIXED MODEL SYSTEMS 
The joint modeling of data of mixed types of dependent variables (including ordered-response or 
ordinal variables, unordered-response or nominal variables, count variables, and continuous 
variables) is of interest in several fields, including biology, economics, epidemiology, social 
science, and transportation (see a good synthesis of applications in de Leon and Chough, 2013). 
For instance, in the transportation field, it is likely that households that are not auto-oriented 
choose to locate in transit and pedestrian friendly neighborhoods that are characterized by mixed 
and high land use density, and then the good transit service may also further structurally 
influence mode choice behaviors. If that is the case, then it is likely that the choices of residential 
location, vehicle ownership, and commute mode choice are being made jointly as a bundle. That 
is, residential location may structurally affect vehicle ownership and commute mode choice, but 
underlying propensities for vehicle ownership and commute mode may themselves affect 
residential location in the first place to create a bundled choice. This is distinct from a sequential 
decision process in which residential location choice is chosen first (with no effects whatsoever 
of underlying propensities for vehicle ownership and commute mode on residential choice), then 
residential location affects vehicle ownership (which is chosen second, and in which the 
underlying propensity for commute mode does not matter), and finally vehicle ownership affects 
commute mode choice (which is chosen third). The sequential model is likely to over-estimate 
the impacts of residential location (land use) attributes on activity-travel behavior because it 
ignores self-selection effects wherein people who locate themselves in mixed and high land use 
density neighborhoods were auto-disoriented to begin with. These lifestyle preferences and 
attitudes constitute unobserved factors that simultaneously impact long term location choices, 
medium term vehicle ownership choices, and short term activity-travel choices; the way to 
accurately reflect their impacts and capture the “bundling” of choices is to model the choice 
dimensions together in a joint equations modeling framework that accounts for correlated 
unobserved lifestyle (and other) effects as well as possible structural effects.   

There are many approaches to model joint mixed systems (see Wu et al., 2013 for a 
review), but the one we will focus on here is based on accommodating jointness through the 
specification of a distribution for the unobserved components of the latent continuous variables 
underlying the discrete (ordinal, nominal, or count) variables and the unobserved components of 
observed continuous variables. Very generally speaking, one can consider a specific marginal 
distribution for each of the unobserved components of the latent continuous variables 
(underlying the discrete variables) and the observed continuous variable, and then generate a 
joint system through a copula-based correlation on these continuous variables. However, here we 
will assume that the marginal distributions of the latent and observed continuous variables are all 
normally distributed, and assume a Gaussian Copula to stitch the error components together. 
This is equivalent to assuming a multivariate normal distribution on the error components. But 
the procedures can be extended to non-normal marginal distributions and non-Gaussian copulas 
in a relatively straightforward fashion.  
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 From a methodological perspective, the simulation-based likelihood estimation of joint 
mixed models can become quite cumbersome and time-consuming. However, the use of the 
MACML estimation technique has once again opened up possibilities because of the dramatic 
breakthrough in the ease and computational feasibility of estimating joint mixed systems.     
 
3.1. Joint Mixed Dependent Variable Model Formulation  
In the following presentation, for ease in exposition, we assume fixed coefficients on variables, 
though extension to the case of random coefficients in conceptually very straightforward (as in 
earlier sections). We will also suppress the notation for individuals, and assume that all error 
terms are independent and identically distributed across individuals.  Finally, we will develop the 
formulation in the context of ordinal, nominal, and continuous variables, though the formulation 
is immediately applicable to count variables too because count variables may be modeled as a 
specific case of the GORP-based formulation for ordinal variables.  

Let there be N ordinal variables for an individual, and let n be the index for the ordinal 

variables ) ..., ,2 ,1( Nn  . Also, let nJ  be the number of outcome categories for the nth ordinal 

variable )2( nJ  and let the corresponding index be nj ) ..., ,2 ,1( nn Jj  . Let *
ny  be the latent 

underlying variable whose horizontal partitioning leads to the observed choices for the nth ordinal 

variable. Assume that the individual under consideration chooses the th
na  ordinal category. Then, 

in the usual ordered response formulation: 

, if , *
1

* n
kql

n
knnn ykjy   wδn

 

 (3.1) 

where w  is a fixed and constant vector of exogenous variables (not including a constant), nδ  is a 

corresponding vector of coefficients to be estimated, the ψ terms represent thresholds, and n  is 

the standard normal random error for the nth ordinal variable. We parameterize the thresholds as: 

)exp(1 zγkn  kn
n
k

n
k α  (3.2)

 

In the above equation, kn  is a scalar, and knγ  is a vector of coefficients associated with ordinal 

level 1 ,...,2 ,1  Kk  for the nth ordinal variable. The above parameterization immediately 

guarantees the ordering condition on the thresholds for each and every crash, while also enabling 
the identification of parameters on variables that are common to the w  and z  vectors. For 

identification reasons, we adopt the normalization that .)exp( 11 nα n
n   Stack the N latent 

variables *
ny  into an )1( N vector *y , and let  *y

Ξfy ,~* N , where  wδwδwδ N ,...,,( 21f  

and *y
Σ  is the covariance matrix of ) ..., , ,( 21 Nε . Also, stack the lower thresholds 

corresponding to the actual observed outcomes for the n ordinal variables
 
into an )1( N  vector 

lowψ  and the upper thresholds into another vector .upψ  For later use, define 
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,),...,,(,),...,,(  Nn,-Jnnn γγγγγγγγ
n 21132 ,),...,,(,),...,,( ,121   Nn ααααα 21nJnn n

αα  and 

.),...,,( 21  Nδδδδ  

Let there be G nominal (unordered-response) variables for an individual, and let g be the 
index for the nominal variables (g = 1, 2, 3,…, G). Also, let Ig be the number of alternatives 
corresponding to the gth nominal variable (Ig 3) and let ig be the corresponding index (ig = 1, 2, 
3,…, Ig). Consider the gth nominal variable and assume that the individual under consideration 
chooses the alternative mg. Also, assume the usual random utility structure for each alternative ig. 

,
ggg gigigiU  xbg  (3.3)  

where 
ggix is a 1L column vector of exogenous attributes, gb  is a column vector of 

corresponding coefficients, and 
ggi is a normal error term. Let ),...,( 21 

ggIgg gξ  ( 1gI

vector), ),0(~ gΛ
gIMVNgξ . Let ),...,,( 21 

ggIggg UUUU  1( gI  vector), 

),...,,,( 321 
qgIggg xxxxxg  LI g (  matrix), gV bxgg  1( gI  vector). Then 

).,(~ gΛVU gIg g
MVN  Under the utility maximization paradigm, 

gg gmgi UU  must be less than 

zero for all gg mi  , since the individual chose alternative gm . Let )(*
gggmgimgi miUUu

gggg
 ,  

and stack the latent utility differentials into a vector   



 


 ggmgImgmg miuuu

gggg
;,...,, **

2
*

1
*
gu .  As 

usual, only the covariance matrix of the error differences is estimable. Taking the difference with 

respect to the first alternative, only the elements of the covariance matrix gΛ


 of 

,),...,,( 32 
ggIgg gς  

where 1ggigi    ( 1i ), are estimable. However, the condition that 

1
gI0u*

g  takes the difference against the alternative gm
 
that is chosen for the nominal variable 

g. Thus, during estimation, the covariance matrix gΛ


 (of the error differences taken with respect 

to alternative gm  is desired). Since gm  will vary across households, gΛ


will also vary across 

households. But all the gΛ


 
matrices must originate in the same covariance matrix gΛ  for the 

original error term vector gξ . To achieve this consistency, gΛ  is constructed from gΛ


by adding 

an additional row on top and an additional column to the left. All elements of this additional row 
and column are filled with values of zeros. Also, an additional scale normalization needs to be 

imposed on gΛ


. For this, we normalize the first element of gΛ


 to the value of one. The 

discussion above focuses on a single nominal variable g. When there are G nominal variables, 

define 



G

g
gIG

1


 and 




G

g
gIG

1

)1(
~

. Further, let   ,,...,, 11312
 ggIgggg UUUUUU

g

*
gu
  

     







 

 *
G

* uuuu


,...,, *
2

*
1 , and      








 

 *
G

* uuuu ,...,, *
2

*
1  (so *u


 is the vector of utility 
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differences taken with respect to the first alternative for each nominal variable, while *u  is the 
vector of utility differences taken with respect to the chosen alternative for each nominal 

variable).  Now, construct a matrix of dimension GG
~~  that represents the covariance matrix of 

*u


: 

































G2G1G

2G212

1G121

Λ  ...Λ Λ  

......

......

......

Λ ... Λ Λ  

Λ ...ΛΛ 

Σ







*u
 (3.4) 

In the general case, this allows the estimation of 












G

g

gg II

1

1
2

)1(*
 terms across all the G 

nominal variables (originating from 










1

2

)1(* gg II
 terms embedded in each gΛ


 matrix; 

g=1,2,…G) and the  


 


1

1 1

)1()1(
G

g

G

gl
lg II  covariance terms in the off-diagonal matrices of the 

*u
Σ  matrix characterizing the dependence between the latent utility differentials (with respect to 

the first alternative) across the nominal variables (originating from )1()1(  lg II  estimable 

covariance terms within each off-diagonal matrix in *u
Σ ). For later use, define the stacked 

1G


vectors   GUUUU , ... ,, 21  , and   GVVVV 2 , ... ,,1  . 

 Finally, let there be H continuous variables ) ..., , ,( 21 Hyyy with an associated index h 

) ..., ,2 ,1( Hh  . Let hhhy  shλ  in the usual linear regression fashion, and 

.),...,,( 21  Hλλλλ  Stacking the H continuous variables into a )1( H -vector y, one may write 

),,( yhMVN Σcy   where  '21 ,...,, Hsssc Hλλλ 21  , and yΣ  is the covariance matrix of 

 H ,....., 21η .  

 
3.2. The Joint Mixed Model System and the Likelihood Formation 
The jointness across the different types of dependent variables may be specified by writing the 

covariance matrix of  yyuy * ,, *    as:  

Var




















   

   

   

**

****

****

)(

yyyyu

yyyyu

yuyuu

ΣΣΣ

ΣΣΣ

ΣΣΣ

Ω








y ,   (3.5) 
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where *y*Σ
u


 
is a NG~

 matrix capturing covariance effects between the *u


 vector and the *y  

vector, 
y*Σ

u
 is a HG~

 matrix capturing covariance effects between the *u


vector and the  y  

vector, and 
y*y

Σ
 
is an HN   matrix capturing covariance effects between the *y  vector and the  

y  vector. All elements of the matrix above are identifiable. However, the matrix represents the 
covariance of latent utility differentials taken with respect to the first alternative for each of the 
nominal variables. For estimation, the corresponding matrix with respect to the latent utility 

differentials with respect to the chosen alternative for each nominal variable, say Ω
~

, is needed. 

For this purpose, first construct the general covariance matrix Ω  for the original   1 HNG


  

vector  







  yy ,, *UUY , while also ensuring all parameters are identifiable (note that Ω  is 

equivalently the covariance matrix of ),,(  ηξετ . To do so, define a matrix D of size 

   HNGHNG  ~
. The first 1I  rows and )1( 1 I  columns correspond to the first 

nominal variable. Insert an identity matrix of size )1( 1 I  after supplementing with a first row of 

zeros in the first through )1( 1 I th columns of the matrix. The rest of the elements in the first 1I  

rows and the first )1( 1 I  columns take a value of zero. Next, rows )1( 1 I through )( 21 II  and 

columns )( 1I  through )2( 21  II  correspond to the second nominal variable. Again position an 

identity matrix of size )1( 2 I  after supplementing with a first row of zeros into this position. 

Continue this for all G nominal variables. Put zero values in all cells without any value up to this 
point. Finally, insert an identity matrix of size N+H into the last N+H rows and N+H columns of 
the matrix D. Thus, for the case with two nominal variables, one nominal variable with 3 
alternatives and the second with four alternatives, one ordinal variable, and one continuous 
variable, the matrix D takes the form shown below: 

 (3.6) 

Then, the general covariance matrix of UY may be developed as .DΩDΩ 


 All parameters in 

this matrix are identifiable by virtue of the way this matrix is constructed based on utility 
differences and, at the same time, it provides a consistent means to obtain the covariance matrix 
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Ω
~

 that is needed for estimation (and is with respect to each individual’s chosen alternative for 

each nominal variable). Specifically, to develop the distribution for the vector 







 

 yyuy * ,,~ * , 

define a matrix M of size    HNGHNG 
~

. The first )1( 1 I  rows and 1I  columns 

correspond to the first nominal variable. Insert an identity matrix of size )1( 1 I  after 

supplementing with a column of ‘-1’ values in the column corresponding to the chosen 

alternative. The rest of the columns for the first )1( 1 I  rows and the rest of the rows for the first 

1I  columns take a value of zero. Next, rows )( 1I  through )2( 21  II and columns )1( 1 I

through )( 21 II  correspond to the second nominal variable. Again position an identity matrix of 

size )1( 2 I  after supplementing with a column of ‘-1’ values in the column corresponding to 

the chosen alternative. Continue this procedure for all G nominal variables. Finally, insert an 
identity matrix of size N +H into the last N +H rows and N +H columns of the matrix M. With 

the matrix M as defined, the covariance matrix  Ω
~

 is given by .MMΩΩ ~
 

Next, define   *'*' y,uu~ and   .,~  fVg )(M  Also, partition Ω
~

 so that 
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Σ

Σ
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matrix. Also, supplement the threshold vectors defined earlier as follows: 

    



  lowlow ψψ ,~

~
G

, and     



  upup ψ0ψ ,~

~
G

, where  
G
~  is a )1

~
( G -column vector of 

negative infinities, and G
~0  is another )1

~
( G -column vector of zeros. The conditional 

distribution of u~  given y, is multivariate normal with mean  dygg  1
~

~~~~
yyu ΣΣ and variance 

yuyyuuu ~
1

~~~
~~~~~
ΣΣΣΣΣ   . 

Next, let θ  be the collection of parameters to be estimated: 
. )](Vech  );(Vech  ;  );(Vech ;,  ; ..., , ,[ ~~21 yΣΣλΣαγ,δ uyuGbbbθ   Then the likelihood function 

for the household may be written as: 

  ,~~~ Pr)|()( uplow ψψΣ  ucyθ yHL   (3.8) 

,~)
~~

,
~~|~()|( ~~

~

udf uNG
D

yH

u

ΣΣ gudy    
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where the integration domain }~~~:~{
~

uplow ψuψu 
u

D  is simply the multivariate region of the 

elements of the u~  vector determined by the range )0,(  for the nominal variables and by the 

observed outcomes of the ordinal variables, and (.)~
NG

f   is the multivariate normal density 

function of dimension .
~

NG   The likelihood function for a sample of Q observations is obtained 
as the product of the observation-level likelihood functions. 

 The above likelihood function involves the evaluation of a NG ~ -dimensional 
rectangular integral for each household, which can be computationally expensive. So, the 
Maximum Approximate Composite Marginal Likelihood (MACML) approach of Bhat (2011) 
may be used.  

 
3.3. The Joint Mixed Model System and the MACML Estimation Approach 
Consider the following (pairwise) composite marginal likelihood function formed by taking the 
products (across the N ordinal variables and G nominal variables) of the joint pairwise 
probability of the chosen alternatives for an individual, and computed using the analytic 
approximation of the multivariate normal cumulative distribution (MVNCD) function. 
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where 
gid is an index for the individual’s choice for the gth nominal variable. The net result is 

that the pairwise likelihood function now only needs the evaluation of  
~

 and ,
~

,
~

gnnngg GGG 

dimensional cumulative normal distribution functions (rather than the NG ~ -dimensional 
cumulative distribution function in the maximum likelihood function), where 

 
~

and2,
~

,2
~

' ggnnngggg IGGIIG 
 . This leads to substantial computational efficiency. 

However, in cases where there are several alternatives for one or more nominal variables, the 

dimension gngg GG
~

 and 
~

  can still be quite high. This is where the use of an analytic 

approximation of the MVNCD function comes in handy. The resulting maximum approximated 
composite marginal likelihood (MACML) is solely based on bivariate and univariate cumulative 
normal computations. Also note that the probabilities in the MACML function in Equation (3.9) 

can be computed by selecting out the appropriate sub-matrices of the mean vector g
~~  and the 

covariance matrix u~

~~
Σ  of the vector u~  , and the appropriate sub-vectors of the threshold vectors 

.~and~ uplow ψψ  The covariance matrix of the parameters θ   may be estimated as: 
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An alternative estimator for Ĥ is as below: 
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3.4. Positive Definiteness 

The matrix  Ω
~

 for each household has to be positive definite. The simplest way to guarantee this 

is to ensure that the matrix Ω


 is positive definite. To do so, the Cholesky matrix of Ω


 may be 
used as the matrix of parameters to be estimated. However, note that the top diagonal element of 

each gΛ


in Ω


 is normalized to one for identification, and this restriction should be recognized 

when using the Cholesky factor of Ω


. Further, the diagonal elements of 
   *y

Σ in Ω


 are also 

normalized to one. These restrictions can be maintained by appropriately parameterizing the 
diagonal elements of the Cholesky decomposition matrix. Thus, consider the lower triangular 

Cholesky matrix L


 of the same size as Ω


. Whenever a diagonal element (say the kkth element) 

of Ω


 is to be normalized to one, the corresponding diagonal element of L


 is written as 







1

1

21
a

j
kjd , where the kjd  elements are the Cholesky factors that are to be estimated. With this 

parameterization, Ω


 obtained as LL 


 is positive definite and adheres to the scaling conditions.  
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4. CONCLUSIONS 
This paper presents the basics of the composite marginal likelihood (CML) inference approach, 
discussing the asymptotic properties of the CML estimator and possible applications of the 
approach for a suite of different types of discrete and mixed dependent variable models. The 
approach can be applied using simple optimization software for likelihood estimation. In the case 
of models with complex and analytically intractable full likelihoods, the CML also represents a 
conceptually and pedagogically simpler simulation-free procedure relative to simulation 
techniques, and has the advantage of reproducibility of the results. For instance, in a panel 
application, Varin and Czado (2010) examine the headache pain intensity of patients over several 
consecutive days. In this study, a full information likelihood estimator would have entailed as 
many as 815 dimensions of integration to obtain individual-specific likelihood contributions, an 
infeasible proposition using computer-intensive simulation techniques. In another panel spatial 
application, Sidharthan and Bhat (2012) examine the case of spatial dependence in land-use of 
spatial grids, and the full information likelihood estimator would have entailed integration of the 
order of 4800 dimensions. Despite advances in simulation techniques and computational power, 
the evaluation of such high dimensional integrals is literally infeasible using traditional 
frequentist and Bayesian simulation techniques. For instance, in frequentist methods, where 
estimation is typically undertaken using pseudo-Monte Carlo or quasi-Monte Carlo simulation 
approaches (combined with a quasi-Newton optimization routine in a maximum simulated 
likelihood (MSL) inference), the computational cost to ensure good asymptotic estimator 
properties becomes prohibitive for the number of dimensions just discussed. Similar problems 
arise in Bayesian Markov Chain Monte Carlo (MCMC) simulation approaches, which remain 
cumbersome, require extensive simulation, are time consuming, and pose convergence 
assessment problems as the number of dimensions increases (see Ver Hoef and Jansen, 2007, and 
Franzese et al., 2010 for discussions).  

Even when the full likelihood involves a lower and more practically feasible 
dimensionality of integration, the accuracy of simulation techniques is known to degrade rapidly 
as the dimensionality increases, and the simulation noise increases substantially. This leads to 
convergence problems during estimation, unless a very high number of simulation draws is used. 
Several studies have demonstrated so in a variety of econometric modeling contexts (see, for 
example, Bhat and Sidharthan, 2011 and Paleti and Bhat, 2013). Besides, an issue generally 
ignored in simulation-based approaches is the accuracy (or lack thereof) of the covariance matrix 
of the estimator, which is critical for good inference even if the asymptotic properties of the 
estimator are well established. Thus, the CML can present a very attractive alternative to the 
traditional MSL method in many situations.  

Of course, there are some special cases where the MSL approach may be preferable to the 
CML approach. For example, consider a panel binary discrete choice case with J choice 
occasions per individual and K random coefficients on variables. Let the kernel error term be 
normally distributed and assume that the random coefficients are multivariate normally 
distributed, so that the overall error is also normally distributed. Here, when K < J, and K ≤ 3, the 
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MSL estimation with the full likelihood function is likely to be preferable to the CML. This is 
because integrating up to three dimensions is quite fast and accurate using quasi-Monte Carlo 
simulation techniques. This is particularly so when J is also large, because the number of 
pairings in the CML is high. For the case when K < J and K > 3, or K ≥ J > 3, the CML is likely 
to become attractive, because of the MSL-related problems mentioned earlier for moderate 
dimensions of integration. For example, when K = J =5, the CML is fast since it entails the 
evaluation of only 10 probability pairings for each individual (each pairing involving bivariate 
normal cumulative distribution function evaluations) rather than a five-dimensional integration 
for each individual in the MSL estimation. Note that one may be tempted to think that the CML 
loses this edge when J becomes large. For instance, when J = 10, there would be 45 probability 
pairings for each individual in a pairwise likelihood approach. But the surrogate likelihood 
function in the CML estimation can be formulated in many different ways rather than the full 
pairings approach presented here. Thus, one could consider only the pairing combinations of the 
first five (or five randomly selected) choice occasions for each individual, and assume 
independence between the remaining five choice occasions and between each of these remaining 
choice occasions and the choice occasions chosen for the pairings. Basically, the CML approach 
is flexible, and allows customization based on the problem at hand. The issue then becomes one 
of balancing between speed gain/convergence improvement and efficiency loss. Besides, the 
CML can also use triplets or quadruplets rather than the couplets considered here.  

If the probabilities of the lower dimensional events in the CML approach themselves 
have a multivariate normal cumulative distribution (MVNCD) form, then one can use the 
MACML approach proposed by Bhat to evaluate the MVNCD function using an analytic 
approximation.  
   One potential limitation of the CML approach is the need to compute the Godambe 
information matrix to compute the asymptotic standard errors of parameters. However, even 
when an MSL method is used, the Godambe matrix is recommended to accommodate the 
simulation error that accrues because of the use of a finite number of draws. Another limitation 
of the CML approach is the need to compute the ADCLRT statistic, which is somewhat more 
complicated than the traditional likelihood ration test (LRT) statistic. It is hoped that such 
practical issues will be resolved once standard econometric software packages start 
accommodating the CML inference approach as an option for high dimensional model systems.  

In summary, the CML inference approach (and the associated MACML approach) can be 
very effective for the estimation and analysis of high-dimensional heterogeneous data. This has 
been shown in many recent studies, and there are many more empirical contexts that can 
gainfully use the CML approach using the formulations discussed in this paper. In terms of 
future research on the CML approach itself,  one wide open area pertains to how best to form a 
CML function in a given modeling and empirical context (especially because a precise 
theoretical analysis of the properties of the CML estimator is not possible except for the simplest 
of models).  
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