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ABSTRACT

This paper presents the basics of the composite marginal likelithood (CML) inference approach,
discussing the asymptotic properties of the CML estimator and the advantages and limitations of
the approach. The composite marginal likelihood (CML) inference approach is a relatively
simple approach that can be used when the full likelihood function is practically infeasible to
evaluate due to underlying complex dependencies. The history of the approach may be traced
back to the pseudo-likelihood approach of Besag (1974) for modeling spatial data, and has found
traction in a variety of fields since, including genetics, spatial statistics, longitudinal analyses,
and multivariate modeling. However, the CML method has found little coverage in the
econometrics field, especially in discrete choice modeling. This paper fills this gap by
identifying the value and potential applications of the method in discrete dependent variable
modeling as well as mixed discrete and continuous dependent variable model systems. In
particular, the paper develops a blueprint (complete with matrix notation) to apply the CML
estimation technique to a wide variety of discrete and mixed dependent variable models.



1. INTRODUCTION

1.1. Background

The need to accommodate underlying complex interdependencies in decision-making for more
accurate policy analysis as well as for good forecasting, combined with the explosion in the
quantity of data available for the multidimensional modeling of inter-related choices of a single
observational unit and/or inter-related decision-making across multiple observational units, has
resulted in a situation where the traditional frequentist full likelihood function becomes near
impossible or plain infeasible to evaluate. As a consequence, another approach that has seen
some (though very limited) use recently is the composite likelihood (CL) approach. This is an
estimation technique that is gaining substantial attention in the statistics field, though there has
been relatively little coverage of this method in econometrics and other fields. While the method
has been suggested in the past under various pseudonyms such as quasi-likelihood (Hjort and
Omre, 1994; Hjort and Varin, 2008), split likelihood (Vandekerkhove, 2005), and
pseudolikelihood or marginal pseudo-likelihood (Molenberghs and Verbeke, 2005), Varin (2008)
discusses reasons why the term composite likelihood is less subject to literary confusion.

At a basic level, a composite likelihood (CL) refers to the product of a set of lower-
dimensional component likelihoods, each of which is a marginal or conditional density function.
The maximization of the logarithm of this CL function is achieved by setting the composite score
equations to zero, which are themselves linear combinations of valid lower-dimensional
likelihood score functions. Then, from the theory of estimating equations, it can be shown that
the CL score function (and, therefore, the CL estimator) is unbiased (see Varin et al., 2011). In
this paper, we discuss these theoretical aspects of CL methods, with an emphasis on an overview
of developments and applications of the CL inference approach in the context of discrete
dependent variable models.

The history of the CL method may be traced back to the pseudo-likelihood approach of
Besag (1974) for modeling spatial data, and has found traction in a variety of fields since,
including genetics, spatial statistics, longitudinal analyses, and multivariate modeling (see Varin
et al., 2011 and Larribe and Fearnhead, 2011 for reviews). However, the CL method has, as
indicated earlier, found little coverage in the econometrics field, and it is the hope that this paper
will fill this gap by identifying the value and potential applications of the method in
econometrics.

1.2. Types of CL. Methods
To present the types of CL methods, assume that the data originate from a parametric underlying

model based on a random (}NI x 1) vector ¥ with density function f(y,0), where @ is an
unknown K -dimensional parameter vector (technically speaking, the density function f(y,8)
refers to the conditional density function fyx(»,0) of the random variable ¥ given a set of

explanatory variables X, though we will use the simpler notation f(y,0) for the conditional

density function). Each element of the random variable vector ¥ may be observed directly, or



may be observed in a truncated or censored form. Assume that the actual observation vector
corresponding to Y is given by the vector m = (m,,m,,m,,...,m ﬁ)' , some of which may take a
continuous form and some of which may take a limited-dependent form. Let the likelihood
corresponding to this observed vector be L (@;m). Now consider the situation where computing
L (0;m)is very difficult. However, suppose evaluating the likelihood functions of a set of E
observed marginal or conditional events determined by marginal or conditional distributions of
the sub-vectors of ¥ is easy and/or computationally expedient. Let these observed marginal
events be characterized by ( 4,(m), 4,(m), ..., Az(m) ). Let each event A4, (m) be associated with

a likelihood object L, (0;m) = L[H;Ae (m)], which is based on a lower-dimensional marginal or

conditional joint density function corresponding to the original high-dimensional joint density of
Y. Then, the general form of the composite likelihood function is as follows:

Lo, (0,m) = f[ [L,(0;m)]" ﬁ [L(0; 4, (m)]" (1.1)

where @, is a power weight to be chosen based on efficiency considerations. If these power
weights are the same across events, they may be dropped. The CL estimator is the one that
maximizes the above function (or equivalently, its logarithmic transformation).

The events A, (m) can represent a combination of marginal and conditional events,
though composite likelihoods are typically distinguished in one of two classes: the composite
conditional likelihood (CCL) or the composite marginal likelihood (CML). In this paper, we will
focus on the CML method because it has many immediate applications in the econometrics field,
and is generally easier to specify and estimate. However, the CCL method may also be of value
in specific econometric contexts (see Mardia et al., 2009 and Varin et al., 2011 for additional
details).

1.3. The Composite Marginal Likelihood (CML) Inference Approach
In the CML method, the events A, (m) represent marginal events. The CML class of estimators

subsumes the usual ordinary full-information likelihood estimator as a special case. For instance,
consider the case of repeated unordered discrete choices from a specific individual. Let the
individual’s discrete choice at time ¢ be denoted by the index d,, and let this individual be

observed to choose alternative m, at choice occasion ¢ (¢t =1,2,3,...,7). Then, one may define

the observed event for this individual as the sequence of observed choices across all the 7 choice
occasions of the individual. Defined this way, the CML function contribution of this individual



becomes equivalent to the full-information maximum likelihood function contribution of the
individual:'

L'ew (0,m)=L (0,m)=Prob (d, =m,,d, =m,,d, =m,,...d, =m,). (1.2)

However, one may also define the events as the observed choices at each choice occasion for the
individual. Defined this way, the CML function is:

L’ (0,m) = Prob(d, = m,) x Prob(d, = m,) x Prob(d, = m,) x...x Prob(d, =m,). (1.3)

This CML, of course, corresponds to the case of independence between each pair of observations
from the same individual. As we will indicate later, the above CML estimator is consistent.
However, this approach, in general, does not estimate the parameters representing the
dependence effects across choices of the same individual (i.e., only a subset of the vector 8 is
estimable). A third approach to estimating the parameter vector € in the repeated unordered
choice case is to define the events in the CML as the pairwise observations across all or a subset
of the choice occasions of the individual. For presentation ease, assume that all pairs of
observations are considered. This leads to a pairwise CML function contribution of individual ¢
as follows:

T-1 r
Lo (0,m)=]][] Probd, =m,.d, =m,). (1.4)
t=1 t'=t+1

Almost all earlier research efforts employing the CML technique have used the pairwise
approach, including Apanasovich et al. (2008), Varin and Vidoni (2009), Bhat and Sener (2009),
Bhat et al. (2010a), Bhat and Sidharthan (2011), Vasdekis et al. (2012), Ferdous and Bhat
(2013), and Feddag (2013). Alternatively, the analyst can also consider larger subsets of
observations, such as triplets or quadruplets or even higher dimensional subsets (see Engler et
al., 2006 and Caragea and Smith, 2007). However, the pairwise approach is a good balance
between statistical and computational efficiency (besides, in almost all applications, the
parameters characterizing error dependency are completely identified based on the pairwise
approach). Importantly, the pairwise approach is able to explicitly recognize dependencies across
choice occasions in the repeated choice case through the inter-temporal pairwise probabilities.

1.4. Asymptotic Properties of the CML Estimator with many independent replicates

The asymptotic properties of the CML estimator for the case with many independent replicates
may be derived from the theory of unbiased estimating functions. For ease, we will first consider
the case when we have Q independent observational units (also referred to as individuals in this

paper) in a sample Y,,Y,.Y;,..¥,,each ¥, (¢=1,2,...,0) being a H x 1 vector. That is,

"In the discussion below, for presentation ease, we will ignore the power weight term ®,. In some cases, such as in a
panel case with varying number of observational occasions on each observation unit, the choice of w, can influence
estimator asymptotic efficiency considerations. But it does not affect other asymptotic properties of the estimator.



Y,=(Y,.Y,

1 qz,...,Yq ) H in this context may refer to multiple observations of the same variable
on the same observation unit (as in the previous section) or a single observation of multiple
variables for the observation unit (for example, expenditures on groceries, transportation, and
leisure activities for an individual). In either case, Q is large relative to H (the case when Q is
small is considered in the next section). We consider the case when observation is made directly

on each of the continuous variables Y ,, though the discussion in this section is easily modified

qh >

to incorporate the case when observation is made on some truncated or censored form of Y,
(such as in the case of a discrete choice variable). Let the observation on the random variable ¥,
be y, = (V15 Y 0 yqﬁ). Define y =(y;,¥,,,¥y)- Also, we will consider a pairwise likelihood

function as the CML estimator, though again the proof is generalizable in a straightforward
manner to other types of CML estimators (such as using triplets or quadruplets rather than
couplets in the CML). For the pairwise case, the estimator is obtained by maximizing (with
respect to the unknown parameter vector @, which is of dimension K) the logarithm of the
following function:

Q0 H-1 A
Loy (6, ) = H H Prob(Y,, =y, Y = y)
g=1 h=1 h'=h+l (1.5)
0 H-1 # 0 H-1 # ’
= HH Hf(thath’) :HH Hthh': where Ly :f(th’th')
g=1 h=1 W'=h+l g=1 h=1 W'=h+l

Under usual regularity conditions (these are the usual conditions needed for likelihood objects to
ensure that the logarithm of the CML function can be maximized by solving the corresponding
score equations; the conditions are too numerous to mention here, but are listed in Molenberghs
and Verbeke, 2005, page 191), the maximization of the logarithm of the CML function in the
equation above is achieved by solving the composite score equations given by:

Q0 H-1 H
S (0,¥)=VlogL.,,(0,y) = Z Z Sy (05 Y s V) =0, (1.6)
=1 h=1 h'=ht1
ologL

where s, (0,9 ) = . Since the equations s, (6,y)are linear combinations of

o0
valid likelihood score functions s, (6,y,,,y,, ) associated with the event probabilities forming

the composite log-likelihood function, they immediately satisfy the requirement of being
unbiased. While this is stated in many papers and should be rather obvious, we provide a formal
proof of the unbiasedness of the CML score equations (see also Yi ef al., 2011). In particular, we
need to prove the following:

Q H-1 H 0 fd-1
E[SCML(H’ y)] =E z Z sqhh’(aﬂ th’th’) = Z E[sqhh’(aa thath’)]: 03 (17)
g=1 h=1 h'=h+1 g=1 h=1 h'=h+1



where the expectation above is taken with respect to the full distribution of ¥ =(¥,,Y,,....,Y).
The above equality will hold if ETs,,, (0,y,,,y,)]=0 for all pairwise combinations % and &'

for each ¢. To see that this is the case, we write:

ELS (05,701 = j ‘f"’“ fody=[ [ | IOgL‘””“

Yq Yad Yaa' V-qaa’

f(th7th”y-qhh' )dthdth'dy-qhh' b (1 '8)

where y_,, represents the subvector of y,  with the elements y, and y, excluded.

Continuing,
OlogL
E[thh'(aath’th’)] = I I 6—qhh I f(th:th R )dthdth dy. ghi
YahYan' Y_gn
GlogL ) ologL ,,
= J. J. o f(thﬁth )dthdth J. J. —qh]thh/dthdthv
YahYah' azqhyq/ (19)
= J. J. qhh thh'dthdth' = J. J. 6(1;” dthdth'
hh’

YanYan' YahYan'

0
= % J. J.thh'dthdth' = %(1) = 0

YanYan'

Next, consider the asymptotic properties of the CML estimator. To derive these, define the mean
composite score function across observation units in the sample as follows:

1 & H-1 H
s(0,y) = EZS,I .y, where $,0.)=D > 5 (0.9, )- Then,
g=1

h=1 h'=h+1

H-1 H
E[sq(ﬂ,yq)]: z ZE[sqhh,(a,th,th,)]: 0 for all values of @. Let 0, be the true unknown

h=1 h'=h+1
parameter vector value, and consider the score function at this vector value and label it as

s,(8,,y,). Then, when drawing a sample from the population, the analyst is essentially drawing
values of s,(6,,y,) from its distribution in the population with zero mean and variance given by
J = Varlsq 0,.y, )J, and taking the mean across the sampled values of s,(6,,y,)to obtain
s(0,,y). Invoking the Central Limit Theorem (CLT), we have

JO 5(8,,y)—“—>MVN.(0,J) (1.10)

where MVN(.,.)stands for the multivariate normal distribution of K dimensions. Next, let

écm be the CML estimator, so that, by design of the CML estimator, s(éCML ,») = 0. Expanding



$(0py-y) around  s(@,,y) in a first-order Taylor series, we  obtain

$0cps,)=0=15(0,,y)+Vs(0,,y) [écm -0, ], or equivalently,

\/a[éCML _00] =\/§[_VS(00,y)]—1 5(6,,y). (L.11)
From the law of large numbers (LLN), we also have that Vs(8,,y), which is the sample mean of

Vs, (0,,y,),converges to the population mean for the quantity. That is,
[-Vs(0,.9)] ——H=E[-Vs(6,.y)] (1.12)

Using Equations (1.10) and (1.12) in Equation (1.11), applying Slutsky’s theorem, and assuming
non-singularity of J and H , we finally arrive at the following limiting distribution:

JO Borss -0, |- MVN_(0,G™), where G=HJ'H (1.13)

where G is the Godambe (1960) information matrix. Thus, the asymptotic distribution of @, is
centered on the true parameter vector @, . Further, the variance of 4., reduces as the number of
sample points Q increases. The net result is that écm converges in probability to 8, as Q — ©
(with H fixed), leading to the consistency of the estimator. In addition, écm is normally

distributed, with its covariance matrix being G /Q. However, both J and H , and therefore G,

are functions of the unknown parameter vector 6,. But Jand H may be estimated in a

straightforward manner at the CML estimate @, as follows:

. 1& |(dlogL,,,, \OlogL,,, Al A
J=— 4 4 , where log L = logL .., 1.14
Q ; |:( 60 60! éCML g CML ,q hz;h;l g qhh ( )
and
R 1 0 1 Q H-1 H
H = _EZI [Vsq (0’ yq )LCML = _EZI — ; [vsqdd’(ga th > th')]ﬁCML
q= g=1 h=1 I'=
1 iﬁ‘lzﬁ:ﬁz log L, (1.15)
Q g=1 h=l h'=l 6080! écw_

If computation of the second derivative is time consuming, one can exploit the second Bartlett
identity (Ferguson, 1996, page 120), which is valid for each observation unit’s likelihood term in
the composite likelihood. That is, using the condition that

J, = Var[sqhh'(aoathath']: -H, = _E[_Vsqhh'(ooathath']: E[Vsqhh'(ooathath'] 5 (1.16)

an alternative estimate for H is as below:



CML

j:l /
Z[[sqhh (05 s Y i ][sqhh (I ] ) (1.17)

1

0
1 &E ([ ologL,, | dlogL,,,
g2l

Ocm

Finally, the covariance matrix of the CML estimator is given by 0 = [H ] [g [H ],

The empirical estimates above can be imprecise when Q is not large enough. An
alternative procedure to obtain the covariance matrix of the CML estimator is to use a jackknife
approach as follows (see Zhao and Joe, 2005):

. 0-1& . Y
Cov(Opyy ) ==— 0 Z (0&12 Oy Xaéﬂtﬁ CML) ’ (1.18)

q=1

where 057 is the CML estimator with the gth observational unit dropped from the data.
However, this can get time-consuming, and so an alternative would be to use a first-order
approximation for 5% with a single step of the Newton-Raphson algorithm with 6,,, as the

starting point.

1.5. Asymptotic Properties of the CML Estimator for the Case of Very Few or No
Independent Replicates

Even in the case when the data include very few or no independent replicates (as would be the

case with global social or spatial interactions across all observational units in a cross-sectional

data in which the dimension of H is equal to the number of observational units and O=1), the
CML estimator will retain the good properties of being consistent and asymptotically normal as
long as the data is formed by pseudo-independent and overlapping subsets of observations (such
as would be the case when the social interactions taper off relatively quickly with the social
separation distance between observational units, or when spatial interactions rapidly fade with
geographic distance based on an autocorrelation function decaying toward zero; see Cox and
Reid, 2004 for a technical discussion).” The same situation holds in cases with temporal
processes; the CML estimator will retain good properties as long as we are dealing with a
stationary time series with short-range dependence (the reader is referred to Davis and Yau, 2011
and Wang et al.,, 2013 for additional discussions of the asymptotic properties of the CML
estimator for the case of time-series and spatial models, respectively).

? Otherwise, there may be no real solution to the CML function maximization and the usual asymptotic results will
not hold.



The covariance matrix of the CML estimator needs estimates of J and H. The “bread”
matrix H can be estimated in a straightforward manner using the Hessian of the negative of

logL,, (0), evaluated at the CML estimate 6 . This is because the information identity remains

valid for each pairwise term forming the composite marginal likelihood. But the estimation of
the “vegetable” matrix J is more involved. Further details of the estimation of the CML
estimator’s covariance matrix for the case with spatial data are discussed in Section 2.3.

1.6. Relative Efficiency of the CML Estimator

The CML estimator loses some asymptotic efficiency from a theoretical perspective relative to a
full likelihood estimator, because information embedded in the higher dimension components of
the full information estimator are ignored by the CML estimator. This can also be formally
shown by starting from the CML unbiased estimating functions E[s,, (€,,y)]=0, which can
be written as follows (we will continue to assume continuous observation on the variable vector

of interest, so that Y is a continuous variable, though the presentation is equally valid for
censored and truncated observations on Y ):

OlogL OlogL
El85¢0.(0y,9)]=0= j%f( »)dy :_[ g —— L, dy (1.19)
00, ¥ 0=0,
Take the derivative of the above function with respect to @ to obtain the following:
0’ loglL ologL,,, 0loglL
0=| —=M] d + i MLy, d 1.20
I e I B oo 9, (1.20)

0=0, Y
= E[Vsa (0,, )]+ E[SCML (0, 9)8,.(0, ,y)] ’
where s,,(0,,y)is the score function of the full likelihood. From above, we get the following:

H=—E[Vsgy, 8,,9) Covis,, (8,, ), st (8,, »)], and

G=CoV[$,,(0,. ¥). ey (05 M [Var(s ey, (05, )] CoMS s (0, 9), 83 (0, ¥). ] (1.21)

Then, using the multivariate version of the Cauchy-Schwartz inequality (Lindsay, 1988), we
obtain the following:

IFISHER=Var|s,, (0,,)]>G. (1.22)

Thus, from a theoretical standpoint, the difference between the regular ML information
matrix (i.e., IFISHER) and the Godambe information matrix (i.e., G ) is positive definite, which
implies that the difference between the asymptotic variances of the CML estimator and the ML
estimator is positive semi-definite (see also Cox and Reid, 2004). However, many studies have
found that the efficiency loss of the CML estimator (relative to the maximum likelihood (ML)



estimator) is negligible to small in applications. These studies are either based on precise analytic
computations of the information matrix IFISHER and the Godambe matrix G to compare the
asymptotic efficiencies from the ML and the CML methods, or based on empirical efficiency
comparisons between the ML and CML methods for specific contexts by employing a simulation
design with finite sample sizes. A brief overview of these studies is presented in the next section.

1.6.1. Comparison of ML and CML Estimator Efficiencies

Examples of studies that have used precise analytic computations to compare the asymptotic
efficiency of the ML and CML estimators include Cox and Reid (2004), Hjort and Varin (2008),
and Mardia et al. (2009). Cox and Reid (2004) derive IFISHER and G for some specific
situations, including the case of a sample of independent and identically distributed vectors, each
of which 1s multivariate normally distributed with an equi-correlated structure between elements.
In the simple cases they examine, they show that the loss of efficiency between IFISHER and
G is of the order of 15%. They also indicate that in the specific case of Cox’s (1972) quadratic
exponential distribution-based multivariate binary data model, the full likelihood function and a
pairwise likelihood function for binary data generated using a probit link are equivalent, showing
that the composite likelihood estimator can achieve the same efficiency as that of a full
maximum likelihood estimator. Hjort and Varin (2008) also study the relationship between the
IFISHER and G matrices, but for Markov chain models, while Mardia et al. (2007) and Mardia
et al. (2009) examine efficiency considerations in the context of multivariate vectors with a
distribution drawn from closed exponential families. These studies note special cases when the
composite likelihood estimator is fully efficient, though all of these are rather simplified model
settings.

Several papers have also analytically studied efficiency considerations in clustered data,
especially the case when each cluster is of a different size (such as in the case of spatially
clustered data from different spatial regions with different numbers of observational units within
each spatial cluster, or longitudinal data on observational units with each observational unit
contributing a different number of sample observations). In such situations, the unweighted
CML function will give more weight to clusters that contribute more sample observations than
those with fewer observations. To address this situation, a weighted CML function may be used.
Thus, Le Cessie and Van Houwelingen (1994) suggest, in their binary data model context, that
each cluster should contribute about equally to the CML function. This may be achieved by
power-weighting each cluster’s CML contribution by a factor that is the inverse of the number of
choice occasions minus one. The net result is that the composite likelihood contribution of each
cluster collapses to the likelihood contribution of the cluster under the case of independence
within a cluster. In a general correlated panel binary data context, Kuk and Nott (2000)
confirmed the above result for efficiently estimating parameters not associated with dependence
within clusters for the case when the correlation is close to zero. However, their analysis
suggested that the unweighted CML function remains superior for estimating the correlation
(within cluster) parameter. In a relatively more recent paper, Joe and Lee (2009) theoretically



studied the issue of efficiency in the context of a simple random effect binary choice model.
They indicate that the weights suggested by Le Cessie and Van Houwelingen (1994) and Kuk
and Nott (2000) can provide poor efficiency even for non-dependence parameters when the
correlation between pairs of the underlying latent variables for the “repeated binary choices over
time” case they studied is moderate to high. Based on analytic and numeric analyses using a
longitudinal binary choice model with an autoregressive correlation structure, they suggest that
using a weight of (7, —1)'1[1+0.5(Tq —1)]" for a cluster appears to do well in terms of

efficiency for all parameters and across varying dependency levels (7, is the number of

observations contributed by unit or individual ¢). Further, the studies by Joe and Lee (2009) and
Varin and Vidoni (2006), also in the context of clustered data, suggest that the inclusion of too
distant pairings in the CML function can lead to a loss of efficiency.

A precise analytic computation of the asymptotic efficiencies of the CML and full
maximum likelihood approaches, as just discussed, is possible only for relatively simple models
with or without clustering. This, in turn, has led to the examination of the empirical efficiency of
the CML approach using simulated data sets for more realistic model contexts. Examples include
Renard et al. (2004), Fieuws and Verbeke (2006), and Eidsvik et al. (2013). These studies
indicate that the CML estimator performs well relative to the ML estimator. For instance, Renard
et al. (2004) examined the performance of CML and ML estimators in the context of a random
coefficients binary choice model, and found an average loss of efficiency of about 20% in the
CML parameter estimates relative to the ML parameter estimates. Fiews and Verbeke (2006)
examined the performance of the CML and ML estimators in the context of a multivariate linear
model based on mixing, where the mixing along each dimension involves a random coefficient
vector followed by a specification of a general covariance structure across the random
coefficients of different dimensions. They found that the average efficiency loss across all
parameters was less than 1%, and the highest efficiency loss for any single parameter was of the
order of only 5%. Similarly, in simulated experiments with a spatial Gaussian process model,
Eidsvik ef al. (2013) used a spatial blocking strategy to partition a large spatially correlated space
of a Gaussian response variable to estimate the model using a CML technique. They too found
rather small efficiency losses because of the use of the CML as opposed to the ML estimator.
However, this is an area that needs much more attention both empirically and theoretically. Are
there situations when the CML estimator’s loss is less or high relative to the ML estimator, and
are we able to come up with some generalizable results from a theoretical standpoint that apply
not just to simple models but also more realistic models used in the field? In this regard, is there
a “file drawer” problem where results are not being reported when the CML estimator in fact
loses a lot of efficiency? Or is the current state of reporting among scholars in the field a true
reflection of the CML estimator’s loss in efficiency relative to the ML? So far, the CML appears
to be remarkable in its ability to pin down parameters, but there needs to be much more
exploration in this important area. This opens up an exciting new direction of research and
experimentation.

10



1.6.2. Comparison of Maximum Simulated Likelihood (MSL) and CML Estimator
Efficiencies
The use of the maximum likelihood estimator is feasible for many types of models. But the
estimation of many other models that incorporate analytically intractable expressions in the
likelihood function in the form of integrals, such as in mixed multinomial logit models or
multinomial probit models or count models with certain forms of heterogeneity or large-
dimensional multivariate dependency patterns (just to list a few), require an approach to
empirically approximate the intractable expression. This is usually done using simulation
techniques, leading to the MSL inference approach (see Train, 2009), though quadrature
techniques are also sometimes used for cases with 1-3 dimensions of integrals in the likelihood
function expression. When simulation methods have to be used to evaluate the likelihood
function, there is also a loss in asymptotic efficiency in the maximum simulated likelihood
(MSL) estimator relative to a full likelihood estimator. Specifically, McFadden and Train (2000)
indicate, in their use of independent number of random draws across observations, that the
difference between the asymptotic covariance matrix of the MSL estimator obtained as the
inverse of the sandwich information matrix and the asymptotic covariance matrix of the ML
estimator obtained as the inverse of the cross-product of first derivatives is theoretically positive
semi-definite for finite number of draws per observation. Consequently, given that we also know
that the difference between the asymptotic covariance matrices of the CML and ML estimators is
theoretically positive semi-definite, it is difficult to state from a theoretical standpoint whether
the CML estimator efficiency will be higher or lower than the MSL estimator efficiency.
However, in a simulation comparison of the CML and MSL methods for multivariate ordered
response systems, Bhat ef al. (2010b) found that the CML estimator’s efficiency was almost as
good as that of the MSL estimator, but with the benefits of a very substantial reduction in
computational time and much superior convergence properties. As they state “....any reduction
in the efficiency of the CML approach relative to the MSL approach is in the range of non-
existent to small”. Paleti and Bhat (2013) examined the case of panel ordered-response
structures, including the pure random coefficients (RC) model with no autoregressive error
component, as well as the more general case of random coefficients combined with an
autoregressive error component. The ability of the MSL and CML approaches to recover the true
parameters is examined using simulated datasets. The results indicated that the performances of
the MSL approach (with 150 scrambled and randomized Halton draws) and the simulation-free
CML approach were of about the same order in all panel structures in terms of the absolute
percentage bias (APB) of the parameters and empirical efficiency. However, the simulation-free
CML approach exhibited no convergence problems of the type that affected the MSL approach.
At the same time, the CML approach was about 5-12 times faster than the MSL approach for the
simple random coefficients panel structure, and about 100 times faster than the MSL approach
when an autoregressive error component was added. Thus, the CML appears to lose relatively
little by way of efficiency, while also offering a more stable and much faster estimation approach
in the panel ordered-ordered-response context. Similar results of substantial computational

11



efficiency and little to no finite sample efficiency loss (and sometimes even efficiency gains)
have been reported by Bhat and Sidharthan (2011) for cross-sectional and panel unordered-
response multinomial probit models with random coefficients (though the Bhat and Sidharthan
paper actually combines the CML method with a specific analytic approximation method to
evaluate the multivariate normal cumulative distribution function).

Finally, the reader will note that there is always some simulation bias in the MSL method
for finite number of simulation draws, and the consistency of the MSL method is guaranteed
only when the number of simulation draws rises faster than the square root of the sample size
(Bhat, 2001, McFadden and Train, 2000). The CML estimator, on the other hand, is unbiased
and consistent under the usual regularity conditions, as discussed earlier in Section 1.4.

1.7. Robustness of Consistency of the CML Estimator

As indicated by Varin and Vidoni (2009), it is possible that the “maximum CML estimator can
be consistent when the ordinary full likelihood estimator is not”. This is because the CML
procedures are typically more robust and can represent the underlying low-dimensional process
of interest more accurately than the low dimensional process implied by an assumed (and
imperfect) high-dimensional multivariate model. Another way to look at this is that the
consistency of the CML approach is predicated only on the correctness of the assumed lower
dimensional distribution, and not on the correctness of the entire multivariate distribution. On the
other hand, the consistency of the full likelihood estimator is predicated on the correctness of the
assumed full multivariate distribution. Thus, for example, Yi ef al. (2011) examined the
performance of the CML (pairwise) approach in the case of clustered longitudinal binary data
with non-randomly missing data, and found that the approach appears quite robust to various
alternative specifications for the missing data mechanism. Xu and Reid (2011) provided several
specific examples of cases where the CML is consistent, while the full likelihood inference
approach is not.

1.8. Model Selection in the CML Inference Approach

Procedures similar to those available with the maximum likelihood approach are also available
for model selection with the CML approach. The statistical test for a single parameter may be
pursued using the usual t-statistic based on the inverse of the Godambe information matrix.
When the statistical test involves multiple parameters between two nested models, an appealing
statistic, which is also similar to the likelihood ratio test in ordinary maximum likelihood
estimation, is the composite likelihood ratio test (CLRT) statistic. Consider the null hypothesis

H,:t =1, against H, :7 # 7,, where 7 is a subvector of # of dimension d ; i.e., 8 =(z',a")".

The statistic takes the familiar form shown below:

CLRT =2[log Ley, (0) —log L, (0], (1.23)
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where éR is the composite marginal likelihood estimator under the null hypothesis
(4,0 (T,)) . More informally speaking, 6 is the CML estimator of the unrestricted model,

and 0, is the CML estimator for the restricted model. The CLRT statistic does not have a

standard chi-squared asymptotic distribution. This is because the CML function that is
maximized does not correspond to the parametric model from which the data originates; rather,
the CML may be viewed in this regard as a “mis-specification” of the true likelihood function
because of the independence assumption among the likelihood objects forming the CML
function (see Kent, 1982, Section 3). To write the asymptotic distribution of the CLRT statistic,
first define [G.(6)" and [H,(0)]" as the d xd submatrices of [G(0)]" and [H(0)]",

respectively, which correspond to the vector 7. Then, the CLRT has the following asymptotic
distribution:

d
CLRT ~ ) AW?, (1.24)

i=1
where I/IN/l.Z fori=1,2, ,c? are independent ;(12 variates and A, > A, >...4, are the eigenvalues

of the matrix [H_(6)][G.(0)]" evaluated under the null hypothesis (this result may be obtained

based on the (profile) likelihood ratio test for a mis-specified model; see Kent, 1982, Theorem
3.1 and the proof therein). Unfortunately, the departure from the familiar asymptotic chi-squared

distribution with d degrees of freedom for the traditional maximum likelihood procedure is
annoying. Pace et al. (2011) have recently proposed a way out, indicating that the following
adjusted CLRT statistic, ADCLRT, may be considered to be asymptotically chi-squared

distributed with d degrees of freedom:

[S. (O] [H(O]'[G, (DIH (]S, (9)
[S.(O)[H.(0)]"S.(9)

ADCLRT = x CLRT (1.25)

ologL,, (0)

where S_(0) is the d x1 submatrix of S(0) = ( 20

j corresponding to the vector 7,

and all the matrices above are computed at éR . The denominator of the above expression is a
quadratic approximation to CLRT, while the numerator is a score-type statistic with an
asymptotic Z; null distribution. Thus, ADCLRT is also very close to being an asymptotic ;(§
distribution under the null.

Alternatively, one can resort to parametric bootstrapping to obtain the precise distribution of
the CLRT statistic for any null hypothesis situation. Such a bootstrapping procedure is rendered

simple in the CML approach, and can be used to compute the p-value of the null hypothesis test.
The procedure is as follows:
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1. Compute the observed CLRT value as in Equation (1.23) from the estimation sample. Let
the estimation sample be denoted as ¥, , and the observed CLRT value as CLRT (Y ,,, ).

2. Generate C sample data sets y,,y,, ¥;,-.., ¥ using the CML convergent values under the

null hypothesis
3. Compute the CLRT statistic of Equation (1.23) for each generated data set, and label it as
CLRT(y,).

4. Calculate the p-value of the test using the following expression:

C
1+ > I{CLRT(5,) 2 CLRT(3,5,)}

p=—cl , where {4} =1if 4 is true. (1.26)
C+1

The above bootstrapping approach has been used for model testing between nested models in
Varin and Czado (2010), Bhat et al. (2010b), and Ferdous et al. (2010).

When the null hypothesis entails model selection between two competing non-nested
models, the composite likelihood information criterion (CLIC) introduced by Varin and Vidoni
(2005) may be used. The CLIC takes the following form™:

log Ly, (0) = log L, (0) - (6) ()] (127)

The model that provides a higher value of CLIC is preferred.

1.9. Positive-Definiteness of the Implied Multivariate Covariance Matrix

In cases where the CML approach is used as a vehicle to estimate the parameters in a higher
dimensional multivariate covariance matrix, one has to ensure that the implied multivariate
covariance matrix in the higher dimensional context is positive definite. For example, consider a
multivariate ordered-response model context, and let the latent variables underlying the
multivariate ordered-response model be multivariate normally distributed. This symmetric
covariance (correlation) matrix X has to be positive definite (that is, all the eigenvalues of the
matrix should be positive, or, equivalently, the determinant of the entire matrix and every
principal submatrix of X should be positive). But the CML approach does not estimate the entire
correlation matrix as one single entity. However, there are three ways that one can ensure the
positive-definiteness of the X matrix. The first technique is to use Bhat and Srinivasan’s (2005)
strategy of reparameterizing the correlation matrix X through the Cholesky matrix, and then
using these Cholesky-decomposed parameters as the ones to be estimated. That is, the Cholesky
of an initial positive-definite specification of the correlation matrix is taken before starting the
optimization routine to maximize the CML function. Then, within the optimization procedure,
one can reconstruct the X matrix, and then pick off the appropriate elements of this matrix to

’ This penalized log-composite likelihood is nothing but the generalization of the usual Akaike’s Information
Criterion (AIC). In fact, when the candidate model includes the true model in the usual maximum likelihood
inference procedure, the information identity holds (i.e., H(#) = J(#)) and the CLIC in this case is exactly the AIC

[=logL,, (é) — (# of model parameters)].
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construct the CML function at each iteration. This is probably the most straightforward and clean
technique. The second technique is to undertake the estimation with a constrained optimization
routine by requiring that the implied multivariate correlation matrix for any set of pairwise
correlation estimates be positive definite. However, such a constrained routine can be extremely
cumbersome. The third technique is to use an unconstrained optimization routine, but check for
positive-definiteness of the implied multivariate correlation matrix. The easiest method within
this third technique is to allow the estimation to proceed without checking for positive-
definiteness at intermediate iterations, but check that the implied multivariate correlation matrix
at the final converged pairwise marginal likelihood estimates is positive-definite. This will
typically work for the case of a multivariate ordered-response model if one specifies exclusion
restrictions (i.e., zero correlations between some error terms) or correlation patterns that involve
a lower dimension of effective parameters. However, if the above simple method of allowing the
pairwise marginal estimation approach to proceed without checking for positive definiteness at
intermediate iterations does not work, then one can check the implied multivariate correlation
matrix for positive definiteness at each and every iteration. If the matrix is not positive-definite
during a direction search at a given iteration, one can construct a “nearest” valid correlation
matrix (for example, by replacing the negative eigenvalue components in the matrix with a small
positive value, or by adding a sufficiently high positive value to the diagonals of a matrix and
normalizing to obtain a correlation matrix; see Rebonato and Jaeckel, 1999, Higham, 2002, and
Schoettle and Werner, 2004 for detailed discussions of these and other adjusting schemes; a
review of these techniques is beyond the scope of this paper). The values of this “nearest” valid
correlation matrix can be translated to the pairwise correlation estimates, and the analyst can
allow the iterations to proceed and hope that the final implied convergent correlation matrix is
positive-definite.

1.10. The Maximum Approximate Composite Marginal Likelihood Approach

In many application cases, the probability of observing the lower dimensional event itself in a
CML approach may entail multiple dimensions of integration. For instance, in the case of a
multinomial probit model with / choice alternatives per individual (assume for ease in
presentation that all individuals have all / choice alternatives), and a spatial dependence structure
(across individuals) in the utilities of each alternative, the CML approach involves compounding
the likelihood of the joint probability of the observed outcomes of pairs of individuals. However,
this joint probability itself entails the evaluation of integration of a multivariate normal
cumulative distribution (MVNCD) function of dimension equal to 2x(/ —1). The evaluation of
such a function cannot be pursued using quadrature techniques due to the curse of dimensionality
when the dimension of integration exceeds two (see Bhat, 2003). In this case, the MVNCD
function evaluation for each agent has to be evaluated using simulation or other analytic
approximation techniques. Typically, the MVNCD function is approximated using simulation
techniques through the use of the Geweke-Hajivassiliou-Keane (GHK) simulator or the Genz-
Bretz (GB) simulator, which are among the most effective simulators for evaluating the MVNCD
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function (see Bhat et al., 2010b for a detailed description of these simulators). Some other sparse
grid-based techniques for simulating the multivariate normal probabilities have also been
proposed by Heiss and Winschel (2008), Huguenin et al. (2009), and Heiss (2010). In addition,
Bayesian simulation using Markov Chain Monte Carlo (MCMC) techniques (instead of MSL
techniques) have been used in the literature (see Albert and Chib, 1993, McCulloch and Rossi,
2000, and Train, 2009). However, all these MSL and Bayesian techniques require extensive
simulation, are time-consuming, are not very straightforward to implement, and -create
convergence assessment problems as the number of dimensions of integration increases. Besides,
they do not possess the simulation-free appeal of the CML function in the first place.

To accommodate the situation when the CML function itself may involve the evaluation
of MVNCD functions, Bhat (2011) proposed a combination of an analytic approximation
method to evaluate the MVNCD function with the CML function, and labeled this as the
Maximum Approximate Composite Marginal Likelihood (MACML) approach. While several
analytic approximations have been reported in the literature for MVNCD functions (see, for
example, Solow, 1990, Joe, 1995, Gassmann et al., 2002, and Joe, 2008), the one Bhat proposes
for his MACML approach is based on decomposition into a product of conditional probabilities.
Similar to the CML approach that decomposes a large multidimensional problem into lower level
dimensional components, the analytic approximation method also decomposes the MVNCD
function to involve only the evaluation of lower dimensional univariate and bivariate normal
cumulative distribution functions. Thus, there is a type of conceptual consistency in Bhat’s
proposal of combining the CML method with the MVNCD analytic approximation. The net
result is that the approximation approach is fast and lends itself nicely to combination with the
CML approach. Further, unlike Monte-Carlo simulation approaches, even two to three decimal
places of accuracy in the analytic approximation is generally adequate to accurately and
precisely recover the parameters and their covariance matrix estimates because of the smooth
nature of the first and second derivatives of the approximated analytic log-likelihood function.
The MVNCD approximation used by Bhat for discrete choice mode estimation itself appears to
have been first proposed by Solow (1990) based on Switzer (1977), and then refined by Joe
(1995). However, the focus of the earlier studies was on computing a single MVNCD function
accurately rather than Bhat’s use of the approximation for choice model estimation where
multiple MVNCD function evaluations are needed.

To describe the MVNCD approximation, let (W,,W,,W,,..,W,) be a multivariate

normally distributed random vector with zero means, variances of 1, and a correlation matrix X .
Then, interest centers on approximating the following orthant probability:

Pr(W<w)=Pr(W, <w,, W, <w,, W, <w,,..., W, <w,). (1.28)

The above joint probability may be written as the product of a bivariate marginal probability and
univariate conditional probabilities as follows (/> 3):
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Pr(W <w)=Pr(W, <w,, W, <w,)x
! (1.29)
[T Prw, <w, | W, <w, W, <w,, Wy <wy,.y W <w.).
i=3
Next, define the binary indicator 7, that takes the value 1 if W, <w, and zero otherwise. Then
E (Z.) =®(w,), where ®(.) is the univariate normal standard cumulative distribution function.

Also, we may write the following:

Cov(l,.1,))=E(I1,)~ E(I)E(,) = ®,(w,,w,, p,) — D(w)D(w,), i #

Cov(1,,1,) = Var(I,) = ®(w,) — ®*(w,) (1.30)
= (w1 - D(w,)],

where p; is the ij™ element of the correlation matrix X . With the above preliminaries, consider

the following conditional probability:

Pr(W, <w, | W, <w,, W, <w,, Wy, <wy,..., W.., <w,_,)

Lo - (1.31)
—ET I, =1, T,=1,T,=1,.., I_ =1).

The right side of the expression may be approximated by a linear regression model, with Tl

being the “dependent” random variable and T<i = (IN],IN 2,...INH) being the independent random

variable vector.” In deviation form, the linear regression for approximating Equation (1.31) may
be written as:

I-E1)=a'l,-EI)]+7, (1.32)

where a is the least squares coefficient vector and 77 is a mean zero random term. In this form,
the usual least squares estimate of a is given by:
a=Q]-Q, ., where (1.33)

i,<i?®

* This first-order approximation can be continually improved by increasing the order of the approximation. For
instance, a second-order approximation would approximate the right side of Equation (1.31) by the expectation from
a linear  regression model that has T as the “dependent” random  variable and

i<,. =(71,72,...71.71,712,713,...Il,.71,723,724,...121.71,...1,.721.71) as the independent random variable vector, where

I, = Z,Tj,_ Essentially this adds second-order interactions in the independent random variable vector (see Joe,

1995). However, doing so entails trivariate and four-variate normal cumulative distribution function (CDF)
evaluations (when I >4) as opposed to univariate and bivariate normal CDF evaluations in the first-order
approximation, thus increasing computational burden. As discussed in Bhat (2011) and shown in Bhat and
Sidharthan (2011), the first-order approximation is more than adequate (when combined with the CML approach)
for estimation of MNP models. Thus, in the rest of this paper, we will use the term approximation to refer to the
first-order approximation evaluation of the MVNCD function.
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| Cov(I,,I,) Cov(I,,1,) Cov(I,I,) - Cov(I,I) |
Cov(l,,I,) Cov(I,,I,) Cov(I,,I,) - Cov(l,,I.)
Q_ =Cov(I.,1,)=| Cov(I,,I,) Cov(l,,1,) Cov(l,,I,) --- Cov(I,,I.) |,and
_COV(Z—UZ) COV(Z‘—UE) COV(IN;‘—191N3) COV(Z—laTi—l)_
(1.34)
| Cov(I,.1)) |
Cov(1,,1,)

Q, ,=Cov(l_;,I)= COV(Z’Z)

| Cov(I,.1_,)]

Finally, putting the estimate of @ back in Equation (1.32), and predicting the expected value of
I, conditional on I_,=1 (i.e., I,=1, I, =1, I_ =1), we get the following approximation for
Equation (1.31):

Pr(W, <w, [W, <w, Wy, <w,,., W <w_ )=

4 (1.35)
O(w,)+(Q -, ) (1-DP(w,), 1-D(w,)..1-D(w,,))

This conditional probability approximation can be plugged into Equation (1.29) to approximate
the multivariate orthant probability in Equation (1.28). The resulting expression for the
multivariate orthant probability comprises only univariate and bivariate standard normal
cumulative distribution functions.

One remaining issue is that the decomposition of Equation (1.28) into conditional
probabilities in Equation (1.29) is not unique. Further, different permutations (i.e., orderings of
the elements of the random vector W =W, W,,W,,...W,)) for the decomposition into the

conditional probability expression of Equation (1.29) will lead, in general, to different
approximations. One approach to resolve this is to average across the [!/2 permutation
approximations. However, as indicated by Joe (1995), the average over a few randomly selected
permutations is typically adequate for the accurate computation of the multivariate orthant
probability. In the case when the approximation is used for model estimation (where the
integrand in each individual’s log-likelihood contribution is a parameterized function of the g

and X parameters), even a single permutation of the W vector per choice occasion may suffice,
as several papers in the literature have now shown (see later chapters).
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2. APPLICATION TO TRADITIONAL DISCRETE CHOICE MODELS

In this section, we will develop a blueprint (complete with matrix notation) for the use of the
CML inference method to estimate traditional discrete choice models. The focus will be on two
specific kinds of discrete choice models: Ordered-response models and unordered-response
models. In the case when there are only two alternatives to choose from (the binary choice case),
the ordered-response and the unordered-response formulations collapse to the same structure.
But these formulations differ when extended to the multinomial (more than two alternatives)
choice case. The next section provides a brief overview of ordered-response and unordered-
response model systems. Section 2.2 then focuses on aspatial specifications within each type of
discrete choice model, while Section 2.3 focuses on spatial specifications. Section 2.4 discusses
applications of the CML method to count models. In each of Sections 2.2, 2.3, and 2.4, we
provide a list of references of applications after presenting the formulation and CML estimation
approach. Doing so allows us to present the model structure and estimation without unnecessary
interspersing with references. The contents of the individual sections do inevitably draw quite
substantially from the corresponding references of applications. Also, many codes to estimate the
models presented are available at http://www.caee.utexas.edu/prof/bhat/CODES.htm (these
codes are in the GAUSS matrix programming language).

2.1. Ordered and Unordered-Response Model Systems

Ordered-response models are used when analyzing discrete outcome data with a finite number of
mutually exclusive categories that may be considered as manifestations of an underlying scale
that is endowed with a natural ordering. Examples include ratings data (of consumer products,
bonds, credit evaluation, movies, efc.), or likert-scale type attitudinal/opinion data (of air
pollution levels, traffic congestion levels, school academic curriculum satisfaction levels, teacher
evaluations, etc.), or grouped data (such as bracketed income data in surveys or discretized
rainfall data). In all of these situations, the observed outcome data may be considered as
censored (or coarse) measurements of an underlying latent continuous random variable. The
censoring mechanism is usually characterized as a partitioning or thresholding of the latent
continuous variable into mutually exclusive (non-overlapping) intervals. The reader is referred to
McKelvey and Zavoina (1975) and Winship and Mare (1984) for some early expositions of the
ordered-response model formulation. The reader is also referred to Greene and Hensher (2010)
for a comprehensive history and treatment of the ordered-response model structure. These
reviews indicate the abundance of applications of the ordered-response model in the sociological,
biological, marketing, and transportation sciences, and the list of applications only continues to
grow rapidly.

Unordered-response models are used when analyzing discrete outcome data with a finite
number of mutually exclusive categories that do not represent any kind of ordinality. Examples
include mode choice data or brand choice data or college choice data. In general, unordered-
response models will include valuations (by decision-makers) of attributes that are alternative-
specific. Most unordered-response models in economics and other fields are based on the
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concept of utility-maximizing. That is, the attributes and individual characteristics are assumed
to be translated into a latent utility index for each alternative, and the individual chooses the
alternative that maximizes utility. The reader is referred to Train (2009) for a good exposition of
the unordered-response model formulation.

In general, the ordered-response formulation may be viewed as originating from a
decision-rule that is based on the horizontal partitioning of a single latent variable, while the
unordered-response formulation may be viewed as originating from a decision-rule that is based
on the vertical comparison of multiple latent variables (one each for each alternative, that
represents the composite utility of each alternative) to determine the maximum. A detailed
theoretical comparison of the two alternatives is provided in Bhat and Pulugurta (1998).

2.2. Aspatial Formulations

2.2.1. Ordered-Response Models

The applications of the ordered response model structure are quite widespread. The aspatial
formulations of this structure may take the form of a cross-sectional univariate ordered-response
probit (CUOP), a cross-sectional multivariate ordered-response probit (CMOP), or a panel
multivariate ordered-response probit (PMOP). Within each of these formulations, many
different versions are possible. In the discussion below, we present each formulation in turn in a
relatively general form.

2.2.1.1 The CUOP Model

Most applications of the ordered-response model structure are confined to the analysis of a single
outcome at one point in time (that is, a cross-sectional analysis). Let ¢ be an index for
observation units or individuals (¢ = 1, 2,..., O, where Q denotes the total number of individuals
in the data set), and let & be the index for ordinal outcome category (k =1, 2,..., K). Let the actual

observed discrete (ordinal) level for individual g be m, (m, may take one of the K values; i.e.,
m, € {1, 2,..., K}). In the usual ordered response framework notation, we may write the latent

propensity ( y;) for the ordered-response variable as a function of relevant covariates and relate

this latent propensity to the ordinal outcome categories through threshold bounds:
yZZﬂ;xq+8qayq=k if l//q,k—1<yq<l//q,k> (21)

where x, is an (Lx1) vector of exogenous variables (not including a constant), f, is a
corresponding (Lx1) vector of individual-specific coefficients to be estimated, ¢, is an

idiosyncratic random error term that we will assume in the presentation below is independent of
the elements of the vectors #, and x,, and v is the individual-specific upper bound threshold

for discrete level k (y,,=—% and v , =00; o<y, <y ,<..<y, ,, <o Vqgin the usual

ordered response fashion). The ¢, terms are assumed independent and identical across
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individuals. The typical assumption for & is that it is either normally or logistically distributed,
though non-parametric or mixtures-of-normal distributions may also be considered. In this paper,
we will consider a normal distribution for ¢, , because this has substantial benefits in estimation
when g, is also considered to be multivariate normally distributed (or skew normally distributed,
or mixtures of normal distributed). For identification reasons, the variance of &, is normalized

to one.’

Next, consider that the individual-specific thresholds are parameterized as a non-linear
function of a set of variables z, (which does not include a constant), ¥ , = f;(z,). The non-
linear nature of the functional form should ensure that (1) the thresholds satisfy the ordering
condition (i.e.,—0< v, <y, <y, <), and (2) allows identification for any variables that

are common in x, and z,. There are several plausible reasons provided in the ordered-response

literature to motivate such varying thresholds across observation units, all of which originate in
the realization that the set of thresholds represents a dimension to introduce additional
heterogeneity over and beyond the heterogeneity already embedded in the latent variable y; . For
instance, the threshold heterogeneity may be due to a different triggering mechanism (across
individuals) for the translation (mapping) of the latent underlying y; propensity variable to

observed ordinal data or different perceptions (across respondents) of response categories in a
survey. Such generalized threshold models are referred to by different names based on their
motivating origins, but we will refer to them in the current paper as generalized ordered-response
probit (GORP) models. Following Eluru et al. (2008), we parameterize the thresholds as:

Wor =Veia Texpla; +7,2,) (2.2)

In the above equation, «, is a scalar, and y, is a vector of coefficients associated with ordinal
level k=1,2,.,K—1. The above parameterization immediately guarantees the ordering
condition on the thresholds for each and every individual, while also enabling the identification
of parameters on variables that are common to the x, and z, vectors. For identification reasons,

we adopt the normalization that v, ;= exp(a,) for all g (equivalently, all elements of the vector

?: are normalized to zero, which is innocuous as long as the vector x, is included in the risk

propensity equation).
Finally, to allow for unobserved response heterogeneity among observations, the
parameter f_ is defined as a realization from a multivariate normal distribution with mean

> The exclusion of a constant in the vector x, of Equation (2.1) is an innocuous normalization as long as all the
intermediate thresholds (y, through wy ) are left free for estimation. Similarly, the use of the standard normal
distribution rather than a non-standard normal distribution for the error term is also an innocuous normalization (see
Zavoina and McKelvey, 1975; Greene and Hensher, 2010).
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vector b and covariance matrix Q = LL', where L is the lower-triangular Cholesky factor of €.°

Then, we can write f#, =b+ ﬁ ,» Where ﬁ , ~MVN, (0,Q) (MVN, represents the multivariate

normal distribution of dimension L). If this multivariate distribution becomes degenerate, then
B,=b Vg, and the Random Coefficients-Generalized Ordered Response Probit (RC-GORP)
model collapses to the Generalized Ordered Response Probit (GORP) model. Further, in the
GORP model, if all elements of y, are zero for all £, the result is the standard ordered-response

probit (SORP) model.
The CUOP model of Equation (2.1) may be written as:

yo=bx,+p x, +e,.y, =kif ¥, <y, <v,. (2.3)
Then, the latent variable is univariate normally distributed as y; ~N(B e O'j), where
B,=b'x, and O';:xqﬂx;+1. (2.4)

Estimation is straightforward in this case using the maximum likelihood method. The parameter
vector to be estimated in the model is 6 = (b',Q',5,y",a’)’, where Q is a column vector
obtained by vertically stacking the upper triangle elements of the matrix Q, y = (5,755 77,)
and a = (a,,0,,...,a, ;) . The likelihood function L(#) for the CUOP model takes the following

form:

0 0 -B ,— B,
L) =[1 P, =m)=T] HWG—H - HW—H : (2.5)

oy

where ®(.) is the univariate cumulative standard normal distribution function. To ensure the

positive definiteness of the covariance matrix Q, the likelihood function is rewritten in terms of
the Cholesky-decomposed matrix L of Q. The maximum simulated likelithood approach then
proceeds by optimizing with respect to the elements of L rather than Q. Once convergence is
achieved, the implied covariance matrix  may be reconstructed from the estimated matrix L.
The estimation of the CUOP model presented above is very straightforward, and there
have been many applications of the model or its more restrictive variants. In addition, there is a
sprinkling of applications associated with two and three correlated ordered-response outcomes.
Studies of two correlated ordered-response outcomes include Scotti (2006), Mitchell and Weale
(2007), Scott and Axhausen (2006), and LaMondia and Bhat (2011). The study by Scott and
Kanaroglou (2002) represents an example of three correlated ordered-response outcomes. But the

® For ease of presentation, we will treat all elements of P, as random, but this is not necessary; the researcher can fix
some elements of #, and let the remaining elements be random. Also, it should be noted that, while random
coefficients on exogenous variables can be estimated with cross-sectional data, it is generally easier to estimate
random coefficients with panel or repeated-choice data where the random coefficients on the exogenous variables
are specified to be individual-specific and the overall residual error term is specified to be choice-occasion specific.
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examination of more than two to three correlated outcomes is rare, mainly because the extension
to an arbitrary number of correlated ordered-response outcomes entails, in the usual likelihood
function approach, integration of dimensionality equal to the number of outcomes. On the other
hand, there are many instances when interest may be centered around analyzing more than three
ordered-response outcomes simultaneously, such as in the case of the number of episodes of each
of several activity purposes, or satisfaction levels associated with a related set of
products/services, or multiple ratings measures regarding the state of health of an
individual/organization (we will refer to such outcomes as cross-sectional multivariate ordered-
response outcomes). There are also instances when the analyst may want to analyze time-series
or panel data of ordered-response outcomes over time, and allow flexible forms of error
correlations over these outcomes. For example, the focus of analysis may be to examine rainfall
levels (measured in grouped categories) over time in each of several spatial regions, or individual
stop-making behavior over multiple days in a week, or individual headache severity levels at
different points in time (we will refer to such outcomes as panel multivariate ordered-response
outcomes).

In the analysis of cross-sectional and panel ordered-response systems with more than
three outcomes, the norm has been to apply numerical simulation techniques based on a
maximum simulated likelihood (MSL) approach (for example, see Bhat and Zhao, 2002, Greene,
2009, and Greene and Hensher, 2010) or a Bayesian inference approach (for example, see Miiller
and Czado, 2005 and Girard and Parent, 2001). However, such simulation-based approaches
become impractical in terms of computational time, or even infeasible, as the number of ordered-
response outcomes increases. Even if feasible, the numerical simulation methods do get
imprecise as the number of outcomes increase, leading to convergence problems during
estimation (see Bhat et al. 2010a and Miiller and Czado, 2005). As a consequence, another
approach that has seen some (though very limited) use recently is the composite marginal
likelihood (CML) approach, as discussed next.

References for the CUOP Model
There have been many applications of the cross-sectional generalized ordered-response model.
The reader is referred to Greene and Hensher (2010) and Eluru et al. (2008).

2.2.1.2. The CMOP Model

In many cases, a whole set of ordinal variables may be inter-related due to unobserved factors.
For instance, the injury severity levels sustained by the occupants of a vehicle in a specific crash
may be inter-related due to unobserved crash factors (in addition to being related due to observed
crash factors), as may be the injury severity level of all occupants across all vehicles involved in
a crash. Similarly, the evaluation ratings of a student of a professor on multiple dimensions (such
as “interest in student learning”, “course well communicated”, and “tests returned promptly) may
also be correlated. The estimation of such multivariate ordered outcome models are discussed in

this section.
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As earlier, let ¢ be an index for individuals (¢ = 1, 2,..., O, where Q denotes the total
number of individuals in the data set), and let i be an index for the ordered-response variable (i =
1, 2,..., I, where I denotes the total number of ordered-response variables for each individual).
Let k, be the index for ordinal outcome category (k;, =12,...,K,).. Let the actual observed

discrete (ordinal) level for individual g and variable i be m,; (m,; may take one of K; values; i.e.,
mg; € {1, 2,..., K;} for variable 7). In the usual ordered response framework notation, we write:

y;i = ﬂt;ixq tE,, Yy = k; if !//(;,kl—l < J’; < l//;,kl > (2.6)

where all notations are as earlier except for the addition of the index i. Define
y; = (y;,y;z,..., y;,)’, X, =IDEN, ® x; (/*IL matrix; IDEN, is an identity matrix of size /),

~

B,=b+B.,. B,=B..Bm.. ) (ILx1vector),b=(b},b},..b))  (ILxI  vector),
u 1 2 1 low 1 2 1
\Ilqp =(l//q,mql_,l//q’qu,...,l//q’mq[) (I x1 vector), \|Iq° = (l//q,mq,-—l’l//q,qu—l""’l//q,mq,—l) (I x1) vector, and
let ,Eq ~MVN,,(0,Q). Also, let vy , =w,,  +exp(a,+7,z,), and  define
Vi = (P25 V3i0ees YL(i-l,i)’J y=1:P2 1) &= (ali’a2iﬂ""a1<,-—1),7 and @ =(ay,a;,...,a;)". The
¢, terms are assumed independent and identical across individuals (for each and all 7). For
identification reasons, the variance of each ¢, term is normalized to 1. However, we allow
correlation in the &, terms across variables i for each individual g. Specifically, we define
€, = (8q1,8q2,8q3,...,8q,)', and assume that €, is multivariate normal distributed with a mean

vector of zeros and a correlation matrix as follows:

01 p, ps = Py
0 1

gq~N o /?:21 : '0:23 . '0:2[ , or (2.7)
ONpoy P P 1

£,~N[0,X]

The off-diagonal terms of X, along with the covariance matrix Q, capture the error
covariance across the underlying latent continuous variables; that is, they capture the effects of
common unobserved factors influencing the underlying latent propensities. These are the so-
called polychoric covariances between pairs of observed ordered-response variables. Then, we
can write: y; ~MVN,(B,,E,), where B, =X b and E =X QX +X. Let the vector of actual

observed ordinal outcomes for individual ¢g be stacked into an (/Xx1) vector

m,=(m,,mg;,...,m,) . Alsolet y =(y,,y,,....v,) . The parameter vector to be estimated

in the CMOP model is @ = (b',Q',X',y",a’)". The likelihood function for individual ¢ takes the

following form:
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LO) = P(y,=m,) = [ f,(y;| B.E)dy,, 2.8)

Yq
low

where Dy* is the integration domain defined as Dy* =1 y; v,

<y, <wy,"} ,and f,() isthe

q

multivariate normal density function of dimension / . The likelihood function above involves /-
dimensional rectangular integrals for each individual g.

As indicated earlier, models that require integration of more than three dimensions (/ >3)
in a multivariate ordered-response model are typically estimated using maximum simulation
likelihood (MSL) approaches. Balia and Jones (2008) adopt such a formulation in their eight-
dimensional multivariate probit model of lifestyles, morbidity, and mortality. They estimate their
model using a Geweke-Hajivassiliou-Keane (GHK) simulator. Yet another MSL method to
approximate the MVNCD function in the likelihood functions of Equation (2.8) is based on the
Genz-Bretz (GB) algorithm (see Bhat ef al., 2010b for a discussion). Alternatively, Chen and
Dey (2000), Herriges et al. (2008), Jeliazkov et al. (2008), and Hasegawa (2010) have
considered a Bayesian estimation approach for the multivariate ordered response system through
the use of standard Markov Chain Monte Carlo (MCMC) techniques. In particular, the Bayesian
approach is based on assuming prior distributions on the non-threshold parameters,
reparameterizing the threshold parameters, imposing a standard conjugate prior on the
reparameterized version of the error covariance matrix and a flat prior on the transformed
threshold, obtaining an augmented posterior density using Baye’s Theorem for the
reparameterized model, and fitting the model using a Markov Chain Monte Carlo (MCMC)
method. Unfortunately, the method remains cumbersome, requires extensive simulation, and is
time-consuming. Further, convergence assessment becomes difficult as the number of
dimensions increase (see Miiller and Czado, 2005). In this regard, both the MSL and the
Bayesian approaches are “brute force” simulation techniques that are not very straightforward to
implement and can create numerical stability, convergence, and precision problems as the
number of dimensions increase.

The CML estimation of the CMOP model, on the other hand, can be very effective and
fast. In particular, the pairwise likelihood function for individual ¢ is formed by the product of
likelihood contributions of pairs of ordinal variables as follows:

-1 1

LE‘%?Z (0) = H H Pr(yqi = mqi’ ng = mqg)

i=l  g=i+l

i g _ i g
T CDZ (q)q,mq, ’ (oq,mqg > pqig) (DZ (wq,mqi > (pq,mqg—l ? pqig)

_ H H (2.9)

- o i g i g
i=1 g=j+] CDZ ((oq,mqi—l s qoq,mqg s pqig) + CDZ (¢q,mqi—l s qoq,mqg—l 4 pqig )

where @,(.,.,p,,) is the standard bivariate normal cumulative distribution function with

Vi, —b'X, Cov(y.¥:)

1/Variy; )’ Pa = \/Vﬁlr(yzi)\/var(y;g)

correlation  p.., @, = ,and  the Var(y:i)y
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Var(y;g) and Cov (y;, y;g) terms are obtained by picking off the appropriate 2x 2 sub-matrix of
the larger covariance matrix = of ( y; , yZz - y;). The pairwise marginal likelihood function

q
is Loy, (0) =] Lovia(6).

q

Al -1 17| |41
The asymptotic covariance matrix estimator is g = [H ] [g [H ]' , with
a--[$§ zw LSS g St s )
Q q=1 i=l g=i+l 6060, be g=1 =l g=i+l 6060, é(‘m
J =i§: alOgPr(yql = Myis Ve = mqg) IZI“ ZI“ alogPr(yql =Mis Ve = mqg) (2.10)
Q g=1 i=l g=i+l 80 i=l g=i+l 80' écm_

An alternative estimator for H is as below:

ilzl“ Z alOgPr(yqz - qi’ng :mqg) alOgPr(yqz :mqi’ng :mqg) (2 11)
o0 00’ '

~ 1
H=—
0 g=1 i=l g=i+l

HCML

One final issue. The covariance matrix E has to be positive definite, which will be the
case if the matrices ©Q and X are positive definite. The simplest way to ensure the positive-

definiteness of these matrices is to use a Cholesky-decomposition and parameterize the CML
function in terms of the Cholesky parameters (rather than the original covariance matrices). Also,
the matrix X is a correlation matrix, which can be maintained by writing each diagonal element

(say the aa™ element) of the lower triangular Cholesky matrix of X as /1 Zlaj , where the /;

Jj=1

elements are the Cholesky factors that are estimated.

References for the CML Estimation of the CMOP Model

Archer, M., Paleti, R., Konduri, K.C., Pendyala, R.M., Bhat, C.R., 2013. Modeling the
connection between activity-travel patterns and subjective well-being. Transportation
Research Record 2382, 102-111.

Bhat, C.R., Varin, C., Ferdous, N., 2010. A comparison of the maximum simulated likelihood
and composite marginal likelithood estimation approaches in the context of the multivariate
ordered response model. In Advances in Econometrics: Maximum Simulated Likelihood
Methods and Applications, Vol. 26, Greene, W.H., Hill, R.C. (eds.), Emerald Group
Publishing Limited, 65-106.

Feddag, M.-L., 2013. Composite likelihood estimation for multivariate probit latent traits
models. Communications in Statistics - Theory and Methods 42(14), 2551-2566.
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Katsikatsou, M., Moustaki, I, Yang-Wallentin, F., and Joreskog, K.G., 2012. Pairwise likelihood
estimation for factor analysis models with ordinal data. Computational Statistics and Data
Analysis 56(12), 4243-4258.

LaMondia, J.J., Bhat, C.R., 2011. A study of visitors’ leisure travel behavior in the northwest
territories of Canada, Transportation Letters: The International Journal of Transportation
Research 3(1), 1-19.

Seraj, S., Sidharthan, R., Bhat, C.R., Pendyala, R.M., Goulias, K.G., 2012. Parental attitudes
towards children walking and bicycling to school. Transportation Research Record 2323, 46-
55.

2.2.1.3. The PMOP Model

As earlier, let g be an index for individuals (¢ = 1, 2, ..., Q), and let ¢ be an index for the M
observation on individual ¢ (=1, 2, ..., T, where T denotes the total number of observations on
individual ¢).” Let the observed discrete (ordinal) level for individual ¢ at the ™ observation be

my (my may take one of K values; ie., my {1, 2,..., K}). In the usual random-coefficients

ordered response framework notation, we write the latent variable ( y;t) as a function of relevant

covariates as:

y;t = ﬂqxqt + gqt’yqt = k lf l)yq,t,k—] < y;/ < !//q,t,k > (212)

where x,, is a (LxI)-vector of exogenous variables (including a constant now), B, is an

individual-specific (L x1)-vector of coefficients to be estimated that is a function of unobserved
individual attributes, ¢, is a standard normal error term uncorrelated across individuals ¢ and

across observations of the same individual, and y_,, is the upper bound threshold for ordinal
discrete level k (k=1,2,...,K) for individual ¢ at choice occasion z. The thresholds are written as
lr//q,t,k = l//q,t,k—l + eXp(ak + yllczqt) for k:2,35' . -,K_la Wlth
Vaio <Wauid <Vasa Wik <Vous Voro = W,y =00, =+ Assume that the g,

vector in Equation (2.12) is a time-invariant realization from a multivariate normal distribution
with a mean vector b and covariance matrix Q = LL', where L is the lower-triangular Cholesky

factor of Q.% Also, assume that the &, term, which captures the idiosyncratic effect of all

omitted variables for individual ¢ at the /" choice occasion, is independent of the elements of the

" We assume here that the number of panel observations is the same across individuals. Extension to the case of
different numbers of panel observations across individuals does not pose any substantial challenges, and will be
discussed later.

¥ More general autoregressive structures can also be considered for £, and B, to accommodate fading and time-

varying covariance effects in the latent variables y; (see Bhat, 2011 and Paleti and Bhat, 2013). This does not

complicate the econometrics of the CML estimation method, but can lead to substantial number of additional
parameters and may be asking too much from typical estimation data sets. In this paper, we present the case of
independent &, Across choice occasions and time-invariant random coefficients.
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B, and x, vectors. Define yq:(yql,yqz,....,yqr)’(Txlmatrix), g, =(E1,8,r €)'

(T x1 matrix) y* = (y;, y;,..., y;T)’ (T x1 matrix), = (X1, X, 35005 X,7)" (T’ x L matrix),

“p _(l//qlm ’!//quz ’!//q,T,qu) (TxlveCtor)ﬂ low_(!//qlm —l’l//qu P A Jl//quJ—l)(Txl)
vector. Also, let the vector of actual observed ordinal outcomes for individual ¢ be stacked into a

(Tx1) vector m,=(m,,mg;,..,m;)". Then, we may write

q1°

y; ~MVN . (B,,E,), where B, =x,b and E =(x Qx, +IDEN,), and the parameter vector to
be estimated in the PMOP model is @ =(b',Q",y",a’) , where y=(y},74..7%,) and

a=(ay,0;,...,a; ). The likelihood function for individual g takes the following form:

L) =P(y,=m,) = [ f(v,|B,,E,)dy,, (2.13)

*
Yq

where Dy* is the integration domain defined as Dy*q ={ y; Sy < yq < \y;"w} ,and f,(.) is the

multivariate normal density function of dimension 7" . The likelihood function above involves 7-
dimensional rectangular integrals for each individual g. The above model is labeled as a mixed
autoregressive ordinal probit model by Varin and Czado (2010), who examined the headache
pain intensity of patients over several consecutive days. In this study, a full information
likelihood estimator would have entailed as many as 815 dimensions of rectangular integration to
obtain individual-specific likelihood contributions, an infeasible proposition using the computer-
intensive simulation techniques. As importantly, the accuracy of simulation techniques is known
to degrade rapidly at medium-to-high dimensions, and the simulation noise increases
substantially. On the other hand, the CML approach is easy to apply in such situations, through a
pairwise marginal likelihood approach that takes the following form:

Lg%?q (0) [H H[PI(y qt qt’y % g)]J

=] g=t+1

T-1

®2(¢qtm 9¢qgm ’pqtg) _®2(¢qtm 9¢qgm —l’pqtg)

11[ (2.14)

i1 g=r+] = @, ((oq,t,mqu > gﬂq,g,mqg > pqtg) +@, ((oq,t,mqu > (pq,g,mqgfl > pqtg)

Voim, ~ b'x Cov (y;t > y;g )

" 1/Variyq,i andpq, \/Var yqt \/Var y%)

In the above expression, the Var(y q,), Var(ng), and Cov(y;, y;g) terms are obtained by

where ¢, |

picking off the appropriate (2x2)-sub-matrix of the larger covariance matrix E, of

(V15 Vaps-s Vor) - The pairwise marginal likelihood function is Ly (0) = [ Lty (6). The
q

covariance matrix of the estimator can be obtained exactly as in the CMOP case.
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The analysis above assumes the presence of a balanced panel; that is, it assumes the same
number of choice instances per individual. In the case when the number of choice instances
varies across individuals, Joe and Lee (2009) proposed placing a power weight for individual ¢

as w, =(T, - D7'[1+0.5(T, . )] (where the number of observations from individual ¢ is T ,)
and constructing the marginal likelihood contribution of individual ¢ as:

Y

LPMoP(a) = ﬁ 2 G ((/)q”’”’qf P> "fg) -, ((/)%mcy »Py.gmy12 P qtg)
cmLg\P)

(2.15)
=1 g=t+ — (Dz ((oq,t,mq/_l > (Dq,g,mqg 5 pqtg) + C1)2 (%,t,mq,_] > ¢q,g,mqg_1 > pqtg)

References for the CML Estimation of the PMOP Model

Paleti, R., Bhat, C.R., 2013. The composite marginal likelihood (CML) estimation of panel
ordered-response models. Journal of Choice Modelling 7, 24-43.

Varin, C., Czado, C., 2010. A mixed autoregressive probit model for ordinal longitudinal data.
Biostatistics 11(1), 127-138.

Varin, C. Vidoni, P., 2006. Pairwise likelihood inference for ordinal categorical time series.
Computational Statistics and Data Analysis 51(4), 2365-2373.

Vasdekis, V.G.S., Cagnone, S., Moustaki, I., 2012. A composite likelihood inference in latent
variable models for ordinal longitudinal responses. Psychometrika 77(3), 425-441.

2.2.2. Unordered-Response Models

In the class of unordered-response models, the “workhorse” multinomial logit model introduced
by Luce and Suppes (1965) and McFadden (1974) has been used extensively in practice for
econometric discrete choice analysis, and has a very simple and elegant structure. However, it is
also saddled with the familiar independence from irrelevant alternatives (IIA) property — that is,
the ratio of the choice probabilities of two alternatives is independent of the characteristics of
other alternatives in the choice set. This has led to several extensions of the MNL model through
the relaxation of the independent and identically distributed (IID) error distribution (across
alternatives) assumption. Two common model forms of non-IID error distribution include the
generalized extreme-value (GEV) class of models proposed by McFadden (1978) and the
multinomial probit (MNP) model that allows relatively flexible error covariance structures (up to
certain limits of identifiability; see Train, 2009, Chapter 5). Both of these non-IID kernel
structures (or even the IID versions of the GEV and the MNP models, which lead to the MNL
and the independent MNP models, respectively) can further be combined with continuous
mixing error structures. While many different continuous distributions can be used to
accommodate these additional structures, it is most common to adopt a normal distribution. For
instance, when introducing random coefficients, it is typical to use the multivariate normal
distribution for the mixing coefficients, almost to the point that the terms mixed logit or mixed
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GEV or mixed probit are oftentimes used synonymously with normal mixing (see Fiebig et al.,
2010, Dube et al., 2002).°

In the context of the normal error distributions just discussed, the use of a GEV kernel
structure leads to a mixing of the normal distribution with a GEV kernel, while the use of an
MNP kernel leads once again to an MNP model. Both structures have been widely used in the
past, with the choice between a GEV kernel or an MNP kernel really being a matter of “which is
easier to use in a given situation” (Ruud, 2007). In recent years, the mixing of the normal with
the GEV kernel has been the model form of choice in the economics and transportation fields,
mainly due to the relative ease with which the probability expressions in this structure can be
simulated (see Bhat et al., 2008 and Train, 2009 for detailed discussions). On the other hand, the
use of an MNP kernel has not seen as much use in recent years, because the simulation
estimation is generally more difficult. In any case, while there have been several approaches
proposed to simulate these models with a GEV or an MNP kernel, most of these involve pseudo-
Monte Carlo or quasi-Monte Carlo simulations in combination with a quasi-Newton optimization
routine in a maximum simulated likelihood (MSL) inference approach (see Bhat, 2001, 2003).
As has been discussed earlier, in such an inference approach, consistency, efficiency, and
asymptotic normality of the estimator is critically predicated on the condition that the number of
simulation draws rises faster than the square root of the number of individuals in the estimation
sample. Unfortunately, for many practical situations, the computational cost to ensure good
asymptotic estimator properties can be prohibitive and literally infeasible (in the context of the
computation resources available and the time available for estimation) as the number of
dimensions of integration increases.

The Maximum Approximate Composite Marginal Likelihood (MACML) inference
approach proposed by Bhat (2011), on the other hand, allows the estimation of models with both
GEV and MNP kernels using simple, computationally very efficient, and simulation-free
estimation methods. In the MACML inference approach, models with the MNP kernel, when
combined with additional normal random components, are much easier to estimate because of
the conjugate addition property of the normal distribution (which puts the structure resulting
from the addition of normal components to the MNP kernel back into an MNP form). On the
other hand, the MACML estimation of models obtained by superimposing normal error
components over a GEV kernel requires a normal scale mixture representation for the extreme
value error terms, and adds an additional layer of computational effort (see Bhat, 2011). Given
that the use of a GEV kernel or an MNP kernel is simply a matter of convenience, we will
henceforth focus in this paper on the MNP kernel within the unordered-response model structure.

° It has been well known that using non-normal distributions can lead to convergence/computational problems, and it
is not uncommon to see researchers consider non-normal distributions only to eventually revert to the use of a
normal distribution (see, for example, Bartels et al., 2006 and Small et al., 2005). However, one appealing approach
is to use a multivariate skew-normal (MSN) distribution for the response surface, as proposed by Bhat and
Sidharthan (2012).
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The aspatial formulations of the unordered-response structure may take the form of a
cross-sectional multinomial probit (CMNP), or a cross-sectional multivariate multinomial probit
(CMMNP), or a panel multinomial probit (PMNP).

2.2.2.1. The CMNP Model
In the discussion below, we will assume that the number of choice alternatives in the choice set

is the same across all individuals. The case of different numbers of choice alternatives per
individual poses no complication, since the only change in such a case is that the dimensionality
of the multivariate normal cumulative distribution (MVNCD) function changes from one
individual to the next.

Consider the following specification of utility for individual ¢ and alternative i:

U,=B.x;+E5 B, =b+B,, B,~MVN,(0,Q), (2.16)

where x,; is an (L x1)-column vector of exogenous attributes (including a constant for each
alternative, except one of the alternatives), and g, is an individual-specific (L x1)-column

vector of corresponding coefficients that varies across individuals based on unobserved

individual attributes. Assume that the f, vector is a realization from a multivariate normal

distribution with a mean vector b and covariance matrix Q= LL'. We also assume that &, is

independent and identically normally distributed across ¢, but allow a general covariance
structure across alternatives for individual g. Specifically, let &, =(&,,,& ,,....&,,)" (I x1vector).

Then, we assume &, ~ MVN,(0,A) . As usual, appropriate scale and level normalization must be

imposed on A or identifiability. Specifically, only utility differentials matter in discrete choice
models. Taking the utility differentials with respect to the first alternative, only the elements of

the covariance matrix A; of f,?q“ =&, — &, (i#1) are estimable. However, the MACML

inference approach proposed here, like the traditional GHK simulator, takes the difference in
utilities against the chosen alternative during estimation. Thus, if individual ¢ is observed to
choose alternative m, , the covariance matrix A, is desired for the individual. However, even

though different differenced covariance matrices are used for different individuals, they must
originate in the same matrix A. To achieve this consistency, Ais constructed from A, by

adding an additional row on top and an additional column to the left. All elements of this
additional row and additional column are filled with values of zeros. An additional normalization
needs to be imposed on A because the scale is also not identified. For this, we normalize the
element of A in the second row and second column to the value of one. Note that these
normalizations are innocuous and are needed for identification. The A matrix so constructed is
fully general. Also, in MNP models, identification is tenuous when only individual-specific
covariates are used (see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion
restrictions are needed in the form of at least one individual characteristic being excluded from

31



each alternative’s utility in addition to being excluded from a base alternative (but appearing in
some other utilities). But these exclusion restrictions are not needed when there are alternative-
specific variables.

The model above may be written in a more compact form by defining the following

X ,,X x,) (IxL

vectors and matrices: U_=(U .U, ,,...U,) (I x1 vector), x, =(X,;,X,2,X,35-
matrix), V, =x,b (I x1 vector), SNZq = qux; (I x I matrix), and Eq = SN!q + A (I xI matrix).
Then, we may write, in matrix notation, U,=V, +§, and U, ~ MVN ,(Vq,i .- Also, let
u, =(u,,u,,...u,) ({#m,) bean (I-1)x1 vector, where m, is the actual observed choice of
individual ¢, and u, =U,,-U,, (i#m,).Then, u <0, because alternative m, is the chosen

alternative by individual g.
To develop the likelihood function, define M, as an identity matrix of size /-1 with an

extra column of ‘-1’ values added at the m;h column (thus, M, is a matrix of dimension
({-1)x(I)). Then, u, is distributed as follows: u, ~MVN, (B, ,E, ), where B, =M V_and
E, =M q§ M. The parameter vector to be estimated is 6 =(b', Q' A"). Let o be the
diagonal matrix of standard deviations of E, . Using the usual notations as described earlier, the

likelihood contribution of individual g is as below:
L(0)=®, (o (-B,).E,), (2.17)

*

where Eq =

The MVNCD approximation discussed earlier is computationally efficient and
straightforward to implement when maximizing the likelihood function of Equation (2.17).'° As
such, the MVNCD approximation can be used for any value of K and any value of /, as long as
there is data support for the estimation of parameters. The positive-definiteness of X can be
ensured by using a Cholesky-decomposition of the matrices Q and A, and estimating these
Cholesky-decomposed parameters. Note that, to obtain the Cholesky factor for A, we first
obtain the Cholesky factor for A,, and then add a column of zeros as the first column and a row
of zeros as the first row to the Cholesky factor of A,;. The covariance matrix in this CMOP case
is obtained using the usual Fisher information matrix, since the full (approximate) likelihood is
being maximized.

Bhat and Sidharthan (2011) apply the MACML estimation approach for estimating the
CMNP model with five random coefficients and five alternatives, and compare the performance

%As indicated earlier, the CML class of estimators subsumes the usual ordinary full-information likelihood
estimator as a special case. It is this characteristic of the CML approach that leads us to the label MACML for the
estimation approach proposed here. Specifically, even in cross-sectional MNP contexts, when our approach involves
only the approximation of the MVNCD function in the maximum likelihood function, the MACML label is
appropriate since the maximum likelihood function is a special case of the CML function.
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of the MSL and MACML approaches (though, in their simulations, they constrain A to be an
identity matrix multiplied by 0.5). They conclude that the MACML approach recovers
parameters much more accurately than the MSL approach, while also being about 50 times faster
than the MSL approach. They also note that as the number of random coefficients and/or
alternatives in the unordered-response model increases, one can expect even higher
computational efficiency factors for the MACML over the MSL approach.

References for the CML Estimation of the CMNP Model

Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML)
estimation of multinomial probit-based unordered response choice models. Transportation
Research Part B 45(7), 923-939.

Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate
composite marginal likelihood (MACML) estimator for mixed multinomial probit models.
Transportation Research Part B 45(7), 940-953.

Bhat, C.R., Sidharthan, R., 2012. A new approach to specify and estimate non-normally mixed
multinomial probit models. Transportation Research Part B 46(7), 817-833.

2.2.2.2. The CMMNP Model
Let there be G nominal (unordered multinomial response) variables for an individual, and let g
be the index for variables (g = 1, 2, 3,..., G). Also, let I, be the number of alternatives

corresponding to the gth nominal variable (/;> 3) and let i, be the corresponding index (i, = 1, 2,
3,..., 1,). Note that /, may vary across individuals. Also, it is possible that some nominal

variables do not apply for some individuals, in which case G itself is a function of the individual
q. However, for presentation ease, we assume that all the G nominal variables are relevant for

each individual, and that all the alternatives /, are available for each variable g.
Consider the g” variable and assume that the individual ¢ chooses the alternative m,,.

Also, assume the usual random utility structure for each alternative i, .
Uqgig = ﬂqg xqgt}g + gqgig > (2- 1 8)

where x_, is a (Lgx1)-column vector of exogenous attributes, f,, is a column vector of
g

corresponding coefficients, and gtqg,-g

is a normal error term. Assume that the S, vector is a
realization from a multivariate normal distribution with a mean vector b, and covariance matrix
Q,=L,L,, where L,is the lower-triangular Cholesky factor of €, . While one can allow
covariance among the g, vectors across the coefficients of the different unordered-response

variables for each individual, this specification will be profligate in the parameters to be
estimated. So, we will assume that the f§,, vectors are independent across the unordered-response
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dimensions for each individual. We also assume that & , is independent and identically

normally distributed across individuals ¢, but allow a general covariance structure across
alternatives for individual g. Specifically, let & , = (fqg,,fqu,...,éqg,g)’ (1, x1vector). Then, we

= Uqgig -U

qgmye

*

qgigmqé'

assume &, ~MVN,(0,A,). Let u

alternative for the gth unordered-response variable by individual ¢, and stack the latent utility

(i, #m,), where m, is the chosen

U
differentials into a vector u,, Z[(qum%a”qum% - ) S # mqg} [(Z, =D x1 vector]. Let

— 4 1 —
X, = (xqgl,xqu,xqg3,...,xqglq) (I,xL matrix), V, =x,b, (I,x1  vector) and

Q =x Q x (I, x I, matrix) . Define M

e = Xag$2eX 00 as an identity matrix of size /, —1, with an extra

= ngng ?

a8

column of ‘-1’ values added at the mZ; column. Also, construct the matrices B,,

qu :nggng' and Aqg = ngAgM;g.

qg°
When there are G unordered-response variables, consider the stacked

’ ’

G N\
{Z (1, - 1)} x1—vector u, = [(u u u g )} , each of whose element vectors is formed by
g=1

ql >Wg2 o0

differencing utilities of alternatives from the chosen alternative m,, for the g" variable. Also,

G

- G
form a block diagonal covariance matrix € of size {Z(l < —1)}{2(% —1)}, each block
g=1

g=1

diagonal holding the matrix Q 4 » and the following matrix of the same size as Q g

;\ql ;\qlz ;\qu
A Ap + « « Ape
Aq - . . . . . . (2.19)

A A - - - Ay

The off-diagonal elements in Kq capture the dependencies across the utility differentials of
different variables, the differential being taken with respect to the chosen alternative for each

variable. It must be ensured that Aq across individuals is derived from a common covariance

G
matrix A for the original (Zl g]-error term vector &, =(&},,¢,,,--¢,¢) - Appropriate

g=1
identification considerations will have to be placed on the elements of A. The parameter vector
to be estimated is @ = (b;,b},...b,,Q,Q)...,Q.,A") . Using the notations as described earlier,
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and defining B, = (B, ,B,;) and E = fl + A, the likelihood contribution of individual

ql» q2’

q is as below:
L,(0)=®;(o; (-B).E, ), (2.20)

750,

p—
.:

where 2 =

* 1
q

G
The above likelihood function involves the evaluation of a Z(l ¢ —1) -dimensional

g=1
integral for each individual, which can be very expensive if there are several variables and/or if
each variable can take a large number of values. But, once again the Maximum Approximated
Composite Marginal Likelihood (MACML) approach of Bhat (2011) can be used gainfully in
this context, in which the MACML function only involves the computation of univariate and
bivariate cumulative distributive functions. Specifically, consider the following (pairwise)
composite marginal likelihood function formed by taking the products (across the G nominal

variables) of the joint pairwise probability of the chosen alternatives m,, for the gth variable and

m,, for the [" variable for individual g.

Lo (0) = HHPr(d%— my,d, =m,), (2.21)

g=1 [=g+1

where d, is an index for the individual’s choice for the gth variable. One can also write:

Pr(d,, =m,,.d, =m,) =0 (-B,).E,). (2.22)

q8°

where [ =1,+1,-2 (I, is the number of alternatives for the gth variable),

] * _ 1
Aqgl ’ qgl — ®

B A Bq,— :A

= -1 . TxT . .
=] - -
ool E o mqul,and A, is a I*] -selection matrix

_
Py
qg! = qgl

with an identity matrix of size (/,—1) occupying the first (/,—1) rows and the

g1 th th
[Z(l j—1)+1} through {Z(Z —1)} columns (with the convention that Z(I -1)=0), and

Jj=1 Jj=1

-1 th
another identity matrix of size (/, —1) occupying the last (/, —1) rows and the [Z([ D+ 1}

J=1

/ th
through [Z([ . 1)} columns. The net result is that the pairwise likelihood function now only

j=1
needs the evaluation of a I -dimensional cumulative normal distribution function (rather than the

T -dimensional cumulative distribution function in the maximum likelihood function). This can
lead to substantial computation efficiency, and can be evaluated using the MVNCD
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approximation of the MACML procedure. The MACML estimator éMACML, obtained by

maximizing the logarithm of the function
0 G-1 G
C C C. -1 D — .
LMA:AC/{]Z[Z (0) = H LMA:AC/IAZIZ,(] (0)’ Where LMZAC/I]\A;LD,({ (0) = H H q)f ((’oiq (-qul )’ '='qgl) (Wlth the
q=1 g=1 I=g+1

MVNCD approximation), is asymptotically normal distributed with mean @ and covariance
matrix that can be estimated as:

A -1 A [~ A
G H'||J||H'
o'yl
Q q=1 g=1I=g+1 8080’ A
- 01WACML
j= 1 i % i alog[q)i("’éf, (_qul)’izgl)] % % alog[q)i("’éf, (_qul)’izgl)] (2.24)
Q q=1 g=1I=g+1 60 g=1Il=g+1 809' ; '
An alternative estimator for H is as below:
ﬁ _ 1 iGZ_i g aloglq)i (‘”% (_qul )’izgl )J alog[q)i ((Dg, (_qul)’izgl )J
(@ Ry gt 00 00’ (2.25)

aMA CML

There are two important issues that need to be dealt with during estimation, each of which is
discussed in turn below.

Identification

The estimated model needs to be theoretically identified. Suppose one considers utility
differences with respect to the first alternative for each of the G variables. Then, the analyst can
restrict the variance term of the top left diagonal of the covariance matrix (say f\;) of error

differences [(équ—§qg1),(§qg3—§qgl),...(§qg,g—§qgl)]' to 1 to account for scale invariance.

However, note that the matrix ]\; is different from the matrix A ¢» Which corresponds to the

covariance of utility differences taken with respect to the chosen alternative for the individual.

G G
Next, create a matrix of dimension {Z (, - 1)} X {z (, - 1)} similar to that of A . in Equation

g=1 g=1
(2.19), except that the matrix is expressed in terms of utility differences with respect to the first

alternative for each nominal variable:
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Al A Al
A21 AZ AZG

1‘&*: . . . . . . (2.26)
Ay A - oo AG ]

Mo

In the general case, this allows the estimation of

1,*(I,~1)
2

- IJ variance terms across all
1

oq
Ii

1%, 1 . ,
the G variables (originating from (%—lj terms embedded in each A, matrix;

G-1 G
g=1,2,...G), and Z Z (I, =1)x({, —1) covariance terms in the off-diagonal matrices of the A’

g=1I=g+1
matrix characterizing the dependence between the latent utility differentials (with respect to the
first alternative) across the variables (originating from (/, —1)x(/, —1) estimable covariance

ek

terms within each off-diagonal matrix A}, inA").

G

To construct the general covariance matrix A for the original (Z 1 g] -error term vector
g=1

é‘q, while also ensuring all parameters are identifiable, zero row and column vectors are inserted

for the first alternatives of each unordered dependent variable in A" . To do so, define a matrix

G G
D of size HZ[ < Hxl:(z‘(lg —l)ﬂ . The first /, rows and (/, —1) columns correspond to the
g=1 g=1

first variable. Insert an identity matrix of size (/, —1) after supplementing with a first row of
zeros into this first 7, rows and (/; —1) columns of D. The rest of the columns for the first /,
rows and the rest of the rows for the first (/, —1) columns take a value of zero. Next, rows
({, +1)through(Z, +1,) and columns (/;) through (/,+1,—2) correspond to the second

variable. Again position an identity matrix of size (/, —1) after supplementing with a first row

of zeros into this position. Continue this for all G nominal variables. Thus, for the case with two
nominal variables, one nominal variable with 3 alternatives and the second with four alternatives,
the matrix D takes the form shown below:
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(2.27)

L A7*5

Then, the general covariance matrix may be developed as A=DA'D’. All parameters in this
matrix are identifiable by virtue of the way this matrix is constructed based on utility differences
and, at the same time, it provides a consistent means to obtain the covariance matrix A q that is

needed for estimation (and is with respect to each individual’s chosen alternative for each
G G

variable). Specifically, define a matrix M , of size KZ(I < —I)HXKZI ‘ II The first (1, = 1)
g=1 g=1

rows and /; columns correspond to the first nominal variable. Insert an identity matrix of size
(/, —1) after supplementing with a column of ‘-1’ values in the column corresponding to the
chosen alternative. The rest of the columns for the first (/;, —1) rows and the rest of the rows for
the first 7, columns take a value of zero. Next, rows (/) through (/, +1, —2)and columns
(Z, + D through(Z, + I,) correspond to the second nominal variable. Again position an identity

matrix of size ([, —1) after supplementing with a column of ‘-1° values in the column
corresponding to the chosen alternative. Continue this procedure for all G nominal variables.

With the matrix M , as defined, the covariance matrix A, for any individual is given by

A, =M AM,.

Positive Definiteness

The matrices A , and Q , have to be positive definite. The simplest way to guarantee the positive

definiteness of A , 1s to ensure that A’ is positive definite. To do so, the Cholesky matrix of A
may be used as the matrix of parameters to be estimated. However, note that the top diagonal

element of each K; is normalized to one for identification, and this restriction should be

recognized when using the Cholesky factor of A" . This can be achieved by appropriately
parameterizing the diagonal elements of the Cholesky decomposition matrix. Thus, consider the

lower triangular Cholesky matrix L of the same size as A" . Whenever a diagonal element (say
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the k" element) of A" is to be normalized to one, the first element in the corresponding row of

k
L is written as fl—Zl,fj , where the [, elements are the Cholesky factors that are to be
J=2

estimated. With this parameterization, A" obtained as L'L" is positive definite and adheres to

-

the scaling conditions. Using this, one constructs A, and subsequently obtains A as discussed

earlier. The resulting A .18 positive definite. The positive definiteness of flq is ensured by

writing Q, =L,L,.

References for the CML Estimation of the CMMNP Model

Bhat, C.R., Paleti, R., Pendyala, R.M., Lorenzini, K., Konduri, K.C., 2013. Accommodating
immigration status and self selection effects in a joint model of household auto ownership
and residential location choice. Transportation Research Record 2382, 142-150.

Feddag, M.-L., 2013. Composite likelihood estimation for multivariate probit latent traits
models. Communications in Statistics - Theory and Methods 42(14), 2551-2566.

Kortum, K., Paleti, R., Bhat, C.R., Pendyala, R.M., 2012. Joint model of residential relocation
choice and underlying causal factors, Transportation Research Record, 2303, 28-37.

2.2.2.3. The Panel MNP (PMNP) Model
Consider the following model with ‘# now being an index for choice occasion:

Uy =BiXy+Eps B, ~MVN(b,Q), ¢=1,2,..,0, 1=12,..,T, i=1,2,... 1. (2.28)

For ease, we assume that all alternatives are available at each choice instance of each individual,
and that we have a balanced panel (that is, we have the same number of choice instances from
each individual). The first assumption is innocuous and helps in presentation. The relaxation of
the second assumption only requires a different weight per individual, exactly as discussed
earlier for the ordered-response case. x,; is a (L x1)-column vector of exogenous attributes
whose first (/-71) elements correspond to alternative specific constants for (I-1) alternatives (with
one of the alternatives being the base alternative) and the remaining variables being the non-

constant variables. g, is an individual-specific (L x1)-column vector of corresponding

coefficients that varies across individuals based on unobserved individual attributes. Assume that
the B, vector is a realization from a multivariate normal distribution with a mean vector b and

covariance matrix Q = LL’, where L is the lower-triangular Cholesky factor of Q. Thus, as in

the case of the panel ordered-response model, the coefficients f, are considered constant over
choice situations of a given decision maker. We also assume that &, is independent and

identically normally distributed across individuals and choice occasions, but allow a general
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covariance structure across alternatives for each choice instance of each individual. Specifically,
let &,=(&,1,8m56) (I x1vector). Then, we assume ¢, ~MVN,(0,A). As usual,

appropriate scale and level normalization must be imposed on A for identifiability. To do so, we
follow the same exact procedure as in the CMNP model. Specifically, only utility differentials
matter at each choice occasion. Taking the utility differentials with respect to the first alternative,

only the elements of the covariance matrix A, of g?q =&, — 6, (i #1) are estimable, and A is

til
constructed from A, by adding an additional row on top and an additional column to the left.

All elements of this additional row and additional column are filled with values of zeros. We also
normalize the element of A in the second row and second column to the value of one.

Define the following vectors and matrices: U, =(U,,,U,,,.,U,)" (I x1 vector),
u =, U,,.U,) (TT x1 vector), §, =160 C0r) (TT x1 vector),
Xy = (X015 X 0> X 350X ) (I L matrix), x, =(x},,X,,,...,X,;)" (TIxL matrix),V, =x_b
(TI x1 vector), SNZq = qux; (TT x TI matrix), and Eq = SNZq +(IDEN, ® A) (TI x TI matrix).
Then, we may write, in matrix notation, U, =V +¢ and U . ~MI/7VT1(Vq,§ ,)- Let the
individual g choose alternative m , at the /th choice occasion. To develop the likelihood function,
define M, as an [T x(I —1)]x[T] block-diagonal matrix, each block diagonal being of size
(I -1)x(1)) and containing the matrix M. M, itself is an identity matrix of size (/-1) with an
extra column of ‘-1” values added at the m]; column. Let B, =MV and E = MqEqM;. The
parameter vector to be estimated is @ = (b’, Q’, A’)’. The likelihood contribution of individual ¢

is as below:
-1 —

L,(0)=0;(o; (-B).E, ), (2.29)

where j:Tx(]—l), and Eq* :(y)fiE (o)

The simulation approaches for evaluating the panel likelihood function involve
integration of dimension [7 x(/—1)]. Consider the following (pairwise) composite marginal

likelihood function formed by taking the products (across the 7 choice occasions) of the joint
pairwise probability of the chosen alternatives m,, for the " choice occasion and m 4o tor the g"
choice occasion for individual g.

7-1 T
Lo @ =1111Pd, =m,.d, =m,), (2.30)

t=1 g=t+1

where d , is an index for the individual’s choice on the th choice occasion. One can also write:
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Pr(d,, =m,.d, =m,)=0;( (-B,).E,). (2.31)

qt?

*

[I]Z

where J =2(/-1), B,, =A,, B, &, =A,Z A, —coiig:qtg mgﬂg,and A, isa J*J -
selection matrix with an identity matrix of size (/ —1) occupying the first (/ —1) rows and the
[(t -Dx(I-1)+ l]lh through [t x (I — 1)]”1 columns, and another identity matrix of size (/-1)
occupying the last (/ —1) rows and the [( g-DHx(I-1)+ l]th through [g x (I — 1)]’h columns. The
pairwise likelihood function now only needs the evaluation of a J -dimensional cumulative
normal distribution function (rather than the T -dimensional cumulative distribution function in
the maximum likelihood function). The MACML estimator éMACML is obtained by maximizing
the logarithm of the function
-1 T
Lyien. (0) = Hmew) where Ly, ,(0) = H chbj(m;;g (-B,).E,)  (with  the
=1 g=i+

MVNCD appr0x1mation). The covariance matrix is estimated as:

¢ [aTila]
0

wih i=- L35 % O logfo, (03 (B,,).E,)]
Q g=1 t=1 g=t+1 8080’ P
J= ii g i alogl(bj(mé;g ('Bqtg)’E;tg)J ~ i aloglq)](m;m (-Bqtg)’E;tg )J (2.32)
Q q=1 t=1 g=t+1 80 t=1 g=t+1 60, p

An alternative estimator for H is as below:

i dlogl, (m=6 0( B,).5)|[ otogo, (maa(' B,).E)| 233)

oMA CML

References for the CML Estimation of the PMNP Model
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composite marginal likelihood (MACML) estimator for mixed multinomial probit models.
Transportation Research Part B 45(7), 940-953.

Bhat, C.R., Sidharthan, R., 2012. A new approach to specify and estimate non-normally mixed
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2.3. Spatial Formulations
In the past decade, there has been increasing interest and attention on recognizing and explicitly
accommodating spatial (and social) dependence among decision-makers (or other observation
units) in urban and regional modeling, agricultural and natural resource economics, public
economics, geography, marketing, sociology, political science, and epidemiology. The reader is
referred to a special issue of Regional Science and Urban Economics entitled “Advances in
spatial econometrics” (edited by Arbia and Kelejian, 2010) and another special issue of the
Journal of Regional Science entitled “Introduction: Whither spatial econometrics?” (edited by
Patridge et al., 2012) for a collection of recent papers on spatial dependence, and to Elhorst
(2010), Anselin (2010), Ferdous and Bhat (2013), and Bhat et al. (2014a) for overviews of recent
developments in the spatial econometrics field. Within the past few years, there has particularly
been an explosion in studies that recognize and accommodate spatial dependency in discrete
choice models. The typical way this is achieved is by applying spatial structures developed in the
context of continuous dependent variables to the linear (latent) propensity variables underlying
discrete choice dependent variables (see reviews of this literature in Fleming, 2004, Franzese and
Hays, 2008, LeSage and Pace, 2009, Hays et al. 2010, Brady and Irwin, 2011, and Sidharthan
and Bhat, 2012). The two dominant techniques, both based on simulation methods, for the
estimation of such spatial discrete models are the frequentist recursive importance sampling
(RIS) estimator (which is a generalization of the more familiar Geweke-Hajivassiliou-Keane or
GHK simulator; see Beron and Vijverberg, 2004) and the Bayesian Markov Chain Monte Carlo
(MCMC)-based estimator (see LeSage and Pace, 2009). However, both of these methods are
confronted with multi-dimensional normal integration of the order of the number of
observational units in ordered-response models, and are cumbersome to implement in typical
empirical contexts with even moderate estimation sample sizes (see Bhat, 2011 and Franzese et
al., 2010). The RIS and MCMC methods become even more difficult (to almost infeasible) to
implement in a spatial unordered multinomial choice context because the likelihood function
entails a multidimensional integral of the order of the number of observational units factored up
by the number of alternatives minus one (in the case of multi-period data, the integral dimension
gets factored up further by the number of time periods of observation). Recently, Bhat and
colleagues have suggested a composite marginal likelihood (CML) inference approach for
estimating spatial binary/ordered-response probit models, and the maximum approximate
composite marginal likelihood (MACML) inference approach for estimating spatial unordered-
response multinomial probit (MNP) models. These methods are easy to implement, require no
simulation, and involve only univariate and bivariate cumulative normal distribution function
evaluations, regardless of the number of alternatives, or the number of choice occasions per
observation unit, or the number of observation units, or the nature of social/spatial dependence
structures.

In the spatial analysis literature, the two workhorse specifications to capture spatial
dependencies are the spatial lag and the spatial error specifications (Anselin, 1988). The spatial
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lag specification, in reduced form, allows spatial dependence through both spatial spillover
effects (observed exogenous variables at one location having an influence on the dependent
variable at that location and neighboring locations) as well as spatial error correlation effects
(unobserved exogenous variables at one location having an influence on the dependent variable
at that location and neighboring locations). The spatial error specification, on the other hand,
assumes that spatial dependence is only due to spatial error correlation effects and not due to
spatial spillover effects. The spatial error specification is somewhat simpler in formulation and
estimation than the spatial lag model. But, as emphasized by McMillen (2010), the use of a
parametric spatial error structure is “troublesome because it requires the researcher to specify the
actual structure of the errors”, while it is much easier to justify a parametric spatial lag structure
when accommodating spatial dependence. Beck et al. (2006) also find theoretical and conceptual
issues with the spatial error model and refer to it as being “odd”, because the formulation rests on
the “hard to defend” position that “space matters in the error process but not in the substantive
portion of the model”. As they point out, the implication is that if a new independent variable is
added to a spatial error model “so that we move it from the error to the substantive portion of the
model”, the variable magically ceases to have a spatial impact on neighboring observations. Of
course, the spatial lag and spatial error specifications can be combined together in a Kelejian-
Prucha specification (see Elhorst, 2010), or the spatial lag could be combined with spatially
lagged exogenous variable effects in a Spatial Durbin specification (see Bhat et al., 2014a). In all
of these cases, the spatial dependence leads also to spatial heteroscedasticity in the random error
terms.

In this paper, we will assume the spatial lag structure as the specification of spatial
dependency. However, it is very straightforward to extend our approach to other dependency
specifications. Indeed, there is no conceptual difficulty in doing so, nor is there much impact on
coding or computational burden. The focus on the spatial lag structure is simply for uniformity
and notational ease. In addition to the spatial lag-based and resulting heteroscedasticity effect, it
is also likely that there is heterogeneity (i.e., differences in relationships between the dependent
variable of interest and the independent variables across decision-makers or spatial units (see,
Fotheringham and Brunsdon, 1999, Bhat and Zhao, 2002, Bhat and Guo, 2004). When combined
with the spatial lag effect, the unobserved heterogeneity effects get correlated over decision
agents based on the spatial (or social) proximity of the agents’ locations, which is then referred
to as spatial drift (see Bradlow et al., 2005 for a discussion). But such spatial drift effects have
been largely ignored thus far in the literature (but see Bhat et al., 2014a). We explicitly
incorporate such drift effects in the models discussed below. All notations from previous sections
carry over to the sections below.

2.3.1 Spatial Ordered Response Models

2.3.1.1 The Spatial CUOP Model
The spatial CUOP (SCUOP) is an extension of the aspatial CUOP model from Section 2.2.1.1,
and may be written as follows:
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0
=6 W ya+Bix, e, v, =k ity <y <y, (2.34)
q'=1

where the w,, terms are the elements of an exogenously defined distance-based spatial (or

social) weight matrix W corresponding to individuals ¢ and ¢’ (with w, =0 and zww, =1),
p

and 5 (0 <o <1) is the spatial autoregressive parameter. The weights w_, can take the form of

a discrete function such as a contiguity specification (w,, =1 if the individuals ¢ and ¢' are

adjacent and 0 otherwise) or a specification based on a distance threshold (w,, =c,,./ Zc '

where ¢ . is a dummy variable taking the value 1 if the individual ¢" is within the distance

threshold and 0 otherwise). It can also take a continuous form such as those based on the inverse

1
of distance d,, and its power functions [wqq, =(l/d ;’q,){ZI/d ;q} J (n>0), the inverse of
"
exponential distance, and the shared edge length d 4 between individuals (or observation units)

99" 94’

= d /(Zcqq o ,j (where ¢, is a dummy variable taking the value 1 if ¢ and ¢' are

adjoining based on some pre-specified spatial criteria, and 0 otherwise). All of these functional
forms for the weight matrix may be tested empirically.

The latent propensity representation of Equation (2.34) can be written equivalently in
vector notation as:

Y =Wy +xb+Xf +¢, (2.35)

where y* = (yl*,y;,...,y;)' and &= (g, &,,...,&,)" are (Ox1) vectors, x =(x,, x,,...,X,)" is a

(OxL) matrix of exogenous variables for all QO individuals, ¥ is a (O*xQL) block-diagonal
matrix with each block-diagonal of size (1xL) being occupied by the vector x; (¢ =1.2,..,0),

and g =(,§1’ ,ﬁ;,..., ﬁ'Q)' is a (QLx1) vector. Through simple matrix algebra manipulation,

Equation (2.35) may be re-written as:
y =Sxb+%fre), (2.36)

where S:[IDENQ —5W]_1 is a (0xQ) matrix. The vector y* is multivariate normally
distributed as y* ~ MVN,(B,E) , where

=Sxb and E=S|X(IDEN, ® Q)%'+ IDEN,, |S'. (2.37)

The likelihood function L(#) for the SCUOP model takes the following form:
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LO)=P(y=m)= [ fo(y"|B.E)dy", (2.38)

where y=(y,,V;,» 1), m=(m,,m,,...m,)" is the corresponding (Q*1) vector of the actual

observed  ordinal levels, Dy* is  the integration domain  defined as

Dy* ={y W g1 < y; <Yy, > Vg=12,..,0} ,and f,() is the multivariate normal density

function of dimension QO .

The rectangular integral in the likelihood function is of dimension Q, which can become
problematic from a computational standpoint. Further, the use of traditional numerical simulation
techniques can lead to convergence problems during estimation even for moderately sized QO
(Bhat et al., 2010a; Miiller and Czado, 2005). The alternative is to use the composite marginal
likelihood (CML) approach. Using a pairwise CML method, the function to be maximized is:

o-1 0
LSC?\/IULOP (0) =H Hqu” Where qu' = P([y]q = [m]q’[y]q' = [m]q') That iS,
1111 (2.39)

qu' = I:q)z(q)q’q)q"qu')_®2(¢)q7ﬂq'9qu')_®2(/’lq7¢)q'9qu')+q)z(ﬂq’ﬂq"qu')]

Yqm, _[B]q _ ¥ qm,-1 _[B]q (=]

[Z]qq e \/[E]qq e \/[E]qq \/[Z]q’q' .

In the above expression, [B], represents the g" element of the column vector B, while [Z]

where ¢, =

qq’

h

represents the gg'" element of the matrix X .

The pairwise marginal likelihood function of Equation (2.39) comprises Q(Q —1)/2
pairs of bivariate probability computations, which can itself become quite time consuming.
However, previous studies (Varin and Vidoni, 2009, Bhat et al., 2010a, Varin and Czado, 2010)
have shown that spatial dependency drops quickly with inter-observation distance. Therefore,
there is no need to retain all observation pairs because the pairs formed from the closest
observations provide much more information than pairs far from one another. The “optimal”
distance for including pairings can be based on minimizing the trace of the asymptotic
covariance matrix. Thus, the analyst can start with a low value of the distance threshold (leading
to a low number of pairwise terms in the CML function) and then continually increase the
distance threshold up to a point where the gains from increasing the distance threshold is very

small or even drops. To be specific, for a given threshold, construct a O*xQ matrix R with its

g" column filled with a Ox1 vector of zeros and ones as follows: if the observational unit ¢’ is

not within the specified threshold distance of unit g, the q"h row has a value of zero; otherwise,

the ¢’ row has a value of one. By construction, the ¢” row of the ¢” column has a value of

~ ~ ~ & 2o ~
one. Let [RJqq,be the gg” element of the matrix R, and let W = z Z[R]qq,. Define a set C, of

q=1 q¢'=q+1
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all individuals (observation units) that have a value of ‘1’ in the vector [ﬁL, where [ﬁL is the
qth column of the vector R. Then, the CML function is as follows:

Le (0) :ﬁ lg[l’qq’ ) (2.40)

q=1 q'=q+1
q'eC,

The covariance matrix of the CML estimator is [C;’;r = [FII] [jj [ﬁl] , Where

w
i ¢ & dlogl,,
= _LN Z o2 , or alternatively, (2.41)
WS yog 0000
a'<C, Ocrn,
A g1 0 Jlo L, ologlL ,
-l Z g &y (2.42)
4 q:1 =4 l 60’ Ocr

However, the estimation of the “vegetable” matrix J is more difficult in this case. One cannot
empirically estimate J as the sampling variance of the individual contributions to the composite
score function (as was possible when there were Q independent contributions) because if the
underlying spatial dependence in observation units. But a windows resampling procedure (see
Heagerty and Lumley, 2000) may be used to estimate J . This procedure entails the construction
of suitable overlapping subgroups of the sample that may be viewed as independent replicated
observations. Then, J may be estimated empirically. While there are several ways to implement
this, Bhat (2011) suggests overlaying the spatial region under consideration with a square grid

providing a total of O internal and external nodes. Then, select the observational unit closest to
each of the Q grid nodes to obtain Q observational units from the original O observational units

(g=12,3,.. ,0). Let 17‘7 be the O x1 matrix representing the §” column vector of the matrix

R, let C ; be the set of all individuals (observation units) that have a value of ‘1” in the vector

17,7 ,and let y, be the sub-vector of y with values of ‘1’ in the rows of I?q . Let N, be the sum

(across rows) of the vector 17‘7 (that is, N is the cardinality of C 7 )» so that the dimension of y;

is N, x1. Let [, be the index of all elements in the vector y;, so that [,=1,2,... N,. Next,

define (27 = [N (NG — 1)]/ 2. Then, the J matrix maybe empirically estimated as:

1 ' alogL” Ngl Vg 8logL”
—_— {z Z }{Z Z } . (2.43)

7| G=tr=+ lp=1I'=l;+1

J=

m Msz

1
0|7

BCML
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To ensure the constraints on the autoregressive term O, the analyst can parameterize

o= 1/[1+exp(g )]. Once estimated, the 5 estimate can be translated back to estimates of an

estimate of & .

References for the CML Estimation of the Spatial CUOP (or SCUOP) Model

Ferdous, N., Pendyala, R.M., Bhat, C.R., Konduri, K.C., 2011. Modeling the influence of family,
social context, and spatial proximity on use of nonmotorized transport mode, Transportation
Research Record 2230, 111-120.

Spissu, E., Eluru, N., Sener, [.N., Bhat, C.R., Meloni, I., 2010. Cross-clustered model of
frequency of home-based work participation in traditionally off-work hours. Transportation
Research Record 2157, 138-146.

Whalen, K.E., Paez, A., Bhat, C., Moniruzzaman, M., Paleti, R., 2012. 7-communities and sense
of community in a university town: evidence from a student sample using a spatial ordered-
response model. Urban Studies 49(6), 1357-1376.

2.3.1.2 The Spatial CMOP Model
We start with Equation (2.6) of the aspatial CMOP model in Section 2.2.1.2, and now add a
spatial lag formulation:

Y
Yo = 5izwqq'yq'i +ﬂ¢;ixq TEis Yy = k; if V/;,k‘.71 <Yy < l//;,k,. . (2.44)
q'=1

Define  y, = (,1, Vo V) (Ix1vector),, y" =[()),(3)s(93) e (¥p)T  (QIX1  vector),
Yy = Vs Vgares V) (IX1vector), y =[(p,)(3,)(¥3) s ()T (OIx1 vector),

m,=(m,,m,,..,m,) (Ixlvector), m=(m,m,,..,m,)" (QIx1 vector) , X, =IDEN, ® x/

g1
(/>IL matrix; IDEN , is an identity matrix of size /), X = (X,X},X},..X,)" (QI[*IL matrix),
B,=b+B,. B,=..B,..B,) (ILx1vector), B, ~MVN,, (0,Q) (the J, random
coefficients are independent across individuals), B = (ﬁl',ﬁz' ey ﬁé)' (QIL %1 vector),

b=(b.b,,....b;)" (IL*1 vector), &, =(£,,6:E35026,) > €=(8],8,85,...,&,) (OI*1 vector),
60=(5,,0,,0,,..,6,) (Ix1 vector), and o = 1, ® 6 (OI*1 vector; 1, is a vector of size O with

all elements equal to 1). Also, define the following matrix:

(X, 0 0 0---0
0%, 0 0--0
0 0 X, 0--0 | (QIxQIL matrix). (2.45)

(ol
I

by e

(00 0 0.
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Collect all the weights w, . into a row-normalized spatial weight matrix W . All other notations

from Section 2.2.1.2 are carried over to this section, including the multivariate standard normal
distribution specification for & with mean zero and correlation matrix X (see Equation 2.7).

With these definitions, Equation (2.44) may be re-written in matrix form as:
y =[6.*(WQIDEN )]y +Xb+%f +¢, (2.46)

where the operation '*' in the equation above is used to refer to the element by element
multiplication. After further matrix manipulation, we obtain:

y" =SXb+S(p +¢), where s = [IDEN ,, - 5.* (W ® IDEN , )] . (2.47)

The expected value and variance of y may be obtained from the above equation after
developing the covariance matrix for the error vector S(fiﬁ +¢&). This may be written as
E=SlX(IDEN ®Q)"’+IDEN ®ZJS’ Then, we obtain y* ~ MVN, o1 (B,E), where B=Sxb.
The parameter vector to be estimated in the SCMOP model is ¢ = (b",Q",X',y",a’,d")".
Let \I’“P = (W;,m .,l//;’qu ""9W;,mq,) (1 Xl VeCtor)a ‘I’::w = (W;m 71’l//;qufl""’w(;,mq,fl) (] Xl) VeCtOI',

= (WP, w5, wy) (O x1 vector), and '™ =(yy™,wy",..,wg") (O x1 vector). The
likelihood function for the SCMOP model is:

LO)=P(y=m)= [ ()" | B.E)dY, (2.48)

¥

where D . ={ Yoy <y <y"™  and f, () is the multivariate normal density function of

dimension QI. The dimensionality of the rectangular integral in the likelihood function is QI,
which is very difficult to evaluate using existing estimation methods. The alternative is to use the
pairwise composite marginal likelihood (CML) approach:

0 0
CML (HH]L[HLW] with ¢' # ¢ when i =i', where

() (¢;,§5;, qzz) @ ((oq’ ‘IU)] (2 49)

[—cbz(sza;, Vi) + @,(9, 30 v

qq’ii’)

~i W;:mt,,» _[B ](q—l)xlﬂ 5 ‘//qm -1 [B](q—l)xlﬂ'

9 = —_ , and
\/ [:'](q—l)xlﬂ,(q—l)xlﬂ \/ ["'](q—l)x]ﬂ,(q—l)x]ﬂ

[E](qfl)xlﬂ,(q'fl)xlﬂ'
|

e =] '
= 1(g-1)xI+i(g=1)xI+i = 1(g'-D)xI+i'(g'-1)xI+i'
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The CML estimator is obtained by maximizing the logarithm of the function in Equation (2.49).
The number of pairings in the CML function above is [QI(QI —1)]/ 2. But again the

number of pairings can be reduced by determining the “optimal” distance for including pairings
across individuals based on minimizing the trace of the asymptotic covariance matrix (as

discussed in the previous section)."" To do so, define a set C , as in the previous section that

includes the set of individuals ¢’ (including ¢) that are within a specified threshold distance of
individual g. Then, the CML function reduces to the following expression:

Loy (0): lg_[ lg[

q=1 ¢’

/
[T, | with ¢’ =g when i=i" (2.50)

s
=1

1
q i=l1
C

mol

Let W be the total number of pairings used in the above CML function (after considering the

distance threshold). The covariance matrix of the CML estimator is [G;VJ_I = [ﬁ-l ][’I;J[ﬁl] ,

where

—_i 0 Q9 I I—qw , o
H = 7 ZZZZ 2000 q'#q when i=1i, (2.51)

gCML

1] & Lo ([alogL,,, TologL,,,
H=% YYITY H gaqq”}{ §0fq”D g'%q when i=i" (2.52)

0CML

The sandwich matrix, J , may be computed by selecting Q (g = 1,2,...,@) observational units
from the original Q observational units as discussed in the earlier section. Let C ; be the set of
individuals (observation units) within the specified threshold distance, and let N, be the

cardinality of 55. Let /[, be an index so that /,=1,2,... N,. Next, define

ﬁfj = [(N A )((N i )— 1)]/ 2. Then, the J matrix maybe empirically estimated as:

" Technically, one can consider a threshold distance separately for each ordinal variable, so that the individual
pairings within each variable are based on this variable-specific threshold distance and the individual-variable
pairings across variables are based on different thresholds across variables. But this gets cumbersome, and so we
will retain a single threshold distance across all ordinal variables.
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lq LI'=l; i=l i'=i

5 N; Ny | | Ny Ny 1 1

38 (Erss Tum]prss ) sy

g=1 P =i .

BCML

There is another way that the analyst can consider cutting down the number of pairings
even after using a threshold distance as a cut-off. That is by ignoring the pairings among
different individuals (observation units) across the / ordinal variables. This will reduce the
number of pairings quite substantially, while also retaining the pairings across individuals for
each ordinal variable (that enables the estimation of the parameters of the vector ¢ ) and the
pairings across ordinal variables within the same individual (that enables the estimation of the

parameters in the correlation matrix X of &, ). The CML is:

o-1 Q9 I Q0 I-1 I
LCML (0): H Hqu'i (HH HLqii'J (2'54)
q=1 q’:1+1 i=1 g=1 i=1 i'=i+l
q'eC,

The number of pairings W in the CML function above is much smaller than the CML function
in Equation (2.50). The elements of the covariance matrix may be estimated as follows:

. 1 o-1 0 1 82 logL . 0 -1 I 82 logL Y
H=-—— . oTeet . L , (2.55)
w g=1 qé:ﬂ; 0000’ ; i=1 igl 0000
q'eC,

BCML

. 11E & | dlogL,,, | dloglL . QL L (| OlogL,, || OlogL,,.
H=——< ad’ 0+ il 4l . 2.56
Zbpm{Ee Bl bana (e 9

q=1 i=l i'=i+

éCML
For estimating the J matrix define C. and N, be defined as earlier and let

q
&, alOngzz < 610gL11u:|

G =[NV, ~D/2Jr+[1(1-1)/2]0 and §, {ZZZ — le

I=110'=l; i=l 1:1:111+1
K 0CML

Then,
j= i[i{% (5.8 )ﬂ (2.57)

The positive-definiteness of the matrices Q and X are ensured as discussed in Sections
23.1.1and 2.2.1.2.
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References for the CML Estimation of the Spatial CMOP (or SCMOP) Model

No known applications. But the spatial cross-sectional multivariate count model of
Narayanamoorthy et al. (2013) is very similar to the SCMOP model."

2.3.1.3. The Spatial PMOP (SPMOP) Model
All notations from Section 2.2.1.3 are carried over. To include spatial dependency in the PMOP
model, rewrite Equation (2.12) as follows:

0
Vo = 52wqq,yq,t B, X, e, Vy=kity, <y, <V, .. (2.58)
q'=1
Define Yy =(Vgs Vgaseeor Vo) (T x1 matrix) , g, =(&,,8,, &) (I'x] matrix),
Vo=t Vonseon Vor)' (T x1 matrix), x, = (X4, X, ,..,X,7) (T x L matrix),

low

vy = (l//q,1,mq, oz, ,...,l//q’T’qu) (T'x1  vector), "= (l//q,l,mql__l,l//q,z,qu_p---:'// q,T,qu—l) (T'x1)

vector. Also, let the vector of actual observed ordinal outcomes for individual g be stacked into a
(Tx1) vector m, = (m,m,,,...,m,)" . To write the equation system in (2.58) compactly, we

next define several additional vectors and matrices. Let yp =[(p;),(»,),(¥;) ... (¥,)'T (QTx1
vector), y =[(¥).(3,)(¥3) s (¥p)'1 (OTX1 vector), m=(m1,m2,...,mQ)' (QTx1 vector),
X = (X},X3,X;,..Xp)"  (OTXL matrix), B, =b+ﬁq, ﬁq~MVNL(O,Q) (the Eq random
coefficients are independent across individuals), B = (ﬁl', ﬁz',..., Eé)' (QL x1 vector),

!

£=(8,8),&,...,&y) (QT*1 vector),

'x, 0 0 - 0
0 x, 0 - 0
x=0 0 x; - 0| (9T xQL block diagonal matrix), (2.59)
100 0 - xq]

Also, collect all the weights w_, into a spatial weight matrix W. The vector E above has a mean
vector of zero and a covariance matrix IDEN, ® Q (of size QT*xQT), while the vector & has a
mean vector of zero and a covariance matrix IDEN,,,.

Using the vector and the matrix notations defined above, Equation (2.58) may be re-
written compactly as:

y =[6(W®IDEN )]y  +xb+xf +¢, (2.60)

After further matrix manipulation, we obtain:
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y" =Sxb+S(f +¢), where S = [IDEN ,, - 5(W ® IDEN , )] (2.61)
Next, we obtain y" ~ M VN, (B,E) , where
=Sxb and E=S|X(IDEN, ® @)%’ + IDEN , |8’ (2.62)

The parameter vector to be estimated in the SPMOP model is 6 =(b',Q',y",a’,5) . Let
v = (WP vyt wg) (OT x1 vector), and w'™" = (yy™, 93" ,...,wg") (OT x1 vector). The
likelihood function for the SPMOP model is:

LO)=P(y=m)= [ [, (y" | B.E)dy", (2.63)

Yy

low

where Dy* ={y ¢y <y <y"™ , and Sfor () 1s the multivariate normal density function of

dimension Q7. The much simpler pairwise composite marginal likelihood (CML) function is:

T
LCML { HH qqt,,] with ¢' # ¢ when ¢ =t¢', where

I _ @ 2 ((th > aq’t' Vg ) -0 (@t q’t’ Vg )
qq'tt’ — ~ >
_®2(3qt’¢q’t"qutt)+(b (‘9 g1 qqtt')

=~ _ V/q,l,mq[ - [B](q—l)xT+t g _ l//q,t,mq,fl - [B](q—l)xT+t

sYaqr T

, and (2.64)

\/[E](q—l WT+t,(g—1)xT+t \/[E‘](q—l)xTH,(q—l)th

[E](q—l)xTH,(q'—l)xTH’
| —

“ \/[E](q—l)xTth,(q—l)xTH \/[E](q’—l)xTH’,(q’—l)><T+t' .

To reduce the number of pairings, define a set C , s in the previous section that includes the set

of individuals ¢’ (including ¢q) that are within a specified threshold distance of individual q.
Then, the CML function reduces to the following expression:

T

Ly ( ﬁ lgﬂl[Hqur,,r with ¢'# g when ¢ =1". (2.65)

t=1 t'=i

Let W be the total number of pairings used in the above CML function (after considering the

distance threshold). The covariance matrix of the CML estimator is [G;; = [ﬁll [.I{INJ [ﬁ -IT ,

where
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R 11& & LI iy
H:_W Z z ZZ—‘”” q'#q when t={, (2.66)

0CML

Ko 1 Q Q T T "t alOgL '
H:T 99 94 4 — r. )
W > 2 ZZ [{ 20 }{ PYY D q'#q when ¢=t (2.67)

0CML

Defining C i» N;,and (qu = [(N A X(N A )— 1)]/ 2 as in the previous section, the J matrix maybe

empirically estimated as:
- 1141 Ng Ng v T OlogL, . | Yo, Yo . OloglL,,.,
-3 S H[E855 M B 558 o] e
q =11 1 ' ' N
GCAWL

One can also ignore the pairings among different individuals (observation units) across the 7'
time periods. The CML then is:

0-1 0 T 0 11 T
tew@ [T T T [ TTE T2 26
q=1 q'=q+1 t=1 g=1 t=1 t'=t+1
q'eC,
The elements of the covariance matrix in this case may be estimated as follows
. 11 & Lo’logl o1t I 5’logl,,
H=—— 7y — , 2.70
AR 2 I e 70
qyecq éCML

or alternatively,

ologlL,,, | OlogL,,, &2 (| ologl,, | OlogL,,
RS

q=14'=q+1 1=1 t=1t'=t+
qec éL'ML
For estimating the J matrix, define ; and N, as cearlier and let
Ng Ng T 810gL Nz -1 1 OloglL, ,
C. =[N v, -1y2)r +[1(1-1)/2]0 and § 3 — TSy ki
I;=11'=l; 1=1 I;=1 i=l r'=t+1 o0 P

Then,
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1S 1 (s
i-5 ;{é—q(sq q)} 2.72)

References for the CML Estimation of the Spatial PMOP (SPMOP) Model

Castro, M., Paleti, R., Bhat, C.R., 2013. A spatial generalized ordered response model to
examine highway crash injury severity. Accident Analysis and Prevention 52, 188-203.

Ferdous, N., Bhat, C.R., 2013. A spatial panel ordered-response model with application to the
analysis of urban land-use development intensity patterns. Journal of Geographical Systems
15(1), 1-29.

Paleti, R., Bhat, C.R., Pendyala, R.M., Goulias, K.G., 2013. Modeling of household vehicle type
choice accommodating spatial dependence effects. Transportation Research Record 2343,
86-94.

2.3.2. Unordered-Response Models

2.3.2.1. The Spatial CMNP (SCMNP) Model

The formulation in this case is similar to the aspatial case in Section 2.2.2.1, with the exception
that a spatial lag term is included. Of course, this also completely changes the model structure
from the aspatial case.

U, =0 W, Uy +Pix,+&5B,=b+p,, B, ~MVN,(0,Q); |51, (2.73)
-

where all notations are the same as in Section 2.2.2.1."% Let §,=(&,1>8,05E,)" (I x1vector).
Then, we assume & , ~MVN, (0,A). As usual, appropriate scale and level normalization must be

imposed on A for identifiability, as discussed in Section 2.2.2.1. The model above may be
written in a more compact form by defining the following vectors and matrices:

u,=U,U,..U,) (Ix1 vector), U =(U,,U,,...,Uy)" (QI x1vector), & =(&1,65,-,6p)

(QI x1vector), x, =(X,4,X,5,X,3,-,X,) (I xL matrix), x=(x;,X,....Xp)" (QI x L matrix),

and B = (ﬁl’ , ﬁ;,..., E'Q) (OL x1 vector). Also, define the following matrix:

2 One can allow the spatial lag dependence parameter o to vary across alternatives i. However, due to identification
considerations, one of the alternatives should be used as the base (with a zero dependence parameter). But doing so
while also allowing the dependence parameters to vary across the remaining alternatives creates exchangeability
problems, since the model estimation results will not be independent of the decision of which alternative is
considered as the base. Hence, we prefer the specification that restricts the dependence parameter to be the same
across alternatives .
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=)

Ry
=)
=)

x=00 x, 00 |(OIxOL matrix), (2.74)

(00 0 0..x,|

Then, we can write Equation (2.73) in matrix form as:

U =Slxb+3f+¢] 2.75)

where S = [IDENQ1 —(OWQ®IDEN, )]71 (OI x QI matrix), and W is the (Q xQ) weight matrix
with the weights w, . as its elements. Also, U~ MVN Q,(V,i), where V=Sxb and

99
Z = S[R(IDEN , ® @)%’ + (IDEN , ® A)". Let u, = (u,,u,,,...11,,) (i#m,) be an (I-1)x1
vector for individual q, where m,  is the actual observed choice of individual g and

u,=U,-U, (i#m,). Stack the wu, vectors across individuals (observation units):

u=(up,u,..,uy) [Q( —1)x1 Vector]. The distribution of u may be derived from the
distribution of U by defining a [Q x (I —1)]x[QI] block diagonal matrix M, with each block

diagonal having (/ —1) rows and / columns corresponding to each individual ¢g. This (/ —1)x/
matrix for individual ¢ corresponds to an (/ —1) identity matrix with an extra column of ‘-1’

values added as the m, " column. For instance, consider the case of / = 4 and O = 2. Let

individual 1 be observed to choose alternative 2 and individual 2 be observed to choose
alternative 1. Then M takes the form below.

1 -1 0 0|0 0 O O
0 -1 1 0|0 0 0 0
0 -1 0 1/0 0 0 0
M- (2.76)
0 0 0 0|-1 1 0 0
0 0 0 0|-1 0 1 0
0 0 0 0|-1 0 0 1]

With the above construction for matrix M, it is easy to see that u~ MVN,, , (B,E), where
B =MV and E=MZEM’. The likelihood of the observed sample (i.e., individual 1 choosing
alternative m,, individual 2 choosing alternative m,, ..., individual Q choosing alternative m,, )
may then be written succinctly as Prob[u <0, ,,]. The parameter vector to be estimated is

0=(b',Q',A',5) . Using the usual notations, the likelihood function is:
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L®)=D,, (0 (-B )E"), (2.77)

where Z =0);E(D;. This is cumbersome and impractical (if not infeasible) for most

realistically-sized sample sizes. However, one can use the MACML technique. To do so, write
the pairwise CML function corresponding to the full likelihood of Equation (2.77) as:

o-1 0
LZ%NP(a) = H Hqu'7 where qu' = Pr(dq - mq’dq' - mg')’ (2.78)

=1 g'=¢+1

d , 18 an index for the individual’s choice, and
Pr(d, =m,.d,=m;)=D (07 (-B,).E,), (2.79)

* 1

= :

[
[

,=A EA

qq 99 99’ qq

Il

where J=2(/-1), B, =A_B,

[

oM
0 49 =4

q’,and A, 1s a
J x Q(I —1) -selection matrix with an identity matrix of size (/ —1) occupying the first (7 —1)
rows and the [(g—1)x (I —1)+1]" through [¢x (I —1)]" columns, and another identity matrix of
size (I —1) occupying the last (/—1) rows and the [(q’— Dx(I-1)+ l]’h through [q’x(l—l)]th
columns.

The number of pairings in the CML expression of Equation (2.78) can be reduced as

explained in Section 2.3.1.1. Specifically, define a set C , as in the previous section that includes

the set of individuals ¢’ (including ¢) that are within a specified threshold distance of individual
q. Then, the CML function reduces to the following expression:

o-1 0
s ~f1 [Tz 280
q=1 q:=%+1
qel,

The expressions to obtain the covariance matrix are exactly the same as in Section 2.3.1.1, with
_ BB
qu’ =®; (miqq, ('qu' ); "‘qq’)‘

References for the CML Estimation of the Spatial MNP (SMNP) Model
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Sidharthan, R., Bhat, C.R, Pendyala, R.M., Goulias, K.G., 2011. Model for children's school
travel mode choice: accounting for effects of spatial and social interaction. Transportation
Research Record 2213, 78-86.

2.3.2.2. The Spatial CMMNP Model
Rewrite Equation (2.18) from Section 2.2.2.2 to include spatial dependency in the utility that

individual ¢ attributes to alternative i o (=12, 1 g) for the gth variable.

9
Uqgig =9, Z; qu'Uqgig + B Xygi, T Sas (2.81)
prm

[ 9
lg

with all notations as earlier. x,, is an L, x1-column vector of exogenous attributes,

8i,

Bo~MVN, (b,.Q,).and &, ~MVN,(0,A,) (&, = (&1 Epprmtyg) (I, x1vector)). As in

Section 2.2.2.2, we will assume that the £ (=5, +ﬁqg)vectors are independent across the

unordered-response dimensions for each individual. We also assume that £ , is independent
4

and identically normally distributed across individuals g. Let m,, be the actual chosen alternative

for the gth unordered-response variable by individual g. Define the following:

U, =U

a8

U U (I,x1 vector), U, =(U,U,,..U,;) Gx1  vector

qg2o

)l
qg1° qgl

g=l

[5:{%@}} &, = (&€ ol ) (Gxlvector), U =(U},U,,..U,)  (QGx1vector),

& = (é‘l,é‘z,...,fg)’(Q(N;xlvector) , b=(b,,b,,....b,) (L x1vector) [Z = (il‘g]J’

g=l

Xy = (X, 005X 000005 xqglg)’ (1, x L, matrix),

'x, 0 0 0.0 (x, 0 0 00
0 x, 0 0--0 0 x, 0 0---0
x,=|0 0 x,;0--0 (GxL matrix), X =| 0 0 x;, 0---0 (Q@xQZ matrix),

(00 0 0..x, (00 0 0..x,

~ o~ ~

X = (X[, X}, X ) (OGxL matrix), ﬁq = (ﬂ;l,ﬂéz,...,ﬂéc) (L x1vector), and

B = (ﬁl',ﬁz’,...,ﬁé) (OL x1 vector) . Let §, ~MVN:(0s,A), where the covariance matrix A is
to be constructed as discussed in Section 2.2.2.2. Then, & ~ MVNQG (OQG,IDENQ ®A). Also,

define Q , =x,Q x;, (I, xI, matrix), and the following matrices:
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Q, 0 0 0.0 3,0 0 0.0
0 Q,0 00 0 Q0 00
Q=0 0 ©,0-0 [(GxG matrix),Q=| 0 0 9,00 |,(0GxQOG matrix),
00 0 0.9, 100 0 0.9
and
(5 0 0 0.--0 |
0 6 0 00
3= 0 0 & 0--0 |(GxG matrix),
(0 0 0 0..5;
Equation (2.81) may then be written in matrix form as:
U=S[xb+3f+¢], (2.82)

where § =[IDEN . —(14 ®3).*(W®IDEN,)], W is the (0xQ) weight matrix with the

ok

weights w_ ., and “.*” refers to the element-by-element multiplication of the two matrices

qq'

involved. Also, U~MVN . (V, E), where V =Sxb and E= S[!NZ +(IDEN, ® A)]S,- a

To develop the likelihood function, construct a matrix M as follows. First, for each
unordered variable g and individual g, construct a matrix M with (/,—1) rows and I,

columns. This matrix corresponds to an (/, —1) identity matrix with an extra column of ‘-1’

values added as the m;’fg column. Then, define the following:

Q 0 0 0.--0
0 Q0 0--0
3 One can also obtain Qas Q= X IDEN,®| 0 0 SN!3 0---0 X'
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M, 0 0 0.--0 ]
0 M, 0 0- )
M,=[0 0 M, 0 (GxG matrix), where G = > (I, - 1), and (2.83)
. . g=1
(0 0 0 0..Mg]|
M, 0 0 0.0 |
0 M, 0 0--0
M=|0 0 M3 0---0 |(OGxOG matrix). (2.84)

(0 0 0 0..M,

—_— =

The parameter vector to be estimated is 0 = (b’, ﬁl, ﬁz,..., ﬁGA’, )". Using the usual notations,
the likelihood function is:

—0.Eo

=

-1 - p— =N o 1
L(0)= CDQG (0z (=B ),E ), where B=MV, 2=MEM/, and = (2.85)

=

The likelihood function is of a very high dimensionality. Instead, consider the (pairwise)
composite marginal likelihood function. Further, as in Section 2.1.2.2, we can reduce the
pairings by testing different distance bands and determining the “optimal” distance for including
pairings across individuals based on minimizing the trace of the asymptotic covariance matrix.

Define a set C , that includes the set of individuals ¢~ (including ) that are within a specified

threshold distance of individual ¢g. Then, the CML function reduces to the following expression:

9 9 G G
CML H HHHqu,gg, with ¢’ # g when g = g’, where (2.86)
9=1 ¢'=q g=1 g'=g
qe
qu'gg’ - Pr(dqg - qg’d =My ) (D (m ( qugg ).E qqgg)
s _ -~ _ = _ — = ol = -1
and J, =1 +1, 2, B wee = BBy Bager = BrarBuerBoress Bager = O ez Oz, 0
and A .. isa J xOG -selection matrix with an identity matrix of size (/, —1) occupying the

g1 th th
first (1, —1) rows and the {(q 1)><G+Z] +1} through {(q l)xG+ZI} columns, and

I=1 I=1

another identity matrix of size ([, —1) occupying the last (/,—1) rows and the
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e th oy th
{(q' -D)xG+ ZI ,+ 1} through {(q' -DHxG+ ZI ,} columns (with the convention that

I=1 =1

0
ZI , =0). The model can now be estimated using the MACML method. The computation of the
=1
covariance matrix is identical to the case in Section 2.2.2.2, with the use of L,
(2.86) above. Once again, the analyst can consider further cutting down the number of pairings
by ignoring the pairings among different individuals (observation units) across the G variables.

as in Equation

References for the CML Estimation of the Spatial MNP (SMNP) Model
No known applications thus far.

2.2.2.3 The Spatial Panel MNP Model
Consider the following model with ‘# now being an index for choice occasion:

Uy =0 Wy Uy + BiX i + s B, ~MVN,(,Q), ¢=1,2,...,0, t=1,2,.,T, i=12,.,1.  (2.87)
~

We assume that &, is independent and identically normally distributed across individuals and

choice occasions, but allow a general covariance structure across alternatives for each choice
instance of each individual. Specifically, let &, =(&,,,¢,55&,) (I x1vector). Then, we
assume ¢, ~ MVN,(0,A). As usual, appropriate scale and level normalization must be imposed
on A for identifiability. Next, define the following vectors and matrices:
v,=U,,U,,..,U,) ({Ix1 vecor), U, =U,U,..,U,) (TIxl vector),
§, =600 S (TT x1 vector), X, = (X0 X 050 Xy ) (IxL matrix),
x, =(x),X,,....,%,;)" (TIx L matrix),

U =(U},U,,.U,), §=(£.¢;,..€,)  (QTI x1vectors), and X=(X},X),...,X,) (QTIxL
matrix). Let 8, =b+§,, B, ~MVN,(0,Q), § =(B.5....,).and

'x, 0 0 0.0
0 x, 0 00
X=|0 0 x,0--0 |(QTIxQK matrix), (2.88)

(00 0 0..x,

Then, we can write Equation (2.87) in matrix notation as:

U =S[xp+3F+¢] | (2.89)
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with S =[IDEN,,, —{(OW ® IDEN, ) ® IDEN, }|' (QTI x QT matrix).

Then, U ~ MVN ,, (V,E), where V=Sxb and E-= S[IDENQ ®(Q+ A)]S’. To develop the
likelihood function, define M as an [QT (I —1)]x[QTI] block diagonal matrix, with each block
diagonal having (/ —1) rows and / columns corresponding to the ™ observation time period on
individual g. This (/ —1)x /I matrix for parcel g and observation time period ¢ corresponds to an
({ —1) identity matrix with an extra column of “—17 values added as the m,, ™ column. For

instance, consider the case of Q0 =2, T'= 2, and / = 4. Let individual 1 be observed to choose
alternative 2 in time period 1 and alternative 1 in time period 2, and let individual choose
alternative 3 in time period 1 and in alternative 4 in time period 2. Then M takes the form below.

|
—_
=)
=)
o
o
o
=)
o
o
(=)
=)
o
(=)

(2.90)

S O OO0 O oo O
S O OO0 O oo o O©

[a)
| |
—_—

S O OO0 O O O ol o
=)

S O OO O oo o O

S O OO0 O OO0 O oo ~—
S O OO O oo o o= O
S O OO0 O oo O = |Oo O
S O OO0 O OO0 = OO0 O
S O OO0 O o= O oo O
S O OO O =IO O OO0 O
S O OO0 = OO0 O OO0 O

|
—_

S O O O OO0 O oo O
S O RO O OO0 O oo O
S = OO0 O OO0 O oo O

1 -1

Let B=MV and E=MEM’". The parameter vector to be estimated is 0 = (b',Q',A’,5")’, and

the likelihood function is:
LO) =Dy, (0 (-B ),E), (2.91)

* -1

— 71
where & =®

-
Zo,

Now, consider the following (pairwise) composite marginal likelihood function formed
by taking the products (across the T choice occasions) of the joint pairwise probability of the
chosen alternatives m,, for the " choice occasion and m,, for the g" choice occasion for
individual ¢g. To reduce the number of pairings, define a set C , as in the previous section that

includes the set of individuals ¢’ (including ¢q) that are within a specified threshold distance of
individual g. Then, the CML function reduces to the following expression:
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9 Q9 T T
Lo (0)= H HHHLW,, with ¢' # g when ¢ =1¢', where (2.92)

qt qt> > q't

L, =Prd, =m,d, =m,)=0,, (o “(qu”) qq”)
e R - -1 _ = _ ! :
where E_ . =0 Egw Oz, qun =A By By =AyiBoquwDygw-and A, is a

2(1 -1)yxQT (I -1) -selectlon matrix with an 1dent1ty matrix of size (/—1) occupying the first
(I-1) rows and the [(g=D)x(I=1)xT +(¢t-1)x(I —1)+1]" through
[(q -Dx(I-D)xT+tx(I—- 1)]”1 columns, and another identity matrix of size (/—1) occupying
the last (/-1) rows and the [(q’ —Dx(I-DxT+({'-1)x(I-1)+ 1]”’ through
[(q' —Dx(I-1D)xT+t'x(I - 1)]”7 columns. The model can now be estimated using the MACML

method. The computation of the covariance matrix is identical to the case in Section 2.2.2.2 with

the use of L. as in Equation (2.92) above. The analyst can consider further cutting down the

qq'tt
number of pairings by ignoring the pairings among different individuals (observation units)

across the 7 time periods.

References for the CML Estimation of the Spatial MNP (SMNP) Model

Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML)
estimation of multinomial probit-based unordered response choice models. Transportation
Research Part B 45(7), 923-939.

Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate
composite marginal likelihood (MACML) estimator for mixed multinomial probit models.
Transportation Research Part B 45(7), 940-953.

Sidharthan, R., Bhat, C.R., 2012. Incorporating spatial dynamics and temporal dependency in

land use change models. Geographical Analysis 44(4), 321-349.

2.4. Application to Count Models

Count data models are used in several disciplines to analyze discrete and non-negative outcomes
without an explicit upper limit. Applications of such count data models abound in the scholarly
literature, both in number (a count in and of itself!) as well as diversity of topics. Applications
include the analysis of (a) the number of doctor visits, the number of homes affected by cholera,
the number of cancer incidents, and the number of milk formula bottles supplied to infants by
breastfeeding mothers in the medicine field, (b) the number of crimes and the number of drug
possession convictions in the criminology field, (c) the number of mergers and acquisitions of
foreign direct investments, the number of faults in a bolt, the frequency of contract change
orders, and the number of jobs by space unit in the economics field, (d) the number of harbor
seals hauled out on glacial ice and the count of birds at sanctuaries in the ecology field, and (e)
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roadway crash frequency, counts of flights from airports, and the number of drinking under
intoxication (DUI) infractions in the transportation field.

Count data models assume a discrete probability distribution for the count variables,
followed by the parameterization of the mean of the discrete distribution as a function of
explanatory variables. The two most commonly used discrete probability distributions are the
Poisson and the negative binomial (NB) distributions, though other distributions such as the
binomial and logarithmic distributions have also been occasionally considered. Several
modifications and generalizations of the Poisson and negative binomial distributions have also
been used. For example, in many count data contexts, there are a large number of zero count
values. The most commonly used approach to accommodate this issue is the zero-inflated
approach. The approach identifies two separate states for the count generating process — one that
corresponds to a “zero” state in which the expected value of counts is so close to zero as being
indistinguishable from zero, and another “normal” state in which a typical count model (with
either a Poisson or NB distribution) operates. Effectively, the zero-inflated approach is a
discrete-mixture model involving a discrete error distribution that modifies the probability of the
zero outcome. Another similar approach to account for excess zeros is the hurdle-count approach
(in which a binary outcome process of the count being below or above a hurdle (zero) is
combined with a truncated discrete distribution for the count process being above the hurdle
(zero) point. While the modifications and generalizations such as those just described have been
effective for use with univariate count models, they are difficult to infeasible to implement in the
case when there are inter-related multivariate counts at play (see Castro, Paleti and Bhat, 2012
(or CPB hereafter) and Herriges et al., 2008 for discussions). Also, including spatial dependence
within the framework of traditional count formulations is very cumbersome. To address these
situations, we can re-formulate the traditional count models as a special case of a generalized
ordered-response probit (GORP) formulation (see CPB). Indeed, in this re-formulation, any
count model can be formulated as a special case of a GORP formulation. Once this is achieved,
all the GORP-related formulations in the earlier sections immediately carry over to count
models. In this section, we will consider a single count variable based on a negative binomial
distribution and show its aspatial GORP formulation, because extension to include multivariate
and spatial contexts exactly mirror the previous GORP discussions.

Consider the recasting of the count model using a specific functional form for the random-
coefficients generalized ordered-response probit (GORP) structure of Section 2.2.1.1 as follows:

y;:ﬂ;xq+8q9yq:k if l//q,k*1<yq<l//q,ki (2'93)

where x, is an (Lx1) vector of exogenous variables (not including a constant), f, is a
corresponding (Lx1) vector of individual-specific coefficients to be estimated, &, is an

idiosyncratic random error term that we will assume in the presentation below is independent of
the elements of the vectors 8, and x,, and vy, is the individual-specific upper bound threshold

for discrete level k . The &, terms are assumed independent and identically standard normally
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distributed across individuals. The typical assumption for & is that it is either normally or
logistically distributed, though non-parametric or mixtures-of-normal distributions may also be

considered. Also, f#, =b+ ﬁ ,» Where ﬁ , ~MVN, (0,Q). y; is an underlying latent continuous
variable that maps into the observed count variable y, / through the y  vector (which is a
vertically stacked column vector of thresholds (¥, »¥ ,0>¥ 1> ¥ 2>+ )" The y_ thresholds are

parameterized as a function of a vector of observable covariates z, (including a constant) as

follows (see Bhat et al., 2014b):

1-c,f &(T0+r) 2 v
= ( d "N+, c,=—2— and 4, =€ . 2.94
Vs [ (6) ZO( T T g 259

In the above equation, CD_I[.] is the inverse function of the univariate cumulative standard

normal. € is a parameter that provides flexibility to the count formulation, and, as we will see

later, serves the same purpose as the dispersion parameter in a traditional negative binomial

model (6 >0). ['(6) is the traditional gamma function; I'(6) = '[ h’ e dh. The threshold
h=0

terms in the g vector satisfy the ordering condition (i.e., ¥, |, <, , <V, <V, ,....<©0 V q)

as long as ¢ <@, <@, <@,...<on. The presence of these ¢ terms provides substantial

flexibility to accommodate high or low probability masses for specific count outcomes, beyond
what can be offered by traditional treatments using zero-inflated or related mechanisms. For

identification, we set ¢, =—0,y, , =—0 Vg, and ¢, =0. In addition, we identify a count
value e (e €{0,1,2,......}) above which ¢, (e€{0,1,2,.....}) is held fixed at @, ; that is,

p,=¢. if e> e, where the value of e can be based on empirical testing. For later use, let

¢ =((ﬂ1,(ﬂ2,...(pe*)’ (e* x 1 vector).

The specification of the GORP model in the equation above provides a very flexible
mechanism to model count data. It subsumes the traditional count models as very specific and
restrictive cases. In particular, if the vector f, is degenerate with all its elements taking the fixed

value of zero, and all elements of the ¢ vector are zero, the model in Equation (2.93) collapses

to a traditional negative binomial model with dispersion parameter €. To see this, note that the
probability expression in the GORP model of Equation (2.93) with the restrictions may be
written as:
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=) g(r@sn N l=e) &(r@+n
P[qu]P[d) { 0 ZO‘{ . cq] <y, <® 0 Z():[ . cqj
[ le ) (e l=c,)f &(r@+n ,
cD[cl) { 0 Z():( r! cqj ~®| O 6 Z(;( . ch (2.95)

(i-e,) (F(9+k)ckj

~I(0) koo

which is the probability expression of the negative binomial count model. If, in addition,
6 — o0, the result can be shown to be the Poisson count model.
In an empirical context of crash counts at intersections, CPB interpret the GORP

recasting of the count model as follows. There is a latent “long-term” crash propensity y;
associated with intersection ¢ that is a linear function of a set of intersection-related attributes x,
On the other hand, there may be some specific intersection characteristics (embedded in z,

within the threshold terms) that may dictate the likelithood of a crash occurring at any given

instant of time for a given long-term crash propensity y; . Thus, two intersections may have the
same latent long-term crash propensity y; , but may show quite different observed number of
crashes over a certain time period because of different y; - to -y, mappings through the cut

points (y, is the observed count variable). CPB postulated that factors such as intersection

traffic volumes, traffic control type and signal coordination, driveways between intersections,
and roadway alignment are likely to affect “long-term” latent crash propensity at intersections
and perhaps also the thresholds. On the other hand, they postulate that there may be some
specific intersection characteristics such as approach roadway types and curb radii at the
intersection that will load more on the thresholds that affect the translation of the crash
propensity to crash outcomes. Of course, one can develop similar interpretations of the latent
propensity and thresholds in other count contexts (see, for example, the interpretation provided
by Bhat et al., 2014a, in a count context characterized by the birth of new firms in Texas
counties).

To summarize, the GORP framework represents a generalization of the traditional count
data model, has the ability to retain all the desirable traits of count models and relax constraints
imposed by count models, leads to a much simpler modeling structure when flexible spatial and
temporal dependencies are to be accommodated, and may also be justified from an
intuitive/conceptual standpoint. Indeed, all the spatial, multivariate, and panel-based extensions
discussed under ordered-response models immediately apply to count models based on the count
reformulation as a GORP model.
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References for the CML Estimation of Count Models

Castro, M., Paleti, R., Bhat, C.R., 2012. A latent variable representation of count data models to
accommodate spatial and temporal dependence: application to predicting crash frequency at
intersections. Transportation Research Part B 46(1), 253-272.

Bhat, C.R., Paleti, R., Singh, P., 2014a. A spatial multivariate count model for firm location
decisions. Journal of Regional Science, forthcoming.

Bhat, C.R., Born, K., Sidharthan, R., Bhat, P.C., 2014b. A count data model with endogenous
covariates: formulation and application to roadway crash frequency at intersections. Analytic
Methods in Accident Research 1, 53-71.

Narayanamoorthy, S., Paleti, R., Bhat, C.R., 2013. On accommodating spatial dependence in
bicycle and pedestrian injury counts by severity level. Transportation Research Part B 55,
245-264.
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3. APPLICATION TO JOINT MIXED MODEL SYSTEMS

The joint modeling of data of mixed types of dependent variables (including ordered-response or
ordinal variables, unordered-response or nominal variables, count variables, and continuous
variables) is of interest in several fields, including biology, economics, epidemiology, social
science, and transportation (see a good synthesis of applications in de Leon and Chough, 2013).
For instance, in the transportation field, it is likely that households that are not auto-oriented
choose to locate in transit and pedestrian friendly neighborhoods that are characterized by mixed
and high land use density, and then the good transit service may also further structurally
influence mode choice behaviors. If that is the case, then it is likely that the choices of residential
location, vehicle ownership, and commute mode choice are being made jointly as a bundle. That
is, residential location may structurally affect vehicle ownership and commute mode choice, but
underlying propensities for vehicle ownership and commute mode may themselves affect
residential location in the first place to create a bundled choice. This is distinct from a sequential
decision process in which residential location choice is chosen first (with no effects whatsoever
of underlying propensities for vehicle ownership and commute mode on residential choice), then
residential location affects vehicle ownership (which is chosen second, and in which the
underlying propensity for commute mode does not matter), and finally vehicle ownership affects
commute mode choice (which is chosen third). The sequential model is likely to over-estimate
the impacts of residential location (land use) attributes on activity-travel behavior because it
ignores self-selection effects wherein people who locate themselves in mixed and high land use
density neighborhoods were auto-disoriented to begin with. These lifestyle preferences and
attitudes constitute unobserved factors that simultaneously impact long term location choices,
medium term vehicle ownership choices, and short term activity-travel choices; the way to
accurately reflect their impacts and capture the “bundling” of choices is to model the choice
dimensions together in a joint equations modeling framework that accounts for correlated
unobserved lifestyle (and other) effects as well as possible structural effects.

There are many approaches to model joint mixed systems (see Wu et al., 2013 for a
review), but the one we will focus on here is based on accommodating jointness through the
specification of a distribution for the unobserved components of the latent continuous variables
underlying the discrete (ordinal, nominal, or count) variables and the unobserved components of
observed continuous variables. Very generally speaking, one can consider a specific marginal
distribution for each of the unobserved components of the latent continuous variables
(underlying the discrete variables) and the observed continuous variable, and then generate a
joint system through a copula-based correlation on these continuous variables. However, here we
will assume that the marginal distributions of the latent and observed continuous variables are all
normally distributed, and assume a Gaussian Copula to stitch the error components together.
This is equivalent to assuming a multivariate normal distribution on the error components. But
the procedures can be extended to non-normal marginal distributions and non-Gaussian copulas
in a relatively straightforward fashion.
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From a methodological perspective, the simulation-based likelihood estimation of joint
mixed models can become quite cumbersome and time-consuming. However, the use of the
MACML estimation technique has once again opened up possibilities because of the dramatic
breakthrough in the ease and computational feasibility of estimating joint mixed systems.

3.1. Joint Mixed Dependent Variable Model Formulation
In the following presentation, for ease in exposition, we assume fixed coefficients on variables,
though extension to the case of random coefficients in conceptually very straightforward (as in
earlier sections). We will also suppress the notation for individuals, and assume that all error
terms are independent and identically distributed across individuals. Finally, we will develop the
formulation in the context of ordinal, nominal, and continuous variables, though the formulation
is immediately applicable to count variables too because count variables may be modeled as a
specific case of the GORP-based formulation for ordinal variables.

Let there be N ordinal variables for an individual, and let » be the index for the ordinal

variables (n=1,2,...,N). Also, let J, be the number of outcome categories for the n™ ordinal

variable (J, 22) and let the corresponding index be j, (j, =1,2,...,J,). Let y_ be the latent
underlying variable whose horizontal partitioning leads to the observed choices for the n” ordinal
variable. Assume that the individual under consideration chooses the a” ordinal category. Then,

in the usual ordered response formulation:
vi=dwe, ), =k if wi, <y <yl 3.1)

where w is a fixed and constant vector of exogenous variables (not including a constant), J, is a

corresponding vector of coefficients to be estimated, the y terms represent thresholds, and ¢, is

the standard normal random error for the n” ordinal variable. We parameterize the thresholds as:
Vi =W texp(ay, +7,,2) (3.2)

In the above equation, «,, is a scalar, and y, is a vector of coefficients associated with ordinal

level £=1,2,..., K -1 for the n™ ordinal variable. The above parameterization immediately

guarantees the ordering condition on the thresholds for each and every crash, while also enabling
the identification of parameters on variables that are common to the w and z vectors. For

identification reasons, we adopt the normalization that | =exp(a,,) V n. Stack the N latent
variables y" into an (N x1)vector y", and let y’ ~N(f,Ey* ), where f=(=(ow,ow,....04w)
and x. is the covariance matrix of &=(¢,¢,,....,&y). Also, stack the lower thresholds

corresponding to the actual observed outcomes for the # ordinal variables into an (N x 1) vector

low

] and the wupper thresholds into another vector w". For later use, define
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Pu = (y;n’y;n seees y,J,,-l,n)"y = (}’{,J’;,---, y;v)ra a, = (aln’aZn ""’aJ,ﬁl,n)” a = (aiaa;""’a;v )’a and

6=(9],0),....8%)".
Let there be G nominal (unordered-response) variables for an individual, and let g be the
index for the nominal variables (g = 1, 2, 3,..., G). Also, let I, be the number of alternatives

corresponding to the g™ nominal variable (Ig=3) and let i, be the corresponding index (i, = 1, 2,
3,..., Ip). Consider the gth nominal variable and assume that the individual under consideration
chooses the alternative m,. Also, assume the usual random utility structure for each alternative i,.

U, =bx, +&, . (3.3)

gig 87 gy
where x, is a LxI-column vector of exogenous attributes, b, is a column vector of
corresponding coefficients, and Sai, is a normal error term. Let &, :(égl,fgz,...cfg[g)’ (1, x1
vector), §, ~ MVN,g (0,A,). Let U, =U,,U, s Ug, ) (Z, x1 vector),
X, = (xgl,xgz,xg3,...,xg,q ' (I,xL  matrix), V,=x,b, (I, x1  vector). Then
U, ~MVN, (V,,A,). Under the utility maximization paradigm, U o, ~Ugy, must be less than

zero for all i, = m,, since the individual chose alternative m, . Letu, , =U, -U,, (i, #m,),
and stack the latent utility differentials into a vector u, = [(“;m, Uy seerlly );i A m g] As

usual, only the covariance matrix of the error differences is estimable. Taking the difference with

respect to the first alternative, only the elements of the covariance matrix A, of
S, = (G, gg3,...,gg1g)', where ¢, =&, =&, (i#1), are estimable. However, the condition that
u, < 0, ., takes the difference against the alternative 1, that is chosen for the nominal variable
g. Thus, during estimation, the covariance matrix f\g (of the error differences taken with respect
to alternative m, is desired). Since m, will vary across households, f\g will also vary across
households. But all the f\g matrices must originate in the same covariance matrix A, for the

original error term vector &, . To achieve this consistency, A, is constructed from f\g by adding

g
an additional row on top and an additional column to the left. All elements of this additional row
and column are filled with values of zeros. Also, an additional scale normalization needs to be
imposed on ]\g. For this, we normalize the first element of A . to the value of one. The

discussion above focuses on a single nominal variable g. When there are G nominal variables,

- G - G ,
define G=311, and G=3(1, ~1). Further, let i = U ~UpsU s =U Uy =0, ),
8= 8=

gl»

! !

ﬁ*=(ft:]’, ﬁzI,,[ﬁGIj, and u*=([qu,[M;I,...,[u;I) (so @ is the vector of utility
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differences taken with respect to the first alternative for each nominal variable, while u" is the
vector of utility differences taken with respect to the chosen alternative for each nominal

variable). Now, construct a matrix of dimension GxG that represents the covariance matrix of

—%

u .
Al A12 AIGW
A;2 A2 AZG

£ | e e (3.4)
Al A - . A

: o (1 *(1 -D
In the general case, this allows the estimation of Z —1| terms across all the G

g=1

I,*%(1,—1 -
nominal variables (originating from (%g)—lj terms embedded in each A, matrix;

G-1 G
g=1,2,...G) and the Z Z (I, =1)x (I, —1) covariance terms in the off-diagonal matrices of the

g=I1 I=g+1

2. matrix characterizing the dependence between the latent utility differentials (with respect to
the first alternative) across the nominal variables (originating from (/, —1)x(/, —1) estimable

covariance terms within each off-diagonal matrix in X _.). For later use, define the stacked

G x1—vectors U = (u,u;,.. ,U(';)' yand V = (V)V}, ...V, )' .

Finally, let there be H continuous variables (), ,,..., V) with an associated index %
(h=1,2,..,H). Let y,=MAys,+7n, in the wusual linear regression fashion, and
A=(A,A),...,A, ). Stacking the H continuous variables into a (H x1)-vector y, one may write

y=MVN,(c,X,), where c=(\s,As,,....,As, ), and Y is the covariance matrix of

0= 1071y ).

3.2. The Joint Mixed Model System and the Likelihood Formation
The jointness across the different types of dependent variables may be specified by writing the

. . ~ - % *
covariance matrix of y = (u Y, y) as

T zw z.
Var(y)=Q = .. . Z.| (3.5)
2' ¥, ¢
uy vy y
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where X isa GxN matrix capturing covariance effects between the " vector and the y~
vector, X . is a GxH matrix capturing covariance effects between the & vector and the y

vector, and . is an N x H matrix capturing covariance effects between the y~ vector and the

y vector. All elements of the matrix above are identifiable. However, the matrix represents the
covariance of latent utility differentials taken with respect to the first alternative for each of the
nominal variables. For estimation, the corresponding matrix with respect to the latent utility
differentials with respect to the chosen alternative for each nominal variable, say Q , 18 needed.
For this purpose, first construct the general covariance matrix Q for the original [G +N+H ]xl

’
!

vector UY = (U', y* s y'j , while also ensuring all parameters are identifiable (note that Q is
equivalently the covariance matrix of 7 =(¢&',&',n")’. To do so, define a matrix D of size
[@’+N +H ]x [(N? +N+H ] The first /; rows and (/, —1) columns correspond to the first
nominal variable. Insert an identity matrix of size (/, —1) after supplementing with a first row of
zeros in the first through (/; —1)th columns of the matrix. The rest of the elements in the first /,
rows and the first (/; —1) columns take a value of zero. Next, rows ([, +1)through(Z, +7,) and
columns (/) through (I, +1, —2) correspond to the second nominal variable. Again position an

identity matrix of size (/, —1) after supplementing with a first row of zeros into this position.

Continue this for all G nominal variables. Put zero values in all cells without any value up to this
point. Finally, insert an identity matrix of size N+H into the last N+H rows and N+H columns of
the matrix D. Thus, for the case with two nominal variables, one nominal variable with 3
alternatives and the second with four alternatives, one ordinal variable, and one continuous
variable, the matrix D takes the form shown below:

0 010 0 0!0 0
1 010 0 010 0
0 110 0 010 0
0 010 0 010 0
0 0 51 0 0 io 0
0 0 io 1 0 io 0
0 0!0 0 1!0 0
0. 0.0 0 1 100
0 0'0 0 0'1 0
0 010 0 010 1

- H9*7 (3.6)
Then, the general covariance matrix of UY may be developed as @ = DQD'. All parameters in

this matrix are identifiable by virtue of the way this matrix is constructed based on utility
differences and, at the same time, it provides a consistent means to obtain the covariance matrix
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Q that is needed for estimation (and is with respect to each individual’s chosen alternative for

!

each nominal variable). Specifically, to develop the distribution for the vector y = (u*, vy, y'j ,

define a matrix M of size [@+N+H]><[@+N+H]. The first (/, —1) rows and I, columns

correspond to the first nominal variable. Insert an identity matrix of size ([, —1) after
supplementing with a column of ‘-1’ values in the column corresponding to the chosen

alternative. The rest of the columns for the first (/, —1) rows and the rest of the rows for the first
I, columns take a value of zero. Next, rows (/,) through (/, +1, —2)and columns (/, +1)
through (/, + 1,) correspond to the second nominal variable. Again position an identity matrix of

size (I, —1) after supplementing with a column of ‘-1’ values in the column corresponding to

the chosen alternative. Continue this procedure for all G nominal variables. Finally, insert an
identity matrix of size N +H into the last N +H rows and N +H columns of the matrix M. With

the matrix M as defined, the covariance matrix € is given by Q=MQM.
Next, define u = (u*',y*') andg = (MV), f'). Also, partition © so that

. E.. Z.
Q=|%X.. L. X. (3.7)
Nuy y yy
Zu*} Zy*y Zy
(8. % % % TR
Let X, =" “Y 1 and Var(y)=Q=| - "1, where X =|_“" | (G+N)xH
. I. r, I T E,

matrix. Also, supplement the threshold vectors defined earlier as follows:

!

g = |:(—OO~)’,(\|IIDW )'} and y"* :[(0~)’,(\|1“")} where —oo; is a (G x1) -column vector of

G G

negative infinities, and 0. is another ((N;xl) -column vector of zeros. The conditional

. . . ~ . . . . . =~ ~ 1 .
distribution of u given y, is multivariate normal with mean g =g + X, X (y - d)and variance

5. =% 5,58

uy y

Next, let @ be the collection of parameters to be estimated:
0 =[b,,b,,....bg; d,y,0; Vech(X;); &; Vech(X)); Vech(Z;)]. Then the likelihood function

for the household may be written as:

LO) = ¢, (y—c| ) xPr[§™ <@t <§*], (3.8)

=gy (y=d|Z,)x [ fo., (|82,
Dy
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where the integration domain D= {u: ¢y <t <y"} is simply the multivariate region of the
elements of the u vector determined by the range (—0,0) for the nominal variables and by the

observed outcomes of the ordinal variables, and f, , () is the multivariate normal density

function of dimension G + N. The likelihood function for a sample of Q observations is obtained
as the product of the observation-level likelihood functions.

The above likelihood function involves the evaluation of a G + N -dimensional
rectangular integral for each household, which can be computationally expensive. So, the
Maximum Approximate Composite Marginal Likelihood (MACML) approach of Bhat (2011)
may be used.

3.3. The Joint Mixed Model System and the MACML Estimation Approach

Consider the following (pairwise) composite marginal likelihood function formed by taking the
products (across the N ordinal variables and G nominal variables) of the joint pairwise
probability of the chosen alternatives for an individual, and computed using the analytic
approximation of the multivariate normal cumulative distribution (MVNCD) function.

ﬁpr(jn =an’jn” :ai,l jx[ﬁ ﬁPr(dlh :mg’dig' =mg')]

n=1 n'=n+l g=l g'=g+1
G N
X HPr(dig:mg,jnzan) .

g=1 n=1

N-1

Lyyern (@) =0y (y —c | Zy)x(
(3.9)

where d, is an index for the individual’s choice for the g™ nominal variable. The net result is

g

that the pairwise likelihood function now only needs the evaluation of G_.,G,..and G,,

dimensional cumulative normal distribution functions (rather than the G + N -dimensional
cumulative  distribution  function in the maximum likelthood function), where
G =1,+1,-2,G .=2,and G, =1, . This leads to substantial computational efficiency.
However, in cases where there are several alternatives for one or more nominal variables, the
dimension (N}gg, and ng can still be quite high. This is where the use of an analytic
approximation of the MVNCD function comes in handy. The resulting maximum approximated

composite marginal likelihood (MACML) is solely based on bivariate and univariate cumulative
normal computations. Also note that the probabilities in the MACML function in Equation (3.9)

can be computed by selecting out the appropriate sub-matrices of the mean vector § and the

~

covariance matrix X of the vector & , and the appropriate sub-vectors of the threshold vectors

u

y'"and y". The covariance matrix of the parameters # may be estimated as:

_H 1 (3.10)
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with fT = — L i 0’ 10g Lyyscr o, (0)
g=1

0 06000’ i
oL i 0108 Lyyycnn o (0) Y 108 Ly 10, (0) .
Q q=1 60 60' i .

An alternative estimator for H is as below:

[8log[¢H(y —c |Zy)]}[alog[¢1{(y —c IZy)]}r
00 o0’
Q s i dlog[Pr(/, :agwjnﬁ =a;)]} dlog[Pr(j, Z;wl},rv = a))] N
H = ézl Gz%f)l :6log[Pr(d,-g :alzg’dig, = mg/)]}{ﬁlog[l’ddig :aZ'g’dig' = mgfﬂ}
gggl :amg[Pr( d, =mg.j, - an)]}{alog[m(d,.g =, j, = a,l)]}
S5 | 00 00

3.4. Positive Definiteness

The matrix € for each household has to be positive definite. The simplest way to guarantee this

is to ensure that the matrix €2 is positive definite. To do so, the Cholesky matrix of €2 may be
used as the matrix of parameters to be estimated. However, note that the top diagonal element of

each ]&g in € is normalized to one for identification, and this restriction should be recognized

when using the Cholesky factor of Q. Further, the diagonal elements of Zy* in Q are also

normalized to one. These restrictions can be maintained by appropriately parameterizing the
diagonal elements of the Cholesky decomposition matrix. Thus, consider the lower triangular

Cholesky matrix L of the same size as Q. Whenever a diagonal element (say the kk” element)

of € is to be normalized to one, the corresponding diagonal element of L is written as

a-1
- Zd & » where the d,; elements are the Cholesky factors that are to be estimated. With this
j=1

parameterization, £ obtained as LL' is positive definite and adheres to the scaling conditions.
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4. CONCLUSIONS

This paper presents the basics of the composite marginal likelihood (CML) inference approach,
discussing the asymptotic properties of the CML estimator and possible applications of the
approach for a suite of different types of discrete and mixed dependent variable models. The
approach can be applied using simple optimization software for likelihood estimation. In the case
of models with complex and analytically intractable full likelihoods, the CML also represents a
conceptually and pedagogically simpler simulation-free procedure relative to simulation
techniques, and has the advantage of reproducibility of the results. For instance, in a panel
application, Varin and Czado (2010) examine the headache pain intensity of patients over several
consecutive days. In this study, a full information likelihood estimator would have entailed as
many as 815 dimensions of integration to obtain individual-specific likelihood contributions, an
infeasible proposition using computer-intensive simulation techniques. In another panel spatial
application, Sidharthan and Bhat (2012) examine the case of spatial dependence in land-use of
spatial grids, and the full information likelihood estimator would have entailed integration of the
order of 4800 dimensions. Despite advances in simulation techniques and computational power,
the evaluation of such high dimensional integrals is literally infeasible using traditional
frequentist and Bayesian simulation techniques. For instance, in frequentist methods, where
estimation is typically undertaken using pseudo-Monte Carlo or quasi-Monte Carlo simulation
approaches (combined with a quasi-Newton optimization routine in a maximum simulated
likelihood (MSL) inference), the computational cost to ensure good asymptotic estimator
properties becomes prohibitive for the number of dimensions just discussed. Similar problems
arise in Bayesian Markov Chain Monte Carlo (MCMC) simulation approaches, which remain
cumbersome, require extensive simulation, are time consuming, and pose convergence
assessment problems as the number of dimensions increases (see Ver Hoef and Jansen, 2007, and
Franzese et al., 2010 for discussions).

Even when the full likelihood involves a lower and more practically feasible
dimensionality of integration, the accuracy of simulation techniques is known to degrade rapidly
as the dimensionality increases, and the simulation noise increases substantially. This leads to
convergence problems during estimation, unless a very high number of simulation draws is used.
Several studies have demonstrated so in a variety of econometric modeling contexts (see, for
example, Bhat and Sidharthan, 2011 and Paleti and Bhat, 2013). Besides, an issue generally
ignored in simulation-based approaches is the accuracy (or lack thereof) of the covariance matrix
of the estimator, which is critical for good inference even if the asymptotic properties of the
estimator are well established. Thus, the CML can present a very attractive alternative to the
traditional MSL method in many situations.

Of course, there are some special cases where the MSL approach may be preferable to the
CML approach. For example, consider a panel binary discrete choice case with J choice
occasions per individual and K random coefficients on variables. Let the kernel error term be
normally distributed and assume that the random coefficients are multivariate normally
distributed, so that the overall error is also normally distributed. Here, when K <.J, and K < 3, the
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MSL estimation with the full likelihood function is likely to be preferable to the CML. This is
because integrating up to three dimensions is quite fast and accurate using quasi-Monte Carlo
simulation techniques. This is particularly so when J is also large, because the number of
pairings in the CML is high. For the case when K <J and K > 3, or K >J > 3, the CML is likely
to become attractive, because of the MSL-related problems mentioned earlier for moderate
dimensions of integration. For example, when K = J =5, the CML is fast since it entails the
evaluation of only 10 probability pairings for each individual (each pairing involving bivariate
normal cumulative distribution function evaluations) rather than a five-dimensional integration
for each individual in the MSL estimation. Note that one may be tempted to think that the CML
loses this edge when J becomes large. For instance, when J = 10, there would be 45 probability
pairings for each individual in a pairwise likelihood approach. But the surrogate likelihood
function in the CML estimation can be formulated in many different ways rather than the full
pairings approach presented here. Thus, one could consider only the pairing combinations of the
first five (or five randomly selected) choice occasions for each individual, and assume
independence between the remaining five choice occasions and between each of these remaining
choice occasions and the choice occasions chosen for the pairings. Basically, the CML approach
is flexible, and allows customization based on the problem at hand. The issue then becomes one
of balancing between speed gain/convergence improvement and efficiency loss. Besides, the
CML can also use triplets or quadruplets rather than the couplets considered here.

If the probabilities of the lower dimensional events in the CML approach themselves
have a multivariate normal cumulative distribution (MVNCD) form, then one can use the
MACML approach proposed by Bhat to evaluate the MVNCD function using an analytic
approximation.

One potential limitation of the CML approach is the need to compute the Godambe
information matrix to compute the asymptotic standard errors of parameters. However, even
when an MSL method is used, the Godambe matrix is recommended to accommodate the
simulation error that accrues because of the use of a finite number of draws. Another limitation
of the CML approach is the need to compute the ADCLRT statistic, which is somewhat more
complicated than the traditional likelihood ration test (LRT) statistic. It is hoped that such
practical issues will be resolved once standard econometric software packages start
accommodating the CML inference approach as an option for high dimensional model systems.

In summary, the CML inference approach (and the associated MACML approach) can be
very effective for the estimation and analysis of high-dimensional heterogeneous data. This has
been shown in many recent studies, and there are many more empirical contexts that can
gainfully use the CML approach using the formulations discussed in this paper. In terms of
future research on the CML approach itself, one wide open area pertains to how best to form a
CML function in a given modeling and empirical context (especially because a precise
theoretical analysis of the properties of the CML estimator is not possible except for the simplest
of models).
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