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Executive Summary 

Work Order 2021-03 refines the tools and work conducted in earlier Video Analytics for Vision 

Zero tasks by testing the use of automated object recognition/tracking in video data streams to 

support the assessment of pedestrian safety using existing traffic monitoring cameras. The specific 

tasks pursued in the scope of WO 2021-03 include: 1) refine the video recording workflow; 2) 

video recording and analysis at the Lamar/Rundberg and Lamar/Payton Gin locations; 3) analysis 

of bus stop activities and crossing event detection; 4) validation of crossing detection with PHB 

device activations; and 5) creating a web interface for interactive video reviewing. The two use 

cases examined in work task 2 illustrate how a scalable tool for automated analysis of data 

collected from monocular traffic cameras can allow agencies to leverage existing infrastructure in 

analysis and mitigation of pedestrian safety concerns.  

The value of this work lies not with the result of this particular case study, but on a 

computational approach to conducting correlation analyses using a street view captured by a traffic 

camera. As the methodology for the computational approach is improved this work can be scaled 

to other locations or other use cases, such as in determining if mid-block crossings are a result of 

nearby bus stops. If a correlation is found and identified early, addressing pedestrian safety issues 

at mid-block crossings could prevent loss of life.  

The web interface leverages a framework developed for creating web applications on 

cyberinfrastructure, allowing users to interactively explore video clips and summary statistics. 

After initial login, all traffic camera locations are shown in a map. Once recording results are 

selected, detailed results are shown and users may select to review results from different use cases. 

Summary statistics compiled using the video detection framework are shown as boxplot and stack 

column charts to give users an overview of the inference results. The user can also export the 

graph and data as csv or image files for sharing or additional studies.  
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1. Introduction 

The rise in pedestrian fatalities in the US over the past few years has led many transportation 

agencies to refocus efforts on implementing proven countermeasures to improve pedestrian safety. 

As approximately 75 percent of pedestrian fatalities occur at mid-block locations, focus is primarily 

placed on strategies to facilitate safer pedestrian crossings. One solution, installation of a pedestrian 

hybrid beacon (PHB), has been shown to reduce serious injury and fatal crashes by 15 percent and 

pedestrian crashes by nearly 70 percent [1]. In the past decade the City of Austin (CoA) has installed 

more than seventy-five PHBs at locations characterized by documented pedestrian demand, crash 

history, and long distances between safe crossing opportunities, among other factors. When studying 

potential PHB locations, CoA has traditionally relied on manual observations to quantify pedestrian 

movements, such as counting the number of crossings during a given time period. However, manual 

observation provides information only for limited time periods, making it challenging to quantify the 

evolution of pedestrian behavior over time or in response to a treatment such as PHB.  

The collection and analysis of video data at critical locations provides an opportunity to 

analyze pedestrian movements and to provide a verifiable account of road user behavior. The former 

reduces the need to rely on ad hoc decision making [2]. However, when analyses are conducted by 

human observers there is a limit to the number of locations and analysis periods that may be 

considered. Automated approaches to effectively recognize, analyze, and store pedestrian activities 

over time are needed. The technical challenges associated with pedestrian activity analysis using 

video data from traffic cameras are different from those faced when conducting traffic flow analyses. 

Regular roadside cameras have wide and deep fields of view. Pedestrian activities occupy only a 

small portion of the field and, at many locations, are only present sporadically. Further, pedestrians 

appear smaller in size than cars and are more frequently subject to visual obstructions from other 

objects within the scene.  

Incorporating Internet of Things (IoT) and smart devices within an intelligent transportation 

system (ITS) usually comes with substantial up-front costs for installation and deployment. At the 

same time, advances in algorithm development and software design bring new opportunities to 

increase utilization of existing transportation infrastructure. To address such challenges, we have 

continued to develop a video processing pipeline [3] to improve pedestrian detection and tracking. 

We have implemented additional features, including select areas of interest from video frames, 
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reporting additional measures of object detections, incorporating heuristics based on best practices, 

additional visualization summarization, and manual video curation utilities.   

2. Tasks Performed 

2.1  Task 1: Refine the Video Recording Workflow  

The video recording and processing pipeline has been reworked to facilitate new security 

requirements and new use-case requirements. The new recording pipeline is shown in Figure 1.  

 

Figure 1. Video recording pipeline: A) Establish connection between video recording server and 

CoA network; B) Push stream from the selected traffic camera to recording server.  

 

The video recording pipeline requires two separate steps. First, a secure connection must be 

established between the video recording server (soda.tacc.utexas.edu) and the CoA traffic camera 

management node (atdatmscripts) through the VPN (Step A). Once the secure connection is 

established, a command must be run on atdatmscripts to push the video stream from traffic 

cameras of interest to the video recording node to start recordings. Since Step A requires multi-

factor authentication (MFA), the two separate steps are necessary. It also prevents a fully 

automated workflow for recording video on-demand due to the MFA requirement. Regardless, the 

new recording pipeline is much more simplified when compared to the previous workflow and it is 

more stable over longer periods of time.  
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Figure 2. Video processing workflow overview.  

 

 Figure 2 shows the video processing workflow. In this redesigned workflow, we target the 

use case of pedestrian crossing event detection. In addition to an output for the prediction of 

pedestrian detections, we have added a component to automatically extract a twenty-second clip 

for each detection from the raw video footage. The extracted video clips are then organized and 

stored in a pre-defined hierarchical structure on disk so that the video clips can be procedurally 

accessed and served from the website for further review (see details in Task 5). 

2.2 Task 2: Recording and Analysis of Pedestrian Crossing at Lamar and Payton Gin  

Raw videos originate from IP cameras in the CoA private network, which has limited accessibility. To 

facilitate access, CoA set up a proxy server to forward selected video feeds from the IP cameras to a 

storage cluster hosted at the Texas Advanced Computing Center (TACC), where the recorded video 

can be processed by a high-performance computing cluster. Processed data is saved in a storage server, 

which is accessed by the Vision Zero project server for results dissemination purposes. The core 

algorithm utilizes a convolution-neural-network-based object detection system, YOLOv2, to analyze 

each frame of an input video (Redmon et al., 2016; Redmon and Farhadi, 2017). For each frame, the 

algorithm outputs a list of objects that includes their locations in the frame, class label, and confidence 

of recognition. We have defined recognition according to seven classification labels that are most 

relevant: person, car, bus, truck, bicycle, motorcycle, and traffic light. To improve algorithmic 
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performance and maximize utilization of multi-node computing clusters, we have also adapted the 

YOLOv2 implementation for parallel execution (Huang et. al., 2017). 

A location at Lamar Boulevard north of Payton Gin Road, hereafter referred to as the Payton 

location, was selected by the CoA Vision Zero team for a focused study on pedestrian crossing 

detections. There are two bus stops visible from the camera mounted at the Payton Gin Road and 

Lamar Boulevard intersection. The bus stops are located on Lamar Boulevard, north of the 

intersection. In this effort, our goal is to infer bus stop activity (i.e., how many people are waiting 

for buses throughout the day?) using video from the camera. A view of the camera and locations of 

two bus stops are shown in Figure 3. We have studied traffic camera videos recorded during period 

from March 7, 2020, to March 19, 2020, at this location.  The recording for each day is from 10:00 

to 20:00. The raw recording data requires approximately 40–50 GB of storage per day, with a total 

of approximately 700GB of storage needed for the month of recorded video. 

 

 

Figure 3. Illustration of bounding boxes and their locations on map.  

 

To support different types of pedestrian activity detection, we enabled the user to self-define 

the region-of-interest (ROI) over the view of the video footage. The region-of-interest can be 

simply defined as a set of arbitrary convex shapes overlayed on the footage. Multiple groups of 

region-of-interests can be defined and analyzed separately. Figure 3 shows an example of an ROI 

along the center turn lane of Lamar Boulevard (yellow bounding box) and ROIs on two bus 

stops—one on each side of the road (red bounding box).  

Visual summaries of person detections during the weekdays are illustrated in Figure 4. Figure 4 

shows crossing detections in the Lamar Boulevard median using the video processing framework. 

Pedestrian crossing activities are colored by time of day, with yellow representing the AM peak 
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period, green the midday period, blue the afternoon off-peak, and red the PM peak period. Based 

on a qualitative review of the crossings shown in Figure 4, most crossings occur during the PM 

peak period, with midday crossings being the second busiest time of day. 

 

  

Figure 4. Visual summary results at Payton location during weekdays (03/09/2020–03/13/2020 and 

03/16/2020—03/19/2020). Detections at bus stops (left) and at middle of roads (right) are colored 

for four time periods: 7:00–10:00, yellow; 10:00–13:00, green; 13:00–16:00, blue; 16:00–19:00, red.  

 

 

 

Figure 5. Number of crossing events inferred per hour per day. 
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We have inferred the number of mid-block crossing per hour per day for days during which 

data was collected, based on the algorithm described in (Xu et. al., 2019), as shown in Figure 5. 

Inferred crossing events for each day are illustrated as a stacked column. For each column, 

detection for each hourly block is illustrated with different colors, starting with 00:00 at the bottom 

and ending with 23:00 at the top. The number in each color block represents the number of 

inferred crossings in that particular hour. Daily crossing events inferred for this period range from 

17 to 81 with a median of 36 crossing events per day. The results also show large variations among 

total crossings of different days as well as large variations in hourly inferences for some hours.  

Figure 6 shows a box plot of average hourly detections for pedestrian crossings by time of day 

at the mid-block location studied. The lines extending from the boxes indicate variability outside 

the upper and lower quartiles. On average, there are 4.2 crossing events inferred per hour.  

 

 

Figure 6. Summary of average hourly detections and outliers (circles on the plot). The box plot is 

computed by excluding outliers to show minimum, 25 percent quartile, median, 75 percent 

quartile, and maximum values.  

 

2.3 Task 3: Analysis of Bus Stop Activities at Lamar and Payton Gin  

The number of people waiting for buses in each hour over the recording periods are inferred 

according to the method described in Figure 7. Since the bus stops are located on the sidewalks 

where other foot traffic occurs frequently, we needed to develop a process to infer the number of 

people waiting for a bus. We first identified time intervals (referred as sessions) during which 

people are continually detected within the regions of interests. To reduce the impact of occasional 
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false positive identifications, a minimum time threshold (min_session_time) is used so that each 

session is longer than the specified threshold. When waiting at bus stops, people often move very 

little and are easily blocked from the video camera by other objects. This can lead to false negative 

detection since those people will not be detected with the described methodology. A second 

threshold, min_no_detection, specifies a minimum time window that separates two consecutive 

sessions. If two sessions are within the min_no_detection threshold they will be merged into one, 

as it is assumed the two sessions are tracking the same single person. Once sessions are defined, 

the number of unique persons are further inferred within each session. Figure 7 summarizes the 

algorithms used to infer the number of people waiting for buses.   

 We chose five seconds as the threshold value for min_no_detection and fifteen seconds as the 

threshold value for the min_session_time. The bus stop shown on the right side of frame (Figure 3) 

is the bus stop for northbound traffic (NB).  The bus stop on the left side of frame (Figure 3) is the 

bus stop for southbound traffic (SB). Figure 8 shows the hourly number of people inferred at the 

NB stop for each day. The inferred total number of people at the NB stop ranges from 5 to 22 with a 

median of 12 for each day. However, the inferred total number of people waiting at the SB stop has 

a much larger variant (between 4 to 84, with a median of 33). 

 

Figure 7. Pseudo code to infer number of people waiting for bus from recognition results. 

 

 

Pseudo code for identify number of people waiting at bus stops.  

Input: D: sequence of detections {f , b | f: frame index, b: bounding box of detected object in the 

frame}, ROI: regions of interest, min_session_time,  min_no_detection  

Output: S: sequence of sessions {(fb, fe, p )| fb: begging of a session, fe end frame index of a 

session, p is the number of unique persons within the session}  

 

1: D  DROI filter out all detections in D within region of interest specified by ROI as DROI 

2: DROI  SD: merge consecutive detections in DROI to form list of session which is a sequence of 

detections.  

3: SD  SM: merge sessions in SD within min_no_detection apart to form a new list of session SM 

4: SM SF:  filter out sessions in SM less than min_session_time and store the final list of sessions 

in SF 

5: For each session in SF compute starting frame fb, ending frame fe, number of unique person P 

as (fb, fe, p) 
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Figure 8. Inference of number of people waiting for bus during each hour of the day for recorded 

days at the SB stop (left) and NB stop (right).  

 

In Figure 8, notice several significant spikes of the number of persons identified at the bus stop 

area. For example, the maximum number of persons 57, was inferred for 18:00–19:00 on March 

10, 2020, at the SB stop. Further manual review of recordings shows the inferences was due to two 

persons staying at the bus stop area for an extended time, which caused repeated detections.  

In subsequent hourly pattern analysis, we incorporated an outlier detection filter to remove 

inferences that are clearly out of normal expectations. Further breaking down by hour, the median 

number of people waiting for buses per hour at the NB stop ranges from 1 to 3 across different 

hours of the day during the time period. For the SB stop, the median number of people waiting for 

buses per hour ranges from 1 to 6 across different hours of the day during this time period. When 

the data is combined, the median of the inferred number of people waiting at both stops per hour 

(across all hours and all days) is about 4.  

 

Figure 9.  Average of inferred number of persons at bus stops for each hour during the recording 

periods at SB and NB stop. For comparisons, we also show the boarding records from CapMetro 

at the SB stop.  

 

n
u
m

b
er

 o
f 

p
eo

pl
e 

n
u
m

b
er

 o
f 

p
eo

pl
e 



12 

 

 To check the accuracy of number of persons inferred, we obtained boarding records at SB 

stop during the same time periods from the bus operator, CapMetro (Figure 9). The results show 

our approach inferred higher values than the operator’s records. The mean absolute error (MAE) 

between our estimate with CapMetro record is 1.14. A primary reason for the discrepancy is that 

our approach is based on persons detected in the bus stop area rather than a direct inference for the 

number of people boarding the bus, as recorded by CapMetro. There are instances where person is 

detected around the bus stops but never boarding a bus. Manual video review confirmed those 

observations.  

 

Table 1. Correlation analysis between inferred crossing events with inferred number of people 

waiting at SB, NB, and both bus stops. 

 Time 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 

19:0

0 

#SB -0.19 0.20 0.01 0.39 0.14 0.05 -0.07 -0.36 0.91 0.40 

#NB -0.08 -0.03 0.44 0.37 0.12 0.10 0.50 0.14 0.79 0.06 

#BOT

H 

-0.22 0.19 0.07 0.54 0.18 0.09 0.09 -0.31 0.92 0.35 

 

To study connections between people at bus stops and inferred crossing events, a correlation 

analysis has been conducted for each hour of the day. In the correlation analysis, inferred values for 

the same hour on different days are treated as a series. Therefore, for each hour, four time series are 

computed: number of crossing events (CRO), number of people waiting at the NB stop (#NB), 

number of people waiting at the SB stop (#SB), and the sum of people waiting at both stops 

(#BOTH). Each time series contains thirteen data points for each day. Table 1 shows correlation 

results for each hour between CRO with #SB, #NB, #BOTH. Typically, a strong correlation between 

two series will result a value between 0.7–1.0. Correlation values between 0.3–0.7 can be considered 

as moderate correlations. The results only show strong correlation (with correlation score greater 

than 0.7) for 18:00–19:00 at both SB and NB stop. However, this correlation may be due to the 

excessive false detections often observed during that hour.    
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2.4 Task 4: Validation of Pedestrian Crossing with PHB Activations 

A PHB was installed at the Lamar and Cooper Drive intersection and is viewable from the 

Lamar/Rundberg Lane camera (Figure 10). We have recorded video from July 19, 2021, to July 

30, 2021, at this location. Each day has about fifty-two videos at fifteen minutes recording length. 

The raw recording is about 20GB per day with about 500GB total.  

 

 

Figure 10. Visual summary of detection from the Lamar/Rundberg camera from July 19, 2021 to 

July 30, 2021. The detections are separated into two regions of interest. On the left, a mid-block 

crossing at the bottom part of the road (between Cooper Drive and Rundberg Lane). On the right, 

the area is focused on the crosswalk area installed at the Cooper Drive intersection.  

 
An overview of all detections, separated into two regions of interest, is shown in Figure 10. On the 

left, it shows a mid-block crossing at the bottom part of the road (between Cooper Drive and 

Rundberg Lane). On the right, detection is focused on the crosswalk area at the Cooper Drive 

intersection. Detection results are shown in Figure 11.  

 

 

Figure 11. Average hourly detection for midblock crossing (left) and use of crosswalk (right).  
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 We obtained the PHB activation records to compare with prediction results. For 

comparison purposes, we focused on PHB activation between 07:00 and 21:00 each day. The daily 

comparison is shown in Figure 12.  

 

The accuracy for each day is computed as: 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −  
| 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑎𝑡 𝑐𝑟𝑜𝑠𝑠𝑤𝑎𝑙𝑘− 𝑡𝑜𝑡𝑎𝑙 𝑃𝐻𝐵 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (7−21)|

𝑡𝑜𝑡𝑎𝑙 𝑃𝐻𝐵 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (7−21)
 

The average accuracy over the eleven-day period is 0.89 with an error margin ranging from 0–19 

percent. 

 

 

Figure 12. Comparison of daily predicted crossing using crosswalk (blue), PHB activations during 

7-21 hours per day (red), and predictions of mid-block crossing inference (grey).   

 

2.5 Task 5: Web Interface for Interactive Exploration 

While our approach aims to provide robust and automated methods for detecting and inferring 

pedestrian activities, results indicate outliers occur frequently among the inference results. These 

outliers can be results from both model limitations and actual unexpected events on the road. To 

support human intervention and to gain more insights from the inference results, we have 

implemented a web interface for reviewing video clips (soda.tacc.utexas.edu). The web interface 

leverages our framework developed for creating web applications on cyberinfrastructure (Xu et.al., 

2019). To further reduce data risks and protect personal privacy, the web user interface supports 
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authentication so that only people with account credentials can access the raw video footage 

(Wang et.al., 2018).   

The website is password protected and can only be accessed via a granted credential account. 

After initial login, all traffic camera locations are shown in a map. If past recordings are available, 

a solid camera icon will be used instead (Figure 13). A user can mouse over the solid camera icon 

for more details and a link to detailed results.  

Once the recording results are selected, detailed results are shown on a new page (as illustrated 

in the screenshot of the web interface shown in Figure 14). At the top, users may select to review 

results from different use cases. Summary statistics compiled using the video detection framework 

are shown as boxplot and stack column charts to give users an overview of the inference results. 

The boxplot on the left shows average hour pedestrian crossing events for the chosen date 

range; the bar diagram on the right displays the daily number of detections for each recorded day, 

with each hour represented by a different color band. The graphs are interactive: Users can click on 

a time segment to see a list of clips associated with inferences during that time segment. The user 

can also export the graph and data as csv or image files for sharing or further study. The clip list 

table can also be interactively navigated by users to bring up clips of detections, as shown on the 

left side.   

 

 

Figure 13. Map view of all camera locations. When recordings are available, a solid camera icon 

will be shown with indication on the direction and road segment of the recordings.  
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Figure 14. A web interface for interactive detection video reviewing purposes.  

 

In Figure 14, the video still shown in the bottom left shows an example of the object labeling 

and tracking algorithm applied to Lamar Boulevard north of Payton Gin Road. Pedestrians are 

identified and crossings tracked, as shown by the pink bounding boxes in this video. Note that 

other objects are also identified and tracked (car, bus, truck, bicycle, motorcycle, and traffic light). 

The data for all objects is stored with no personal identifiable information, and it can be used for 

future research efforts that have yet to be identified. The user can click on individual video clips to 

the right of the video image, to observe each pedestrian crossing. The user can also download the 

individual video clips of reviewing offline.  

3. Findings, Summary, and Discussion  
The City of Austin has more than 400 CCTV cameras installed at intersections in the Austin area. 

These cameras are commonly used for manual traffic monitoring, with no long-term recording or 

archiving of videos. Artificial intelligence technologies can greatly reduce the effort involved in 

analyzing video data. The framework presented here can facilitate research traditionally based on 

manual field and video data analysis. The intent is that this work effort will promote further work 
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on video data applications and integration. A unique advantage of our framework is that it converts 

video recordings into query-able information while not saving personally identifiable information, 

which can accommodate multiple subsequent use cases without re-processing (Huang et al., 2017) 

or risks related to privacy issues.  

The use cases presented in this work illustrate the benefits and limitations of the proposed 

methodology. Our video aggregation pipeline has the potential to support long-term pedestrian 

activity monitoring. The flexibility of the data selection and filtering capabilities is expected to 

enable further applications. In addition to the visual summaries described in this study, quantitative 

outputs can be generated to facilitate the comparison of conditions across different locations or 

time ranges, and to evaluate the impact of infrastructure changes and construction scenarios, 

among others.  

Bus stops present additional challenges in detecting pedestrian activities. Although our 

motivation is to identify how many people are waiting for buses and how long they have been 

waiting, we also identified cases where pedestrians dwell at bus stops extended time periods that 

appear unrelated to bus activities. These observations can add bias to bus waiting time predictions. 

Furthermore, there are high numbers of duplicative detections over time, as pedestrians tend to 

move less while waiting for a bus to arrive.  

Our case study leverages the latest AI technology to infer both crossing events and number of 

pedestrians waiting at bus stops in lieu of a manual field count. This approach has the potential to 

scale to other locations and for longer periods of time than is possible using human data collection 

methodologies. In the use cases reported here, we focused on one selected location in Austin and 

analyzed traffic videos collected during a period in March 2020. We reported our inference results 

for pedestrian mid-block crossings and bus stop activities and conducted a correlation analysis 

between the two variables for each hour of the day. Our results show no overall strong correlations 

are observed between person detection in bus stops with mid-block crossing for this data sets. To 

assist traffic engineering practitioners in reviewing and to gain insights from the recording and the 

inference results, we also built a secure web interface to allow a user to interactively explore 

inference results.  

The value of this work lies not with the result of this particular case study, but on a 

computationally aided approach to conduct correlation analyses using a street view captured by a 

nearby traffic camera. As the methodology for the computational approach is improved, this work 
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can be scaled to other locations or other use cases, such as determining if mid-block crossings are a 

result of the nearby bus stops. If a correlation is found and identified early, addressing pedestrian 

safety issues around mid-block crossings could prevent loss of life.  

The web interface leverages the framework developed for creating web applications on 

cyberinfrastructure. It allows users to interactively explore video clips and summary statistics. 

After initial login, all traffic camera locations are shown on a map. Once recording results are 

selected, detailed results are shown and users may select to review results from different use cases. 

Summary statistics compiled using the video detection framework are shown as boxplot and stack 

column charts to give users an overview of the inference results.  The user can also export the 

graph and data as csv or image files for sharing or additional studies.  
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