PLANET TEXAS 2050

A UT Grand Challenge

Lighnting Presentations

Lightning Talks

Does something catch your interest? Please make note of it for your breakout group!

- Marc Coudert and Phoebe Romero, Office of Sustainability, City of Austin
- Carmen Pulido, Go Austin / Vamos Austin
- Jonathan Gingrich and Hagen Fritz, CAEE
- Elizabeth Matsui, MD, MHS, from Dell Medical School

Carmen Llanes Pulido Go Austin / Vamos Austin

HACK FOR RESILIENT **COMMUNITIES**

Transportation, Pollution, Weather & Health

Go Austin/Vamos Austin (GAVA) &

City of Austin Office of Sustainability

CHALLENGE

- · Social Determinants of Health = Disproportionate asthma rates
- Bad Air Quality (AQ) aggravates asthma
- Climate change may make AQ worse, potentially increasing incidences of asthma

NEEDS

- Identify: What are the sources of bad air quality in Dove Springs?
- Stop: Identify actions to stop emissions of bad air quality.
- · Act: Create a plan to ameliorate bad air quality.
- Lift: Community engagement process to help those impacted by bad air quality.
- Transform: Devise a plan that empowers communities to take control of local air quality

WHO ARE WE?

- · Go Austin/Vamos Austin (GAVA)

 - DO AUSUITI/VAINOS AUSUIN (GAVA) Community Organizing for Health Equity Pushing for equitable infrastructural investments that protect people from climate shocks and stressors Organizing anti-displacement and leadership development efforts to promote neighborhood stability, preparedness and response via "Climate Woke" community planning and a "People's Agenda" for Climate Justice
- · City of Austin Office of Sustainability City Office
 - Council Directed
 - · Work on climate, food system, green infrastructure, etc.

SOLUTIONS

• Can be:

- Can be: Technological Programs/Projects Capital Improvement Funding Landscape/urban design Community engagement strategies ...you tell us!

TEXAS

What's the problem?

TEXAS

What's the problem?

• Air pollution kills

TEXAS

What's the problem?

- Air pollution kills
 - 4.2 million deaths worldwide1, 100,000 in the $\rm US^2$

TEXAS

What's the problem?

- Air pollution kills
 4.2 million deaths worldwide¹, 100,000 in the US²
- Most of the burden is on minoritized communities³

TEXAS

What's the problem?

- Air pollution kills
- 4.2 million deaths worldwide¹, 100,000 in the US²
- Most of the burden is on minoritized communities³
- Transportation related air pollution (TRAP) accounts for about 20% of total pollution in the US

TEXAS

What's the problem?

· Cannot address problem of air pollution without data

TEXAS

What's the problem?

- Cannot address problem of air pollution without data
- Data gaps exist

TEXAS

How do we address the problem?

TEXAS

How do we address the problem?

• Need to use different measurement methods to address data gaps

<page-header><page-header><page-header><section-header><section-header><section-header><section-header><section-header>

TEXAS

How do we address the problem?

- Stationary reference monitors
- Satellite measurements
- Mobile monitoring

TEXAS

How do we address the problem?

- Stationary reference monitors
- Satellite measurements
- Mobile monitoring
- Low-cost sensor networks

TEXAS

Mobile Monitoring in Austin

- Measurements made by GSV cars Summer 2018
- Measurements taken
 - Particulate Matter - Black Carbon
 - NO₂
 - NO
 - Ultrafine Particles
 - CO₂
- How do on-road measurements of air pollution vary in Austin?

TEXAS

UT Austin Low-Cost Sensor Network

- 16 commercial-grade sensors
- Measure
 - Particulate Matter (PM) number and mass concentrations Temperature
 - Relative Humidity
- Is the UT Community exposed to unhealthy levels of PM pollution?

TEXAS

Research questions we have

- What are the spatial and temporal patterns of air pollution?
- Where are there hotspots in the city/campus? What could be causing them?
 - Weather?
 - Traffic?
- · Can we improve the performance of low-cost sensors?
- Who experiences the most pollution?

TEXAS

high

Proposed projects for today

Hotspot identification

traffic data

Level III: Overlay major

events, weather, and/or

- Sensor Verification Level I: Determine which • Level I: Compare to local TCEQ/EPA monitoring locations tend to read
- temporal trends

stations Level II: Compare against

- mobile monitoring data Level III: Develop
- multivariate regression to correct PurpleAir data
- Demographic Evaluation • Level I: Apply the mobile monitoring to census blocks
- Level II: Combine with demographic data
- Level III: Determine which demographic factors result in higher exposure to TRAP

TEXAS

Sources

- 1. https://www.who.int/health-topics/air-pollution#tab=tab_1 2. https://vizhub.healthdata.org/gbd-compare/
- Tressum CW, Apte JS, Goodkind AL, et al. Inequity in consumption of goods and services adds to racial-ethnic disparities in air pollution exposure. Proc Natl Acad Sci U S A. 2019;116(13):6001-6006. doi:10.1073/pnas.1818859116

ELIZABETH C. MATSUI, MD, MHS Director of Clinical and Translational Research, **Dell Medical School** Professor of Population Science Professor of Pediatrics

FEBRUARY 2020

The University of Texas at Austin Center for Health and Environment Education and Research

UNDERSTANDING HEALTH EFFECTS OF (TRAFFIC-RELATED) AIR POLLUTION

ELIZABETH C. MATSUI, MD MHS Protessor of Population Health and Pediatrics Director of the Center for Health and Environm The University of Texas at Austin , ment: Education and Research (CHEER Center for Health and Environment. CHEER Education and Research **Connecting Environment to** Health in Texas & Beyond Population Health at Dell Me

What is TRAP?

- Exhaust from motor vehicles

 carbon dioxide (CO₂), carbon monoxide (CO)
 - hydrocarbons (HC)
 - nitrogen oxides (NO_X) particulate matter (PM)
- mobile-source air toxics (MSATs)- e.g. benzene, formaldehyde, acetaldehyde, 1,3-butadiene Non-combustion
- Resuspended road dust, tire wear, brake wear With increasing emissions controls for exhaust PM, proportion of TRAP PM from noncombustion sources increases

Secondary pollutants: e.g. ozone

Contribution to ambient air pollution: "In U S. cities, the results show that motor-vehicle contributions range from 5% in Pittsburgh, Pa., under conditions with very high secondary aerosol, to 49% in Phoenix, Ariz., and 55% in Los Angeles, Calif."

https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-review-literature-emissions-exposure-and-health

CHEER

CHEER

Air pollution acute health effects

- Cardiovascular events (MI, TIA, stroke)
- Respiratory symptoms and events
- COPD, asthma symptoms, ED visits
- Respiratory infections Upper respiratory tract infections, in children

https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-review-literature-emissions-exposure-and-health

Air pollution chronic health effects

- Effects on outcomes that are a result of exposure over a period of months or years
- "incident" vs "prevalent" disease
- Asthma
- Lung function growth
- Birth weight, preterm birth

CHEER

Biologic markers of exposure or effect

- epigenetics
- visualization of particles in olfactory nerve, brain, placenta
- elevation of blood markers of inflammation

Bove et al, Nature communications. https://www.nature.com/articles/s41467-019-11654-3 Maher et al, PNAS https://www.ncbi.nlm.nih.gov/pubmed/27601646

CHEER

Air pollution emerging health effects

- Dementia
- Developmental disorders

 Autism spectrum disorder
 ADHD
- Psychosis

Liang et al, Environ Pollut 2019. <u>https://www.ncbi.nlm.nih.gov/pubmed/30326384</u> Suades-González et al. Endocrinology 2015 <u>https://www.ncbi.nlm.nih.gov/pubmed/26241071</u>

CHEER

Linking exposure to health: What is the question?

Characteristics of a good question

of interest

 hasn't already been answered

- answerable
- plausible

specific

Linking exposure to health: Refining the question

What is the exposure of interest?

- How is it measured?
- •How will you determine exposure for each individual?
- Over what time? Over what geography?
- •Will it be directly measured? Will it be modeled? Or both? How "good" are the models? Are the measurements?

CHEER

CHEER

Linking exposure to health: Refining the question

What is the health outcome of interest?

- How is it measured?
- Over what time? Over what geography/space?
 Is it a chronic (prevalent or incident outcome) or an acute outcome (asthma exacerbation)?
- •What is the expected time course from the exposure to the outcome?

Lags

CHEER

Translating the question to an analysis

Does exposure (x) predict health outcome (y)?

ID	Distance of home from major roadway (meters)	Modeled annual average PM _{2.5} at home address (mcg/m ³)	PM _{2.5} yesterday	days of coughing, last two weeks (no.)	Asthma diagnosis, ever	ED visit for asthma
1	30	5	8	3	1	1
2	450	12	11	0	0	0
3	300	8	4	5	0	0
4	75	6	17	2	1	0

Wrap-up and Prizes

-

- Best working product Amazon gift card (\$50 x 4)
- Best idea for solving a community resiliency problem (with the data) Amazon gift card ($\$50 \times 4)$
- Best visualization Amazon gift card (\$50 x 4)
- Best research potential Amazon gift card (\$50 x 4)