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This document is part of a package that contains the scripts for developing machine learning 
models that predict transit ridership along bus-routes in the Dallas-Fort Worth region. The folder 
structure of the package and the tools required for running the scripts are described. Following 
this, the preprocessing steps for generating the final dataset used for training and testing the 
machine learning models are briefly explained. Finally, the machine learning algorithms that were 
used and the model results are discussed.  

The project folder structure is as shown in Figure 1. The parent folder, contains 
three folders – ,  and . The folder structure with the initial set of files (before 
any of the script files are executed) is shown in more detail in Section A1 of the Appendix. 

 

 

 Within the  folder, another folder named  stores all the input data files required 
for this project. More information on the input data files is provided in Section 2. The  folder 
will be populated with more data files that are derived from the input data files as the data 
processing scripts are executed. 
 The  folder contains all the scripts that are used for preprocessing, model 
estimation and prediction. The scripts are written in the Jupyter Notebook format and have the 



 
extension IPYNB. Files of this format may be opened and executed in software such as  
and . The  folder also contains a folder named  which has the 

 file.  is a python file that contains the code for a GIS function that 
translates geographical attributes (or polygon features) from one shapefile geometry to another. 
This function in the  is called by some of the IPYNB script files in the  folder. 
 The  folder is initially empty. When the  script in the  
folder is executed, the  folder will be populated with plots of the goodness-of-fit and a 
file that stores the predicted ridership information. 

All the scripts used for this project were developed using the Anaconda distribution of Python. 
Specifically, Python 3.7 was used as the interpreter. The steps for installing Anaconda and all the 
libraries required for running the scripts developed for this project are as follows. 

1. Download and install the most recent version of Anaconda from: 
https://www.anaconda.com/products/individual. 

2. The installation procedure would have installed a program named  
and a program named . First, open the program . 

 provides a command-line interface for accessing Python development 
tools and for managing the Python development environment. Figure 2 shows the 

 interface. 
 

 

3. This project requires the installation of several Python packages in addition to those that 
are included in a standard installation of Python. When installing packages specific to a 
project, it is advisable to do so in a separate Python environment. Therefore, in this step, 
create a new Python environment named “Transit_Prediction” based on Python 3.7 using 
the following  command: 

4. Activate the newly created Python environment using the command: 

5. Install the packages required for this project by executing the following commands: 



 

6. Open Jupyter Lab using the command:  

The above command would also start a Jupyter server in the background. Jupyter Lab will 
be opened in the default internet browser. The interface of Jupyter Lab is as shown in 
Figure 3. All the scripts used in this project can be accessed by double-clicking on the 
script name in the tab on the left side. 

 

 

7. To quit Jupyter lab, select  ->  and then close the JupyterLab tab in the 
browser. To open Jupyter Lab the next time, simply open  and follow 
instruction 4 and instruction 6. 

The procedure mentioned above for installing Python libraries and accessing Jupyter notebooks 
uses the  command-line tool. Alternatively, the user could also use the 

 tool which has a Graphical User Interface for performing the same operations. 
Instructions for using the  can be found at 
https://docs.anaconda.com/anaconda/navigator/getting-started/. 







 
the number of houses in the census tracts. All in all, a total of 218 socio-demographic and 
employment counts are computed at the census tract level.

  This notebook computes the distance buffers for each 
transit route and aggregates the socio-demographic and employment counts within the 
buffers. A buffer of a transit route is the geometry of the area that is within a threshold 
distance from any point along the transit route. The aggregated socio-demographic 
counts for a buffer is computed by taking the sum of socio-demographic counts of the 
census tracts that overlap with the buffer. If a census tract overlaps only partially with the 
buffer, the socio-demographic count of the census tract is multiplied by the fraction of the 
area of overlap of the census tract before adding it to the buffer. The aggregated 
employment counts for a buffer area are also calculated similarly except that TSZs are 
considered instead of census tracts.

The aggregated feature counts are computed for buffer distances of 200m, 400m, 
800m and 1600m. Additionally, the aggregated features counts are also computed for the 
buffer bands of 200-400m, 400-800m and 800-1600m by differencing the feature counts 
in the smaller distance buffer area from the feature counts in the higher distance buffer 
area. For example, the aggregated feature count within the buffer band of 400-800m will 
be the difference between the aggregated feature count in the 400m buffer and the 
aggregated feature count in the 800m buffer. In this manner, for each socio-
demographic/employment related census-tract/TSZ level feature, a total of seven 
aggregated features (4 for full distance buffers and 3 for banded buffers) are computed, 
which results in a total of 218 x 7 = 1526 aggregated feature counts for each route. 

 This notebook computes the schedule related 
characteristics of each Transit route using the pickled GTFS data. The notebook computes 
the frequency of routes, which is the average number of arrivals of buses of a given route 
at stops along the route divided by the duration of the time period under consideration 
(in hours). The frequency is computed for the 24-hour period of a day as well as for the 
five time periods of,

1. AM Peak – 6:30 AM to 9:00 AM 
2. Midday 1 – 9:00 AM to 12:00 noon 
3. Midday 2 – 12 noon to 3:00 PM 
4. PM Peak – 3:00 PM to 7:00 PM 
5. Night – 7:00 PM to 6:30 AM (next day) 

This notebook also computes the number of unique stops along a route. 
 This notebook produces the final dataset with the features and 

the dependent variable that can be used for fitting machine learning models. It combines 
the features computed in  and . It computes 
the dependent variable of daily ridership along a route using the survey dataset.

 



 
 This notebook fits the different machine learning models and 

evaluates goodness-of-fit. The tasks performed in this notebook are explained in detail in 
Section 4. 

Some of the notebooks take as input the output files generated by other notebooks. For example, 
the notebook  can be executed only after the dataset used for fitting the 
models has been produced by the notebook . The flowchart in Figure 5 shows 
the dependencies between the notebooks. The notebook at the head end of an arrow should be 
executed only after the notebook at the tail end has been executed. The notebooks highlighted 
in green are not dependent on any other notebooks. Therefore, the sequence of execution can 
begin from these notebooks. As the notebook files are executed, the  folder will be populated 
with the final dataset for estimation and intermediate datasets that were used for processing. All 
the results will be saved in the  folder. 
 The specific input and output files for each of the notebooks are provided in Section A2 in 
the Appendix. The folder structure after all the scripts in the  folder have been executed 
will be as shown in Section A3 in the Appendix.  
 

 

More than 1500 features were computed for each transit route. Since the use of a large number 
of features can result in less accurate machine learning models (with a tendency to overfit), only 
a subset of 41 features was selected for use in the machine learning models. The selected features 
are shown in Table 1. Features that relate to combinations of multiple socio-demographic 
characteristics of households (which formed a majority of the available features) were not 





 
b02_HH_W2 No. of HHs with 2 workers within 200 meters from the route 
b02_HH_W3 No. of HHs with 3+ workers within 200 meters from the route 
b0204_HH_W1 No. of HHs with 1 worker between 200 and 400 meters from the route 
b0204_HH_W2 No. of HHs with 2 workers between 200 and 400 meters from the route 
b0204_HH_W3 No. of HHs with 3+ workers between 200 and 400 meters from the route 
b0408_HH_W1 No. of HHs with 1 worker between 400 and 800 meters from the route 
b0408_HH_W2 No. of HHs with 2 workers between 400 and 800 meters from the route 
b0408_HH_W3 No. of HHs with 3+ workers between 400 and 800 meters from the route 
b02_HH_C1 No. of HHs with 1 child within 200 meters from the route 
b02_HH_C2 No. of HHs with 2+ children within 200 meters from the route 
b0204_HH_C1 No. of HHs with 1 child between 200 and 400 meters from the route 
b0204_HH_C2 No. of HHs with 2+ children between 200 and 400 meters from the route 
b0408_HH_C1 No. of HHs with 1 child between 400 and 800 meters from the route 
b0408_HH_C2 No. of HHs with 2+ children between 400 and 800 meters from the route 
* ridership is the dependent variable 

The complete dataset (after the removal of a route named “The Spur” because it had an unusually 
high ridership for its length) had 160 routes. A random stratified splitting approach was used to 
split this dataset into the training and testing datasets. Under this approach, the complete dataset 
was first divided into quartiles based on ridership. From each quartile, 30% of the routes were 
randomly selected without replacement and added to the testing dataset and the remaining 70% 
were added to the training dataset. The resulting testing dataset had a total of 48 routes with 12 
routes from each quartile and the resulting training dataset had a total of 112 routes with 28 
routes from each quartile. All the machine learning models were trained using only data from the 
training dataset. The testing dataset was used only to test the accuracy of the models. 

Numerical measures and graphical plots were used to assess the Goodness-of-fit of the different 
machine learning models. 

The Coefficient of Determination ( ) was used as a measure of the goodness-of-fit of the fitted 
models. The  is the proportion of variance in the outcome variable that is explained by the 
predictors. Consider  records of the outcome variable indexed as , , …, . Let the 

predicted outcome for these records be , , …, . Then  is computed as follows, 

 , (1) 



 

 , (2) 

 . (3) 

where  is the observed mean of the outcome,  is the sum of squared residuals and  is the 

sum of squared totals. For assessing model fit, the following metrics based on were computed. 
1. Train - where the model is fitted using the training dataset and is computed with 

respect to the training dataset.
2. Test - where the model is fitted using the training dataset and is computed with 

respect to the testing dataset. A value for Test that is much lower than the Train 
could indicate that the machine learning model has been overfitted.

3. Cross Validated  - Here, the original training dataset is split into five parts. Then, 
considering each of the individual parts as a new testing dataset and the remaining four 
parts as a new training dataset, the model is fitted using only the new training dataset and 
the value is calculated with respect to the new testing dataset. The cross-validated 
is the mean of the s obtained for the five new testing datasets. An illustration of the 
splitting of the original training dataset into the training and testing datasets for cross-
validation if provided in Figure 6.  

 

 

 The Train , Test and Cross-Validated values computed by the  
notebook are summarized in the file  in the  folder. 









 
technique that is commonly used for hyperparameter tuning. The use of 5-fold cross-validation 
was already explained in Section 4.3.1 in the context of computing Cross Validated . For 
hyperparameter tuning, the Cross Validated  is computed for a range of hyperparameter 
values. Finally, the hyperparameters are assigned the values that produce the best Cross Validated 

.  Once the hyperparameters are tuned, the parameters are estimated once again with the 
complete training dataset (instead of part of the training dataset as done in the cross-validation 
procedure).  
 For tuning the  parameter, a range of 100 values between ~0.5 to ~550 were tested. 
Note that the search space was not uniformly split to produce the 100 values. Values in the lower 
end of the search space were closer to each other than values in the higher end. The best fit was 
produced by . The goodness-of-fit evaluation plots and metrics for the Lasso Regression 
model are provided in Figure 9.  
 

 

The Polynomial Lasso Regression is an extension of Lasso Regression where the feature set used 
for prediction includes the original features as well as polynomial transformations of the original 
features. The transformed features can include powers of the original features and products of 
powers of the original features. For this project, we estimate one model where the features set is 
expanded by also including the squares of all the original features and another model where the 
feature set is expanded by including the square roots of all the original features. We did not 
consider products of the original features in the new feature set because this would cause the new 
feature set to become extremely large relative to the number of records in the database and 
therefore more likely to cause overfitting. The goodness-of-fit evaluation plots and metrics for the 
Lasso Regression model with squares of the features are provided in Figure 10 and that for the 
Lasso Regression model with square roots of the features are provided in Figure 11. The optimal 

 values for these models were found to be 44.4 and 31.3 respectively. 

 













 



 



 

A2 Inputs and Outputs of Notebook Files 
 

Notebook Inputs Outputs 
DataPickling Data/Inputs/GTFS/DART GTFS (GTFS Folder) Data/GTFS/routes.pickle  

Data/Inputs/GTFS/FWTA GTFS (GTFS Folder) Data/GTFS/shapes.pickle  
Data/Inputs/NCTCOG_CONSOLIDATED_DART_THET_DCTA_Sep0315.xlsx Data/GTFS/stop_times.pickle   

Data/GTFS/stops.pickle   
Data/GTFS/trips.pickle   
Data/GTFS/gtfs_schedule.pickle   
Data/survey_2014.pickle 

ConsolidateTSZCensusData Data/Inputs/Market Segmentation/TAZ_Emp_IGxInd.csv Data/census_SD.pickle  
Data/Inputs/Market Segmentation/TAZ_HH_SxWxIG.csv Data/Census_SD (Shape folder)  
Data/Inputs/Market Segmentation/TAZ_HH_WxIGxC.csv   
Data/Inputs/Market Segmentation/TAZ_HH_WxVxIG.csv   
Data/Inputs/TSZ5352 (Shape folder) 

 
 

Data/Inputs/dfw_census (Shape folder) 
 

RouteBufferFeatures Data/census_SD.pickle Data/route_buffer_dat.pickle  
Data/GTFS/shapes.pickle 

 
 

Data/GTFS/gtfs_schedule.pickle 
 

RouteScheduleFeatures Data/GTFS/gtfs_schedule.pickle Data/route_schedule_dat.pickle 
RouteFeatures Data/survey_2014.pickle Data/route_est_dat.csv  

Data/route_buffer_dat.pickle Data/route_est_dat.pickle  
Data/route_schedule_dat.pickle 

 

MLPrediction Data/route_est_dat.pickle Results/ (all files) 
 
 



 

A3 File Structure After Running the Scripts 
AI Transit Prediction 
├───Data 
│   │   census_SD.pickle 
│   │   route_buffer_dat.pickle 
│   │   route_est_dat.csv 
│   │   route_est_dat.pickle 
│   │   route_schedule_dat.pickle 
│   │   survey_2014.pickle 
│   │ 
│   ├───Census_SD 
│   │       Census_SD.cpg 
│   │       Census_SD.dbf 
│   │       Census_SD.prj 
│   │       Census_SD.shp 
│   │       Census_SD.shx 
│   │ 
│   ├───GTFS 
│   │       gtfs_schedule.pickle 
│   │       routes.pickle 
│   │       shapes.pickle 
│   │       stops.pickle 
│   │       stop_times.pickle 
│   │       trips.pickle 
│   │ 
│   └───Inputs 
│       │   2014RouteID_ModeID.xlsx 
│       │   NCTCOG_CONSOLIDATED_DART_THET_DCTA_Sep0315.xlsx 
│       │ 
│       ├───dfw_census 
│       │       dfw_census.cpg 
│       │       dfw_census.dbf 
│       │       dfw_census.prj 
│       │       dfw_census.shp 
│       │       dfw_census.shx 
│       │ 
│       ├───GTFS 
│       │   ├───DART GTFS 
│       │   │       agency.txt 
│       │   │       calendar.txt 
│       │   │       calendar_dates.txt 
│       │   │       feed_info.txt 
│       │   │       nodes.txt 
│       │   │       routes.txt 
│       │   │       route_direction.txt 
│       │   │       shapes.txt 
│       │   │       stops.txt 
│       │   │       stop_times.txt 



 
│       │   │       trips.txt 
│       │   │ 
│       │   └───FWTA GTFS 
│       │           agency.txt 
│       │           calendar.txt 
│       │           calendar_dates.txt 
│       │           feed_info.txt 
│       │           routes.txt 
│       │           shapes.txt 
│       │           stops.txt 
│       │           stop_times.txt 
│       │           transfers.txt 
│       │           trips.txt 
│       │ 
│       ├───Market Segmentation 
│       │       TAZ_Emp_IGxInd.csv 
│       │       TAZ_HH_SxWxIG.csv 
│       │       TAZ_HH_WxIGxC.csv 
│       │       TAZ_HH_WxVxIG.csv 
│       │ 
│       └───TSZ5352 
│               TSZ5352.DBF 
│               TSZ5352.prj 
│               TSZ5352.shp 
│               TSZ5352.shx 
│ 
├───Notebooks 
│   │   ConsolidateTSZCensusData.ipynb 
│   │   DataPickling.ipynb 
│   │   MLPrediction.ipynb 
│   │   RouteBufferFeatures.ipynb 
│   │   RouteFeatures.ipynb 
│   │   RouteScheduleFeatures.ipynb 
│   │ 
│   ├───.ipynb_checkpoints 
│   │       ConsolidateTSZCensusData-checkpoint.ipynb 
│   │       DataPickling-checkpoint.ipynb 
│   │       MLPrediction-checkpoint.ipynb 
│   │       RouteBufferFeatures-checkpoint.ipynb 
│   │       RouteFeatures-checkpoint.ipynb 
│   │       RouteScheduleFeatures-checkpoint.ipynb 
│   │ 
│   └───MyLib 
│       │   LayerFuse.py 
│       │   __init__.py 
│       │ 
│       ├───.ipynb_checkpoints 
│       │       LayerFuse-checkpoint.py 
│       │ 



 
│       └───__pycache__ 
│               LayerFuse.cpython-37.pyc 
│               __init__.cpython-37.pyc 
│ 
└───Results 
        AdaBoost.png 
        AdaBoost_Imp.png 
        DecisionTree.png 
        DecisionTree_Imp.png 
        DecisionTree_tree.png 
        fit_summary.csv 
        GradientBoost.png 
        GradientBoost_Imp.png 
        LassoCV.png 
        LassoCVLog.png 
        LassoCVSq.png 
        LassoCVSqrt.png 
        LassoCV_Coef.png 
        Predictions.csv 
        RandomForest.png 
        RandomForest_Imp.png 
        RidgeCV.png 
        RidgeCV_Coef.png 
 


