Using Surveys, Statistical Modeling, and Transportation Simulations to

Forecast Impacts of Emerging Technologies
Matthew Dean & Kara Kockelman

Why forecast & simulate? Simulat ng the 6-Cou nty Austin Metro SAEV fleets paying retail electricity prices have higher power bills than days
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dispatch decisions: mobility credits (where paratransit — on-demand SAEV service). A $0.05/

- Would you fly between AUS-DFW or travel door-to-door in a private AV? . How can we reduce charging costs for SAEV fleets while reducing climate mi surcharge could generate $0.88/SAEV/day.
. Simulation can be behaviorally realistic (i.e., how does traffic flow across a city & health damages from electricity generation? AND still serve passenger PUDOs modeled for downtown grid: BAU (no curb use rules), PUDOs 1 block
vs a network on the computer?) demand? ST ’

apart vs 3 blocks. # of parking spaces per PUDO & fleet size varied for

. How do innovative curb use pick up & drop off (PUDO) points affect SAVs? sensitivity analysis.

Forecasting Travel Behaviors

B Dav-Ahead Charging & Within-Day Dispatch . . .
Rl Discharging Problem Problem . Trade-offs in spacing PUDOs (less curb space needed, unoccupied travel
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- Prior to AV After AV Household AV ovnership + Modeling power prices & pollution costs reveal how prices influence joint . Combining travel forecasting & simulation tools can reveal insights for the power
transport-power behaviors. & transportation sectors.

« Ongoing survey of 1,000+ Americans to understand acceptance of utility- Yoo : . . . .
con%crollged smayrt ch;r ing of EVs (incentives needed) mcE)netar value ox; 53 o PMDemend (W) A fover G BB 40 e - Human behaviors (willingness to pay, intention to use, frequency of actions) are
discharging E sine i | . ’. Y e h . 8 25 critical to understand & model to inform early policy interventions & incentives.

ischarging EV power to worksite tools, camping equipment, or even the home. / N Collaborati - i I foat , 2 <takehold
, . " o . e 25 6 B . Collaborating with transportation planners, fleet operators, & stakeholders can
» Human actions intluence the transition to EVs & zero-carbon renewables: 29 j 3 improve & usher in more affordable, safer, and cleaner mobility for us all!
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