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 Chapter 1. Introduction 

Multi-dimensional dependent outcome models are of interest in several fields, including 
land-use and transportation, biology, finance, and econometrics, just to name a few. The 
primary motivation for modeling dependent outcomes jointly is that there may be 
common underlying unobserved factors (attitudes, values, and lifestyle factors) of 
decision-makers that impact multiple dependent outcomes simultaneously. Ignoring the 
jointness and considering each dimension separately invites the pitfalls of (1) inefficient 
estimation of covariate effects for each outcome because such an approach fails to 
borrow information on other outcomes (Teixeira-Pinto and Harezlak, 2013), (2) multiple 
statistical testing requirements for specification analysis, which even then offer relatively 
poor statistical power in testing and poor control of type I error rates (De Leon and Zhu, 
2008), and (3) inconsistent estimates of the structural effect of one endogenous variable 
on another (see Bhat and Guo, 2007). The last of these problems is particularly troubling, 
since it leads to what is typically referred to in the econometric literature as the “sample 
selection” or the “endogeneity in variables” problem. That is, modeling each outcome 
independently with a recursive pattern of influence among the independent outcomes is 
tantamount to a strictly sequential decision-making process, which is not consistent with 
the bundled (or package) nature of multiple outcomes. For example, in a land-use and 
transportation context, households that are environmentally conscious (and/or auto-averse 
in their lifestyle) may choose to locate in transit and pedestrian friendly neighborhoods 
that are characterized by high land use density (the word “auto” in this paper will be used 
to refer to motorized vehicles in the household). Then, a cross-sectional data set may 
indicate low auto ownership levels in high land use density areas, but at least part of this 
effect can be attributed to the purely associative effect of auto-averse households 
choosing to own fewer autos and residing in high density areas (rather than the low auto 
ownership being a sole causal effect of living in a high density neighborhood). Ignoring 
this issue will, in general, lead to a misleading conclusion about the causal effect of land-
use on auto ownership, which can, in turn, lead to misinformed land-use policies. A way 
out to more accurately capture causal effects is to model the choice dimensions together 
in a joint equations modeling framework that accounts for correlated unobserved effects 
as well as possible causal inter-relationships between endogenous outcomes.  

To be sure, there has been a substantial amount of work in the econometric literature on 
the simultaneous modeling of multiple continuous variables. However, there has been 
relatively little emphasis on multiple non-continuous variables (see De Leon and Chough, 
2013). Bhat (2015a) provides a review of the many different approaches for modeling 
multiple and mixed data outcomes, and proposes a relatively general modeling 
framework, which he refers to as the General Heterogeneous Data Model (GHDM) 
system.  

Even as there has been increasing emphasis on mixed data outcome modeling, there also 
has been a growing interest in accommodating spatial (and social) dependency effects 
among decision-makers. This is because spatial/social interactions can be exploited by 
decision-makers to achieve desired system end-states. As a simple illustration of this 
point, consider household auto ownership, and assume that the number of autos owned by 



 

2 

a household influences that of the household’s residential neighbors. Then, a limited-
funding information campaign to reduce auto dependency (and promote the use of non-
motorized modes of transportation) would do well to target individuals from different 
neighborhoods, rather than targeting individuals from the same neighborhood. Doing so 
will benefit from the “ripple wave” (or spatial multiplier) effect caused by intra-
neighborhood social exchanges, so that the aggregate-level effect of the information 
campaign on auto ownership can be substantial. Within the context of accommodating 
spatial dependencies, spatial lag and spatial error-type autoregressive structures 
developed for continuous dependent variables are being considered for non-continuous 
dependent outcomes (see reviews of this literature in Elhorst, 2010, Anselin, 2010, 
Ferdous and Bhat, 2013, Bhat et al., 2014, Bhat, 2014, and Bhat, 2015b).1 Unfortunately, 
in the case of non-continuous outcomes, accommodating spatial dependence, in general, 
leads to multidimensional integration of the order of the number of decision-makers for 
count and ordered-response outcomes, and of the order of the number of decision-makers 
times the number of alternatives minus one for nominal (unordered-response) outcomes. 
Typical simulation-based methods, including the frequentist recursive importance 
sampling (RIS) estimator (which is a generalization of the more familiar Geweke-
Hajivassiliou-Keane or GHK simulator; see Beron and Vijverberg, 2004). and the 
Bayesian Markov Chain Monte Carlo (MCMC)-based estimator (see LeSage and Pace, 
2009), become impractical if not infeasible with moderate to large estimation sample 
sizes (see Bhat, 2011 and Smirnov, 2010). But, recently, Bhat and colleagues have 
suggested a composite marginal likelihood (CML) inference approach for estimating 
spatial binary/ordered-response probit/count models, and the maximum approximate 
composite marginal likelihood (MACML) inference approach for estimating spatial 
unordered-response multinomial probit (MNP) models (see Bhat, 2014 for a review). 
These methods are easy to implement, require no simulation, and involve only univariate 
and bivariate cumulative normal distribution function evaluations. However, all earlier 
spatial model studies, regardless of the estimation technique used, have focused on a 
single dependent outcome for each decision maker, rather than multiple and mixed 
dependent outcomes for each decision maker. On the other hand, when a host of 
dependent outcomes are co-determined because of common underlying unobserved 
factors or psychological constructs (attitudes, values, lifestyles, etc.), it is very likely that 
spatial dependence will exist not across just one of those outcomes but across all the 
outcomes.  

In the current paper, we use the important insight that the analyst can generate spatial 
dependence across multiple and mixed outcomes by specifying spatial dependence in the 
“soft” psychological construct (latent) variables. In doing so, we combine the GHDM 
formulation with a spatial formulation. Then, since the mixed outcomes are specified to 
be a function of a much smaller set of the unobserved psychological constructs in 
measurement equations, it immediately generates spatial dependence across all outcomes. 
To our knowledge, this is the first study to propose such a methodological structure for 

                                                 
1 Of course, the spatial lag and spatial error specifications can be combined together in a Kelejian-Prucha 
specification (see Elhorst, 2010), or the spatial lag could be combined with spatially lagged exogenous variable 
effects in a Spatial Durbin specification (see Bhat et al., 2014). In all of these cases, the spatial dependence leads 
also to spatial heteroscedasticity in the random error terms. 
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multiple mixed outcomes. At the same time, from a conceptual standpoint, we are able to 
better disentangle true causal effects from spurious self-selection effects (because the 
same unobserved factors impact multiple endogenous variables) and spatial dependence 
effects (because of diffusion of unobserved attitudes and lifestyles based on spatial 
proximity). Therefore, one can use the model to more accurately examine policy impacts 
that involve a combination of direct causal effects, self-selection effects, and spatial 
diffusion effects.  

Section 2 presents the formulation of the spatial GHDM model along with the MACML 
estimation approach. Section 3 presents a simulation experiment to examine the ability of 
the MACML to accurately and precisely recover parameters in a spatial GHDM model. 
Section 4 concludes the paper.   
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 Chapter 2. The Spatial GHDM Model Formulation 

There are two components to the model: (1) the latent variable structural equation model 
(SEM) system, and (2) the latent variable measurement equation model system. 

 2.1 Latent Variable SEM System 

Let l  be the index for latent variables ),...,2,1( Ll =  and q  be the index for individuals 

),...,2,1( Qq = . Then the latent variable *
qlz  may be written as a linear function of 

covariates using a spatial auto-correlation or spatial lag structure as follows:  


=′

′′++′=
Q

q
lqqqlqlql zwδηz

1

**
ql sα    (1)  

where qs  is an )1( ×F  vector of observed covariates (excluding a constant), lα  is the 

corresponding )1( ×F  vector of coefficients, qlη is a random error term assumed to be 

distributed standard normal, )10( << ll δδ  is the spatial autoregressive parameter, and 

qqw ′  is a spatial weight matrix with qww
Q

qq
qqqq ∀== 

≠′
′   1 and 0 . Next, define the 

following notations to write Equation (1) in matrix form for all Q  individuals. 

[ ] vector1)(  ),...,,( **
2

*
1

* ×′= Lzzz qLqqqz , [ ] [ ] vector1)(  )(,...,)(,)( **
2

*
1

* ×
′′′′= QLQzzzz , 

[ ]matrix )(    ~ LFLqLq ×′⊗= ss IDEN , [ ]matrix )(    )~,...,~,~(~
21 LFQLQ ×′′′′= ssss ,  

[ ]vector)1(  ),...,,( 21 ×′′′′= LFLαααα , [ ]1)vector(  ),...,,( 21 ×′= Lηηη qLqqqη ,  

[ ]1)vector(  ),...,,( 21 ×′′′′= QLQηηηη , [ ]1)vector(  ),...,,( 21 ×′= Lδδδ Lδ ,  

[ ]1)vector(   
~ ×⊗= QLQ δδ 1 , 

To allow correlation among the latent variables of an individual, we assume a standard 
multivariate normal (MVN) distribution for [ ]Γ0 ,MVN~: LLqq ηη , where L0  is an 

)1( ×L  column vector of zeros, and Γ  is the correlation matrix of size )( LL × . We also 

assume qη  to be independent across individuals (i.e., qq ′≠∀=′ ,0),Cov( qq ηη ). With 

this, Equation (1) may be written in matrix form for all Q  individuals as follows: 

ηαsz SS += ~*   (2) 

where [ ] [ ])matrix(  )(*.
~ 1

QLQLLQL ×⊗−=
−

IDENWIDENS δ , “ ⊗ " represents the 

Kronecker product, “ *. ” represents the element by element product, QLIDEN  is an 

identity matrix of size QL , Q1  is a vector of size Q  with all its elements equal to 1, and 

W is a )( QQ × row normalized weight matrix. It is now easy to see that *z  is distributed 
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MVN with mean B  and correlation matrix Ξ. That is, ),(MVN~* ΞBz QL , where 

[ ] SΓIDENSΞS ′⊗== Q  and ~αsB . 

 2.2 Latent Variable Measurement Equation Model System 

We consider a combination of continuous, ordinal, count, and nominal outcomes 
(indicators) of the underlying latent variable vector *z . However, these outcomes may be 
a function of a set of exogenous variables too.  

Let h be the index for continuous outcomes ) ..., ,2 ,1( Hh = . Then the continuous variable 

qhy  can be written in the usual linear regression fashion as follows: 

qhqhqhqh εy +′+′= *zdxγ  (3) 

where qx  is an )1( ×A  vector of exogenous variables (including a constant) as well as 

possibly the observed values of other endogenous variables (continuous, ordinal, count 
variable, and nominal variables (introduced as dummy variables)), hγ  is the 

corresponding vector of coefficients, hd  is an )1( ×L vector of latent variable loadings on 

the hth continuous outcome, and qhε  is a normally distributed random error term. Next, 

define the following notations to write Equation (3) in a compact, matrix form for 
individual q . 

[ ] vector1)(   ),...,,( 21 ×′= Hyyy qHqqqy , [ ]matrix )(   ),...,,( 21 AHH ×′′′′= γγγγ , 

[ ]matrix )(   ),...,,( 21 LHH ×′′′′= dddd , and [ ] vector1)(  ),...,,( 21 ×′= Hεεε qHqqqε . 

Now, Equation (3) may be written in matrix form for individual q as follows: 

qqqq εdzγxy * ++= . (4) 

We assume a diagonal MVN distribution for qε : ),(MVN~ Σ0HHqε . The non-diagonal 

elements of qε  are assumed to be zero for identification purposes. Also, the qε  terms 

across different individuals are assumed independent of each other. 

Next, consider N  ordinal outcomes (indicators) and let n  be an index for ordinal 
outcomes ) ..., ,2 ,1( Nn = . Also, let nJ  be the number of categories for the nth ordinal 

outcome )2( ≥nJ  and let the corresponding index be nj ) ..., ,2 ,1( nn Jj = . Let *~
qny  be the 

latent underlying variable whose horizontal partitioning leads to the observed outcome 

qna for the thq individual’s nth ordinal variable. Then, in the usual ordered response 

formulation, for the individual q , we may write: 

qnqn anqqnanqqnqnqnqn ψyψεy ,,
*

1,,
* ~~~,~~~~ <<+′+′= −

*zdxγ   (5) 
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where qx  is as defined earlier, qny~  is the ordinal variable outcome category, nγ~  is the 

corresponding vector of coefficients, nd~  is an )1( ×L vector of latent variable loadings on 

the nth ordinal outcome, and qnε~  is a normally distributed random error term. For each 

ordinal outcome, 
nn n,Jq1n,Jqn,qn,qn,0q ψψ...ψψψ ,,2,1,,

~~~~~ <<<< − ; −∞=0,,
~

nqψ , 0~
1,, =nqψ , and 

+∞=
nn,Jqψ ,

~ . Next, define the following notation to write Equation (5) in a compact 

matrix form for individual q . 

[ ] vector1)(   )~,...,~,~(~ **
2

*
1

* ×′= Nyyy qNqqqy , [ ]matrix )(   )~,...,~,~(~
21 ANN ×′′′′= γγγγ ,

[ ]matrix )(   )
~

,...,
~

,
~

(
~

21 LNN ×′′′′= dddd , [ ] vector1)(  )~,...,~,~(~
21 ×′= Nεεε qNqqqε .  

Also, stack the lower thresholds for the observed outcomes qna of indiviudal q  

( )Nnψ
qnanq  ..., ,2 ,1~

1,, =−  
into an )1( ×N  vector low,ψq

~
 and the corresponding upper 

thresholds ( )Nnψ
qnanq  ..., ,2 ,1~

,, =  into another vector .~
up,ψq   

Now, Equation (5) may be written in matrix form for individual q  as follows: 

up,
*

low,
** ψyψεzdxγy qqqqqqq

~~~   ,~~~~ <<++= . (6) 

For identification, we assume a diagonal multivariate normal distribution for qε~  with all 

the diagonal elements equal to unity: ),(MVN~~
NNNq IDEN0ε . In addition, the qε~  

terms are assumed to be independent across individuals.  

Let there be C  count variables and let c  be an index for count outcomes ) ..., ,2 ,1( Cc = . 

Let ck  be the index for count value )..., ,2 ,1 ,0( ∞=ck  and let qcr be the actual observed 

count value. Then, following the recasting of a count model in a generalized ordered-
response probit formulation (see Bhat, 2015a), a generalized version of the negative 
binomial count model may be written as:  

qcqc rcqqcrcqqcqcqc ψyψεy ,,
*

1,,
*  ,

 <<+′= −
*zd  ,  (7) 

( )
c

cc

c rc

r

t

t
qc

c

c

θ
qc

rcq φυ
t

tθ
θ
υ

ψ ,
0

1
,, )(

!

)(Γ

)(Γ

1
Φ +



















 +−
= 

=

−
, 

qcqc

qc
qc θλ

λ
υ

+
= , and qeλqc

xγc′=


.  (8) 

In the above equation, *
qcy


 is a latent continuous stochastic propensity variable associated 

with the count variable c  that maps into the observed count qcr
 
through the cq ,ψ vector 

(which is a vertically stacked column vector of thresholds ).( ,,,, ′− ,..ψ, ψ,ψ,ψ c,2qc,1qc,0q1c,q


). 

cd


 is a )1( ×L vector of latent variable loadings on the cth count outcome, and qcε  is a 

standard normal random error term. cγ


 is a column vector of coefficients corresponding 

to the vector qx . cθ  is a parameter that provides flexibility to the count formulation, and 
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is related to the dispersion parameter in a traditional negative binomial model 

)0( cc ∀>θ . )( cθΓ  is the traditional gamma function; 
∞

=

−−=Γ
0~

~1 ~~)(
t

t
c tdet cθθ . The 

threshold terms in the cq ,ψ  vector satisfy the ordering condition (i.e., 

)....2,,,,, cψψψψ cqc,1qc,0q1c,q ∀∞<<<<−


 as long as .....2,1,0,1, ∞<<<<− cccc ϕϕϕϕ  The 

cϕ
 
terms in the thresholds provide flexibility to accommodate high or low probability 

masses for specific count outcomes. For identification, we set −∞=−1,cϕ  and 00, =cϕ for 

all count variables c. In addition, based on empirical testing, we identify a count value *
ce  

......}),2 ,1,0{( * ∈ce  above which ......}),2 ,1{(, ∈ckc k
c

ϕ is held fixed at *, cec
ϕ  Doing so 

allows the count model to predict beyond the range available in the estimation sample. 

For later use, let ),,( *,2,1, ′=
cecccc ϕϕϕ ϕ   vector)1( ×*

ce  (assuming , )0* >ce  









×







′′′′=  vector1  ),,( *
21

c
cC eϕϕϕϕ  , and [ ]vector1 C ),,( 21 ×′= Cθθθ θ .  

Next define the following notation: [ ] vector1)(  )( *
,2,1,

* ×′= Cy,...,y,y Cq
*
q

*
qq


y ,

[ ]matrix )(   ),...,,( 21 LCC ×′′′′= dddd


, [ ]matrix )(   ),...,,( 21 ACC ×′′′′= γγγγ 
, 

[ ] vector1)(  ),...,,( 21 ×′= Cεεε qCqqq

ε . Also, stack the lower thresholds of observed 

counts for the indiviudal q ( )Ccψ
qcrcq  ..., ,2 ,11,, =−


 
into a )1( ×C  vector low,ψq


 and the 

upper thresholds ( )Ccψ
qcrcq  ,...,2 ,1,, =

 into another vector .up,ψq


 Now, the latent 

propensity underlying the count outcomes in Equation (7) may be written in matrix form 
as:  

up,
*

low,
** ψyψ ,εzdy qqqqqq

 <<+=   (9) 

Similar to ordinal variables we assume that the qε


 terms are distributed as follows: 

),(MVN~ CCCq IDEN0ε , with independency across individuals. 

Finally, let there be G nominal (unordered-response) variables, and let g be the index for 
the nominal variables (g = 1, 2, 3,…, G). Also, let Ig be the number of alternatives 
corresponding to the gth nominal variable (Ig ≥3) and let gi  be the corresponding index (

gi  = 1, 2, 3,…, Ig). Consider the gth nominal variable and assume that the individual q 

chooses the alternative gqm , . Also, assume the usual random utility structure for each 

alternative gi .  

,)(
ggggg qgiqgigiqgiqgi ςU +′+′= *zβxb ϑ   (10) 

where qx  is as defined earlier, 
ggib  is a )1( ×A  column vector of corresponding 

coefficients, and 
gqgiς is a normal error term. 

ggiβ  is a )( LN
ggi × -matrix of variables 
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interacting with latent variables to influence the utility of alternative gi , and 
ggiϑ  is a 

)1( ×
ggiN -column vector of coefficients capturing the effects of latent variables and its 

interaction effects with other exogenous variables. Let ),...,( 21 ′=
gqgIqgqg ςςςqgς  1( ×gI  

vector), with ),(~ gΛ0
gIMVNqgς and independent across individuals. Taking the 

difference with respect to the first alternative, the only estimable elements correspond to 
the covariance matrix gΛ


 of these error differences, ),...,,( 32 gqgIqgqg ςςς  =qgς  (where 

)1,1 ≠∀−= iςςς qgqgiqgi


. Further, the variance term at the top left diagonal of gΛ


 

(g=1,2,…,G) is set to 1 to account for scale invariance. gΛ  is constructed from gΛ


 by 

adding a row of zeros on top and a column of zeros to the left. To proceed, define 
),...,,( 21 ′=

gqgIqgqgqg UUUU  1( ×gI  vector), ),...,,,( 321 ′=
gIg gggg bbbbb  AI g ×(  matrix), 

and ),...,,( 21 ′′′′=
ggIggg ββββ  










×

=

LN
g

g

g

I

i
gi

1

 matrix. Also, define the 









×

=

g

g

g

I

i
gig NI

1

matrix

gϑ , which is initially filled with all zero values. Then, position the )1( 1gN×  row vector 

1gϑ ′  in the first row to occupy columns 1 to 1gN  , position the )1( 2gN×  row vector 2gϑ′  

in the second row to occupy columns 1gN +1 to ,21 gg NN +  and so on until the )1(
ggIN×  

row vector 
ggIϑ′  is appropriately positioned. Further, define )( ggg βϑϖ = LI g ×(  matrix), 


=

=
G

g
gIG

1


, 

=

−=
G

g
gIG

1

),1(
~

 ( )′′′′= qGqq UUUUq , ... ,, 21  1( ×G


 vector), 

),...,( ′= qGq2q1q ςςςς ,  ( 1×G


 vector), ),...,, ′′′′= G21 bbb(b AG ×


(  matrix), 

LGG ×′′′′=


(),...,,( 21 ϖϖϖϖ matrix), and ),...,,(Vech 21 Gϑϑϑϑ =  (that is, ϑ  is a column 

vector that includes all elements of the matrices Gϑϑϑ ,...,, 21 ). Then, in matrix form, we 

may write Equation (10) for individual q as: 

,qqqq ςzbxU * ++= ϖ    (11) 

where Λ)0 ,(MVN~
GGq
ς . As earlier, to ensure identification, we specify Λ as follows: 

),matrix(3

2

1

GG

G













×























=

Λ0000

00Λ00

000Λ0

0000Λ

Λ  (12) 
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 2.3 Reduced Form Model System  

Let )( CNHE ++=  and )
~

(
~

GCNE ++= . Define [ ] [ ] ],vector1[,~, ** ×
′






 ′′

′= Eqqqq yyyy 

matrix], [ ) ,~,( AE ×′′′= ACγγγ 0


matrix],[),
~

,( LE ×′′′′= dddd


and 

 vector),1( ),~,( ×′′′′= Eqqqq εεεε 
 where AC0  is a matrix of zeros of dimension CA× . Then, 

the equations for continuous, ordinal, and count endogenous variables (i.e., Equations 4, 
6 , and 9) of individual q  may be brought together as follows:  

qqqq εzdxγy * 
++= , )matrix()(Var with EEq ×
















==

C

N

IDEN00

0IDEN0

00Σ

Σ
ε   (13) 

To combine the above equation with Equation (11) for nominal endogenous variables (

qU ), define [ ]1vector)G(   ,)( ×+
′




 ′′=


Eqqq UyyU , [ ]matrix  )G(  ),( AE ×+′′′=


bγb , 

[ ]matrix  )G(  ),( LE ×+′′′=
 ϖdc , and [ ]  vector1)G(  ),( ×+′′′=


Eqq ςεqξ . Then, the 

equations for all endogenous variables in the overall model system for individual q may 
be written compactly as:  

qqqq ξzcxbyU * ++= 
)( , [ ]matrix)()()(Var with GEGEq





+×+












==

Λ0

0Σ
Σξ  (14) 

Now, the above Equation (14) for an individual q  may be used to write a compact 
expression of endogenous variable equations for all Q  individuals as: 

ξzcxbyU * ++=


 (15)  

where, [ ]′′′′= Q)(,...,)(,)( 21 yUyUyUyU  [ ] vector1)G( ×+


EQ ,  ),...,,( 21 ′′′′= Qξξξξ  

[ ] vector1)G( ×+


EQ , ),...,,( 21 ′′′′= Qxxxx [ ] vector1×QA ,   bb


⊗= QIDEN  

[ ]matrix )G( QAEQ ×+


, and [ ]matrix )G(  )( QLEQQ ×+⊗=


cIDENc .  

To develop the reduced form model system, substitute the right side of structural 
Equation (2) in the above equation, as below:  

[ ]
[ ]

)((       

       

~ 

ξηcBcxb

ξηBcxb

ξηαscxbyU

+++=

+++=

+++=

S )

S

SS







 (16) 

Then, [ ])(,(MVN
)(

ΣIDENΞ )


 ⊗+′++ QGEQ
ccBcxb~yU  
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 2.4 Model Estimation 

Let λ  be the collection of parameters to be estimated:
, ]  ,  ,  ),Vech(),Vech(),Vech(),Vech([ δΣλ θφcbα 

= where the operator )"(Vech" .  
vectorizes all the elements of the matrix/vector on which it operates. The identification 
issues pertaining to the estimability of these parameters in the current spatial-GHDM are 
the same as those discussed in Bhat (2015a) for the aspatial-GHDM, with the addition of 
the requirement that all elements of the vector δ should be bounded in magnitude by the 
value of 1 (see Sidharthan and Bhat, 2012).   

To estimate the model, we work with the latent utility differentials 
( )

qggqgg qgmqgimqgi UUu −=  of all non-chosen alternatives ( qgg mi ≠ ) with respect to the 

chosen alternative ( qgm ) for each nominal variable g  and each individual q. Stack the 

utility differentials into a vector ( ) 



 ≠′= ggmqgImqgmqgqg miuuu

qggqgqg
;,...,, 21u  and then into 

[ ] [ ] [ ]
′






 ′′′= qGqqq uuuu ,...,, 21 . Also, define [ ]1vector)G

~
(   ,)( ×+

′




 ′′= Eqqq uyyu 

 and 

[ ]   )(,...,)(,)( 21
′′′′= Qyuyuyuyu [ ]1vector)

~
( ×+GEQ . The distribution of the vector yu 

may be developed from that of yU using a matrix M  of size [ ])()
~

( GEQGEQ


+×+ , 
constructed as discussed in Bhat (2015a). Then the resulting distribution is 

[ ]Ω
~

,
~

MVN
)

~
(

Β~yu
GEQ + , where )M BcxbB 

+= (
~

 and MΣIDENΞM Ω ′⊗+′= )(
~ 

Qcc .  

Next, partition yu into two components – one that corresponds to all the 
continuous variables (y) and the other that corresponds to all the ordinal, count, and 
nominal variables  uyy ** ,,~(


(utility differences)). That is, )~,( ′′′= uyyu , where 

′






 ′′′= uyyu ,,~~ ** 

. Accordingly, the mean vector B~  and the variance matrix Ω
~

 of yu 

can also be appropriately partitioned as: 
 

=  
 





y

u

B
B

B
 and 













′
=

uuy

uyy

~~

~

~~

~~
~

ΩΩ

ΩΩ
Ω  . 

One may develop the likelihood function by decomposing the joint distribution of  
)~,( ′′′= uyyu  into a product of marginal and conditional distributions. Specifically, the 

conditional distribution of u~ , given y, is MVN with mean )
~

(
~~~ 1

~~~ yyuyuu yBB BΩΩ −′+= −


 

and variance uyyuyuu ~
1

~~~
~~~~
ΩΩΩ-ΩΩ −′=


. Furthermore, define the threshold vectors as:  

( )  vector)1
~

( ,,~
~ ×

′




 ′−′′= EQ

GQ
∞lowlowlow ψψψ 

 and ( )  vector)1
~

(  ,,~
~ ×

′




 ′′′= EQ

GQ
0upupup ψψψ 

, 

where 
GQ
~∞−  is a 1

~×GQ -column vector of negative infinities, 
GQ
~0  is another 1

~×GQ -

column vector of zeros, and  vector)1(  )~,...,~,~(~ ×′′′′= QNlowQ,low2,low1,low ψψψψ , 
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 vector)1(  )~,...,~,~(~
,,2,1 ×′′′′= QNQ upupupup ψψψψ ,

 vector)1(  ),...,,( ×′′′′= QClowQ,low2,low1,low ψψψψ 
, and 

 vector)1(  21 ×′′′′= QCQ ),...,,( ,,, upupupup ψψψψ 
. Then the likelihood function may be 

written as: 

[ ] ,~ Pr)
~

,
~

()( uplowyy ψuψB|y 
≤≤×= Ωλ QHfL   (17) 

.),|()
~

,
~

(   ~~~ drff
EQ

D

QH

r

uuyy BrB|y ΩΩ


×=   

In the above expression, )
~

,
~

( yyB|y ΩQHf  is a multivariate density function of 

dimension QH  and [ ]uplow ψuψ 
≤≤ ~ Pr  is a EQ

~
-dimensional rectangular integral. 

Evaluation of such high dimensional integrals is infeasible with techniques currently 
available in the literature, as discussed earlier in Section 1. A possible solution to this 
problem is to use the composite marginal likelihood (CML) approach. In the CML 
approach, the maximizing function is developed as the product of low dimensional 
marginal densities (see Bhat, 2014 for a detailed description of the CML approach). For 
the spatial-GHDM model, the CML function may be written as a product of pairwise 
marginal densities, across all pairs of individuals, as follows: 

[ ]up,low,y,y, ψuψB|y qqqqqqqqqqqqH

Q

q

Q

qq
CML fL ′′′′′′

−

= +=′
≤≤×= ∏ ∏  ~ Pr)

~
,

~
()(   *2

1

1 1

Ωλ   (18) 

In the above expression, )
~

,
~

(*2 y,y,B|y qqqqqqHf ′′′ Ω  is an MVN density function of 

dimension H2  and [ ]up,low, ψuψ qqqqqq ′′′ ≤≤
 ~ Pr is a E

~
2 -dimensional MVN integral. 

Thus, the CML approach reduces the dimensionality of integration from EQ
~

 to E
~

2 , 
which can then be evaluated using the analytic approximation embedded in the MACML 
approach.  
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Chapter 3.  Simulation Evaluation 

In this section, we present the design of, and results from, a simulation framework to 
evaluate the MACML approach in terms of its parameter recovery and standard error 
estimation from the spatial GHDM. In addition, we provide an assessment of the 
potential repercussions of ignoring spatial dependency when it is present.     

 3.1 Design of the GHDM 

For simulating the GHDM in this study, we use the same GHDM design described in 
Bhat (2015a). The only exception is that we include spatial dependency in the latent 
constructs that, in turn, generates spatial dependency in a variety of different mixed data 
outcomes of the GHDM through the influence of latent variables on those outcomes. The 
advantage of building on Bhat’s aspatial GHDM setup is it provides an opportunity to 
compare the spatial model results with the aspatial model results in his paper. Thus, to 
conserve space, we provide a brief discussion of the simulation setup. The reader is 
referred to Bhat (2015a) for a detailed description of the simulation design. 

 3.1.1 Design of the Latent Variable SEM System 

Consider two latent constructs: (1) green lifestyle propensity (GLP) ( *
1z ) and (2) travel 

freedom/privacy affinity (TFA) ( *
2z ). The first factor GLP reflects an individual’s level of 

environmental consciousness, and specified as a function of two exogenous variables—
individual’s education level ( 1s ; 11 =s  if the individual has a bachelor’s degree or higher 

and 0 otherwise) and gender ( 2s ; 12 =s  if the individual is a male adult and 0 otherwise). 
The second factor TFA reflects an individual’s preference for privacy and a desire for 
control over the travel experience, and specified as a function of gender ( 2s ) and 

household income ( 3s ; 13 =s  if household annual income is at least $75,000 and 0 

otherwise). Below is the vector notation for the simulated SEM system, along with 
additional details: 

, 

 incomeHigh  

Male 

 degree sbachelor'least At  

 
5.02.0   0.0

0.03.08.0

TFA

GLP

2

1

3

2

1

*
2

*
1









+

















=
=

=
×






 −
=









=
=

η
η

s

s

s

z

z
 (19) 

where, 







==








0.1   Γ

Γ0.1  
Var

12

12

2

1 Γ
η
η

, the coefficients in the SEM are 11α  = 0.8, 12α  = -

0.3, 22α  = 0.2, and 23α  = 0.5, and the correlation 12Γ  between the two latent constructs 

is -0.6. 
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 3.1.2 Design of the Measurement Equation System  

The complete measurement equation system simulated for the GHDM is shown in 
Equation system (20), which combines the non-nominal equation system 

qqqq εzdxγy * 
++=  as well as the nominal equation system qqqqq ςzbxU * ++= ϖ . The 

design is the same as in Bhat (2015a), with the exception that we include spatial 
dependency in the latent constructs that, in turn, generates spatial dependency in all the 
mixed data outcomes. The advantage of building on Bhat’s aspatial GHDM setup is that 
it provides an opportunity to compare the spatial model results with the aspatial model 
results in his paper. A total of five non-nominal variables and two nominal variables are 
considered in this system. The first non-nominal variable is the individual’s (log) 
commute distance ( 1y ). The next three non-nominal variables are ordinal (with a three 
point ordinal scale) and considered as a quantification of non-commute travel by different 
modes. These variables are: (1) weekly extent of non-commute travel by non-motorized 
transport (NM), modeled using a latent propensity variable ; (2) weekly extent of non-

commute travel by public transit (PT), modeled using a latent propensity variable *
2

~y ; 
and (3) weekly extent of non-commute travel by motorized transport (MT), modeled 
using a latent propensity variable *

3
~y . The fifth non-nominal variable is a count variable 

labeled vehicle ownership, modeled using a latent propensity of vehicle ownership ( *
1y


). 
The nominal variables considered in the measurement equation system are: (1) residential 
location choice, with three alternatives – urban, suburban, and rural, and (2) commute 
mode choice, with three alternatives – motorized transport (MT), public transit (PT), and 
non-motorized modes (NM). The utility variables used to model these choices are urbanU ,1 , 

suburbanU ,1 , and ruralU ,1  for residential location, and MTU ,2 , PTU ,2 , and NMU ,2  for commute 

mode choice.  

The exogenous variables considered in the measurement system include: (1) Immigrant 
(binary variable), (2) Own house (binary variable), (3) No. of children less than 11 years 
in the household, and (4) No. of young adults (between 18-30yrs) in the household. In 
addition to the effects of these exogenous variables on various endogenous variables, 
Equation (20) reflects structural (i.e., causal) relationships among several endogenous 
variables. These include the effects of: (a) commute distance on the utility of the NM 
commute mode; (b) urban residential location on commute distance, non-commute travel 
by the NM and PT modes, and on vehicle ownership; and (c) vehicle ownership on the 
utility of the NM commute mode.  

 

*
1

~y
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(20)      

~

~

~

 
TFA 

GLP 
  

0      

0      

  0  

0  0  

0  0  

0    

     

~
  0   

0  
~

   

0  
~

   

   0  

 

dwellingUrban 

ownership Vehicle

distance Commute

adults young #

  yrs 11 children  #

houseOwn 

Immigrant 

Constant

0 0000

00000
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00000

00000
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000~  ~00~

~000000~

~  000~00~
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propensity own. auto

  MTby  propensity NC~  

PTby  propensity NC~
NMby  propensity NC~

)distance commutelog(

23

22

21
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12
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1

3

2

1

1

*
2

*
1

3

2

12

111

1211
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21
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237236231

228222221

125124121

113112111
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2821
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*
1
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3

*
2

*
1
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Note from Equation (20) that at least one (or both) of the latent constructs is loaded onto 
each of the endogenous variables, so that incorporating spatial dependence in the latent 
constructs automatically leads to spatial dependence among all the endogenous variables. 

The design values of the latent construct effects (embedded in d


 andϖ ) and those for 
exogenous and endogenous outcome effects (embedded in γ  and γ  for the non-nominal 
system and in b for the nominal system) are:  

Vech( )
γ  = [ 11γ = 1, 12γ = 0.5, 18γ = -0.3, 11

~γ = 1, 14
~γ = -0.2, 18

~γ = 0.6, 21
~γ = 1, 28

~γ = 0.2, 31
~γ = 

1, 34
~γ = 0.4, 35

~γ = -0.3, 11γ


=1.0, 18γ


=-0.5],  

,3.0,5.0,4.0,2.0[)Vech( 121113112111 =−==== bbbbb   

]4.0,6.0,2.0,2.0,3.0,5.0,3.0,2.0 237236231228222221124123 −=−=−===−=== bbbbbbbb ,  

]5.0,5.0,3.0
~

,2.0
~

,6.0
~

,2.0[)Vech( 121132211112 =−====== dddddd


d , and  

]6.0,4.0,2.0,4.0[Vech( 231221212111 ===== ϖϖϖϖ)ϖ .  

A few other parameter values were also used to simulate the model system. The variance 

of the continuous endogenous variable equation, )(VarΣ 111 ε=


, is specified as 1.25. For 
the three ordinal endogenous variables, since we consider a three point ordinal scale for 
each, only one threshold needs to be estimated per ordinal variable. We specify a design 
value of 1.5 for this threshold for all three ordinal variables (these are the 332313

~,~,~ ψψψ  

values). For the vehicle ownership count variable, we assume one flexibility parameter 
with a value of 0.75 ( 1φ ) and a dispersion parameter with a value of 2.0 ( 1θ ). Finally, for 
the error-covariance matrix of the two nominal variables, we assume a non-IID error 
structure for both the nominal variables (each with three alternatives), without any 
covariance in utilities across the two nominal variables. The specification of the error 
covariance matrix (Λ ) of both the nominal variables together is provided below: 

  

















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








=

36.160.0000000000000

60.000.1000000000000

000000000000000000

00000000049.170.0000

00000000070.000.1000

000000000000000000

....

....

......

....

....

......

Λ  

 3.2 Design of Spatial Dependence 

We generate spatial dependence in both the latent constructs using two spatial auto-
regressive parameters ( δ ), one for each latent construct. We generate three different 
levels of spatial dependence: (1) no spatial dependence (i.e., aspatial model) as in Bhat 
(2015a), with )0,0(=δ , (2) low spatial dependence using =δ (0.25,0.25), and (3) high 
spatial dependence using =δ (0.75,0.75). The aspatial model is generated as a base case 
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for comparison purposes. We work with two different levels of spatial dependency – low 
and high – since prior experience suggests difficulty in accurately recovering the 
parameters at high levels of spatial dependencies.  

There are a total of 52 parameters to be estimated for the spatial models (50 parameters 
for the aspatial model). Using these parameters and the spatial GHDM framework 
described in Section 2, for each level of spatial dependency, we generated 50 data 
samples of 3000 individual observations each. For generating the weight matrix, the first 
step is to generate a matrix of distance between all pairs of observations. To do so, we 
start with a rectangular spatial configuration of size 60 × 50 (=3000) containing equi-
distant square grids. Then, each individual (observation) was randomly assigned to one of 
the 3000 grids. Based on this spatial configuration of individuals, the distance matrix was 
calculated assuming the centroid of grids as the x-y coordinates of their location. Next, 
the elements of the weight matrix were calculated as a function of inverse of the distance 
between pairs of individuals. The choice of inverse of distance for deriving the weight 
matrix is arbitrary. One may chose other distance decay functions such as the inverse of 
exponential of distance, inverse of square of distance, and a simple contiguity matrix.  

Finally, to keep the number of pairs in the CML function to be reasonable, we impose a 
threshold distance of 1.5 units beyond which spatial dependency is not considered. This 
helps not only in avoiding a large number of pairs of individuals in the CML function (for 
computational tractability), but also to ensure that every individual has atleast one pair 
(i.e., every individual’s latent constructs are influenced by atleast one other individual). 
Based on our spatial configuration of 3000 individuals in the sample, the threshold 
distance of 1.5 units results in a total of 5890 pairs of individuals.  

 3.3 Performance Evaluation 

The performance of the MACML inference approach in recovering the parameters of the 
spatial and aspatial GHDM and the corresponding standard errors is evaluated as follows. 

(1) Estimate the MACML parameters for the 50 datasets. Estimate the standard errors 
using the Godambe (sandwich) estimator.  

(2) Compute the mean for each model parameter across the 50 datasets to obtain a mean 
estimate. Compute the absolute percentage (finite sample) bias or (APB) of the 
estimator: 

100
 valuetrue

 valuetrue-estimatemean 
APB ×=      

(3) Compute the standard deviation of the mean estimate across the 50 datasets, and label 
this as the finite sample standard error or FSSE (essentially, this is the empirical 
standard error). Then, compute FSSE % of true value, which is the FSSE expressed 
as a percentage of the true value of the parameter.  

(4) Compute the mean standard error for each model parameter across the 50 datasets, 
and label this as the asymptotic standard error or ASE (essentially this is the 
standard error of the distribution of the estimator as the sample size gets large). Then, 
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compute ASE % of true value, which is ASE expressed as a percentage of the true 
parameter value.  

(5) Next, to evaluate the accuracy of the ASE formula as computed using the MACML 
inference approach for the finite sample size used, compute the absolute percentage 
bias of the asymptotic standard error (APBASE) for each parameter relative to the 
corresponding finite sample standard error as: 

100
FSSE

FSSE-ASE
APBASE ×=

 
 

 3.4 Simulation Results 

An overall summary of the simulation results is presented in Table 1.2 The table presents 
summaries of the above discussed evaluation measures—APB, FSSE % of true estimate, 
and APBASE—for each of the following cases: (1) aspatial model estimated on data with 
no spatial dependency, (2) spatial model estimated on low spatial dependence data, (3) 
spatial model estimated on high spatial dependence data, and (4) aspatial model estimated 
on low spatial dependence data. A block of columns is devoted for each of these four 
cases. The first case, which is not the focus of this paper, is only used for comparison 
purposes (more later). The last case is used for assessing the repercussions of ignoring 
spatial dependency when present. We chose low spatial dependency data for this case to 
evaluate the importance of accommodating spatial dependency even when present at 
moderate levels. Each row in the table represents the summary of evaluation measures for 
a specific class of parameters identified in the first column. 

                                                 
2 The detailed results are available on request from the authors. 
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Table 1: Summary of Simulation Results 

Parameters 

Case(1): No spatial dependence Case(2): Low spatial dependence Case(3): High spatial dependence 
Case(4): Ignoring spatial 

dependence 

APB 
(%) 

FSSE as a % 
of true value 

APBASE 
(%) 

APB 
(%) 

FSSE as a 
% of true 

value 

APBASE 
(%) 

APB 
(%) 

FSSE as a 
% of true 

value 

APBASE 
(%) 

APB 
(%) 

FSSE as a 
% of true 

value

APBASE 
(%) 

Effects of exogenous variables 
on latent constructs  (α ) 14.93 19.24 19.41 16.76 30.25  21.08 17.53 28.43  22.68 20.95 29.50 114.10 

Structural equation correlation 

matrix parameters  (Γ ) 
10.50 28.07 14.01 10.67 22.75  4.45 14.50 21.15  3.07 26.17 21.65 57.60 

Effect of exogenous and 
endogenous variables on non-
nominal variables  ( γ ) 

6.05 9.23 26.38 6.14 8.75  20.52 6.11 10.19  9.91 7.55 8.82 22.00 

Effect of exogenous and 
endogenous variables on 

nominal variables ( b ) 
3.71 29.70 29.86 16.34 19.30  23.48 18.28 25.49  22.54 23.51 18.39 61.06 

Effect of latent constructs on 

non-nominal variables  ( d


) 
14.01 21.83 21.18 13.51 12.46  28.38 13.74 12.35  39.40 30.58 12.58 182.56 

Effect of latent constructs on 
nominal variables (ϖ )  10.40 29.31 46.34 12.61 16.02  24.86 14.04 15.10  19.00 27.11 17.24 132.67 

Variance of continuous 

variable (Σ ) 
10.72 2.04 9.57 10.64 2.36  32.93 8.24 1.79  61.92 21.76 1.72 109.21 

Thresholds of ordinal variables  
(ψ~ ) 1.61 4.07 20.54 3.49 3.18  23.90 4.05 3.46  24.24 3.30 3.17 27.71 

Flexibility parameter for the 
count variable (ϕ ) 6.83 9.43 25.82 16.40 4.44  23.21 29.91 3.71  40.16 29.40 4.39 167.07 

Dispersion parameter for the 

count variable (θ ) 
17.20 8.63 2.64 10.40 2.98  47.89 18.45 5.14  35.29 30.45 3.13 176.08 

Nominal variables error 

covariance matrix (Λ ) 
2.22 36.94 16.99 7.97 5.62  19.41 7.44 5.10  16.15 19.61 5.61 58.28 

Spatial autoregressive 

parameters  ( δ ) 
----- ----- ----- 0.92 5.00  47.76 5.14 2.38  18.87 ----- ----- ----- 

Overall Average 7.35 20.19 25.58 10.90 13.07  24.15 12.13 14.50  21.50 19.04 13.21 78.55 
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Several observations can be made from Table 1. First, as may be observed from the 
magnitude of the overall average APB values (last row) for case 2 and case 3, the 
MACML approach does a pretty good job of recovering the parameter values for both the 
low and high spatial dependency cases. The overall average APB values across all 
parameters (under the column titled “APB”) for the low and high spatial dependency 
cases are 10.90 and 12.13, respectively. These APB values are not too high when 
compared to the overall average APB of 7.35% for the model estimated on data without 
any spatial dependency (Case 1).3 In other words, including spatial dependency in the 
model decreased the ability to recover parameters very marginally. Similarly, increasing 
the spatial dependency also deteriorated the APB value by only a few percentage points. 
This suggests that the ability of the MACML approach to recover model parameters is 
not very dependent on the presence and the extent of spatial dependency in the data, at 
least for the current setup with a sample size of 3000. This is an important result in favor 
of the MACML approach, because the general perception, perhaps based on experience 
with traditional estimation methods, is that parameter recovery degrades quickly due to 
the presence of, or increase in, spatial dependency in the data.  

Second, not all types of parameters are recovered with a high level of accuracy. The 
parameters corresponding to the effects of exogenous variables on the latent variables 
(i.e., elements of )Vech(α ), parameters corresponding to the effects of exogenous and 
other endogenous variables on the nominal variables (i.e., elements of )Vech(b ), 
parameters corresponding to the effects of latent variables on the non-nominal variables 

(i.e., elements of )Vech(d


) and nominal variables (i.e., elements of )Vech(ϖ ), and the 
dispersion (θ ) and flexibility (ϕ ) parameters corresponding to the count variable 
(vehicle ownership) have relatively higher APB values (than those for other parameters) 
in both the low and high spatial dependency cases (i.e., Case 2 and Case 3). As discussed 
in Bhat (2015a), it is not surprising that many of these parameters are more difficult to 
retrieve than others because of the highly non-linear nature of their entry in the CML 
function. However, among all these parameters, when compared to the corresponding 
APBs from the aspatial data (case 1), the presence of spatial dependency leads to a 
substantial increase in APB values of only the parameters corresponding to the effects of 
exogenous and other endogenous variables on the nominal variables (i.e., elements of 

)Vech(b ) and those of the flexibility and dispersion parameters in the count variable. The 
recovery of all other parameters is not influenced substantially by spatial dependency (its 
presence or extent). As a matter of fact, the effects of exogenous and other endogenous 
variables on the non-nominal variables (continuous, ordinal, and count variables) are 
recovered as well as those in the aspatial model. Similarly, for all other parameters, 
including correlation parameters in structural equation ( )Vech(Γ ), variance of the 
continuous variables ( )Vech(Σ ), threshold values for ordinal variables ( )~Vech(ψ ), 
covariance matrices corresponding to nominal variables ( )Vech(Λ ), and spatial auto-

                                                 
3 Recall that the aspatial simulation setup here is similar to that used by Bhat (2015a). His results show an overall 
mean APB of 6.29%, where as we show 7.35%. The difference, despite the same setup, is because the results in this 
paper are from only 50 simulated datasets whereas Bhat’s (2015a) results are from 200 simulated datasets. We 
expect the APB values reported in this paper to decrease with an increase in the number of simulated datasets. 
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correlation parameters ( δ )) , are recovered with high accuracy in both low and high 
spatial dependency cases.  

The above results suggest little differences in the ability of the MACML approach to 
recover parameters from datasets with different levels of spatial dependency, except for 
the effects of exogenous and endogenous variables on nominal variables and the 
flexibility and dispersion parameters of the count variables. The relative difficulty of 
recovering parameters corresponding to the nominal variables is perhaps because they are 
characterized by multiple latent utility variables, as opposed to non-nominal variables 
that are characterized by at most a single underlying latent variable. However, it is not 
clear why the parameter recovery deteriorated (from none to low to high spatial 
dependency) for the flexibility and dispersion parameters in the count variables. Since the 
simulation framework considers only one single count variable with one flexibility 
parameter, it may be difficult to draw conclusions from the evidence here. Further 
investigation with a greater number of count variables may help shed more light on this 
issue.  

Another notable result is that the absolute percentage bias for the spatial auto-correlation 
parameters ( δ ) is merely 0.92 for the low spatial dependency case and 5.14 for the high 
spatial dependency case. It suggests that the MACML approach is able to recover spatial 
parameters with high accuracy even for a high spatial dependency case. This is an 
important result for such complex models with spatial dependency and other unobserved 
effects, because poorly recovered spatial effects may get confounded with other 
parameters – especially with parameters representing unobserved effects such as those in 
( )Vech(Γ ), ( )Vech(Σ ) and ( )Vech(Λ ) – and may lead to distorted interpretations and 
policy implications.  

Third, the overall average values of FSSE expressed as a percentage of true value, are 
pretty small – 13.07 and 14.50 for the low and high spatial dependency cases, 
respectively. This suggests that the MACML approach exhibits notably good empirical 
efficiency, with the parameters being recovered with a relatively high precision. 
However, and for the same reasons discussed above, all sets of parameters that are 
relatively more difficult to recover (i.e., those with relatively high APB values), such as 

those in ( )Vech(α ), ( )Vech(b ), ( )Vech(d


) and ( )Vech(ϖ ), also have high FSSE values 
(as a percentage of true value). The overall interpretation is that it is difficult to 
accurately and precisely recover the effects of exogenous variables on latent variables in 
the structural equation system, the effects of latent constructs on different outcomes in the 
measurement equation, and that of exogenous and other endogenous variables on nominal 
outcomes in spatial GHDM models.  

Finally, as may be observed from the APBASE values, the asymptotic formula 
(Godambe’s sandwich estimator) in conjunction with the CML approach for ASE is able 
to estimate the FSSEs reasonably well, for both low and high levels of spatial 
dependency. The overall APBASE values for the low and high spatial dependency cases 
are 24.15 and 21.50, respectively, which are not large considering that the actual FSSE 
values themselves are small. 

In summary, the MACML approach is able to recover the parameters with a reasonable 
level of accuracy and precision for different levels of spatial dependency. As importantly, 
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the accuracy and precision in the parameter estimates do not degrade even if the spatial 
dependency increases to high levels, which makes the approach appealing to work with 
high dimensional heterogeneous datasets with high spatial dependencies. The exception 
is that the presence and extent of spatial dependency seems to influence the accuracy and 
precision of the parameter estimates corresponding to the exogenous and endogenous 
variables effects on nominal outcomes. The CML-based asymptotic standard error 
formula is fairly accurate in providing standard errors with finite samples, which should 
increase the analysts’ confidence in making statistical inferences with the approach. 

 3.5 Effect of Ignoring Spatial Dependency 

Here we present the effects of ignoring spatial dependencies when they are present (the 
last block of columns under “Case 4” in Table 1). To examine such effects, we estimated 
an aspatial model (by constraining the spatial auto-correlation parameters ( δ ) to zero) on 
data generated with low spatial dependency. As can be observed from the APB column 
for this case, the overall average APB is now 19.04, about eight percentage points higher 
than the overall APB (10.90) from a model in Case 2 that recognizes spatial dependency. 
All types of parameters, except those corresponding to the effect of exogenous variables 
on the non-nominal variables and thresholds of the ordinal variables, show a significant 
increase in the bias due to ignoring spatial dependency. Specifically, the APB values for 
the parameters corresponding to the effects of latent variables on the non-nominal 

variables ( )Vech(d


) and nominal variables ( )Vech(ϖ ) have more than doubled. This 
result is expected since the spatial effects are introduced into all endogenous variables 
through latent constructs. Therefore, ignoring spatial effects leads to a bias in the effects 
of the latent variables on all endogenous variables. Further, the bias has increased 
substantially for the parameters corresponding to unobserved effects, including 
correlations in structural equation ( )Vech(Γ ), variance of the continuous variable (

)Vech(Σ ), covariance matrices of nominal variables ( )Vech(Λ ), as well as the dispersion 
parameter (θ ) and flexibility (ϕ ) parameter in the count model. Only for the parameters 
corresponding to the effects of observed (exogenous and endogenous) variables on non-
nominal variables, the increase in bias is not as high as that compared to other 
parameters. 

The FSSEs (as percentages of the true values) obtained when the spatial dependency is 
ignored are similar to those from the spatial model (i.e., Case 2). This metric, however, 
does not provide a measure of efficiency in estimation. It is more useful to look at the 
ASE values or the APBASE values, as in the last column of the table. Specifically, the 
APBASE values are very large for most types of parameters. This is a manifestation of a 
considerable loss in estimation efficiency due to ignoring spatial dependency, suggesting 
the unreliability of statistical inferences one can make (on the parameter estimates) from 
GHDM models that ignore spatial dependency.  

Finally, we used the adjusted composite log-likelihood ratio test (ADCLRT) to assess the 
deterioration in data-fit due to ignoring spatial dependency; more precisely, to decide 
whether an aspatial model suffices for a given dataset with low spatial dependency (Bhat, 
2011). The ADCLRT statistic, which is a modified version of the familiar log-likelihood 
ratio test, follows an approximate chi-squared distribution; with 2 degrees of freedom for 
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the two spatial autocorrelation parameters in this case. The corresponding critical chi-
square value for a 0.1% level of significance is 9.21. The ADCLRT statistic value for all 
50 simulated datasets is higher than 9.21 rejecting the aspatial model in favor of the 
spatial GHDM in all 50 samples. This highlights the importance of considering spatial 
dependencies in the model rather than making a-priori assumptions.  

Overall, ignoring spatial dependency, even when present only to a small extent, can lead 
to important repercussions, such as a substantial loss in the accuracy (i.e., unbiasedness) 
and efficiency in parameter estimation and a deterioration in overall data-fit. All of these 
effects will likely manifest in the form of distorted inferences and policy implications 
from an aspatial model. 
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Chapter 4.  Summary and Conclusions 

This paper develops a framework for incorporating spatial dependencies in integrated 
model systems of latent variables and multidimensional mixed data outcomes. The 
framework combines Bhat’s Generalized Heterogeneous Data Model (GHDM) with a 
spatial formulation and introduces spatial dependencies through latent constructs.  

For estimating the parameters of the proposed spatial GHDM framework, the paper 
employs the maximum approximate composite marginal likelihood (MACML) approach 
which reduces the dimensionality of the integrals to be evaluated independent of the 
extent of spatial dependence, the number of latent constructs, or the number of dependent 
variables in the multidimensional mixed data bundle. To evaluate the MACML approach 
in its ability to recover parameters of the spatial GHDM, we undertake Monte Carlo 
simulation experiments on synthetic data. The simulation results suggest that the 
MACML approach is able to recover parameters of the spatial GHDM with a pretty good 
level of accuracy and precision that is close enough to the level of parameter recovery 
achieved on datasets without any spatial dependencies. As importantly, for a majority of 
parameters in the model system, the overall accuracy and precision in estimation does not 
degrade much even when the spatial dependency increases to high levels. This makes the 
performance of the MACML approach less tied to the presence and level of spatial 
dependency and appealing for situations even with high spatial dependencies in 
multidimensional mixed data.  

Additional simulation experiments were conducted to assess the repercussions of 
ignoring spatial dependencies (when present). The results suggest that, ignoring spatial 
dependency even when present at low levels can lead to a substantial loss in the accuracy 
and efficiency in parameter estimation. The bias in parameter recovery (as measured by 
APB values) for a majority of parameters was over 25%, while the asymptotic standard 
errors for many parameters were over 100% of the finite sample standard errors. The 
APB values due to neglected spatial dependencies more than doubled (and became close 
to 30%) for the effects of latent variables on different endogenous outcomes; not to 
mention the corresponding ASE values (as a percentage of FSSEs) were at least 130%. 
This suggests that ignoring spatial dependency can potentially lead to severely distorted 
inferences of policy implications relevant to the influence of latent constructs on 
endogenous variables. For example, it would be difficult to credibly assess the influence 
of public policy instruments (e.g., educational campaigns) aimed at bringing about 
attitudinal and lifestyle changes for desirable travel behaviors in the population. The 
other effects of neglected spatial dependency include confounded effects on unobserved 
effects such as correlations among latent constructs, variance of continuous variable, 
dispersion and flexibility parameter of the count variable, and covariance among the 
nominal variable alternatives. Indeed, the only set of parameters that were not influenced 
substantially was the effects of observed (exogenous and endogenous) variables on non-
nominal outcomes and the threshold parameters of ordinal outcomes. Consistent with the 
above results, ignoring spatial dependency resulted in statistically significant 
deterioration of model fit in every synthetic dataset generated for this study.  

All the above results highlight the importance of accommodating spatial dependency, or 
at least testing for the presence of such dependencies in integrated models of mixed data 
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outcomes and latent variables. The good news is that, thanks to the efficacy of the 
MACML approach, the spatial autocorrelation parameters were recovered remarkably 
well when an attempt was made to accommodate spatial dependency. The relative ease 
with which spatial dependency can be detected helps in avoiding a-priori assumptions. 
Therefore, the proposed spatial GHDM framework combined with the MACML 
approach to estimate its parameters can potentially be a valuable tool for modeling spatial 
dependencies in multidimensional mixed data outcomes that are becoming of increasing 
interest in several fields. 
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