
Technical Report 101 

The Composite Marginal Likelihood 
(CML) Inference Approach with
Applications to Discrete and Mixed
Dependent Variable Models

Chandra R. Bhat 
Center for Transportation Research 

September 2014 



 

Data-Supported Transportation Operations & Planning Center 
(D-STOP) 

A Tier 1 USDOT University Transportation Center at The University of Texas at Austin 

 
 

          
 
 
D-STOP is a collaborative initiative by researchers at the Center for Transportation 
Research and the Wireless Networking and Communications Group at The University of 
Texas at Austin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
DISCLAIMER 
The contents of this report reflect the views of the authors, who are responsible for the facts and the 
accuracy of the information presented herein. This document is disseminated under the sponsorship of 
the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of 
information exchange. The U.S. Government assumes no liability for the contents or use thereof. 
 



 

 Technical Report Documentation Page  
1.  Report No. 

D-STOP/2016/101 
 2.  Government Accession No. 

 
 3.  Recipient's Catalog No. 

 
 4.  Title and Subtitle 

The Composite Marginal Likelihood (CML) Inference Approach 
with Applications to Discrete and Mixed Dependent Variable 
Models 

 5.  Report Date 

September 2014 
 6.  Performing Organization Code 

 
 7.  Author(s) 

Chandra R. Bhat 
 

 8.  Performing Organization Report No. 

Report 101 

9. Performing Organization Name and Address 

Data-Supported Transportation Operations & Planning Center (D-
STOP) 
The University of Texas at Austin 
1616 Guadalupe Street, Suite 4.202 
Austin, Texas  78701 

10.  Work Unit No. (TRAIS) 

 

11.  Contract or Grant No. 

DTRT13-G-UTC58 

12.  Sponsoring Agency Name and Address 

Data-Supported Transportation Operations & Planning Center (D-
STOP) 
The University of Texas at Austin 
1616 Guadalupe Street, Suite 4.202 
Austin, Texas  78701 

13.  Type of Report and Period Covered 

 
 
14.  Sponsoring Agency Code 

15.  Supplementary Notes 

Supported by a grant from the U.S. Department of Transportation, University Transportation Centers 
Program. 
16.  Abstract 

 
This report presents the basics of the composite marginal likelihood (CML) inference approach, 
discussing the asymptotic properties of the CML estimator and the advantages and limitations of the 
approach. The CML inference approach is a relatively simple approach that can be used when the full 
likelihood function is practically infeasible to evaluate due to underlying complex dependencies. The 
history of the approach may be traced back to the pseudo-likelihood approach of Besag (1974) for 
modeling spatial data, and has found traction in a variety of fields since, including genetics, spatial 
statistics, longitudinal analyses, and multivariate modeling. However, the CML method has found little 
coverage in the econometrics field, especially in discrete choice modeling. This report fills this gap by 
identifying the value and potential applications of the method in discrete dependent variable modeling as 
well as mixed discrete and continuous dependent variable model systems. In particular, it develops a 
blueprint (complete with matrix notation) to apply the CML estimation technique to a wide variety of 
discrete and mixed dependent variable models. 
 
17.  Key Words 

composite marginal likelihood, discrete 
dependent variable modeling 

18.  Distribution Statement 

No restrictions. This document is available to the public 
through NTIS (http://www.ntis.gov): 

National Technical Information Service 
5285 Port Royal Road 
Springfield, Virginia  22161

19.  Security Classif.(of this report) 

Unclassified 
20.  Security Classif.(of this page) 

Unclassified 
21.  No. of Pages 

90 
22.  Price 

 
  Form DOT F 1700.7 (8-72)                       Reproduction of completed page authorized 

 
 



iv 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. Mention of trade names or 
commercial products does not constitute endorsement or recommendation for use. 

Acknowledgements 

This research was partially supported by the U.S. Department of Transportation through 
the Data-Supported Transportation Operations and Planning (D-STOP) Tier 1 University 
Transportation Center. The author would also like to acknowledge support from a 
Humboldt Research Award from the Alexander von Humboldt Foundation, Germany. 
Finally, the author is grateful to Lisa Macias for her help in formatting this document, 
and individuals who provided useful comments on an earlier version of the report. 



v 

Table of Contents 

Chapter 1. Introduction ......................................................................................................1 

1.1 Background ..................................................................................................................1 

1.2 Types of CL Methods ...................................................................................................1 

1.3 The Composite Marginal Likelihood (CML) Inference Approach ..............................2 

1.4 Asymptotic Properties of the CML Estimator with many independent replicates .......3 

1.5 Asymptotic Properties of the CML Estimator for the Case of Very Few or No 
Independent Replicates .................................................................................................7 

1.6 Relative Efficiency of the CML Estimator ...................................................................7 

1.6.1 Comparison of ML and CML Estimator Efficiencies .....................................8 

1.6.2 Comparison of Maximum Simulated Likelihood (MSL) and CML 
Estimator Efficiencies ...................................................................................10 

1.7 Robustness of Consistency of the CML Estimator ....................................................11 

1.8 Model Selection in the CML Inference Approach .....................................................12 

1.9 Positive-Definiteness of the Implied Multivariate Covariance Matrix ......................14 

1.10 The Maximum Approximate Composite Marginal Likelihood Approach ...............15 

Chapter 2. Application to Traditional Discrete Choice Models ...................................19 

2.1 Ordered and Unordered-Response Model Systems ....................................................19 

2.2 Aspatial Formulations ................................................................................................20 

2.2.1 Ordered-Response Models ............................................................................20 

2.2.2 Unordered-Response Models ........................................................................29 

2.3 Spatial Formulations ...................................................................................................41 

2.3.1 Spatial Ordered Response Models ................................................................43 

2.3.2 Unordered-Response Models ........................................................................53 

2.4 Application to Count Models .....................................................................................62 

Chapter 3. Application to Joint Mixed Model Systems .................................................66 

3.1 Joint Mixed Dependent Variable Model Formulation ...............................................67 

3.2 The Joint Mixed Model System and the Likelihood Formation ................................69 

3.3 The Joint Mixed Model System and the MACML Estimation Approach .................72 

3.4 Positive Definiteness ..................................................................................................73 

Chapter 4. Conclusions .....................................................................................................75 

References ..........................................................................................................................77 
 



 

1 

 Chapter 1. Introduction 

 1.1 Background 

The need to accommodate underlying complex interdependencies in decision-making for 
more accurate policy analysis as well as for good forecasting, combined with the 
explosion in the quantity of data available for the multidimensional modeling of inter-
related choices of a single observational unit and/or inter-related decision-making across 
multiple observational units, has resulted in a situation where the traditional frequentist 
full likelihood function becomes near impossible or plain infeasible to evaluate. As a 
consequence, another approach that has seen some (though very limited) use recently is 
the composite likelihood (CL) approach. While the method has been suggested in the past 
under various pseudonyms such as quasi-likelihood (Hjort and Omre, 1994; Hjort and 
Varin, 2008), split likelihood (Vandekerkhove, 2005), and pseudolikelihood or marginal 
pseudo-likelihood (Molenberghs and Verbeke, 2005), Varin (2008) discusses reasons 
why the term composite likelihood is less subject to literary confusion.  

 At a basic level, a composite likelihood (CL) refers to the product of a set of lower-
dimensional component likelihoods, each of which is a marginal or conditional density 
function. The maximization of the logarithm of this CL function is achieved by setting 
the composite score equations to zero, which are themselves linear combinations of valid 
lower-dimensional likelihood score functions. Then, from the theory of estimating 
equations, it can be shown that the CL score function (and, therefore, the CL estimator) is 
unbiased (see Varin et al., 2011). In this report, we discuss these theoretical aspects of 
CL methods, with an emphasis on an overview of developments and applications of the 
CL inference approach in the context of discrete dependent variable models.  

 The history of the CL method may be traced back to the pseudo-likelihood approach 
of Besag (1974) for modeling spatial data, and has found traction in a variety of fields 
since, including genetics, spatial statistics, longitudinal analyses, and multivariate 
modeling (see Varin et al., 2011 and Larribe and Fearnhead, 2011 for reviews). However, 
the CL method has found little coverage in the econometrics field, and it is the hope that 
this report will fill this gap by identifying the value and potential applications of the 
method in econometrics. 

 1.2 Types of CL Methods 

To present the types of CL methods, assume that the data originate from a parametric 
underlying model based on a random ( H

~
× 1) vector Y with density function ),( θyf , 

where θ  is an unknown K
~

-dimensional parameter vector (technically speaking, the 
density function ),( θyf refers to the conditional density function ),( θyX|Yf  of the 

random variable Y given a set of explanatory variables X, though we will use the simpler 
notation ),( θyf  for the conditional density function). Each element of the random 
variable vector Y may be observed directly, or may be observed in a truncated or 
censored form. Assume that the actual observation vector corresponding to Y is given by 
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the vector ),,,,( ~321 ′=
H

mmmm m , some of which may take a continuous form and 

some of which may take a limited-dependent form. Let the likelihood corresponding to 
this observed vector be ).;( mθ L  Now consider the situation where computing );( mθ L is 

very difficult. However, suppose evaluating the likelihood functions of a set of E
~

 
observed marginal or conditional events determined by marginal or conditional 
distributions of the sub-vectors of Y is easy and/or computationally expedient. Let these 
observed marginal events be characterized by ( )( ..., ,)( ,)( ~21 mmm

E
AAA ). Let each event 

)(meA  be associated with a likelihood object [ ])(;);( mθmθ ee ALL = , which is based on a 

lower-dimensional marginal or conditional joint density function corresponding to the 
original high-dimensional joint density of Y. Then, the general form of the composite 
likelihood function is as follows: 

[ ] [ ]∏∏
==

==
E

e
e

E

e
eCL

ee ALLL
~

1

~

1

)(;();(),( ωω mθmθmθ , (1.1) 

where eω  is a power weight to be chosen based on efficiency considerations. If these 

power weights are the same across events, they may be dropped. The CL estimator is the 
one that maximizes the above function (or equivalently, its logarithmic transformation).  

The events )(meA  can represent a combination of marginal and conditional events, 

though composite likelihoods are typically distinguished in one of two classes: the 
composite conditional likelihood (CCL) or the composite marginal likelihood (CML). In 
this report, we will focus on the CML method because it has many immediate 
applications in the econometrics field, and is generally easier to specify and estimate. 
However, the CCL method may also be of value in specific econometric contexts (see 
Mardia et al., 2009 and Varin et al., 2011 for additional details).  

 1.3 The Composite Marginal Likelihood (CML) Inference Approach 

In the CML method, the events )(meA  represent marginal events. The CML class of 

estimators subsumes the usual ordinary full-information likelihood estimator as a special 
case. For instance, consider the case of repeated unordered discrete choices from a 
specific individual. Let the individual’s discrete choice at time t be denoted by the index 

td , and let this individual be observed to choose alternative tm  at choice occasion t 

). ..., ,3 ,2 ,1( Tt =  Then, one may define the observed event for this individual as the 
sequence of observed choices across all the T choice occasions of the individual. Defined 
this way, the CML function contribution of this individual becomes equivalent to the full-
information maximum likelihood function contribution of the individual:1 

),...,, ,( Prob),(),( 332211
1

TTCML mdmdmdmdLL ====== mθmθ .  (1.2) 

                                                 
1 In the discussion below, for presentation ease, we will ignore the power weight term ωe. In some cases, such as in a 
panel case with varying number of observational occasions on each observation unit, the choice of ωe can influence 
estimator asymptotic efficiency considerations. But it does not affect other asymptotic properties of the estimator. 
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However, one may also define the events as the observed choices at each choice occasion 
for the individual. Defined this way, the CML function is: 

)(Prob...)(Prob)Prob()( Prob),( 332211
2

TTCML mdmdmdmdL =××=×=×==mθ . (1.3) 

This CML, of course, corresponds to the case of independence between each pair of 
observations from the same individual. As we will indicate later, the above CML 
estimator is consistent even when there is dependence among the observations of the 
individual. However, this approach, in general, does not estimate the parameters 
representing the dependence effects across choices of the same individual (i.e., only a 
subset of the vector θ  is estimable). A third approach to estimating the parameter vector 
θ  in the repeated unordered choice case is to define the events in the CML as the 
pairwise observations across all or a subset of the choice occasions of the individual. For 
presentation ease, assume that all pairs of observations are considered. This leads to a 
pairwise CML function contribution of individual q as follows: 

),( Prob),(
1

1 1

3
tttt

T

t

T

tt

CML mdmdL ′′

−

= +=′
===∏∏mθ .   (1.4) 

Almost all earlier research efforts employing the CML technique have used the pairwise 
approach, including Apanasovich et al. (2008), Varin and Vidoni (2009), Bhat and Sener 
(2009), Bhat et al. (2010a), Bhat and Sidharthan (2011), Vasdekis et al. (2012), Ferdous 
and Bhat (2013), and Feddag (2013). Alternatively, the analyst can also consider larger 
subsets of observations, such as triplets or quadruplets or even higher dimensional 
subsets (see Engler et al., 2006 and Caragea and Smith, 2007). However, the pairwise 
approach is a good balance between statistical and computational efficiency (besides, in 
almost all applications, the parameters characterizing error dependency are completely 
identified based on the pairwise approach). Importantly, the pairwise approach is able to 
explicitly recognize dependencies across choice occasions in the repeated choice case 
through the inter-temporal pairwise probabilities.  

 1.4 Asymptotic Properties of the CML Estimator with Many 
Independent Replicates 

The asymptotic properties of the CML estimator for the case with many independent replicates 
may be derived from the theory of unbiased estimating functions. For ease, we will first consider 
the case when we have Q independent observational units (also referred to as individuals) in a 

sample 
,,...,,, 321 QYYYY
each qY

 (q=1,2,…,Q) being a H
~

× 1 vector. That is, 
).,...,,( ~21 Hqqq YYY=qY

 H
~

 in this context may refer to multiple observations of the same variable 
on the same observation unit (as in the previous section) or a single observation of multiple 
variables for the observation unit (for example, expenditures on groceries, transportation, and 

leisure activities for an individual). In either case, Q is large relative to H
~

 (the case when Q is 
small is considered in the next section). We consider the case when observation is made directly 

on each of the continuous variables 
,qhY
 though the discussion in this section is easily modified 

to incorporate the case when observation is made on some truncated or censored form of qhY
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(such as in the case of a discrete choice variable). Let the observation on the random variable qY
 

be 
).,...,,( ~21 Hqqq yyy=qy

Define 
).,...,,( 21 Qyyyy =

Also, we will consider a pairwise likelihood 
function as the CML estimator, though again the proof is generalizable in a straightforward 
manner to other types of CML estimators (such as using triplets or quadruplets rather than 
couplets in the CML). For the pairwise case, the estimator is obtained by maximizing (with 

respect to the unknown parameter vector θ , which is of dimension K
~

) the logarithm of the 
following function: 

∏ ∏∏∏∏∏

∏∏∏

= =
′

−

=
′

+=′
′

−

= +=′
′

=

−

=
′′

+=′

===

===

Q

q

Q

q
hqqh

H

h
hqh

H

hh
hqh

H

h

H

hh
hqqh

Q

q

H

h
hqhqqhqh

H

hh
CML

yyfLLyyf

yYyYL

1 1

1
~

1

~

1

1
~

1

~

1

1

1
~

1

~

1

),(where,),(

),(Prob),( yθ

 (1.5) 

Under usual regularity conditions (these are the usual conditions needed for likelihood 
objects to ensure that the logarithm of the CML function can be maximized by solving 
the corresponding score equations; the conditions are too numerous to mention here, but 
are listed in Molenberghs and Verbeke, 2005, page 191), the maximization of the 
logarithm of the CML function in the equation above is achieved by solving the 
composite score equations given by: 

 ,),,(),(log),(
1

1
~

1

~

1

0==∇=  
=

′′

−

= +=′

Q

q
hqqhhqh

H

h

H

hh
CML yyL θsyθyθsCML   (1.6) 

where .
log

),,(
θ

θs
∂

∂
= ′

′′
hqh

hqqhhqh

L
yy  Since the equations ),( yθsCML are linear 

combinations of valid likelihood score functions ),,( hqqhhqh yy ′′ θs associated with the 

event probabilities forming the composite log-likelihood function, they immediately 
satisfy the requirement of being unbiased. While this is stated in many papers and should 
be rather obvious, we provide a formal proof of the unbiasedness of the CML score 
equations (see also Yi et al., 2011). In particular, we need to prove the following: 

 [ ] 0==







=   

=
′′

−

= +=′=
′′

−

= +=′

Q

q
hqqhhqh

H

h

H

hh

Q

q
hqqhhqh

H

h

H

hh

yyEyyEE
1

1
~

1

~

11

1
~

1

~

1

),,(),,()],([ θsθsyθsCML , (1.7) 

 
where the expectation above is taken with respect to the full distribution of 

).,...,,( ~21 H
YYY=Y  The above equality will hold if )],,([ hqqhhqh yyE ′′ θs = 0  for all pairwise 

combinations hh ′and  for each q. To see that this is the case, we write: 

   ′′′′
′′

′′ ∂
∂

=
∂

∂
=

′ ′qd dqy

hqqhhqqh
hqh

y

hqh
hqqhhqh dydyyyf

L
f

L
yyE hqh-hqh-

yy

qq dyy,
θ

)dyy
θ

θs
dqd-q

),(
log

(
log

)],,([ ,  (1.8) 

where hqh-y ′  represents the subvector of qy  with the elements qhy  and hqy ′  excluded. 

Continuing, 
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0=
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∂=

∂
∂=

∂
∂

=
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∂
=

∂
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=
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∂
=

×
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∂
=

 

  

  

  

′

′′

′′
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′′
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′′

)1(

1

log
),(

log

),(
log

)],,([

θθ

θθ

θθ

dyy,
θ

θs hqh-hqh-

y hqh-

qh hq

qh hqqh hq

qh hqqh hq

qh hq

y y

hqqhhqh

y y

hqqh
hqh

y y

hqqhhqh
hqh

hqh

y y

hqqhhqh
hqh
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hqqhhqqh
hqh

y

hqqhhqqh

y

hqh
hqqhhqh

dydyL

dydy
L

dydyL
L

L

dydyL
L

dydyyyf
L

dydyyyf
L

yyE

  (1.9) 

Next, consider the asymptotic properties of the CML estimator. To derive these, define 
the mean composite score function across observation units in the sample as follows: 

),,(
1

),(
1

qq yθsyθs 
=

=
Q

qQ
 where =),( qq yθs ),,(

1
~

1

~

1
hqqhhqh

H

h

H

hh

yy ′′

−

= +=′
  θs . Then, 

[ ] [ ] 0== ′′

−

= +=′
  ),,(),(

1
~

1

~

1
hqqhhqh

H

h

H

hh

yyEE θsyθs qq  for all values of θ . Let 0θ  be the true 

unknown parameter vector value, and consider the score function at this vector value and 
label it as ).,( q0q yθs  Then, when drawing a sample from the population, the analyst is 

essentially drawing values of ),( q0q yθs from its distribution in the population with zero 

mean and variance given by [ ]),( q0q yθsJ Var= , and taking the mean across the sampled 

values of ),( q0q yθs to obtain ).,( yθs 0 Invoking the Central Limit Theorem (CLT), we 

have  

)0,Jyθs 0 (),( ~
K

d MVNQ ⎯→⎯   (1.10) 

where (.,.)~
K

MVN stands for the multivariate normal distribution of K
~

 dimensions. Next, 

let CMLθ̂  be the CML estimator, so that, by design of the CML estimator, .),ˆ( 0=yθs CML

Expanding ),ˆ( yθs CML  around ),( yθs 0  in a first-order Taylor series, we obtain 

[ ]0CML00CML θθyθsyθsyθs −∇+== ˆ),(),(),ˆ( 0 , or equivalently, 

[ ] [ ] 1),(ˆ −∇−=− yθsθθ 00CML QQ ),( yθs 0 .      (1.11)  

From the law of large numbers (LLN), we also have that ),( yθs 0∇ , which is the sample 

mean of ),,( q0q yθs∇ converges to the population mean for the quantity. That is,  

[ ]),( yθs 0∇− [ ]),( yθsH 0∇−=⎯→⎯ Ed      (1.12) 

Using Equations (1.10) and (1.12) in Equation (1.11), applying Slutsky’s theorem, and 
assuming non-singularity of J and H , we finally arrive at the following limiting 
distribution: 
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[ ] HHJGGθθ -1-1
0CML =⎯→⎯− where),(ˆ ~ 0,

K
d MVNQ  (1.13) 

where G  is the Godambe (1960) information matrix. Thus, the asymptotic distribution of CMLθ̂ is 

centered on the true parameter vector 0θ . Further, the variance of CMLθ̂  reduces as the number of 

sample points Q increases. The net result is that CMLθ̂  converges in probability to 0θ  as ∞→Q  

(with H
~

 fixed), leading to the consistency of the estimator. In addition, CMLθ̂  is normally 

distributed, with its covariance matrix being ./Q-1G  However, both J and H , and therefore G, 

are functions of the unknown parameter vector 0θ . But J and H may be estimated in a 

straightforward manner at the CML estimate CMLθ̂  as follows: 

CMLθ
θθ

J
ˆ

,,

1

loglog1ˆ 















′∂

∂








∂

∂
= 

=

qCMLqCML
Q

q

LL

Q
, where hqh

H

h

H

hh
qCML LL ′

−

= +=′
 = loglog

1
~

1

~

1
, ,  (1.14) 

and 

[ ] [ ]
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CMLCML

θ

θθqq

θθ

θsyθsH

ˆ1

1
~

1

~

1

2
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~
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~

1
ˆ

1
ˆ

log1
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1
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H

h
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Q

q
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h

H

h
hqqhdqd

Q

q

L

Q

yy
QQ

 (1.15) 

If computation of the second derivative is time consuming, one can exploit the second 
Bartlett identity (Ferguson, 1996, page 120), which is valid for each observation unit’s 
likelihood term in the composite likelihood. That is, using the condition that 

 [ ] [ ] [ ] ,,,(,,(,,( hqqhhqhhqqhhqhhqqhhqh yyEyyEyyVar ′′′′′′ ∇=∇−−=−== 00q0q θsθsHθsJ  (1.16) 

an alternative estimate for Ĥ is as below: 

[ ]
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ˆ

loglog1

,,(,,(
1

,,(
1ˆ
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 (1.17) 

Finally, the covariance matrix of the CML estimator is given by 
[ ] [ ] [ ]

.
ˆˆˆˆ

′
′

=
QQ

1-1-1-
HJHG

 

The empirical estimates above can be imprecise when Q is not large enough. An 
alternative procedure to obtain the covariance matrix of the CML estimator is to use a 
jackknife approach as follows (see Zhao and Joe, 2005): 
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( )( ) ,θθθθθ CMLCMLCMLCMLCML

′
−−−= −−

=
 ˆˆˆˆ1

)ˆ(Cov )()(

1

qq
Q

qQ

Q
  (1.18) 

where )(ˆ q−
CMLθ  is the CML estimator with the qth observational unit dropped from the data. 

However, this can get time-consuming, and so an alternative would be to use a first-order 
approximation for )(ˆ q−

CMLθ  with a single step of the Newton-Raphson algorithm with CMLθ̂  as 

the starting point.  

 1.5 Asymptotic Properties of the CML Estimator for the Case of Very 
Few or No Independent Replicates 

Even in the case when the data include very few or no independent replicates (as would 
be the case with global social or spatial interactions across all observational units in a 

cross-sectional data in which the dimension of H
~

is equal to the number of observational 
units and Q=1), the CML estimator will retain the good properties of being consistent and 
asymptotically normal as long as the data is formed by pseudo-independent and 
overlapping subsets of observations (such as would be the case when the social 
interactions taper off relatively quickly with the social separation distance between 
observational units, or when spatial interactions rapidly fade with geographic distance 
based on an autocorrelation function decaying toward zero; see Cox and Reid, 2004 for a 
technical discussion).2 The same situation holds in cases with temporal processes; the 
CML estimator will retain good properties as long as we are dealing with a stationary 
time series with short-range dependence (the reader is referred to Davis and Yau, 2011 
and Wang et al., 2013 for additional discussions of the asymptotic properties of the CML 
estimator for the case of time-series and spatial models, respectively). 

The covariance matrix of the CML estimator needs estimates of J and H. The “bread” 
matrix H can be estimated in a straightforward manner using the Hessian of the negative 

of )(log θCMLL , evaluated at the CML estimate θ̂ . This is because the information 

identity remains valid for each pairwise term forming the composite marginal likelihood. 
But the estimation of the “vegetable” matrix J is more involved. Further details of the 
estimation of the CML estimator’s covariance matrix for the case with spatial data are 
discussed in Section 2.3.  

 1.6 Relative Efficiency of the CML Estimator 

The CML estimator loses some asymptotic efficiency from a theoretical perspective 
relative to a full likelihood estimator, because information embedded in the higher 
dimension components of the full information estimator are ignored by the CML 
estimator. This can also be formally shown by starting from the CML unbiased 
estimating functions 0=)],([ yθs 0CMLE , which can be written as follows (we will 

continue to assume continuous observation on the variable vector of interest, so that Y is 

                                                 
2 Otherwise, there may be no real solution to the CML function maximization and the usual asymptotic results will 
not hold. 
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a continuous variable, though the presentation is equally valid for censored and truncated 
observations on Y ): 

00
θθy

θθ
y

0CML dy
θ

y)dy
θ

yθs
==

∂
∂

=
∂

∂
==  ML

CMLCML L
L

f
L

E
log

(
log

)],([ 0   (1.19) 

Take the derivative of the above function with respect to θ  to obtain the following: 

+
′∂∂

∂=
=


0θθy

dy
θθ ML

CML L
Llog2

0  
θy ∂

∂
 CMLLlog

0θθ

dy
θ =∂

∂
ML

ML L
Llog

  (1.20) 

[ ]),(),()],([ yθsyθsyθs 0ML0CML0CML EE +∇= , 

where y)θs 0ML ,( is the score function of the full likelihood. From above, we get the 

following: 

[ ] )],(),,([Cov),( yθsyθsyθsH 0CML0ML0CML ′=∇−= E , and 

[ ] ]),,(),,([Cov)),((Var)],(),,([Cov 1 yθsyθsyθsyθsyθsG 0ML0CML0CML0CML0ML ′′= −
  (1.21) 

Then, using the multivariate version of the Cauchy-Schwartz inequality (Lindsay, 1988), 
we obtain the following: 

.)],([Var GyθsIFISHER 0ML ≥=   (1.22) 

Thus, from a theoretical standpoint, the difference between the regular ML information 
matrix (i.e., IFISHER ) and the Godambe information matrix (i.e., G ) is positive 
definite, which implies that the difference between the asymptotic variances of the CML 
estimator and the ML estimator is positive semi-definite (see also Cox and Reid, 2004). 
However, many studies have found that the efficiency loss of the CML estimator (relative 
to the maximum likelihood (ML) estimator) is negligible to small in applications. These 
studies are either based on precise analytic computations of the information matrix 
IFISHER  and the Godambe matrix G to compare the asymptotic efficiencies from the 
ML and the CML methods, or based on empirical efficiency comparisons between the 
ML and CML methods for specific contexts by employing a simulation design with finite 
sample sizes. A brief overview of these studies is presented in the next section. 

 1.6.1 Comparison of ML and CML Estimator Efficiencies 

Examples of studies that have used precise analytic computations to compare the 
asymptotic efficiency of the ML and CML estimators include Cox and Reid (2004), Hjort 
and Varin (2008), and Mardia et al. (2009). Cox and Reid (2004) derive IFISHER  and 
G for some specific situations, including the case of a sample of independent and 
identically distributed vectors, each of which is multivariate normally distributed with an 
equi-correlated structure between elements. In the simple cases they examine, they show 
that the loss of efficiency between IFISHER  and G is of the order of 15%. They also 
indicate that in the specific case of Cox’s (1972) quadratic exponential distribution-based 
multivariate binary data model, the full likelihood function and a pairwise likelihood 
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function for binary data generated using a probit link are equivalent, showing that the 
composite likelihood estimator can achieve the same efficiency as that of a full maximum 
likelihood estimator. Hjort and Varin (2008) also study the relationship between the 
IFISHER  and G matrices, but for Markov chain models, while Mardia et al. (2007) and 
Mardia et al. (2009) examine efficiency considerations in the context of multivariate 
vectors with a distribution drawn from closed exponential families. These studies note 
special cases when the composite likelihood estimator is fully efficient, though all of 
these are rather simplified model settings.  

Several papers have also analytically studied efficiency considerations in clustered data, 
especially the case when each cluster is of a different size (such as in the case of spatially 
clustered data from different spatial regions with different numbers of observational units 
within each spatial cluster, or longitudinal data on observational units with each 
observational unit contributing a different number of sample observations). In such 
situations, the unweighted CML function will give more weight to clusters that contribute 
more sample observations than those with fewer observations. To address this situation, a 
weighted CML function may be used. Thus, Le Cessie and Van Houwelingen (1994) 
suggest, in their binary data model context, that each cluster should contribute about 
equally to the CML function. This may be achieved by power-weighting each cluster’s 
CML contribution by a factor that is the inverse of the number of choice occasions minus 
one. The net result is that the composite likelihood contribution of each cluster collapses 
to the likelihood contribution of the cluster under the case of independence within a 
cluster. In a general correlated panel binary data context, Kuk and Nott (2000) confirmed 
the above result for efficiently estimating parameters not associated with dependence 
within clusters for the case when the correlation is close to zero. However, their analysis 
suggested that the unweighted CML function remains superior for estimating the 
correlation (within cluster) parameter. In a relatively more recent paper, Joe and Lee 
(2009) theoretically studied the issue of efficiency in the context of a simple random 
effect binary choice model. They indicate that the weights suggested by Le Cessie and 
Van Houwelingen (1994) and Kuk and Nott (2000) can provide poor efficiency even for 
non-dependence parameters when the correlation between pairs of the underlying latent 
variables for the “repeated binary choices over time” case they studied is moderate to 
high. Based on analytic and numeric analyses using a longitudinal binary choice model 
with an autoregressive correlation structure, they suggest that using a weight of 

11 )]1(5.01[)1( −− −+− qq TT  for a cluster appears to do well in terms of efficiency for all 

parameters and across varying dependency levels ( qT  is the number of observations 

contributed by unit or individual q). Further, the studies by Joe and Lee (2009) and Varin 
and Vidoni (2006), also in the context of clustered data, suggest that the inclusion of too 
distant pairings in the CML function can lead to a loss of efficiency. 

A precise analytic computation of the asymptotic efficiencies of the CML and full 
maximum likelihood approaches, as just discussed, is possible only for relatively simple 
models with or without clustering. This, in turn, has led to the examination of the 
empirical efficiency of the CML approach using simulated data sets for more realistic 
model contexts. Examples include Renard et al. (2004), Fieuws and Verbeke (2006), and 
Eidsvik et al. (2014). These studies indicate that the CML estimator performs well 
relative to the ML estimator. For instance, Renard et al. (2004) examined the 
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performance of CML and ML estimators in the context of a random coefficients binary 
choice model, and found an average loss of efficiency of about 20% in the CML 
parameter estimates relative to the ML parameter estimates. Fiews and Verbeke (2006) 
examined the performance of the CML and ML estimators in the context of a multivariate 
linear model based on mixing, where the mixing along each dimension involves a random 
coefficient vector followed by a specification of a general covariance structure across the 
random coefficients of different dimensions. They found that the average efficiency loss 
across all parameters was less than 1%, and the highest efficiency loss for any single 
parameter was of the order of only 5%. Similarly, in simulated experiments with a spatial 
Gaussian process model, Eidsvik et al. (2014) used a spatial blocking strategy to partition 
a large spatially correlated space of a Gaussian response variable to estimate the model 
using a CML technique. They too found rather small efficiency losses because of the use 
of the CML as opposed to the ML estimator. However, this is an area that needs much 
more attention both empirically and theoretically. Are there situations when the CML 
estimator’s loss is less or high relative to the ML estimator, and are we able to come up 
with some generalizable results from a theoretical standpoint that apply not just to simple 
models but also more realistic models used in the field? In this regard, is there a “file 
drawer” problem where results are not being reported when the CML estimator in fact 
loses a lot of efficiency? Or is the current state of reporting among scholars in the field a 
true reflection of the CML estimator’s loss in efficiency relative to the ML? So far, the 
CML appears to be remarkable in its ability to pin down parameters, but there needs to be 
much more exploration in this important area. This opens up an exciting new direction of 
research and experimentation.  

 1.6.2 Comparison of Maximum Simulated Likelihood (MSL) and CML Estimator 
Efficiencies 

The use of the maximum likelihood estimator is feasible for many types of models. But 
the estimation of many other models that incorporate analytically intractable expressions 
in the likelihood function in the form of integrals, such as in mixed multinomial logit 
models or multinomial probit models or count models with certain forms of heterogeneity 
or large-dimensional multivariate dependency patterns (just to list a few), require an 
approach to empirically approximate the intractable expression. This is usually done 
using simulation techniques, leading to the MSL inference approach (see Train, 2009), 
though quadrature techniques are also sometimes used for cases with 1-3 dimensions of 
integrals in the likelihood function expression. When simulation methods have to be used 
to evaluate the likelihood function, there is also a loss in asymptotic efficiency in the 
maximum simulated likelihood (MSL) estimator relative to a full likelihood estimator. 
Specifically, McFadden and Train (2000) indicate, in their use of independent number of 
random draws across observations, that the difference between the asymptotic covariance 
matrix of the MSL estimator obtained as the inverse of the sandwich information matrix 
and the asymptotic covariance matrix of the ML estimator obtained as the inverse of the 
cross-product of first derivatives is theoretically positive semi-definite for finite number 
of draws per observation. Consequently, given that we also know that the difference 
between the asymptotic covariance matrices of the CML and ML estimators is 
theoretically positive semi-definite, it is difficult to state from a theoretical standpoint 
whether the CML estimator efficiency will be higher or lower than the MSL estimator 
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efficiency. However, in a simulation comparison of the CML and MSL methods for 
multivariate ordered response systems, Bhat et al. (2010b) found that the CML 
estimator’s efficiency was almost as good as that of the MSL estimator, but with the 
benefits of a very substantial reduction in computational time and much superior 
convergence properties. As they state “….any reduction in the efficiency of the CML 
approach relative to the MSL approach is in the range of non-existent to small”. Paleti 
and Bhat (2013) examined the case of panel ordered-response structures, including the 
pure random coefficients (RC) model with no autoregressive error component, as well as 
the more general case of random coefficients combined with an autoregressive error 
component. The ability of the MSL and CML approaches to recover the true parameters 
is examined using simulated datasets. The results indicated that the performances of the 
MSL approach (with 150 scrambled and randomized Halton draws) and the simulation-
free CML approach were of about the same order in all panel structures in terms of the 
absolute percentage bias (APB) of the parameters and empirical efficiency. However, the 
simulation-free CML approach exhibited no convergence problems of the type that 
affected the MSL approach. At the same time, the CML approach was about 5-12 times 
faster than the MSL approach for the simple random coefficients panel structure, and 
about 100 times faster than the MSL approach when an autoregressive error component 
was added. Thus, the CML appears to lose relatively little by way of efficiency, while 
also offering a more stable and much faster estimation approach in the panel ordered-
ordered-response context. Similar results of substantial computational efficiency and little 
to no finite sample efficiency loss (and sometimes even efficiency gains) have been 
reported by Bhat and Sidharthan (2011) for cross-sectional and panel unordered-response 
multinomial probit models with random coefficients (though the Bhat and Sidharthan 
paper actually combines the CML method with a specific analytic approximation method 
to evaluate the multivariate normal cumulative distribution function).  

Finally, the reader will note that there is always some simulation bias in the MSL method 
for finite number of simulation draws, and the consistency of the MSL method is 
guaranteed only when the number of simulation draws rises faster than the square root of 
the sample size (Bhat, 2001, McFadden and Train, 2000). The CML estimator, on the 
other hand, is unbiased and consistent under the usual regularity conditions, as discussed 
earlier in Section 1.4. 

 1.7 Robustness of Consistency of the CML Estimator 

As indicated by Varin and Vidoni (2009), it is possible that the “maximum CML 
estimator can be consistent when the ordinary full likelihood estimator is not”. This is 
because the CML procedures are typically more robust and can represent the underlying 
low-dimensional process of interest more accurately than the low dimensional process 
implied by an assumed (and imperfect) high-dimensional multivariate model. Another 
way to look at this is that the consistency of the CML approach is predicated only on the 
correctness of the assumed lower dimensional distribution, and not on the correctness of 
the entire multivariate distribution. On the other hand, the consistency of the full 
likelihood estimator is predicated on the correctness of the assumed full multivariate 
distribution. Thus, for example, Yi et al. (2011) examined the performance of the CML 
(pairwise) approach in the case of clustered longitudinal binary data with non-randomly 
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missing data, and found that the approach appears quite robust to various alternative 
specifications for the missing data mechanism. Xu and Reid (2011) provided several 
specific examples of cases where the CML is consistent, while the full likelihood 
inference approach is not.  

 1.8 Model Selection in the CML Inference Approach 

Procedures similar to those available with the maximum likelihood approach are also 
available for model selection with the CML approach. The statistical test for a single 
parameter may be pursued using the usual t-statistic based on the inverse of the Godambe 
information matrix. When the statistical test involves multiple parameters between two 
nested models, an appealing statistic, which is also similar to the likelihood ratio test in 
ordinary maximum likelihood estimation, is the composite likelihood ratio test (CLRT) 
statistic. Consider the null hypothesis 0ττ =:0H  against 0ττ ≠:1H , where τ  is a 

subvector of θ  of dimension d
~

; i.e., ),( ′′′= ατθ . The statistic takes the familiar form 
shown below: 

)],ˆ(log)ˆ([log2 Rθθ CMLCML LLCLRT −=        (1.23) 

where Rθ̂  is the composite marginal likelihood estimator under the null hypothesis 

))(ˆ,( 00 τατ CML′′ . More informally speaking, θ̂  is the CML estimator of the unrestricted 

model, and Rθ̂  is the CML estimator for the restricted model. The CLRT statistic does 
not have a standard chi-squared asymptotic distribution. This is because the CML 
function that is maximized does not correspond to the parametric model from which the 
data originates; rather, the CML may be viewed in this regard as a “mis-specification” of 
the true likelihood function because of the independence assumption among the 
likelihood objects forming the CML function (see Kent, 1982, Section 3). To write the 
asymptotic distribution of the CLRT statistic, first define 1)]([ −θGτ  and 1)]([ −θHτ  as the 

dd
~~×  submatrices of 1)]([ −θG  and 1)]([ −θH , respectively, which correspond to the 

vector τ . Then, the CLRT has the following asymptotic distribution: 

2

~

1

~
~ ii

d

i

WCLRT λ
=

,            (1.24)

  

where 2~
iW  for i = 1, 2, …, d

~
 are independent 2

1χ  variates and dλλλ ...21 ≥≥  are the 

eigenvalues of the matrix 1)]()][([ −θGθH ττ  evaluated under the null hypothesis (this 

result may be obtained based on the (profile) likelihood ratio test for a mis-specified 
model; see Kent, 1982, Theorem 3.1 and the proof therein). Unfortunately, the departure 

from the familiar asymptotic chi-squared distribution with d
~

 degrees of freedom for the 
traditional maximum likelihood procedure is annoying. Pace et al. (2011) have recently 
proposed a way out, indicating that the following adjusted CLRT statistic, ADCLRT, may 

be considered to be asymptotically chi-squared distributed with d
~

 degrees of freedom: 
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CLRTADCLRT ×
′

′
= −

−−

)()]([])([

)()]()][([)]([])([
1

11

θSθHθS

θSθHθGθHθS

τττ

τττττ  (1.25) 

where )(θSτ  is the 1
~×d  submatrix of =)(θS  








∂
∂

θ

θ)(log CMLL
 corresponding to the 

vector τ , and all the matrices above are computed at Rθ̂ . The denominator of the above 
expression is a quadratic approximation to CLRT, while the numerator is a score-type 
statistic with an asymptotic 2

~
d

χ  null distribution. Thus, ADCLRT is also very close to 

being an asymptotic 2
~
d

χ  distribution under the null.  

Alternatively, one can resort to parametric bootstrapping to obtain the precise distribution 
of the CLRT statistic for any null hypothesis situation. Such a bootstrapping procedure is 
rendered simple in the CML approach, and can be used to compute the p-value of the null 
hypothesis test. The procedure is as follows: 

1. Compute the observed CLRT value as in Equation (1.23) from the estimation sample. Let 
the estimation sample be denoted as obsy~ , and the observed CLRT value as ).~( obsyCLRT  

2. Generate C sample data sets 
Cyyyy ~,...,~,~,~

321  using the CML convergent values under the 

null hypothesis 

3. Compute the CLRT statistic of Equation (1.23) for each generated data set, and label it as 
).~( cyCLRT  

4. Calculate the p-value of the test using the following expression: 

{ }
,

1

)~()~(1
1

+

≥+
=


=

C

CLRTCLRTI
p

C

c
obsc yy

 where 1}{ =AI if A is true.  (1.26) 

The above bootstrapping approach has been used for model testing between nested 
models in Varin and Czado (2010), Bhat et al. (2010b), and Ferdous et al. (2010).  

When the null hypothesis entails model selection between two competing non-nested 
models, the composite likelihood information criterion (CLIC) introduced by Varin and 
Vidoni (2005) may be used. The CLIC takes the following form3: 

[ ]1* )ˆ(ˆ)ˆ(ˆ)ˆ(log)ˆ(log −−= θHθJθθ trLL CMLCML  (1.27) 

The model that provides a higher value of CLIC is preferred. 

                                                 
3 This penalized log-composite likelihood is nothing but the generalization of the usual Akaike’s Information 
Criterion (AIC). In fact, when the candidate model includes the true model in the usual maximum likelihood 
inference procedure, the information identity holds (i.e., H(θ) = J(θ)) and the CLIC in this case is exactly the AIC    

[ −= )ˆ(log θMLL (# of model parameters)]. 
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 1.9 Positive-Definiteness of the Implied Multivariate Covariance Matrix  

In cases where the CML approach is used as a vehicle to estimate the parameters in a 
higher dimensional multivariate covariance matrix, one has to ensure that the implied 
multivariate covariance matrix in the higher dimensional context is positive definite. For 
example, consider a multivariate ordered-response model context, and let the latent 
variables underlying the multivariate ordered-response model be multivariate normally 
distributed. This symmetric covariance (correlation) matrix Σ  has to be positive definite 
(that is, all the eigenvalues of the matrix should be positive, or, equivalently, the 
determinant of the entire matrix and every principal submatrix of Σ  should be positive). 
But the CML approach does not estimate the entire correlation matrix as one single 
entity. However, there are three ways that one can ensure the positive-definiteness of the 
Σ  matrix. The first technique is to use Bhat and Srinivasan’s (2005) strategy of 
reparameterizing the correlation matrix Σ  through the Cholesky matrix, and then using 
these Cholesky-decomposed parameters as the ones to be estimated. That is, the Cholesky 
of an initial positive-definite specification of the correlation matrix is taken before 
starting the optimization routine to maximize the CML function. Then, within the 
optimization procedure, one can reconstruct the Σ  matrix, and then pick off the 
appropriate elements of this matrix to construct the CML function at each iteration. This 
is probably the most straightforward and clean technique. The second technique is to 
undertake the estimation with a constrained optimization routine by requiring that the 
implied multivariate correlation matrix for any set of pairwise correlation estimates be 
positive definite. However, such a constrained routine can be extremely cumbersome. 
The third technique is to use an unconstrained optimization routine, but check for 
positive-definiteness of the implied multivariate correlation matrix. The easiest method 
within this third technique is to allow the estimation to proceed without checking for 
positive-definiteness at intermediate iterations, but check that the implied multivariate 
correlation matrix at the final converged pairwise marginal likelihood estimates is 
positive-definite. This will typically work for the case of a multivariate ordered-response 
model if one specifies exclusion restrictions (i.e., zero correlations between some error 
terms) or correlation patterns that involve a lower dimension of effective parameters. 
However, if the above simple method of allowing the pairwise marginal estimation 
approach to proceed without checking for positive definiteness at intermediate iterations 
does not work, then one can check the implied multivariate correlation matrix for positive 
definiteness at each and every iteration. If the matrix is not positive-definite during a 
direction search at a given iteration, one can construct a “nearest” valid correlation matrix 
(for example, by replacing the negative eigenvalue components in the matrix with a small 
positive value, or by adding a sufficiently high positive value to the diagonals of a matrix 
and normalizing to obtain a correlation matrix; see Rebonato and Jaeckel, 1999, Higham, 
2002, and Schoettle and Werner, 2004 for detailed discussions of these and other 
adjusting schemes; a review of these techniques is beyond the scope of this report). The 
values of this “nearest” valid correlation matrix can be translated to the pairwise 
correlation estimates, and the analyst can allow the iterations to proceed and hope that the 
final implied convergent correlation matrix is positive-definite. 
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 1.10 The Maximum Approximate Composite Marginal Likelihood 
Approach 

In many application cases, the probability of observing the lower dimensional event itself 
in a CML approach may entail multiple dimensions of integration. For instance, in the 
case of a multinomial probit model with I choice alternatives per individual (assume for 
ease in presentation that all individuals have all I choice alternatives), and a spatial 
dependence structure (across individuals) in the utilities of each alternative, the CML 
approach involves compounding the likelihood of the joint probability of the observed 
outcomes of pairs of individuals. However, this joint probability itself entails the 
integration of a multivariate normal cumulative distribution (MVNCD) function of 
dimension equal to )1(2 −× I . The evaluation of such an integration function cannot be 
pursued using quadrature techniques due to the curse of dimensionality when the 
dimension of integration exceeds two (see Bhat, 2003). In this case, the MVNCD 
function evaluation for each agent has to be evaluated using simulation or other analytic 
approximation techniques. Typically, the MVNCD function is approximated using 
simulation techniques through the use of the Geweke-Hajivassiliou-Keane (GHK) 
simulator or the Genz-Bretz (GB) simulator, which are among the most effective 
simulators for evaluating the MVNCD function (see Bhat et al., 2010b for a detailed 
description of these simulators). Some other sparse grid-based techniques for simulating 
the multivariate normal probabilities have also been proposed by Heiss and Winschel 
(2008), Huguenin et al. (2009), and Heiss (2010). In addition, Bayesian simulation using 
Markov Chain Monte Carlo (MCMC) techniques (instead of MSL techniques) have been 
used in the literature (see Albert and Chib, 1993, McCulloch and Rossi, 2000, and Train, 
2009). However, all these MSL and Bayesian techniques require extensive simulation, 
are time-consuming, are not very straightforward to implement, and create convergence 
assessment problems as the number of dimensions of integration increases. Besides, they 
do not possess the simulation-free appeal of the CML function in the first place.  

To accommodate the situation when the CML function itself may involve the evaluation 
of MVNCD functions, Bhat (2011) proposed a combination of an analytic approximation 
method to evaluate the MVNCD function with the CML function, and labeled this as the 
Maximum Approximate Composite Marginal Likelihood (MACML) approach. While 
several analytic approximations have been reported in the literature for MVNCD 
functions (see, for example, Solow, 1990, Joe, 1995, Gassmann et al., 2002, and Joe, 
2008), the one Bhat proposes for his MACML approach is based on decomposition into a 
product of conditional probabilities. Similar to the CML approach that decomposes a 
large multidimensional problem into lower level dimensional components, the analytic 
approximation method also decomposes the MVNCD function to involve only the 
evaluation of lower dimensional univariate and bivariate normal cumulative distribution 
functions. Thus, there is a type of conceptual consistency in Bhat’s proposal of 
combining the CML method with the MVNCD analytic approximation. The net result is 
that the approximation approach is fast and lends itself nicely to combination with the 
CML approach. Further, unlike Monte-Carlo simulation approaches, even two to three 
decimal places of accuracy in the analytic approximation is generally adequate to 
accurately and precisely recover the parameters and their covariance matrix estimates 
because of the smooth nature of the first and second derivatives of the approximated 
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analytic log-likelihood function. The MVNCD approximation used by Bhat for discrete 
choice mode estimation itself appears to have been first proposed by Solow (1990) based 
on Switzer (1977), and then refined by Joe (1995). However, the focus of the earlier 
studies was on computing a single MVNCD function accurately rather than Bhat’s use of 
the approximation for choice model estimation where multiple MVNCD function 
evaluations are needed. 

To describe the MVNCD approximation, let ) ,..., , ,( 321 IWWWW  be a multivariate 

normally distributed random vector with zero means, variances of 1, and a correlation 
matrix Σ . Then, interest centers on approximating the following orthant probability: 

)  ..., ,  ,  ,( Pr)( Pr 332211 II wWwWwWwW <<<<=< wW .  (1.28) 

The above joint probability may be written as the product of a bivariate marginal 
probability and univariate conditional probabilities as follows (I ≥ 3): 
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Next, define the binary indicator iI
~

 that takes the value 1 if ii wW <  and zero otherwise. 

Then )()
~

( ii wIE Φ= , where (.)Φ  is the univariate normal standard cumulative 

distribution function. Also, we may write the following: 

, )](1)[(                                  

)()()
~

()
~

,
~

(Cov

  ),()(),,()
~

()
~

()
~~

()
~

,
~

(Cov
2

2

ii

iiiii

jiijjijijiji

ww

wwIVarII

jiwwwwIEIEIIEII

Φ−Φ=
Φ−Φ==

≠ΦΦ−Φ=−= ρ

  (1.30) 

where ijρ  is the ijth element of the correlation matrix Σ . With the above preliminaries, 

consider the following conditional probability: 
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The right side of the expression may be approximated by a linear regression model, with 

iI
~

 being the “dependent” random variable and )
~

,...
~

,
~

(
~

121 −< = iIIIiI  being the independent 

random variable vector.4 In deviation form, the linear regression for approximating 
Equation (1.31) may be written as: 

                                                 
4
 This first-order approximation can be continually improved by increasing the order of the approximation. For 

instance, a second-order approximation would approximate the right side of Equation (1.31) by the expectation from 
a linear regression model that has 

iI
~  as the “dependent” random variable and 
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iI  as the independent random variable vector, where 

.
~~~

jiji III ′′′′ =  Essentially this adds second-order interactions in the independent random variable vector (see Joe, 

1995). However, doing so entails trivariate and four-variate normal cumulative distribution function (CDF) 
evaluations (when I >4) as opposed to univariate and bivariate normal CDF evaluations in the first-order 
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η~)]
~

(
~
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~

(
~ +−′=− << ii IIα EIEI ii ,  (1.32) 

where α  is the least squares coefficient vector and η~  is a mean zero random term. In this 
form, the usual least squares estimate of α  is given by: 

iiiα <
−
< ⋅= ,

1 ΩΩˆ , where  (1.33) 
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Finally, putting the estimate of α̂  back in Equation (1.32), and predicting the expected 

value of iI
~

 conditional on 1=< iI
~

 (i.e., )1
~

  ,1
~

  ,1
~

121 === −iIII , we get the following 

approximation for Equation (1.31): 
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iii ,
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 (1.35) 

This conditional probability approximation can be plugged into Equation (1.29) to 
approximate the multivariate orthant probability in Equation (1.28). The resulting 
expression for the multivariate orthant probability comprises only univariate and bivariate 
standard normal cumulative distribution functions. 

One remaining issue is that the decomposition of Equation (1.28) into conditional 
probabilities in Equation (1.29) is not unique. Further, different permutations (i.e., 

orderings of the elements of the random vector ) ,..., , ,( 321 IWWWW=W ) for the 
decomposition into the conditional probability expression of Equation (1.29) will lead, in 
general, to different approximations. One approach to resolve this is to average across the 

2/!I  permutation approximations. However, as indicated by Joe (1995), the average over 
a few randomly selected permutations is typically adequate for the accurate computation 
of the multivariate orthant probability. In the case when the approximation is used for 

                                                                                                                                                             
approximation, thus increasing computational burden. As discussed in Bhat (2011) and shown in Bhat and 
Sidharthan (2011), the first-order approximation is more than adequate (when combined with the CML approach) 
for estimation of MNP models. Thus, in the rest of this report, we will use the term approximation to refer to the 
first-order approximation evaluation of the MVNCD function.   



 

18 

model estimation (where the integrand in each individual’s log-likelihood contribution is 
a parameterized function of the β  and Σ  parameters), even a single permutation of the 
W vector per choice occasion may suffice, as several papers in the literature have now 
shown (see later chapters). 
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 Chapter 2. Application to Traditional Discrete Choice Models 

In this section, we will develop a blueprint (complete with matrix notation) for the use of 
the CML inference method to estimate traditional discrete choice models. The focus will 
be on two specific kinds of discrete choice models: Ordered-response models and 
unordered-response models. In the case when there are only two alternatives to choose 
from (the binary choice case), the ordered-response and the unordered-response 
formulations collapse to the same structure. But these formulations differ when extended 
to the multinomial (more than two alternatives) choice case. The next section provides a 
brief overview of ordered-response and unordered-response model systems. Section 2.2 
then focuses on aspatial specifications within each type of discrete choice model, while 
Section 2.3 focuses on spatial specifications. Section 2.4 discusses applications of the 
CML method to count models. In each of Sections 2.2, 2.3, and 2.4, we provide a list of 
references of applications after presenting the formulation and CML estimation approach. 
Doing so allows us to present the model structure and estimation without unnecessary 
interspersing with references. The contents of the individual sections do inevitably draw 
quite substantially from the corresponding references of applications. Also, codes to 
estimate most of the models presented are available at 
http://www.caee.utexas.edu/prof/bhat/CODES.htm (these codes are in the GAUSS matrix 
programming language). 

 2.1 Ordered and Unordered-Response Model Systems 

Ordered-response models are used when analyzing discrete outcome data with a finite 
number of mutually exclusive categories that may be considered as manifestations of an 
underlying scale that is endowed with a natural ordering. Examples include ratings data 
(of consumer products, bonds, credit evaluation, movies, etc.), or likert-scale type 
attitudinal/opinion data (of air pollution levels, traffic congestion levels, school academic 
curriculum satisfaction levels, teacher evaluations, etc.), or grouped data (such as 
bracketed income data in surveys or discretized rainfall data). In all of these situations, 
the observed outcome data may be considered as censored (or coarse) measurements of 
an underlying latent continuous random variable. The censoring mechanism is usually 
characterized as a partitioning or thresholding of the latent continuous variable into 
mutually exclusive (non-overlapping) intervals. The reader is referred to McKelvey and 
Zavoina (1975) and Winship and Mare (1984) for some early expositions of the ordered-
response model formulation. The reader is also referred to Greene and Hensher (2010) for 
a comprehensive history and treatment of the ordered-response model structure. These 
reviews indicate the abundance of applications of the ordered-response model in the 
sociological, biological, marketing, and transportation sciences, and the list of 
applications only continues to grow rapidly.  

Unordered-response models are used when analyzing discrete outcome data with a finite 
number of mutually exclusive categories that do not represent any kind of ordinality. 
Examples include mode choice data or brand choice data or college choice data. In 
general, unordered-response models will include valuations (by decision-makers) of 
attributes that are alternative-specific. Most unordered-response models in economics and 
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other fields are based on the concept of utility-maximizing. That is, the attributes and 
individual characteristics are assumed to be translated into a latent utility index for each 
alternative, and the individual chooses the alternative that maximizes utility. The reader is 
referred to Train (2009) for a good exposition of the unordered-response model 
formulation.  

In general, the ordered-response formulation may be viewed as originating from a 
decision-rule that is based on the horizontal partitioning of a single latent variable, while 
the unordered-response formulation may be viewed as originating from a decision-rule 
that is based on the vertical comparison of multiple latent variables (one each for each 
alternative, that represents the composite utility of each alternative) to determine the 
maximum. A detailed theoretical comparison of the two alternatives is provided in Bhat 
and Pulugurta (1998).  

 2.2 Aspatial Formulations  

 2.2.1 Ordered-Response Models 

The applications of the ordered response model structure are quite widespread. The 
aspatial formulations of this structure may take the form of a cross-sectional univariate 
ordered-response probit (CUOP), a cross-sectional multivariate ordered-response probit 
(CMOP), or a panel multivariate ordered-response probit (PMOP). Within each of these 
formulations, many different versions are possible. In the discussion below, we present 
each formulation in turn in a relatively general form.  

2.2.1.1 The CUOP Model 

Most applications of the ordered-response model structure are confined to the analysis of 
a single outcome at one point in time (that is, a cross-sectional analysis). Let q be an 
index for observation units or individuals (q = 1, 2,…, Q, where Q denotes the total 
number of individuals in the data set), and let k be the index for ordinal outcome category 
(k =1, 2,…, K). Let the actual observed discrete (ordinal) level for individual q be qm  (

qm may take one of the K values; i.e., qm ∈{1, 2,…, K}). In the usual ordered response 

framework notation, we may write the latent propensity ( *
qy ) for the ordered-response 

variable as a function of relevant covariates and relate this latent propensity to the ordinal 
outcome categories through threshold bounds: 

 kyy qqq =+′= ,* εqq xβ  if kqqkq y ,
*

1, ψψ <<− , (2.1) 

where qx  is an (L×1) vector of exogenous variables (not including a constant), qβ  is a 

corresponding (L×1) vector of individual-specific coefficients to be estimated, qε  is an 

idiosyncratic random error term that we will assume in the presentation below is 
independent of the elements of the vectors qβ  and qx , and kqψ ,  is the individual-specific 

upper bound threshold for discrete level k ( −∞=0,qψ  and 

qKqqqKq ∀∞<<<<<∞−∞= −1,2,1,, ...; ψψψψ in the usual ordered response fashion). The 
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qε  terms are assumed independent and identical across individuals. The typical 

assumption for qε is that it is either normally or logistically distributed, though non-

parametric or mixtures-of-normal distributions may also be considered. In this report, we 
will consider a normal distribution for qε , because this has substantial benefits in 

estimation when qβ is also considered to be multivariate normally distributed (or skew 

normally distributed, or mixtures of normal distributed). For identification reasons, the 

variance of qε  is normalized to one.
5
 

Next, consider that the individual-specific thresholds are parameterized as a non-linear 
function of a set of variables qz  (which does not include a constant), )(, qkkq f z=ψ . The 

non-linear nature of the functional form should ensure that (1) the thresholds satisfy the 
ordering condition (i.e.,−∞ < ),1,21 ∞<<< −Kqqq ψψψ  and (2) allows identification for 

any variables that are common in qx  and qz . There are several plausible reasons 

provided in the ordered-response literature to motivate such varying thresholds across 
observation units, all of which originate in the realization that the set of thresholds 
represents a dimension to introduce additional heterogeneity over and beyond the 
heterogeneity already embedded in the latent variable *

qy . For instance, the threshold 

heterogeneity may be due to a different triggering mechanism (across individuals) for the 
translation (mapping) of the latent underlying *

qy  propensity variable to observed ordinal 

data or different perceptions (across respondents) of response categories in a survey. 
Such generalized threshold models are referred to by different names based on their 
motivating origins, but we will refer to them in the current report as generalized ordered-
response probit (GORP) models. Following Eluru et al. (2008), we parameterize the 
thresholds as: 

)exp(1,, qkkqkq α zγk′++= −ψψ  (2.2)
 

In the above equation, kα  is a scalar, and kγ  is a vector of coefficients associated with 

ordinal level 1 ,...,2 ,1 −= Kk . The above parameterization immediately guarantees the 
ordering condition on the thresholds for each and every individual, while also enabling 

the identification of parameters on variables that are common to the qx
 and qz

 vectors. 

For identification reasons, we adopt the normalization that ,1qψ
= 1exp( )α

 for all q 
(equivalently, all elements of the vector 1γ  are normalized to zero, which is innocuous as 

long as the vector qx
 is included in the risk propensity equation). 

                                                 
5 The exclusion of a constant in the vector xq of Equation (2.1) is an innocuous normalization as long as all the 
intermediate thresholds (ψ1 through ψK–1) are left free for estimation. Similarly, the use of the standard normal 
distribution rather than a non-standard normal distribution for the error term is also an innocuous normalization (see 
Zavoina and McKelvey, 1975; Greene and Hensher, 2010).  
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Finally, to allow for unobserved response heterogeneity among observations, the 
parameter qβ  is defined as a realization from a multivariate normal distribution with 

mean vector b and covariance matrix ,LL ′=Ω where L is the lower-triangular Cholesky 

factor of Ω.6 Then, we can write ,
~

qq βbβ +=  where ),(~
~

Ω0Lq MVNβ  ( LMVN  

represents the multivariate normal distribution of dimension L). If this multivariate 
distribution becomes degenerate, then qq ∀= bβ , and the Random Coefficients-

Generalized Ordered Response Probit (RC-GORP) model collapses to the Generalized 
Ordered Response Probit (GORP) model. Further, in the GORP model, if all elements of 

kγ  are zero for all k, the result is the standard ordered-response probit (SORP) model. 

The CUOP model of Equation (2.1) may be written as: 

kyy qqqq =++′= ,
~* εqq xβxb  if kqqkq y ,

*
1, ψψ <<− .  (2.3) 

Then, the latent variable is univariate normally distributed as ),,(~ 2*
qqq BNy σ  where 

qxb ′=qB  and .12 +′= qq xx Ωqσ   (2.4) 

Estimation is straightforward in this case using the maximum likelihood method. The 
parameter vector to be estimated in the model is , ),,,,( ′′′′′= αγbθ δΩ  where Ω  is a 
column vector obtained by vertically stacking the upper triangle elements of the matrix 
Ω , ,),...,,( ′′′′= 132 -Iγγγγ and ),...,,( 121 ′= −Kαααα . The likelihood function )(θL  for the 

CUOP model takes the following form: 

,)()(
1,,
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where  (.)Φ is the univariate cumulative standard normal distribution function. To ensure 
the positive definiteness of the covariance matrixΩ , the likelihood function is rewritten 
in terms of the Cholesky-decomposed matrix L of Ω . The maximum simulated 
likelihood approach then proceeds by optimizing with respect to the elements of L rather 
than Ω . Once convergence is achieved, the implied covariance matrix Ω  may be 
reconstructed from the estimated matrix L. 

The estimation of the CUOP model presented above is very straightforward, and there 
have been many applications of the model or its more restrictive variants. In addition, 
there is a sprinkling of applications associated with two and three correlated ordered-
response outcomes. Studies of two correlated ordered-response outcomes include Scotti 
(2006), Mitchell and Weale (2007), Scott and Axhausen (2006), and LaMondia and Bhat 

Kanaroglou(2011). The study by Scott and  (2002) represents an example of three 

                                                 
6
 For ease of presentation, we will treat all elements of βq as random, but this is not necessary; the researcher can fix 

some elements of βq and let the remaining elements be random. Also, it should be noted that, while random 
coefficients on exogenous variables can be estimated with cross-sectional data, it is generally easier to estimate 
random coefficients with panel or repeated-choice data where the random coefficients on the exogenous variables 
are specified to be individual-specific and the overall residual error term is specified to be choice-occasion specific.  
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correlated ordered-response outcomes. But the examination of more than two to three 
correlated outcomes is rare, mainly because the extension to an arbitrary number of 
correlated ordered-response outcomes entails, in the usual likelihood function approach, 
integration of dimensionality equal to the number of outcomes. On the other hand, there 
are many instances when interest may be centered around analyzing more than three 
ordered-response outcomes simultaneously, such as in the case of the number of episodes 
of each of several activity purposes, or satisfaction levels associated with a related set of 

multiple ratings measures regarding the state of health of an products/services, or 
individual/organization (we will refer to such outcomes as cross-sectional multivariate 
ordered-response outcomes). There are also instances when the analyst may want to 
analyze time-series or panel data of ordered-response outcomes over time, and allow 
flexible forms of error correlations over these outcomes. For example, the focus of 
analysis may be to examine rainfall levels (measured in grouped categories) over time in 
each of several spatial regions, or individual stop-making behavior over multiple days in 
a week, or individual headache severity levels at different points in time (we will refer to 
such outcomes as panel multivariate ordered-response outcomes).  

In the analysis of cross-sectional and panel ordered-response systems with more than 
three outcomes, the norm has been to apply numerical simulation techniques based on a 
maximum simulated likelihood (MSL) approach (for example, see Bhat and Zhao, 2002, 
Greene, 2009, and Greene and Hensher, 2010) or a Bayesian inference approach (for 
example, see Müller and Czado, 2005 and Girard and Parent, 2001). However, such 
simulation-based approaches become impractical in terms of computational time, or even 
infeasible, as the number of ordered-response outcomes increases. Even if feasible, the 
numerical simulation methods do get imprecise as the number of outcomes increase, 
leading to convergence problems during estimation (see Bhat et al. 2010a and Müller and 
Czado, 2005). As a consequence, another approach that has seen some (though very 
limited) use recently is the composite marginal likelihood (CML) approach, as discussed 
next.  

References for the CUOP Model 

There have been many applications of the cross-sectional generalized ordered-response 
model. The reader is referred to Greene and Hensher (2010) and Eluru et al. (2008). 

2.2.1.2 The CMOP Model 

In many cases, a whole set of ordinal variables may be inter-related due to unobserved 
factors. For instance, the injury severity levels sustained by the occupants of a vehicle in 
a specific crash may be inter-related due to unobserved crash factors (in addition to being 
related due to observed crash factors), as may be the injury severity level of all occupants 
across all vehicles involved in a crash. Similarly, the evaluation ratings of a student of a 
professor on multiple dimensions (such as “interest in student learning”, “course well 
communicated”, and “tests returned promptly) may also be correlated. The estimation of 
such multivariate ordered outcome models are discussed in this section. 

As earlier, let q be an index for individuals (q = 1, 2,…, Q, where Q denotes the total 
number of individuals in the data set), and let i be an index for the ordered-response 
variable (i = 1, 2,…, I, where I denotes the total number of ordered-response variables for 
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each individual). Let ik  be the index for ordinal outcome category ).,...,2,1( ii Kk = . Let 

the actual observed discrete (ordinal) level for individual q and variable i be mqi (mqi may 
take one of Ki values; i.e., mqi ∈{1, 2,…, Ki} for variable i). In the usual ordered response 
framework notation, we write: 

 iqiqiqi kyy =+′= ,* εqqi xβ  if i
kqqi

i
kq ii

y ,
*

1, ψψ <<− , (2.6) 

where all notations are as earlier except for the addition of the index i. Define 
,),...,,( **

2
*
1 ′= qIqq yyy*

qy qq x ′⊗= IIDENx~   (I×IL matrix; IIDEN  is an identity matrix of 

size I), ,
~

qiqi βbβ i +=  ),...,,(  vector),1×()
~

 ..., ,
~

,
~

(
~

21 ′′′′=′′′′= I21 bbbbββββ ILqIqqq  (IL×1 

vector), 1(),...,,( ,
2
,

1
, 2

×= II
mqmqmq qIqqi

ψψψupψq  vector), 

)1(),...,,( 1,
2

1,
1

1, 2
×= −−− II

mqmqmq qIqqi
ψψψlowψq  vector, and let ),(~

~
Ω0LIq MVN ×β . Also, let 

)exp(1,, qkki zγ ′++= − ki
i

kq
i

kq αψψ , and define ,),...,,( ,),...,,( ′′′′=′′′′= Ii,-Kiii γγγγγγγγ
i 21132

.),...,,(and,),...,,( 121 ′′′′=′= − Ii ααααα 21iKii ααα  The qiε  terms are assumed independent 

and identical across individuals (for each and all i). For identification reasons, the 
variance of each qiε  term is normalized to 1. However, we allow correlation in the qiε  

terms across variables i for each individual q. Specifically, we define 
,)',,,,( 321 qIqqqqε εεεε =  and assume that qε  is multivariate normal distributed with a 

mean vector of zeros and a correlation matrix as follows: 
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  (2.7)  

qε ~ [ ],N 0 Σ  

The off-diagonal terms of Σ, along with the covariance matrix Ω , capture the error 
covariance across the underlying latent continuous variables; that is, they capture the 
effects of common unobserved factors influencing the underlying latent propensities. 
These are the so-called polychoric covariances between pairs of observed ordered-

response variables. Then, we can write: 
),(~ qq

*
q By ΞIMVN

, where 
bBq qx~=

 and 
ΣxΩxΞ +′= qq

~~
q . Let the vector of actual observed ordinal outcomes for individual q be 

stacked into an (I×1) vector ) ..., . , ,( 21 ′= qIqqq mmmm . Also let ) ..., . , ,( 21 ′= qIqqq yyyy . 

The parameter vector to be estimated in the CMOP model is . ),,,,( ′′′′′′= αγbθ ΣΩ  The 
likelihood function for individual q takes the following form: 

,),|()()(
*

===
qy

D

I dfPL *
q

*
qqq yBymyθ Ξ   (2.8) 
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where *
qy

D  is the integration domain defined as }:{*y

lowlow ψψ q
*
qq

*
q yy <<=

q
D  , and (.)If  

is the multivariate normal density function of dimension I . The likelihood function above 
involves I-dimensional rectangular integrals for each individual q. 

As indicated earlier, models that require integration of more than three dimensions (I >3) 
in a multivariate ordered-response model are typically estimated using maximum 
simulation likelihood (MSL) approaches. Balia and Jones (2008) adopt such a 
formulation in their eight-dimensional multivariate probit model of lifestyles, morbidity, 
and mortality. They estimate their model using a Geweke-Hajivassiliou-Keane (GHK) 
simulator. Yet another MSL method to approximate the MVNCD function in the 
likelihood functions of Equation (2.8) is based on the Genz-Bretz (GB) algorithm (see 
Bhat et al., 2010b for a discussion). Alternatively, Chen and Dey (2000), Herriges et al. 
(2008), Jeliazkov et al. (2008), and Hasegawa (2010) have considered a Bayesian 
estimation approach for the multivariate ordered response system through the use of 
standard Markov Chain Monte Carlo (MCMC) techniques. In particular, the Bayesian 
approach is based on assuming prior distributions on the non-threshold parameters, 
reparameterizing the threshold parameters, imposing a standard conjugate prior on the 
reparameterized version of the error covariance matrix and a flat prior on the transformed 
threshold, obtaining an augmented posterior density using Baye’s Theorem for the 
reparameterized model, and fitting the model using a Markov Chain Monte Carlo 
(MCMC) method. Unfortunately, the method remains cumbersome, requires extensive 
simulation, and is time-consuming. Further, convergence assessment becomes difficult as 
the number of dimensions increase (see Müller and Czado, 2005). In this regard, both the 
MSL and the Bayesian approaches are “brute force” simulation techniques that are not 
very straightforward to implement and can create numerical stability, convergence, and 
precision problems as the number of dimensions increase. 

The CML estimation of the CMOP model, on the other hand, can be very effective and 
fast. In particular, the pairwise likelihood function for individual q is formed by the 
product of likelihood contributions of pairs of ordinal variables as follows: 
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where )(.,.,2 qigρΦ  is the standard bivariate normal cumulative distribution function with 

correlation qigρ , ( )
( )

( ) ( ) ,
VarVar

,Cov
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and the ( )*Var qiy , 

( ),Var *
qgy  and ( )** ,Cov qgqi yy  terms are obtained by picking off the appropriate 22× sub-

matrix of the larger covariance matrix qΞ  of ) ..., , ,( **
2

*
1 qIqq yyy . The pairwise marginal 

likelihood function is )()( , θθ CMOP
qCML

q
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The asymptotic covariance matrix estimator is 
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An alternative estimator for Ĥ is as below: 
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One final issue. The covariance matrix Ξ  has to be positive definite, which will be the 

case if the matrices Ω and Σ  are positive definite. The simplest way to ensure the 
positive-definiteness of these matrices is to use a Cholesky-decomposition and 
parameterize the CML function in terms of the Cholesky parameters (rather than the 
original covariance matrices). Also, the matrix Σ  is a correlation matrix, which can be 
maintained by writing each diagonal element (say the aath element) of the lower 

triangular Cholesky matrix of Σ  as 
−

=

−
1

1

21
a

j
ajl , where the ajl  elements are the Cholesky 

factors that are estimated.  
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2.2.1.3. The PMOP Model 

As earlier, let q be an index for individuals (q = 1, 2, …, Q), and let t be an index for the 
tth observation on individual q (t = 1, 2, …, T, where T denotes the total number of 
observations on individual q).7 Let the observed discrete (ordinal) level for individual q at 
the tth observation be mqt (mqt may take one of K values; i.e., mqt ∈{1, 2,…, K}). In the 
usual random-coefficients ordered response framework notation, we write the latent 
variable ( *

qty ) as a function of relevant covariates as: 

kyy qtqtqt =+= ,* εqt
'
q xβ  if ktqqjktq y ,,

*
1,, ψψ <<− ,                                                           (2.12) 

where qtx  is a (L×1)-vector of exogenous variables (including a constant now), qβ  is an 

individual-specific (L×1)-vector of coefficients to be estimated that is a function of 
unobserved individual attributes, qtε  is a standard normal error term uncorrelated across 

individuals q and across observations of the same individual, and ktq ,,ψ  is the upper 

bound threshold for ordinal discrete level k (k=1,2,…,K) for individual q at choice 
occasion t. The thresholds are written as )exp(1,,,, qtkktqktq α zγk′++= −ψψ  for k=2,3,…,K-

1, with . 0, ,  ;... ,,1,,0,,,,1,,2,,1,,0,, +∞==−∞=<<<< − KtqtqtqKtqKtqtqtqtq ψψψψψψψψ  

Assume that the qβ  vector in Equation (2.12) is a time-invariant realization from a 

multivariate normal distribution with a mean vector b and covariance matrix ,LL ′=Ω

where L is the lower-triangular Cholesky factor of Ω.8 Also, assume that the qtε  term, 

which captures the idiosyncratic effect of all omitted variables for individual q at the tth 
choice occasion, is independent of the elements of the qβ  and qtx  vectors. Define 

) ..., . , ,( 21 ′= qTqqq yyyy matrix)1( ×T , ) ..., . , ,( 21 ′= qTqq εεεqε matrix)1( ×T  

)matrix1() ..., , ,( **
2

*
1 ×′= Tyyy qTqq

*
qy ,  matrix),()',...,,( LT ×= qTqqq xxxx 21

vector),1(),...,,( ,,,2,,1, 2
×= T

qTqqi mTqmqmq ψψψupψq  

)1(),...,,( 1,,1,2,1,1, 2
×= −−− T

qJqqi mTqmqmq ψψψlowψq  vector. Also, let the vector of actual 

observed ordinal outcomes for individual q be stacked into a (T×1) vector 

                                                 
7 We assume here that the number of panel observations is the same across individuals. Extension to the case of 
different numbers of panel observations across individuals does not pose any substantial challenges, and will be 
discussed later.  
8
 More general autoregressive structures can also be considered for 

qtε  and 
qβ  to accommodate fading and time-

varying covariance effects in the latent variables *
qty  (see Bhat, 2011 and Paleti and Bhat, 2013). This does not 

complicate the econometrics of the CML estimation method, but can lead to substantial number of additional 
parameters and may be asking too much from typical estimation data sets. In this paper, we present the case of 
independent 

qtε  across choice occasions and time-invariant random coefficients. 
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) ..., . , ,( 21 ′= qTqqq mmmm . Then, we may write 

)(andwhere),(~ TTMVN IDENΩΞΞ +′== qqqqqqq
*
q xxbxB,By , and the parameter 

vector to be estimated in the PMOP model is  ),,,( ′′′′′= αγbθ Ω , where 

),...,,( ′′′′= 1-Kγγγγ 32  and .),...,,( 132 ′′′′= −Kαααα  The likelihood function for individual q 

takes the following form: 

,)|()()(
*

===
qy

D

T dfPL *
qqq

*
qqq y,Bymyθ Ξ  (2.13) 

where *y
D  is the integration domain defined as }:{*y

lowlow ψψ q
*
qq

*
q yy <<=

q
D  , and 

(.)Tf  is the multivariate normal density function of dimension T . The likelihood 
function above involves T-dimensional rectangular integrals for each individual q. The 
above model is labeled as a mixed autoregressive ordinal probit model by Varin and 
Czado (2010), who examined the headache pain intensity of patients over several 
consecutive days. In this study, a full information likelihood estimator would have 
entailed as many as 815 dimensions of rectangular integration to obtain individual-
specific likelihood contributions, an infeasible proposition using the computer-intensive 
simulation techniques. As importantly, the accuracy of simulation techniques is known to 
degrade rapidly at medium-to-high dimensions, and the simulation noise increases 
substantially. On the other hand, the CML approach is easy to apply in such situations, 
through a pairwise marginal likelihood approach that takes the following form: 
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where 
( )

( )
( ) ( )**

**

*

,,

,,
VarVar

,Cov
and

Var qgqt

qgqt
qtg

qt

mtq

mtq
yy

yy

y

qt

qt
=

−
= ρ
ψ

ϕ qt
' xb

   

In the above expression, the ( )*Var qty , ( )*Var qgy , and ( )** ,Cov qgqt yy  terms are obtained by 

picking off the appropriate ( 22× )-sub-matrix of the larger covariance matrix qΞ  of 

) ..., , ,( **
2

*
1 qTqq yyy . The pairwise marginal likelihood function is )()( , θθ PMOP

qCML
q

PMOP
CML LL ∏=

. The covariance matrix of the estimator can be obtained exactly as in the CMOP case.  

The analysis above assumes the presence of a balanced panel; that is, it assumes the same 
number of choice instances per individual. In the case when the number of choice 
instances varies across individuals, Joe and Lee (2009) proposed placing a power weight 
for individual q as 11 )]1(5.01[)1( −− −+−= qqq TTw  (where the number of observations 
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from individual q is qT ) and constructing the marginal likelihood contribution of 

individual q as: 
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 2.2.2 Unordered-Response Models 

In the class of unordered-response models, the “workhorse” multinomial logit model 
introduced by Luce and Suppes (1965) and McFadden (1974) has been used extensively 
in practice for econometric discrete choice analysis, and has a very simple and elegant 
structure. However, it is also saddled with the familiar independence from irrelevant 
alternatives (IIA) property – that is, the ratio of the choice probabilities of two 
alternatives is independent of the characteristics of other alternatives in the choice set. 
This has led to several extensions of the MNL model through the relaxation of the 
independent and identically distributed (IID) error distribution (across alternatives) 
assumption. Two common model forms of non-IID error distribution include the 
generalized extreme-value (GEV) class of models proposed by McFadden (1978) and the 
multinomial probit (MNP) model that allows relatively flexible error covariance 
structures (up to certain limits of identifiability; see Train, 2009, Chapter 5). Both of 
these non-IID kernel structures (or even the IID versions of the GEV and the MNP 
models, which lead to the MNL and the independent MNP models, respectively) can 
further be combined with continuous mixing error structures. While many different 
continuous distributions can be used to accommodate these additional structures, it is 
most common to adopt a normal distribution. For instance, when introducing random 
coefficients, it is typical to use the multivariate normal distribution for the mixing 
coefficients, almost to the point that the terms mixed logit or mixed GEV or mixed probit 
are oftentimes used synonymously with normal mixing (see Fiebig et al., 2010, Dube et 
al., 2002).9  

                                                 
9
 It has been well known that using non-normal distributions can lead to convergence/computational problems, and it 

is not uncommon to see researchers consider non-normal distributions only to eventually revert to the use of a 
normal distribution (see, for example, Bartels et al., 2006 and Small et al., 2005). However, one appealing approach 
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In the context of the normal error distributions just discussed, the use of a GEV kernel 
structure leads to a mixing of the normal distribution with a GEV kernel, while the use of 
an MNP kernel leads once again to an MNP model. Both structures have been widely 
used in the past, with the choice between a GEV kernel or an MNP kernel really being a 
matter of “which is easier to use in a given situation” (Ruud, 2007). In recent years, the 
mixing of the normal with the GEV kernel has been the model form of choice in the 
economics and transportation fields, mainly due to the relative ease with which the 
probability expressions in this structure can be simulated (see Bhat et al., 2008 and Train, 
2009 for detailed discussions). On the other hand, the use of an MNP kernel has not seen 
as much use in recent years, because the simulation estimation is generally more difficult. 
In any case, while there have been several approaches proposed to simulate these models 
with a GEV or an MNP kernel, most of these involve pseudo-Monte Carlo or quasi-
Monte Carlo simulations in combination with a quasi-Newton optimization routine in a 
maximum simulated likelihood (MSL) inference approach (see Bhat, 2001, 2003). As has 
been discussed earlier, in such an inference approach, consistency, efficiency, and 
asymptotic normality of the estimator is critically predicated on the condition that the 
number of simulation draws rises faster than the square root of the number of individuals 
in the estimation sample. Unfortunately, for many practical situations, the computational 
cost to ensure good asymptotic estimator properties can be prohibitive and literally 
infeasible (in the context of the computation resources available and the time available 
for estimation) as the number of dimensions of integration increases.  

The Maximum Approximate Composite Marginal Likelihood (MACML) inference 
approach proposed by Bhat (2011), on the other hand, allows the estimation of models 
with both GEV and MNP kernels using simple, computationally very efficient, and 
simulation-free estimation methods. In the MACML inference approach, models with the 
MNP kernel, when combined with additional normal random components, are much 
easier to estimate because of the conjugate addition property of the normal distribution 
(which puts the structure resulting from the addition of normal components to the MNP 
kernel back into an MNP form). On the other hand, the MACML estimation of models 
obtained by superimposing normal error components over a GEV kernel requires a 
normal scale mixture representation for the extreme value error terms, and adds an 
additional layer of computational effort (see Bhat, 2011). Given that the use of a GEV 
kernel or an MNP kernel is simply a matter of convenience, we will henceforth focus in 
this report on the MNP kernel within the unordered-response model structure. 

The aspatial formulations of the unordered-response structure may take the form of a 
cross-sectional multinomial probit (CMNP), or a cross-sectional multivariate multinomial 
probit (CMMNP), or a panel multinomial probit (PMNP).  

2.2.2.1 The CMNP Model 

In the discussion below, we will assume that the number of choice alternatives in the 
choice set is the same across all individuals. The case of different numbers of choice 
alternatives per individual poses no complication, since the only change in such a case is 

                                                                                                                                                             
is to use a multivariate skew-normal (MSN) distribution for the response surface, as proposed by Bhat and 
Sidharthan (2012).  
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that the dimensionality of the multivariate normal cumulative distribution (MVNCD) 
function changes from one individual to the next.  

Consider the following specification of utility for individual q and alternative i: 

),(~
~

,
~

  ; Ω0Lqiqi MVNU qqqqiq ββbβxβ +=+′= ξ ,  (2.16) 

where qix  is an )1( ×L -column vector of exogenous attributes (including a constant for 

each alternative, except one of the alternatives), and qβ  is an individual-specific )1( ×L -

column vector of corresponding coefficients that varies across individuals based on 
unobserved individual attributes. Assume that the qβ  vector is a realization from a 

multivariate normal distribution with a mean vector b and covariance matrix LL ′=Ω . 
We also assume that qiξ  is independent and identically normally distributed across q, but 

allow a general covariance structure across alternatives for individual q. Specifically, let 
),...,,( 21 ′= qIqq ξξξqξ  ( 1×I vector). Then, we assume Λ),0(~ IMVNqξ . As usual, 

appropriate scale and level normalization must be imposed on Λ  or identifiability. 
Specifically, only utility differentials matter in discrete choice models. Taking the utility 
differentials with respect to the first alternative, only the elements of the covariance 

matrix 1Λ  of )1(
~

11 ≠−= iqqiqi ξξξ  are estimable. However, the MACML inference 

approach proposed here, like the traditional GHK simulator, takes the difference in 
utilities against the chosen alternative during estimation. Thus, if individual q is observed 
to choose alternative qm , the covariance matrix 

qmΛ  is desired for the individual. 

However, even though different differenced covariance matrices are used for different 
individuals, they must originate in the same matrix Λ . To achieve this consistency, Λ is 
constructed from 1Λ  by adding an additional row on top and an additional column to the 
left. All elements of this additional row and additional column are filled with values of 
zeros. An additional normalization needs to be imposed on Λ  because the scale is also 
not identified. For this, we normalize the element of Λ  in the second row and second 
column to the value of one. Note that these normalizations are innocuous and are needed 
for identification. The Λ  matrix so constructed is fully general. Also, in MNP models, 
identification is tenuous when only individual-specific covariates are used (see Keane, 
1992 and Munkin and Trivedi, 2008). In particular, exclusion restrictions are needed in 
the form of at least one individual characteristic being excluded from each alternative’s 
utility in addition to being excluded from a base alternative (but appearing in some other 
utilities). But these exclusion restrictions are not needed when there are alternative-
specific variables.  

The model above may be written in a more compact form by defining the following 
vectors and matrices:

 ),...,,( 21 ′= qIqqq UUUU  1( ×I  vector), ),...,,,( ′= qIqqqq xxxxx 321  

LI ×(  matrix), bxqq =V  1( ×I  vector), qq xx ′= ΩΩq

~
 )matrix( II × , and 

IIq ×+= (
~~

ΛΩΞq  matrix). Then, we may write, in matrix notation, qqq ξVU +=  and 

).
~

,(~ qqq ΞVU IMVN  Also, let )(),,( 21 qqIqqq miuuu ≠′= u
 

be an (I–1)×1 vector, 
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where qm  is the actual observed choice of individual q, and ).( qqmqiqi miUUu
q

≠−=

Then, ,1−< Iq 0u because alternative qm  is the chosen alternative by individual q. 

To develop the likelihood function, define qM  as an identity matrix of size I-1 with an 

extra column of ‘-1’ values added at the th
qm  column (thus, qM

 
is a matrix of dimension 

)).()( I1-I ×  Then, qu  is distributed as follows: )Ξu qqB ,(~ 1−Iq MVN , where 

qqVM=qB and qq MΞMΞ ′= qq

~
. The parameter vector to be estimated is 

. ),,( ′′′′= ΛΩbθ  Let 
qΞ

ω  be the diagonal matrix of standard deviations of qΞ . Using the 

usual notations as described earlier, the likelihood contribution of individual q is as 
below: 

      ),),(()( 1
1

*
Ξ Ξω qqBθ

q
−Φ= −

−IqL   (2.17) 

where .11 −−=
qq qq ΞΞ

* ωΞωΞ         

  
The MVNCD approximation discussed earlier is computationally efficient and 
straightforward to implement when maximizing the likelihood function of Equation 
(2.17).10 As such, the MVNCD approximation can be used for any value of K and any 
value of I, as long as there is data support for the estimation of parameters. The positive-
definiteness of Σ  can be ensured by using a Cholesky-decomposition of the matrices Ω  
and Λ , and estimating these Cholesky-decomposed parameters. Note that, to obtain the 
Cholesky factor for Λ , we first obtain the Cholesky factor for 1Λ , and then add a column 
of zeros as the first column and a row of zeros as the first row to the Cholesky factor of 

1Λ . The covariance matrix in this CMOP case is obtained using the usual Fisher 
information matrix, since the full (approximate) likelihood is being maximized. 

Bhat and Sidharthan (2011) apply the MACML estimation approach for estimating the 
CMNP model with five random coefficients and five alternatives, and compare the 
performance of the MSL and MACML approaches (though, in their simulations, they 
constrain Λ to be an identity matrix multiplied by 0.5). They conclude that the MACML 
approach recovers parameters much more accurately than the MSL approach, while also 
being about 50 times faster than the MSL approach. They also note that as the number of 
random coefficients and/or alternatives in the unordered-response model increases, one 
can expect even higher computational efficiency factors for the MACML over the MSL 
approach.  

 

 

                                                 
10

As indicated earlier, the CML class of estimators subsumes the usual ordinary full-information likelihood estimator 
as a special case. It is this characteristic of the CML approach that leads us to the label MACML for the estimation 
approach proposed here. Specifically, even in cross-sectional MNP contexts, when our approach involves only the 
approximation of the MVNCD function in the maximum likelihood function, the MACML label is appropriate since 
the maximum likelihood function is a special case of the CML function. 
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2.2.2.2 The CMMNP Model 

Let there be G nominal (unordered multinomial response) variables for an individual, and 
let g be the index for variables (g = 1, 2, 3,…, G). Also, let Ig be the number of 
alternatives corresponding to the gth nominal variable (Ig≥3) and let gi be the 

corresponding index ( gi  = 1, 2, 3,…, gI ). Note that gI may vary across individuals. Also, 

it is possible that some nominal variables do not apply for some individuals, in which 
case G itself is a function of the individual q. However, for presentation ease, we assume 
that all the G nominal variables are relevant for each individual, and that all the 
alternatives gI are available for each variable g.  

Consider the gth variable and assume that the individual q chooses the alternative qgm . 

Also, assume the usual random utility structure for each alternative gi . 

,
ggg qgiqgiqgqgiU ξ+′= xβ  (2.18) 

where 
gqgix is a (Lg×1)-column vector of exogenous attributes, qgβ  is a column vector of 

corresponding coefficients, and 
gqgiξ is a normal error term. Assume that the qgβ  vector is 

a realization from a multivariate normal distribution with a mean vector gb  and 

covariance matrix gg LL ′=gΩ , where gL is the lower-triangular Cholesky factor of gΩ . 

While one can allow covariance among the qgβ  vectors across the coefficients of the 

different unordered-response variables for each individual, this specification will be 
profligate in the parameters to be estimated. So, we will assume that the qgβ vectors are 

independent across the unordered-response dimensions for each individual. We also 
assume that 

gqgiξ  is independent and identically normally distributed across individuals q, 

but allow a general covariance structure across alternatives for individual q. Specifically, 
let ),...,,( 21 ′=

gqgIqgqg ξξξqgξ  ( 1×gI vector). Then, we assume )Λg,0(~ IMVNqgξ . Let 

)(*
qggqgmqgimqgi miUUu

qggqgg
≠−= , where qgm  is the chosen alternative for the gth 

unordered-response variable by individual q, and stack the latent utility differentials into 
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a vector ( ) 
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an extra column of ‘-1’ values added at the th
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The off-diagonal elements in qΛ


capture the dependencies across the utility differentials 

of different variables, the differential being taken with respect to the chosen alternative 

for each variable. It must be ensured that qΛ


 across individuals is derived from a 

common covariance matrix Λ  for the original 
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g
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-error term vector 

) ,...,,( ′′′′= qGqqq ξξξξ 21 . Appropriate identification considerations will have to be placed 

on the elements of Λ . The parameter vector to be estimated is 
. ),,...,,,,...,( 21 ′′′′′′′′= ΛΩΩΩ21 GGbbbθ  Using the notations as described earlier, and 

defining ),...,,( 21 ′′′′=′ qGqqq BBBB  and ,ΛΩΞ q


+= qq the likelihood contribution of 

individual q is as below: 
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The above likelihood function involves the evaluation of a 
=

−
G

g
gI

1

)1( -dimensional 

integral for each individual, which can be very expensive if there are several variables 
and/or if each variable can take a large number of values. But, once again the Maximum 
Approximated Composite Marginal Likelihood (MACML) approach of Bhat (2011) can 
be used gainfully in this context, in which the MACML function only involves the 
computation of univariate and bivariate cumulative distributive functions. Specifically, 
consider the following (pairwise) composite marginal likelihood function formed by 
taking the products (across the G nominal variables) of the joint pairwise probability of 
the chosen alternatives qgm  for the gth variable and qlm  for the lth variable for individual 

q. 
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CMMNP
qCML mdmdL θ ,  (2.21) 

where qgd is an index for the individual’s choice for the gth variable. One can also write: 
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)1( columns. The net result is that the pairwise 

likelihood function now only needs the evaluation of a I


-dimensional cumulative 
normal distribution function (rather than the I

~
-dimensional cumulative distribution 

function in the maximum likelihood function). This can lead to substantial computation 
efficiency, and can be evaluated using the MVNCD approximation of the MACML 

procedure. The MACML estimator MACMLθ̂ , obtained by maximizing the logarithm of the 
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(with the MVNCD approximation), is asymptotically normal distributed with mean θ  
and covariance matrix that can be estimated as:  
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An alternative estimator for Ĥ is as below: 
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There are two important issues that need to be dealt with during estimation, each of 
which is discussed in turn below.  

 
Identification 

The estimated model needs to be theoretically identified. Suppose one considers utility 
differences with respect to the first alternative for each of the G variables. Then, the 
analyst can restrict the variance term of the top left diagonal of the covariance matrix (say 

)*
gΛ


of error differences ( ) ( ) ( )[ ] ′−−−  ,..., 11312 qgqgIqgqgqgqg g

ξξξξξξ  to 1 to account for scale 

invariance. However, note that the matrix *
gΛ


 is different from the matrix gΛ


, which 

corresponds to the covariance of utility differences taken with respect to the chosen 
alternative for the individual. Next, create a matrix of dimension 
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)1()1( similar to that of gΛ


in Equation (2.19), except that the matrix 

is expressed in terms of utility differences with respect to the first alternative for each 
nominal variable: 
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In the general case, this allows the estimation of 
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lg II  covariance terms in the off-diagonal 

matrices of the *Λ


 matrix characterizing the dependence between the latent utility 
differentials (with respect to the first alternative) across the variables (originating from 

)1()1( −×− lg II  estimable covariance terms within each off-diagonal matrix *
glΛ


 in *Λ


).  

To construct the general covariance matrix Λ  for the original 
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qξ , while also ensuring all parameters are identifiable, zero row and column vectors are 

inserted for the first alternatives of each unordered dependent variable in *Λ


. To do so, 

define a matrix D  of size 



















−×





















==

G

g
g

G

g
g II

11

)1(  . The first 1I  rows and )1( 1 −I  

columns correspond to the first variable. Insert an identity matrix of size )1( 1 −I  after 

supplementing with a first row of zeros into this first 1I  rows and )1( 1 −I  columns of D . 

The rest of the columns for the first 1I  rows and the rest of the rows for the first )1( 1 −I  

columns take a value of zero. Next, rows )1( 1 +I through )( 21 II + and columns )( 1I  

through )2( 21 −+ II  correspond to the second variable. Again position an identity matrix 

of size )1( 2 −I  after supplementing with a first row of zeros into this position. Continue 
this for all G nominal variables. Thus, for the case with two nominal variables, one 
nominal variable with 3 alternatives and the second with four alternatives, the matrix D 
takes the form shown below: 
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  (2.27) 

Then, the general covariance matrix may be developed as .DΛDΛ * ′=


 All parameters in 

this matrix are identifiable by virtue of the way this matrix is constructed based on utility 
differences and, at the same time, it provides a consistent means to obtain the covariance 

matrix qΛ


 that is needed for estimation (and is with respect to each individual’s chosen 

alternative for each variable). Specifically, define a matrix qM
~

 of size 
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nominal variable. Insert an identity matrix of size )1( 1 −I  after supplementing with a 
column of ‘-1’ values in the column corresponding to the chosen alternative. The rest of 
the columns for the first )1( 1 −I  rows and the rest of the rows for the first 1I  columns 

take a value of zero. Next, rows )( 1I  through )2( 21 −+ II and columns )1( 1 +I through

)( 21 II + correspond to the second nominal variable. Again position an identity matrix of 

size )1( 2 −I  after supplementing with a column of ‘-1’ values in the column 
corresponding to the chosen alternative. Continue this procedure for all G nominal 

variables. With the matrix qM
~

 as defined, the covariance matrix qΛ


 for any individual is 

given by .
~~

qqq MΛMΛ ′=


 

 
Positive Definiteness 

The matrices qΛ


 and qΩ


have to be positive definite. The simplest way to guarantee the 

positive definiteness of qΛ


 is to ensure that *Λ


is positive definite. To do so, the 

Cholesky matrix of *Λ


 may be used as the matrix of parameters to be estimated. 

However, note that the top diagonal element of each *Λ g


 is normalized to one for 

identification, and this restriction should be recognized when using the Cholesky factor 

of *Λ


. This can be achieved by appropriately parameterizing the diagonal elements of 

the Cholesky decomposition matrix. Thus, consider the lower triangular Cholesky matrix 
*L


 of the same size as *Λ


. Whenever a diagonal element (say the kkth element) of *Λ


 is 

to be normalized to one, the first element in the corresponding row of *L


 is written as 


=

−
k

j
kjl

2

21 , where the kjl  elements are the Cholesky factors that are to be estimated. With 

this parameterization, *Λ


obtained as 
′** LL


 is positive definite and adheres to the scaling 

conditions. Using this, one constructsΛ , and subsequently obtains qΛ


 as discussed 

earlier. The resulting qΛ


is positive definite. The positive definiteness of qΩ


is ensured 

by writing gg LL ′=gΩ .  

References for the CML Estimation of the CMMNP Model 

Bhat, C.R., Paleti, R., Pendyala, R.M., Lorenzini, K., Konduri, K.C., 2013. Accommodating 
immigration status and self selection effects in a joint model of household auto ownership 
and residential location choice. Transportation Research Record 2382, 142-150. 

Feddag, M.-L., 2013. Composite likelihood estimation for multivariate probit latent traits 
models. Communications in Statistics - Theory and Methods 42(14), 2551-2566. 
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Kortum, K., Paleti, R., Bhat, C.R., Pendyala, R.M., 2012. Joint model of residential 
relocation choice and underlying causal factors, Transportation Research Record, 2303, 
28-37. 

2.2.2.3 The Panel MNP (PMNP) Model 

Consider the following model with ‘t’ now being an index for choice occasion: 

 . ..., ,2 ,1, ..., ,2 ,1   , ..., ,2 ,1  ,),(~  , IiTtQqMVNU qtiqit ===+′= Ωbβxβ qqtiq ξ   (2.28) 

For ease, we assume that all alternatives are available at each choice instance of each 
individual, and that we have a balanced panel (that is, we have the same number of 
choice instances from each individual). The first assumption is innocuous and helps in 
presentation. The relaxation of the second assumption only requires a different weight per 
individual, exactly as discussed earlier for the ordered-response case. qtix  is a )1( ×L -

column vector of exogenous attributes whose first (I-1) elements correspond to 
alternative specific constants for (I-1) alternatives (with one of the alternatives being the 
base alternative) and the remaining variables being the non-constant variables. qβ  is an 

individual-specific )1( ×L -column vector of corresponding coefficients that varies across 

individuals based on unobserved individual attributes. Assume that the qβ  vector is a 

realization from a multivariate normal distribution with a mean vector b and covariance 
matrix LL ′=Ω , where L is the lower-triangular Cholesky factor of Ω . Thus, as in the 
case of the panel ordered-response model, the coefficients qβ  are considered constant 

over choice situations of a given decision maker. We also assume that qtiξ  is independent 

and identically normally distributed across individuals and choice occasions, but allow a 
general covariance structure across alternatives for each choice instance of each 
individual. Specifically, let ),...,( 21 ′= qtIqtqt ξξξqtξ  ( 1×I vector). Then, we assume 

Λ),0(~ IMVNqtξ . As usual, appropriate scale and level normalization must be imposed 

on Λ  for identifiability. To do so, we follow the same exact procedure as in the CMNP 
model. Specifically, only utility differentials matter at each choice occasion. Taking the 
utility differentials with respect to the first alternative, only the elements of the 

covariance matrix 1Λ  of )1(
~

11 ≠−= iqtqtiqti ξξξ  are estimable, and Λ is constructed from 

1Λ  by adding an additional row on top and an additional column to the left. All elements 
of this additional row and additional column are filled with values of zeros. We also 
normalize the element of Λ  in the second row and second column to the value of one. 

Define the following vectors and matrices:
 

),...,,( 21 ′= qtIqtqtqt UUUU  1( ×I  vector), 

),...,,( 21 ′= qIqqq UUUU  1( ×TI  vector), ),...,( ′′′′= qTq2q1q ξξξξ  1( ×TI  vector), 

),...,,,( 321 ′= qtIqtqtqtqt xxxxx  ( LI ×  matrix), ) ,...,,( 21 ′′′′= qTqqq xxxx  ( LTI ×  matrix),

bxqq =V  1( ×TI  vector), qqq xx ′= ΩΩ
~

 )matrix( TITI × , and 

TITITq ×⊗+= ()(
~~

ΛIDENΩΞq matrix). Then, we may write, in matrix notation, 

qqq ξ+= VU  and ).
~

,(~ qqq ΞVU TIMVN  Let the individual q choose alternative qtm at 
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the tth choice occasion. To develop the likelihood function, define qM  as an 

][)]1([ TIIT ×−×  block-diagonal matrix, each block diagonal being of size ))()( I1-I ×
and containing the matrix qtM . qtM  itself is an identity matrix of size (I-1) with an extra 

column of ‘-1’ values added at the th
qtm  column. Let qqq VM=B and qq MΞMΞ ′= qq

~
. The 

parameter vector to be estimated is . ),,( ′′′′= ΛΩbθ The likelihood contribution of 
individual q is as below: 

      ),),(()( 1
~

*
Ξ Ξω qqBθ

q
−Φ= −

JqL  (2.29) 

where ),1(
~ −×= ITJ  and .11 −−=

qq qq ΞΞ
* ωΞωΞ        

The simulation approaches for evaluating the panel likelihood function involve 
integration of dimension )]1([ −× IT . Consider the following (pairwise) composite 
marginal likelihood function formed by taking the products (across the T choice 
occasions) of the joint pairwise probability of the chosen alternatives qtm  for the tth 

choice occasion and qgm  for the gth choice occasion for individual q. 
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where qtd is an index for the individual’s choice on the tth choice occasion. One can also 

write: 
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where )1(2 −= IJ
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~ 'ΔΞΔΞΔ qtgqtgqtgqtgqtg == qqtg BB  ,

~~ 1
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−−=
qtgqtg ΞΞ

* ωΞωΞ qtgqtg and qtgΔ  is a 

JJ
~

*


-selection matrix with an identity matrix of size ( 1−I ) occupying the first ( 1−I ) 

rows and the [ ]thIt 1)1()1( +−×− through [ ]thIt )1( −× columns, and another identity 

matrix of size ( 1−I ) occupying the last ( 1−I ) rows and the [ ]thIg 1)1()1( +−×− through 

[ ]thIg )1( −× columns. The pairwise likelihood function now only needs the evaluation of 

a J -dimensional cumulative normal distribution function (rather than the I
~

-
dimensional cumulative distribution function in the maximum likelihood function). The 

MACML estimator MACMLθ̂  is obtained by maximizing the logarithm of the function 
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  (with the 

MVNCD approximation). The covariance matrix is estimated as:  

[ ][ ][ ]
,

ˆˆˆˆ

QQ

′
=

1-1-1-
HJHG

 



 

41 

with
[ ]

MACML

qtg

θ

*
qtgqtg

θθ

B
H

ˆ
1

1

1 1

1
~

2 )
~

),
~

(-(log1ˆ












′∂∂

Φ∂
−= 

=

−

= +=

−
Q

q

T

t

T

tg

J

Q

Ξω
Ξ



[ ] [ ]
MACML

qtgqtg

θ

*
qtgqtg

*
qtgqtg

θ

B

θ

B
J

ˆ

1

1 1

1
~1

1 1

1
~

1

)
~

),
~

(-(log)
~

),
~

(-(log1ˆ




























′∂

Φ∂














∂

Φ∂
= 

−

= +=

−
−

= +=

−

=

T

t

T

tg

J
T

t

T

tg

J
Q

qQ

ΞωΞω
ΞΞ



  (2.32) 

An alternative estimator for Ĥ is as below: 
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References for the CML Estimation of the PMNP Model 

Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML) 
estimation of multinomial probit-based unordered response choice models. 
Transportation Research Part B 45(7), 923-939. 

Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate 
composite marginal likelihood (MACML) estimator for mixed multinomial probit 
models. Transportation Research Part B 45(7), 940-953.  

Bhat, C.R., Sidharthan, R., 2012. A new approach to specify and estimate non-normally 
mixed multinomial probit models. Transportation Research Part B 46(7), 817-833. 

 2.3 Spatial Formulations  

In the past decade, there has been increasing interest and attention on recognizing and 
explicitly accommodating spatial (and social) dependence among decision-makers (or 
other observation units) in urban and regional modeling, agricultural and natural resource 
economics, public economics, geography, marketing, sociology, political science, and 
epidemiology. The reader is referred to a special issue of Regional Science and Urban 
Economics entitled “Advances in spatial econometrics” (edited by Arbia and Kelejian, 
2010) and another special issue of the Journal of Regional Science entitled “Introduction: 
Whither spatial econometrics?” (edited by Patridge et al., 2012) for a collection of recent 
papers on spatial dependence, and to Elhorst (2010), Anselin (2010), Ferdous and Bhat 
(2013), and Bhat et al. (2014a) for overviews of recent developments in the spatial 
econometrics field. Within the past few years, there has particularly been an explosion in 
studies that recognize and accommodate spatial dependency in discrete choice models. 
The typical way this is achieved is by applying spatial structures developed in the context 
of continuous dependent variables to the linear (latent) propensity variables underlying 
discrete choice dependent variables (see reviews of this literature in Fleming, 2004, 
Franzese and Hays, 2008, LeSage and Pace, 2009, Hays et al. 2010, Brady and Irwin, 
2011, and Sidharthan and Bhat, 2012). The two dominant techniques, both based on 
simulation methods, for the estimation of such spatial discrete models are the frequentist 
recursive importance sampling (RIS) estimator (which is a generalization of the more 
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familiar Geweke-Hajivassiliou-Keane or GHK simulator; see Beron and Vijverberg, 
2004) and the Bayesian Markov Chain Monte Carlo (MCMC)-based estimator (see 
LeSage and Pace, 2009). However, both of these methods are confronted with multi-
dimensional normal integration of the order of the number of observational units in 
ordered-response models, and are cumbersome to implement in typical empirical contexts 
with even moderate estimation sample sizes (see Bhat, 2011 and Franzese et al., 2010). 
The RIS and MCMC methods become even more difficult (to almost infeasible) to 
implement in a spatial unordered multinomial choice context because the likelihood 
function entails a multidimensional integral of the order of the number of observational 
units factored up by the number of alternatives minus one (in the case of multi-period 
data, the integral dimension gets factored up further by the number of time periods of 
observation). Recently, Bhat and colleagues have suggested a composite marginal 
likelihood (CML) inference approach for estimating spatial binary/ordered-response 
probit models, and the maximum approximate composite marginal likelihood (MACML) 
inference approach for estimating spatial unordered-response multinomial probit (MNP) 
models. These methods are easy to implement, require no simulation, and involve only 
univariate and bivariate cumulative normal distribution function evaluations, regardless 
of the number of alternatives, or the number of choice occasions per observation unit, or 
the number of observation units, or the nature of social/spatial dependence structures.  

In the spatial analysis literature, the two workhorse specifications to capture spatial 
dependencies are the spatial lag and the spatial error specifications (Anselin, 1988). The 
spatial lag specification, in reduced form, allows spatial dependence through both spatial 
spillover effects (observed exogenous variables at one location having an influence on the 
dependent variable at that location and neighboring locations) as well as spatial error 
correlation effects (unobserved exogenous variables at one location having an influence 
on the dependent variable at that location and neighboring locations). The spatial error 
specification, on the other hand, assumes that spatial dependence is only due to spatial 
error correlation effects and not due to spatial spillover effects. The spatial error 
specification is somewhat simpler in formulation and estimation than the spatial lag 
model. But, as emphasized by McMillen (2010), the use of a parametric spatial error 
structure is “troublesome because it requires the researcher to specify the actual structure 
of the errors”, while it is much easier to justify a parametric spatial lag structure when 
accommodating spatial dependence. Beck et al. (2006) also find theoretical and 
conceptual issues with the spatial error model and refer to it as being “odd”, because the 
formulation rests on the “hard to defend” position that “space matters in the error process 
but not in the substantive portion of the model”. As they point out, the implication is that 
if a new independent variable is added to a spatial error model “so that we move it from 
the error to the substantive portion of the model”, the variable magically ceases to have a 
spatial impact on neighboring observations. Of course, the spatial lag and spatial error 
specifications can be combined together in a Kelejian-Prucha specification (see Elhorst, 
2010), or the spatial lag could be combined with spatially lagged exogenous variable 
effects in a Spatial Durbin specification (see Bhat et al., 2014a). In all of these cases, the 
spatial dependence leads also to spatial heteroscedasticity in the random error terms.  

In this report, we will assume the spatial lag structure as the specification of spatial 
dependency. However, it is very straightforward to extend our approach to other 
dependency specifications. Indeed, there is no conceptual difficulty in doing so, nor is 
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there much impact on coding or computational burden. The focus on the spatial lag 
structure is simply for uniformity and notational ease. In addition to the spatial lag-based 
and resulting heteroscedasticity effect, it is also likely that there is heterogeneity (i.e., 
differences in relationships between the dependent variable of interest and the 
independent variables across decision-makers or spatial units (see, Fotheringham and 
Brunsdon, 1999, Bhat and Zhao, 2002, Bhat and Guo, 2004). When combined with the 
spatial lag effect, the unobserved heterogeneity effects get correlated over decision agents 
based on the spatial (or social) proximity of the agents’ locations, which is then referred 
to as spatial drift (see Bradlow et al., 2005 for a discussion). But such spatial drift effects 
have been largely ignored thus far in the literature (but see Bhat et al., 2014a). We 
explicitly incorporate such drift effects in the models discussed below. All notations from 
previous sections carry over to the sections below.  

 2.3.1 Spatial Ordered Response Models 

2.3.1.1 The Spatial CUOP Model 

The spatial CUOP (SCUOP) is an extension of the aspatial CUOP model from Section 
2.2.1.1, and may be written as follows: 
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* , kyq =  if kqqkq y ,1, ψψ <<−
* ,  (2.34) 

where the 'qqw  terms are the elements of an exogenously defined distance-based spatial 

(or social) weight matrix W corresponding to individuals q and q ′  (with 0=qqw  and 

1=
′

′
q

qqw ), and δ  )10( << δ  is the spatial autoregressive parameter. The weights 'qqw

can take the form of a discrete function such as a contiguity specification ( qqw ′ =1 if the 

individuals q and q′  are adjacent and 0 otherwise) or a specification based on a distance 

threshold ( =′
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'' ,/
q

qqqqqq ccw where 'qqc  is a dummy variable taking the value 1 if the 

individual q′  is within the distance threshold and 0 otherwise). It can also take a 

continuous form such as those based on the inverse of distance qqd ′  and its power 

functions ),0(1)1(
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~~/
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q
qqqqqqqqqq dcdcw  (where '

~
qqc  is a dummy variable taking the value 1 if q and 

q′  are adjoining based on some pre-specified spatial criteria, and 0 otherwise). All of 
these functional forms for the weight matrix may be tested empirically.  

The latent propensity representation of Equation (2.34) can be written equivalently in 
vector notation as:  



 

44 

εβ
~~byy ** +++= xxWδ ,   (2.35) 

where ) ..., , ,( 21 ′= ****y Qyyy  and ) ,..., ,( 21 ′= Qεεεε  are (Q×1) vectors, 

) ..., , ,( 21 ′= Qxxxx  is a (Q×L) matrix of exogenous variables for all Q individuals, x~  is 

a (Q×QL) block-diagonal matrix with each block-diagonal of size (1×L) being occupied 
by the vector qx′  ( Qq ,...,2,1= ), and ) ..., , ,( 21 ′′′′= Qβ

~
β
~

β
~

β
~

 is a (QL×1) vector. Through 

simple matrix algebra manipulation, Equation (2.35) may be re-written as: 

( )εβ
~~by* ++= xxS ,  (2.36) 

where [ ] 1-
Q WIDENS δ−=  is a (Q×Q) matrix. The vector *y  is multivariate normally 

distributed as ),(~* ΞBy QMVN , where 

bB Sx=  and ( )[ ]SIDENxΩIDENxSΞ ′+′⊗= QQ
~~ .  (2.37) 

The likelihood function )(θL  for the SCUOP model takes the following form: 
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Q dfPL yBymyθ Ξ   (2.38) 

where ),...,,( 21 ′= Qyyyy , ),...,,( 21 ′= Qmmmm  is the corresponding (Q×1) vector of the 

actual observed ordinal levels, *y
D  is the integration domain defined as 

} ..., ,2 ,1 ,:{ ,
*

1,
*

y* QqyD
qq mqqmq =∀<<= − ψψy  , and (.)Qf  is the multivariate normal 

density function of dimension Q . 

The rectangular integral in the likelihood function is of dimension Q, which can become 
problematic from a computational standpoint. Further, the use of traditional numerical 
simulation techniques can lead to convergence problems during estimation even for 
moderately sized Q (Bhat et al., 2010a; Müller and Czado, 2005). The alternative is to 
use the composite marginal likelihood (CML) approach. Using a pairwise CML method, 
the function to be maximized is: 
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In the above expression, q][B  represents the thq  element of the column vector B, while 

'qq][Σ  represents the thqq ′  element of the matrix Σ .  

The pairwise marginal likelihood function of Equation (2.39) comprises 2/)1( −QQ  
pairs of bivariate probability computations, which can itself become quite time 
consuming. However, previous studies (Varin and Vidoni, 2009, Bhat et al., 2010a, Varin 
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and Czado, 2010) have shown that spatial dependency drops quickly with inter-
observation distance. Therefore, there is no need to retain all observation pairs because 
the pairs formed from the closest observations provide much more information than pairs 
far from one another. The “optimal” distance for including pairings can be based on 
minimizing the trace of the asymptotic covariance matrix. Thus, the analyst can start with 
a low value of the distance threshold (leading to a low number of pairwise terms in the 
CML function) and then continually increase the distance threshold up to a point where 
the gains from increasing the distance threshold is very small or even drops. To be 
specific, for a given threshold, construct a Q×Q matrix R

~
 with its thq  column filled with 

a Q×1 vector of zeros and ones as follows: if the observational unit q′  is not within the 

specified threshold distance of unit q, the thq′  row has a value of zero; otherwise, the thq′  

row has a value of one. By construction, the thq  row of the thq  column has a value of 

one. Let [ ] qq ′R
~

be the thqq element of the matrix R
~

, and let [ ] 
−

= +=′
′=

1

1 1

.
~~ Q

q

Q

qq
qqW R  Define a set 

qC
~

 of all individuals (observation units) that have a value of ‘1’ in the vector [ ] ,
~

qR  

where [ ]qR
~

 is the qth column of the vector R
~

. Then, the CML function is as follows: 
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The covariance matrix of the CML estimator is 
[ ] [ ] [ ] [ ]
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However, the estimation of the “vegetable” matrix J  is more difficult in this case. One 
cannot empirically estimate J  as the sampling variance of the individual contributions to 
the composite score function (as was possible when there were Q independent 
contributions) because if the underlying spatial dependence in observation units. But a 
windows resampling procedure (see Heagerty and Lumley, 2000) may be used to 
estimate J . This procedure entails the construction of suitable overlapping subgroups of 
the sample that may be viewed as independent replicated observations. Then, J may be 
estimated empirically. While there are several ways to implement this, Bhat (2011) 
suggests overlaying the spatial region under consideration with a square grid providing a 

total of Q
~

 internal and external nodes. Then, select the observational unit closest to each 

of the Q
~

 grid nodes to obtain Q
~

 observational units from the original Q observational 
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units ( ).
~

,,3 ,2 ,1~ Qq =  Let qR~
~

 be the 1×Q  matrix representing the thq~  column vector 

of the matrix R
~

, let q~
~
C  be the set of all individuals (observation units) that have a value 

of ‘1’ in the vector qR~
~

, and let qy~  be the sub-vector of y with values of ‘1’ in the rows 

of qR~
~

. Let qN ~  be the sum (across rows) of the vector qR~
~

 (that is, qN ~ is the cardinality 

of q~
~
C ), so that the dimension of qy~  is .1~ ×qN  Let ql~  be the index of all elements in the 

vector qy~ , so that ql~ =1,2,… qN~ . Next, define [ ] .2/)1( ~~~ −= qqq NNC


 Then, the J matrix 

maybe empirically estimated as: 
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To ensure the constraints on the autoregressive term δ , the analyst can parameterize

)]
~

exp(1/[1 δδ += . Once estimated, the  
~δ estimate can be translated back to estimates of 

an estimate of δ . 

References for the CML Estimation of the Spatial CUOP (or SCUOP) Model 

Ferdous, N., Pendyala, R.M., Bhat, C.R., Konduri, K.C., 2011. Modeling the influence of 
family, social context, and spatial proximity on use of nonmotorized transport mode, 
Transportation Research Record 2230, 111-120. 

Spissu, E., Eluru, N., Sener, I.N., Bhat, C.R., Meloni, I., 2010. Cross-clustered model of 
frequency of home-based work participation in traditionally off-work hours. 
Transportation Research Record 2157, 138-146.   

Whalen, K.E., Paez, A., Bhat, C., Moniruzzaman, M., Paleti, R., 2012. T-communities and 
sense of community in a university town: evidence from a student sample using a spatial 
ordered-response model. Urban Studies 49(6), 1357-1376. 

2.3.1.2 The Spatial CMOP Model 

We start with Equation (2.6) of the aspatial CMOP model in Section 2.2.1.2, and now add 
a spatial lag formulation: 

iqiqi

Q

q
iqqqiqi kyywy =+′+= 
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,
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*
''

* εδ qqi xβ  if i
kqqi

i
kq ii

y ,
*

1, ψψ <<− . (2.44) 

Define 
,  vector),1×(),...,,( **

2
*
1 Iyyy qIqq ′=*

qy ])(,...,)(,)(,)[( **
3

*
2

*
1

* ′′′′′= Qyyyyy  (QI×1 

vector), 
 vector),1×(),...,,( 21 Iyyy qIqq ′=qy ])(,...,)(,)(,)[( 321 ′′′′′= Qyyyyy  (QI×1 

vector), ) ..., . , ,( 21 ′= qIqqq mmmm   vector)1×(I , 
),...,,( 21 ′= Qmmmm

 (QI×1 vector) , 

qq x ′⊗= IIDENx~

 (I×IL matrix; IIDEN  is an identity matrix of size I), 
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)~,...~,~,~(~
321 ′′′′′= Qxxxxx  (QI×IL matrix), 
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ΩLIq MVN ×β
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 random coefficients 
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21 ILQ ′′′′= ββββ

 

),...,,( 21 ′′′′= Ibbbb  (IL×1 vector), 
,)',,,,( 321 qIqqq εεεε =qε  
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 (QI×1 vector; Q1  is a vector 
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  (2.45) 

Collect all the weights 'qqw  into a row-normalized spatial weight matrix W . All other 

notations from Section 2.2.1.2 are carried over to this section, including the multivariate 
standard normal distribution specification for qε  with mean zero and correlation matrix Σ 

(see Equation 2.7). With these definitions, Equation (2.44) may be re-written in matrix 
form as: 

εxxIDENW +++⊗= βbyδy
~~)](*.

~
[ ** 

I ,   (2.46) 

where the operation *''.  in the equation above is used to refer to the element by element 
multiplication. After further matrix manipulation, we obtain: 

),
~

(~* εβby ++= xSxS


 where ( )[ ] .*.
~ 1−

⊗−= IQI IDENWIDENS δ   (2.47) 

The expected value and variance of *y  may be obtained from the above equation after 

developing the covariance matrix for the error vector )
~

( εβ +xS


. This may be written as 

( )[ ]SΣIDENxΩIDENxSΞ ′⊗+′⊗= QQ


. Then, we obtain ),(~* ΞBy QIMVN , where 

bB xS~= . 

The parameter vector to be estimated in the SCMOP model is . ),,,,,( ′′′′′′′= δαγbθ ΣΩ

Let 1(),...,,( ,
2
,

1
, 2

×= II
mqmqmq qIqqi

ψψψup
qψ  vector), )1(),...,,( 1,

2
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1
1, 2
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qψ  
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Q
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2

up
1

up ψψψψ  vector), and 1(),...,,( ×= QIlow
Q
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2

low
1

low ψψψψ  

vector). The likelihood function for the SCMOP model is: 

,),|()()(
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**===
y

D

QI dfPL yBymyθ Ξ   (2.48) 
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where  :{ **
*

uplow ψψ <<= yy
y

D , and (.)QIf  is the multivariate normal density 

function of dimension QI. The dimensionality of the rectangular integral in the likelihood 
function is QI, which is very difficult to evaluate using existing estimation methods. The 
alternative is to use the pairwise composite marginal likelihood (CML) approach: 
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The CML estimator is obtained by maximizing the logarithm of the function in Equation 
(2.49).  

The number of pairings in the CML function above is [ ] .2/)1( −QIQI  But again the 
number of pairings can be reduced by determining the “optimal” distance for including 
pairings across individuals based on minimizing the trace of the asymptotic covariance 

matrix (as discussed in the previous section).11 To do so, define a set qC
~

 as in the 

previous section that includes the set of individuals q’ (including q) that are within a 
specified threshold distance of individual q. Then, the CML function reduces to the 
following expression: 
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Let W
~

 be the total number of pairings used in the above CML function (after considering 
the distance threshold). The covariance matrix of the CML estimator is 

[ ] [ ][ ][ ]
WW
~

ˆˆˆ
~

ˆ 1 ′
=

− 1-1- HJHG
, 

where  

                                                 
11 Technically, one can consider a threshold distance separately for each ordinal variable, so that the individual 
pairings within each variable are based on this variable-specific threshold distance and the individual-variable 
pairings across variables are based on different thresholds across variables. But this gets cumbersome, and so we 
will retain a single threshold distance across all ordinal variables.   
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or alternatively,  
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The sandwich matrix, Ĵ , may be computed by selecting Q
~

 )
~

,...,2,1~( Qq = observational 

units from the original Q observational units as discussed in the earlier section. Let qC~
~

 

be the set of individuals (observation units) within the specified threshold distance, and 

let qN ~  be the cardinality of qC~
~

. Let ql~  be an index so that ql~ =1,2,… qN~ . Next, define 
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There is another way that the analyst can consider cutting down the number of pairings 
even after using a threshold distance as a cut-off. That is by ignoring the pairings among 
different individuals (observation units) across the I ordinal variables. This will reduce 
the number of pairings quite substantially, while also retaining the pairings across 
individuals for each ordinal variable (that enables the estimation of the parameters of the 
vector δ ) and the pairings across ordinal variables within the same individual (that 
enables the estimation of the parameters in the correlation matrix Σ of qε ). The CML is: 
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The number of pairings W
~

 in the CML function above is much smaller than the CML 
function in Equation (2.50). The elements of the covariance matrix may be estimated as 
follows: 
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or alternatively,  
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For estimating the Ĵ  matrix define qC~
~

 and qN ~  be defined as earlier and let 
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The positive-definiteness of the matrices ΣΩ and  are ensured as discussed in Sections 
2.3.1.1 and 2.2.1.2.  

References for the CML Estimation of the Spatial CMOP (or SCMOP) Model 

No known applications. But the spatial cross-sectional multivariate count model of 
Narayanamoorthy et al. (2013) is very similar to the SCMOP model. 

2.3.1.3 The Spatial PMOP (SPMOP) Model 

All notations from Section 2.2.1.3 are carried over. To include spatial dependency in the 
PMOP model, rewrite Equation (2.12) as follows: 

if,
1'

** kyywy qtqt

Q

q
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qψ  vector. Also, let the vector of actual 

observed ordinal outcomes for individual q be stacked into a (T×1) vector 
) ..., . , ,( 21 ′= qTqqq mmmm . To write the equation system in (2.58) compactly, we next 

define several additional vectors and matrices. Let ])(,...,)(,)(,)[( **
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*
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*
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 QLQT ×(  block diagonal matrix),  (2.59) 

Also, collect all the weights qqw ′  into a spatial weight matrix W. The vector β
~

above has 

a mean vector of zero and a covariance matrix ΩDENI ⊗Q  (of size QT×QT), while the 

vector ε  has a mean vector of zero and a covariance matrix .QTDENI  

Using the vector and the matrix notations defined above, Equation (2.58) may be re-
written compactly as: 

εxxIDENW +++⊗= βbyy
~

)]([ ** 
Tδ ,  (2.60) 

After further matrix manipulation, we obtain: 

),
~* εβby ++= xS(Sx


 where ( )[ ] .1−⊗−= TQT IDENWIDENS δ  (2.61) 

Next, we obtain ),(~* ΞBy QIMVN , where 
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  (2.62) 

The parameter vector to be estimated in the SPMOP model is . ),,,,( ′′′′′= δαγbθ Ω  Let
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Q
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1

low ψψψψ  vector). 

The likelihood function for the SPMOP model is: 

,),|()()(
*

**===
y

D

QT dfPL yBymyθ Ξ   (2.63) 

where  :{ **
*
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D , and (.)QTf  is the multivariate normal density 

function of dimension QT. The much simpler pairwise composite marginal likelihood 
(CML) function is: 
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To reduce the number of pairings, define a set qC
~

 as in the previous section that includes 

the set of individuals q’ (including q) that are within a specified threshold distance of 
individual q. Then, the CML function reduces to the following expression: 
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Let W
~

 be the total number of pairings used in the above CML function (after considering 
the distance threshold). The covariance matrix of the CML estimator is 
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or alternatively,  
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Defining qC~
~

, qN ~ , and ( ) ( )( )[ ] 2/1~~~ −= ININC qqq


 as in the previous section, the J matrix 

maybe empirically estimated as: 
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One can also ignore the pairings among different individuals (observation units) across 
the T time periods. The CML then is: 
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The elements of the covariance matrix in this case may be estimated as follows: 
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or alternatively,  
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For estimating the Ĵ  matrix, define qC~
~

 and qN ~  as earlier and let 
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References for the CML Estimation of the Spatial PMOP (SPMOP) Model 

Castro, M., Paleti, R., Bhat, C.R., 2013. A spatial generalized ordered response model to 
examine highway crash injury severity. Accident Analysis and Prevention 52, 188-203.  

Ferdous, N., Bhat, C.R., 2013. A spatial panel ordered-response model with application to 
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2343, 86-94. 

 2.3.2 Unordered-Response Models 

2.3.2.1 The Spatial CMNP (SCMNP) Model 

The formulation in this case is similar to the aspatial case in Section 2.2.2.1, with the 
exception that a spatial lag term is included. Of course, this also completely changes the 
model structure from the aspatial case.  

,1||  );,(~
~

,
~

 ; <+=+′+= ′′
′
 δξδ Ω0Lqiiqqq

q
qi MVNUwU qqqqiq ββbβxβ   (2.73) 
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where all notations are the same as in Section 2.2.2.1.12 Let ),...,,( 21 ′= qIqq ξξξqξ  ( 1×I

vector). Then, we assume ),0(~ ΛIMVNqξ . As usual, appropriate scale and level 

normalization must be imposed on Λ  for identifiability, as discussed in Section 2.2.2.1. 
The model above may be written in a more compact form by defining the following 
vectors and matrices: ),...,,( 21 ′= qIqqq UUUU  1( ×I  vector), ),...,,( ′= QUUUU 21  (

1×QI vector), )( 21 ′′′′= Qξξξξ ,...,,   ( 1×QI vector), ),...,,,( ′= qIqqqq xxxxx 321  LI ×(  

matrix), )(x 21 ′′′′= Qxxx ,...,,  ( LQI ×  matrix), and ( )′′′′= Qββββ
~

,...,
~

,
~~

21  ( 1×QL  vector). 

Also, define the following matrix: 

matrix),  ( QLQI ×
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x 3
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1

  (2.74) 

Then, we can write Equation (2.73) in matrix form as: 

[ ],~
ξβb ++= xxSU


  (2.75) 

where [ ] matrix),()( QIQIIQI ×⊗−= −1IDENWIDENS δ  and W is the )( QQ ×  weight 

matrix with the weights qqw ′  as its elements. Also, ),
~

,(~ ΞVU QIMVN where bSxV =  

and 
 

[ ] .SΛ)IDENxΩIDENxSΞ ′⊗+′⊗= QQ ()(
~ 

 Let )(),,( 21 qqIqqq miuuu ≠′= u
 
be 

an (I–1)×1 vector for individual q, where qm  is the actual observed choice of individual q 

and ).( qqmqiqi miUUu
q

≠−=  Stack the qu  vectors across individuals (observation 

units): ]Vector1)1([),...,,( 21 ×−′′′′= IQQuuuu . The distribution of u  may be derived 

from the distribution of U by defining a ][)]1([ QIIQ ×−×  block diagonal matrix M , 
with each block diagonal having )1( −I  rows and I columns corresponding to each 
individual q. This II ×− )1(  matrix for individual q corresponds to an )1( −I  identity 

matrix with an extra column of ‘ 1− ’ values added as the qm th column. For instance, 

consider the case of I = 4 and Q = 2. Let individual 1 be observed to choose alternative 2 
and individual 2 be observed to choose alternative 1. Then M  takes the form below. 

                                                 
12 One can allow the spatial lag dependence parameter δ to vary across alternatives i. However, due to identification 
considerations, one of the alternatives should be used as the base (with a zero dependence parameter). But doing so 
while also allowing the dependence parameters to vary across the remaining alternatives creates exchangeability 
problems, since the model estimation results will not be independent of the decision of which alternative is 
considered as the base. Hence, we prefer the specification that restricts the dependence parameter to be the same 
across alternatives i.  
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With the above construction for matrix M , it is easy to see that ),,(~ )1( Ξu B−IQMVN

where .
~

and MΞMΞVM ′==B The likelihood of the observed sample (i.e., individual 

1 choosing alternative 1m , individual 2 choosing alternative 2m , …, individual Q 

choosing alternative Qm ) may then be written succinctly as ][Prob 1)(0u −< IQ . The 

parameter vector to be estimated is . ),,,( ′′′′= δΛΩθ b Using the usual notations, the 
likelihood function is: 

      ),),(()( 1
)1(

*
Ξ ΞBωθ −Φ= −

−IQL   (2.77) 

where .11 −−= ΞΞ
* ωΞωΞ  This is cumbersome and impractical (if not infeasible) for most 

realistically-sized sample sizes. However, one can use the MACML technique. To do so, 
write the pairwise CML function corresponding to the full likelihood of Equation (2.77) 
as: 
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qd  is an index for the individual’s choice, and 
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where )1(2 −= IJ


, ,  , '
qq ΔΞΔΞΔ qqqqqqqq ′′′′′ ==
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′ ′′
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qqqq ΞqqΞ
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qq ωΞωΞ


and qq ′Δ  is a 

)1( −× IQJ


-selection matrix with an identity matrix of size ( 1−I ) occupying the first (

1−I ) rows and the [ ]thIq 1)1()1( +−×− through [ ]thIq )1( −× columns, and another 
identity matrix of size ( 1−I ) occupying the last ( 1−I ) rows and the 

[ ]thIq 1)1()1( +−×−′ through [ ]thIq )1( −×′ columns. 

The number of pairings in the CML expression of Equation (2.78) can be reduced as 

explained in Section 2.3.1.1. Specifically, define a set qC
~

 as in the previous section that 

includes the set of individuals q’ (including q) that are within a specified threshold 
distance of individual q. Then, the CML function reduces to the following expression: 
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The expressions to obtain the covariance matrix are exactly the same as in Section 

2.3.1.1, with ).),(-( 1
~

*
qqqqB

qq
′′

−
′ ′

Φ= Ξω
Ξ



JqqL   

References for the CML Estimation of the Spatial CMNP (SCMNP) Model 
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Transportation Research Part B 45(7), 923-939. 

Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate 
composite marginal likelihood (MACML) estimator for mixed multinomial probit 
models. Transportation Research Part B 45(7), 940-953. 

Sener, I.N., Bhat, C.R., 2012. Flexible spatial dependence structures for unordered 
multinomial choice models: formulation and application to teenagers’ activity 
participation. Transportation 39(3), 657-683. 

Sidharthan, R., Bhat, C.R, Pendyala, R.M., Goulias, K.G., 2011. Model for children's school 
travel mode choice: accounting for effects of spatial and social interaction. 
Transportation Research Record 2213, 78-86. 

2.3.2.2 The Spatial CMMNP Model 

Rewrite Equation (2.18) from Section 2.2.2.2 to include spatial dependency in the utility 
that individual q attributes to alternative gi  ( gi =1,2,..., )gI for the gth variable. 

,
1'

' ggg qgiqgi

Q

q
qqgqgi UwU ξδ +′+= 

=
gqgiqg xβ  (2.81) 

with all notations as earlier. 
gqgix  is an 1×gL -column vector of exogenous attributes, 

),,(~ ggqg bβ Ω
qLMVN and ),0(~ gqgξ ΛIMVN  ( ),...,( 21 ′=

gqgIqgqg ξξξqgξ  ( 1×gI vector)). 

As in Section 2.2.2.2, we will assume that the )
~

( qggqg βbβ += vectors are independent 

across the unordered-response dimensions for each individual. We also assume that 
gqgiξ  

is independent and identically normally distributed across individuals q. Let qgm  be the 

actual chosen alternative for the gth unordered-response variable by individual q. Define 
the following: 
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matrix Λ is to be constructed as discussed in Section 2.2.2.2. Then, 

),( ~~ ΛIDEN0 QGQ
⊗

GQ
MVN~ξ . Also, define gg II ×′= (

~
qggqgqg xΩxΩ matrix), and the 

following matrices: 

),matrix
~~

(,

~
0000

00
~

00

000
~

0

0.000
~

~
),matrix

~~
(

~
0000

00
~

00

000
~

0

0.000
~

~
GQGQGG ×

























=×

























=

Q

3

2

1

qG

q3

q2

q1

q

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω





















and 

),matrix
~~

(

0000

0000

0000

0.000

~
3

2

1

GG

G

×























=

δ

δ
δ

δ











δ  

Equation (2.81) may then be written in matrix form as: 

[ ] ,
~

ξβb ++= xxSU


  (2.82) 

where [ ] ,)(*).
~

( ~~
GQQGQ

IDENWδ1IDENS ⊗⊗−=  W  is the )( QQ ×  weight matrix 

with the weights qqw ′ , and “ *. ” refers to the element-by-element multiplication of the 

two matrices involved.  
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Also, ),
~

,(~ ~ ΞVU
GQ

MVN where bSxV =  and [ ] .(
~~

SΛ)IDENΩSΞ Q ′⊗+= 13 

To develop the likelihood function, construct a matrix M  as follows. First, for each 
unordered variable g and individual q, construct a matrix qgM with )1( −gI  rows and gI  

columns. This matrix corresponds to an )1( −gI  identity matrix with an extra column of ‘

1− ’ values added as the th
qgm column. Then, define the following:  


=

−=×

























=
G

g
g

G

IGGG
1

3

2

1

),1( where,)matrix
~

(

0000

0000

0000

0.000













q

q

q

q

q

M

M

M

M

M  and (2.83) 

).matrix
~

(

0000

0000

0000

0.000

3

2

1

GQGQ

Q

×























=












M

M

M

M

M   (2.84) 

The parameter vector to be estimated is . )
~~~

,
~

,( 21 ′′′= δ,ΛΩ,...,ΩΩθ Gb Using the usual 

notations, the likelihood function is: 

111 and,
~

, where),),(()( −−− =′==−Φ= ΞΞ
**

Ξ ωΞωΞMΞMΞMVΞωθ BB
GQ

L    (2.85) 

The likelihood function is of a very high dimensionality. Instead, consider the (pairwise) 
composite marginal likelihood function. Further, as in Section 2.1.2.2, we can reduce the 
pairings by testing different distance bands and determining the “optimal” distance for 
including pairings across individuals based on minimizing the trace of the asymptotic 

covariance matrix. Define a set qC
~

 that includes the set of individuals q’ (including q) 

that are within a specified threshold distance of individual q. Then, the CML function 
reduces to the following expression: 

                                                 

13 One can also obtain Ω
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columns (with the convention that 

).0
0

1

=
=l

lI  The model can now be estimated using the MACML method. The 

computation of the covariance matrix is identical to the case in Section 2.2.2.2, with the 
use of ggqqL ′′  as in Equation (2.86) above. Once again, the analyst can consider further 

cutting down the number of pairings by ignoring the pairings among different individuals 
(observation units) across the G variables.  

References for the CML Estimation of the Spatial Cross-Sectional Multivariate MNP 
(SCMMNP) Model 

No known applications thus far.  

2.2.2.3 The Spatial Panel MNP Model 

Consider the following model with ‘t’ now being an index for choice occasion: 

 . ..., ,2 ,1, ..., ,2 ,1   , ..., ,2 ,1  ,),(~  , IiTtQqMVN UwδU Lqti
q

tiqqqqit ===+′+= 
′

′′ Ωbβxβ qqtiq ξ   (2.87) 

We assume that qitξ  is independent and identically normally distributed across 

individuals and choice occasions, but allow a general covariance structure across 
alternatives for each choice instance of each individual. Specifically, let 

),...,( 21 ′= qtIqtqt ξξξqtξ  ( 1×I vector). Then, we assume ),0(~ ΛIMVNqtξ . As usual, 

appropriate scale and level normalization must be imposed on Λ  for identifiability. Next, 
define the following vectors and matrices:

 
),...,,( 21 ′= qtIqtqtqt UUUU  1( ×I  vector), 

),...,,( 21 ′= qIqqq UUUU  1( ×TI  vector), ),...,( ′′′′= qTqqq ξξξξ 21  1( ×TI  vector), 

) ,...,,( 21 ′= qtIqtqtqt xxxx  ( LI ×  matrix), ) ...,,( 21 ′′′′= qTqqq xxxx  ( LTI ×  matrix), 
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),...,( 21 ′′′′= QUUUU
, 

),...,( ′′′′= Qξξξξ 21  ( 1×QTI vectors), and 
) ,...,,( 21 ′′′′= Qxxxx
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LQTI ×  matrix). Let 
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x    (2.88) 

Then, we can write Equation (2.87) in matrix notation as: 

[ ]ξβb ++= ~~xxSU , (2.89) 

with 
{ }[ ] ).matrix()( 1 QTIQTIITQTI ×⊗⊗−= −IDENIDENWIDENS δ

  

Then, ),
~

,(~ ΞVU QTIMVN where bSxV =  and [ ] .(
~

SΛ)ΩIDENSΞ Q ′+⊗=  To develop 

the likelihood function, define M as an ][)]1([ QTIIQT ×−  block diagonal matrix, with 
each block diagonal having )1( −I  rows and I columns corresponding to the tth 
observation time period on individual q. This II ×− )1(  matrix for parcel q and 
observation time period t corresponds to an )1( −I  identity matrix with an extra column 

of “ 1− ” values added as the qtm th column. For instance, consider the case of Q = 2, T = 

2, and I = 4. Let individual 1 be observed to choose alternative 2 in time period 1 and 
alternative 1 in time period 2, and let individual choose alternative 3 in time period 1 and 
in alternative 4 in time period 2. Then M takes the form below. 
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Let .
~

and MΞMΞVM ′==B The parameter vector to be estimated is 

, ),,,( ′′′′′= δΛΩθ b and the likelihood function is: 

      ),),(()( 1
)1(

*
Ξ ΞBωθ −Φ= −

−IQTL   (2.91) 

where 
.11 −−= ΞΞ

* ωΞωΞ
  

Now, consider the following (pairwise) composite marginal likelihood function formed 
by taking the products (across the T choice occasions) of the joint pairwise probability of 
the chosen alternatives qtm  for the tth choice occasion and qgm  for the gth choice occasion 

for individual q. To reduce the number of pairings, define a set qC
~

 as in the previous 

section that includes the set of individuals q’ (including q) that are within a specified 
threshold distance of individual q. Then, the CML function reduces to the following 
expression: 

( )















= ∏∏∏∏

=
∈′
=′ = =′

′′

Q

q

Q

Cq
qq

T

t

T

it
ttqqCML

q

LL
1

~
1

θ  with ttqq ′=≠′ when , where  (2.92) 

 ),),(-(),Pr( 1
~)1(2

*
ttqqttqqB

ttqq
′′′′

−
−′′′′′′ ′′

Φ==== Ξω
Ξ


Itqtqqtqtttqq mdmdL  

where ,1
~

1
~

−
′′

−
′′ ′′′′
=

ttqqttqq ΞttqqΞ
*
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,, '
ttqqttqq ΔΞΔΞΔ ttqqttqqttqqttqq ′′′′′′′′′′′′ ==


BB and ttqq ′′Δ  is a 

)1()1(2 −×− IQTI -selection matrix with an identity matrix of size ( 1−I ) occupying the 

first )1( −I  rows and the [ ]thItTIq 1)1()1()1()1( +−×−+×−×− through 

[ ]thItTIq )1()1()1( −×+×−×− columns, and another identity matrix of size ( 1−I ) 

occupying the last ( 1−I ) rows and the [ ]thItTIq 1)1()1()1()1( +−×−′+×−×−′ through 

[ ]thItTIq )1()1()1( −×′+×−×−′  columns. The model can now be estimated using the 
MACML method. The computation of the covariance matrix is identical to the case in 
Section 2.2.2.2 with the use of ttqqL ′′  as in Equation (2.92) above. The analyst can 

consider further cutting down the number of pairings by ignoring the pairings among 
different individuals (observation units) across the T time periods. 

References for the CML Estimation of the Spatial Panel MNP (SPMNP) Model 

Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML) 
estimation of multinomial probit-based unordered response choice models. 
Transportation Research Part B 45(7), 923-939. 

Bhat, C.R., Sidharthan, R., 2011. A simulation evaluation of the maximum approximate 
composite marginal likelihood (MACML) estimator for mixed multinomial probit 
models. Transportation Research Part B 45(7), 940-953.  

Sidharthan, R., Bhat, C.R., 2012. Incorporating spatial dynamics and temporal dependency in 
land use change models. Geographical Analysis 44(4), 321-349.  
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 2.4 Application to Count Models 

Count data models are used in several disciplines to analyze discrete and non-negative 
outcomes without an explicit upper limit. Applications of such count data models abound 
in the scholarly literature, both in number (a count in and of itself!) as well as diversity of 
topics. Applications include the analysis of (a) the number of doctor visits, the number of 
homes affected by cholera, the number of cancer incidents, and the number of milk 
formula bottles supplied to infants by breastfeeding mothers in the medicine field, (b) the 
number of crimes and the number of drug possession convictions in the criminology field, 
(c) the number of mergers and acquisitions of foreign direct investments, the number of 
faults in a bolt, the frequency of contract change orders, and the number of jobs by space 
unit in the economics field, (d) the number of harbor seals hauled out on glacial ice and 
the count of birds at sanctuaries in the ecology field, and (e) roadway crash frequency, 
counts of flights from airports, and the number of drinking under intoxication (DUI) 
infractions in the transportation field. 

Count data models assume a discrete probability distribution for the count variables, 
followed by the parameterization of the mean of the discrete distribution as a function of 
explanatory variables. The two most commonly used discrete probability distributions are 
the Poisson and the negative binomial (NB) distributions, though other distributions such 
as the binomial and logarithmic distributions have also been occasionally considered. 
Several modifications and generalizations of the Poisson and negative binomial 
distributions have also been used. For example, in many count data contexts, there are a 
large number of zero count values. The most commonly used approach to accommodate 
this issue is the zero-inflated approach. The approach identifies two separate states for the 
count generating process – one that corresponds to a “zero” state in which the expected 
value of counts is so close to zero as being indistinguishable from zero, and another 
“normal” state in which a typical count model (with either a Poisson or NB distribution) 
operates. Effectively, the zero-inflated approach is a discrete-mixture model involving a 
discrete error distribution that modifies the probability of the zero outcome. Another 
similar approach to account for excess zeros is the hurdle-count approach (in which a 
binary outcome process of the count being below or above a hurdle (zero) is combined 
with a truncated discrete distribution for the count process being above the hurdle (zero) 
point. While the modifications and generalizations such as those just described have been 
effective for use with univariate count models, they are difficult to infeasible to 
implement in the case when there are inter-related multivariate counts at play (see Castro, 
Paleti and Bhat, 2012 (or CPB hereafter) and Herriges et al., 2008 for discussions). Also, 
including spatial dependence within the framework of traditional count formulations is 
very cumbersome. To address these situations, we can re-formulate the traditional count 
models as a special case of a generalized ordered-response probit (GORP) formulation 
(see CPB). Indeed, in this re-formulation, any count model can be formulated as a special 
case of a GORP formulation. Once this is achieved, all the GORP-related formulations in 
the earlier sections immediately carry over to count models. In this section, we will 
consider a single count variable based on a negative binomial distribution and show its 
aspatial GORP formulation, because extension to include multivariate and spatial 
contexts exactly mirror the previous GORP discussions.  
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Consider the recasting of the count model using a specific functional form for the 
random-coefficients generalized ordered-response probit (GORP) structure of Section 
2.2.1.1 as follows: 

kyy qqq =+′= ,* εqq xβ  if kqqkq y ,
*

1, ψψ <<− , (2.93) 

where qx  is an (L×1) vector of exogenous variables (not including a constant), qβ  is a 

corresponding (L×1) vector of individual-specific coefficients to be estimated, qε  is an 

idiosyncratic random error term that we will assume in the presentation below is 
independent of the elements of the vectors qβ  and qx , and kqψ ,  is the individual-specific 

upper bound threshold for discrete level k . The qε  terms are assumed independent and 

identically standard normally distributed across individuals. The typical assumption for 

qε is that it is either normally or logistically distributed, though non-parametric or 

mixtures-of-normal distributions may also be considered. Also, ,
~

qq βbβ +=  where 

),0(~
~

ΩLq MVNβ . *
qy  is an underlying latent continuous variable that maps into the 

observed count variable qy  ql  
through the qψ vector (which is a vertically stacked 

column vector of thresholds .) ,..., ,,,( 2101, ′∞− qqqq ψψψψ  The kqψ , thresholds are 

parameterized as a function of a vector of observable covariates qz  (including a constant) 

as follows (see Bhat et al., 2014b):   
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In the above equation, [.]1−Φ  is the inverse function of the univariate cumulative 

standard normal. θ  is a parameter that provides flexibility to the count formulation, and, 

as we will see later, serves the same purpose as the dispersion parameter in a traditional 
negative binomial model (θ >0). )(θΓ  is the traditional gamma function; 


∞

=

−−=Γ
0

1
)(

h

h dheh
θθ . The threshold terms in the qψ  vector satisfy the ordering 

condition (i.e., )....210, qq,q,q,q ∀∞<<<<− ψψψψ 1  as long as .....2101 ∞<<<<− ϕϕϕϕ  

The presence of these ϕ
 
terms provides substantial flexibility to accommodate high or 

low probability masses for specific count outcomes, beyond what can be offered by 
traditional treatments using zero-inflated or related mechanisms. For identification, we 
set ,, 11 qq, ∀−∞=−∞= −− ψϕ  and .00 =ϕ  In addition, we identify a count value 

......}),2 ,1,0{( ** ∈ee  above which ......}),2 ,1,0{( ∈eeϕ is held fixed at *e
ϕ ; that is, 

*ee ϕϕ =  if ,*ee >  where the value of *e  can be based on empirical testing. For later use, 

let ),,( *21 ′=
e

ϕϕϕ φ  ( 1* ×e  vector).  
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The specification of the GORP model in the equation above provides a very flexible 
mechanism to model count data. It subsumes the traditional count models as very specific 
and restrictive cases. In particular, if the vector qβ  is degenerate with all its elements 

taking the fixed value of zero, and all elements of the φ  vector are zero, the model in 
Equation (2.93) collapses to a traditional negative binomial model with dispersion 
parameter θ. To see this, note that the probability expression in the GORP model of 
Equation (2.93) with the restrictions may be written as: 
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which is the probability expression of the negative binomial count model. If, in addition, 
,∞→θ  the result can be shown to be the Poisson count model.  

In an empirical context of crash counts at intersections, CPB interpret the GORP 
recasting of the count model as follows. There is a latent “long-term” crash propensity *

qy  

associated with intersection q that is a linear function of a set of intersection-related 
attributes qx  On the other hand, there may be some specific intersection characteristics 

(embedded in qz  within the threshold terms) that may dictate the likelihood of a crash 

occurring at any given instant of time for a given long-term crash propensity *
qy . Thus, 

two intersections may have the same latent long-term crash propensity *
qy , but may show 

quite different observed number of crashes over a certain time period because of different 
*
qy - to - qy  mappings through the cut points ( qy  is the observed count variable). CPB 

postulated that factors such as intersection traffic volumes, traffic control type and signal 
coordination, driveways between intersections, and roadway alignment are likely to affect 
“long-term” latent crash propensity at intersections and perhaps also the thresholds. On 
the other hand, they postulate that there may be some specific intersection characteristics 
such as approach roadway types and curb radii at the intersection that will load more on 
the thresholds that affect the translation of the crash propensity to crash outcomes. Of 
course, one can develop similar interpretations of the latent propensity and thresholds in 
other count contexts (see, for example, the interpretation provided by Bhat et al., 2014a, 
in a count context characterized by the birth of new firms in Texas counties).  

To summarize, the GORP framework represents a generalization of the traditional count 
data model, has the ability to retain all the desirable traits of count models and relax 
constraints imposed by count models, leads to a much simpler modeling structure when 
flexible spatial and temporal dependencies are to be accommodated, and may also be 
justified from an intuitive/conceptual standpoint. Indeed, all the spatial, multivariate, and 
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panel-based extensions discussed under ordered-response models immediately apply to 
count models based on the count reformulation as a GORP model.  

References for the CML Estimation of Count Models 

Castro, M., Paleti, R., Bhat, C.R., 2012. A latent variable representation of count data models 
to accommodate spatial and temporal dependence: application to predicting crash 
frequency at intersections. Transportation Research Part B 46(1), 253-272.  

Bhat, C.R., Paleti, R., Singh, P., 2014a. A spatial multivariate count model for firm location 
decisions. Journal of Regional Science 54(3):462-502.  

Bhat, C.R., Born, K., Sidharthan, R., Bhat, P.C., 2014b. A count data model with endogenous 
covariates: formulation and application to roadway crash frequency at intersections. 
Analytic Methods in Accident Research 1, 53-71. 

Narayanamoorthy, S., Paleti, R., Bhat, C.R., 2013. On accommodating spatial dependence in 
bicycle and pedestrian injury counts by severity level. Transportation Research Part B 
55, 245-264. 
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 Chapter 3. Application to Joint Mixed Model Systems 

The joint modeling of data of mixed types of dependent variables (including ordered-
response or ordinal variables, unordered-response or nominal variables, count variables, 
and continuous variables) is of interest in several fields, including biology, economics, 
epidemiology, social science, and transportation (see a good synthesis of applications in 
de Leon and Chough, 2013). For instance, in the transportation field, it is likely that 
households that are not auto-oriented choose to locate in transit and pedestrian friendly 
neighborhoods that are characterized by mixed and high land use density, and then the 
good transit service may also further structurally influence mode choice behaviors. If that 
is the case, then it is likely that the choices of residential location, vehicle ownership, and 
commute mode choice are being made jointly as a bundle. That is, residential location 
may structurally affect vehicle ownership and commute mode choice, but underlying 
propensities for vehicle ownership and commute mode may themselves affect residential 
location in the first place to create a bundled choice. This is distinct from a sequential 
decision process in which residential location choice is chosen first (with no effects 
whatsoever of underlying propensities for vehicle ownership and commute mode on 
residential choice), then residential location affects vehicle ownership (which is chosen 
second, and in which the underlying propensity for commute mode does not matter), and 
finally vehicle ownership affects commute mode choice (which is chosen third). The 
sequential model is likely to over-estimate the impacts of residential location (land use) 
attributes on activity-travel behavior because it ignores self-selection effects wherein 
people who locate themselves in mixed and high land use density neighborhoods were 
auto-disoriented to begin with. These lifestyle preferences and attitudes constitute 
unobserved factors that simultaneously impact long term location choices, medium term 
vehicle ownership choices, and short term activity-travel choices; the way to accurately 
reflect their impacts and capture the “bundling” of choices is to model the choice 
dimensions together in a joint equations modeling framework that accounts for correlated 
unobserved lifestyle (and other) effects as well as possible structural effects.  

There are many approaches to model joint mixed systems (see Wu et al., 2013 for a 
review), but the one we will focus on here is based on accommodating jointness through 
the specification of a distribution for the unobserved components of the latent continuous 
variables underlying the discrete (ordinal, nominal, or count) variables and the 
unobserved components of observed continuous variables. Very generally speaking, one 
can consider a specific marginal distribution for each of the unobserved components of 
the latent continuous variables (underlying the discrete variables) and the observed 
continuous variable, and then generate a joint system through a copula-based correlation 
on these continuous variables. However, here we will assume that the marginal 
distributions of the latent and observed continuous variables are all normally distributed, 
and assume a Gaussian Copula to stitch the error components together. This is equivalent 
to assuming a multivariate normal distribution on the error components. But the 
procedures can be extended to non-normal marginal distributions and non-Gaussian 
copulas in a relatively straightforward fashion.  

From a methodological perspective, the simulation-based likelihood estimation of joint 
mixed models can become quite cumbersome and time-consuming. However, the use of 
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the MACML estimation technique has once again opened up possibilities because of the 
dramatic breakthrough in the ease and computational feasibility of estimating joint mixed 
systems.  

 3.1 Joint Mixed Dependent Variable Model Formulation  

In the following presentation, for ease in exposition, we assume fixed coefficients on 
variables, though extension to the case of random coefficients in conceptually very 
straightforward (as in earlier sections). We will also suppress the notation for individuals, 
and assume that all error terms are independent and identically distributed across 
individuals. Finally, we will develop the formulation in the context of ordinal, nominal, 
and continuous variables, though the formulation is immediately applicable to count 
variables too because count variables may be modeled as a specific case of the GORP-
based formulation for ordinal variables.  

Let there be N ordinal variables for an individual, and let n be the index for the ordinal 
variables ) ..., ,2 ,1( Nn = . Also, let nJ  be the number of outcome categories for the nth 

ordinal variable )2( ≥nJ  and let the corresponding index be nj ) ..., ,2 ,1( nn Jj = . Let *
ny  

be the latent underlying variable whose horizontal partitioning leads to the observed 
choices for the nth ordinal variable. Assume that the individual under consideration 
chooses the th

na  ordinal category. Then, in the usual ordered response formulation: 

, if , *
1

* n
kql

n
knnn ykjy ψψε <<=+′= −wδn

 

 (3.1) 

where w  is a fixed and constant vector of exogenous variables (not including a constant), 

nδ  is a corresponding vector of coefficients to be estimated, the ψ terms represent 

thresholds, and nε  is the standard normal random error for the nth ordinal variable. We 

parameterize the thresholds as: 

)exp(1 zγkn′++= − kn
n
k

n
k αψψ  (3.2)

 
In the above equation, knα  is a scalar, and knγ  is a vector of coefficients associated with 

ordinal level 1 ,...,2 ,1 −= Kk  for the nth ordinal variable. The above parameterization 
immediately guarantees the ordering condition on the thresholds for each and every 
crash, while also enabling the identification of parameters on variables that are common 
to the w  and z  vectors. For identification reasons, we adopt the normalization that 

.)exp( 11 nα n
n ∀=ψ  Stack the N latent variables *

ny  into an )1( ×N vector *y , and let 

( )*y
Ξfy ,~* N , where ( )wδwδwδ N′′′== ,...,,( 21f  and *y

Σ  is the covariance matrix of 

) ..., , ,( 21 Nεεε=ε . Also, stack the lower thresholds corresponding to the actual observed 

outcomes for the n ordinal variables
 
into an )1( ×N  vector lowψ  and the upper thresholds 

into another vector .upψ  For later use, define 

,),...,,(,),...,,( ′′′′=′′′′= Nn,-Jnnn γγγγγγγγ
n 21132

,),...,,(,),...,,( ,121 ′′′′=′= − Nn ααααα 21nJnn n
ααα  and .),...,,( 21 ′′′′= Nδδδδ  
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Let there be G nominal (unordered-response) variables for an individual, and let g be the 
index for the nominal variables (g = 1, 2, 3,…, G). Also, let Ig be the number of 
alternatives corresponding to the gth nominal variable (Ig≥ 3) and let ig be the 
corresponding index (ig = 1, 2, 3,…, Ig). Consider the gth nominal variable and assume 
that the individual under consideration chooses the alternative mg. Also, assume the usual 
random utility structure for each alternative ig. 

,
ggg gigigiU ξ+′= xbg  (3.3)  

where 
ggix is a −×1L column vector of exogenous attributes, gb  is a column vector of 

corresponding coefficients, and 
ggiξ is a normal error term. Let ),...,( 21 ′=

ggIgg ξξξgξ  (

1×gI vector), ),0(~ gΛ
gIMVNgξ . Let ),...,,( 21 ′=

ggIggg UUUU  1( ×gI  vector), 

),...,,,( 321 ′=
qgIggg xxxxxg  LI g ×(  matrix), gV bxg=g  1( ×gI  vector). Then 

).,(~ gΛVU gIg g
MVN  Under the utility maximization paradigm, 

gg gmgi UU − must be less 

than zero for all gg mi ≠ , since the individual chose alternative gm . Let 

)(*
gggmgimgi miUUu

gggg
≠−= , and stack the latent utility differentials into a vector 

( ) 



 ≠′= ggmgImgmg miuuu

gggg
;,...,, **

2
*

1
*
gu . As usual, only the covariance matrix of the error 

differences is estimable. Taking the difference with respect to the first alternative, only 
the elements of the covariance matrix gΛ


 of ,),...,,( 32 ′=

ggIgg ςςςgς  
where 1ggigi ξξς −=  

( 1≠i ), are estimable. However, the condition that 1−<
gI0u*

g  takes the difference against 

the alternative gm
 
that is chosen for the nominal variable g. Thus, during estimation, the 

covariance matrix gΛ


 (of the error differences taken with respect to alternative gm  is 

desired). Since gm  will vary across households, gΛ


will also vary across households. But 

all the gΛ


 
matrices must originate in the same covariance matrix gΛ  for the original 

error term vector gξ . To achieve this consistency, gΛ  is constructed from gΛ


by adding 

an additional row on top and an additional column to the left. All elements of this 
additional row and column are filled with values of zeros. Also, an additional scale 
normalization needs to be imposed on gΛ


. For this, we normalize the first element of gΛ


 

to the value of one. The discussion above focuses on a single nominal variable g. When 

there are G nominal variables, define 
=

=
G

g
gIG

1


 and 

=

−=
G

g
gIG

1

)1(
~

. Further, let 

( ) ,,...,, 11312
′−−−= ggIgggg UUUUUU

g

*
gu
  [ ] [ ] [ ]

′






 ′′′= *

G
* uuuu


,...,, *

2
*
1 , and 

[ ] [ ] [ ]
′






 ′′′

= *
G

* uuuu ,...,, *
2

*
1  (so *u


 is the vector of utility differences taken with respect to 

the first alternative for each nominal variable, while *u  is the vector of utility differences 
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taken with respect to the chosen alternative for each nominal variable). Now, construct a 

matrix of dimension GG
~~×  that represents the covariance matrix of *u


: 
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In the general case, this allows the estimation of 
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gg II

1

1
2

)1(*
 terms across all the 

G nominal variables (originating from 







−

−
1

2

)1(* gg II
 terms embedded in each gΛ


 

matrix; g=1,2,…G) and the  
−

= +=

−×−
1

1 1

)1()1(
G

g

G

gl
lg II  covariance terms in the off-diagonal 

matrices of the *u
Σ  matrix characterizing the dependence between the latent utility 

differentials (with respect to the first alternative) across the nominal variables 
(originating from )1()1( −×− lg II  estimable covariance terms within each off-diagonal 

matrix in *u
Σ ). For later use, define the stacked −×1G


vectors ( )′′′′= GUUUU , ... ,, 21  , 

and ( )′′′′= GVVVV 2 , ... ,,1  . 

Finally, let there be H continuous variables ) ..., , ,( 21 Hyyy with an associated index h 

) ..., ,2 ,1( Hh = . Let hhhy η+′= shλ  in the usual linear regression fashion, and 

.),...,,( 21 ′′′′= Hλλλλ  Stacking the H continuous variables into a )1( ×H -vector y, one may 

write ),,( yhMVN Σcy =  where ( )'21 ,...,, Hsssc Hλλλ 21 ′′′= , and yΣ  is the covariance 

matrix of ( )Hηηη ,....., 21=η .  

 3.2 The Joint Mixed Model System and the Likelihood Formation 

The jointness across the different types of dependent variables may be specified by 
writing the covariance matrix of ( )yyuy * ,, * =  as:  
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where *y*Σ
u


 
is a NG×~

 matrix capturing covariance effects between the *u


 vector and 

the *y  vector, 
y*Σ

u
 is a HG×~

 matrix capturing covariance effects between the *u


vector 

and the y vector, and 
y*y

Σ
 
is an HN ×  matrix capturing covariance effects between the 

*y  vector and the y vector. All elements of the matrix above are identifiable. However, 
the matrix represents the covariance of latent utility differentials taken with respect to the 
first alternative for each of the nominal variables. For estimation, the corresponding 
matrix with respect to the latent utility differentials with respect to the chosen alternative 
for each nominal variable, say Ω

~
, is needed. For this purpose, first construct the general 

covariance matrix Ω  for the original [ ] 1×++ HNG


 vector 
′






 ′′′= yy ,, *UUY , while 

also ensuring all parameters are identifiable (note that Ω  is equivalently the covariance 

matrix of ),,( ′′′′= ηξετ . To do so, define a matrix D of size [ ] [ ]HNGHNG ++×++ ~
. 

The first 1I  rows and )1( 1 −I  columns correspond to the first nominal variable. Insert an 

identity matrix of size )1( 1 −I  after supplementing with a first row of zeros in the first 

through )1( 1 −I th columns of the matrix. The rest of the elements in the first 1I  rows and 

the first )1( 1 −I  columns take a value of zero. Next, rows )1( 1 +I through )( 21 II + and 

columns )( 1I  through )2( 21 −+ II  correspond to the second nominal variable. Again 

position an identity matrix of size )1( 2 −I  after supplementing with a first row of zeros 
into this position. Continue this for all G nominal variables. Put zero values in all cells 
without any value up to this point. Finally, insert an identity matrix of size N+H into the 
last N+H rows and N+H columns of the matrix D. Thus, for the case with two nominal 
variables, one nominal variable with 3 alternatives and the second with four alternatives, 
one ordinal variable, and one continuous variable, the matrix D takes the form shown 
below: 

 (3.6) 
Then, the general covariance matrix of UY may be developed as .DΩDΩ ′=


 All 

parameters in this matrix are identifiable by virtue of the way this matrix is constructed 
based on utility differences and, at the same time, it provides a consistent means to obtain 
the covariance matrix Ω

~
 that is needed for estimation (and is with respect to each 
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individual’s chosen alternative for each nominal variable). Specifically, to develop the 

distribution for the vector 
′






 ′′= yyuy * ,,~ * , define a matrix M of size 

[ ] [ ]HNGHNG ++×++
~

. The first )1( 1 −I  rows and 1I  columns correspond to the first 

nominal variable. Insert an identity matrix of size )1( 1 −I  after supplementing with a 
column of ‘-1’ values in the column corresponding to the chosen alternative. The rest of 
the columns for the first )1( 1 −I  rows and the rest of the rows for the first 1I  columns 

take a value of zero. Next, rows )( 1I  through )2( 21 −+ II and columns )1( 1 +I through

)( 21 II + correspond to the second nominal variable. Again position an identity matrix of 

size )1( 2 −I  after supplementing with a column of ‘-1’ values in the column 
corresponding to the chosen alternative. Continue this procedure for all G nominal 
variables. Finally, insert an identity matrix of size N +H into the last N +H rows and N 
+H columns of the matrix M. With the matrix M as defined, the covariance matrix Ω

~
 is 

given by .MMΩΩ ′=~
 

Next, define ( )′= *'*' y,uu~ and ( ) .,~ ′′′= fVg )(M  Also, partition Ω
~

 so that 
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Σ  matrix. Also, supplement the threshold vectors defined earlier 

as follows: ( ) ( ) 



 ′′∞−= lowlow ψψ ,~

~
G

, and ( ) ( ) 



 ′′= upup ψ0ψ ,~

~
G

, where 
G
~∞−  is a )1

~
( ×G -

column vector of negative infinities, and G
~0  is another )1

~
( ×G -column vector of zeros. 

The conditional distribution of u~ given y, is multivariate normal with mean 
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Next, let θ  be the collection of parameters to be estimated: 
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where the integration domain }~~~:~{
~

uplow ψuψu ≤≤=
u

D  is simply the multivariate region 

of the elements of the u~  vector determined by the range )0,(−∞  for the nominal 

variables and by the observed outcomes of the ordinal variables, and (.)~
NG

f +  is the 

multivariate normal density function of dimension .
~

NG +  The likelihood function for a 
sample of Q observations is obtained as the product of the observation-level likelihood 
functions. 

 The above likelihood function involves the evaluation of a NG +~ -dimensional 
rectangular integral for each household, which can be computationally expensive. So, the 
Maximum Approximate Composite Marginal Likelihood (MACML) approach of Bhat 
(2011) may be used.  

 3.3 The Joint Mixed Model System and the MACML Estimation 
Approach 

Consider the following (pairwise) composite marginal likelihood function formed by 
taking the products (across the N ordinal variables and G nominal variables) of the joint 
pairwise probability of the chosen alternatives for an individual, and computed using the 
analytic approximation of the multivariate normal cumulative distribution (MVNCD) 
function. 
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where 
gid is an index for the individual’s choice for the gth nominal variable. The net 

result is that the pairwise likelihood function now only needs the evaluation of 
 

~
 and ,

~
,

~
gnnngg GGG ′′ dimensional cumulative normal distribution functions (rather than the 

NG +~ -dimensional cumulative distribution function in the maximum likelihood 
function), where  

~
and2,

~
,2

~
' ggnnngggg IGGIIG ==−+= ′′′ . This leads to substantial 

computational efficiency. However, in cases where there are several alternatives for one 
or more nominal variables, the dimension gngg GG

~
 and 

~
′  can still be quite high. This is 

where the use of an analytic approximation of the MVNCD function comes in handy. The 
resulting maximum approximated composite marginal likelihood (MACML) is solely 
based on bivariate and univariate cumulative normal computations. Also note that the 
probabilities in the MACML function in Equation (3.9) can be computed by selecting out 

the appropriate sub-matrices of the mean vector g
~~  and the covariance matrix u~

~~
Σ  of the 

vector u~  , and the appropriate sub-vectors of the threshold vectors .~and~ uplow ψψ  The 
covariance matrix of the parameters θ  may be estimated as: 
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An alternative estimator for Ĥ is as below: 
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 3.4 Positive Definiteness 

The matrix Ω
~

 for each household has to be positive definite. The simplest way to 

guarantee this is to ensure that the matrix Ω


 is positive definite. To do so, the Cholesky 

matrix of Ω


 may be used as the matrix of parameters to be estimated. However, note that 

the top diagonal element of each gΛ


in Ω


 is normalized to one for identification, and this 

restriction should be recognized when using the Cholesky factor of Ω


. Further, the 

diagonal elements of 
   *y

Σ in Ω


 are also normalized to one. These restrictions can be 

maintained by appropriately parameterizing the diagonal elements of the Cholesky 
decomposition matrix. Thus, consider the lower triangular Cholesky matrix L


 of the 

same size as Ω


. Whenever a diagonal element (say the kkth element) of Ω


 is to be 

normalized to one, the corresponding diagonal element of L


 is written as 
−

=

−
1

1

21
a

j
kjd , 

where the kjd  elements are the Cholesky factors that are to be estimated. With this 

parameterization, Ω


 obtained as LL ′


 is positive definite and adheres to the scaling 
conditions.  

 



 

74 

References for the CML Estimation of the Mixed Variable Model 

Bhat, C.R., Born, K., Sidharthan, R., Bhat, P.C., 2014b. A count data model with endogenous 
covariates: formulation and application to roadway crash frequency at intersections. 
Analytic Methods in Accident Research 1, 53-71. 

Khan, M., Paleti, R., Bhat, C.R., Pendyala, R.M., 2012. Joint household-level analysis of 
individuals' work arrangement choices. Transportation Research Record 2323, 56-66. 

Paleti, R., Bhat, C.R., Pendyala, R.M., 2013. Integrated model of residential location, work 
location, vehicle ownership, and commute tour characteristics. Transportation Research 
Record 2382, 162-172. 

Paleti, R., Pendyala, R.M., Bhat, C.R., Konduri, K.C., 2011. A joint tour-based model of tour 
complexity, passenger accompaniment, vehicle type choice, and tour length. Technical 
paper, School of Sustainable Engineering and the Built Environment, Arizona State 
University. 

Singh, P., Paleti, R., Jenkins, S., Bhat, C.R., 2013. On modeling telecommuting behavior: 
option, choice, and frequency. Transportation 40(2), 373-396.  

 
  



 

75 

 Chapter 4. Conclusions 

This report presents the basics of the composite marginal likelihood (CML) inference 
approach, discussing the asymptotic properties of the CML estimator and possible 
applications of the approach for a suite of different types of discrete and mixed dependent 
variable models. The approach can be applied using simple optimization software for 
likelihood estimation. In the case of models with complex and analytically intractable full 
likelihoods, the CML also represents a conceptually and pedagogically simpler 
simulation-free procedure relative to simulation techniques, and has the advantage of 
reproducibility of the results. For instance, in a panel application, Varin and Czado 
(2010) examine the headache pain intensity of patients over several consecutive days. In 
this study, a full information likelihood estimator would have entailed as many as 815 
dimensions of integration to obtain individual-specific likelihood contributions, an 
infeasible proposition using computer-intensive simulation techniques. In another panel 
spatial application, Sidharthan and Bhat (2012) examine the case of spatial dependence in 
land-use of spatial grids, and the full information likelihood estimator would have 
entailed integration of the order of 4800 dimensions. Despite advances in simulation 
techniques and computational power, the evaluation of such high dimensional integrals is 
literally infeasible using traditional frequentist and Bayesian simulation techniques. For 
instance, in frequentist methods, where estimation is typically undertaken using pseudo-
Monte Carlo or quasi-Monte Carlo simulation approaches (combined with a quasi-
Newton optimization routine in a maximum simulated likelihood (MSL) inference), the 
computational cost to ensure good asymptotic estimator properties becomes prohibitive 
for the number of dimensions just discussed. Similar problems arise in Bayesian Markov 
Chain Monte Carlo (MCMC) simulation approaches, which remain cumbersome, require 
extensive simulation, are time consuming, and pose convergence assessment problems as 
the number of dimensions increases (see Ver Hoef and Jansen, 2007, and Franzese et al., 
2010 for discussions).  

Even when the full likelihood involves a lower and more practically feasible 
dimensionality of integration, the accuracy of simulation techniques is known to degrade 
rapidly as the dimensionality increases, and the simulation noise increases substantially. 
This leads to convergence problems during estimation, unless a very high number of 
simulation draws is used. Several studies have demonstrated so in a variety of 
econometric modeling contexts (see, for example, Bhat and Sidharthan, 2011 and Paleti 
and Bhat, 2013). Besides, an issue generally ignored in simulation-based approaches is 
the accuracy (or lack thereof) of the covariance matrix of the estimator, which is critical 
for good inference even if the asymptotic properties of the estimator are well established. 
Thus, the CML can present a very attractive alternative to the traditional MSL method in 
many situations.  

Of course, there are some special cases where the MSL approach may be preferable to the 
CML approach. For example, consider a panel binary discrete choice case with J choice 
occasions per individual and K random coefficients on variables. Let the kernel error term 
be normally distributed and assume that the random coefficients are multivariate 
normally distributed, so that the overall error is also normally distributed. Here, when K < 
J, and K ≤ 3, the MSL estimation with the full likelihood function is likely to be 



 

76 

preferable to the CML. This is because integrating up to three dimensions is quite fast 
and accurate using quasi-Monte Carlo simulation techniques. This is particularly so when 
J is also large, because the number of pairings in the CML is high. For the case when K < 
J and K > 3, or K ≥ J > 3, the CML is likely to become attractive, because of the MSL-
related problems mentioned earlier for moderate dimensions of integration. For example, 
when K = J =5, the CML is fast since it entails the evaluation of only 10 probability 
pairings for each individual (each pairing involving bivariate normal cumulative 
distribution function evaluations) rather than a five-dimensional integration for each 
individual in the MSL estimation. Note that one may be tempted to think that the CML 
loses this edge when J becomes large. For instance, when J = 10, there would be 45 
probability pairings for each individual in a pairwise likelihood approach. But the 
surrogate likelihood function in the CML estimation can be formulated in many different 
ways rather than the full pairings approach presented here. Thus, one could consider only 
the pairing combinations of the first five (or five randomly selected) choice occasions for 
each individual, and assume independence between the remaining five choice occasions 
and between each of these remaining choice occasions and the choice occasions chosen 
for the pairings. Basically, the CML approach is flexible, and allows customization based 
on the problem at hand. The issue then becomes one of balancing between speed 
gain/convergence improvement and efficiency loss. Besides, the CML can also use 
triplets or quadruplets rather than the couplets considered here.  

If the probabilities of the lower dimensional events in the CML approach themselves 
have a multivariate normal cumulative distribution (MVNCD) form, then one can use the 
MACML approach proposed by Bhat to evaluate the MVNCD function using an analytic 
approximation.  

One potential limitation of the CML approach is the need to compute the Godambe 
information matrix to compute the asymptotic standard errors of parameters. However, 
even when an MSL method is used, the Godambe matrix is recommended to 
accommodate the simulation error that accrues because of the use of a finite number of 
draws. Another limitation of the CML approach is the need to compute the ADCLRT 
statistic, which is somewhat more complicated than the traditional likelihood ration test 
(LRT) statistic. It is hoped that such practical issues will be resolved once standard 
econometric software packages start accommodating the CML inference approach as an 
option for high dimensional model systems.  

In summary, the CML inference approach (and the associated MACML approach) can be 
very effective for the estimation and analysis of high-dimensional heterogeneous data. 
This has been shown in many recent studies, and there are many more empirical contexts 
that can gainfully use the CML approach using the formulations discussed in this report. 
In terms of future research on the CML approach itself, one wide open area pertains to 
how best to form a CML function in a given modeling and empirical context (especially 
because a precise theoretical analysis of the properties of the CML estimator is not 
possible except for the simplest of models).  
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