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Introduction
▶ Traffic sensors such as inductive loop detectors are expensive to install and maintain which makes them

infeasible for installation throughout the network and covering all segments.
▶ This poses a problem for traffic management operation and controls that require the knowledge of traffic

states on all segments.
▶ This work focuses on optimal sensor placement to achieve full observability of the system while maintaining

a balance between the number of sensors and the degree of observability of the system.
▶ Consequently, this results in accurate traffic density estimates on segments where the sensors are not

installed.

Research Goals
▶ To present a discrete-time nonlinear state-space model for highway networks having multiple on- and off-

ramps based on the Asymmetric Cell Transmission Model.
▶ To construct a traffic sensor placement problem using the concept of observability for nonlinear systems

which is equivalent to maximizing the determinant or trace of observability Gramian matrix given the number
of allocated traffic sensors.

Traffic Dynamical System
▶ The first-order Lighthill-Whitham-Richards (LWR) model is utilized to describe the traffic dynamics. The

relationship between the traffic density and flux is given by the triangular fundamental diagram which is
defined as:

q (ρ(t , d))=
{

vfρ(t , d), if 0 ≤ ρ(t , d) ≤ ρc

wc (ρm − ρ(t , d)) , if ρc ≤ ρ(t , d) ≤ ρm.

where t and d denote the time and space, ρ denotes the traffic density, q denotes the traffic flux, and
vf , wc , ρc and ρm are parameters of the fundamental diagram.

▶ The highway is divided into segments of length l . Given time-step duration T , the discrete-time flow con-
servation equation for any highway segment with both on- and off-ramp can then be written as

ρi [k + 1] = ρi [k ] +
T
l
(
qi−1[k ] + ri [k ] − qi [k ] − si [k ]

)
qi [k ] = min

(
δi [k ],σi+1[k ]

)
where δi and σi denote the demand and supply of Seg-
ment i . ri [k ] and si [k ] are defined similar to qi [k ].

Fig 1. Highway segment connected to on-ramp and off-ramp.
▶ The state-space and measurement equations for the system respectively are

x [k + 1] = Ax [k ] + Gf (x , u, k ) + Buu[k ]
y [k ] = ΓCx [k ].

(1a)
(1b)

where x is the state vector containing the traffic densities, u is the input vector containing demands and
supplies of the input and output segments, A represents the linear dynamics of the system, Bu represents
the effect of the inputs on the system, f represents the nonlinearities, and G represents the distribution of
the nonlinearities; y is the vector of measured densities, C is the output matrix considering availability of p
sensors, and Γ := Diag(γ) with γ ∈ {0, 1}p represents the selection of sensors–that is, γi = 1 if Segment i
is measured and γi = 0 otherwise.

Sensor Placement Methodology
Optimization Problem for Sensor Placement
The traffic sensor placement problem is formulated using the concept of observability based on moving horizon
estimation developed in [1]. The following optimization problem is solved to obtain the optimal set of segments
to measure out of p possible segments.

(P1) κ = min
γ

{
−det (Wo(γ, x̂0)) ,
−trace (Wo(γ, x̂0)) ,

s.t. γ ∈ Gγ , γ ∈ {0, 1}p.

(2a)

(2b)

Here, x̂0 is the assumed initial state of the system, and Wo is the N-step observability Gramian which is
obtained using the dynamics (1a) and measurement model (1b).

Quality of Sensor Placement Solution
The relative error between the actual and estimated initial states, denoted by ζ, is used to determine the quality
of the sensor placement solution γ given by P1. The following problem is solved to obtain an estimate of the
initial state x̃0.

(P2) min
x̃0

∥ỹγ − gγ (x̃0)∥2
2

s.t. 0 ≤ x̃0 ≤ 1× ρm.

(3a)

(3b)

Here, ỹγ is a stacked N-step measurement vector, and gγ is a function mapping the initial state vector to the
stacked output. The relative error is calculated as

ζ :=
∥x̃0 − x0∥2

∥x0∥2
. (4)

Case Study
Observability Analysis for Traffic Sensor Placement
▶ We solve P1 and P2 for an arbitrary highway of length 3.1 miles with 20 mainline segments, 2 on-ramps

and 2 off-ramps, with different objective functions, observation window lengths, and number of sensors.

Fig 2. ζ for different number of sensor allocations. Fig 3. −κ for different number of sensor allocations.

collaborate. innovate. educate.

▶ We solve P1 and P2 with different assumed initial states x̂0, actual initial states x0, objective functions and
number of sensors.

Fig 4. ζ for various presumed initial states. Fig 5. ζ for various actual initial states.

Traffic Density Estimation with Different Sensor Allocations
▶ We analyse the state estimation error using Extended Kalman Filter (EKF) for different objective functions

and number of sensors, and compare the state estimation with randomized and uniform placement of
sensors.

Fig 6. State estimation RMSE with EKF for different sensor

allocations.

Fig 7. State estimation RMSE with EKF for optimal, randomized and

uniform sensor placement.

Key Takeaways
▶ The proposed optimal sensor placement outperforms randomized and uniform sensor placement in esti-

mating traffic density on highways.
▶ It allows for the optimal usage of limited resources in terms of sensor allocation for the purpose of traffic

density estimation which is important for traffic control.
▶ The proposed methodology can be used over a wide range of operating conditions.
▶ The given placement approach can also be utilized with other models in transportation systems and beyond

stretched highways, assuming that a nonlinear state-space representation is possible.
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