

CENTER FOR TRANSPORTATION RESEARCH

Project 0-7055: An Extreme Weather Risk-Assessment Framework for Port Infrastructure Systems Kyle Bathgate, Jingran Sun, Shidong Pan, Zhe Han, Michael Murphy, and Zhanmin Zhang

Background

- *Risk* = *expected losses* x *probability*
- Risk influenced by hazard, exposure, vulnerability
- Data on expected losses and probability of occurrence may be difficult to acquire or verify
- Risk may be estimated with a proxy indicator using readily accessible datasets
- Exists a need for port-specific framework accounting for multiple infrastructure systems, at a network level

Framework

Data Requirements Infrastructure GIS Layers • Port assets • Landside assets • Supporting utilities Stakeholder input Harlingen Bownsville Port Isabel Port authorities, public agencies, private companies Identification of recovery bottlenecks and critical infrastructure components Extreme weather hazards **GIS** layers The Sea level rise Storm surge Sea level 1 ft sea level rise Cat. 1 Storm Surge 4 ft sea level rise Cat. 3 Storm Surge 8 ft sea level ris Cat. 5 Storm Surge

Methodology

Port Location

Scores for criticality, vulnerability, and exposure assigned from data attribute values and weights, range from 0 to 5

0 5 10 20 Miles

- Assessment performed in GIS
- Risk (R_{ii}) is product of exposure (E_{ii}) and vulnerability (V_i) scores

$$R_{ij} = V_i \cdot E_{ij}$$

5	·										
5		Elevated Risk	Severe Risk	Severe Risk	Extreme Risk	Extreme Risk					
		Moderate Risk	Elevated Risk	Severe Risk	Severe Risk	Extreme Risk					
oility		Moderate Risk	Elevated Risk	Elevated Risk	Severe Risk	Severe Risk					
		Mild Risk	Moderate Risk	Elevated Risk	Elevated Risk	Severe Risk					
0		Mild Risk	Mild Risk	Moderate Risk	Moderate Risk	Elevated Risk					
_	0 Exposure										

0 5 10 20 Mil

Port Location

Case Study

Houston area highway, railroad, electric grid, pipeline systems Sea level rise and hurricane storm surge hazards Criticality scored with data attributes on a scale of 0 to 5

System	Criticality Attributes		
Highway	Road classification, NHS designation, evacuation route status, AADT, truck traffic percentage		
Railroad	Railroad owner class, line type, critical facility access		
Electric Grid	Line voltage		
Pipeline	Pipeline diameter		

• Vulnerability taken as criticality and distance from port

• Criticality, interdependency, replacement cost, detour length Exposure to hurricane storm surge and sea level rise scored by hazard severity

Risk scores for individual hazards for each system, total risk for each system, and total network-level risk found using weighting system

ystem		RICA RICK	Storm Surge Risk Score	Storm Surge Risk Level	Total Risk Score	Total Risk Level
oadway	2.76	Moderate	4.74	Elevated	3.75	Moderate
ailway	5.90	Elevated	8.80	Elevated	7.38	Elevated
peline	5.68	Elevated	8.52	Elevated	7.09	Elevated
ectric Grid	8.48	Elevated	10.66	Severe	9.57	Severe

Summary

• A framework for the assessment of port system risk is presented • Case study for Houston region performed to demonstrate application of framework

- Road, rail, pipeline, and electric grid systems assessed to storm surge and sea level rise hazards
- Methods may be used by TxDOT to identify roads and infrastructure assets at risk to damage from extreme weather impacts

Acknowledgements

Special thanks to the Texas Department of Transportation for providing funding for this research under Project 0-7055 "Creating a Resilient Port System in Texas: Assessing and Mitigating Extreme Weather Events"

collaborate. innovate. educate.