

Impact of Reduced Maintenance on Road Safety

Zhanmin Zhang, Ph.D.

Associate Professor and Fellow of the Clyde E. Lee Endowed Professorship in Transportation Engineering

Project 0-6713

Quantitative Relationship between Crash Risks and Pavement Skid Resistance

Project Team

Project Director: Project PMC: Terry Paholek Wade Odell Mark Shafer Leo Ramirez Debra Vermillion Scott Reaves

Research Supervisor: Researchers: Zhanmin Zhang Michael R. Murphy Hui Wu Zhe Han

TR _

Expert Workshop Group Member

Participant	Title	Agency	Role	
Wade Odell	RMC-4 Research Engineer	TxDOT-RTI	Research Engineer	
Terry Paholek	Director of Operations	TxDOT-Bryan	Project Director	
Mark Shafer	Brenham Area Engineer	TxDOT-Bryan	Project Advisor	
Caroline Herrera	Director-CST-MAP Section	TxDOT-CST	Project Advisor	
Leo Ramirez	Information Systems Analyst	TxDOT-IT-TSD	Project Advisor	
Magdy Mikhail	Director – CST-PAV Branch	TxDOT-CST	EWG Member	
John Bohuslav	Director of Maintenance	TxDOT-SAT	EWG Member	
Paul Montgomery	Director of Maintenance	TxDOT-LFK	EWG Member	
Herbert Bickley	Director of Operation	TxDOT-LFK	EWG Member	
Mike Arellano	District Pavement Engineer	TxDOT-AUS	EWG Member	
Stacey Young	tacey Young District Pavement Engineer		EWG Member	
Larry Colclasure	Larry Colclasure Director		Project Advisor	
Lowell Choate	owell Choate Director of Maintenance		EWG Member	

Background

- In the past 5 years, over 12,000 fatalities, 48,700 incapacitating injuries, 198,300 non-incapacitating injuries, and 415,900 possible injuries have occurred on the state-maintained highway network in Texas
- TxDOT is responsible for the maintenance of over 195,000 lane miles of highways under severely constrained budget
- The goal is to evaluate the impact of pavement skid resistance on crash risk so that minimum skid resistance threshold values can be established to ensure that highway safety will not be compromised with reduced maintenance conditions

Research Scope and Objectives

- Develop a methodological procedure to determine the quantitative relationship between crash rates and pavement skid number (SN) values
- Determine guidelines for SN thresholds to assist TxDOT in making critical maintenance decisions
- Address all types of state-maintained highways in Texas
- Analyze wet weather related crashes as a separate group for comparison purposes

CRR Concept

CRR is expressed as a function:

$$CRR = \frac{P_{CR}^{SN}}{P_{LM}^{SN}}$$

Where: *CRR* = Crash Rate Ratio

 P_{CR}^{SN} = Cumulative percentage of total crashes below skid number *SN*

 P_{LM}^{SN} = Cumulative percentage of total lane miles below skid number *SN* **Data Integration**

E

CRR Calculation (2011)

Distribution of Total Crashes by SN

Distribution of Lane Miles by SN

Skid Number	Cumulative percentage of total crashes	Cumulative percentage of lane miles	CRR
20	30.4	14.3	2.13

CRR Calculation (2011)

Crash Risk vs. Skid Number (08'-11')

Exponential curve model used in analysis:

 $CRR = a \times e^{-b \cdot SN} + c$

 $CRR = 3.894 \times e^{-0.04605 \cdot SN} + 0.9205$ (R² = 0.992)

Statewide CRR-SN Relationship (08'-11')

CRR-SN for wet crashes:

 $CRR = 5.023 \times e^{-0.05292 \cdot SN} + 0.9264$ when SN < 39

 $CRR = 3.894 \times e^{-0.04605 \cdot SN} + 0.9205$ when $SN \ge 39$

Statewide Threshold Values for SN

Stratified Groups

Recommended Thresholds

		Total Crashes			Wet Weather Crashes		
		SN ₁	SN ₂	SN ₃	SN_1	SN_2	SN ₃
State	wide	18	24	73	18	29	73
	1	17	31	52	20	34	75
	2	-	-	42	-	-	52
	3	-	-	43	-	10	43
	4	11	26	48	18	31	72
l II dr	5	-	-	42	-	-	48
Grou	6	-	-	44	-	-	44
Highway Group ID	7	14	26	34	23	35	73
ligh	8	-	10	32	14	20	47
	9	-	-	43	23	34	73
	10	-	16	63	-	30	68
	11	-	-	28	-	14	50
	12	-	-	42	-	10	42

Conclusions

- Compared to traditional regression models that are developed to describe the relationship between pavement skid resistance and crash risks, CRR-SN curve is specifically designed to support management of skid resistance at the network level
- The development of CRR-SN curves provides both researchers and engineers an easy way to quantify and understand the overall relationship between skid resistance and crash risks
- By choosing the break points of CRR according to the safety goals and objectives of the transportation agencies, the critical threshold values of SN can be directly determined

QUESTIONS?

