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Appendix A. High dimensional linear regression statistical inference using stochastic gradients (Section 3)
A.1. Statistical inference using approximate proximal Newton steps with stochastic gradients

Here, we present a statistical inference procedure for high dimensional linear regression via approximate proximal Newton

steps using stochastic gradients. It uses the plug-in estimator:

n
s 52%;9 - yi)zxixiT) é_l,
=1

which is related to the empirical sandwich estimator (Huber, 1967; White, 1980). Lemma A.1 shows this is a good estimate of
the covariance when n > DLEAL max{1,02}s%(o + [|60%]|1)%.

Algorithm 2 performs statistical inference in high dimensional linear regression (13), by computing the statistical error
covariance in Theorem 3.2, based on the plug-in estimate in Lemma A.1. We denote the soft thresholding of A by w as an

element-wise procedure (S, (A)), = sign(Ae)(|A¢| —w)+. For a vector v, we write v’s i

%GT <§_ % %szT) ("‘ iZ%fm

coordinate as v(4). The optimization

objective (13) is denoted as:

where f; = % ((Zr — yi)Q . Further,
g5(v) = Vo [ 307 5] 6 Su=3"0(j) Su LY [fi(0+e) - Vfiw)]) (
=1

where e; € RP is the basis vector where the i coordinate is 1 and others are 0, and Swv is computed in a column-wise manner.

For point estimate optimization, the proximal Newton step (Lee et al., 2014) at 6 solves the optimization problem

min LATSA + <(§ — ;Z%Ixmj)e +13° ffi(e), A> 6 M6+ A,
=1

to determine a descent direction. For statistical inference, we solve a Newton step:

min 5;ATSA + <§ > fk(ﬂt),A> (

kel,

To control variance, \e solve Newton steps using SVRG and proximal SVRG (Xiao and Zhang, 2014), because in the high

to compute — 5! S% Zlélo V fi(6), whose covariance is the statistical error covariance.

dimensional setting, the variance using SGD (Moulines and Bach, 2011) and proximal SGD (Atchadé et al., 2017) for solving
Newton steps is too large. However because p > n, instead of sampling by sample, we sample by feature. We start from 6
sufficiently close to ) (see Theorem A.1 for details), which can be effectively achieved using proximal SVRG (Appendix A.3).

Line 7 corresponds to SVRG’s outer loop part that computes the full gradient, and line 12 corresponds to SVRG’s inner loop

19
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update. Line 8 corresponds to proximal SVRG’s outer loop part that computes the full gradient, and line 13 corresponds to
proximal SVRG’s inner loop update.

The covariance estimate bound, asymptotic normality result, and choice of hyper-parameters are described in Appendix A.4.
When L = O(log(p) - log(t)), we can estimate the covariance with element-wise error less than O (max{l’g}pdylog("’p )> (/ith

VT
high probability, using O (( -n-p? - log(p) - log(T)) (umerioal operations. Calculation of the de-biased estimator 4 (16)via

SVRG is described in Appgndix A.2.

Algorithm 2 High dimensional linear regression statistical inference
1: Parameters: S,,5; € Z;n,7 € Ry; Initial state: 6y € R?
2: fort =0toT — 1do
3: I, < uniformly sample .S, indices with replacement from [n]
9 =5 2oy, V(00
dj < - (gg(;() - iE%l [V fi(0r + 00) = V fi(0)] + 13271 V fi(0r)) (

4
S:
6: forj=1toL,—do /fsolving Newton steps using SVRG
7
8
9

. 07
ul <959l ) — 9t

i—1
vl < gg(di™) — df
: AN '
: gi gl L d < d
10: for! =1to L; do

11: I; < uniformly sample S; indices without replacement from [p]

12 g gl =7 [ul + & Tyes, glk) — gl (8)] st (V6 + ex) = V1u(6)| g

13: 4« Sy» (d{ —n {vj + ¥ s, {d{(kz) —dim k)} S, (Ve (0: + ex) — Vi t))D
14: end for

15:  end for ,
g C _ L j
16:  Use+/S, - % for statistical inference, where g; = ﬁ > =0 gl
— — t -
17: 0¢1 = 0¢ + di, where d; = ﬁ Zf;o dg // point estimation (optimization)
18: end for

A.2. Computing the de-biased estimator (16) via SVRG

To control variance, we solve each proximal Newton step using SVRG, in stead of SGD as in Algorithm 1. Because However
because the number of features is much larger than the number of samples, instead of sampling by sample, we sample by
feature.

The de-biased estimator is
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~

And we compute S *1% >il 1 V fi(0) using SVRG (Johnson and Zhang, 2013) by solving the following optimization problem
using SVRG and sampling \by feature

n

1 as /1 ~
min 5 u Su+<n;<7fi(0),u><

Algorithm 3 Computing the de-biased estimator (16) via SVRG
1: fori =0to L, —1do R
dj — —nlgg(ui) + 5 Zf(“l V fi(0)]

2

3 forj =0to L; — 1do

4: I < sample S indices uniformly from [p] without replacement

s A e dl )= (A k) - Su(VAE + en) - £(0)
6: end for
70 Uiy < u; + d;, where d; = ) >
8: end for

Ly 4j
isod;

Similar to Algorithm 2, we choose n = © (%) énd L; = O(p).

A.3. Solving the high dimensional linear regression optimization objective (13) using proximal SVRG

We solve our high dimensional linear regression optimization problem using proximal SVRG (Xiao and Zhang, 2014)

5 Ll g I~y I, )
H—argmem29 S nZ(w,-)é—l—nZQ(:riﬁ yz> + Al|6]]1- (20)

i=1 i=1

Algorithm 4 Solving the high dimensional linear regression optimization objective (13) using
proximal SVRG

1: fori=0to L, — 1 do

2: u? «— 0;

3 de < gg(0i) — 5 L[V k(0 + 0:) — Vfi(0:)] + 5 2y

4 for j =0toL; —1do
5: ul 7= Sy (ul = Wd+ § Xy <u§(k) - 9i(/€)> Sw (V /(0 + ex) =V fr(6:))])
6
7
8

end for

1 Ly _J
9t+l <~ L;+1 Zj:() u;
: end for

Similar to Algorithm 2, we choose ) = © (%) <nd L; = O(p).

A.4. Non-asymptotic covariance estimate bound and asymptotic normality in Algorithm 2

We have a non-asymptotic covariance estimate bound and an asymptotic normality result.

21
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Theorem A.1 Under our assumptions, when n > max{b?, %ﬁ} logp, So = O(1), S; = O(1), and conditioned on {x;}}_,
and following events which simultaneously with probability at least 1 — p—©1) — n=01)
O [A]: maxi<i<p |6 S ov/logn,
O [B]: maxi<i<n ||Zil|co S V1ogp + logn,
Q€T 1S e S B
we choose L; = ©(p), T = 6)(%), n= G)(%) in Algorithm 2.
Here, we denote the objective function as

et )i o o
=1

=1

Then, we have a non-asymptotic covariance estimate bound
T - — S— Y S—
‘ Sy ag — 97! ({Z:’FI(LEIQ - yi)2xixiT) S 1‘ 'gax
~ \ \r 6
</ (fogp+1og )19 — % 3 o/(log p + log n) log n )\~

+1 ﬁzleo.%%u + 1/ P(8o) — P(8)0.9551=0 L) 4 /p(log p + log n)1/ P(6) — P(8)0.95Z=0 LZ} (

where || Al|max = max{1 < j, k < p}|Ajx| is the matrix max norm, with probability at least 1 — p~®(=1) — 4,

And we have asymptotic normality

L (SLVSogi + A il 0 - ) 6 W R,

where W weakly converges to N(O,S’*l [% S (] 0—yi) 2wl — (L 0 wi(a] 0-yi)) (2 Z;;lxi(xje—yi))TP*l), and E[|| R/ |

n

{2}y, (AL [B) [C]] S 5 S50, 09550 (14/ P(6) — P(6)0.95%=0 L)+ /p(log p+log n)y/ P(6) — P(9)0.95%=0 L.

Note that when we choose LY = ©(log(p) - log(t)), and start from 6, satisfying P(6p) — P(@\) < m which

can be effectively achieved using proximal SVRG (Appendix A.3), we can estimate the statistical error covariance with
element-wise error less than O (max{l’a}pdylog("’p )> (vith high probability, using O (( -n - p* - log(p) - log(T)) (umerical

VT
operations.

A.5. Plug-in statistical error covariance estimate

Algorithm 2 is similar to using plug-in estimator 2 > 1(30:5— yi) iz foro? (230 | zix)) r(n Theorem 3.2, similar to

the sandwich estimator (Huber, 1967; White, 1980). Lefnma A.1 gives a bound on using this plug-in estimator in the statistical

error covariance (Theorem 3.2) for coordinate-wise confidence intervals.

22
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Lemma A.1 Under our assumptions, when n >> max{bQ, DLEQ} log p, we have

HA 1 < i 1(:1:2—9/\— yl)2xzx:> S _ 5251 (%Z? 1%30;'—) S'\_l‘
§j;D12 <a lo n+s(a—|—HQ*Hl)ﬂ/logp—l—logm/lo% <(U+|9*H1) logp+logn)%,/1°%’

where || Al|max = maxi<jr<p |Ajx| is the matrix max norm, with probability at least 1 — p~©1) — n=0(1),

Appendix B. Time series statistical inference with approximate Newton steps using only stochastic

gradients (Section 4)

Here, we give the complete approximate Newton-based time series statistical inference algorithm using only stochastic
gradients.

Algorithm 5 Unregularized M-estimation statistical inference
1: Parameters: 1,.S; € Z; po, 70 € Ry; do, d; € (3,1) / Initial state: 6, € R?
2: fort =0toT —1do // approximate stochastic Nevkon descent
3 p 4 polt+1)7%
4:  Uniformly select some i, € [n], then set I, to the random contiguous block {i,,i,+1, ..., o+
1—1} mod n, which circularly wraps around

90— —pi (1 Xifs, V1i(61)) (

for j =0to L —|\1 do //solying (1) approximately using SGD
T T1o(j +1 —di and 5 + O(pf}T]‘-l)
I; < uniformly sample S; indices without replacement from [n]

i+1 j V fi(0e+6] g]) =V f1. (0
it g -7 (4 D, VO 1 fk(t))éwg?

R RS 4

10:  end for

) gt P . - 1 L J
11:  Usev1 o for statistical inference, where gy = 7o > =0 9t
12: 9t+1 — 0+ gf
13: end for

Corollary B.1 gives guarantees for Algorithm 5, and is similar to the i.i.d. case (Theorem 2.1).

Corollary B.1

Under the same assumptions as Theorem 2.1, in Algorithm 5, for the outer iterate 0; we have

E |16 - 03] £t~ @
E |6 - B3] 5 2. (22)

In each outer loop, after L steps of the inner loop, we have:
_ 2 2
e[| - (vt reorafi o] é ! !\g?H(, 3)

23
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and at each step of the inner loop, we have:

4

) 4
O R Wi é G+ 1) g e
After T’ steps of the outer loop, we have a non-asymptotic ;Cund on the “covariance”:
T T d 1
-1 -1 S, 4+ _do _1
ENH GH —T§;;§ éT >+ L2, (25)
t=

where H = V2f(§), and (

n n

1
¢=1%" (m@ FOT+Y 60, Y ((ffi@ VIO + Vi 0)V10)T) ( (26)
i=1 j=1 i=j+

with w(j,1) = 1 — 1.

Also, in Algorithm 5’s outer loop, the average of consecutive iterates satisfies

#[(F ol
o

) 27

N=

T
Bt ) WA, 28)

VT

where W weakly converges to N (0, S%H”GH”), and A = op(1) when T — oo and L — oo (E[||A]j3] < T'2de 4
Tt 4 1),

Our approximate Newton time series statistical inference procedure estimates H G H !, where G is the Newey-West

covariance estimator (19) with weight
w(ih) =1-1, (29)

which is because when we estimate the variance in Algorithm 5, for j > 0, terms V f; V 21 jand Vfi; V f;" appear1— j
times, and the term V f; V fl-T appears 1 times. Note that the connection between sampling scheme and Newey-West estimator
was also observed in (Kunsch, 1989). Thus, our stochastic approximate Newton statistical inference procedure for time series
analysis has similar statistical properties compared circular bootstrap (Politis and Romano, 1992, 1994).

Because expectation of the stochastic gradient in line 5 of Algorithm 5 is the full gradient % >y fi(0), we have the same
optimization guarantees as the i.i.d. case (Corollary 2.1).

24
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Appendix C. Statistical inference via approximate stochastic Newton steps using first order information
with increasing inner loop counts

Here, we present corollaries when the number of inner loops increases in the outer loops (i.e., (L) is an increasing series). This
guarantees convergence of the covariance estimate to H G H !, although it is less efficient than using a constant number of

inner loops.

C.1. Unregularized M-estimation

Similar to Theorem 2.1°s proof, we have the following result when the number of inner loop increases in the outer loops.

Corollary C.1

In Algorithm 1, if the number of inner loop in each outer loop (L)y increases in the outer loops, then we have

éT“?%

For example, when we choose cfiose (L) = L(t + 1) for some dy, > 0, then \/ E;il ﬁ = O(LT_dTL).

T

T
_ S G13, 1 1
E H”GHlflE ! f§ )
[H T =\ T = (L)

Appendix D. SVRG based statistical inference algorithm in unregularized M-estimation

Here we present a SVRG based statistical inference algorithm in unregularized M-estimation, which has asymptotic normality
and improved bounds for the “covariance”. Although Algorithm 6 has stronger guarantees than Algorithm 1, Algorithm 6

requires a full gradient evaluation in each outer loop.

Algorithm 6 SVRG based statistical inference algorithm in unregularized M-estimation
1. fort < 0;t <T;+ +tdo
2 d) =V f(6) =—n (23U, Vfi(6)) [ ! point estimation via SVRG

3: I, < uniformly sample .S, indjces with replacement from [n]

4 g) <« —p ( - b1,V fi(ﬁt)> // statistical inference

5: forj < 0;7\< L;t + jdo /Asolving (1) approximately using SGD

6: I; < uniformly sample S; indices without replacement from [n]

7: B dl -y ( > fer, (Vfi(0r + dl) — ka(et)) d)  // point estimation via SVRG
8: g gl -7 ( >k %g[ka(Gt + 67 g7) — V£l t)]) 7599 I/ statistical inference

9:  end for
' 5 .. . - 1 L J

10:  Use+/S, - % for statl_st1ca mfererLlce 4// 9t = 171 ijo Gy

11: 9t+1 «—6:+dy Idy = LLH Zj:O dg

12: end for

Corollary D.1
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after T steps of the outer loop, we have a non-asymptotic

% Lz, (30)

In Algorithm 6, when L > QOW%K—"'BZ’ andn =

bound on the “covariance”

1
10max;<ij<n B’

E H—lGH—l _ SO i 7t§;r
T p2
t=1\ "t

and asymptotic normality (

g)—muA,
t
1

where W weakly converges to N (0, S%H”GH*I) and A = op(1) when T — oo and L — oo (E[||All2] < N 1),

~

t

N
M=

Il
=

When the number of inner loops increases in the outer loops (i.e., (L); is an increasing series), we have a result similar to

Corollary C.1.
A better understanding of concentration, and Edgeworth expansion of the average consecutive iterates averaged (beyond
(Dippon, 2008a,b)) in stochastic approximation, would give stronger guarantees for our algorithms, and better compare and

understand different algorithms.

D.1. Lack of asymptotic normality in Algorithm 1 for mean estimation

In mean estimation, we solve the following optimization problem

~ 1 & .
6= in=> £)10— X3
aufgnnemni:1 | 12,

where we assume that { X (917 are constants.

For ease of explanation we use S, = 1, p; = p, and 6y = 0,and we have

% _ —0; + Xy,
Pt

where X is uniformly sampled from {X)}7_ .
And for ¢t > 1 we have

Then, we have

26
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1 T T t—
27(2 C(t -y Z<(1 p) T XG)
t=1 t=1 =0
1 T T-1 T '
== =D (X (p(l -p)7HX))
t=1 =0 t=i+1|
1 T T-1
27(2 X, - Z( —(1-p)"7Xy)
t=1 1=0
1 T-1 '
—T(XT - Xo+ ;( - )" X5),

whose {5 norm’s expectation converges to 0 when 7" — oo, which implies that it converges to 0 with probability 1. Thus, in

this setting % (Zthl %) éoes not weakly converge to A/ (O, S%H_IGH_I) (

Appendix E. An intuitive view of SVRG as approximate stochastic Newton descent

Here we present an intuitive view of SVRG as approximate stochastic Newton descent, which is the inspiration behind our

work.

Gradient descent solves the optimization problem # = argming f(6), where the function is a sum of n functions

f(0) = 7112%1 fi(0), using
Orr1 =0 — 1V f(6y),

and stochastic gradient descent uniformly samples a random index at each step

Or41 = 0r — eV fi(6y).

d Outer loop:
Q g« Vo) = 2%1 Vfi(6)
[d Let d be the descent\direction

d - Inner loop:
— Choose a random index &k

- d <+ d—n(Vfi(0;+d)—V fr(0:)+9)

001 =0 +d

SVRG (Johnson and Zhang, 2013) improves gradient descent and SGD by having an outer loop and an inner loop.

Here, we give an intuitive explanation of SVRG as stochastic proximal Newton descent, by arguing that

@ each outer loop approximately computes the Newton direction —(V2f) =1V f

27
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Q the inner loops can be viewed as SGD steps solving a proximal Newton step ming(V f, d) + %dT(V2 f)d

First, it is well known (Bubeck, 2015) that the Newton direction is exactly the solution of
min(V £ (6), d) + %dT[V2 f(0)]d. (31)
Next, let’s consider solving (31) using gradient descent on a function of d, and notice that its gradient with respect to d is
VF(0) + [V2f(0)]d,
which can be approximated through f’s Taylor expansion ([V2 f(0)]d ~ V(0 + d) — V£(0)) as
VI©) + V(O +d) - V@)l

Thus, SVRG’s inner loops can be viewed as using SGD to solve proximal Newton steps in outer loops. And it can be
viewed as the power series identity for matrix inverse H ! = Y2 o(I —nH), which corresponds to unrolling the gradient

descent recursion for the optimization problem H~! = arg ming Tr (%QTH Q— Q) (

Appendix F. Proofs
F.1. Proof of Theorem 2.1

Given assumptions about strong convexity, Lipschitz gradient continuity and Hessian Lipschitz continuity in Theorem 2.1, we

denote:

™I
1

3=
>
1

s

Then, V01, 8> we have:
IV f(02) = V(61)ll2 < B0z — 61]l2, and [[VZf(02) — V> £(61)]|2 < |62 — 61 ]|2-

and V0:

IV2£(0)]l2 < 5.

In our proof, we also use the following:

hy =23 "n7, B = 5263, and 3 = sup IV2£(0)]l2-
i=1 i=1

28
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Observe that:

h < Vo, andozSﬁng\/E.

F.1.1. PROOF OF (8)

We first prove (8); the proof is similar to standard SGD convergence proofs (e.g. (Li et al., 2018; Chen et al., 2016; Polyak and

Juditsky, 1992)). For the rest of our discussion, we assume that
8 h<6 - Vhy <1, Vt,j.

Using V f(0)’s Taylor series expansion with a Lagrange remainder, we have the following lemma, which bounds the

Hessian vector product approximation error.

Lemma F.1 V,0,g,0 € RP, we have:

1(04+09)—V f3
HM V2f, gH < hi - 16] - |lgll2,

VF(0+69)—V (0
Hw_w gH <h- 3] - lgl.

Denote H; = V2£(6,) and

ZWfk(9t+5tgt Vi) | Vf(9t+5tgt) V f(6¢)
53 ’
kel;

then we have

j+1 - j
g —H ') =g/ —

Hg0) gy YOAEe) -V I6)

5! + 7590 — 7€l (32)

. 2
Qgi _ Ht_lgl(t)H _ Tj< H_ 0 vf(6t+5t§]z) V£(6:) —g,9>

~~

Because E[¢} | g¢, 6] = 0, we have
[1]

2
£ flo - sgs»z( s
2 112
+77 va(etJrétgﬁ) Vi) —Q?Hf-ﬁ? Heiu |9t:| ( (33)

2] k( [31)
For term [1], we have

<g<i _ Hglgg’vf(eﬁétg;) V() g?><

29
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j — 046 0
(o et )

j — j — V£ (046 V£
Z( —H10> Ht(t_Ht 1919) ‘<gt_Ht 19197 f(t+t§yt) f(t)_Ht>‘

by Hessian approximation

> (!

f' Qt g 3
by AM-GM mequahty

i
- () g g R
() B T
(
Ul
i

6] b Hgﬁ - Ht_lg?H - HgiH

lz + 413 < 2Hivllz + 2Hy\

= (f Qt Ht
by strong convex1ty

> (;(i “'?) g(

For term [2], by repeatedly applying AM-GM inequality, using f’s smoothn;(s and strong convexity, and assuming
§7h < 1, we have:

8515 ng _Ht—lggH — ik ||H )

2
Rl e et 34

va(9t+5t9t) Vi) OH
9t

H Vf(9t+5t gt) V£ (6:)
&7 o

6]

~ Hug + Higl — of|
Z(S Hw(emtgt) Vi) HtggHZ

5l Z<
i va(9t+5t§§) Vi) _ ztng . HHtgf _Q?H
‘ HHtth( gtH +HH'5;£ gtH
j( (+ 6Jh <H g — 92113 Z(

J 0 2
ot -]

?

5) gl + 265 | 7|

< (¢
< (fo (o) (»%1
<2 (fn+ () H+W{1H® ({+ain) (s |
< 2R o < (Nﬂhi(ﬁhy)(ﬂi(ﬁ? ( 2(

- 457h eI+ ((+ 55{5) <|!Htgf - gl5. 2(

For term [3], because we sample uniformly without replacement, we obtain:
En[d%sﬁaﬁ]ééz((f}f)< [thﬁﬁﬁﬁy Vhww__vﬂ&+%2)Vﬁw0

30
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where k is uniformly sampled from [n]. Denote Hf = V2 f;.(6;), and by Lipschitz gradient we have | HF||2 < 8. We can
bound the above

2
V fi (9t+5t gt) ka(et) _ f(9t+6t gt) Vf(et)
8 8
y iy
< H ka(9t+6t§§) ka(e{ Ht gt + Ht gt Vf(9t+6t§]t) £1C + Htgi - Htgi H

o)l s sz
<3| t—HfH2+(6ZQQ (7 + 13) (ng\f Z( Z(
1%%) Z(

|, HE3 < 2(K
3(4(2+ ) f 2w ) (|
6 (F(32+ 8) - (61)2(R* + 1)) (gi'Z(Htlg?2+HHg?|§><

Taking the expectation over inner loop’s random indices, for term [3], we havez(

5, [ez)\j(gz,et}éﬁ(é( - 51) <(€h>2+252+(55)2h2+2ﬁz> ((Hgg 9]+ 2ol )(
<18 (£ (1-2)) ((p)2he + 32) (Hgf—H{lg?H2+;2Hg?}li) Z( (35)
[+ -t i)

Combining all above, we have

1
{H s

2 . . 2
H g} \gi,ﬁt] < Hgi —Ht_lg?H

T]5]h

o2z
47267%

-l
# ol o (i) ([ ot Z(
£ 1872 (6 ((_ %11»((((;@%&52) ((}91 lgtOEC alz||9?||§> (

When we choose the Hessian vector product approximation scaling constant (5{ to be sufficiently small
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67h < 877/ hy < 0.01ar < 0.013 < 0.014/ Ba,
we have

1 _
gi+ — H, 19?

g, — H,

?|

g( Hyg? Hs( Hy ﬁ1.05rf||Htgz—g?\|3

18572 (é( = f)>€ ot

+18.5j2(i(:< i1)>€ I 9||2 2(

For term [4], let us consider the « strongly convex and 8 smooth quadratic function

Z<| .61 (g (

F(g) =19 "Hig— (g} 9),

who attains its minimum at g = Ht_1 g?. Using a well known property of « strongly convex and 3 smooth functions
(Lemma G.1), we have

. . . T .
- ({i Hy 19?) H, (s(i —H; 19?) <F sl Higl — atl13 < %— Ht‘lg?) H, ({i —Hy 19?) <F 5l Higl — gfl13
<

- 25\g - H 9!l
—%llgl — H; 9?3

Thus, when we choose

IN
I
m‘g
=

we have

. T . .
-7, ({i —H7) (g({ -~ 1)) 6 10572 - | Hug? — of

2 : ‘ , 2
(gg gt) Ht(ﬁ(inlg?)ﬁgg L — g7
Z(S —5% Nl — 56?13, Z(

o ety ] (s 555 (£ (-0 ) ot -,
( : o { ((i;;())(ga-gia( (

and we have
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Next, we set

S n—1

. s .025- ; —d; —
To = min Q/%m? 1(?_0§?f1>62 ( Di=0u+1)"%, 7=mD;

where d; is inner loop’s step size decay kate, and we have:

T n

wani(f (- ) (s

. 2 . 2
E [Hgi“ - HJIQ?H | Gt] < | 1-min{ fy, 08— Pi | -E [Hgi - Ht‘lg?H | Ht}
Z( 5%(1 i:1 )52 Z(

To satisfy the above requirements, for the Hessian vector product approximation scaling constant, we choose:

5 = o min{(}l} <min{1,a,min{1,r§ (6)4} L (J(— f;‘f)}) =0 ((y n 1)—2> (6?,

5 = O(p}) = o((t +1)7) = o(1).

which is trivially satisfied for quadratic functions because all h; = 0.

Note that:
9 Sifl B o . Sl'*l B 1
18-5To< ( _ﬁ» o = © | min ( N n—l)) e L[ 500 5
g(l—m>'ﬁ2

Applying Lemma G.2, we have:
. 2
e o - 1740 1 0 % 0 (fdz gf13) (

where we have assumed that «, 3, 5;, etc. are (data depen

nt) constants. Further, (38) implies:

.2 . _ 2 _ 2 .
& ] ézE[Hgg—Ht |+ lg?\wt}éng?n%, foral ;.

In Algorithm 1, we have Z(

j+1 — j — j V(646191 -V f(6 j
9t H, gy = (I riH)(gi — H, 1919) Tj (( € @ tggt‘) ) Htgg) (
By unrolling the recursion we have:

J

J
j _ Vf(0:+6kgk) -V £(6
ng—Ht 191?:2( H((ITth)> <Tk-(<ef f( +t§§) f( t)+Htgf)(

k=0\ l=k+

33
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For the average g;, we have:

L
g — Hi'g) = Z(gﬁ — H{'gP)
=0
L j~1 -1
=453 ( H((I— T,Ht)> (Tk <_€§ _ f(9t+6t§5) V£(60) +Htgf) (
j=0 k=0\ i=k+
L—-1 j—1

L
_ —1i-1 . Z H (I — 7 H,) <7€f _ f(9t+5t§t) £(6y) + Htgf)
=0\ k1 =kt '

k=0\ j=k+1i=k+
[6]
= L = WV f (0465 g\ -V £ (0
_’_% a Z (I_TlHt) (_ f(01+ tg;;)* f( t)‘f‘Htgf) (41)
k=0\ j=k+1i=k+ '
( [7](
For the term [5], we have:

j=k+11=k+ j=k+11=k+

»G Z H( —nH)||[< 7 i ﬁ(antQ

— 11 Hy is positive definite by our choice of 7; (36) and || — 7 Hy||2 < 1 —

L 7j—1
S Tk Z H((l — TlOé)
j—k+ll—k+
2
<> I (<1 - 3ma)
j=k+11=k+
7j—1 1 1 7j—1
n [] (1= 5na) < mexp(—ga 3 (n) SE M exp(O(—j' T +ETN) ST S
l=k+1 I=k+

—d;y . . : . . :
%) is an increasing function when x is sufficiently large

> 1l (!(_TZZQ):a Z(TJO‘ H ( %) (

j=k+1 I=k+1 j=k+ I=k+1

j=k+1

2 (1= ] (1(_ no éo(l)’ (42)
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where we have assumed that «, 3, S;, etc. are (data-dependent) constants.
For the term [6], its norm is bounded by:

L-1 L j-1 2
E LLZ<k Z(H((I—nw—eb 6, Q(LHE

k=0\ j=k-+1Il=k+
( Z( using (42)

using (35) and (38)

< Fgfll3- 43)

where the first equality is due to a < b, E[e¢ " e? | 6;] = 0, when we first condition on b.

For the term [7], its norm is bounded by:

. 2
L—-1 L Jj—1

E |t > <k S ( 11 ((I ~mH,) ((Vf Ot gDV 1 gk ) o

( E=0\ j=k+1i=k+

L j-1
V£ (0,+6%2)—V £(0
= e ( > << Z(H((I—Tlf‘[t)<< I +t8§> t>+Hgt><
<a,b,<N-1 j=a+]1l=a+
b by
Ty Z H —nH )( Vf(etJrétgf]) Vi) +H9t ( ](
j=b+11=b+
Lo [ 0
\v4 aqa)_\ a
< ek ( D[ | Z(H((I_TlHt) (< HOCEIE - g
Cab,<B-1|| , j=a+]i=a+
S Vf(0:+6°g2)—V (6
- H(I_TlHt)< f(t+t§7£)— f(t)—i-Htg?) ‘Ht (
j=b4+11=b+ '
using (42) and Lemma él
arg || ,a 7 h? a
S B (L o[ aehleilaothligllls | 6 é(ﬁfw S b [(qf||%+||g£u%|et}<
<a,b,<NA-1 0<a,b,<N\—1

L 2
0112
Sl S oper < el EJ@ (44)

0<a,b,<l\—1 k=0

using (39) and our choice of 5f 37
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2

L 2 L
2 2 —d;
< a0 E)Q RS S e )wﬁ@
k=0

k=0

=0

because i + 1)_di>2 =0 (Ll_di) énd d; € (%, 1) (
k
< gl (45)
Combining (43) and (45), we have
lge — Hi 9?1135 = O (£ 117113) (

F.1.2. PROOF OF (9)

Using (32), we have

Y .
Ellg/™ — H; 'gfll | 9]

j _ V(0,487 g )~V f(6
= Blllg} — H; gy — ryHEg I

+ 7590 — el | g7]

j NG
= E[(”gg - Ht_lg? —Tj vf(0t+5t9¢) Vf(6:) +

02
5§ Tjgt H2

~ el g — Hygf — 7y TLOSHIIIOD o g0y 12l | g

= Bllgf — ;' gf — ;ORI | 70

+A({ryel gf — Hi'gf — 7y TLORHBINION o gDy)2 4 ol ef 4

+ 2gf — Hy'g? -, TLOIDIIOD 1gDr2 ef3

— A(ryel gt — Hylg? — 7y TLOKHITIO0 7,0y ) — g0 — 7y THOSHITIO) 70

— d{ryel gl — Hgf — 7y HOITICD 1 gy r2icl 3| g, 6)

Because we have

Elef | g{] =0,

Vf(6:4+8]91) =V f(61)
&

gl — H 'gf — 7 + 7590 |13

; _ YV f(0:+87 1) =V £ (6 i
= ||(I — 73 Hy)(g] — Hy gl + 7j(— L OA09)=NIO) 4 g, gy 4

ut
= (I(I = 75He)(g} — Hy 'g)3
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j _ YV F (0,487 g2 )=V f(6 i
2 {(T = i H)(gf — Hy ' gf), — TSI 4 gl

Vf(0:+687 g Y-V £ (6 j
+Tj2”_ £ (6 tggt_) ﬂﬁ—l—[ﬂgi”%ﬁ

using Lemma F.1
<10 = 5H)(gF — H g)B + 2m 11 = 7 Hylla g — Hy P26 9 2 + 7267 197 13)?
= [|(7 = 75 Ho) (g — H; ')
+ 25| (1 — 7 Hy) (6} — H a3 — 73 Hillalgf — Hi 6l lgd 2 + 7567 g2 113)
T 226011 - 73 Hyllolgd — B Pl llgd 2 + 7308 g7 13)?
by our choice of 7; = ©((j + 1)"%) = o(1) (36)
and using [\g7[|2 < [lg] — H; ' o¢ll2 + 1 H; gt ll2 S llg? = Hy ' gf 2 +* 172
= (1—6(n))llg — H 97113
+ 007 (lgf — H o013+ af — Hi o2 13016912 + 27257 (llg? — H gf1 + la? — Hi o8 13167113)
+ 726 (gl — H o014 + Nlg? — H; gl 130913 + 7567 (g — H o214 + 192119))).

Ellefllz | /]

11 . 5§ a7 )— .
=B | 557 2 (Tl + 3lg]) = V(0) | — HEHEIE | g
© 0% kel '

| | 51 Z(m(m +8lgl) — Y u(60)) — HEg] + HEg)) (
YO ke,

1 o ) . A
= (V1 6+ 0]g]) = V1(60) - Fg? + Hig))ll5 | 97)
t

using Lemma F.1 and repeatedly applying the AM-GM inequality
S+, )lgl 113

4 4 . _
S +67)8 (lgf — H ' g?llz + 11g7113)

and by our choice of 7; = O((j + 1)~%) = o(1) (36) and 6g = O(T;l) (37), after repeatedly applying the AM-GM inequality,
Lemma F.1, triangle inequality, and (38), we can bound (46) by

L .
Ellg/™ — H, '¢f|I5 | 9]
<(1—=0(m)lgl — H 'gllls + O 11g2113))- (47)
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Applying Lemma G.2, we have

Elllgi™" — Hy g1l | 6] = O((G + 1) 7% g 112),

and using the AM-GM in equality we have

Elllg7 113 | 6 = O(llg¢ [13).

F.1.3. PROOF OF (6)

2

To prove bounds on ||6; — 6| 5, we will use the following lemma

Lemma F.2

E[(Vf(0:), —gf) | 0] Zpel|V £ (013 — 0211V £ (62)]]2]l99 |2
2
2|V (0115 — 67 (|97 113-

Proof
Using (40), and because E[e/ | 6, = 0], we have

E[(Vf(0:), —g; > | 0]

L—-1 L-1
=pr(9t>THt1Vf(9t>—E[<é £(60), Z H( — i Hy) ) (VOG- Vf”t)—Htgf)>

using strong convexity and Lemma F.1
fl

~1 L—1
E 11/ = muHll2meoF 19 |12
k=0 l=k+

a—

By our choice of 7; = O((j + 1)~ %) g(l) (36) and 6f =0 5?7?) (37), and using (39), term [8] is bounded by

J(

> ;ptnwwt)u% — |V E

L-1 L-1

> TTHE = nHell2midfllgr 2 | 9t] (
—kt

E

k=01
L-1

k
5 k(St
k=0

L—-1

Sllg?ll287 ) fic -

k=0

Al
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And we can conclude

E[(Vf(6:), —gf) | 64]
> Cipe||V£(00)]13 — C26 [V £ (00) 121198 ]2

C V£ C
= v 6013 - o ({2l (

Cy 2 0 C 2
> aupl v - 5o (e Gt ) (
t
C C3 o2
= S5 AV IOIE = 5507 lo? I3,

for some (data dependent) positive constants C'y, Co.

|
Now, we continue our proof of (6).
In Algorithm 1, because f is 5 smooth, we have
E[f(61+1) — /() | 6]
=E[f(6: + 9) — /(0) | 6]
5 s
<f(6) ~ £B) +E [(Vf<et>7g£> C 2ot 131 0
using Lemma F.2 and (39)
<[(6:) = £(6) = QpelIVFO)3) + E[O(Ig7 115 + 67 17 121V £ (60)]2) | 64)- (50)
For ¢!, we have
0
Gt 1
gt - (0
Pt So 16210 Gf ( t)
1 ~
= 50267 +f§j fi(0) = V £:(0)), (51)
i€l, zel
which implies that
E ' 0,
2
<9F 0)3 ] 6.] + 2E] ||—Z fi(0e) =V (@) |6
O ’LEIO 2 iel,
becaus¢ we sample uniformly with replacement and V f (A) Z(
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3520 ' (wﬁu? 2 LRV £i(6) — VA3 6]

Z V£i(0)]13 + 110 — O|ISE[5] | 64]
ST+ 16— 013
Thus, continuing (50), using (52) and strong convexity 2||6; — 0]|2 < ||V f(6;) |2, we have

E[f(0r41) — f(0) | 6¢]

<F(00) = F(0) = Crpel V(005 + Copedf (1 + IV O)I2)IV F(8e)ll2 + Cap? (1 + [V £ (60)[3)

~

= f(6:) — f(0) — pe(C1 — C267 — C3pe) [V £ (00)1I3 + Capi + Copey |V f(61) |2

(52)

Vf(O 0 2
because we have Cop;0? ||V f(6;)||2= *C1pt(502 M C1 t502 <%)2+(Wf(t)”2> )(
1 t

57
-~ C 2
<f(0) = £(0) = pe(3C1 — Cod} = Cp) [V (00)13 + Cspf + i}

1 ~ 1
using strong convexity %HVf(Ht)H% > f(6:) — f(6) and smoothness %HVf(Qt)H% < f(6,) —

<[f(0:) = F(B)] — pe(AC1 — Cod? — Capr) [ £(6,) — F(B)] + Cap} + 2 p6)”
when we set 6 = O(p;) in (37)

<[f(6:) — F(O)] — pe(AC1 — Co8? — Capr) 2= [£(6:) — f(B)] + (Cs + O(1)) 2,

for some (data dependent) positive constants C'y, Co, Cs.

In (53) we choose p; = O((t 4 1)~ %) for some d,, € (3,1), and after applying Lemma G.2 we have

E[]|6; — 0]|3]
<E[2(f(6:) — f(9))]

St 47O g, — B3,
which is O(t~%) when ||fg — ]| = O(1).

F.1.4. PROOF OF (7)

In Algorithm 1, because f is 8 smooth, and V0 f(6) — f(a) > 0, we have

(f(Bi1) — £(B))*
= (f(0: +gF) - £(8))
<(£(6:) — F(B) + (V£ (00), gF) + BllgF113)
= (f(0) — £(0))* + 2(V £(00), o) (f(61) — [ (9))
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+ (VI (0, 982 + S IaF I3 + 20 (00) — F(O) + (VF(60), 97 5 9 13

Because we have

E[(Vf(6:),95)(f(8,) — f(B)) | 6]
S — e VFO)3(F(0:) — £(8)) + 821190 13(F (6:) — £(9)),

E{

|et]<
4
XS R0 — V1) + VD)) et]

i€l

<1+ [16: 6|2,

£(0,) — £(8) = ©(|6: — 0]3) = OV £(6:)]12),

and by our choice of p; = O((t + 1)7%) = o(1) and 6Y = O(p}) (37), after repeatedly applying the AM-GM inequality and
(54), we have

E[(f(0r41) — (0))* | 6]
<(1—O(p))(f(8:) — f(8))% + O(p}).

Applying Lemma G.2, we have

E[[|6; — ]3]
<E[5(/(6) - 10))?] (
< 2do, (55)

F.1.5. PROOF OF (10)

For %, we have

g _ —H_lsi > K i(0)

Pt % iel,

icl, % eI, icl, °iel,

i (

[1]
+3<1le e Zwy JHH 10 H;lsiz fi(6)
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—H_l gt

Thus, for the “ cgvarlanc; of 0(]1‘ replicates, we have

T _ _
- 1S g
H'GH™ - 22y " e
| T (a
-1 -1 o T
S|NGHET! - TZ(HH

(56)

~ t

. t=1 . .
- "Zf}(mﬁ +—°Z i +[3

t=1 t=1

T o
+ OZ(QM[

t=1

becayse for two vectors a, b the operat rnorm |lab’ ||z < [|al2]|b]|2
T

H™'GH™! — Z(] 1)/

(TZ ell2(ll[2] |2+||H|1)

1 T

) ( o3+ 1131e13).

Because >, [1]; consists of S, - T i.i.d. samples from {H 'V f;(htheta)}?
matrix concentration (Tropp, 2015), we know that

[y
T Rl

t=1
For term [3], using (41), because we hav(

' , and the mean H~ 1Vf( ) = 0, using

L
Cor

L-1 L -1

1
_ F > (k Z( H((I — mHy)(—eb)
t=1 k=0\ j=k+1i=k+
when a # b E[(e$,e?)]=0 (
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T L—1 L j-1
1 kgky_
3 e o T {0~ m (- FHOEE=NIC o gy g,
il ChLa ) Sy P ¢
J

L k
50 01|12
= t=1

using (52), and by our choice of 6F = 6%o((k +1)72) and 67 = o((t +1)72) (37)

sE(€+Z%”U((Hm—@Mﬂ<

1
<> 4=
ST + T (57)
And because we have
1 ~
E[||[1)¢ell2] = E[]| - H 1; > Ffi@)l2] = 0(1),
eI,
E[I[2]¢l3 | 6]
1 ? 1 ?
SE|WHT = HTY < Y REO)|| +|[H = Y _(VHO) = Vi©)|| |6
°iel, ?iel,
becawse H ' — H; ' = H~(H, _2>Ht<l and using Lemma F.1 Z( (58)
SE[l16: - 8ll13 | 6]
St+1)7%, (59)

by repeatedly applying Cauchy-Schwarz inequality and AM-GM inequality, we can conclude that

E HH‘lGH‘l—if ) _tgth (
—1 | Pt
<1 (1 3 )% 4 2 ey L4 2
Nﬁ T;<<+) 2+T; ‘|‘) +ﬁ+z
T
because Z((—i— 1) 2 = 7% for do € (=,1)
t=1
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F.2. Proof of Corollary 2.1

L
For %tt’ we have

pt:_H_llz fz

O lG]o

A

H( [
- ILE:

Zelo

)ﬂ‘&‘
=

el % iel, eI,

! in@ (asl SVHO) +H e S VHO) - H g S 60 + HV )

—Ht(lwwt) 00 -H

[

0 —0

which gives

m(
I (0, - ),
Pt Pt (t )

(4] (

= (1= pr—1) (0 1—5)+Pt 1([1]t 1+ [2]e—1 + [Ble—1 + [4]e-1)

t—1

= (E}(C

And we have

=0 j=i+

)(# — ) Z H(l—m )oi([L); + [2): + 3] + [412).

44

< (60)

(61)



STATISTICAL INFERENCE WITHOUT EXCESS DATA USING ONLY STOCHASTIC GRADIENTS

For the second term in (61), which is stochastic, we first consider p; Et it = i—i+1(1 = p;), which is O(1) (similar to
(42)) and satisfies

T -1
Pz’Z H((l—Pj)

t=i+1 j=i+
T p; t—1
=S 2 T 0
=i PGS
p; s t—1 s
<= o [[fa=pp)+pi T =) Z H (1-p)
Ps t=i+1 Jj=i+ Jj=i+1 t=s+1 j=s+

Jj=i+1 t=s+1 j=s+

=1+ 2Py - Hfl—pmm(H (1-p))) Z H(l—pj

T t—1
<A+ PP - (1= p) ) it - 0 > T ((1 )

Ps t=s+1 j=s+

t=s+1 j=s+

. oo
<L pie 0 37 H(l—p]

§1+((+Z+f>d0—1)+pz (e > H(l—pg

t=s+1 j=s+

forall: < s < T, and

T t—1
pi Y H((l — pj)

t=i+1 j=i+
T -1
> (1L =r))e
t=i+1 j=i+
T
=1- J[{1-p)
t=i+t
T
>1—exp(— Z 0t)
t=i+1]
1
> 1 —exp(- (T +2)' 7% — (i +2)'7%))
1—-4d,
3 . do+1 . L —14do . d
When we choose s =i+ [(i +1) 2 |, wehave %+ Si™ 2, (s — z)p (i + 1) ,and p;e —3(5=0ps < < ps. And these
+do
imply s ST 11 TTE20 1y (1= ) — 1] = O(max{(i + 1) ™5 exp(— 1 (T + 2)1~% — (i + 2)1~%)}). Thus, for term
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[1], we have
t—1 T—

fZ H(l—wm Z( Z(Z H(1—pj - D1l

1=0 t=1+1 j=i+ 1=0 \t=t+1 j=i+

where the first term weakly converges to N(0, T Lg-1GH™) by Central Limit Theorem, and the second term satisfies
|

Elll 7 Ym0 (i Iz (L=pi))pi=Dill3) = Bl 3750 (2 i TTj=ia L=p))pi= DI [Lil13) S T+ 4

For term [2], we have

112)ell2 < 116 — 8]l2,

and E[([2]4, [2]s)] = 0 when a # b. Thus

2 1 T-1
(1 —p)eil2ill | € 7 — 03 ST .
= 0 =i+ j =i+ =0

| — H7 'V F(0:) + (0 — 0)]]2 < [16: — 93

For term [3], we have

By using (7) and Cauchy-Schwarz inequality, we have

2
(1—pj)pi[3]i %Tl—%.
1= 0 —'LJrlj i+

For term [4], similar to similar to (5 , we have

t—1

E Z <H< ~ )il %}Q.

=0 t=i+WN\j=1+
F.3. Proof of Corollary D.1 (

Using Theorem 6.5 of (Bubeck, 2015), we have

E[[16; — 6]13] < 0.9".
Similar to (8) in Theorem 2.1 (Appendix F.1.1), we have

_ 2
E [(% — [V2F(6,)] g0 Z( Ht] é 1g2l5.
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Similar to the proof of (10) in Theorem 2.1 (Appendix F.1.5), using (56), we have

1 1 So d _tgtT 1
E||[H'GH —?Z 7 < L2,
( t=1
For 2 p , we have
41
- = _H Z fz
Pt OzEI
41 41
+H (<7fz s> £:0) + Hy IS z(m —H ' (71‘1 (0;) + H; 'V £(6;)
zelo ze[o i€l ze[o
9 9t (
—H7'VF(O,) —H VTR 2 (62)
Pt Pt
3
[3] M (
For term [1], we have

LSy 3 —11 £:)

which consists of S, cot T" i.i.d samples from 0 mean set { H_1V fi(g)}?zl, and weakly converges to A/ (0, S%H “1GH ') by
the Central Limit Theorem.

For term [2], similar to (58), we have

T 2 T T
1 1 1 1
(@ > :fh QTE[E, j( 72 :f 16: = B3] S 7
=1 i=1 t:l
For term [3], we have
T
1 1 1
E||— < —FE[||6; — 0]]s] < —=
‘ = ;Zlf]t ( = 16 — Oll2] < =

For term [4], similar to (57), we have
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F.4. Proof of Theorem 3.1

The error bound proof is similar to standard LASSO proofs (Biihlmann and van de Geer, 2011; Negahban et al., 2012).
We will use Lemma F.3 for the covariance estimate using soft thresholding.
We denote “soft thresholding by w” as an element-wise procedure S,,(A4) = sign(A)(|A| — w)+ , where A is an arbitrary

number, vector, or matrix, and w is non-negative.

Lemma F.3

Under our assumptions in Section 3, we choose soft threshold % Sy XZ-X;r using

n

When n > log p, the matrix max norm of % 2%1 mlm: — X is bounded by

n

1 T gpr
max | — X — il S
. nz<)< o 5 /R,
— )

with probability at least 1 — p~ o), (

Under this event, {5 operator norm of S — X satisfies

15 -l S b\/@,
n
{1 and l, operator norm 0f§ — X satisfies

I8 - Blleo = 15 - Bl S b/@.
Proof

The proof is similar to that of Theorem 1, (Bickel and Levina, 2008).

Our assumption that X is well conditioned implies that each off diagonal entry is bounded, and each diagonal entry is ©(1)
and positive.

Omitting the subscript for the i sample, for each i.i.d. sample = = [z(1),z(2),...,z(p)]" ~ N(0,X), each z(j)z(k)

satisfies

1

()a(k) = 5 (@(7) +2(k))* = 2 (() — =(k)*,

where x(j) &= (k) are Gaussian random variables with variance ¥;; & 2%, + X, = O(1), because all of X’s eigenvalues

are upper and lower bounded. Thus, z(j) + (k) are x random variables scaled by 3;; + 255 + Xy, = O(1), and they are
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sub-exponential with parameters that are ©(1) (Wainwright, 2017). And this implies that, z(j)z (k) — 3, is sub-exponential
Pllz(j)a(k) — Xk > 1] S exp(~O(min{t?, 1})),

forall1 < j,k <p.
Using Bernstein inequality (Wainwright, 2017), we have

P ;Z(Zx;j ( — Y| >t % exp(—nO(min{t?,t})),

foralll1 < j,k <p. <

Taking a union bound over all matrix entries, and using n > log p, we have

1 Zn: T sl < og p + log %
lgjl'f%c};p (ﬁ £ (zmi \ JARS n )
< = J

with probability at least 1 — . <
Under this event, the soft thresholding estimate Sw(% Yoy mZxZT)” with w = @(\/k’%) is 0 when ¥;; = 0, and
%55 — Sw(2 2%1 z;z; )ij| < w (even when |3;;| < w). And this implies our bounds.

/

Lemma F.3 guarantees that the optimization problem (13) is well defined with high probability when n > b 10%. Because

the ¢5 operator norm ||S — 2|z < b 10% < 1, and the positive definite matrix 3’s eigenvalues are all ©(1), the symmetric

matrix S is positive definite, and S’s eigenvalues are all O(1), and for all v € RP we have
0<v'Sv=0(v|}). (63)

Because @ attains the minimum, by definition, we have
n n
15T §- ;Z(ix;> €+ 1 E(xje — )2+ Al
i=1
n

1 2
b 5 (xT> €*+; E(f@—y) + A6l
=1 =1

<

D=
<)
|
>
N
_‘
)
)
|
)
N
+
T
Y
)
|

5 (ﬁ) é* + Z(miﬁ_ 9*> (S AUI6* [l = 116]11)- (64)
1=1 =1
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n n

1 2%1 z;2] will lie in the {nterval [—w, w]. And this implies , with probability at least 1 — p~©(1), we have

s 1 gD log p
H SHZC:}J) { =EVA ||e*\|1s/€,
i=1

where we used the assumption thatQ* is s sparse and H@*H:(; O(1), which implies ||6*]|1 < +/s.

For the jth coordinate of €;x;, because ¢; and x; are independent Gaussian random variables, we know that it is sub-

Plleiai(f)] > 8] S exp ((e (min {%, ) ( (65)
foralll <i<nand1l <j <p.

Using Bernstein inequality, we have

P[iiﬁxi(y‘) > 1] S exp ((9 (fmm{fi}» (

Because 5 = S, (L 2%1 z;x; ) soft thresholds each entry of & 2%1 zix] with w = O(1/%82), each entry of § —

exponential (Wainwright, 2017)

i=1

forall1 <j <p.

Taking a union bound over all p coordinates, with probability at least 1 — p~©(1), we have
125 finlloe 5 oy B2 (66)
n — (’L 1100 ~u n )
1=

when n > log p.

Thus, we set the regularization parameter

A= (o+ ue*nn@)(
e
i=1

i=1
which holds under the events in Lemma F.3 ar(ﬂ (66). DC
For a vector v € RP, let v*° indicate the sub-vector of on the support of #*, and v the sub-vector not on the support of 6*.
(64) and (67) implies that

>2 ; (67)

—5AUO = 0951+ [16]11) = = 3l10 = 0%[[s < AI0*] — 116]11) < AI© = )71 = 16510,
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which is equivalent to
16511 < 3[1(8 — 6)% I, (68)

because A > 0.
For any vector v € RP, it satisfies ||v||3 > ||v¥]|3 > 2||v”||3. Using this in (64), we have

16 =651 S AlI©@ — )71,

166911 < s(o + ||e*||1>/@. (©9)

Combining (69) and (68), we have proven (14)

* * 10
16— 671 S s (o + 16710) ) <22 < 5 ((+ va) (11

In (64) because (S — L S0 za )0 + L3/ ey, 6— 6*) > 0 by convexity, and using (63), we have proven (15)

n

which implies that

1 1
16— 6713 S MO — 6% S 5 (0 + 6% 1)* <22 <8<<+ ve) Sk

F.5. Proof of Theorem 3.2

At the solution 8 of the optimization problem (13), using the KKT condition, we have

~ 1 & -
_ 2 0—y;) +\j = 7
S nz;xx>€ Z(x yi) +Ag =0, (70)

where § € 9||0]|,. And this is equivalent to

n

1
60— — (2 0"+ &)+ 2g=0,. 71
S nZ((azl +e)+AG=0 (71)

=1

By Lemma F.3, we know that S is invertible when 1 > b log p.
Plugging (16) into (71), we have

’géw— i'zn:(ﬂ) 5]’( ;En:(i(ﬁ@*m)ﬂao,

~

S
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which is equivalent to

i=1

S —6%) — % > (g; + % > (mT - §> <§— %) = 0, (72)

=1

where we used the fact that \j = —56 + 1y

Woxi(2] 07 + ).
Rewriting (72), we have

i=1

ad_e*zglizfm -5 L ij))(ée*). 73
=1

, we have

For maxj<j k<p

~ 1 &
_ g1 = e
195k <p I=5 n lemz )) (
=1 j
= max <§_1 S — l i ! (
1<5,k<p n (z !
i=1 j
1 « (
<187 Y|oo |8 > <ixj . (74)
= i=1

Under the event in Lemma F.3, we have

1 ¢ T ( gp
B . <
max S - E (le ) < — (75)
J

1<j,k<p 1
1=

Also under the event in Lemma F.3, we have

5i-% Sij\ZEu—@<\/@><Z ij|2D2—@<\/@)<

J#i i

where we used S;; > 0 and |Xi5] > ]§U| by definition of the soft thresholding operation.

Thus, when n > DLEQ log p, we have

Si— > _ 84l 2 D,
J#
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which implies that S is also diagonally dominant. Thus, using Theorem 1, (Varah, 1975), whenn > 5 log p, we have

~ 1
) < FaYE) 76
e 76)
with probability at least 1 — p~©(1)
And using (75) and (76) in (74), we have
max | 1-§(2 zn: LT (< L, /lesp (77)
1<j,k<p n (l IV Y D Ve
= J
Using (77) and the bound on ||§— 0* )1 ((4), in (73), we have (
15 ISt ) (i-00| s lo) R < Ly (4 ve) 22 7%)
n (z ~ Dy n "~ Dx C( n

Combining ((8) and (73), we have proven Theoremt.Z, when n > max{b?, %ﬁ} log p, we have

V(0! —6*) = Z + R,

5 Dizs(a—k ND) 10% with

probability at least 1 —

where Z | {x;}7 1~N(1a l(iz%m 7)8 )(and IRlloo S g (0 + [16%(]1) 12
-Q(1)

F.6. Proof of Theorem A.1

We analyze the optimization problem conditioned on the data set {z;}!" ;, which satisfies Lemma F.3 with probability at least
1 — p21Y when n > b%log p.

Here, we denote the objective function as

L T b T o

i=1 i=1

In Algorithm 2, lines 6 to 15 are using SVRG (Johnson and Zhang, 2013) to solve the Newton step

1,15
mA1n2ATSA+< > fk(et),A>< (79)

° kel,

and using proximal SVRG (Xiao and Zhang, 2014) to solve the proximal Newton step
in SATSA + En: £o(00), AV [E A0 + A (80)
mAln B 2 k\Ut), 1-
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The gradient of (79) is

SA+—Z fu(6e) = ZH ]é - —Z fu(0)

© kel, ° kel,

k
sample by feature in SVRC( m(ute exactl(ln SVRG

where S}, is the k™ column of S and A(k) is the k™ coordinate of A.
Line 7 corresponds to SVRG’s outer loop part that computes the full gradient. Line 12 corresponds to SVRG’s inner loop

update.

By Lemma F.3, when n > b? log p, the /5 operator norm of H§H2 = O(1). And this implies H§T§H2 = O(1). Because
Hng% is the k™ diagonal element of ST S, we have Hng% = O(1) forall 1 < k < p. Thus, each [ 3’4 (k) is a
O(p)-Lipschitz function.

By Theorem 6.5 of (Bubeck, 2015), when conditioned on 6;, and choosing

after LY SVRG outer steps, we have

2

E |[g+ 5 —Z Fel0) | |l | 0 {mitie, %0.9”) = > N fu(6r)
° kel, kel,
( ( $0.9%( <+H9t 0ll2), 2(
t .
where §; = L%@ Zfio gl

The gradient of the smooth component %ATg A+ % 2%1 Vfe(6:), A) (n (80) is

Sa+ 3 (7fk(9t) - ; > (1(54 é(k) +
k=1

2

k=1

AN
sample by feature in proximal S(RG compute ekactly in groximal SVRG

Line 8 corresponds to proximal SVRG’s outer loop part that compuites the full gradient.\Line 13 corresponds to proximal
SVRG’s inner loop update.
By Theorem 3.1 of (Xiao and Zhang, 2014), when conditioned on 6;, and choosing

e
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after L! proximal SVRG outer steps, we have

B[P (6141 — P(8)) | 6 =E | P(6, +dy — ) = P(B) | fu, {iii] (

~

<0.9%(P(6,) — P(0)),
- 1 Lt 1 .. .
where d; = 77 > d}. And this implies
E[||6, — 013] < 0.9%=0 Lo (P(6o) — P(9)).
At each 60;, we have
zi(z] 0y — y;) = ziw] (0, — 5) + SUi(sza_ Yi)-

For the first term, we have

lziz! (6 = 0)lloo <l (8¢ — )]sl
<||zill2|6z — Ol 2]l 0
<Vpllzil3)l6e = 0]z,

which implies that

max |z (6 — 0)]1%

1<j,k<p

jk

(Z.xm ~0)) ((Z.x;wt -9)']
pllzillZ )16 — 013
For the second term, we have
i (2] 0 — yi)lloo <llmiz] (0 — 0%)]loo + zicilloo
<[lzill2 16 — 6*[11 + leil il oo

Because when n > log p, from (83) we have with probability at least 1 — p‘e(l)

max ||zl S v/logp+ logn,

1<i<n

and from (85) we have with probability at least 1 — n—0M)

max |¢| S ov/logn,

1<i<n
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when conditioned on 6; (and the data set {x;}}" ;) we have

{ ({w)T (e Tenmn) ({1 . o)

1 ~ - .
5@(\I$i i (O = O)II36 + 2llzi] (0 — 0)llsolzi(2" 0 — i)lloo)

max
1<j,k<p

jk

5 (p(log p +logn)?||6; — 8]13 + /p(log p + logn)||6; — 8]|2((log p + log n)|| — 0%} + o/ (log p + logn) log n))

D
1 ~ . "
SDi(pH@t 013 + v/pll0 — Oll2(o + |10 — 6*[|1))polylog(p, n)

under the events of (83), (76) , and (85), where we used the fact (76) that the £, operator norm H§ oo %E with probability
atleast 1 — p~©() when n > max{b?, D#EQ} log p.
Thus, we can conclude that, conditioned on the data set {z;}7" ;, and the events (83), (85), and (76), we have we have an

asymptotic normality result
ﬁ (Zthl V/Sogi + S5 wi(w 6 - yz)) 6 W +R,

where W weakly converges to N(o g1 [n S (a] 0—yi)Paia] — (L 0 wi(a] 0-y0) (2 0, xi(xiTg—yi))T] §*1>, and

n

[B]loo <

7 Engt 8§71 60lloo + 1574 — foow )HOO)(

Eugt 8§60l + 18~ ,(e,ow 0)los )(

<

Sl=
M= HM%

which implies

EllRlleo [ {zi}ii,(83),(85), (76)]

\f
T
T Z(%L (1+ 1/ P(6y) — P(8)0.9551=0 L) +  /p(log p + log n)1/ P(6) — P(8)0.95%=0 L.

T
Z(%L 1+ 116, — 02) + v/p(log p + logn) |0 — B2 | {z:}ry, (83), (85), <76>](

And, because (S% Yofer, V fk(§)> iare i.i.d., and bounded when conditioned on the data set {x;}!" ;, and the events (83),

(85), and (76), using a union bound ovey all matrix entries, and sub-Gaussian concentration inequalities (Wainwright, 2017)

similar to Lemma A.1’s proof, when T' > ((logp + logn) ||§— 0*|1 + o+/(log p + logn) log n) og p, we also have

*?(Z;‘Flgtgj ~- 57 ({2%1(1’?5— yi)Ql’z‘x@T) §71\

ax
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</ (fosp +108m)18 — 0°1: + 0/ Towp + TogmTogn) 42

£ 1L 095551+ [ P(80) — P@)0.9550 %) £ /p(logp + logn) P(@o)_p@o.%zféLiK

with probability at least 1 — p~©(—1) — ¢, where we used Markov inequality for the remainder term.

E.7. Proof of Lemma A.1

We analyze the optimization problem conditioned on the data set {x;}]" ;, which satisfies Lemma F.3 with probability at least

1 —p2C1 when n > b2 log p.

Because we have

(] 0 — y)?
=(z] (- 0") — €;)?
=2 — 2¢;z] (60— 0%) + (z] (0 — 67))?,

we can write

021 4 lxl - 121 1( T9 yl) €TqT T
=15 102—e?>m1 12161@@ T0—0%) — (] (0—07))zia] . 1)

Conditioned on {x; }"_, because ¢; ~ N (0, 0?) arei.i.d., and €7 is sub-exponential, using Bernstein inequality (Wainwright,

2017), we have
g R
Sexp < mm{éaxl<i<ntm(j)ri(’fﬁ’ (max1<i<n7|t””(j)“(k)|>2}> ( >

for 1 < j, k < p, where z;(3) is the 5™ coordinate of z;.

Because each z;(j) is A(0, ©(1)) by our assumptions, using a union bound over all samples’ coordinates we have

max |z;(j)| < v/logp + logn, (83)

1<i<n
1<]<p

with probability at least 1 — (pn)~©1) .

Combining (82) and (83), and taking a union bound over all entries of the matrix 1 2161(02 — ez)acZ , when n > log p,

i (22 < %
12’%%'(”2161(0 )iz ) S U(IngHOgn)\/g, (84)
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with probability at least (1 — (pn)~®M)(1 — p= M) =1 — (pn)~OW) — p=O1),
Because ¢; ~ N(0, 0%), by a union bound, we have

max lei| < oy/logn, (85)

1<i<

with probability at least 1 — n—9WM),
Using (83), we have
*
i el @ =07

<||9 0%y max max |z;(j)|
1<i<n 1<j<p

§M0+HWWNV%?@%p+bgmiﬂ%(+w@)¢@?@%p+bgm, (86)

with probability at least 1 — p~ () — (pn)~OW),
Combining (83), (84), (85), (86), and using (81), when n > log p, we have

T 2 T
lgf}ép {Zfﬂ 0 Z/z) Lily — 0O 1 i 1LiT; )é'
<o?(logp + logn) lOﬂ+05(0‘|'||9*|| ) (lo p—l—logn)(\/@
+ 5% (0 + [|0*[11)* (log p + log n) 252, @7

with probability at least 1 — p~©(1) — =0(1),

Combining (87) and (76), when n >> max{b? }log p, we have

1D2

(et wpmr) o (Ez%lxixn £

SDLEQ <<2 os (o4 |0%1) \/logp—l—logn\/logn—i—s (c+ 0 ||) (10gp+10g£)\/1°§p> <logp+logn),/1ogp

with probability at least 1 — p~©(1) — p=01),

max
1<j,k<p

Appendix G. Technical lemmas
G.1. Lemma G.1

Next lemma is a well known property of convex functions (Lemma 3.11 of (Bubeck, 2015)).

Lemma G.1 For a « strongly convex and 3 smooth function F(x), we have

(VF(z1) — VF(22), 21 — 29) >—

ot D IV (1) = VF(22)13

|lx1 — a?2H§ +

.
B+a
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1 1
z5allzr - a3 + %HVF(M) — VF(22)I5.

G.2. Lemma G.2

Next lemma provides a bound on a geometric-like sequence.

Lemma G.2

Suppose we have a sequence
ary1 = (1 — st~ Hay + Ct7P4,

wherea; > 0,0< k<1, p>2andd e (%, 1) is the decaying rate.
Then, V1 < s <t we have

1 1—pd 1 1-d 1-d —( fl)dl
< _4l-p _ _ p _
ar <C 1(1 t P exp < & (f—i— 1) (s+1) ) a1s -

When we assume that a1, C, k, p, d are all constants, we have

ay = O(t~(P=Dd),

Proof

Unrolling the recursion, we have

t—1

t—1 t—1
ar = CZ( H((l — ki) P 4y H((I — ki),
i=1 j=i+ =1

< " ( ’ (
Splitting term [1] into two parts, we have

For the first part, we have
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where we used

Ez: (—pd

< /< u P dy

< 1-pd l—pd.
< (P (s 4 1))

For term [2], notice that for 1 < r < s, using 1 — & < exp(—2z) when x € [0, 1], we have

S

[I@ - ki™®) < exp(=r323,0%),
i=r
and using the fact that

i(d > /(H(u + 1) 4 du

i=r
1

= ((s F ol (g 1)1—d) (

we have

For the second part, we have
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] t—1
_pnal _—d
S - E(C Ki )) (

- K

I

where we used the fact that

t—1

t—1
d w1 -rki%
i=s J=1+

t—1

-1 H(C — ki

i=s

<1.

When we assume that a1, C, k, p, d are all constants, setting s = L%J, we have

ay = O(t_(p_l)d).

Appendix H. Experiments

H.1. Synthetic data
H.1.1. LOwW DIMENSIONAL PROBLEMS

Here, we provide the exact configurations for linear/logistic regression examples provided in Table 1 and Table 2.

Linear regression. We consider the model y = ([1,---, 17 /10, 2) + ¢, where z ~ A/(0, %) € R and € ~ N(0, 0.7?), with
100 i.i.d. data points.

Linl: We used X2 = I. For Algorithm 1, we set 7' = 100, d, = d; = 2/3, pp = 0.1, L = 200, 79 = 20, S, = S; = 10. In
bootstrap we used 100 replicates. For averaged SGD, we used 100 averages each of length 50, with step size 0.7 - (¢ + 1)_2/ 3
and batch size 10.

Lin2: We used X, = 0.415=* For Algorithm 1, we set T = 100, d, = d; = 2/3, po = 0.7, L = 100, 19 = 1,
S, = S; = 10. In bootstrap we used 100 replicates. For averaged SGD, we used 100 averages each of length 50, with step size
(t + 1)~%? and batch size 10.

Logistic regression. Although logistic regression does not satisfy strong convexity, experimentally Algorithm 1 still gives
valid confidence intervals ((Gadat and Panloup, 2017) recently has shown that SGD in logistic regression behaves similar to
strongly convex problems). We consider the model Ply = 1] = Ply = 0] = e and z | y ~ N (01/yi0-[1,--- ,1]T, %) € RO,
with 100 i.i.d. data points. Because in bootstrap resampling the Hessian is singular for some replicates, we use jackknife and

solve each replicate using Newton’s method, which approximately needs 25 steps per replicate.
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Approximate Newton Bootstrap Inverse Fisher information

(0.951, 0.224) (0.946 0.205) (0.966, 0.212)

Table 3: Average 95% confidence interval (coverage, length) after calibration

Logl: We used ¥ = I. For Algorithm 1, we set T' = 50, d, = d; = 2/3, pp = 0.1, L = 100, 1o = 2, S, = S; = 10,
dp = 0.01. For averaged SGD, we used 50 averages each of length 100, with step size 2 - (¢ + 1)_2/ % and batch size 10.

Log2: We used ¥, = 0.4k For Algorithm 1, we set T = 50, d, = d; = 2/3, pp = 0.1, L = 100, 79 = 5,
S, = S; = 10, 6 = 0.01 For averaged SGD, we used 50 averages each of length 100, with step size 5 - (¢ + 1)~*/ and batch

size 10.

Calibration. Here, we give empirical results on calibrating confidence intervals ((Efron and Tibshirani, 1994), Ch.18; (Politis
et al., 2012), Ch. 9) produced by our approximate Newton procedure. We consider the model y = {([1,---,1]7 /\/20, x) + €,
where z ~ N(0,%) € R? and € ~ N(0,0.72), with 200 i.i.d. data points. We ran 100 simulations. In each simulation, we
bootstrapped the dataset 100 times, and computed confidence intervals on each bootstrap replicate using our approximate
Newton procedure, bootstrap, and inverse Fisher information. For each method, we then used grid search to find a multiplier
such that the empirical point estimate is covered by the bootstrap confidence intervals 95% of the time. Average 95% confidence

interval coverage and length after calibration are given in Table 3.

H.1.2. HIGH DIMENSIONAL LINEAR REGRESSION

For comparison with de-biased LASSO (Javanmard and Montanari, 2015; van de Geer et al., 2014), we use the de-biased

LASSO estimator with known covariance (“oracle” de-biased LASSO estimator)

n

n

pd 0. 1. y—1 1 Ty

Oacte = Orasso + 2 - 571 > yiwi— Y (I‘rz 9LASSO> (
i=1

i=1

and its corresponding statistical error covariance estimate

n
o?.x71 iZ(mI) é_l,
i=1

which assumes that the true inverse covariance ¥~ and observation noise variance o2

are known.

Confidence interval visualization. We use 600i.i.d. samples from a model with ¥ = I, o = 0.7, 0* = [L/\/5,--- ,1/v/8,0,--- ,0]T ¢
R'09 which is 8-sparse. Figure 3 shows 95% confidence intervals for the first 20 coordinates. The average confidence interval
length is 0.14 and average coverage is 0.83. Additional experimental results, including p-value distribution under the null

hypothesis, are presented in Appendix H.1.2.

Comparison with de-biased LASSO. We use 600i.i.d. samples from amodel with ¥ = I, 0 = 0.7, 0* = [1/v/8,--- ,1/¥5,0,--- ,0]

R10%0 which is 8-sparse.
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Figure 3: 95% confidence intervals

For our method, the average confidence interval length is 0.14 and average coverage is 0.83. For the de-biased LASSO

estimator with known covariance, the average confidence interval length is 0.11 and average coverage is 0.98.
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Figure 4: Comparison of our de-biased estimator and oracle de-biased LASSO estimator

H.1.3. TIME SERIES ANALYSIS

In our linear regression simulation, we generate i.i.d. random explanatory variables, and the observation noise is a 0-mean
moving average (MA) process independent of the explanatory variables.

For the linear model

Y; = <l’7j,0*> + €,
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r; € R?Y are i.i.d. samples generated from N ([1, 1,..., 1]T/\/E, I> and ¢; is a 0-mean moving average process
€, = 0.6 - 2 + 0.8 - Zi—1,

where z; are i.i.d. N'(0,0.72).

We ran 10,000 simulations, with each time series containing n = 10,000 samples, and set the lag 1 = 32. For our
approximate Newton statistical inference procedure (Algorithm 5), average 95% confidence interval (coverage, length) is
(0.958, 0.0142), and it matches our theory. For circular bootstrap, where each replicate contains n — 1 samples, average 95%

confidence interval (coverage, length) is (0.949 , 0.0136).

H.2. Real data
H.2.1. NEURAL NETWORK ADVERSARIAL ATTACK DETECTION

The adversarial perturbation used in our experiments is shown in Figure 7. It is generated using the fast gradient sign method

(Goodfellow et al., 2014) Figure 5 shows images in a “Shirt” example. Figure 6 shows images in a “T-shirt/top” example.

Shirt: adversarial

'

Shirt: original Shirt: random

Figure 5: “Shirt” example

T-shirt/top: original T-shirt/top: random 0 T-shirt/top: adversarial
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Figure 6: “T-shirt/top” example

H.2.2. HIGH DIMENSIONAL LINEAR REGRESSION

For both experiments, the hyper-parameters are chosen based on the results in Section 3, where we estimate the true parameter’s
¢, norm ||0*||; and noise level o by vanilla LASSO with cross validation, using the LASSO solution’s ¢; norm and LASSO
residuals’ 2" moment’s square root. The covariance threshold is chosen so that it minimizes the thresholded covariance’s

condition number.
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Figure 7: Adversarial perturbation generated using the fast gradient sign method (Goodfellow et al.,
2014)

Drug Mutations
APV | 10F

ATV | 33F, 43T, 84V
IDV | 48V, 84A

PI LPV | 461
NEV | 46L
RTV | 101, 54V
SQV | 20R, 84V
3TC | 184V
ABC | 41L

AZT | 41L, 210W
DAT | 41L, 215Y
DDI | 62V, 151M
TDF | 41L, 75M
DLV | 228R
NNRTI | EFV | 74V, 103N
NVP | 103N, 181C

NRTI

Table 4: HIV drug resistance related mutations detected by our high dimensional inference procedure

HIV drug resistance mutations dataset. We apply our high dimensional inference procedure to the dataset in (Rhee et al.,
2006) to detect mutations related to HIV drug resistance. Our procedure is able to detect verified mutations in an expert dataset
(Johnson et al., 2005), when we control the family-wise error rate (FWER) at 0.05.

Riboflavin (vitamin B2) production rate data set. For the vanilla LASSO estimate on the high-throughput genomic data
set concerning riboflavin (vitamin B2) production rate (Biihlmann et al., 2014), we set A = 0.021864. Figure 8, and we see that
our point estimate is similar to the vanilla LASSO point estimate.

For statistical inference, in our method, we compute p-values using two-sided Z-test. Adjusting FWER to 5% signifi-cance
level, our method does not find any significant gene. (Javanmard and Montanari, 2014; Biithlmann et al., 2014) report that
(Biihlmann, 2013) also does not find any significant gene, whereas (Meinshausen et al., 2009) finds one significant gene
(YXLD-at), and (Javanmard and Montanari, 2014) finds two significant genes (YXLD-at and YXLE-at). This indicates that our

method is more conservative than (Javanmard and Montanari, 2014; Meinshausen et al., 2009).
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Figure 8: Comparison of our high dimensional linear regression point estimate with the vanilla
LASSO estimate
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Figure 9: Exposure of US equities market to equities markets of other countries

H.2.3. TIME SERIES ANALYSIS

Using monthly equities returns data from (Frazzini and Pedersen, 2014), we use our approximate Newton statistical inference
procedure to show that the correlation between US equities market returns and non-US global equities market returns is
statistically significant, which validates the capital asset pricing model (CAPM) (Sharpe, 1964; Lintner, 1965; Fama and French,
2004).

We regress monthly US equities market returns from 1995 to 2018 against other countries’ equities market returns, and
each country’s coefficient and its 95% confidence interval is shown in Figure 9. And we observe that the US market is highly
positively correlated with Canada and other advanced economies such as Germany and UK.
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