
 

 
 
 
 

  
 
 
 

 

 
 

 
 
 
 

  
 

 
 
 
 

  
 
 
 
 
 
 
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 

Technical Report 158 

Project Title: 

Online Matching, Black-box 
Optimization and Hyper-parameter 
Tuning 

Research Supervisor: Sanjay Shakkottai 
Wireless Networking and Communications Group 

August 2020 



 

  
 
   

 
 

          
 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Data-Supported Transportation Operations & Planning Center 
(D-STOP) 

A Tier 1 USDOT University Transportation Center at The University of Texas at Austin 

D-STOP is a collaborative initiative by researchers at the Center for Transportation 
Research and the Wireless Networking and Communications Group at The University of 
Texas at Austin. 



 

  
  

 
  
 

    
 

  

 

  
 

  
 

  
 

 

   
  

   

 
   

  
  

 
 

  
 

 
  

  
  

 

 
 

 

 
   

 
 

 
  

      
   

  
   

    
   

  
     
     

    
   

  

 
 

 

 
 
  

 
 

 
  
 

  
 

 
 

 
 

                           
 

Technical Report Documentation Page 
1.  Report No. 
D-STOP/2020/158 

2.  Government Accession No. 3. Recipient's Catalog No. 

4.  Title and Subtitle 
MmWave Codebook Selection in Rapidly-Varying Channels via 
Multinomial Thompson Sampling 

5.  Report Date 
August 2020 
6.  Performing Organization Code 

7.  Author(s) 
Yi Zhang, Soumya Basu, Sanjay Shakkottai, and Robert W. Heath 
Jr. 

8.  Performing Organization Report No. 
Report 158 

9. Performing Organization Name and Address 
Data-Supported Transportation Operations & Planning Center (D-
STOP) 
The University of Texas at Austin 
3925 W. Braker Lane, 4th Floor 
Austin, TX 78759 

10.  Work Unit No. (TRAIS) 

11.  Contract or Grant No. 
DTRT13-G-UTC58 

12.  Sponsoring Agency Name and Address 
United States Department of Transportation 
University Transportation Centers 
1200 New Jersey Avenue, SE 
Washington, DC 20590 

13.  Type of Report and Period Covered 

14.  Sponsoring Agency Code 

15.  Supplementary Notes 
Supported by a grant from the U.S. Department of Transportation, University Transportation Centers 
Program. 
16.  Abstract 
Millimeter-wave (mmWave) communications, using directional beams, is a key enabler for high-
throughput mobile ad hoc networks. These directional beams are organized into multiple codebooks 
according to beam resolution, with each codebook consisting of a set of equal width beams that cover the 
whole angular space. The codebook with narrow beams delivers high throughput, at the expense of 
scanning time. Therefore overall throughput maximization is achieved by selecting a mmWave codebook 
that balances between beamwidth (beamforming gain) and beam alignment overhead. Further, these 
codebooks have some potential natural structures such as the non-decreasing instantaneous rate or the 
unimodal throughput as one traverses from the codebook with wide beams to the one with narrow beams. 
We study the codebook selection problem through a multi-armed bandit (MAB) formulation in mmWave 
networks with rapidly-varying channels. We develop multiple novel Thompson Sampling-based 
algorithms for our setting given different codebook structures with theoretical guarantees on regret. We 
further collect real-world (60 GHz) measurements with 12-antenna phased arrays, and show the 
performance benefits of our approaches in an IEEE 802.11ad/ay emulation setting.. 
17.  Key Words 
millimeter-wave, codebook optimization, 
rapidly-varying channel, multi-armed 
bandit, Thompson sampling, experimental 
measurements 

18.  Distribution Statement 
No restrictions. This document is available to the public 
through NTIS (http://www.ntis.gov): 
National Technical Information Service 
5285 Port Royal Road 
Springfield, Virginia  22161 

19.  Security Classif.(of this report) 
Unclassified 

20.  Security Classif.(of this page) 
Unclassified 

21.  No. of Pages 22.  Price 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 



 

 

 
  

   
  

 
  

 
 
 

 

  
  

 
 

 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the information presented herein. This document is 
disseminated under the sponsorship of the U.S. Department of Transportation’s 
University Transportation Centers Program, in the interest of information exchange. The 
U.S. Government assumes no liability for the contents or use thereof. 
Mention of trade names or commercial products does not constitute endorsement or 
recommendation for use. 

Acknowledgements 

The authors recognize that support for this research was provided by a grant from the 
U.S. Department of Transportation, University Transportation Centers. 



MmWave Codebook Selection in Rapidly-Varying Channels via 
Multinomial Thompson Sampling 

Yi Zhang 
The University of Texas at Austin 

Austin, TX, USA 
yi.zhang.cn@utexas.edu 

Sanjay Shakkottai 
The University of Texas at Austin 

Austin, TX, USA 
sanjay.shakkottai@utexas.edu 

ABSTRACT 
Millimeter-wave (mmWave) communications, using directional 
beams, is a key enabler for high-throughput mobile ad hoc networks. 
These directional beams are organized into multiple codebooks ac-
cording to beam resolution, with each codebook consisting of a set 
of equal width beams that cover the whole angular space. The code-
book with narrow beams delivers high throughput, at the expense 
of scanning time. Therefore overall throughput maximization is 
achieved by selecting a mmWave codebook that balances between 
beamwidth (beamforming gain) and beam alignment overhead. Fur-
ther, these codebooks have some potential natural structures such as 
the non-decreasing instantaneous rate or the unimodal throughput 
as one traverses from the codebook with wide beams to the one with 
narrow beams. We study the codebook selection problem through a 
multi-armed bandit (MAB) formulation in mmWave networks with 
rapidly-varying channels. We develop multiple novel Thompson 
Sampling-based algorithms for our setting given diferent codebook 
structures with theoretical guarantees on regret. We further collect 
real-world (60 GHz) measurements with 12-antenna phased arrays, 
and show the performance benefts of our approaches in an IEEE 
802.11ad/ay emulation setting. 

CCS CONCEPTS 
• Networks → Mobile networks; • Computing methodologies 
→ Machine learning algorithms; • Mathematics of comput-

ing → Bayesian computation. 

KEYWORDS 
millimeter-wave, codebook optimization, rapidly-varying channel, 
multi-armed bandit, Thompson sampling, experimental measure-
ments 

1 INTRODUCTION 
Large antenna arrays are key to the success of millimeter-wave 
(mmWave) networks because of their high directional gain. How-
ever, to get the benefts of this directionality, transmitters (TX) and 
receivers (RX) need to align their respective beams to maximize 
throughput. Each radio has a codebook – a collection of beams 
with a predefned beam resolution (indicated by beamwidth), and 
covering the whole angular space (see Figure 1) – the radios ex-
haustively sweep over the beams in a codebook to establish the 

Soumya Basu 
Google, LLC 

Mountain View, CA, USA 
basusoumya@google.com 

Robert W. Heath Jr. 
North Carolina State University 

Raleigh, NC, USA 
rwheathjr@ncsu.edu 

optimal beam-pair link [28]. Such sweep-based techniques have 
been incorporated into standards such as IEEE 802.11ad/ay [4] and 
5G NR [5], because of robustness and good coverage [27]. 

While a codebook consisting of beams with a narrow beamwidth 
is benefcial as these beams provide higher beamforming gain (and 
thus a higher signal-to-noise-ratio (SNR)), it comes at a price. Such 
a codebook correspondingly contains a large number of beams 
to cover angular space, with the time taken to sweep over them 
being linear in the number of beams [16]. Indeed with emerging 
standards such as IEEE 802.11ay, the number of beams can scale 
to as much as 2048 [4, 25]. Furthermore, a beam-pair link needs to 
be frequently re-established in mobile and rapidly varying channel 
settings (see [9]), thus resulting in signifcant overheads. 

To resolve this tension between high throughput and large sweep 
times, a promising and practical solution is to have multiple code-
books of diferent beam resolutions (each codebook spanning the 
whole angular space, see Figure 1 and Remark 1), and choose a 
specifc codebook in a scenario-specifc manner. Depending on the 
device location and frequency of link realignment (which is driven 
by scenario-specifc device location/mobility, and channel variabil-
ity), the radio might choose to use a codebook of wide beams (low 
beamforming gain but fast sweep, benefcial to devices that either 
require frequent realignment or can tolerate low beamforming gain 
due to their central location), or at the other extreme, a codebook of 
narrow beams (high beamforming gain but slow sweep, benefcial 
to devices requiring infrequent realignment or located far-away 
from the base station). Indeed the experiments in [36] have shown 
that the optimal beam resolution is scenario-specifc, and unsuit-
able choices could severely degrade the overall throughput. This 
intuition has propagated into standards, where a family of code-
books has been frst standardized in IEEE 802.15.3c millimeter-wave 
WPANs [1] and further proposed in the ongoing standardization of 
IEEE 802.11ay by [25]. 

In this paper, we focus on the codebook selection problem given 
a set of mmWave codebooks ranging from low to high beam res-
olution (see Figure 1). Our goal is to learn the optimal codebook 
by dynamically exploring the trade-of between the high instan-
taneous throughput provided by the codebook of narrow beams 
and the low overhead associated with the codebook of wide beams. 
We exploit online learning techniques to design codebook selection 
algorithms for rapidly-varying mmWave networks. The major 
contributions are summarized below: 

http:802.15.3c
mailto:rwheathjr@ncsu.edu
mailto:basusoumya@google.com
mailto:sanjay.shakkottai@utexas.edu
mailto:yi.zhang.cn@utexas.edu
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…

1-th codebook 2-th codebook 𝐾-th codebook

A wider beam has
larger spatial coverage

A narrower beam has
smaller spatial coverage

Figure 1: Example codebooks of directional beams 

(1) Algorithm Design: Using a multi-armed bandit (MAB) frame-
work, we propose multiple novel Thompson Sampling (TS)-based 
bandit algorithms using Dirichlet priors for the codebook selection 
problem. In particular, we frst propose a generic TS algorithm with-
out requiring any structure among codebooks. Second, we propose 
a constrained TS algorithm that exploits the known general structure 
among codebooks to further improve the system performance. Most 
importantly, we propose a Unimodal TS (UTS) algorithm to deal 
with a well-observed natural structure among a family of codebooks 
ranging from low to high resolution – the efective throughputs of 
codebooks often have a unimodal property. 

(2) Theoretical and Empirical Results: We provide theoret-
ical guarantees for the proposed algorithms by deriving upper 
bounds for their regrets (expected loss in cumulative throughput) 
with respect to a genie algorithm that always uses the optimal code-
book. In particular, our proofs provide the theoretical guarantee for 
the UTS with Dirichlet priors, which is an important missing part of 
the state-of-the-art TS algorithms. Next, we collect real-world chan-
nel measurements at 60 GHz with two 12-antenna phased arrays, 
and use them to validate the proposed algorithms by emulating 
a realistic IEEE 802.11ad system. Our results show that the pro-
posed TS-based algorithms are superior to state-of-the-art bandit 
algorithms. 

2 SYSTEM MODEL 
We consider a slot-based mobile ad hoc mmWave system, in which a 
TX establishes the wireless link with an RX by doing the codebook-
based beam scanning. Specifcally, a codebook is a set of directional 
beams of the same beam resolution (indicated by beamwidth) that 
covers the whole angular space. There are multiple codebooks avail-
able at the TX while the RX only has one fxed codebook (antenna 
array size and power consumption are generally limited at the RX, 
i.e. mobile devices). Diferent codebooks have directional beams 
of diferent beamwidth, which helps balancing high beamforming 
gain (by delivering high SNR using narrow beams) and low training 
overhead (by avoiding mass sweeps using wide beams). See Figure 1 
for a pictorial representation of the set of codebooks. 

In mmWave systems, each communication time slot includes a 
beam alignment phase and a data transmission phase. The evolu-
tion of a time slot is described as follows. At the beam alignment 
phase, the TX selects one of the available codebooks to perform 
the beam alignment with the RX by testing all the beams in this 
codebook. At the end of this phase, the index of the beam with the 
highest received signal strength (RSS) will be sent back to the TX. 
Subsequently, the TX will use this best beam to transmit data for 

the remaining time resources in this slot, which is referred to as 
a data transmission phase. In particular, the TX will transmit the 
data with the highest supportable modulation and coding scheme 
(MCS), which is obtained by referring to a predefned RSS-MCS 
table. This is a typical mmWave system and the adopted beam 
alignment process is similar to the sector level sweep (SLS) used in 
IEEE 802.11ad/ay [3, 4] and 5G NR [5]. Our objective is to identify the 
optimal codebook that maximizes the expected system throughput. 

The codebook generation is out of the scope of this work. A 
simple way to generate multiple codebooks of diferent beamwidths, 
shown in Figure 1, is to exploit antenna on/of techniques [39], 
which is also used in our experimental evaluation. 

Remark 1. Compared to gathering all the beams of diferent res-
olutions into a giant codebook, organizing the beams into multiple 
codebooks by their width has the following practical advantages: (1) 
It facilitates the beam management in the context that the size of the 
mmWave antenna array is scaling up [42]. (2) It enables the codebook 
optimization in a scenario-specifc manner (see experimental results in 
[36]), leading to greatly improved performance. (3) From the perspec-
tive of practical implementation, using one codebook of equal-width 
beams for a single link establishment can avoid numerous antenna 
on/of operations (required by changing beamwidth [39]), which could 
reduce the operation overhead and simplify the antenna hardware 
designs. As mentioned earlier, standard bodies are recognizing the 
benefts of a family of codebooks, e.g. IEEE 802.15.3c millimeter-wave 
WPANs [1] and proposals in IEEE 802.11ay by [25]. 

3 PROBLEM STATEMENT 
In this section, we mathematically characterize the beam align-
ment and the data transmission phases described in Section 2. We 
study the codebook selection problem through a multi-armed bandit 
(MAB) framework. At each time-slot, one of � possible codebooks 
(aka actions) is chosen by the learning algorithm (aka player), and 
the corresponding efective data rate (aka reward) is observed. By 
learning the choice of the best codebook, the goal is to minimize 
the cumulative loss with respect to an omniscient genie [8]. 

3.1 RSS-MCS table 
As mentioned in Section 2, there exists a predefned RSS-MCS table 
used by the TX to decide which is the highest supportable MCS 
given the best RSS feedback by the RX. We suppose this RSS-MCS 
table has (� + 1) levels of MCS. The data rate associated with 
MCS � is the �-th element of a rate vector r̃ = [�̃0, �̃1, . . . , �̃� ]T, 
where �̃0 < �̃1 < . . . < �̃� , and the minimum required RSS for 
supporting MCS � is denoted as rss� , which yields a RSS vector 
rss = [rss0, rss1, . . . , rss� ]T. In particular, MCS 0 represents the 
data rate of 0 (�̃0 = 0 and rss0 = − inf), namely that the RSS is 
too low to support any data transmission (failed link connection). 
Without loss of generality, we defne a normalized rate vector by 
dividing r̃ by �̃� , which is denoted as r = [�0, �1, . . . , �� ]T, where 

�̃� �� = . Thus, �� is bounded by [0, 1] and we will use this normal-
�̃� 

ized rate vector r in the following. We denote [�]+ ≜ {1, 2, . . . , �}, 
[�] ≜ {0, 1, . . . , � } and 1 {·} as the indicator function for later use. 

http:802.15.3c
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3.2 Channel distribution and evolution of a 
time slot 

We consider a discrete-time setting, where � = 1, 2, ...,� is a fnite 
time horizon and each time step represents a communication time 
slot. We denote � as the number of codebooks at the TX and �� as 
the number of beams in the �-th codebook. We denote the random 
mmWave channel at time slot � as ℎ(�) following a discrete state 
channel distribution H over some (possibly) continuous state-space. 
As the channels are rapidly varying in mmWave MANETs, we 
suppose that the channel state realizations of diferent time slots 
are independent of each other [19]. 

In each time slot, at the beam alignment phase, the TX chooses 
a codebook � ∈ [�]+ and sequentially tests each beam in this 
codebook (beam alignment for the specifed codebook). Denoting 
by rss(t,k) the maximum RSS obtained by sweeping over all the 
beams in the �-th codebook, we then have 

rss(�, �) = max� ∈[�� ]+ � (ℎ(�), �, �), (1) 

where � is an unknown function that refects the overall physi-
cal layer impact on the received signals, which includes channel 
gain, sidelobe efects, RF impairments, beam pattern imperfection, 
thermal noise, etc. 

Given the maximum RSS, the TX uses a predefned RSS-MCS 
table to determine the highest supportable MCS for the data trans-
mission phase, which can be mathematically expressed as 

� (�) = max� ∈[� ] 1 {rss(�, � (�)) ≥ rss� } ��, (2) 

where � (�) denotes the index of codebook selected at the �-th time 
slot and � (�) is the determined data rate, which is termed as instan-
taneous data rate. As a result, we can see that given a selected code-
book � (�) ∈ [�]+ by a certain policy, the instantaneous data rate 
� (�) follows a one-trial multinomial distribution with the sup-
port {�0, �1, . . . , �� } and the parameter p� = [�0,� , �1,� , . . . , ��,� ]T, 
where ��,� = P {� (�) = �� |� (�) = �}, � ∈ [�] and � ∈ [�]+. 

3.3 Reward of codebooks and cumulative 
regret of the system 

We adopt a model-free framework to formulate our codebook selec-
tion problem, which directly characterizes the performance of code-
books by their multinomial distributions, i.e. parameters {p� }� 

�=1. 
This allows us to bypass the complex assumptions on the channel 
distribution H and the unknown function � in (1). The performance 
metric of the �-th codebook (the mean reward of �-th arm) is the 
efective data rate of the codebook, � ef (�) (defned shortly). We 

� 
frst denote � ins (�) as the instantaneous data rate of codebook � , 

� h i 
whose expectation can be given as E � ins (�) = rTp� . As described 

� 
before, only part of the total time slot is used for data transmis-
sion, which motivates us to defne a variable, termed as efective 
coefcient, to present the ratio of time that is allocated for the data � � 
transmission phase, which is given as �ef = � slot − � train /� slot, 

� � 

where � train is a codebook-dependent constant representing the 
� 

total beam alignment time including getting feedback and � slot is 
the fxed time-slot duration. 

With �ef, we can now defne the efective data rate, denoted 
� 

by � ef (�), to represent the average data rate over the whole time 
� 

slot, which is given as � ef (�) = � ins (�)�ef. Note that � ef (� ) de-
� � � � 

termines the real system throughput when the �-th codebook is 
chosen. Therefore, the reward of �-th arm follows a multinomial 
distribution with the support {�0�ef , �1�ef , . . . , ���ef } and the � � � � 
parameter �0,� , �1,� , . . . , ��,� , which gives its expectation �� as h i 

= E �ef (�) = �ef rT (3) �� � � p� . 

The optimal codebook �∗ = arg� ∈[� ]+ max �� is the one that pro-
vides the maximum expected efective data rate. 

In this work, we consider minimizing the expected cumulative 
regret/loss over the � slots. The expected cumulative regret of a 
codebook selection algorithm is defned as the diference between 
the total expected reward of the optimal codebook and the total 
expected reward obtained by the algorithm, which can be given as Õ� h i h i Õ� 
�(� ) = E � 

�
ef 
∗ (�) − E �

� 
ef 
(� ) (�) = � ��∗ − 

=1 
�� (� ) . �=1 � 

(4) 

3.4 Natural structure among codebooks and 
discussions 

In this subsection, we incorporate the physical layer structural 
aspects of the codebooks as model assumptions. The following 
Assumption 2 leverages the fact that aligned narrower beams 
provide higher beamforming gain, hence larger RSS as compared 
to their wider counterparts. Without loss of generality, we assume 
that the codebooks are numbered in terms of decreasing beamwidth 
(widest beamwidth numbered 1). 

Assumption 2 (Nondecreasing instantaneous data rate). 
For any two codebooks with indexes �1 and �2, such that �1 < �2, for 
all time � ≥ 1, rss(�, �1) ≤ rss(�, �2) holds. 

Assumption 2 implies that a higher (non-lower) MCS can be 
supported by the codebook with larger index (fner beamwidth), 
which is mathematically given as 

rTp1 ≤ rTp2 ≤ . . . ≤ rTp� . (5) 

Training time for codebooks with wider beams is less, assuming 
training time per beam is constant, and thus we need to train fewer 
beams when using wider codebooks. This implies, 

�ef > �ef 
1 2 > . . . > �� 

ef . (6) 

When the codebooks are efciently designed, the following assump-
tion is suitable for our system (see Remark 5). 

Assumption 3 (Unimodal effective data rate). The expected 
rewards of codebooks, i.e. {�� }�

� 
=1 (with, �� = �ef rTp� ) follows a 

� 
unimodal pattern, i.e. there exists a unique �∗ ∈ {1, . . . , �} such that 
�� is increasing with � for all � ≤ �∗, and �� is decreasing with � for 
all � ≥ �∗ : 

�1 ≤ . . . ≤ ��∗ ≥ . . . ≥ �� . (7) 

Thus, we have mathematically modeled the codebook selection 
problem in rapidly-varying mmWave channels as a MAB problem. 
In the next section, we will design efcient bandit algorithms to 
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solve it. A few remarks on the proposed framework are further 
listed below for completeness. 

Remark 4. We note that Assumption 2 and the equation (6) 
does not necessarily provide the unimodality described by (7). For n o � ef example, � = (0.8, 0.7, 0.4, 0.35) and r = (0.1, 0.2, 0.3, 0.4). 

� 
Tp� 

Similarly, Assumption 2 is not implied by Assumption 3. 

Remark 5. Assumption 3 is motivated by the fact that the 
system Shannon capacity is a unimodal function of beamwidth when 
doing a 2D beam scanning, as discussed below. We use �� to represent 
the width of beams in the �-th codebook. Suppose the size of the beam 
scanning area is � (e.g. � = 360◦ for 2D-scanning), then we have 
� train � = � mer, where � mer is the time duration for testing a single 
� �� 
beam. Further, the beamforming gain can be roughly approximated as 
�0 
�� 

[2], where �0 is a constant parameter related to the used antenna 

array. Thus, the Shannon capacity � cap can be given as 
� � � � � 

cap �� mer �0�TX 
� = � 1 − log2 1 + ℎ , (8) 
� ��� slot �� �N 

where � is the bandwidth, ℎ is the channel efect, �TX is the transmit 
power and �N is the noise power. By denoting �1 ≜ �� mer 

and �2 ≜ 
� slot 

�0�TX cap , � is sampled from the function � cap (�) given as 
�N � � � � � 

�1 �2 
� cap (�) = � 1 − log2 1 + ℎ . (9) 

� � 

It can be shown that the function in (9) is unimodal with respect 
to � [33]. The throughput (mean reward of arm), however, is an ex-
pectation of this expression over the channel efect. Our assumption 
essentially states that even after taking an expectation, unimodality 
holds. Our numerical evaluation with the 3GPP NR outdoor channel 
model and real-world measurements both confrm this observation. 

Remark 6. We note that unimodality has been previously ex-
ploited in beam alignment [21]. Essentially, their notion of unimodal-
ity is that for a single codebook of beams, the performance of these 
beams have a unimodal pattern. Our notion of unimodality given in 
Assumption 3 is diferent. When we have multiple codebooks, each 
consisting of beams of the same resolution, the performance of these 
codebooks exhibit the unimodal structure. Our notion of codebook 
unimodality hinges on the trade-of between the increased scanning 
time for codebooks with a large number of narrow beams versus the 
increased instantaneous rate from the high directional gains. 

4 ALGORITHMS AND REGRET GUARANTEES 
In this section, we design four online learning algorithms for difer-
ent structural constraints on the set of codebooks. Our objective 
is to design algorithms that will maximize the use of the optimal 
codebook. An ideal algorithmic choice for this task is Thompson 
Sampling (TS) which is a popular Bayesian approach to solving 
MAB problems because of its efcient implementation and excel-
lent empirical performance [10, 24]. The core of TS is to use the 
observations to dynamically update the posterior of a predefned 
prior distribution. The classic TS algorithms like [7, 19, 20, 24] are 
designed for MAB problems with Bernoulli arms and thus cannot 
be directly applied to our problem which has weighted multino-
mial distribution. For our case, we adapt the recently proposed 

Multinomial TS (MTS) [32] which can deal with the multinomial 
arms. However, in our case, there are multiple diferences for which 
appropriate adaptations are necessary. 

1) First, in Algorithm 1 we design weighted MTS (WMTS) 
� that handles the multinomial rewards {r p� } weighted by the 

coefcients {�ef }. A similar weighted generalization is done for 
� 

Bernoulli rewards in [19]. 
2) Second, when the weights are time varying and stochastic, i.e. 

{�ef (�)} are i.i.d. vectors with mean {� [�ef ]}, we design Algo-
� � 

rithm 2, general MTS (GMTS), which modulates the prior update 
with observations {�ef (� )} after codebook selection. 

� 
3) In Algorithm 1 and 2, we have not incorporated the structural 

assumptions, i.e. Assumption 2 and 3, into our designs. We next 
design Algorithm 3, constrained WMTS (CWMTS), that is based 
on [20] which can incorporate either Assumption 2 or 3 or both. 

4) Even though CWMTS can handle general constraints, its im-
plementation has high complexity due to the posterior sampling 
from a constrained set. In order to move to a more practical algo-
rithm under Assumption 3 (unimodality of the rewards), we pro-
pose unimodal WMTS (UWMTS) in Algorithm 4. This algorithm 
carefully combines the techniques in [32] to handle multinomial 
rewards, with the leader-tracking based procedure of [30, 35] to 
present the improved regret guarantees. 

In all the above settings, we provide theoretical guarantees on 
the upper bounds of the cumulative regrets. 

4.1 Notations 
We present the following notations for later use in this section: � = 
[�1, . . . , �� ]T, �� = [�0,� , . . . , ��,� ]T and 1� denotes a vector of 
� ones. ��� (�� ) denotes the Dirichlet distribution with parameter 
vector �� . We use ��������� (�) to represent a Bernoulli pmf with 
success probability of � . We use KL (p, g) to represent the Kullback-
Leibler divergence between two one-trial multinomial distributions 
parameterized by probability vector p and g, i.e. two categorical dis-
tribution, and we defne that Kinf (p, � |s) = inf 

�
KL(p, g) ��sTg > � . 

We use scalar �� to represent the �-th element of a vector which 
is denoted by a bold font a, where � could start with 0 or 1, de-
pending on the context. We denote P as a problem parameter set 
that contains all information of our codebook selection problem, n o 
i.e. P = r, p� ,�

ef , ∀� ∈ [�]+ . 
� 

4.2 Algorithm without prior knowledge of 
structural properties 

In this subsection, we propose the Weighted Multinomial Thomp-
son Sampling (WMTS) algorithm, which does not require any prior 
knowledge of the structure among the performance of arms. We 
maintain � Dirichlet priors, which are conjugate priors for the 
multinomial reward distributions {p� }�

� 
=1, for the � arms individ-

ually. The details of WMTS is given in Algorithm 1. The term 
Weighted emphasizes that diferent efective coefcient �ef scales 

� 
the support of each arm diferently. The performance guarantee of 
WMTS is given by the following Theorem 7. 

Theorem 7. For the codebook selection problem with the access to 
{�ef }� 

=1, WMTS has the following problem-dependent regret bound 
� �
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Algorithm 1 Weighted Multinomial Thompson Sampling 

1: Input: Horizon � ≥ 1, number of codebooks � ≥ 1, num-n o� 
�ef ber of non-zero MCSs � ≥ 1, efective coefcients , 
� �=1

normalized rate vector r = [�0, �1, . . . , �� ]T. 
2: Initialize: ��,� = 1 for ∀� ∈ [�] and � ∈ [�]+. 
3: for � = 1, . . . ,� do 
4: for � = 1, . . . , � do 
5: Sample d� (�) ∼ ��� (�� ). 
6: end for 
7: � (�) = arg max� ∈[� ]+ �ef rTd� (�). � 
8: Select � (�)-th codebook to perform the beam alignment and 

collect RSS feedback. 
9: Lookup the RSS-MCS table and obtain the maximum ad-

missible rate for data transmission phase, yielding that 
� (�) = �� (� ) and �(�) ∈ [�]. 

10: Prior update: �� (� ),� (� ) := �� (� ),� (� ) + 1. 
11: end for 

for any �0 > 0: Õ� (1 + �0) (��∗ − �� ) 
�(� ) ≤ � � � log� + � (P, �0), (10) 

�=1,�≠�∗ ��ef Kinf p� , ��∗ � r 

where� (P, �0) is a problem-dependent constant that does not depend 
on � . 

Proof. The proof directly follows [32] by generalizing it to that 
diferent arms can have diferent supports for their respective multi-
nomial distributions. □ 

4.2.1 Discussion of further generalization. In this part, we briefy 
discuss a further generalization of Algorithm 1 when {�ef }� 

� �=1
are inaccessible. For the codebook-based beam training adopted in 
our studied system, � train can be easily calculated, as detailed in 

� 
the evaluation section. However, if other specially designed beam 
alignment algorithms were used, e.g. an algorithm that terminates 
with a good enough beam (see the Section of related work for more 
examples), � train could be random variables whose realizations are 

� 
only accessible after completing the beam alignment. This is indeed 
an example of generalizations of our proposed MAB framework. 
Motivated by this, we also derive General Multinomial Thompson 
Sampling (GMTS) algorithm, which is denoted as Algorithm 2 (the 
detailed algorithm description is omitted due to space limitation). 
The key step in GMTS is to randomize the reward of arm after 
observing the sample-path-dependent �ef (�), where � = � (�). To 

� 
be specifc, we generate a Bernoulli random variable � with param-
eter �ef (�), namely � ∼ ��������� (�ef (�)). If � is zero, then we 

� � 
randomize the reward to be zero, i.e. �(�) = 0. 

The performance comparison between WMTS and GMTS is 
shown in the evaluation results. The performance guarantee of 
GMTS is given by the following Theorem 8. 

Theorem 8. For a general codebook selection problem without 
the access to the sample-path-dependent {�ef (�)}� 

=1, GMTS has the 
� �

following problem-dependent regret bound for any �0 > 0: Õ� (1 + �0) (�̃�∗ − �̃� ) 
�(� ) ≤ � � � log� + � (P̃, �0), (11) 

�=1,�≠�∗ Kinf p̃� , �∗ �r 
where� (P̃, �0) is a problem-dependent constant that does not depend n o 
on � , P ˜ = r, p� , E[�ef (�)], ∀� ∈ [�]+ , �̃ = [�̃1, . . . , �̃� ]T, �̃� = 

� 
T ̃ Í� r p� , p̃�,� = p�,� E[�� 

ef (�)] for � ∈ [�]+ , ˜ = 1 − �=1 p̃�,� p0,� 
and �∗ = arg� ∈[� ]+ max �̃� . 

Proof. With the above described randomization, all the arms 
follow their own multinomial distribution with a transformed pa-
rameter p̃� but a common support r. We can then directly apply 
Theorem 7 to get the regret bound given in (11). □ 

4.3 Algorithm using general structural 
properties 

In this subsection, we propose the Constrained Weighted Multino-
mial Thompson Sampling (CWMTS) algorithm, which leverages 
the prior knowledge of structural properties among codebooks sum-
marized in Section 3.4. CWMTS is indeed an extension of WMTS, 
which is inspired by the constrained Bernoulli Thompson Sampling 
(CoTS) proposed in [20]. Its procedure is summarized as follows. 

Instead of sampling D(�) ≜ {d1 (�), . . . , d� (�)} from the product 
of those � independent Dirichlet priors, we sample D(�) in the 
following way: Ö� 

D(�) ∝ 1 {D(�) ∈ Φ} ��� (�� ) (d� (�)) , (12) 
�=1 

where Φ denotes the parameter space that is the set of all possible es-
timates of {p� }� 

=1, and ��� (�� ) (d� (�)) is the probability density 
�

function (PDF) of ��� (�� ) for d� (�). In particular, by omitting the 
time index � and denoting D ≜ {d1, . . . , d� }, under Assumption 2, 
we have n � o 

Φ ≜ D �rTd1 ≤ rTd2 ≤ . . . ≤ rTd� , (13) 

and under Assumption 3, we have n � o ��ef Φ ≜ D rTd1 ≤ . . . ≤ �ef Td�∗ ≥ . . . ≥ �ef Td� . (14) 1 �∗ r � r

Given that � (�)-th codebook is used and the observed reward is 
� (� ) = �� (� ) , the prior of D(� + 1) after Bayesian update is 

D(� + 1) ∝ 1 {D(�) ∈ Φ} × Ö� � � � � 
�=1,�≠� (� ) ��� (�� ) (d� ) × ��� �� (� ) + e� (� ) d� (� ) , (15) 

where e� (� ) is a unit vector where the �(�)-th element is one. (15) 
shows that the update rules of priors is the same as that in the 
WMTS algorithm but we control the estimation of the distributions 
of arms in a more specifc parameter space. We summarize CWMTS 
in Algorithm 3. 

Before stating the theoretical regret bound of the CWMTS al-
gorithm, we present the following notations. We denote A as the 
action space, namely that A = [�]+ as we have � codebooks. We 
denote Y as the observation space, i.e. the possible values of reward. n o 
Then we have Y = ���ef , � ∈ [�]+,� ∈ [�] . We denote �� as � 
the Dirichlet prior used in the �-th time slot, and denote �0 is the 
initial prior, i.e. ��� (1�+1), as initialized in line 2 of Algorithm 3. 
In addition, we make one following assumption: 
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Algorithm 3 Constrained Weighted Multinomial TS 

1: Input: Horizon � ≥ 1, number of codebooks � ≥ 1, num-n o� 
�ef ber of non-zero MCSs � ≥ 1, efective coefcients , 
� �=1

normalized rate vector r = [�0, �1, . . . , �� ]T. 
2: Initialize: ��,� = 1 for ∀� ∈ [�] and � ∈ [�]+. 
3: for � = 1, . . . ,� do 
4: Sample D(t) ∼ 1 {D ∈ Φ} Î

�
� 
=1 ��� (�� ) (d� (�)). 

5: � (�) = arg max� ∈[� ]+ �ef rTd� (�). � 
6: Select � (�)-th codebook to perform the beam alignment and 

collect RSS feedback. 
7: Lookup the RSS-MCS table and obtain the maximum ad-

missible rate for data transmission phase, yielding that 
� (�) = �� (� ) and �(�) ∈ [�]. 

8: Prior update: �� (� ),� (� ) := �� (� ),� (� ) + 1. 
9: end for 

Assumption 9. (Unique optimal codebook) The optimal code-
book is assumed to be unique, i.e., ��∗ > �� , ∀� ≠ �∗ . 

With the above notation and Assumption 9, the following The-
orem now holds. 

Theorem 10. Suppose that Assumption 9 holds, then a regret 
bound for the CWMTS algorithm is given as follows: For any �, � ∈ 
(0, 1), there exists � ∗ ≥ 0 such that for all time horizon � ≥ � ∗ , 
with probability at least 1 − � , CWMTS has the following problem-
dependent regret bound: � � � � �1 + � Õ log� 
�(� ) ≤ ��∗ − min �� � � 

� ∈[� ]+ 1 − � �� ef 
�=1,�≠�∗ Kinf p� , ��∗ �� r 

+ � (�, �, A, Y, Φ, �0) , (16) 

where � (�, �, A, Y, Φ, �0) is a problem-dependent constant that does 
not depend on � . 

Proof. The proof immediately follows (with minor changes to 
account for multinomial instead of Bernoulli random variables) 
from [18, 20]. □ 

The above theorem shows that the regret associated with CWMTS 
also scales logarithmically with time as WMTS and GMTS do. As-
sumption 9 is made only for notational ease in the proof and it 
does not signifcantly afect the result given in Theorem 10, as 
pointed out in [18]. 

4.3.1 Discussion on the limitation of CWMTS. The straightforward 
way to implement CWMTS is to use rejection sampling, namely that 
we sample D from 

Î� 
=1 ��� (�� ) until D ∈ Φ. As the authors note 
�

in [20], a disadvantage of this approach is that it can be slow when 
the probability of getting a valid D is small. In [20], the authors 
proposed a heuristic Sequential Inverse Transform Sampling (SITS) 
approach by sampling d� sequentially with individual constraint 
rTd� ≤ rTd�+1. Note however that d� are correlated with each 
other; thus while the heuristic SITS returns a valid sample in Φ, it 
may not be from the correct distribution. Thereby, designing an 
efcient implementation of CWMTS (that results in samples from 
the correct distribution) is also an interesting future direction. 

4.4 Unimodal Thompson Sampling 
In this part, we present a novel algorithm exploiting the property 
that the efective data rates have a unimodal pattern, as stated in 
Assumption 3. We term it as Unimodal Weighted Multinomial 
Thompson Sampling (UWMTS). This is a novel combination of the 
Multinomial TS [32] and the Unimodal Bernoulli TS [30, 35]. The 
key element of this combination would be highlighted later. 

To explain UWMTS, we set the following notations. We de-
note �� (�) ≜ 

Í
�
� 
=1 1 {� (�) = �} as the number of times that �-th 

codebook is used up to �-th time slot, and the estimated expected Í� 
=1 1{� (�)=� }� (�)�ef 

� reward of the �-th codebook as �̂� (�) ≜ � . In 
�� (� ) 

particular, we defne an empirical leader �(�) = arg� ∈[� ]+ �̂� (�) 
and the number of times arm � has been leader up to time � as 
�� (�) = 

Í�
�=1 1 {� (�) = �}. 

The core of UWMTS is to restrict WMTS to the neighborhood of 
the leader and meanwhile add a leader exploration mechanism to 
detect the optimal arm with high probability. Specifcally, UWMTS 
chooses the arm at time � by following policy: � �  �(�) ��� �� (� ) (�), � = 0, 

� (� ) = (17) 
Run WMTS in N+ otherwise,  � (� ) , 

where ��� is the modulo function, � is the frequency that the leader 
is exploited, N+ = N� ∪ {�} with that N� is the set of neighboring 

� 
arms of arm � , i.e. N� = {� − 1, � + 1} ∩ [�]+ in our case. It is 
worth pointing out that there is no leader exploration when � = ∞ 
and there is no theoretical guide on how to choose its value. It 
is empirically found by our simulation and [35] that choosing a 
smaller value (2 ≤ � ≤ � ) results in a relatively good performance. 
The description of UWMTS is given in Algorithm 4. 

UTS was proposed with Bernoulli arms and unimodal reward 
structure in [30], and it is proved to have asymptotically optimal 
regret in [35]. We adapt the framework in [35] and generalize the 
proofs therein from Bernoulli arms to multinomial arms. Such gen-
eralization, even in standard MAB (see, [32]), is known to be non-
trivial as connecting the posterior of the reward (which follows 
Dirichlet distribution), to the observed rewards (which follows 
multinomial distribution) is difcult due to the absence of a closed 
form expression, unlike the Bernoulli case where the Beta-Binomial 
transform is used [6]. We leverage the tail bounds of Dirichlet dis-
tribution in [32], and derive the posterior concentration for the 
arms in the neighborhood of the optimal arm, which in our case 
includes two suboptimal arms and the optimal arm due to uni-
modality. This allows us to show each of these two suboptimal 
arm is played � (log(� )) times in expectation, where the constant 
associated with the log(� ) term is asymptotically optimal. Similar 
to [35], the other (� − 3) suboptimal arms are shown to be rarely 
played, i.e. � (1) times in expectation, as the leader election method 
concentrates fast. Thus, we provide the frst regret upper bound for 
UTS with multinomial arms, summarized in Theorem 11 below: 

Theorem 11. For codebook selection problem with the access to 
{�ef }� 

=1, under Assumption 3, UWMTS has the following problem-
� �

dependent regret bound for any � ≥ 2 and any �0 > 0: Õ (1 + �0) (��∗ − �� ) 
�(� ) ≤ � � � log� + � (P, �0, �), (18) ��ef 

� ∈N�∗ Kinf p� , �∗ r 
� 
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where � (P, �0, �) is a constant that does not depend on � . 

Proof. See Appendix A in the full version of this work [40]. □ 

Remark 12. We note that UWMTS can signifcantly reduce the 
regret as the coefcient of logarithmic term is restricted to the neigh-
borhood of the optimal arm, i.e. N�∗ with |N�∗ | ≤ 2. This reduces the 
regret from � (� log� ) to � (2 log� ). 

Algorithm 4 Unimodal Weighted Multinomial TS 

1: Input: Horizon � ≥ 1, number of codebooks � ≥ 1, number of n o� 
�ef non-zero MCSs � ≥ 1, efective coefcients , normal-
� �=1

ized rate vector r = [�0, �1, . . . , �� ]T, and leader exploration 
parameter � . 

2: Initialize: ��,� = 1, �̂� (�) = 0, �� (�)=0, �� (�) = 0 for ∀� ∈ [�] 
and � ∈ [�]+. We omit time index � of �̂� (�), �� (�), �� (�) in 
the following. 

3: for � = 1, . . . , � do 
4: � (�) = t. 
5: Select � (�)-th codebook to perform the beam alignment and 

collect RSS feedback. 
6: Lookup the RSS-MCS table and obtain the maximum ad-

missible rate for data transmission phase, yielding that 
� (�) = �� (� ) and �(�) ∈ [�]. 

7: Prior update: �� (� ),� (� ) := �� (� ),� (� ) + 1. 
�� (� ) �� (� ) +� (� )�ef 

8: Mean update: �̂� (� ) := 
ˆ

� . 
�� (� ) +1 

9: Arm counter update: �� (� ) := �� (� ) + 1. 
10: end for 
11: for � = � + 1, . . . ,� do 
12: �(�) = arg max� ∈[� ]+ �̂� . 
13: Leader counter update: �� (� ) := �� (� ) + 1. 
14: if ��� (�� (� ) , �) == 0 then 
15: � (�) = �(� ). 
16: else 
17: for � ∈ N+ 

do 
� (� ) 

18: Sample d� ∼ ��� (�� ) . 
19: end for 
20: � (�) = arg max� ∈N+ �ef rTd� . 

� (� ) � 
21: end if 
22: Select � (�)-th codebook to perform the beam alignment and 

collect RSS feedback. 
23: Lookup the RSS-MCS table and obtain the maximum ad-

missible rate for data transmission phase, yielding that 
� (�) = �� (� ) and �(�) ∈ [�]. 

24: Prior update: �� (� ),� (� ) := �� (� ),� (� ) + 1. 
�� (� ) �� (� ) +� (� )�ef ˆ

� 25: Mean update: �̂� (� ) := . 
�� (� ) +1 

26: Arm counter update: �� (� ) := �� (� ) + 1. 
27: end for 

5 EVALUATION RESULTS 
In this section, we evaluate the proposed algorithms in comparison 
with the following state-of-the-art bandit algorithms: (1) Bernoulli 

Figure 2: Experimental setup 

Thompson Sampling (BTS) [24]: we randomize the codebook re-
wards to be Bernoulli random variables such that this primitive TS 
algorithm is applicable. (2) Weighted Bernoulli Thompson Sampling 
(WBTS) [19]: a modifed version of BTS. (3) KL-UCB [15]: as the 
reward of arms are bounded by [0, 1], the classic KL-UCB can be di-
rectly applied. (4) Optimal Sampling Unimodal Bandit (OSBU) [12]: 
OSUB is developed based on KL-UCB by further adding the leader 
mechanism to exploit the structural property that the rewards are 
unimodal. (5) Unimodal Weighted Bernoulli Thompson Sampling 
(UWBTS) [35]: UWBTS is a straightforward extension of WBTS by 
using the structural property that the rewards are unimodal. 

In the following, we perform a trace-driven simulation. The simu-
lated system adopts IEEE 802.11ad Standard, with carrier frequency 
of �� = 60 GHz and with a bandwidth of � = 1.76 GHz [3, 38]. We 
incorporate the real-world channel measurements, captured at 
60 GHz and in terms of SNR, into the simulated system. 

5.1 System parameters 
In this part, we summarize the system parameters for the simulation. 
The duration of testing each beam � mer is 17 �s [3] and the duration 
per time slot �slot is set as 50 ms. We adopt the RSS-MCS table 
provided by IEEE 802.11ad Standards for single-carrier transmission 
mode [3]. Accordingly, the unnormalized rate vector r̃ is [0, 27.5, 
385, 770, 962.5, 1155, 1251.25, 1540, 1925, 2310, 2502.5, 2695, 3080, 
3850, 4620, 5005, 5390, 5775, 6390, 7507.5, 8085]T Mbps and the 
RSS vector rss is [-inf, -78, -68, -66, -65, -64, -63, -62, -61, -60, -59, 
-57, -55, -54, -53, -51, -50, -48, -46, -44, -42]T dBm. By considering 
a noise power level of -78 dBm, we could further compute the 
corresponding SNR values to get a SNR-MCS table for reference as 
our collected channel measurements are in terms of SNR. 

5.2 Real-world measurement collection 
In this part, we present our experimental setup and the collected 
real-world channel measurements. The testbed used for capturing 
the SNR measurements consists of two 12-antenna SiBEAM Sil6342 
phased arrays that up/down convert the signal to/from 60 GHz, 
and two N210 USRPs with a bandwidth of 5 MHz, as shown in 
Figure 2. By controlling the number of activated antennas �Ant and 
using phased array calibration techniques proposed by [41], we can 
generate directional beams of diferent widths. Since our antenna 
array has only 12 elements, there is no major gain in having too 
many codebooks (as their resolutions will be too close); thus, we 
generate 6 representative codebooks as shown in Figure 3. 
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Figure 3: Example beam patterns of the 6 codebooks gener-
ated by the SiBEAM Sil6342 60 GHz phased arrays. 

Figure 4: Sketch map of a spacious lab in which the mmWave 
channel measurements are taken. Diferent markers form 
diferent potential trajectories of RX. 

In our evaluation, we consider that � = 6 codebooks, given in 
Figure 3 are available at the TX, and the RX uses the fxed Codebook 

360 6. The size of codebook {�� }� 
=1 can be calculated with �� = 
� ��

by considering a 2D beam scanning. Due to the limited bandwidth 
of USRP and the overhead/challenges of implementing a real-time 
system with user mobility, we use the testbed to measure the SNRs 
along certain predefned trajectories of RX and interpolate the 
values SNR with respect to the distance between TX and RX given a 
target velocity (4 m/s). The sampled positions of the RX are shown 
in Figure 4. At each position, the SNR is measured 4 times for 
each codebook at the TX. Implementing a real-time system for 
performance evaluation would be a promising future direction but 
out of the scope of this work. For simplicity, we did not collect 
measurements for non-line-of-sight (NLOS) scenarios since we 
perform the beam sweeping with directional beams and the NLOS 
scenarios will simply result in higher path loss, which is handled 
by our developed MAB framework. 

Based on the above setting, we further compute the values of 
key parameters as follows. The efective coefcients (�1

ef , . . . ,�ef ) 
� 

is computed by � train = ����� mer and �ef = (� slot − � train )/� slot, 
� � � 

and they are (0.9235, 0.8164, 0.6634, 0.4339, 0.3727, 0.3115). To com-
pute the ground truth distribution {p� }�

� 
=1, we use the distribution 

statistics of the interpolated SNRs. We omit the exact values of 
{p� }�

� 
=1 due to the space limitation. The expected instantaneous � � 

data rate rTp1, . . . , rTp� can be calculated as (0.1397, 0.2940, 
0.4390, 0.5879, 0.6626, 0.7507). The eventual expected rewards of 
the � codebooks (�1, . . . , �� ) are (0.1290, 0.2400, 0.2912, 0.2551, 
0.2469, 0.2338). It can be verifed that the above setting satisfes 
both Assumption 2 and 3. We run the evaluation for � = 10000 
time slots and average the results by 100 realizations. 

5.3 Discussions on performance comparison 
In Figure 5a, we show the performance of the proposed WMTS 
when there is no prior knowledge of any problem structure. First, 
it can be seen that WMTS outperforms the state-of-the-art bandit 
algorithms and has a much smaller cumulative regret. Moreover, 
WMTS converges much faster than the other algorithms, this im-
plies that our proposed algorithm can provide more fexibility and 
robustness in non-stationary environments, in which the channel 
distribution is time-varying. Further, we can observe that GMTS 
also provides a competitive performance. 

In Figure 5b, we present the performance gain achieved by the 
CWMTS algorithm when the nondecreasing property (i.e. Assump-

tion 2) is known to hold. As we can see, CWMTS does not provide 
a better regret performance than WMTS until 10,000 slots, but it 
converges much faster than WMTS. 

In Figure 5c, we further show the performance of CWMTS and 
UWMTS (� = 3) given that the unimodality property (i.e. Assump-

tion 3) is known to hold. Some interesting observations can be 
drawn: (1) CWMTS outperforms OSUB (� = 3) and UWBTS when 
it uses the property that the rewards have the unimodal pattern. (2) 
It is clear that UWMTS outperforms all the other algorithms given 
the unimodality, and the performance improvement is signifcant, 
which is consistent with Remark 12. (3) All the algorithms using 
multinomial distribution converge faster than the other algorithms. 

Finally, if a random selection policy is adopted (instead of a 
learning-based policy), the average normalized throughput would 
remain at 1 Í� = 0.2327. In contrast, our online learning 

� �=1 �� 
framework can learn the optimal codebook quickly, and the nor-
malized throughput would be almost ��∗ = 0.2912, which implies a 
throughput improvement by more than 25%. 

6 RELATED WORK 
(1) Model-driven beamwidth optimization: One of the most 
related lines of work is beamwidth optimization. In [33], the authors 
initially modeled and derived the trade-of caused by beamwidth in 
a multi-user mmWave network. Similar optimizations that balance 
the beamforming gain and the beam training overhead were also 
investigated in [13, 23, 26]. However, their solutions heavily depend 
on the physical layer assumptions or prior knowledge such as 
channel model, beam pattern model, and network topology, which 
restricts their fexibility in practical deployments in MANETs where 
the channel is rapidly changing. In contrast with these prior work, 
our proposed MAB-based solutions are model-free, and thus do not 
rely on the assumption of channel or user mobility. 
(2) Data-driven codebook construction: Some recent work has 
used ofine data-driven machine learning methodologies to per-
form beam alignment and beamwidth selection simultaneously. 
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Figure 5: Regret performance based on real-world measurements: (a). No knowledge of problem structure. (b). With problem 
structure that instantaneous data rates are nondecreasing. (c). With problem structure that efective data rates are unimodal. 

In [37], a deep learning technique was exploited to learn an optimal 
set of beam pairs by considering the environment information as 
feature spaces. Similarly, in [11], a large amount of experimental 
data were gathered to build a beamforming codebook of minimum 
size and subject to a guaranteed gain. Besides, a geo-located context 
database was built in [14] to assist the beam width/directions selec-
tion. [11, 14, 37] all showed that signifcant system improvement 
was achieved over conventional beam alignment strategies. These 
ofine data-driven approaches however require a large amount of 
historical data for a given deployment site, which limits its fast 
implementation. Further, since they only focused on the success-
ful connection probability of the eventually learned codebook, the 
trade-of between beam alignment quality and data transmission ef-
fciency was not exploited therein. Finally, no theoretical guarantee 
of performance was provided. 
(3) Beam alignment (including hierarchical search): Other than 
codebook optimization, much of the prior work focuses on select-
ing the best beam from a single codebook without considering 
the efect of beam resolution, for example, [22] proposed Agile-
Link which fnds the best beam by a random hashing and voting 
mechanism. Some work exploits a priori knowledge of the chan-
nel to avoid exhausted beam search [14, 17, 28, 34, 41]. However, 
prior information would require additional sensors or statistics. 
Moreover, adaptive approaches were also investigated: ACO was 
proposed in [29] to estimate the full channel, whereas four probes 
per antenna element are required, which results in poor scalability. 
Another approach – hierarchical search – starts (in each time slot) 
from a coarse beam and progressively uses fner beams to shorten 
the training time [27, 38]. However, it has several drawbacks: lim-
ited coverage due to the initial use of wide beams [27]; zooming in 
wrong directions due to beam imperfectness and interference [22]; 
and large feedback overhead (per measurement) in asymmetric 
links where devices have to respond by directional beams due to 
power limitation [31]. In contrast, we have focused on the mmWave 
codebook selection by dynamically learning a site-specifc or device-
specifc codebook over time. Indeed, the above algorithms could 
be also incorporated into our framework by regarding diferent 
algorithms (or an algorithm with diferent parameters) as diferent 
“abstract codebooks”. 
(4) Related bandit algorithms Thompson Sampling (TS) is a 
widely used method for solving MAB problems. In [24], a regret 
bound was shown for TS with Bernoulli arms. In [19], the weighted 

binary TS was derived based on [24] to deal with the case where the 
reward of each Bernoulli arm was multiplied by a diferent constant. 
One of the most related work is [32], in which the authors provided 
the regret bound for TS with multinomial arms of the same support. 
The above algorithms, however, do not exploit structure across arms 
and satisfy asymptotic optimality for unstructured bandit problems. 
In [20], the constrained weighted binary TS was proposed to allow 
incorporating general structural properties among arms. An im-
proved performance was achieved, but an efcient implementation 
is still lacking (see also Section 4.3.1). To exploit reward unimodal-
ity, the OSUB algorithm was proposed in [12] based on KL-UCB. A 
very recent work [35] derived a theoretical guarantee for UTS with 
Bernoulli arms. Our proposed algorithms augment these prior stud-
ies. We highlight that we provide the frst theoretical guarantees 
for UTS with weighted multinomial rewards. 

7 CONCLUSIONS 
In this work, we have considered the codebook selection prob-
lem in mmWave MANETs with rapidly-varying wireless channels. 
We have modeled it as a MAB problem and have proposed novel 
TS-based algorithms with/without knowing the structures among 
codebooks. We have derived the theoretical regret upper bounds for 
the proposed algorithms. The real-world mmWave measurements 
based evaluation has validated the benefts of our algorithms. 
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