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Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree 
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Rajat Sen Kirthevasan Kandasamy Sanjay Shakkottai 
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Abstract 

We study the problem of black-box optimiza-
tion of a noisy function in the presence of 
low-cost approximations or fidelities, which is 
motivated by problems like hyper-parameter 
tuning. In hyper-parameter tuning evaluat-
ing the black-box function at a point involves 
training a learning algorithm on a large data-
set at a particular hyper-parameter and eval-
uating the validation error. Even a single 
such evaluation can be prohibitively expen-
sive. Therefore, it is beneficial to use low-
cost approximations, like training the learn-
ing algorithm on a sub-sampled version of the 
whole data-set. These low-cost approxima-
tions/fidelities can however provide a biased 
and noisy estimate of the function value. In 
this work, we combine structured state-space 
exploration through hierarchical partitioning 
with querying these partitions at multiple fi-
delities, and develop a multi-fidelity bandit 
based tree-search algorithm for noisy black-
box optimization. We derive simple regret 
guarantees for our algorithm and validate its 
performance on real and synthetic datasets. 

1 Introduction 

Several important problems in the fields of physical 
simulations [29], industrial engineering [31] and model 
selection [36] in machine learning can be cast as se-
quential optimization of a function f(.) over a do-
main X , with black-box access. A black-box opti-
mization algorithm evaluates the function at a set 
of sequentially chosen points x1, ..., xn obtaining the 
function values f(x1), ..., f(xn) in that order, and out-

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha, 
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by 
the author(s). 

puts a point x̂(n) at the end of the sequence. The 
performance of such algorithms are commonly eval-
uated in terms of simple regret defined as S(n) = 
supx∈X f(x) − f(x̂(n)). 

As the driving example, we consider the problem of 
tuning hyper-parameters of machine learning algo-
rithms over large datasets. Here, the space of hyper-
parameters constitutes the domain X , while the func-
tion f(x) represents the validation error after train-
ing the machine learning algorithm with the hyper-
parameter setting x ∈ X . Even a single evaluation of 
the function can be expensive and therefore conven-
tional methods of black-box optimizations are infeasi-
ble (e.g. training a deep network over a large data-set 
could take days). This motivates our setting where ac-
cess to lower-cost but biased estimates of the function 
is assumed [18, 12, 7] through a multi-fidelity query 
framework. In the context of hyper-parameter tun-
ing, a possible low-cost approximation/fidelity can be 
training and validating the machine learning algorithm 
over a much smaller sub-sampled version of the data-
set. However, the resulting validation error can be a 
biased and noisy estimate of the validation error on 
the whole dataset, and the bias depends on the size of 
the sub-sampled dataset used. 

A well-studied approach for such problems is through 
bayesian optimization formulations [19, 17, 13, 20]. 
In our work, instead, we approach this problem us-
ing tree-search methods that have received much re-
cent attention [22, 21, 3, 30, 39, 34]. Our study com-
bines an exploration of the state-space using hierarchi-
cal binary partitions (a binary tree, with nodes repre-
senting subsets of the function domain X [3, 30, 11]), 
and queries at these nodes at different fidelities (rep-
resented through a continuous parameter over [0, 1]), 
that correspond to lower-cost evaluations of the func-
tion, but with both bias and noise. 

The main contributions of this paper are as follows: 

(i) We model multiple fidelities in the framework of 
black-box optimization of a noisy function, with hier-
archical partitions in Section 3. We demonstrate that 
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bandit-based algorithms using hierarchical partitions 
can be naturally adapted to effectively use a continu-
ous range of low-cost approximations. 

(ii) We propose MFHOO (Algorithm 1 in Section 4) 
which is a natural adaptation of HOO [3] to the 
multi-fidelity setup. We analyze our algorithm under 
smoothness assumptions on the function and the parti-
tioning, which are similar to the assumptions adopted 
in [11]. We show that our simple regret guarantees 
can be much stronger than that of HOO [3] (which 
operates only at the highest fidelity) under some nat-
ural conditions on the bias and cost functions. Our 
simple regret guarantees are presented in Theorem 1 
and Corollary 1. MFHOO however needs the optimal 
smoothness parameters (ν∗, ρ∗) as inputs (similar to 
HOO [3], see Section 3 for details). In Section 4, we 
propose a second algorithm MFPOO (Algorithm 2) 
that can achieve a simple regret bound close to that 
of MFHOO, even without access to the parameters 
(ν∗, ρ∗). MFPOO is inspired by the recent techniques 
proposed in [11]. Theorem 2 provides simple regret 
guarantees for MFPOO. 

(ii) Finally, in Section 6 we empirically compare the 
performance of our algorithm on real and synthetic 
data, against state of the art algorithms for black-
box optimization. First, we perform simulated ex-
periments on well-known benchmark functions. Then, 
we compare our algorithm to others in the context of 
hyper-parameter tuning for regression and classifica-
tion tasks. 

2 Related Work 

This work builds on a rich literature on black-box op-
timization using hierarchical partitions [30, 39, 21, 3], 
which in turn build on optimistic algorithms in a ban-
dit setting [2]. Our work is closely related to [3] which 
introduces HOO, a tree-search based algorithm for 
noisy black-box optimization. The regret guarantees 
in [3] are provided under some local Lipschitz assump-
tion on the function with respect to a semi-metric and 
also some assumptions on the diameter of the nodes 
as a function of height in the tree. Later these as-
sumptions were combined into a single combinatorial 
assumption in [11]. We follow similar assumptions. In 
a recent related work [34], the multi-fidelity tree-search 
problem has been studied in a setting where the eval-
uations of the black-box function are not noisy. In 
contrast we study the problem of multi-fidelity black 
box optimization in the presence of noise, which makes 
the setting much more challenging. In particular in the 
deterministic setting, one can simply descend through 
the tree without back-tracking. However in our set-
ting, back-tracking in a tree occurs as time progresses 

because additional samples improves estimates at vari-
ous nodes in the tree, thus introducing bandit explore-
exploit trade-offs, and hence can change their relative 
ordering over time. This distinction leads to a consid-
erably different algorithm and analysis in our paper as 
compared to [34]. 

Multi-fidelity optimization is also relevant in several 
application [10, 25, 12, 32, 20], but theoretical guar-
antees are generally lacking in these studies. Recently, 
the multi-fidelity setting has been theoretically stud-
ied in online problems [40, 1, 33, 18]. In some recent 
works [19, 16, 17], UCB like algorithms with Bayesian 
Gaussian process assumptions on f have been analyzed 
in a multi-fidelity black-box optimization setting. 

Also relevant to this work are the bandit based tech-
niques for hyper-parameter optimization such as [28, 
14]. However, these methods rely on iterative loss se-
quences and therefore are not directly applicable to 
the general multi-fidelity setup. 

3 Problem Setting 

The problem setting in this work is that of optimiz-
ing a function f : X → R with noisy and biased 
black-box access. Given a finite cost budget Λ, and 
access to fidelity-dependent queries (with higher cost 
for higher fidelity and lower bias), we need to deter-
mine x̂ ∈ X such that | supx∈X f(x) − f(x̂)| is small. 
A similar problem setting has been considered in a re-
cent work [34], however there the function evaluations 
at different fidelities are not noisy, that is the cheap 
approximations only add bias to the function values. 
In this work, we consider a setting where a function 
evaluation at a cheaper fidelity incurs both bias and 
sub-Gaussian noise around the function value. This 
makes the problem setting different and significantly 
more challenging. 

3.1 Details about Function Evaluations 

We build on the notation in [34], but modify it to per-
mit noisy evaluations. The fidelity is modeled as a 
continuous parameter z ∈ Z , [0, 1]. An evaluation 
of a function consists of two inputs (x, z) correspond-
ing to the query point x ∈ X and fidelity z ∈ Z, and 
results in a random variable Y as the output, with 
Y = fz(x) + �. Here, � is a sub-Gaussian noise ran-
dom variable [4] with parameter σ2 i.e E[�] = 0 and 
E[exp(s�)] ≤ exp(s2σ2/2) all s ≥ 0. Such random 
variables will be denoted as subG(σ). 

In our model, the mean of the query, fz (x), is bi-
ased and progressively smaller bias can be obtained 
but with higher costs. This is formalized through 
the monotone decreasing bias function (assumed to be 
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known in our analysis1) ζ : Z → R+ and a monotone 
increasing cost function λ : Z → R+ , with λ(z) ≥ 1. 
A query at (x, z) results in an output mean with 
|fz (x) − f(x)| ≤ ζ(z) and at cost λ(z). We assume 
that at the highest fidelity (z = 1), there is no bias, 
i.e., f1(x) = f(x). Finally, we assume that the global 

∗ optimum is unique, i.e. ∃x = arg maxx∈X f(x). 

Our problem setting is a natural model for the driving 
example of hyper-parameter tuning. For instance, the 
domain X represents the range of hyper-parameters. 
In the case of deep networks this may include ker-
nel sizes and number of channels in different layers 
(rounded off to the nearest integers), learning rate of 
optimizers, dropout level and weight decay levels etc. 
While working with large datasets, training and vali-
dating on sub-sampled versions of the datasets serve 
as cheap approximations which can be modeled by our 
continuous range of fidelities Z. For instance on Ci-
far10 [23], using the whole training set with Ns > 50k 
samples corresponds to z = 1 while z = 0 can corre-
spond to using ns ∼ 1000 samples. The range [1k,50k] 
can be linearly mapped to [0, 1] (rounding off to the 
nearest interger number of samples). It is also clear 
that function evaluations obtained at the cheaper fi-
delities are both biased (validation accuracy is lower 
while using lesser number of samples) and noisy (ran-
domness in sub-sampling and SGD). This falls under 
the purview of our evaluation model. The cost func-
tion simply corresponds to the time required to train a 
model over a sub-sampled version of the data-set and 
it increases with the number of samples (fidelity). 

Putting all the pieces together, the problem setting is 
a sequential process as follows: Given a cost budget 
Λ at each time-slot t = 1, 2, .., (i) Select a point Xt 

and evaluate it at a fidelity Zt, (ii) Observe a noisy 
feedback Yt, (iii) Incur a cost λ(Zt). This process in 
continued till the cost budget is exhausted. The goal 
is to find a point x ∈ X such that f(x) is as close 

∗ as possible to f∗ , f(x ∗). We assume that x is a 
unique point in X where the supremum is achieved. 
The performance of a policy/optimization algorithm 
shall be characterized by simple regret. 

3.2 Definition of Regret 

Let X1, X2, .... be the points queried by an algo-
rithm/policy at fidelities Z1, Z2, ... respectively. Let 
X̂Λ be the point returned by the policy after N(Λ) 
queries, where N(Λ) is a random quantity such that Pn 
N(Λ) = max{n ≥ 1 : λ(Zi) ≤ Λ} and Λ is the i=1 

1Note that the knowledge of the bias function is only 
required for our theoretical analysis, similar to prior 
works [19, 16]. In practice, we can assume a simple para-
metric form of the bias function which can be updated 
online. We provide more details in Section 6. 

total cost budget. Then the simple regret is given by 
S(Λ) = f∗ − E[f( X̂Λ)]. Here, the expectation is over 
the randomness in the observations and the policy. 
Note that the regret is measured only at the highest 
fidelity that is z = 1, as we are interested in optimiz-
ing the original function at z = 1. A similar definition 
of regret has been used before in the multi-fidelity lit-
erature [18, 19]. In the course of our analysis, we are 
also interested in the cumulative regret as an interme-
diate quantity. Given that a policy performs n eval-
uations or queries, the cumulative regret is given by Pn 
Rn = E [ [f∗ − f(Xt)]] . t=1

The problem of black-box optimization cannot be 
solved efficiently without assuming any structure or 
regularity assumptions on the function being evalu-
ated. In the next sub-section, we assume access to a 
hierarchical partitioning of the domain X and impose 
some regularity assumption jointly on the function and 
the hierarchical partitions. Similar assumptions have 
been used in the theoretical analysis of several prior 
works [30, 11, 3, 21], that work with hierarchical par-
titioning of the domain. 

3.3 Tree-like Partitions and Structural 
Assumptions 

We first define the tree-like hierarchical partitions of 
the domain X and then provide some technical as-
sumptions that impose regularity conditions jointly on 
the function and the partitions. 

Hierarchical Partitions: We assume that the do-
main X is partitioned hierarchically according to an 
infinite binary tree. We denote this partitioning as 
P = {(h, i)}, where h is a depth parameter and i is an 
index. For any depth h ≥ 0, the cells {(h, i)}1≤i≤Ih 

denote a partitioning of the space X . Note that we 
use the notation (h, i) to denote both the index of a 
cell/node and the part of the domain it represents. For 
example, x ∈ (h, i) refers to a point x within the part 
of the domain represented by the cell indexed at (h, i). 
At depth 0 there is a single cell (0, 1) = X . A cell 
(h, i) can be split into two child nodes at depth h + 1, 
which are indexed as (h + 1, 2i − 1) and (h + 1, 2i). A 
cell (h, i) is said to be queried, when a fixed represen-
tative point xh,i ∈ (h, i) (ideally centrally located) is 
evaluated at any fidelity. Let C(h, i) denote all the 
descendant cells of (h, i) in the infinite tree. The 

∗ unique cell at height h that contains the optima x 
is indexed as (h, i∗). For all sub-optimal cells (h, i) 
(those that do not contain x ∗) the sub-optimality gap 
is denoted by Δh,i = f∗ − supx∈(h,i) f(x). In other 
words, a sub-optimal cell (h, i) is Δh,i-optimal. Let 
X� = {x ∈ X : f(x) ≥ f∗ − �} for all � > 0. 

For instance, consider the domain X = [0, 1] × [0, 1] ⊂ 
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R2 . In this example, we only consider cells that inter-
vals C = {x , [x1, x2] ∈ X : b1,l < x1 ≤ b1,u, b2,l < 
x2 ≤ b2,u} , [[b1,l, b1,u], [b2,l, b2,u]]. In this case, the hi-
erarchical partitioning has a root (0, 1) = [[0, 1], [0, 1]] 
(the entire domain). At h = 1, the two children of the 
root resulting form a split along x1 would be (1, 1) = 
[[0, 0.5], [0, 1]] and (1, 2) = [[0.5, 1], [0, 1]]. The cell 
(1, 1) can be split into two children along the x2 coor-
dinate to result in [[0.5, 1], [0, 0.5]] and [[0.5, 1], [0.5, 1]], 
with the coordinate-wise midpoint of the cell used as 
the representative point xh,i. In our example, x1,1 can 
be chosen as the point [0.25, 0.5]. 

We impose the following joint assumptions on the hi-
erarchical partition P and the black-box function f , 
similar to the recent works [11, 34]. 

Assumption 1. There exists ν and ρ ∈ (0, 1) such 
that for all cells (h, i) such that Δh,i ≤ cνρh (for a 
constant c ≥ 0) we have that, f(x) ≥ f∗ − max{2c, c + 
1}νρh , for all x ∈ (h, i). 

Finally, the following definition of near-optimality-
dimension with parameters (ν, ρ) is borrowed 
from [11]. 

Definition 1. The near-optimality dimension of f 
with respect to parameters (ν, ρ) is given by, � 

d(ν, ρ) , inf d0 ∈ R+ : ∃C(ν, ρ), ∀h ≥ 0, o 
h Nh(2νρ

h) ≤ C(ν, ρ)ρ−d0 (1) 

where Nh(�) is the number of cells (h, i) such that 
supx∈(h,i) f(x) ≥ f(x ∗) − �. 

We denote the parameters associated with the mini-
mum near optimality dimension d(ν, ρ) to be (ν∗, ρ∗). 
The optimal near-optimality dimension d(ν∗, ρ∗) con-
trols the hardness of optimizing the function, given 
access to the particular hierarchical partition. 

Our assumptions are closely related to the ones in the 
seminal paper [3]. Bubeck et al. [3] consider a similar 
noisy tree-search based black-box optimization prob-
lem. In their work, it was assumed that there is a 
dissimilarity metric `(x, y) over the domain and the 
function satisfies a weak-Lipschitz condition around 
the optima with respect to the dissimilarity. These 
assumptions have been progressively refined [30, 39], 
with [11] providing a succinct assumption using the 
framework of hierarchical partitions. As in [34], we 
adopt this assumption in our paper. Assumption 1 is 
a slightly stronger version of Assumption 1 in [11] i.e., 
in [11] it has been assumed that Assumption 1 is satis-
fied with only c = 0. It has been recently observed [35] 
that it is highly non-trivial to prove the regret guar-
antees of HOO [3] under the assumptions in [11] and 
this stronger version may be indeed necessary. As-

sumption 1 is akin to ensuring that the conditions of 
Lemma 3 in [3] are satisfied. 

4 Algorithms 

We first propose MFHOO (Multi-Fidelity Hierarchical 
Optimistic Optimization) which is a noisy tree-search 
based multi-fidelity black-box optimization policy that 
requires the optimal smoothness parameters as input. 
Then we propose another algorithm MFPOO (Multi-
Fidelity Parallel Optimistic Optimization) that can re-
cover regret guarantees similar to that of MFHOO 
without the exact knowledge of smoothness parame-
ters. 

When (ν∗, ρ∗) are known: Our first algorithm 
MFHOO is inspired by the HOO strategy in [3]. We 
essentially show that the tree-search based technique 
in [3] can be naturally adapted to a multi-fidelity set-
ting, with some modifications. In certain settings, our 
algorithm can achieve a much stronger simple regret 
scaling when compared to HOO which queries only at 
fidelity z = 1. The detailed pseudo-code of the algo-
rithm is provided as Algorithm 1. We first establish 
some notation specific to our algorithm. 

For any black-box optimization policy, let Xt be the 
random variable denoting the point queried at time 
t which is part of the cell (Ht, It), while Zt is the 
fidelity at which the query is made. Let Yt be the 
observation at the corresponding time-step such that 
Yt = fZt (Xt) + �t, where �t ∼ subG(σ). Let Th,i(t) be 
the number of times nodes in C(h, i) have been queried 
i.e, Th,i(t) = 

Pt 
1{(Hs, Is) ∈ C(h, i)}. Let Tt de-s=1 

note the finite subtree visited by the algorithm at the 
end of round t. The tree is initialized at T0 = {(0, 1)}. 
Now we are at a position to introduce Algorithm 1. 

The notable difference from HOO [3] is that all queries 
at height h are performed at a fidelity zh such that 
ζ(zh) = νρh . The intuition is that in ’near optimal’ 
cells at height h, the function values of all points in-
side a cell are at most O(νρh) apart from each other. 

∗ Therefore, if x belongs to a cell (h, i∗) at height h, 
then all points in that cell are O(νρh) optimal. Thus 
in the absence of noise, ideally beyond this point we 
would only like to expand nodes/cells that are at least 
O(νρh) optimal, which is only possible if the error due 
to the fidelities is O(νρh). 

Remark 1. Note that in the pseudo-code of Algo-
rithm 1, the final point returned is randomly cho-
sen from the points evaluated in the course of the 
algorithm. This is sufficient in theoretically bound-
ing the simple regret as in Theorem 1. However, in 
practice several optimizations can be performed to re-
turn the most promising point among the ones evalu-
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Algorithm 1 MFHOO: Multi-Fidelity Hierarchical 
Optimistic Optimization 

1: Inputs - Cost Budget: Λ, Sub-Gaussian Parameter: 
σ, Partitioning Structure: (h, i), Bias function: ζ(.), 
Cost function: λ(.), Smoothness Parameters: (ν, ρ). 

2: Initialization - T = {(0, 1)}, B1,2 = B2,2 = ∞, C = 0 
and n = 0. 

3: while C ≤ Λ do 
4: (h, i) ← (0, 1). 
5: P ← {(h, i)}. 
6: while (h, i) ∈ T do 
7: Update (h, i) to (h +1, 2i − 1) if Bh,2i−1 > Bh,2i 

or to (h + 1, 2i) if Bh,2i−1 < Bh,2i. 
8: Ties are broken at random. P ← P ∪ {(h, i)}. 
9: end while 
10: (H, I) ← (h, i). Query xH,I at fidelity zH and re-

ceive value Y . T ← T ∪ {(H, I)}. 
11: Let n = n + 1 and let xn , xH,I . Update C = 

C + λ(zh). 
12: for all (h, i) ∈ P do 
13: Th,i ← Th,i + 1 
14: µ̂h,i ← (1 − 1/Th,i)µ̂h,i + Y/Th,i. 
15: end for 
16: for all (h, i) ∈ P do p
17: Uh,i ← µ̂h,i + 2σ2 log n/Th,i + νρh + ζ(zh). 
18: end for 
19: BH+1,2I−1 = BH+1,2I = ∞ 
20: Starting from the leaves down to the root maintain: 

Bh,i ← min{Uh,i, max{Bh+1,2i−1, Bh+1,2i}}. 
21: end while 
22: Return a point among x1, x2..., xn chosen uniformly at 

random. 

ated. In our implementation we return a point x̂Λ ∈ 
{x1, ...., xn} such that x̂Λ = arg max fzi (xi) − ζ(zi)+ xi 

�i. Note that fzi (xi) − ζ(zi) is a lower bound on the 
value f(xi). We return a point that approximately 
maximizes this lower-bound. 

When (ν∗, ρ∗) are not known: Grill. et al. [11] 
have recently developed a technique for searching for 
the optimal smoothness parameters for HOO [3]. The 
technique can be extended to our algorithm MFHOO 
in the multi-fidelity setup. This leads us to our second 
algorithm MFPOO (Algorithm 2). 

Algorithm 2 MFPOO: Multi-Fidelity Parallel Opti-
mistic Optimization 

1: Arguments: (νmax, ρmax), ζ(z), λ(z), Λ, σ 
2: Let N = (1/2)Dmax log(Λ/ log(Λ)) where Dmax = 
log 2/ log(1/ρmax) 

3: for i = 1 to N do 
4: Spawn MFHOO with parameters (νmax, ρi = 

N/(N−i−1) 
ρmax ) with budget (Λ − Nλ(1))/N 

5: end for 
6: Let x̂Λ,i be the point returned by the ith MFHOO 
instance for i ∈ {0, .., N − 1}. Evaluate all {x̂Λ,i}i 

at z = 1. Return the point x̂Λ = x̂Λ,i∗ where i ∗ = 
arg maxi f(xΛ,i) + �i. 

The key idea of the algorithm is to spawn several 
MFHOO instances with different smoothness param-
eters ρ1, ..., ρN . The sequence ρ1, ..., ρN is chosen 
carefully according to the strategy introduced in [11]. 
The budget is uniformly allocated in between all the 
MFHOO instances spawned. The i-th MFHOO in-
stance is spawned with the parameters (νmax, ρi = 
N/(N−i−1) 

ρmax ). It is only required that ρmax ≥ ρ∗ and 
νmax ≥ ν∗ . In Theorem 2 we show that at least one 
of the MFHOO instances spawned by MFPOO has a 
simple regret guarantee of MFHOO run at the optimal 
parameters (ν∗, ρ∗) but with a budget (Λ−Nλ(1))/N . 
We provide more details and intution about this algo-
rithm in Appendix A. 

5 Theoretical Results 

In this section we provide our main theoretical results: 
Simple regret bounds for MFHOO (Algorithm 1) and 
MFPOO (Algorithm 2). First we present Theorem 1, 
which provides a simple regret bound for Algorithm 1. 

Theorem 1. If Algorithm 1 is run with parameters 
(ν, ρ) that satisfy Assumption 1 and given a total cost 
budget Λ, then the simple regret is bounded as follows, � 

1 1 − 
d(ν,ρ)+2 × S(Λ) = O C(ν, ρ) d(ν,ρ)+2 n(Λ)� 

(log n(Λ))1/(d(ν,ρ)+2) , Pn 
where n(Λ) = max{n : λ(zh) ≤ Λ}. Here, zh = h=1 
ζ−1(νρh). 

Comparison with HOO [3]: The sim-
ple regret bound that is attained by 
HOO [3] (operating at the highest fidelity) 
given the same cost budget Λ is S0(Λ) = 
O((Λ/λ(1))−1/(d(ν,ρ)+2)(log(Λ/λ(1)))1/(d(ν,ρ)+2)). 
It is easy to verify that S(Λ) < S0(Λ), as λ(zh) ≤ λ(1) 
for all zh. In many real-world situations like hyper-
parameter tuning the regret of MFHOO can be much 
less as compared to HOO operating at the highest 
fidelity. In fact the real gain in MFHOO is observed 
in situations where evaluating at the highest fidelity is 
extremely expensive and Λ is of the order of λ(1). We 
will now provide a corollary that highlights this, which 
is motivated by the following illustrative example. 
The setting below and analogous corollaries for the 
noiseless case is available in [34]. 

Illustrative Example: Let us consider our hyper-
parameter tuning example again, however let us use 
the fidelity range to model the number of iterations 
of an iterative learning algorithm. For concreteness, 
we will assume that the learning iterations are gradi-
ent descent steps on a smooth strongly convex objec-
tive. Let z = 1 represent training to completion which 
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might take N iterations or descent steps. Cheaper fi-
delities correspond to training for fewer iterations and 
validating, for instance zn < 1 corresponds to train-
ing till n < N iterations and is O(n/N). The cost 
is linearly proportional to the fidelity, while the error 
of gradient descent at fidelity zn is O(rn) for some 
r ∈ (0, 1). Thus, if ζ(zn) scales as ν∗ρh 

∗ , then n scales 
as O(h0). It then follows that λ(zn) = O(h). It should 
also be noted that in the context of optimizing deep 
networks, where training till completion can take many 
hours, the total cost budget Λ is usually a small mul-
tiple of λ(1) (evaluation cost at the highest fidelity). 
This motivates the following condition and the corol-
lary that follows. 

∗ Condition 1. ζ(.) and λ(.) are such that λ(z ) ≤ h
∗ min{βh, λ(1)} for some constant β > 0. Here, z = h 

ζ−1(ν∗ρ
h 
∗ ). Further, we assume that Λ ≤ λ(1)1+� for 

some � ∈ (0, 1). Here, β is a universal constant which 
is much less than λ(1). 

Under Condition 1, we get the following corollary of 
Theorem 1. 

Corollary 1. If Algorithm 1 is run with parameters 
(ν, ρ) that satisfy Assumption 1 such that ν > ν∗ and 
ρ > ρ∗ with a total cost budget Λ, then the simple 
regret is bounded under Condition 1 as, 

� 
1 1 − 

d(ν,ρ)+2 ng
d(ν,ρ)+2 × S(Λ) = O C(ν, ρ) (Λ)� 

(log ng (Λ))
1/(d(ν,ρ)+2) , 

p
where ng(Λ) ≥ 2(Λ − λ(1))/β. 

Thus, Corollary 1 implies that under Condition 1 
the simple regret of MFHOO scales as S(Λ) = √ 

Λ)1/(d(ν,ρ)+2)). O((log Λ/ On the other hand, 
HOO [3] would only be able to evaluate Λ/λ(1) 
points. Thus, the simple regret of HOO would scale �� � �1/(d(ν,ρ)+2) 
as S0(Λ) = O log Λ/Λ�/(1+�) , as Λ ≤ 

λ(1)1+� . Thus, in this setting S(Λ) can be order-wise 
less than S(Λ0), as � < 1. 

Our next result in Theorem 2 shows that at least one 
of the MFHOO instances spawned by Algorithm 2 has 
a simple regret close to that of an MFHOO run with 
the parameters (ν∗, ρ∗). Thus, MFPOO (Algorithm 2) 
can recover the performance of MFHOO run with the 
optimal parameters when supplied with just an upper 
bound on ν∗ and ρ∗ respectively. 

Theorem 2. If Algorithm 2 is run with parameters 
(νmax(≥ ν∗), ρmax(≥ ρ∗)) and given a total cost bud-
get Λ, then the simple regret of at least one of the 
MFHOO instances spawned by Algorithm 2 is bounded 

as follows, � 
1 

S(Λ) = O (νmax/ν ∗ )Dmax C(ν ∗ , ρ ∗ ) d(ν∗,ρ∗)+2 × 
1 ! � � 

2+d(ν∗,ρ∗) log n(Λ/ log Λ) 
. (2) 

n(Λ/ log Λ) 

The simple regret bound in Theorem 2 should be com-
pared to that of Theorem 1 when Algorithm 1 is run 
with the best parameters (ν∗, ρ∗). The expression is 
Theorem 2 is order-wise same as the simple regret 
achieved by MFHOO run at the optimal parameters 
(ν∗, ρ∗) but with a budget of Λ/ log Λ. This is a minor 
loss in terms of simple regret and is achieved with-
out exact knowledge of the optimal parameters. For 
instance, under Condition 1, the simple regret of MF-
POO is only a factor of O((log Λ)1/(2+d(ν ∗ ,ρ ∗ ))) away 
from that of MFHOO run with parameters (ν∗, ρ∗). 
Note that there are differences between the style of 
results in [11] and Theorem 2 ( more details in Ap-
pendix A). 

6 Empirical Results 

In this section we empirically validate the performance 
of our algorithms as compared to other benchmark 
algorithms for the multi-fidelity black-box optimiza-
tion setting on real and synthetic data-sets. We first 
compare the algorithms on popular synthetic bench-
mark functions commonly used in the black-box opti-
mization literature. We also empirically validate the 
performance of MFPOO against other algorithms for 
real-world use cases of hyper-parameter tuning. The 
algorithms under contention are: (i) BOCA [19] which 
is a multi-fidelity Gaussian Process (GP) based al-
gorithm that can handle continuous fidelity spaces, 
(ii) MF-GP-UCB [18] which is a GP based multi-
fidelity method that can handle finite fidelities, (iii) 
GP-EI criterion in bayesian optimization [15], (iv) MF-
SKO, the multi-fidelity sequential kriging optimisation 
method [13], (v) GP-UCB [38] and (vi) MFPOO (Al-
gorithm 2) and (vii) POO [11]. 

In our implementation of MFPOO, we do not as-
sume access to a known bias function. In all our ex-
periments it is assumed that the bias function has 
a parametric form ζ(z) = c(1 − z). The param-
eter c can be initialized and then updated online 
owing to the fact that different MFHOO instances 
spawned by MFPOO query the same node at differ-
ent fidelities. In all our experiments we set ρmax = 
0.95. We provide more implementation details in 
Appendix D.1, in the interest of space. All experi-
ments were performed on a 32-core Intel(R) Xeon(R) 
@ 2.60GHz machine, with a Nvidia 1080 Ti GPU. 
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Figure 1: The common legend for all the plots is presented in Fig. 1f, in the interest of space and clarity. Figures (a) to (d) consists of 
experiments on multi-fidelity versions of synthetic functions. The experiments are averaged over 10 runs and the corresponding confidence 
bars are plotted. Figure (e) shows the 5-fold cross-validation accuracy achieved vs. wall-clock time, for tuning XGB on the MNIST data-set. 
GP-UCB is omitted in this figure due to poor performance. Figure (f ) shows the 5-fold cross-validation R-square achieved vs. wall-clock 
time, for tuning XGB on the Solar-Radiation regression data-set. BOCA is omitted in this figure due to poor performance. Figure (g) shows 
the performance of the algorithms for tuning SVM on the 20-News Group dataset. Figure (h) shows the comparison of various algorithms for 
tuning the hyper-parameters of a ConvNet on the Cifar-10 data-set. The code base provided for BOCA and MF-GP-UCB failed to converge 
for this data-set. All the experiments are averaged over 5 runs. 

An implementation of our algorithm can be found at 
https://github.com/rajatsen91/MFTreeSearchCV.git. 

Synthetic Experiments: We now provide empir-
ical results on commonly used synthetic benchmark 
functions. The multi-fidelity setup is introduced into 
the benchmark functions following the methodology 
in [19]. The exact details of the functions at differ-
ent fidelities are provided in Appendix D.2. Note that 
the bias function is not assumed to be known how-
ever the cost function is known. We add Gaussian 
noise in the function evaluations at different variances 
σ2 as specified in Appendix D.2. The performance of 
the algorithms on 4 different benchmark functions are 

shown in Fig. 1 (a) - (d). The functions used are Hart-
mann3, Hartmann6, Branin [8] and CurinExp [6]. At 
the top of each sub-figure, we mention the function 
name and the dimension of the domain (d). We can 
observe that the tree search based methods (MFPOO 
and POO) outperform the other benchmarks. Among 
the two, MFPOO performs better that POO, because 
it can effectively use multiple fidelities. 

XGB on MNIST: As our second experiment, 
we consider the task of tuning XGBOOST [5] on 
the MNIST data-set [27]. We consider a a sub-
set consisting of 20000 images. The black-box func-
tion being evaluated is the 5-Fold cross-validation 

https://github.com/rajatsen91/MFTreeSearchCV.git
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accuracy at the the highest fidelity z = 1, which 
refers to using the whole data-set. The fidelity range 
Z = [0, 1] is mapped to [500, 20000], that is using 
a fidelity z ∈ [0, 1] implies using a randomly sub-
sampled data-set consisting of bz ∗(15000)+500c sam-
ples in order to measure the cross-validation error. 
The hyper-parameters being tuned and the respec-
tive ranges are: max depth: [2,13], colsample bytree: 
[0.2,0.9], n estimators: [10,400], gamma: [0,0.7], learn-
ing rate: [0.05,0.3]. We plot the cross-validation accu-
racy achieved by different methods as a function of 
time in Fig. 1e. MFPOO outperforms the other algo-
rithms in terms of validation accuracy achieved. GP-
EI is also promising on this data-set. The final cross-
validation accuracy achieved by MFPOO and GP-EI 
are 0.9611 and 0.9597 respectively. Note that in this 
experiment a single experiment at the highest fidelity 
takes approximately 200 seconds. The results are av-
eraged over 5 experiments. σ in our algorithm is set 
to 0.05. 

XGB on Solar Data: We test the algorithms 
on a regression problem that involved predicting the 
level of solar radiation given several weather indica-
tors [37]. The data-set has 32684 samples. The fi-
delities are mapped to the range [700, 32684] similar 
to the MNIST example above. The hyper-parameters 
and their ranges are also identical to the experiment 
above. The function value at the highest fidelity is the 
5-Fold cross-validation R-square on the whole data-
set. The performances of the algorithms are plotted 
in Fig. 1f. It can be observed that MFPOO outper-
forms the other algorithms especially in the lower-time 
horizons. Note that a single experiment at the high-
est fidelity for this data-set takes 2 seconds. All ex-
periments were performed on the same machine. The 
results are averaged over 5 experiments. More details 
are in Appendix D.1. 

SVM on 20 News Group: In Fig. 1g, we test the al-
gorithms for tuning hyper-parameters of scikit-learn’s 
SVM classifier module on the News Group dataset [26]. 
The hyper-parameters to being tuned are: (i) the reg-
ularization penalty in the range [1e-5,1e5] (accessed in 
the log. scale), (ii) the kernel temperature (γ) also 
in the range [1e-5,1e5] and (iii) kernel type between 
{’rbf’,’poly’}. We use a subset of 7000 samples for 
training i.e z = 1 corresponds to using all 7000 samples 
and z = 0 corresponds to a randomly chosen subset of 
size 100. The black-box function corresponds to the 
5-fold cross-validation accuracy at the chosen fidelity. 
We can observe that MFPOO outperforms the other 
algorithms especially in lower budget settings. One 
evaluation at the highest fidelity takes 40. 

ConvNet on Cifar-10: In Fig. 1h, we employ the 
algorithms for tuning the hyper-parameters of a deep 

convolutional network for classifying the cifar-10 [23] 
dataset. As the training set we use a subset of 50k 
samples from the original training data. The black-
box function is the accuracy on a fixed validation set 
(randomly chosen half of the official test set) after 30-
epochs. Note that we want to test the relative accuracy 
obtained by each of the tuning algorithms and there-
fore in the interest of time we set maximum number 
of epochs to be 30, even though higher accuracy can 
be obtained by training for more epochs. We use the 
AlexNet [24] architecture. The hyper-parameters be-
ing tuned are: (i) number of output channels in first 
conv. layer in the range [32,128], (ii) kernel size in 
first layer in [5,14], (iii) number of output channels 
in second layer in [128,256], (iv) kernel size in second 
layer in [3,13], (v) learning rate of Adam optimizer in 
[1e-5,1e-2] accessed in log-scale and (vi) dropout prob-
ability in the last layer in the range [0,0.4]. The fidelity 
is the number of samples used for training where z = 0 
corresponding to 1000 randomly chosen training sam-
ples while z = 1 means using 50k samples for training. 
It takes about 600 seconds for one evaluation at z = 1. 
We can see that both the tree based methods clearly 
outperform the other algorithms in this experiment. 
Note that POO does not work for a budget of 1000 
seconds but MFPOO does. 

7 Conclusion 

We study noisy black-box optimization using tree-like 
hierarchical partitions of the parameter space, when 
low-cost approximations are available. We propose 
two algorithms, MFHOO (Algorithm 1) and MFPOO 
(Algorithm 2) for this problem and provide simple re-
gret guarantees for both our algorithms. Our algo-
rithms are empirically validated against various bench-
marks showing superior performance in both simula-
tions and in real world hyper-parameter tuning exam-
ples over a wide range of datasets and learning algo-
rithms. We believe that this paper opens up several 
interesting research problems, for instance developing 
more adaptive algorithms that query different areas 
of the domain at different fidelities even at the same 
height of the tree. We also believe that a more nu-
anced analysis of the algorithm is possible leading to 
better simple regret guarantees. 
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