

Technical Report 157

Project Title:

Sensing and Communications in V2V
and V2I Settings

Research Supervisor: Sanjay Shakkottai
Center for Transportation Research

August 2020

Data-Supported Transportation Operations & Planning Center
(D-STOP)

A Tier 1 USDOT University Transportation Center at The University of Texas at Austin

D-STOP is a collaborative initiative by researchers at the Center for Transportation
Research and the Wireless Networking and Communications Group at The University of
Texas at Austin.

Technical Report Documentation Page
1. Report No.
D-STOP/2020/159

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle
Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree
Search Approach

5. Report Date
August 2020
6. Performing Organization Code

7. Author(s)
Rajat Sen, Kirthevasan Kandasamy, and Sanjay Shakkottai

8. Performing Organization Report No.
Report 159

9. Performing Organization Name and Address
Data-Supported Transportation Operations & Planning Center (D-
STOP)
The University of Texas at Austin
3925 W. Braker Lane, 4th Floor
Austin, TX 78759

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
DTRT13-G-UTC58

12. Sponsoring Agency Name and Address
United States Department of Transportation
University Transportation Centers
1200 New Jersey Avenue, SE
Washington, DC 20590

13. Type of Report and Period Covered

14. Sponsoring Agency Code

15. Supplementary Notes
Supported by a grant from the U.S. Department of Transportation, University Transportation Centers
Program.
16. Abstract
We study the problem of black-box optimization of a noisy function in the presence of low-cost
approximations or delities, which is motivated by problems like hyper-parameter tuning. In hyper-
parameter tuning evaluating the black-box function at a point involves training a learning algorithm on a
large dataset at a particular hyper-parameter and evaluating the validation error. Even a single such
evaluation can be prohibitively expensive. Therefore, it is benecial to use lowcost approximations, like
training the learning algorithm on a sub-sampled version of the whole data-set. These low-cost
approximations/ delities can however provide a biased and noisy estimate of the function value. In this
work, we combine structured state-space exploration through hierarchical partitioning with querying
these partitions at multiple - delities, and develop a multi-delity bandit based tree-search algorithm for
noisy blackbox optimization. We derive simple regret guarantees for our algorithm and validate its
performance on real and synthetic datasets.
17. Key Words 18. Distribution Statement

No restrictions. This document is available to the public
through NTIS (http://www.ntis.gov):
National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

19. Security Classif.(of this report)
Unclassified

20. Security Classif.(of this page)
Unclassified

21. No. of Pages 22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the
facts and the accuracy of the information presented herein. This document is
disseminated under the sponsorship of the U.S. Department of Transportation’s
University Transportation Centers Program, in the interest of information exchange. The
U.S. Government assumes no liability for the contents or use thereof.
Mention of trade names or commercial products does not constitute endorsement or
recommendation for use.

Acknowledgements

The authors recognize that support for this research was provided by a grant from the
U.S. Department of Transportation, University Transportation Centers.

Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree
Search Approach

Rajat Sen Kirthevasan Kandasamy Sanjay Shakkottai
University of Texas at Austin Carnegie Mellon University University of Texas at Austin

Abstract

We study the problem of black-box optimiza-
tion of a noisy function in the presence of
low-cost approximations or fidelities, which is
motivated by problems like hyper-parameter
tuning. In hyper-parameter tuning evaluat-
ing the black-box function at a point involves
training a learning algorithm on a large data-
set at a particular hyper-parameter and eval-
uating the validation error. Even a single
such evaluation can be prohibitively expen-
sive. Therefore, it is beneficial to use low-
cost approximations, like training the learn-
ing algorithm on a sub-sampled version of the
whole data-set. These low-cost approxima-
tions/fidelities can however provide a biased
and noisy estimate of the function value. In
this work, we combine structured state-space
exploration through hierarchical partitioning
with querying these partitions at multiple fi-
delities, and develop a multi-fidelity bandit
based tree-search algorithm for noisy black-
box optimization. We derive simple regret
guarantees for our algorithm and validate its
performance on real and synthetic datasets.

1 Introduction

Several important problems in the fields of physical
simulations [29], industrial engineering [31] and model
selection [36] in machine learning can be cast as se-
quential optimization of a function f(.) over a do-
main X , with black-box access. A black-box opti-
mization algorithm evaluates the function at a set
of sequentially chosen points x1, ..., xn obtaining the
function values f(x1), ..., f(xn) in that order, and out-

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

puts a point x̂(n) at the end of the sequence. The
performance of such algorithms are commonly eval-
uated in terms of simple regret defined as S(n) =
supx∈X f(x) − f(x̂(n)).

As the driving example, we consider the problem of
tuning hyper-parameters of machine learning algo-
rithms over large datasets. Here, the space of hyper-
parameters constitutes the domain X , while the func-
tion f(x) represents the validation error after train-
ing the machine learning algorithm with the hyper-
parameter setting x ∈ X . Even a single evaluation of
the function can be expensive and therefore conven-
tional methods of black-box optimizations are infeasi-
ble (e.g. training a deep network over a large data-set
could take days). This motivates our setting where ac-
cess to lower-cost but biased estimates of the function
is assumed [18, 12, 7] through a multi-fidelity query
framework. In the context of hyper-parameter tun-
ing, a possible low-cost approximation/fidelity can be
training and validating the machine learning algorithm
over a much smaller sub-sampled version of the data-
set. However, the resulting validation error can be a
biased and noisy estimate of the validation error on
the whole dataset, and the bias depends on the size of
the sub-sampled dataset used.

A well-studied approach for such problems is through
bayesian optimization formulations [19, 17, 13, 20].
In our work, instead, we approach this problem us-
ing tree-search methods that have received much re-
cent attention [22, 21, 3, 30, 39, 34]. Our study com-
bines an exploration of the state-space using hierarchi-
cal binary partitions (a binary tree, with nodes repre-
senting subsets of the function domain X [3, 30, 11]),
and queries at these nodes at different fidelities (rep-
resented through a continuous parameter over [0, 1]),
that correspond to lower-cost evaluations of the func-
tion, but with both bias and noise.

The main contributions of this paper are as follows:

(i) We model multiple fidelities in the framework of
black-box optimization of a noisy function, with hier-
archical partitions in Section 3. We demonstrate that

Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach

bandit-based algorithms using hierarchical partitions
can be naturally adapted to effectively use a continu-
ous range of low-cost approximations.

(ii) We propose MFHOO (Algorithm 1 in Section 4)
which is a natural adaptation of HOO [3] to the
multi-fidelity setup. We analyze our algorithm under
smoothness assumptions on the function and the parti-
tioning, which are similar to the assumptions adopted
in [11]. We show that our simple regret guarantees
can be much stronger than that of HOO [3] (which
operates only at the highest fidelity) under some nat-
ural conditions on the bias and cost functions. Our
simple regret guarantees are presented in Theorem 1
and Corollary 1. MFHOO however needs the optimal
smoothness parameters (ν∗, ρ∗) as inputs (similar to
HOO [3], see Section 3 for details). In Section 4, we
propose a second algorithm MFPOO (Algorithm 2)
that can achieve a simple regret bound close to that
of MFHOO, even without access to the parameters
(ν∗, ρ∗). MFPOO is inspired by the recent techniques
proposed in [11]. Theorem 2 provides simple regret
guarantees for MFPOO.

(ii) Finally, in Section 6 we empirically compare the
performance of our algorithm on real and synthetic
data, against state of the art algorithms for black-
box optimization. First, we perform simulated ex-
periments on well-known benchmark functions. Then,
we compare our algorithm to others in the context of
hyper-parameter tuning for regression and classifica-
tion tasks.

2 Related Work

This work builds on a rich literature on black-box op-
timization using hierarchical partitions [30, 39, 21, 3],
which in turn build on optimistic algorithms in a ban-
dit setting [2]. Our work is closely related to [3] which
introduces HOO, a tree-search based algorithm for
noisy black-box optimization. The regret guarantees
in [3] are provided under some local Lipschitz assump-
tion on the function with respect to a semi-metric and
also some assumptions on the diameter of the nodes
as a function of height in the tree. Later these as-
sumptions were combined into a single combinatorial
assumption in [11]. We follow similar assumptions. In
a recent related work [34], the multi-fidelity tree-search
problem has been studied in a setting where the eval-
uations of the black-box function are not noisy. In
contrast we study the problem of multi-fidelity black
box optimization in the presence of noise, which makes
the setting much more challenging. In particular in the
deterministic setting, one can simply descend through
the tree without back-tracking. However in our set-
ting, back-tracking in a tree occurs as time progresses

because additional samples improves estimates at vari-
ous nodes in the tree, thus introducing bandit explore-
exploit trade-offs, and hence can change their relative
ordering over time. This distinction leads to a consid-
erably different algorithm and analysis in our paper as
compared to [34].

Multi-fidelity optimization is also relevant in several
application [10, 25, 12, 32, 20], but theoretical guar-
antees are generally lacking in these studies. Recently,
the multi-fidelity setting has been theoretically stud-
ied in online problems [40, 1, 33, 18]. In some recent
works [19, 16, 17], UCB like algorithms with Bayesian
Gaussian process assumptions on f have been analyzed
in a multi-fidelity black-box optimization setting.

Also relevant to this work are the bandit based tech-
niques for hyper-parameter optimization such as [28,
14]. However, these methods rely on iterative loss se-
quences and therefore are not directly applicable to
the general multi-fidelity setup.

3 Problem Setting

The problem setting in this work is that of optimiz-
ing a function f : X → R with noisy and biased
black-box access. Given a finite cost budget Λ, and
access to fidelity-dependent queries (with higher cost
for higher fidelity and lower bias), we need to deter-
mine x̂ ∈ X such that | supx∈X f(x) − f(x̂)| is small.
A similar problem setting has been considered in a re-
cent work [34], however there the function evaluations
at different fidelities are not noisy, that is the cheap
approximations only add bias to the function values.
In this work, we consider a setting where a function
evaluation at a cheaper fidelity incurs both bias and
sub-Gaussian noise around the function value. This
makes the problem setting different and significantly
more challenging.

3.1 Details about Function Evaluations

We build on the notation in [34], but modify it to per-
mit noisy evaluations. The fidelity is modeled as a
continuous parameter z ∈ Z , [0, 1]. An evaluation
of a function consists of two inputs (x, z) correspond-
ing to the query point x ∈ X and fidelity z ∈ Z, and
results in a random variable Y as the output, with
Y = fz(x) + �. Here, � is a sub-Gaussian noise ran-
dom variable [4] with parameter σ2 i.e E[�] = 0 and
E[exp(s�)] ≤ exp(s2σ2/2) all s ≥ 0. Such random
variables will be denoted as subG(σ).

In our model, the mean of the query, fz (x), is bi-
ased and progressively smaller bias can be obtained
but with higher costs. This is formalized through
the monotone decreasing bias function (assumed to be

Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai

known in our analysis1) ζ : Z → R+ and a monotone
increasing cost function λ : Z → R+ , with λ(z) ≥ 1.
A query at (x, z) results in an output mean with
|fz (x) − f(x)| ≤ ζ(z) and at cost λ(z). We assume
that at the highest fidelity (z = 1), there is no bias,
i.e., f1(x) = f(x). Finally, we assume that the global

∗ optimum is unique, i.e. ∃x = arg maxx∈X f(x).

Our problem setting is a natural model for the driving
example of hyper-parameter tuning. For instance, the
domain X represents the range of hyper-parameters.
In the case of deep networks this may include ker-
nel sizes and number of channels in different layers
(rounded off to the nearest integers), learning rate of
optimizers, dropout level and weight decay levels etc.
While working with large datasets, training and vali-
dating on sub-sampled versions of the datasets serve
as cheap approximations which can be modeled by our
continuous range of fidelities Z. For instance on Ci-
far10 [23], using the whole training set with Ns > 50k
samples corresponds to z = 1 while z = 0 can corre-
spond to using ns ∼ 1000 samples. The range [1k,50k]
can be linearly mapped to [0, 1] (rounding off to the
nearest interger number of samples). It is also clear
that function evaluations obtained at the cheaper fi-
delities are both biased (validation accuracy is lower
while using lesser number of samples) and noisy (ran-
domness in sub-sampling and SGD). This falls under
the purview of our evaluation model. The cost func-
tion simply corresponds to the time required to train a
model over a sub-sampled version of the data-set and
it increases with the number of samples (fidelity).

Putting all the pieces together, the problem setting is
a sequential process as follows: Given a cost budget
Λ at each time-slot t = 1, 2, .., (i) Select a point Xt

and evaluate it at a fidelity Zt, (ii) Observe a noisy
feedback Yt, (iii) Incur a cost λ(Zt). This process in
continued till the cost budget is exhausted. The goal
is to find a point x ∈ X such that f(x) is as close

∗ as possible to f∗ , f(x ∗). We assume that x is a
unique point in X where the supremum is achieved.
The performance of a policy/optimization algorithm
shall be characterized by simple regret.

3.2 Definition of Regret

Let X1, X2, be the points queried by an algo-
rithm/policy at fidelities Z1, Z2, ... respectively. Let
X̂Λ be the point returned by the policy after N(Λ)
queries, where N(Λ) is a random quantity such that Pn
N(Λ) = max{n ≥ 1 : λ(Zi) ≤ Λ} and Λ is the i=1

1Note that the knowledge of the bias function is only
required for our theoretical analysis, similar to prior
works [19, 16]. In practice, we can assume a simple para-
metric form of the bias function which can be updated
online. We provide more details in Section 6.

total cost budget. Then the simple regret is given by
S(Λ) = f∗ − E[f(X̂Λ)]. Here, the expectation is over
the randomness in the observations and the policy.
Note that the regret is measured only at the highest
fidelity that is z = 1, as we are interested in optimiz-
ing the original function at z = 1. A similar definition
of regret has been used before in the multi-fidelity lit-
erature [18, 19]. In the course of our analysis, we are
also interested in the cumulative regret as an interme-
diate quantity. Given that a policy performs n eval-
uations or queries, the cumulative regret is given by Pn
Rn = E [[f∗ − f(Xt)]] . t=1

The problem of black-box optimization cannot be
solved efficiently without assuming any structure or
regularity assumptions on the function being evalu-
ated. In the next sub-section, we assume access to a
hierarchical partitioning of the domain X and impose
some regularity assumption jointly on the function and
the hierarchical partitions. Similar assumptions have
been used in the theoretical analysis of several prior
works [30, 11, 3, 21], that work with hierarchical par-
titioning of the domain.

3.3 Tree-like Partitions and Structural
Assumptions

We first define the tree-like hierarchical partitions of
the domain X and then provide some technical as-
sumptions that impose regularity conditions jointly on
the function and the partitions.

Hierarchical Partitions: We assume that the do-
main X is partitioned hierarchically according to an
infinite binary tree. We denote this partitioning as
P = {(h, i)}, where h is a depth parameter and i is an
index. For any depth h ≥ 0, the cells {(h, i)}1≤i≤Ih

denote a partitioning of the space X . Note that we
use the notation (h, i) to denote both the index of a
cell/node and the part of the domain it represents. For
example, x ∈ (h, i) refers to a point x within the part
of the domain represented by the cell indexed at (h, i).
At depth 0 there is a single cell (0, 1) = X . A cell
(h, i) can be split into two child nodes at depth h + 1,
which are indexed as (h + 1, 2i − 1) and (h + 1, 2i). A
cell (h, i) is said to be queried, when a fixed represen-
tative point xh,i ∈ (h, i) (ideally centrally located) is
evaluated at any fidelity. Let C(h, i) denote all the
descendant cells of (h, i) in the infinite tree. The

∗ unique cell at height h that contains the optima x
is indexed as (h, i∗). For all sub-optimal cells (h, i)
(those that do not contain x ∗) the sub-optimality gap
is denoted by Δh,i = f∗ − supx∈(h,i) f(x). In other
words, a sub-optimal cell (h, i) is Δh,i-optimal. Let
X� = {x ∈ X : f(x) ≥ f∗ − �} for all � > 0.

For instance, consider the domain X = [0, 1] × [0, 1] ⊂

Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach

R2 . In this example, we only consider cells that inter-
vals C = {x , [x1, x2] ∈ X : b1,l < x1 ≤ b1,u, b2,l <
x2 ≤ b2,u} , [[b1,l, b1,u], [b2,l, b2,u]]. In this case, the hi-
erarchical partitioning has a root (0, 1) = [[0, 1], [0, 1]]
(the entire domain). At h = 1, the two children of the
root resulting form a split along x1 would be (1, 1) =
[[0, 0.5], [0, 1]] and (1, 2) = [[0.5, 1], [0, 1]]. The cell
(1, 1) can be split into two children along the x2 coor-
dinate to result in [[0.5, 1], [0, 0.5]] and [[0.5, 1], [0.5, 1]],
with the coordinate-wise midpoint of the cell used as
the representative point xh,i. In our example, x1,1 can
be chosen as the point [0.25, 0.5].

We impose the following joint assumptions on the hi-
erarchical partition P and the black-box function f ,
similar to the recent works [11, 34].

Assumption 1. There exists ν and ρ ∈ (0, 1) such
that for all cells (h, i) such that Δh,i ≤ cνρh (for a
constant c ≥ 0) we have that, f(x) ≥ f∗ − max{2c, c +
1}νρh , for all x ∈ (h, i).

Finally, the following definition of near-optimality-
dimension with parameters (ν, ρ) is borrowed
from [11].

Definition 1. The near-optimality dimension of f
with respect to parameters (ν, ρ) is given by, �

d(ν, ρ) , inf d0 ∈ R+ : ∃C(ν, ρ), ∀h ≥ 0, o
h Nh(2νρ

h) ≤ C(ν, ρ)ρ−d0 (1)

where Nh(�) is the number of cells (h, i) such that
supx∈(h,i) f(x) ≥ f(x ∗) − �.

We denote the parameters associated with the mini-
mum near optimality dimension d(ν, ρ) to be (ν∗, ρ∗).
The optimal near-optimality dimension d(ν∗, ρ∗) con-
trols the hardness of optimizing the function, given
access to the particular hierarchical partition.

Our assumptions are closely related to the ones in the
seminal paper [3]. Bubeck et al. [3] consider a similar
noisy tree-search based black-box optimization prob-
lem. In their work, it was assumed that there is a
dissimilarity metric `(x, y) over the domain and the
function satisfies a weak-Lipschitz condition around
the optima with respect to the dissimilarity. These
assumptions have been progressively refined [30, 39],
with [11] providing a succinct assumption using the
framework of hierarchical partitions. As in [34], we
adopt this assumption in our paper. Assumption 1 is
a slightly stronger version of Assumption 1 in [11] i.e.,
in [11] it has been assumed that Assumption 1 is satis-
fied with only c = 0. It has been recently observed [35]
that it is highly non-trivial to prove the regret guar-
antees of HOO [3] under the assumptions in [11] and
this stronger version may be indeed necessary. As-

sumption 1 is akin to ensuring that the conditions of
Lemma 3 in [3] are satisfied.

4 Algorithms

We first propose MFHOO (Multi-Fidelity Hierarchical
Optimistic Optimization) which is a noisy tree-search
based multi-fidelity black-box optimization policy that
requires the optimal smoothness parameters as input.
Then we propose another algorithm MFPOO (Multi-
Fidelity Parallel Optimistic Optimization) that can re-
cover regret guarantees similar to that of MFHOO
without the exact knowledge of smoothness parame-
ters.

When (ν∗, ρ∗) are known: Our first algorithm
MFHOO is inspired by the HOO strategy in [3]. We
essentially show that the tree-search based technique
in [3] can be naturally adapted to a multi-fidelity set-
ting, with some modifications. In certain settings, our
algorithm can achieve a much stronger simple regret
scaling when compared to HOO which queries only at
fidelity z = 1. The detailed pseudo-code of the algo-
rithm is provided as Algorithm 1. We first establish
some notation specific to our algorithm.

For any black-box optimization policy, let Xt be the
random variable denoting the point queried at time
t which is part of the cell (Ht, It), while Zt is the
fidelity at which the query is made. Let Yt be the
observation at the corresponding time-step such that
Yt = fZt (Xt) + �t, where �t ∼ subG(σ). Let Th,i(t) be
the number of times nodes in C(h, i) have been queried
i.e, Th,i(t) =

Pt
1{(Hs, Is) ∈ C(h, i)}. Let Tt de-s=1

note the finite subtree visited by the algorithm at the
end of round t. The tree is initialized at T0 = {(0, 1)}.
Now we are at a position to introduce Algorithm 1.

The notable difference from HOO [3] is that all queries
at height h are performed at a fidelity zh such that
ζ(zh) = νρh . The intuition is that in ’near optimal’
cells at height h, the function values of all points in-
side a cell are at most O(νρh) apart from each other.

∗ Therefore, if x belongs to a cell (h, i∗) at height h,
then all points in that cell are O(νρh) optimal. Thus
in the absence of noise, ideally beyond this point we
would only like to expand nodes/cells that are at least
O(νρh) optimal, which is only possible if the error due
to the fidelities is O(νρh).

Remark 1. Note that in the pseudo-code of Algo-
rithm 1, the final point returned is randomly cho-
sen from the points evaluated in the course of the
algorithm. This is sufficient in theoretically bound-
ing the simple regret as in Theorem 1. However, in
practice several optimizations can be performed to re-
turn the most promising point among the ones evalu-

Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai

Algorithm 1 MFHOO: Multi-Fidelity Hierarchical
Optimistic Optimization

1: Inputs - Cost Budget: Λ, Sub-Gaussian Parameter:
σ, Partitioning Structure: (h, i), Bias function: ζ(.),
Cost function: λ(.), Smoothness Parameters: (ν, ρ).

2: Initialization - T = {(0, 1)}, B1,2 = B2,2 = ∞, C = 0
and n = 0.

3: while C ≤ Λ do
4: (h, i) ← (0, 1).
5: P ← {(h, i)}.
6: while (h, i) ∈ T do
7: Update (h, i) to (h +1, 2i − 1) if Bh,2i−1 > Bh,2i

or to (h + 1, 2i) if Bh,2i−1 < Bh,2i.
8: Ties are broken at random. P ← P ∪ {(h, i)}.
9: end while
10: (H, I) ← (h, i). Query xH,I at fidelity zH and re-

ceive value Y . T ← T ∪ {(H, I)}.
11: Let n = n + 1 and let xn , xH,I . Update C =

C + λ(zh).
12: for all (h, i) ∈ P do
13: Th,i ← Th,i + 1
14: µ̂h,i ← (1 − 1/Th,i)µ̂h,i + Y/Th,i.
15: end for
16: for all (h, i) ∈ P do p
17: Uh,i ← µ̂h,i + 2σ2 log n/Th,i + νρh + ζ(zh).
18: end for
19: BH+1,2I−1 = BH+1,2I = ∞
20: Starting from the leaves down to the root maintain:

Bh,i ← min{Uh,i, max{Bh+1,2i−1, Bh+1,2i}}.
21: end while
22: Return a point among x1, x2..., xn chosen uniformly at

random.

ated. In our implementation we return a point x̂Λ ∈
{x1,, xn} such that x̂Λ = arg max fzi (xi) − ζ(zi)+ xi

�i. Note that fzi (xi) − ζ(zi) is a lower bound on the
value f(xi). We return a point that approximately
maximizes this lower-bound.

When (ν∗, ρ∗) are not known: Grill. et al. [11]
have recently developed a technique for searching for
the optimal smoothness parameters for HOO [3]. The
technique can be extended to our algorithm MFHOO
in the multi-fidelity setup. This leads us to our second
algorithm MFPOO (Algorithm 2).

Algorithm 2 MFPOO: Multi-Fidelity Parallel Opti-
mistic Optimization

1: Arguments: (νmax, ρmax), ζ(z), λ(z), Λ, σ
2: Let N = (1/2)Dmax log(Λ/ log(Λ)) where Dmax =
log 2/ log(1/ρmax)

3: for i = 1 to N do
4: Spawn MFHOO with parameters (νmax, ρi =

N/(N−i−1)
ρmax) with budget (Λ − Nλ(1))/N

5: end for
6: Let x̂Λ,i be the point returned by the ith MFHOO
instance for i ∈ {0, .., N − 1}. Evaluate all {x̂Λ,i}i

at z = 1. Return the point x̂Λ = x̂Λ,i∗ where i ∗ =
arg maxi f(xΛ,i) + �i.

The key idea of the algorithm is to spawn several
MFHOO instances with different smoothness param-
eters ρ1, ..., ρN . The sequence ρ1, ..., ρN is chosen
carefully according to the strategy introduced in [11].
The budget is uniformly allocated in between all the
MFHOO instances spawned. The i-th MFHOO in-
stance is spawned with the parameters (νmax, ρi =
N/(N−i−1)

ρmax). It is only required that ρmax ≥ ρ∗ and
νmax ≥ ν∗ . In Theorem 2 we show that at least one
of the MFHOO instances spawned by MFPOO has a
simple regret guarantee of MFHOO run at the optimal
parameters (ν∗, ρ∗) but with a budget (Λ−Nλ(1))/N .
We provide more details and intution about this algo-
rithm in Appendix A.

5 Theoretical Results

In this section we provide our main theoretical results:
Simple regret bounds for MFHOO (Algorithm 1) and
MFPOO (Algorithm 2). First we present Theorem 1,
which provides a simple regret bound for Algorithm 1.

Theorem 1. If Algorithm 1 is run with parameters
(ν, ρ) that satisfy Assumption 1 and given a total cost
budget Λ, then the simple regret is bounded as follows, �

1 1 −
d(ν,ρ)+2 × S(Λ) = O C(ν, ρ) d(ν,ρ)+2 n(Λ)�

(log n(Λ))1/(d(ν,ρ)+2) , Pn
where n(Λ) = max{n : λ(zh) ≤ Λ}. Here, zh = h=1
ζ−1(νρh).

Comparison with HOO [3]: The sim-
ple regret bound that is attained by
HOO [3] (operating at the highest fidelity)
given the same cost budget Λ is S0(Λ) =
O((Λ/λ(1))−1/(d(ν,ρ)+2)(log(Λ/λ(1)))1/(d(ν,ρ)+2)).
It is easy to verify that S(Λ) < S0(Λ), as λ(zh) ≤ λ(1)
for all zh. In many real-world situations like hyper-
parameter tuning the regret of MFHOO can be much
less as compared to HOO operating at the highest
fidelity. In fact the real gain in MFHOO is observed
in situations where evaluating at the highest fidelity is
extremely expensive and Λ is of the order of λ(1). We
will now provide a corollary that highlights this, which
is motivated by the following illustrative example.
The setting below and analogous corollaries for the
noiseless case is available in [34].

Illustrative Example: Let us consider our hyper-
parameter tuning example again, however let us use
the fidelity range to model the number of iterations
of an iterative learning algorithm. For concreteness,
we will assume that the learning iterations are gradi-
ent descent steps on a smooth strongly convex objec-
tive. Let z = 1 represent training to completion which

Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach

might take N iterations or descent steps. Cheaper fi-
delities correspond to training for fewer iterations and
validating, for instance zn < 1 corresponds to train-
ing till n < N iterations and is O(n/N). The cost
is linearly proportional to the fidelity, while the error
of gradient descent at fidelity zn is O(rn) for some
r ∈ (0, 1). Thus, if ζ(zn) scales as ν∗ρh

∗ , then n scales
as O(h0). It then follows that λ(zn) = O(h). It should
also be noted that in the context of optimizing deep
networks, where training till completion can take many
hours, the total cost budget Λ is usually a small mul-
tiple of λ(1) (evaluation cost at the highest fidelity).
This motivates the following condition and the corol-
lary that follows.

∗ Condition 1. ζ(.) and λ(.) are such that λ(z) ≤ h
∗ min{βh, λ(1)} for some constant β > 0. Here, z = h

ζ−1(ν∗ρ
h
∗). Further, we assume that Λ ≤ λ(1)1+� for

some � ∈ (0, 1). Here, β is a universal constant which
is much less than λ(1).

Under Condition 1, we get the following corollary of
Theorem 1.

Corollary 1. If Algorithm 1 is run with parameters
(ν, ρ) that satisfy Assumption 1 such that ν > ν∗ and
ρ > ρ∗ with a total cost budget Λ, then the simple
regret is bounded under Condition 1 as,

�
1 1 −

d(ν,ρ)+2 ng
d(ν,ρ)+2 × S(Λ) = O C(ν, ρ) (Λ)�

(log ng (Λ))
1/(d(ν,ρ)+2) ,

p
where ng(Λ) ≥ 2(Λ − λ(1))/β.

Thus, Corollary 1 implies that under Condition 1
the simple regret of MFHOO scales as S(Λ) = √

Λ)1/(d(ν,ρ)+2)). O((log Λ/ On the other hand,
HOO [3] would only be able to evaluate Λ/λ(1)
points. Thus, the simple regret of HOO would scale �� � �1/(d(ν,ρ)+2)
as S0(Λ) = O log Λ/Λ�/(1+�) , as Λ ≤

λ(1)1+� . Thus, in this setting S(Λ) can be order-wise
less than S(Λ0), as � < 1.

Our next result in Theorem 2 shows that at least one
of the MFHOO instances spawned by Algorithm 2 has
a simple regret close to that of an MFHOO run with
the parameters (ν∗, ρ∗). Thus, MFPOO (Algorithm 2)
can recover the performance of MFHOO run with the
optimal parameters when supplied with just an upper
bound on ν∗ and ρ∗ respectively.

Theorem 2. If Algorithm 2 is run with parameters
(νmax(≥ ν∗), ρmax(≥ ρ∗)) and given a total cost bud-
get Λ, then the simple regret of at least one of the
MFHOO instances spawned by Algorithm 2 is bounded

as follows, �
1

S(Λ) = O (νmax/ν ∗)Dmax C(ν ∗ , ρ ∗) d(ν∗,ρ∗)+2 ×
1 ! � �

2+d(ν∗,ρ∗) log n(Λ/ log Λ)
. (2)

n(Λ/ log Λ)

The simple regret bound in Theorem 2 should be com-
pared to that of Theorem 1 when Algorithm 1 is run
with the best parameters (ν∗, ρ∗). The expression is
Theorem 2 is order-wise same as the simple regret
achieved by MFHOO run at the optimal parameters
(ν∗, ρ∗) but with a budget of Λ/ log Λ. This is a minor
loss in terms of simple regret and is achieved with-
out exact knowledge of the optimal parameters. For
instance, under Condition 1, the simple regret of MF-
POO is only a factor of O((log Λ)1/(2+d(ν ∗ ,ρ ∗))) away
from that of MFHOO run with parameters (ν∗, ρ∗).
Note that there are differences between the style of
results in [11] and Theorem 2 (more details in Ap-
pendix A).

6 Empirical Results

In this section we empirically validate the performance
of our algorithms as compared to other benchmark
algorithms for the multi-fidelity black-box optimiza-
tion setting on real and synthetic data-sets. We first
compare the algorithms on popular synthetic bench-
mark functions commonly used in the black-box opti-
mization literature. We also empirically validate the
performance of MFPOO against other algorithms for
real-world use cases of hyper-parameter tuning. The
algorithms under contention are: (i) BOCA [19] which
is a multi-fidelity Gaussian Process (GP) based al-
gorithm that can handle continuous fidelity spaces,
(ii) MF-GP-UCB [18] which is a GP based multi-
fidelity method that can handle finite fidelities, (iii)
GP-EI criterion in bayesian optimization [15], (iv) MF-
SKO, the multi-fidelity sequential kriging optimisation
method [13], (v) GP-UCB [38] and (vi) MFPOO (Al-
gorithm 2) and (vii) POO [11].

In our implementation of MFPOO, we do not as-
sume access to a known bias function. In all our ex-
periments it is assumed that the bias function has
a parametric form ζ(z) = c(1 − z). The param-
eter c can be initialized and then updated online
owing to the fact that different MFHOO instances
spawned by MFPOO query the same node at differ-
ent fidelities. In all our experiments we set ρmax =
0.95. We provide more implementation details in
Appendix D.1, in the interest of space. All experi-
ments were performed on a 32-core Intel(R) Xeon(R)
@ 2.60GHz machine, with a Nvidia 1080 Ti GPU.

Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai

0 50 100 150 200
10

-4

10
-2

10
0

0 50 100 150

10
0

0 50 100 150 200

10
0

(a) (b) (c)

0 50 100 150
10

-4

10
-2

10
0

500 1000 1500
0.94

0.945

0.95

0.955

0.96

BOCA

GP-EI

MF-GP-UCB

MF-SKO

MFPOO

POO

0 10 20 30 40

0.86

0.88

0.9

0.92

0.94

BOCA

GP-UCB

GP-EI

MF-GP-UCB

MF-SKO

MFPOO

POO

(d) (e) (f)

0 100 200 300 400 500
0.5

0.6

0.7

0.8

BOCA

GP-UCB

GP-EI

MF-GP-UCB

MF-SKO

MFPOO

POO

1000 1500 2000 2500 3000
0.45

0.5

0.55

0.6

(g) (h)

Figure 1: The common legend for all the plots is presented in Fig. 1f, in the interest of space and clarity. Figures (a) to (d) consists of
experiments on multi-fidelity versions of synthetic functions. The experiments are averaged over 10 runs and the corresponding confidence
bars are plotted. Figure (e) shows the 5-fold cross-validation accuracy achieved vs. wall-clock time, for tuning XGB on the MNIST data-set.
GP-UCB is omitted in this figure due to poor performance. Figure (f) shows the 5-fold cross-validation R-square achieved vs. wall-clock
time, for tuning XGB on the Solar-Radiation regression data-set. BOCA is omitted in this figure due to poor performance. Figure (g) shows
the performance of the algorithms for tuning SVM on the 20-News Group dataset. Figure (h) shows the comparison of various algorithms for
tuning the hyper-parameters of a ConvNet on the Cifar-10 data-set. The code base provided for BOCA and MF-GP-UCB failed to converge
for this data-set. All the experiments are averaged over 5 runs.

An implementation of our algorithm can be found at
https://github.com/rajatsen91/MFTreeSearchCV.git.

Synthetic Experiments: We now provide empir-
ical results on commonly used synthetic benchmark
functions. The multi-fidelity setup is introduced into
the benchmark functions following the methodology
in [19]. The exact details of the functions at differ-
ent fidelities are provided in Appendix D.2. Note that
the bias function is not assumed to be known how-
ever the cost function is known. We add Gaussian
noise in the function evaluations at different variances
σ2 as specified in Appendix D.2. The performance of
the algorithms on 4 different benchmark functions are

shown in Fig. 1 (a) - (d). The functions used are Hart-
mann3, Hartmann6, Branin [8] and CurinExp [6]. At
the top of each sub-figure, we mention the function
name and the dimension of the domain (d). We can
observe that the tree search based methods (MFPOO
and POO) outperform the other benchmarks. Among
the two, MFPOO performs better that POO, because
it can effectively use multiple fidelities.

XGB on MNIST: As our second experiment,
we consider the task of tuning XGBOOST [5] on
the MNIST data-set [27]. We consider a a sub-
set consisting of 20000 images. The black-box func-
tion being evaluated is the 5-Fold cross-validation

https://github.com/rajatsen91/MFTreeSearchCV.git

Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach

accuracy at the the highest fidelity z = 1, which
refers to using the whole data-set. The fidelity range
Z = [0, 1] is mapped to [500, 20000], that is using
a fidelity z ∈ [0, 1] implies using a randomly sub-
sampled data-set consisting of bz ∗(15000)+500c sam-
ples in order to measure the cross-validation error.
The hyper-parameters being tuned and the respec-
tive ranges are: max depth: [2,13], colsample bytree:
[0.2,0.9], n estimators: [10,400], gamma: [0,0.7], learn-
ing rate: [0.05,0.3]. We plot the cross-validation accu-
racy achieved by different methods as a function of
time in Fig. 1e. MFPOO outperforms the other algo-
rithms in terms of validation accuracy achieved. GP-
EI is also promising on this data-set. The final cross-
validation accuracy achieved by MFPOO and GP-EI
are 0.9611 and 0.9597 respectively. Note that in this
experiment a single experiment at the highest fidelity
takes approximately 200 seconds. The results are av-
eraged over 5 experiments. σ in our algorithm is set
to 0.05.

XGB on Solar Data: We test the algorithms
on a regression problem that involved predicting the
level of solar radiation given several weather indica-
tors [37]. The data-set has 32684 samples. The fi-
delities are mapped to the range [700, 32684] similar
to the MNIST example above. The hyper-parameters
and their ranges are also identical to the experiment
above. The function value at the highest fidelity is the
5-Fold cross-validation R-square on the whole data-
set. The performances of the algorithms are plotted
in Fig. 1f. It can be observed that MFPOO outper-
forms the other algorithms especially in the lower-time
horizons. Note that a single experiment at the high-
est fidelity for this data-set takes 2 seconds. All ex-
periments were performed on the same machine. The
results are averaged over 5 experiments. More details
are in Appendix D.1.

SVM on 20 News Group: In Fig. 1g, we test the al-
gorithms for tuning hyper-parameters of scikit-learn’s
SVM classifier module on the News Group dataset [26].
The hyper-parameters to being tuned are: (i) the reg-
ularization penalty in the range [1e-5,1e5] (accessed in
the log. scale), (ii) the kernel temperature (γ) also
in the range [1e-5,1e5] and (iii) kernel type between
{’rbf’,’poly’}. We use a subset of 7000 samples for
training i.e z = 1 corresponds to using all 7000 samples
and z = 0 corresponds to a randomly chosen subset of
size 100. The black-box function corresponds to the
5-fold cross-validation accuracy at the chosen fidelity.
We can observe that MFPOO outperforms the other
algorithms especially in lower budget settings. One
evaluation at the highest fidelity takes 40.

ConvNet on Cifar-10: In Fig. 1h, we employ the
algorithms for tuning the hyper-parameters of a deep

convolutional network for classifying the cifar-10 [23]
dataset. As the training set we use a subset of 50k
samples from the original training data. The black-
box function is the accuracy on a fixed validation set
(randomly chosen half of the official test set) after 30-
epochs. Note that we want to test the relative accuracy
obtained by each of the tuning algorithms and there-
fore in the interest of time we set maximum number
of epochs to be 30, even though higher accuracy can
be obtained by training for more epochs. We use the
AlexNet [24] architecture. The hyper-parameters be-
ing tuned are: (i) number of output channels in first
conv. layer in the range [32,128], (ii) kernel size in
first layer in [5,14], (iii) number of output channels
in second layer in [128,256], (iv) kernel size in second
layer in [3,13], (v) learning rate of Adam optimizer in
[1e-5,1e-2] accessed in log-scale and (vi) dropout prob-
ability in the last layer in the range [0,0.4]. The fidelity
is the number of samples used for training where z = 0
corresponding to 1000 randomly chosen training sam-
ples while z = 1 means using 50k samples for training.
It takes about 600 seconds for one evaluation at z = 1.
We can see that both the tree based methods clearly
outperform the other algorithms in this experiment.
Note that POO does not work for a budget of 1000
seconds but MFPOO does.

7 Conclusion

We study noisy black-box optimization using tree-like
hierarchical partitions of the parameter space, when
low-cost approximations are available. We propose
two algorithms, MFHOO (Algorithm 1) and MFPOO
(Algorithm 2) for this problem and provide simple re-
gret guarantees for both our algorithms. Our algo-
rithms are empirically validated against various bench-
marks showing superior performance in both simula-
tions and in real world hyper-parameter tuning exam-
ples over a wide range of datasets and learning algo-
rithms. We believe that this paper opens up several
interesting research problems, for instance developing
more adaptive algorithms that query different areas
of the domain at different fidelities even at the same
height of the tree. We also believe that a more nu-
anced analysis of the algorithm is possible leading to
better simple regret guarantees.

Acknowledgment: The authors would like to ac-
knowledge the support from NSF grants 1320175,
ARO grant W911NF-17-1-0359, and the US DoT sup-
ported D-STOP Tier 1 University Transportation Cen-
ter and also the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for pro-
viding HPC, visualization, database, or grid resources
that have contributed to the research results reported
within this paper.

Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai

References

[1] Alekh Agarwal, John C Duchi, Peter L Bartlett,
and Clement Levrard. Oracle inequalities for com-
putationally budgeted model selection. In COLT,
2011.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fis-
cher. Finite-time analysis of the multiarmed ban-
dit problem. Machine learning, 47(2-3):235–256,
2002.

[3] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and
Csaba Szepesvári. X-armed bandits. Journal of
Machine Learning Research, 12(May):1655–1695,
2011.

[4] Valerii V Buldygin and Yu V Kozachenko. Sub-
gaussian random variables. Ukrainian Mathemat-
ical Journal, 32(6):483–489, 1980.

[5] Tianqi Chen and Carlos Guestrin. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–
794. ACM, 2016.

[6] Carla Currin. A bayesian approach to the design
and analysis of computer experiments. Techni-
cal report, ORNL Oak Ridge National Laboratory
(US), 1988.

[7] Mark Cutler, Thomas J. Walsh, and Jonathan P.
How. Reinforcement Learning with Multi-Fidelity
Simulators. In ICRA, 2014.

[8] L. C. W. Dixon and George Philip Szegö (eds.).
Towards global optimisation 2, volume 2. North
Holland, 1978.

[9] Daniel E Finkel. Direct optimization algorithm
user guide. Center for Research in Scientific
Computation, North Carolina State University, 2,
2003.

[10] Alexander I. J. Forrester, András Sóbester, and
Andy J. Keane. Multi-fidelity optimization via
surrogate modelling. Proceedings of the Royal So-
ciety A: Mathematical, Physical and Engineering
Science, 2007.

[11] Jean-Bastien Grill, Michal Valko, and Rémi
Munos. Black-box optimization of noisy functions
with unknown smoothness. In Advances in Neural
Information Processing Systems, pages 667–675,
2015.

[12] D. Huang, T.T. Allen, W.I. Notz, and R.A. Miller.
Sequential kriging optimization using multiple-
fidelity evaluations. Structural and Multidisci-
plinary Optimization, 2006.

[13] Deng Huang, Theodore T Allen, William I Notz,
and R Allen Miller. Sequential kriging optimiza-
tion using multiple-fidelity evaluations. Structural
and Multidisciplinary Optimization, 32(5):369–
382, 2006.

[14] Kevin Jamieson and Ameet Talwalkar. Non-
stochastic best arm identification and hyperpa-
rameter optimization. In Artificial Intelligence
and Statistics, pages 240–248, 2016.

[15] Donald R Jones, Matthias Schonlau, and
William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global
optimization, 13(4):455–492, 1998.

[16] Kirthevasan Kandasamy, Gautam Dasarathy, Ju-
nier B Oliva, Jeff Schneider, and Barnabás
Póczos. Gaussian process bandit optimisation
with multi-fidelity evaluations. In Advances in
Neural Information Processing Systems, pages
992–1000, 2016.

[17] Kirthevasan Kandasamy, Gautam Dasarathy, Ju-
nier B Oliva, Jeff Schneider, and Barnabas Poc-
zos. Multi-fidelity gaussian process bandit opti-
misation. arXiv preprint arXiv:1603.06288, 2016.

[18] Kirthevasan Kandasamy, Gautam Dasarathy,
Barnabas Poczos, and Jeff Schneider. The multi-
fidelity multi-armed bandit. In Advances in Neu-
ral Information Processing Systems, pages 1777–
1785, 2016.

[19] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff
Schneider, and Barnabas Poczos. Multi-fidelity
bayesian optimisation with continuous approxi-
mations. arXiv preprint arXiv:1703.06240, 2017.

[20] Aaron Klein, Stefan Falkner, Simon Bartels,
Philipp Hennig, and Frank Hutter. Fast
bayesian optimization of machine learning hy-
perparameters on large datasets. arXiv preprint
arXiv:1605.07079, 2016.

[21] Robert Kleinberg, Aleksandrs Slivkins, and Eli
Upfal. Multi-armed bandits in metric spaces.
In Proceedings of the fortieth annual ACM sym-
posium on Theory of computing, pages 681–690.
ACM, 2008.

[22] Levente Kocsis and Csaba Szepesvári. Ban-
dit based monte-carlo planning. In European
conference on machine learning, pages 282–293.
Springer, 2006.

[23] Alex Krizhevsky and Geoffrey Hinton. Learning
multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural
information processing systems, pages 1097–1105,
2012.

[25] Rémi Lam, Douglas L Allaire, and Karen E Will-
cox. Multifidelity optimization using statistical
surrogate modeling for non-hierarchical informa-
tion sources. In 56th AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials
Conference, page 0143, 2015.

[26] Ken Lang. Newsweeder: Learning to filter net-
news. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 331–339,
1995.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, 1998.

[28] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Af-
shin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to
hyperparameter optimization. arXiv preprint
arXiv:1603.06560, 2016.

[29] R. Martinez-Cantin, N. de Freitas, A. Doucet,
and J. Castellanos. Active Policy Learning for
Robot Planning and Exploration under Uncer-
tainty. In Proceedings of Robotics: Science and
Systems, 2007.

[30] Rémi Munos. Optimistic optimization of a de-
terministic function without the knowledge of its
smoothness. In Advances in neural information
processing systems, pages 783–791, 2011.

[31] David Parkinson, Pia Mukherjee, and Andrew R
Liddle. A Bayesian model selection analysis of
WMAP3. Physical Review, 2006.

[32] Matthias Poloczek, Jialei Wang, and Peter I
Frazier. Multi-information source optimization.
arXiv preprint arXiv:1603.00389, 2016.

[33] A Sabharwal, H Samulowitz, and G Tesauro. Se-
lecting near-optimal learners via incremental data
allocation. In AAAI, 2015.

[34] Rajat Sen, Kirthevasan Kandasamy, and San-
jay Shakkottai. Multi-fidelity black-box optimiza-
tion with hierarchical partitions. In International
Conference on Machine Learning, pages 4545–
4554, 2018.

[35] Xuedong Shang, Emilie Kaufmann, and Michal
Valko. Adaptive black-box optimization got eas-
ier: Hct only needs local smoothness. In European
Workshop on Reinforcement Learning, 2017.

[36] Jasper Snoek, Hugo Larochelle, and Ryan P
Adams. Practical Bayesian Optimization of Ma-
chine Learning Algorithms. In Advances in Neural
Information Processing Systems, 2012.

[37] Solar radiation kaggle competition. https:
//www.kaggle.com/dronio/SolarEnergy/data.
Accessed: 2018-05-13.

[38] Niranjan Srinivas, Andreas Krause, Sham M
Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No re-
gret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

[39] Michal Valko, Alexandra Carpentier, and Rémi
Munos. Stochastic simultaneous optimistic op-
timization. In International Conference on Ma-
chine Learning, pages 19–27, 2013.

[40] C. Zhang and K. Chaudhuri. Active Learning
from Weak and Strong Labelers. In NIPS, 2015.

https://www.kaggle.com/dronio/SolarEnergy/data
https://www.kaggle.com/dronio/SolarEnergy/data

