

Technical Report 155

Project Title:

Modeling Willingness-to-Share Trips in an Autonomous Vehicle Future: A Stochastic Psychological Latent Construct Approach

Research Supervisor: Chandra Bhat Center for Transportation Research

August 2020

Data-Supported Transportation Operations & Planning Center (D-STOP)

A Tier 1 USDOT University Transportation Center at The University of Texas at Austin

D-STOP is a collaborative initiative by researchers at the Center for Transportation Research and the Wireless Networking and Communications Group at The University of Texas at Austin.

		Technical Report Documentation Page
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
D-STOP/2020/155		
4. Title and Subtitle		5. Report Date
Pooled Versus Private Ride-hai	ling: A Joint Revealed and Stated	August 2020
Preference Analysis Recognizing	g Psycho-Social Factors	6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Shuqing Kang, Aupal Mondal, A	Aarti C. Bhat, and Chandra R. Bhat	Report 155
9. Performing Organization Name and A		10. Work Unit No. (TRAIS)
Data-Supported Transportation	Operations & Planning Center (D-	
STOP)		11. Contract or Grant No.
The University of Texas at Aust	DTRT13-G-UTC58	
3925 W. Braker Lane, 4th Floor		
Austin, TX 78759		
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
United States Department of Tra	insportation	
University Transportation Cente	rs	14. Sponsoring Agency Code
1200 New Jersey Avenue, SE		
Washington, DC 20590		
15. Supplementary Notes		
Supported by a grant from the	U.S. Department of Transportation	, University Transportation Centers
Program.		

16. Abstract

Shared autonomous vehicle (SAV) systems, in which autonomous vehicles (AVs) are owned by transportation network companies that offer Mobility as a Service (MaaS) to customers, are gaining considerable research attention. SAVs have the potential to reduce vehicle ownership and parking requirements, improve traffic conditions, and minimize empty-vehicle travel. However, the extent to which each of these potentials can be achieved depends on consumers' willingness to adopt such services as well as their disposition to sharing rides. While both MaaS and SAV adoption have received some attention in the literature (for example, Krueger et al., 2016; Rayle et al., 2016; Clewlow and Mishra, 2017; Dias et al., 2017; Lavieri et al., 2017), there is no specific discussion and measurement about willingness-to-share (WTS). The objective of this project is to develop this notion of WTS in the transportation context and propose a measuring and modeling approach to this concept. The developed modeling framework will be used to investigate variations in WTS and value of travel time (VTT) across distinct population segments for different trip purposes. Outcomes from this investigation can contribute to SAV adoption forecasts and guide SAV demand assumptions in traffic models.

17. Key Words		18. Distribution Statement				
		No restrictions. This document is available to the public				
through NTIS (http://www.ntis.gov):						
	National Technical Information Service					
		5285 Port Royal Road				
		Springfield, Virginia 22161				
19. Security Classif.(of this report)	20. Security Classif (of this page)		21. No. of Pages	22. Price		
Unclassified	Unclassified	ł				

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation's University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Acknowledgements

The authors recognize that support for this research was provided by a grant from the U.S. Department of Transportation, University Transportation Centers.

Online supplement to

"Pooled Versus Private Ride-hailing: A Joint Revealed and Stated Preference Analysis Recognizing Psycho-Social Factors"

By Shuqing Kang, Aupal Mondal, Aarti C. Bhat, and Chandra R. Bhat (corresponding author)

Table 1. Loading of Latent C	onstructs on Indicators (MEM)
------------------------------	-------------------------------

Indicators		Tech- savviness		Sharing Propensity		GLP	
	Coeff.	t-stat	Coeff.	t-stat	Coeff.	t-stat	
I like to be among the first to have the latest technology.	0.537	9.059					
Learning how to use new technologies is often frustrating for me. (inverse scale)	0.513	8.804					
Having internet connectivity everywhere I go is important to me.	0.356	6.864					
I like trying things that are new and different.	0.383	6.757					
I feel uncomfortable around people I do not know. (inverse scale)			0.349	8.632			
Traveling with a driver I don't know makes me feel uncomfortable. (inverse scale)			1.793	8.612			
For shared ride-hailing (e.g., uberPOOL, Lyft Share), traveling with unfamiliar passengers makes me uncomfortable. (inverse scale)			1.528	10.667			
Sharing my personal information or location via internet-enabled devices concerns me a lot. (inverse scale)			0.226	5.399			
I am concerned that my travel logs and personal information stored in AVs could be leaked. (inverse scale)			0.246	6.128			
The government should raise the gas tax to help reduce the negative impacts of transportation on the environment.					0.554	10.671	
I am committed to an environmentally-friendly lifestyle.					0.938	9.917	
I am committed to using a less polluting means of transportation (e.g., walking, biking, and public transit) as much as possible.					1.302	8.031	

Table 2 ATE Table for Pooled RH -- Shopping Purpose

	Base Level	Treatment Level	% Contribution by mediation through						
Variable			RH familiarity direct effect	RH familiarity sharing propensity increase	Tech- savviness decrease	Sharing propensity increase	GLP increase	Pooled RH choice direct effect	Overall ATE
Pooled RH interest for	the shopping purpos	se							
Socio-demographic									
Gender	Female	Male	0	45	-34	19	-2	0	0.019
Age	18-24	55+	-80	0	19	0	-1	0	-0.213
Race/Ethnicity	Other races	Non-Hispanic/Non- Latino White	-37	-14	0	-4	0	-45	-0.086
Education	High school or less	Graduate degree	61	0	0	0	3	36	0.129
Employment	Unemployed	Employed	0	71	0	29	0	0	0.020
Tenure	Own or other	Rent	100	0	0	0	0	0	0.112
Household income	< \$150,000	≥ \$150,000	65	0	-30	0	-5	0	0.026
Built environment									
Living environment	Urban/suburban	Rural	-100	0	0	0	0	0	-0.084
Transit access	Transit access	No transit access	-100	0	0	0	0	0	-0.067
Population density	Low	High	0	0	0	0	0	100	0.040
Trip level attributes									
Travel time	Current time	Decrease by 5 mins	-	-	-	-	-	100	0.026
Travel cost	Current cost	Decrease by \$1	-	-	-	-	-	100	0.017
Additional passenger	Current scenario	1 additional passenger	-	-	-	-	-	-100	-0.032

			% Contribution by mediation through						
Variable	Base Level	Treatment Level	RH familiarity direct effect	RH familiarity sharing propensity increase	Tech- savviness decrease	Sharing propensity increase	GLP increase	Pooled RH choice direct effect	Overall ATE
Pooled RH interest for	r the leisure purpose								
Socio-demographic									
Gender	Female	Male	0	36	-50	10	-4	0	-0.006
Age	18-24	55+	-72	0	26	0	-2	0	-0.171
Race/Ethnicity	Other races	Non-Hispanic/Non- Latino White	-33	-13	0	-3	0	-51	-0.080
Education	High school or less	Graduate degree	55	0	0	0	6	39	0.125
Employment Status	Unemployed	Employed	0	80	0	20	0	0	0.015
Tenure type	Own or other	Rent	100	0	0	0	0	0	0.096
Income	< \$150,000	≥ \$150,000	52	0	-40	0	-8	0	0.003
Built environment									
Living environment	Urban/suburban	Rural	-100	0	0	0	0	0	-0.109
Transit access	Transit access	No transit access	-100	0	0	0	0	0	-0.058
Population density	Low	High	0	0	0	0	0	100	0.045
Trip level attributes									
Travel time	Current time	Decrease by 5 mins	-	-	-	-	-	100	0.021
Travel cost	Current cost	Decrease by \$1	-	-	-	-	-	100	0.023
Additional passenger	Current scenario	1 additional passenger	-	-	-	-	-	-100	-0.031

Table 3 ATE Table for Pooled RH -- Leisure Purpose

Mathematical formulation of the GHDM for the current study

Since the main outcome variables are all binary models, they can be modeled as ordinal variables as well (with 0 and 1 as the ordered levels). Given all the indicators are ordinal in nature, the GHDM model is formulated with only ordinal outcomes.

Consider the case of an individual $q \in \{1, 2, ..., Q\}$. Let $l \in \{1, 2, ..., L\}$ be the index of the latent constructs and let z_{ql}^* be the value of the latent variable l for the individual q. z_{ql}^* is expressed as a function of its explanatory variables as,

$$z_{ql}^* = \boldsymbol{w}_{ql}^{\mathrm{T}} \boldsymbol{\alpha} + \boldsymbol{\eta}_{ql} \,, \tag{1}$$

where w_{ql} ($D \times 1$) is a column vector of the explanatory variables of latent variable l and α ($D \times 1$) is a vector of its coefficients. η_{ql} is the unexplained error term and is assumed to follow a standard normal distribution. Equation (1) can be expressed in the matrix form as,

$$z_q^* = w_q \alpha + \eta_q, \tag{2}$$

where z_q^* (L×1) is a column vector of all the latent variables, w_q (L×D) is a matrix formed by vertically stacking the vectors $(w_{q1}^T, w_{q2}^T, ..., w_{qL}^T)$ and η_q (D×1) is formed by vertically stacking $(\eta_{q1}, \eta_{q2}, ..., \eta_{qL})$. η_q follows a multivariate normal distribution centered at the origin and having a correlation matrix of Γ (L×L), i.e., $\eta_q \sim MVN_L(\theta_L, \Gamma)$, where θ_L is a vector of zeros. The variance of all the elements in η_q is fixed as unity because it is not possible to uniquely identify a scale for the latent variables. Equation (2) constitutes the SEM component of the framework.

Let $j \in \{1, 2, ..., J\}$ denote the index of the outcome variables (including the indicator variables). Let y_{qj}^* be the underlying continuous measure associated with the outcome variable y_{qj} . Then,

$$y_{qj} = k \text{ if } t_{jk} < y_{qj}^* \le t_{j(k+1)},$$
(3)

where $k \in \{1, 2, ..., K_j\}$ denotes the ordinal category assumed by y_{qj} and t_{jk} denotes the lower boundary of the k^{th} discrete interval of the continous measure associated with the j^{th} outcome. $t_{jk} < t_{j(k+1)}$ for all j and all k. Since y_j^* may take any value in $(-\infty, \infty)$, we fix the value of $t_{j1} = -\infty$ and $t_{j(K_j+1)} = \infty$ for all j. Since the location of the thresholds on the real-line is not uniquely identifiable, we also set $t_{j2} = 0$. y_j^* is expressed as a function of its explanatory variables as,

$$y_{qj}^* = \boldsymbol{x}_{qj}^{\mathrm{T}} \boldsymbol{\beta} + \boldsymbol{z}_{q}^{*\mathrm{T}} \boldsymbol{d}_j + \boldsymbol{\xi}_{qj}, \qquad (4)$$

where $\mathbf{x}_{qi}(E \times 1)$ is a vector of size of explanatory variables for the continuous measure y_{qi}^* . $\boldsymbol{\beta}$ (E×1) is a column vector of the coefficients associated with \mathbf{x}_{qi} and \mathbf{d}_j (L×1) is the vector of coefficients of the latent variables for outcome *j*. ξ_{qj} is a stochastic error term that captures the effect of unobserved variables on y_{qj}^* . ξ_{qj} is assumed to follow a standard normal distribution. Jointly, the continuous measures of the *J* outcome variables may be expressed as,

$$\mathbf{y}_{q}^{*} = \mathbf{x}_{q}\boldsymbol{\beta} + d\mathbf{z}_{q}^{*} + \boldsymbol{\xi}_{q}, \qquad (5)$$

where $\mathbf{y}_{q}^{*}(J \times 1)$ and $\boldsymbol{\xi}_{q}(J \times 1)$ are the vectors formed by vertically stacking y_{qj}^{*} and $\boldsymbol{\xi}_{qj}$, respectively, of the *J* dependent variables. $\mathbf{x}_{q}(J \times E)$ is a matrix formed by vertically stacking the vectors $(\mathbf{x}_{q1}^{T}, \mathbf{x}_{q2}^{T}, ..., \mathbf{x}_{qJ}^{T})$ and $d(J \times L)$ is a matrix formed by vertically stacking $(d_{1}^{T}, d_{2}^{T}, ..., d_{J}^{T})$. $\boldsymbol{\xi}_{q}$ follows a multivariate normal distribution centered at the origin with an identity matrix as the covariance matrix (independent error terms). $\boldsymbol{\xi}_{q} \sim MVN_{J}(\boldsymbol{\theta}_{J}, \mathbf{I}_{J})$. We assume the terms in $\boldsymbol{\xi}_{q}$ to be independent because it is not possible to uniquely identify all the correlations between the elements in $\boldsymbol{\eta}_{q}$ and all the correlations between the elements in $\boldsymbol{\xi}_{q}$. Further, because of the ordinal nature of the outcome variables, the scale of y_{q}^{*} cannot be uniquely identified. Therefore, the variances of all elements in $\boldsymbol{\xi}_{q}$ is fixed to one. The reader is referred to Bhat (2015) for further nuances regarding the identification of coefficients in the GHDM framework.

Substituting Equation (2) in Equation (5), y_q^* can be expressed in the reduced form as

$$\mathbf{y}_{q}^{*} = \mathbf{x}_{q}\boldsymbol{\beta} + d\left(\mathbf{w}_{q}\boldsymbol{\alpha} + \boldsymbol{\eta}_{q}\right) + \boldsymbol{\xi}_{q}, \tag{6}$$

$$y_q^* = x_q \beta + dw_q \alpha + d\eta_q + \xi_q \,. \tag{7}$$

In the right side of Equation (7), η_q and ξ_q are random vectors that follow the multivariate normal distribution and the other variables are constants. Therefore, y_q^* also follows the multivariate normal distribution with a mean of $b = x_q \beta + dw_q \alpha$ (all the elements of η_q and ξ_q have a mean of zero) and a covariance matrix of $\Sigma = d\Gamma d^T + I_J$.

$$\boldsymbol{y}_{\boldsymbol{q}}^{*} \sim MVN_{J}(\boldsymbol{b},\boldsymbol{\Sigma}) \,. \tag{8}$$

The parameters that are to be estimated are the elements of α , strictly upper triangular elements of Γ , elements of β , elements of d and t_{jk} for all j and $k \in \{3, 4, ..., K_j\}$. Let θ be a vector of all the parameters that need to be estimated. The maximum likelihood approach can be used for estimating these parameters. The likelihood of the q^{th} observation will be,

$$L_{q}(\boldsymbol{\theta}) = \int_{v_{1}=t_{1}(y_{q1}+1)}^{v_{1}=t_{1}(y_{q1}+1)-b_{1}} \int_{v_{2}=t_{2}(y_{q2}+1)}^{v_{2}=t_{2}(y_{q2}+1)-b_{2}} \dots \int_{v_{J}=t_{J}(y_{qJ}+1)-b_{J}}^{v_{J}=t_{J}(y_{qJ}+1)-b_{J}} \phi_{J}(v_{1},v_{2},\dots,v_{J} \mid \boldsymbol{\Sigma}) dv_{1} dv_{2}\dots dv_{J} ,$$

$$(9)$$

where, $\phi_J(v_1, v_2, ..., v_J | \Sigma)$ denotes the probability density of a J dimensional multivariate

normal distribution centered at the origin with a covariance matrix Σ at the point $(v_1, v_2, ..., v_J)$. Since a closed form expression does not exist for this integral and evaluation using simulation techniques can be time consuming, we used the One-variate Univariate Screening technique proposed by Bhat (2018) for approximating this integral. The estimation of parameters was carried out using the *maxlik* library in the GAUSS matrix programming language.

References

Bhat, C.R., 2018. New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function. *Transportation Research Part B*, 109, 238-256.