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ABSTRACT 

Reservation-based traffic control is a revolutionary intersection management system which 

involves the communication of autonomous vehicles and an intersection to request space-time 

trajectories through the intersection. Although previous studies have found congestion and 

throughput benefits of reservation-based control which surpass signalized control, other studies 

have found negative impacts at peak travel times. The main purpose of this paper is to find and 

characterize favorable mixed-configurations of reservation-based controls and signalized 

controls in a large city network which minimize total system travel times. As this optimization 

problem is bi-level and challenging, we propose three different methods to heuristically find 

effective mixed-configurations. The first method is an intersection ranking method uses 

simulation to assign a score to each intersection in a network based on localized potential benefit 

to system travel time under reservation control and then ranks all intersections accordingly. The 

second is another ranking method, however uses linear regression to predict an intersection’s 
localized score. Finally, we present a genetic algorithm which iteratively approaches high-

performing network configurations yielding minimal system travel times. We test the methods 

on the downtown Austin network and find configurations which are less than half controlled by 

reservation intersections that improve travel times beyond an all-reservation controlled network. 

Overall, our results show that the genetic algorithm finds the best performing configurations with 

the initial score-assigning ranking method performing similarly but much more efficiently. We 

finally find that favorable reservation placement is in consecutive chains along highly trafficked 

corridors. 

Keywords: Autonomous vehicles, Reservation-based intersection control, Dynamic traffic 

assignment, Genetic algorithm 
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1 INTRODUCTION 

Connected autonomous vehicles (CAVs) can potentially revolutionize urban traffic operations 

with new technologies currently being tested on public roads. Cooperative adaptive cruise 

control (1), reduced reaction times, and vehicle-to-vehicle communications could increase road 

capacity (2, 3) and stability by shortening following headways. Patel et al. (4) showed that 

increases in autonomous vehicle (AV) penetration could consistently result in reduced 

congestion on large-scale networks, assuming current traffic demand conditions. Despite the 

capacity increases, AVs could counteract these improvements by inducing additional demand 

(5). Additionally, the Braess (6) and Daganzo (7) paradoxes show that increases in capacity 

could lead to increased travel times due to rerouting. Nonetheless, wireless vehicle-to-

infrastructure (V2I) communication in CAVs can further improve traffic operations with new 

traffic controls. Reservation-based intersection control (8, 9) uses V2I communications and the 

reduced safety margins of CAVs to increase intersection capacity and throughput, and is the 

focus of this paper. In some scenarios, reservation-based control using a first-come-first-serve 

(FCFS) policy reduced intersection delay and improved system travel times beyond optimized 

signals for a single intersection in microsimulation (10, 11). Patel et al. (4) also observed this 

positive effect in large-scale networks, using mesoscopic dynamic traffic assignment (DTA). 

They also found that FCFS reservations performed better at lower demand levels due to the low 

intersection saturation, allowing for more progression. 

However, there are scenarios where signals outperform FCFS reservations. Levin et al. 

(12) produces several examples of this phenomenon. One example involves a local road 

interrupting the progression of an intersecting arterial at high demand, which would be otherwise 

avoided with a signal. Such paradoxes may not seem apparent in large-scale networks due to 

alternate route choices, but may still exist and cause congestion. Therefore, FCFS reservations do 

not dominate signals, and an appropriate combination of the two should be found. 

Thus far, no literature has attempted to optimize or evaluate this mixed-control on large-

scale networks. Several studies have compared signals to reservation-based control, using 

microsimulation to model networks of just one or a few intersections (8, 10). However, 

microsimulation is not tractable for large-scale networks, or may not capture dynamic selfish 

route choice. The main purpose of this paper is to find and characterize favorable subsets of 

FCFS reservations and signals in a larger network than has been previously studied (174 

intersections). To this end, we develop different heuristic methods and evaluate their 

performance by solving for dynamic user equilibrium (DUE). It is valuable to know the 

characteristics of these favorable configurations and methods from a policy and planning 

standpoint as they can be generalized to other networks either to prioritize deployment of a 

limited number of reservation-based intersections, or to identify long-term configurations. 

Although FCFS might not be the most efficient traffic control policy, it has been the 

focus of most reservation-based control literature (8,10,11) and could be extended to a wide 

range of other policies due to its generality. FCFS is an inherently fair policy and will likely 

remain a good candidate to be widely implemented in reservation-based control. Due to the large 

range of alternative policies extended from FCFS, it is nearly impossible to generalize the 

network effects of reservations using an arbitrary policy. We therefore assume a FCFS policy in 

this paper, detailed in Section 2.1. Note that the term reservation(s) is used throughout the rest of 

the paper and refers to FCFS reservation-based intersection control. 

The contributions of this paper are as follows. We present and assess the effectiveness of 

several heuristic methods used to find favorable mixed-configurations of reservations and signals 
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in a network. We then show that the paradoxical effects of FCFS reservations (12) exist in a 

large downtown network by identifying hybrid-configurations which reduce congestion beyond 

uniform reservation control in DTA. Finally, we develop general reservation intersection 

deployment strategies based on quantitative and qualitative observations. 

These methods include several ranking methods which assign or predict a score for each 

intersection to encapsulate its potential benefit to system congestion under reservation vs. signal 

control. Additionally, a genetic algorithm (GA) is used to iteratively find effective mixed-

configurations in a network. These methods are evaluated by solving DTA on a city network. 

Results show mixed-configurations that outperform the all-reservation case, with reservations 

placed in chains along highly demanded roads. We find that the GA provides the higher 

performing but slower results, compared to the ranking methods. 

The remainder of this paper is organized as follows. Section 2 overviews previous work 

on reservation-based controls. Section 3 presents the optimization problem statement and 

assumptions. Section 4 presents methods used to find favorable mixed-configurations of 

reservations and signals. Section 5 details experimental results on the downtown Austin, TX 

network, and we conclude in Section 6. 

2 RESERVATION-BASED INTERSECTION MODEL 

This section first reviews the tile-based reservation control mechanism proposed by Dresner and 

Stone (8, 9) under a FCFS policy with possible paradoxical properties (12). Finally, we detail the 

simplified conflict region intersection model (13) used in this study’s simulations to tractably 
model reservation-based control in large DTA networks. 

2.1 FCFS Tile-Based Reservations 

Dresner and Stone’s (8, 9) proposed tile-based reservation mechanism relies on the V2I 

communication between CAVs and an intersection manager (IM) agent. Basically, the IM 

divides the intersection into a grid of space-time tiles. As CAVs enter the detection radius (CAVs 

must know their intersection arrival time), they make requests with the IM for a reservation to 

move through the intersection. The IM then simulates the vehicle’s desired path through the tile 
grid. If there is no conflict with another vehicle’s reserved path, the reservation is approved. 

Else, the reservation is rejected. 

A control policy determines priority during conflicting requests. In this paper, we use a 

FCFS policy for reservation control, as do most other previous studies. FCFS is a fairness-based 

priority which grants reservations according to intersection arrival times. If a vehicle’s request 
for a reservation is rejected due to conflict, the vehicle is delayed and the IM suggests a later 

time for safe traversal. 

Although simple, FCFS properties can lead to paradoxes in reservation-based control. 

Levin et al. (12) produces three theoretical examples of signals outperforming reservations. The 

first shows that vehicles with lower priority and fewer conflict limitations could move before 

higher priority vehicles with more conflict limitations. For example, a vehicle on a small and 

empty local road approaching an intersection with a large arterial and long queue will move 

before someone farther back in the arterial queue, whereas a signal would give more green time 

to the arterial. The second exploits the property that vehicles cannot request a reservation unless 

they can execute it so a vehicle at the back of a platoon can’t make a request until it can enter the 
intersection. The third shows once a request is reserved, any request that does not conflict with it 

can move as well, which can lead to vehicles moving in a different order than their requests. 



   

 

    

    

    

   

  

    

    

    

      

      

      

  

   

    

  

   

       

   

   

            

      

      

         

               

         

  

         

      

                       

        

5 Patel, Venkatraman, Boyles 

1 Simulation on smaller arterial and freeway networks demonstrate this phenomenon. 

2 However, for the downtown DTA network tested in this paper, previous results suggest 

3 improvements to travel times for all demand scenarios tested, however at a decreasing rate of 

4 improvement with demand increase (4, 12). 

5 

6 2.2 Conflict Region Model 

7 To make large-scale DTA simulations tractable when modeling tile-based reservation control, we 

8 use a simplified conflict region model. The conflict region model (13) aggregates tiles into larger 

9 conflict regions, each limited by a capacity, and is able to capture the long-run behavior of 

10 reservation control. An example is shown in Figure 1. Additionally, we use the cell transmission 

11 model (14, 15) to dynamically propagate flow on links. 

12 

13 FIGURE 1 Conflict region representation of a four-way intersection, showing two 

14 conflicting turning movements (13) 

15 

16 3 PROBLEM STATEMENT AND ASSUMPTIONS 

17 This section presents the bi-level optimization problem that is the focus of this paper and which 

18 we attempt to solve using heuristic methods presented in Section 4. We then state the major 

19 assumptions made for this paper. 

20 Simply put, we want to achieve the lowest total system travel time (𝑇𝑆𝑇𝑇) in a network 

21 with the best configuration of reservations and signals. Equations 1 – 4 present the general bi-

22 level optimization problem. The direct decision variable 𝑧 defines a network-control 

23 configuration in which each 𝑧𝑖 is an eligible intersection 𝑖’s control (reservation or signal), and 

24 the indirect decision variable 𝑥 is a DUE link flow mapping. 𝐸 is the set of eligible intersections 

25 defined in the assumptions below, and is a subset of the set of all intersections in the network. 

26 

27 min 
�⃑�,�⃑� 

𝑇𝑆𝑇𝑇(𝑥, 𝑧) (1) 

28 𝑠. 𝑡. 𝑥 = Ϝ(𝑧) (2) 
29 𝑧𝑖 ∈ {0,1} ∀𝑖 (3) 

30 𝑖 ∈ 𝐸 (4) 
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1. The higher level is to minimize the 𝑇𝑆𝑇𝑇 of a city network by assigning each eligible 

intersection’s 𝑧𝑖 as reservation-based {1}, or signalized {0} control; 

2. The lower level is to solve for DUE to obtain the link flows 𝑥 for 𝑇𝑆𝑇𝑇(⋅) as shown in 

Equation 2, where the function Ϝ(𝑧) finds 𝑥 by using DTA. 

To clarify, a feasible solution to this problem 𝑧 is a network with a subset of reservation 

intersections and a remaining subset of signalized intersections. The 𝑇𝑆𝑇𝑇 of the configured 

network is the solution’s performance measure and is used to evaluate network congestion 
effects. Because solving for DUE is itself a difficult problem, we propose methods to 

heuristically solve for optimal 𝑧’s. 

To compare and evaluate the methods, experiments are conducted with different 

proportions of reservation intersections 𝛼 (alpha) on the same city network. For example, if our 

test network contains 100 eligible intersections, an 𝛼 = 0.2 requires 20 reservations and 80 
100 signals. Here, 𝐸 would be the set of 100 eligible intersections and ∑ = 20. This restriction 𝑖=1 𝑧𝑖 

also resembles application in practice as transportation authorities have budgets and will most 

likely deploy a limited number of reservation intersections. 

Below, we list the assumptions made in this paper. 

• The set of eligible intersections 𝐸 whose controls can be switched is the set of currently 

signalized intersections in the real network. The City of Austin uses pre-timed signals downtown 

during the peak period. The model does not consider the set of merges, diverges, or stop sign 

controlled intersections because reservations provide little system-wide benefit when applied 

there (4). The signals in our model reflect the timings and phase patterns (including offsets for 

progression) currently used by the city; 

• Only CAVs can use the reservation intersections, so all simulations are composed of 

100% CAV demand; 

• All reservation-based control uses a FCFS policy. 

4 METHODS 

This section details several ranking methods and a meta-heuristic method used to obtain 

solutions to the optimization problem (Equations 1 – 4). In addition, we identify differential 

measures which generalize an intersection’s performance under reservation vs. signalized 

control. 

The first two methods assign a score to each intersection which allows them to be ranked 

in order of the best reservation-control candidates. The scores are representative of potential 

benefit to 𝑇𝑆𝑇𝑇 under reservation vs. signalized control, relative to other intersections in the 

network. To assign a score, the first method uses local intersection simulation results and the 

second uses weighted sums of intersection characteristics obtained from system simulation. The 

third is a more sophisticated ranking method that uses multilinear regression to predict an 

intersection’s score found from the first method. It chooses a feasible 𝑧 which maximizes the 

total predicted score using easily obtainable intersection characteristics. Finally, we propose a 

meta-heuristic genetic algorithm which iteratively moves toward higher performing 𝑧 solutions. 

This method finds nice solutions, however provides few “pro-reservation” generalizations and is 

slowed by long computation times due to the required fitness-calculation of a DUE solution. On 



   

 

     

   

  

   

      

       

     

     

        

    

     

       

    

        

       

    

        

     

    

     

        

     

     

    

  

  

  

  
  

     

 

 

 

 

 

 

 

7 Patel, Venkatraman, Boyles 

1 the other hand, ranking methods are easier to execute and can offer quantitative selection criteria, 

2 however may not guarantee good solutions. 

3 

4 4.1 Intersection Ranking Methods 

5 This section details two methods which assign a score to each intersection 𝑖 and rank them in 

6 order of their differential potential benefit to 𝑇𝑆𝑇𝑇 under reservation control compared to signal 

7 control. The standalone scores may have limited realistic interpretations, however are used to 

8 compare intersections with each other and capture inefficient reservation behavior. These 

9 inefficiencies are typically seen in smaller networks with limited route choice, as this exploits 

10 FCFS paradoxes, and motivates more localized scores. 

11 The first ranking method approximates an “effective sub-system travel time” (𝛥𝑆𝑆𝑇𝑇) 

12 score by locally simulating each intersection under reservation and signal control. The 𝛥𝑆𝑆𝑇𝑇 
13 score is shown in Equation 5as the difference between two sub-system travel times (𝑆𝑆𝑇𝑇). For 

14 each 𝑖, an 𝑆𝑆𝑇𝑇𝑠𝑖𝑔 and 𝑆𝑆𝑇𝑇𝐹𝐶𝐹𝑆 are obtained by solving DUE on a subnetwork consisting of 

15 only 𝑖 and its incoming and outgoing links with 𝑧𝑖 = 0 and 𝑧𝑖 = 1, respectively. For all 

16 subnetworks, origin-destination (OD) demands are obtained by solving DUE on the whole parent 

17 network with 𝑧𝑖 = 0 ∀𝑖 and extracting the individual intersection’s flows from the parent 𝑥. OD 

18 demand is gathered from the all-signal case as it is representative of current real-world 

19 conditions, before any reservation-control has been implemented. This score estimation process 

20 is illustrated in Figure 2 for a single intersection. Though this method involves the DTA 

21 simulation of every eligible intersection subnetwork at least twice, the subnetworks are very 

22 small and have little demand compared to their parent city network. Single-intersection 

23 subnetworks, however, assume no interdependencies between intersections and, as presented in 

24 the following section, may be difficult to predict with a linear regression trend. 

25 

26 𝛥𝑆𝑆𝑇𝑇 (5) = 𝑆𝑆𝑇𝑇𝑠𝑖𝑔 − 𝑆𝑆𝑇𝑇𝐹𝐶𝐹𝑆 

27 

Parent network (all-signals) 

Run DTA 

𝑧𝑖 = 1 

𝑧𝑖 = 0 

𝜟𝑺𝑺𝑻𝑻𝒊 

Single intersection subnetworks 

𝑖 

28 
29 

30 FIGURE 2 Method of data collection for one intersection’s effective sub-system travel time 
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1 

2 The second ranking method uses a simplified score composed of a weighted combination 

3 of intersection turning demands. Several results presented in Section 5 show that through, left, 

4 and right demands were the most significant predictors of reservation-based performance for any 

intersection. If combined effectively according to relative importance, demand-based scores 

6 (𝑑𝑠𝑐𝑜𝑟𝑒) can be calculated for intersections. However, finding these initial weights may require 

7 an existing favorable 𝑧 solution. Equation 6 below defines a possible 𝑑𝑠𝑐𝑜𝑟𝑒, where 𝜇𝑡𝐹𝐶𝐹𝑆 is the 

8 average through, left, or right turning demand of all 𝑧𝑖 = 1 from an existing 𝑧 solution. 

9 Similarly, 𝜇𝑡𝑠𝑖𝑔 is the same average, but of all 𝑧𝑖 = 0. These two averages form a constant 

weight which is applied to each 𝑖’s turning demands 𝑑𝑡 to get a score for each 𝑖. As will be 

11 shown, favorably selected reservation intersections tend to have much higher turning demand 

12 than signalized intersections. Although this ranking method requires an existing 𝑧 solution, it can 

13 prove powerful once effective weights are obtained as it only requires intersection turning 

14 demands extracted from the parent network’s 𝑥 DUE solution. As mentioned in Section 5.2, this 

method offers less than average performing configurations, but is very time efficient using the 

16 most significant predictors of reservation control benefit. 

17 

18 

𝜇𝑡𝐹𝐶𝐹𝑆 = ∑ (6) 𝑑𝑠𝑐𝑜𝑟𝑒 ∗ 𝑑𝑡 𝜇𝑡𝑠𝑖𝑔 𝑡∈{𝑡ℎ𝑟𝑜𝑢𝑔ℎ, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡} 

19 

Other weighted scores may be formulated using other intersection characteristics. If an 

21 effective score which captures the differential performance of an intersection under reservation 

22 vs. signal control can be found, the ranking of intersections is intuitive and can allow for simple 

23 deployment strategies. Finding an efficient and accurate ranking method can be difficult 

24 however, due to few readily available intersection metrics which may also ignore the 

interdependent complexities that intersections may share with each other. 

26 

27 4.2 Multilinear Regression for Scoring 

28 This section presents another, more complex intersection ranking method which uses a 

29 multilinear regression to predict an intersection’s 𝛥𝑆𝑆𝑇𝑇 score. If effective and extensible, this 

method may allow “pro-reservation” intersections to be generalized and make for easy 

31 reservation deployment strategies as the regression can be used on any signalized intersection 

32 with easily obtainable characteristics. 

33 As shown in Section 5, regression rankings performed worse than all other methods in 

34 terms of minimizing 𝑇𝑆𝑇𝑇, however the original 𝛥𝑆𝑆𝑇𝑇 data performed well. Despite this, we 

are still able to draw generalizations from significant predictor variables. 

36 

37 4.2.1 Formulation 

38 Essentially, the linear regression predicts an intersection’s 𝛥𝑆𝑆𝑇𝑇 score using predictor variables 

39 which characterize the currently signalized intersection in the real network. Recall that the higher 

the 𝛥𝑆𝑆𝑇𝑇, the more likely an intersection is to benefit local congestion under reservation 

41 control beyond signal control. Results presented in Section 5 show that the first mentioned 

42 𝛥𝑆𝑆𝑇𝑇 ranking method’s 𝑧 solutions perform quite well making this score favorable to predict as 

43 it also encapsulates localized congestion effects. 
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1 Predictor variables were chosen based on descriptive power of the real signalized 

2 intersection as well as ease of collection. All predictor variables are described in Table 1 and are 

3 moderately easy to obtain from city and transportation authorities, or through simulation. 

4 Cumulative through, left, and right turn demand are the only variables obtained through DTA 

5 simulation and are later shown to be the most significant. Link length variables are considered 

6 because previous studies indicate that FCFS reservation inefficiencies are exacerbated by queue 

7 spillback onto close-proximity roads and intersections. Several signal and traffic control-specific 

8 variables such as cycle length and number of unrestricted turning movements are considered in 

9 an effort to surface inefficiencies in current controls. 

10 The general regression formula is as follows in Equation 7, where 𝛥𝑆𝑆𝑇𝑇∗ is the 

11 predicted “effective sub-system travel time” score, 𝛽 is the vector of estimated variable 

12 coefficients, �⃑� is the vector of predictor variables, and 𝐹𝐹𝑇𝑇 (free-flow travel time) is the 

13 regression constant. 

14 

15 ⃑ 𝛥𝑆𝑆𝑇𝑇∗ = 𝐹𝐹𝑇𝑇 + 𝛽 ∗ 𝑋 (7) 
16 

17 4.2.2 Regression training 

18 The dataset used to estimate variable coefficients consists of |𝐸| entries, each of which contains 

19 an intersection 𝑖’s mentioned predictor variables and 𝛥𝑆𝑆𝑇𝑇 score. The 𝛥𝑆𝑆𝑇𝑇 for each 𝑖 is 
20 obtained using the 𝛥𝑆𝑆𝑇𝑇 ranking method from Section 4.1. We train two separate regressions 

21 using our testbed network data and a different downtown network’s data, and apply both to the 

22 same testbed network. The non-testbed-trained regression is estimated to evaluate the 

23 extensibility of the regression to intersections in other networks and the testbed-trained 

24 regression assesses data-fitting. Section 5.2 details a regression model trained on the Dallas 

25 network. 

26 

27 TABLE 1 Multilinear Regression Predictor Variables Considered 

28 

Predictor Variable Variable Description Units 

Number of phases The total number of signal phases across a cycle Number of 

phases 

Cycle length The time of one complete signal phasing cycle seconds 

Number of moves The total number of non-restrictive turning 

movements for the intersection. Turning 

movements are defined by an approach link and 

an exit link. 

Number of 

turning 

movements 

Number of through 

turns 

The total cumulative through demand of the 

intersection across all approaches 

Number of 

vehicles 

Number of left 

turns 

The total cumulative left turn demand of the 

intersection across all approaches 

Number of 

vehicles 
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Number of right 

turns 

The total cumulative right turn demand of the 

intersection across all approaches 

Number of 

vehicles 

Minimum length The minimum length of a link entering or 

exiting the intersection 

Length in feet 

Maximum length The maximum length of a link entering or 

exiting the intersection 

Length in feet 

Average length The average length of a link entering or exiting 

the intersection 

Length in 

meters 

Minimum link 

capacity 

The minimum capacity of a link entering or 

exiting the intersection 

Number of 

vehicles/hour 

Total link capacity The total cumulative capacity of all links 

entering or exiting the intersection 

Number of 

vehicles/hour 

1 

2 4.3 Genetic Algorithm 

3 This section presents a genetic algorithm (GA) which, unlike previous methods, attempts to 

4 directly solve the bi-level optimization problem heuristically. We implement a GA that evaluates 

5 and alters configurations of the same network using DTA and a “survival of the fittest” policy to 

6 determine improvement search directions to iteratively approach an optimal 𝑧 solution. We begin 

7 with a general introduction to GAs followed by the formulation of our own GA model. In 

8 addition to finding 𝑧 solutions with fixed reservation proportions (𝛼), we formulate an 

9 “unconstrained” GA which allows for change in 𝛼. 

10 Although this method by far requires the most computation time of any other method 

11 presented due to solving DTA many times, it generally provides the best 𝑧 solutions at each 

12 reservation proportion. 

13 

14 4.3.1 A background on genetic algorithms 

15 A genetic algorithm is a class of metaheuristic computational methods inspired by genetic 

16 evolution used to solve constrained and unconstrained optimization problems. The algorithm 

17 starts with an initial population of individuals, measures each’s performance, and then iteratively 

18 creates new and better performing generations by combining the best traits of older generations. 

19 The algorithm then theoretically ends with the best performing individual. 

20 

21 4.3.2 Formulation 

22 This section details our implementation of a GA to directly and heuristically solve the bi-level 

23 optimization problem stated in Equations 1 – 4. We first detail our constrained GA which is used 

24 for the bulk of experimentation, and then present the modified unconstrained version. 

25 At the root of our GA implementation, each individual 𝑛 in the population 𝑁 is a 

26 different feasible configuration, 𝑧𝑛 of the same network. Each individual possesses |𝐸| total 

27 genes which are defined by 𝑧𝑖
𝑛 ∈ {0, 1} ∀𝑖 ∈ 𝐸 and are what the GA modifies during initial 

28 population generation, crossover, and mutation. 𝑇𝑆𝑇𝑇𝑛 is used as an individual’s fitness value 

29 (or effectiveness), and is found by solving DUE (Ϝ(𝑧𝑛)) using DTA to obtain 𝑥𝑛 and then 
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𝑛 1 𝑇𝑆𝑇𝑇(𝑥𝑛, 𝑧𝑛). Because this GA is constrained, we enforce ∑𝑖 𝑧𝑖 = 𝑟 ∀𝑛 ∈ 𝑁, where 𝑟 is the 

2 number of required reservations found by 𝑟 = |𝐸| ∗ 𝛼. The following is an overview of the 

3 algorithm’s steps. 
4 

1. Initial population: Generate an initial population of ℎ randomly generated individuals, 
𝑛 6 each satisfying ∑ 𝑧𝑖 = 𝑟 ; 𝑖 

7 2. Population evaluation: Calculate the 𝑇𝑆𝑇𝑇 ∀𝑛 ∈ 𝑁 and then rank 𝑁 in order of 𝑇𝑆𝑇𝑇. 

8 Store the individual with the lowest 𝑇𝑆𝑇𝑇 as the best. 

9 3. Parent selection: Select the best performing proportion 𝑘 of 𝑁 as eligible parents and 

eliminate the bottom 1 − 𝑘 proportion. Randomly choose |𝑁| ∗ (1 − 𝑘) pairs of parents from the 

11 eligible list, removing parents as they are chosen; 

12 4. Crossover: To create a new child, iterate through each 𝑧𝑖 of both selected parents. For the 
𝑃𝑎𝑟𝑒𝑛𝑡 1 𝑃𝑎𝑟𝑒𝑛𝑡 2 𝐶ℎ𝑖𝑙𝑑 13 constrained GA, randomly choose an 𝑖 to look at. If 𝑧𝑖 = 𝑧𝑖 , then give 𝑧𝑖 the 

14 same control. Else, use the crossover probability 𝑝, shown by Equation 8 below, to determine the 

child’s control. 
16 𝑝 is a linear pdf that creates a 𝑝 ∈ [0.5,1.0] and gives the child a higher probability of 

17 inheriting the higher performing parent’s control as the difference in 𝑇𝑆𝑇𝑇 between the two 

18 parents increases. 
|𝑇𝑆𝑇𝑇𝑃𝑎𝑟𝑒𝑛𝑡 1 − 𝑇𝑆𝑇𝑇𝑃𝑎𝑟𝑒𝑛𝑡 2| 

19 𝑝 = 0.5 + 0.5 ∗ (8) 
𝑇𝑆𝑇𝑇𝑎𝑙𝑙−𝑠𝑖𝑔𝑛𝑎𝑙𝑠 − 𝑇𝑆𝑇𝑇𝑎𝑙𝑙−𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

21 Do this until the 𝑟 limit has been reached for the child and assign everything else as signals; 

22 5. Mutation: Each new child is chosen to be mutated with probability 𝑚. If chosen, each 𝑧𝑖
𝑛 

23 of the individual has a probability 𝑏 of being switched to the opposite control. This is to 

24 introduce randomness into the population and avoid falling into a local minimum; 

6. Children fitness evaluation: Find the 𝑇𝑆𝑇𝑇 of each new child and add them to the set of 

26 parents to create the new 𝑁 and re-rank 𝑁. The individual with the lowest 𝑇𝑆𝑇𝑇 is stored and the 

27 algorithm loops back to Step 3 for 𝑢 iterations. 

28 

29 Next, the unconstrained GA essentially follows the same steps as the constrained, 
𝑛 𝑛 however, the initial population has no ∑ 𝑧𝑖 = 𝑟 ∀𝑛 constraint and each 𝑧𝑖 has an equally likely 𝑖 

31 chance of being {0} or {1}. Then, at each crossover and mutation step, every 𝑧𝑖 is considered. 

32 The unconstrained GA theoretically approaches the highest-performing network configuration 

33 which yields the minimum possible 𝑇𝑆𝑇𝑇, however we later show during experimentation that it 

34 falls into a possible local minimum and is eventually outperformed by the “constrained” GA and 

𝛥𝑆𝑆𝑇𝑇 ranking at even lower reservation proportions. 

36 Because the GA uses no intersection-specific characteristics or performance measures, it 

37 essentially just provides a highly effective 𝑧 and doesn’t offer many “pro-reservation” 
38 generalizations. For this reason and long computation times, GA solutions are primarily used as a 

39 benchmark for high 𝑧 performance and is the main method used to identify visual control-

placement trends seen in the testbed network in Section 5.5. 

41 

42 
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1 5 EXPERIMENTAL RESULTS 

2 This section presents experimental results of testing the 𝛥𝑆𝑆𝑇𝑇 ranking, linear regression 

3 (𝛥𝑆𝑆𝑇𝑇∗ ) ranking, and GA methods on the large-scale city network of downtown Austin, TX. 

4 All methods obtain feasible mixed-configurations (𝑧) of reservations and signals in the network 

5 in an effort to reduce congestion and minimize 𝑇𝑆𝑇𝑇, evaluated using DTA. 

6 We first show network-specific implementations of each method and their 𝑇𝑆𝑇𝑇 results. 

7 We then compare the methods in terms of effectiveness and efficiency. We finally link visual 

8 and quantitative network-wide intersection trends, finding better reservation placement in 

9 consecutive chains on highly trafficked streets. 

10 The downtown Austin network used for all experimentation, shown in Figure 3, contains 

11 1,247 links, 546 nodes (174 signalized intersections), 171 zones, and 62,783 vehicle trips over a 

12 4-hour observation period. This network includes several large arterials and a large downtown 

13 grid. This is a useful testbed as flow on the grid is primarily restricted by intersections, and the 

14 large network allows for alternative route choices. In addition, to train a regression, we use the 

15 downtown Dallas network containing 152 signalized intersections and 167,592 vehicle trips over 

16 a 4-hour period. The DTA models used in this paper are described in Section 2.2 and solved 

17 using the method of successive averages to a 2% gap, defined in Equation 9. The 

18 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑡𝑖𝑚𝑒 refers to a total travel time experienced if all demand were to be loaded 

19 onto the simulation’s current shortest paths. 
20 

𝑇𝑆𝑇𝑇 − 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑡𝑖𝑚𝑒 
21 𝑔𝑎𝑝 = (9) 

𝑇𝑆𝑇𝑇 
22 

23 
24 

25 FIGURE 3 Downtown Austin network 

26 

27 Experiments were run for every method at each 𝛼 ∈ {0.2, 0.4, 0.6, 0.8} (defined in 

28 Section 3). For comparison, we simulate the Austin network with both all-signals and all-

29 reservations yielding 𝑇𝑆𝑇𝑇s of 6443.22 hrs and 4560.14 hrs respectively, labeled in Figure 4. 

30 We also test a random configuration method in which, for each 𝛼, we evaluate 10 randomly 

31 generated 𝑧 solutions and average their 𝑇𝑆𝑇𝑇s, also shown in Figure 4 as Random. This method 

32 is used as a benchmark given that effective methods should at least beat complete randomization. 

33 



   

 

    

        

         

        

   

        

     

     

       

       

       

         

      

          

  

  

       

         

     

      

         

      

       

         

       

  

  

   

  

 
 

  

    

     

     

     

      

     

     

  

      

        

        

       

      

13 Patel, Venkatraman, Boyles 

1 5.1 𝜟𝑺𝑺𝑻𝑻 Ranking Results 

2 This ranking method uses subnetwork simulation results to assign a Δ𝑆𝑆𝑇𝑇 score to each eligible 

3 intersection in a network to capture a localized benefit to travel times under reservation vs. signal 

4 control. The 174 eligible intersections were then ranked in order of descending scores and the top 

5 𝛼 × 174 are assigned as reservations and the rest signals. 

6 The Δ𝑆𝑆𝑇𝑇 ranking method performed well on the Austin network, improving 𝑇𝑆𝑇𝑇 
7 beyond the all-reservation case with just over a 40% reservation proportion and clearly 

8 outperforming the Random method. This trend continued as the Δ𝑆𝑆𝑇𝑇 configurations decreased 

9 in 𝑇𝑆𝑇𝑇 at a decreasing rate as 𝛼 increased. 

10 All previous experimental studies with this network showed improved travel times, with 

11 no signs of paradoxical inefficiencies associated with reservation-based control (13, 4). This 

12 experiment’s results show that such paradoxes can exist in a large-scale DTA network with more 

13 congestion benefits than the all-reservation case at less than half the reservation control. This 

14 also supports the validity of using 𝛥𝑆𝑆𝑇𝑇 scores to train a regression, detailed in the next 

15 section. 

16 

17 5.2 Multilinear Regression Scoring (𝜟𝑺𝑺𝑻𝑻∗ Ranking) Results 

18 The Δ𝑆𝑆𝑇𝑇∗ ranking method uses linear regression to predict an intersection’s Δ𝑆𝑆𝑇𝑇 score 

19 (𝛥𝑆𝑆𝑇𝑇∗ ) given a set of significant but easily obtainable predictor variables, �⃑�. Two regressions 

20 are estimated, one regressing Dallas intersection data and the other regressing Austin data. The 

21 purpose of using a Dallas regression to predict Austin scores is to test transferability of one city’s 

22 reservation intersection behavior to another’s making deployment easier in practice. This may 

23 also surface common trends seen in variables. The purpose of an Austin regression predicting its 

24 own scores is to validate the linear trend assumption. Δ𝑆𝑆𝑇𝑇 training data is obtained as 

25 described in Section 4.1 and predictor variables are obtained from the City of Austin and 

26 simulation, described in Section 4.2. 

27 

28 TABLE 2 Dallas-Trained Multilinear Regression Summary 

29 

Variable 
β 

(coefficient) 
Std. error t-score 

(Constant) -717.3 -717.3 -717.3 

Cycle length 3.286 3.286 3.286 

Number of moves 9.495 9.495 9.495 

Number of Through turns 0.261 0.261 0.261 

Number of left turns 0.43 0.43 0.43 

Number of right turns 0.414 0.414 0.414 

Minimum length 0.409 0.409 0.409 

30 

31 Table 2 details the Dallas-trained regression model which includes only the significant 

32 predictors of 𝛥𝑆𝑆𝑇𝑇 from the pool in Table 1. Relative significance of variables was evidenced 

33 from t-values at a 95% confidence level (|𝑡𝑣𝑎𝑟| ≥ 1.645). The model had an 𝑅 = 0.868, 𝑅2 = 

34 0.754, adjusted 𝑅2 = 0.752, and standard error of the estimate = 360.818. It is evident that cycle 

35 length and all three turning demand variables proved to be significant predictors in the model. 
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The cycle length coefficient is positive implying an increase in Δ𝑆𝑆𝑇𝑇. Demand is expectedly 

significant and positive as major arterials tend to have higher through demands and large queue 

spillback at peak times. A positive coefficient suggests an increase in 𝛥𝑆𝑆𝑇𝑇 with increased 

turning demand, implying more benefit under reservation control. The regression indicates that 

heavily demanded intersections perform better as reservations. 

Two experiments were run on Austin’s network, each with intersections ranked according 

to either the Austin-trained or Dallas-trained regression. Both Δ𝑆𝑆𝑇𝑇∗ rankings performed 

similarly, as shown in Figure 4. Although 𝑇𝑆𝑇𝑇s steadily decreased as 𝛼 increased, this was to 

be expected and the Δ𝑆𝑆𝑇𝑇∗ rankings performed worse than even the Random method. The 

result shows a linear trend cannot be fit to the Δ𝑆𝑆𝑇𝑇 scores. Complex interdependencies 

between proximal intersections most likely attribute to this non-linear trend. 

5.3 Genetic Algorithm Results 

The GA takes in a set of model parameters and iteratively tends towards optimal 𝑧 solutions with 

minimal travel times. In this paper, we use a custom Java GA code to create our model. Model 

parameters used in the Austin network experiments include an initial population ℎ = 100, 

eligible parent proportion of the population 𝑘 = 0.75, individual mutation probability 𝑚 = 0.1, 

and gene mutation probability 𝑏 = 0.07. Given parameters were found based on trial-and-error 

methods and computation time assumptions. 

Results in Figure 4 show that the GA overall obtained the best results. The GA mostly 

outperformed the 𝛥𝑆𝑆𝑇𝑇 ranking method with larger improvements over the method at lower 

reservation proportions, however the two came close in 𝑇𝑆𝑇𝑇 performance and the Δ𝑆𝑆𝑇𝑇 
method marginally beat the GA at 𝛼 = 0.8. At just under 𝛼 = 0.4, the GA also outperforms the 

all-reservation case. 

An additional unconstrained GA case was run which attempted to solve the bi-level 

optimization problem defined in Section 3 using any proportion of reservations. This 

unconstrained GA therefore approaches the optimal 𝛼 as well. The resulting configuration had 

𝛼 = 0.86 and a 𝑇𝑆𝑇𝑇 of 4229.2 hours which was marginally outperformed by both the 

constrained GA and the 𝛥𝑆𝑆𝑇𝑇 ranking method at a lower 𝛼 = 0.8. 

Figure 5 shows the GA’s performance for the unconstrained, 𝛼 = 0.2, and 𝛼 = 0.4 cases 

over 100 iterations, with the latter two showing slightly more of a flattening in 𝑇𝑆𝑇𝑇. Though 

the steeper convergence graph may imply opportunity for more improvement, Figure 6 shows a 

relatively steady increase in reservation proportion over the iterations, possibly leading to a local 

minimum. 
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3 FIGURE 4 Downtown Austin results summary 

4 

5 5.4 Comparative Performance of Methods 

6 As shown by results, the GA obtained the highest performing and most effective 𝑧 which had the 

7 lowest 𝑇𝑆𝑇𝑇s, the Δ𝑆𝑆𝑇𝑇 ranking method obtained very close travel times, and finally the 

8 Δ𝑆𝑆𝑇𝑇∗ ranking method had the worst travel times. However, the most effective methods were 

9 not necessarily the most efficient methods. 

10 Though the GA provided results with the most system-wide benefit, it was by far the 

11 most computationally expensive method. 100 iterations of the GA meant 5100 runs of DTA (100 

12 initial population + 50 new children/iteration) to solve DUE on the same large-scale network. At 

13 an average run’s convergence time of 15 min/run, a single GA result requires about 22 hours of 

14 computation. On the other hand, the Δ𝑆𝑆𝑇𝑇 ranking method achieved results similar to the GA 

15 and is much more time efficient. Although we are running DTA on 174 subnetworks under both 

16 controls, the single-intersection subnetworks each converge in 2-3 seconds, making for a 

17 conservative computation time of 17.5 minutes to obtain all scores. Finally, the 𝛥𝑆𝑆𝑇𝑇∗ method 

18 is the most time efficient of the three as it only entails applying a regression equation to a data 

19 set, but the discovered solutions perform worse than even randomly generated ones. However, 

20 the regressions revealed important “pro-reservation” intersection characteristics which may 
21 allow for development of better methods. 
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1 Note that Section 5 does not include the 𝑑𝑠𝑐𝑜𝑟𝑒 ranking method as it did not yield 

2 significant results. Turning demand coefficients were found based on GA result data and 

3 intersections were ranked based on the calculated 𝑑𝑠𝑐𝑜𝑟𝑒’s. This method was outperformed by 
4 the 𝛥𝑆𝑆𝑇𝑇 ranking method, however performed better than randomized configurations. The 

5 𝑑𝑠𝑐𝑜𝑟𝑒 method’s minimal computation time does not outweigh the predictive power of the 
6 𝛥𝑆𝑆𝑇𝑇 ranking. Because of this and because the method didn’t reveal any additional “pro-

7 reservation” intersection characteristics, it was not tested further. For reference, at 𝛼 = 0.2 and 

8 0.4 the 𝑑𝑠𝑐𝑜𝑟𝑒 method gave a 𝑇𝑆𝑇𝑇 of 5458.2 hrs and 4950.0 hrs respectively. 
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5.5 Trends in Reservation-based Intersection Placement 

Because finding many quantitative trends and metrics in reservation placement is difficult, it is 

hard to develop deployment strategies solely on these metrics to be used by transportation 

planners and policymakers. Using visual observations and observed quantitative data, we are 

able to generalize trends in reservation placement. We take the highest performing 𝑧 solutions 

from the constrained GA and place them on an Austin city street map. 

Figure 7 shows mappings of the GA’s resulting configurations with reservation (TBR) 

intersections in green and signalized intersections in red. Even though all GA experiments are 

independent of each other, we see that every reservation from the 𝛼 = 0.2 (35 reservations) case 

remained a reservation (except for 1) in the 𝛼 = 0.4 (70 reservations) case. This overlap supports 

similar configuration patters seen in 𝛥𝑆𝑆𝑇𝑇 ranking results. We notice that reservation 

intersections were typically kept together, typically in consecutive chains or corridors. We also 

notice that these chains are along highly congested corridors in the peak periods such as 15th St, 

Cesar Chavez St, Lamar Blvd, Congress Ave and MLK Blvd. GA results show almost 5.2 times 

the number of through turns on average at reservation intersections compared to signalized 

intersections and 2 to 4 times the number of left and right turns. 

As we move to higher reservation proportions, the reservation chains began to intersect. 

On the right map of Figure 7, reservation chains going from 15th St, MLK Blvd, Cesar Chavez St 

and others go directly to large orthogonal arterial and freeway roads (Lamar and I35 frontage 

road). 

These reservation chains are seemingly placed at these locations to promote progression 

of major arterial streets and avoid potential FCFS inefficiencies previously seen (12). With 

multiple reservations in a row, a progression similar to that of pre-timed signals is possible and 

could prevent queue spillback onto smaller streets as many attempt to enter arterials during peak 

periods. 
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FIGURE 7 Control configurations found by the constrained GA with 𝜶 = 𝟎. 𝟐 (left) and 

𝜶 = 𝟎. 𝟒 (right) 

6 CONCLUSIONS 

This paper presented and tested methods for finding favorable mixed-control configurations of 

FCFS reservation-based and signalized intersections in the large-scale city network of downtown 

Austin. The optimization problem of minimizing 𝑇𝑆𝑇𝑇 is challenging as it requires solving for 

DTA, so we proposed several heuristic methods. We present three different methods for 

obtaining favorable network configurations including an effective sub-system travel time 

ranking, a multilinear regression intersection ranking, and a genetic algorithm. 

First, a ranking method assigns scores to intersections (𝛥𝑆𝑆𝑇𝑇) which represent a 

differential performance measure of the individual intersection under reservation vs. signal 

control in terms of travel time. Austin test intersections were then ranked accordingly and results 

show the method worked well to improve travel times, outperforming the all-reservation case but 

with just over 40% reservations. This method proved more tedious than applying a readily 

available regression equation, however is still relatively quick. 

Next, a multilinear regression was trained with data from a separate downtown Dallas 

network, to test extensibility of the regression to other networks, with its predictor variables 

being easily attainable intersection characteristics. Significant variables were primarily turning 

demand-related except for signal cycle length. Austin intersection 𝛥𝑆𝑆𝑇𝑇∗ scores were predicted 

using the regression and were ranked accordingly. However, when tested in simulation, 

regression ranking results did not perform well and were outperformed by a random intersection 

selection method. The dependent variable was concluded to not fit a linear trend, however if 
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correct, a regression equation could prove useful as it would allow any set of signalized 

intersections to be ranked easily. 

Finally, a genetic algorithm to successively create better performing configurations is 

proposed. The GA solved DTA to evaluate fitness over 100 iterations, proving to be very 

computationally expensive requiring nearly 22 hours to complete. This method also only gives a 

solution and no insight into significant “pro-reservation” characteristics. However, the GA 

provided the lowest 𝑇𝑆𝑇𝑇 results, just marginally lower than the 𝛥𝑆𝑆𝑇𝑇 ranking method, also 

beating the base all-reservation case with 60% less smart intersections. 

Mapping the GA results revealed a placement of reservation intersections in chains of 

consecutive reservations along very highly congested roads at peak hours. This most likely was 

to provide progression along large arterials and mitigate paradoxical effects seen with FCFS 

reservations. These trends and congestion benefits can be very useful in terms of planning and 

policy, especially with the deployment of reservations into our infrastructure. 

These results and methods motivate the need for further analysis of reservation 

performance trends and intersection characteristics for proper deployment techniques. Although 

FCFS performs well in some situations (4, 8, 10), it does worse than signals in others and these 

results can be taken further to develop system optimal control policies. Although improvements 

were seen in mixed-configurations, further mesoscopic modeling studies on other reservation-

based control policies would be likely more efficient. Additionally, the assumption of a 100% 

CAV penetration rate may not be achieved until well into the future. For this reason, further 

experimentation needs to be done using hybrid-reservation control as some work has shown its 

inefficiency compared to fully autonomous reservation control (16). 
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