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Abstract

The Expectation-Maximization algorithm is perhaps the most broadly used algorithm for
inference of latent variable problems. A theoretical understanding of its performance, however,
largely remains lacking. Recent results established that EM enjoys global convergence for
Gaussian Mixture Models. For Mixed Regression, however, only local convergence results have
been established, and those only for the high SNR regime. We show here that EM converges for
mixed linear regression with two components (it is known not to converge for three or more),
and moreover that this convergence holds for random initialization.

1 Introduction
The expectation-maximization (EM) algorithm is widely used for inference in the presence of missing
data, often modeled as latent variables. It is a general-purpose technique for computing the maximum
likelihood solution for such problems [1, 2]. In general, solving the max-likelihood problem in
the presence of missing data is an intractable (NP-hard) problem due to the non-convexity of the
likelihood function. EM is an iterative procedure that computes successively tighter lower bounds
on the (typically non-convex) likelihood function. Its appeal stems from its success as observed in
a broad array of problems in practice, and its computational simplicity: it is essentially no more
complex than solving the ML problem in the setting of no missing variables. Despite its simplicity
and widespread use, very little is understood about EM. Recent results have demonstrated that in
the high SNR regime (and under some additional regularity assumptions), EM converges locally (e.g.,
[3, 4, 5, 6, 7]). For the special case of Gaussian Mixtures with two components, very recent work
[8] has demonstrated that a two-phase version of EM converges from a random initialization point.
As far as we are aware, no comparable result is known for mixed linear regression – in other words,
prior to this work, no results guarantee global convergence of EM. Nevertheless, the EM algorithm is
widely used to solve mixed linear regression in practice (e.g., see [9, 10]).

We show that EM for mixed linear regression (MLR) with two components converges globally.
There is no need for any special initialization. Moreover, our proof reveals (a bound on) the rate
of convergence of EM as a function of how far it is from the optimal solution. Locally, we recover
and expand on past results (e.g., [6, 4]), as these not only required an initialization step, but only
demonstrated that EM converges in the high SNR regime. We explain the connections to prior art in
more detail in Section 1.2.
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1.1 Basic Setup and the EM Algorithm
Mixed linear regression (MLR) models the setting where different subsets of the response variables
are generated by different regressors. In the case of two components, which we consider here, data
(xi, yi) ∈ Rd ×R are generated by:

yi = β∗zixi + ei, i = 1, ..., n,

where zi are the hidden or latent variables that take values zi ∈ {1, 2}, and thus play the role of labels,
denoting that a sample (xi, yi) satisfies a (noisy) linear equation based on β1 or β2. Finding the true
parameters β∗1 ,β∗2 is known to be NP-hard in general [6], even in the absence of noise. Accordingly, a
common assumption in the literature requires both xi and ei to be sampled independently according
to a Gaussian distribution, i.e., xi ∼ N (0, Id) and ei ∼ N (0, σ2). We assume, moreover, that the
hidden variables are balanced, and independent of everything else.

At each iteration, the EM algorithm performs two steps, known as the E-step and M-step; these
can be written as follows:

E-step : Q(β|βt) = EX [
∑
z

p(z|X;βt) log f(X, z;β)],

M-step : βt+1 = arg max
β

Q(β|βt), (1)

where f is the probability distribution function that generates the data. Specifically, the E-step forms
the likelihood function by assigning conditional probability to hidden labels given samples, based on
the current estimator of true parameters. Subsequently, the M-step maximizes the expectation built
at the E-step to find a new estimator. The EM algorithm alternates over these two steps iteratively
until it converges. Due to the intuitive appeal of updating weights, and then updating the estimates
of the βi, and also due to the computational tractability of each iteration, the EM algorithm has
been widely used in many different applications.

When we take f to be the Gaussian distribution, the log becomes the squared loss function, and
hence the M -step becomes the familiar (weighted) least squared loss minimization problem. In the
finite-sample setting, the expectation over X is the empirical distribution over the samples {xi}
observed, and the EM update has a closed form expression: for sample-based EM operator with
current estimator β, the update becomes

(EM) β̃′ = (
1

n

n∑
i=1

xix
T
i )−1(

1

n

n∑
i=1

tanh(
βTxi
σ2

yi)yixi). (2)

In the setting where the covariates have identity covariance (or have been normalized to have identity
covariance), it is also interesting, as we explain further below, to consider a further simplified version
of EM that replaces ( 1

n

∑n
i=1 xix

T
i ) with its expectation. In this case, for the finite sample setting,

the EM update, or “easy EM update” as we call it, takes the following form:

(Easy-EM) β̃′′ = (
1

n

n∑
i=1

tanh(
βTxi
σ2

yi)yixi). (3)

The contribution of this work is to analyze these two iterations in the finite-sample setting, and
thereby to provide guarantees for their convergence from a random initialization point.

1.2 Related Work and Main Contributions
Despite the popularity of EM in practice, our knowledge of when it converges to the true solution is
still limited, as mentioned above. In general, it is known that EM algorithm may settle in a bad
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local optimum unless it starts from well initialized point [2]. Examples that illustrate this poor
performance are, however, contradictory, at least in spirit, to the observations of EM’s practical
performance, where global convergence from random initialization has been observed and indeed
conjectured for some time.

In MLR, the local convergence of EM has been recently established, i.e., it is known that the EM
algorithm does converge to the global optimum if it starts from a small enough neighborhood around
the true parameter [3, 4, 5, 6, 7]. In other words, if we assume we have the good fortune of starting
from a point sufficiently close to the desired solution, the EM algorithm converges to it. However,
the EM algorithm has been successful in practice for this particular problem even when started from
randomly initialized point which is not necessarily close to the true parameter.

EM is also a very popular algorithm for a the somewhat simpler problem of clustering; specifically,
its behavior has recently been studied for the problem of learning a Gaussian mixture model(GMM).
Motivated by [4], two works in [8, 11] on global analysis of EM for the mixture of two Gaussians
have recently delivered results that guarantee convergence of EM for this specific problem, from a
random initialization.

For both GMM and MLR, the EM update involves a quadratic minimization problem, hence the
problems are related. As we detail below in Section 2, there are some similarities between EM for
the GMM problem, and EM for the MLR problem which we focus on here. Therefore we are spared
from reinventing the wheel: some useful lemmas and proof techniques from analysis on GMM can be
reused in our proof. We highlight these carefully in the details that follow. We also point out the
numerous differences, that posed novel challenges to demonstrating the global convergence of EM for
MLR.

MLR is in and of itself an interesting problem, and in fact, until work in [6, 12], there were no
efficient results for the solution of the problem. The work in [12] developes a lifted convex formulation
approach and using information theoretic arguments, obtains tight minimax bounds on solving MLR.
A good initialization strategy for EM based on Stein’s second-order lemma was proposed in [6],
though this seems to rely on the noiseless setting which they study. The above two papers have
focused on the two component case. Recent work has extended the focus to more components. Work
in [13, 14] develops gradient descent based algorithms. In parallel, the work in [7, 15, 16] is based on
tensor decomposition, which estimates third order moments to recover true parameters.

Recently, the work in [4] proposed a novel framework to analyze EM algorithm in general, and
showed a local convergence result for MLR with two symmetric components as an application. A
better local region was suggested in [5], where the convergence is guaranteed inside a region where
the angle formed by the initialization with the true parameter is small enough. Still, all known results
remain inherently local, and in particular, are not satisfied by random initialization, even when a
norm bound on the true parameter is known.

Still, the question of whether EM converges from a random initialization, remains open. Our
main contribution is to resolve this point affirmatively.

Main Contributions. We prove the global convergence of the EM algorithm, i.e., it converges
with probability 1, when initialized from a random initialization point. We first establish this result
for the infinite sample limit, i.e., population EM. We then develop concentration inequalities to couple
the finite-sample version of EM with population EM, thereby providing a finite sample analysis.
Though the general approach and most of the technical details differ, this approach of coupling
the finite sample analysis with the population version is inspired by [4]. As we comment on in
greater detail below, this coupling is strong enough to yield information theoretically optimal sample
complexity dependence on the dimension, but our results still leave room for improvement on the
precise dependence on the signal-to-noise ratio.
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1.3 A Roadmap and Proof Outline
We provide a brief outline of the main steps of the paper. Because of our balanced (and independent)
hidden label assumption, solving a standard regression in the infinite data setting (i.e., ignoring the
fact that the problem is a mixture) returns the mean of the two parameters, β

∗
1+β∗2

2 . Even with finite
samples, we can get a center within small sampling error. This allows the re-centering of the data.
Therefore, throughout this paper, we consider a symmetric model, i.e., zi is randomly selected with
probability 1

2 for each, and β∗ = β∗1 = −β∗2 .

Analysis on Global Convergence of Population EM.

• Decreasing Angle. For both noisy and noiseless settings, previous work on mixed regression
([6, 4, 3, 17]) relies on demonstrating that the distance between the current iterate and the
true solution, contracts at every iteration. Specifically, prior work has relied on demonstrating
a fixed contraction with respect to l2 distance, between the estimator and the true parameter.
All techniques following this approach, are able to show that such a contraction holds only
when the iterates are close enough to the true parameter, i.e., only under a sufficiently good
initialization. Indeed, this is not surprising, for as pointed out in [5], the EM update may in fact
result in larger distance from the solution at some specific points in the sequence of iterations.
Thus, a proof of global convergence solely based on contraction in distance is fundamentally
impossible. We needed another approach to prove global convergence.

The first step in our proof is to show that the angle between the estimate and the true solution
is always decreasing, unless we start from exactly orthogonal vector (a measure zero event).
We show that the sine of the angle is globally contracting from the first EM update, regardless
of the initial distance from the true parameter, β∗. Consequently, EM quickly enters a local
region where the direction of the current parameter estimate is well aligned to that of the true
solution, β∗. We then show that once the angles are well aligned, the estimate is close enough
so that subsequent iterations indeed yield a contraction in distance.

• Low SNR. Even in this local region about the true parameter, previous results ([6, 4, 3, 17])
have additionally assumed high (or infinite) SNR; that is, the standard deviation, σ, of the
additive noise, is of the same scale or smaller than the norm of the true parameter. Indeed,
the low-SNR regime poses additional challenges, precisely because the SNR does impact the
convergence rate. In our analysis, we reveal the explicit convergence rate as a function of the
noise level, and tracking this dependence allows us to demonstrate convergence independently
of the magnitude of σ. In particular, after the angle has become small enough, we show that
the l2 distance error decreases in rate max(c1, 1− c2η2) where c1 < 1, c2 > 0 is a constant that
depends on the norm of initial guess and angle, and η = ||β∗||

σ denotes the SNR.

• Escaping Nearly Orthogonal Region. As issued in [8], random initialization in d-dimensional
space is highly likely to yield a vector whose projection in the direction of β∗ is O(1/

√
d).

In that region, the convergence behavior of sine or distance can be very subtle. We concern
how many iterations should we run the algorithm until the estimator and β∗ have enough
correlation.

In population EM, we show that we can escape from the nearly orthogonal region by simply
running EM algorithm a few more steps. Specifically, in O(max(1, η−2) log d) number of EM
iterations, we get an estimator whose projection into β∗ direction is larger than a constant.

Finite Sample EM Analysis .

• After analyzing and proving global convergence for population EM, we provide our results
on finite-sample based EM. In [4], a concentration bound for a sample-based estimator was
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provided in l2 distance. Since our argument is based on contraction of angle, we extend the
concentration result to bound cosine and sine of the angle. Then, we conclude that, starting
from random initial guess in d-dimensional space, with n = Õ(max(1, poly(η−2))d/ε2) fresh
samples in each iteration, after T = O(max(1, η−2) max(log d, log(1/ε))) iterations, we reach
the l2 error bounded by O(ε).

• Small ε. For the initial iterations of EM when the cosine between the estimate (or random
initialization) and the true parameter can be as small as 1/

√
d, our results have a dependence

on ε2. As long as ε is small (smaller than 1/
√
d), this ε2 term has no impact on the final result.

• Arbitrary ε. For ε significantly larger than 1/
√
d, the ε2 term may be significant. If instead

we iterate using our “Easy-EM” iteration (i.e., Eq. (3)), then our analysis requires no such
ε2 term. Therefore our results show that one can either run Easy-EM until convergence (this
information-theoretically optimal dependence on dimension, d and number of samples, n), or
run Easy-EM until the cosine of the angle of the current estimate and the true parameter is
larger than ε, and subsequently run EM.

Paper Organization The remainder of this paper is organized as follows. In Section 2, we derive
a closed form equation of population EM in standard MLR setting. Section 3 is devoted to summarize
our results on global convergence of population EM, and give a (sketch of) proof for each theorem.
Then analysis on finite-sample based EM is provided in Section 4. All technical proofs that are not
given in the main paper are deferred to the Appendix to facilitate readability.

2 Population EM Update
This section derives a closed form expression for the population EM operator. This serves as a
starting point of our subsequent analysis and proof of convergence.

2.1 Basic Notation
We begin with establishing the notation we use throughout the remainder of the paper. We use X,Y
to denote random variables that follow MLR with two components as defined in introduction. Then,
xi, yi are samples of X and Y , respectively. Thanks to our symmetrization of the problem, the true
parameters of the mixture are −β∗ and β∗, and so rather than referring to the pair of parameters, we
express our results in terms of convergence to β∗. Accordingly, at the tth iteration of the algorithm,
βt ∈ Rd is the current estimate of β∗, the true parameter to be recovered. If we are interested in
understanding the impact of a single iteration, we drop the subscript t and we use β in place of
βt, and β′ in place of βt+1. We use θt to denote the angle formed by βt and β∗; similarly, θt+1

corresponds to the angle formed by βt+1 and β∗. Similarly to βt and βt+1, we often use θ and θ′ for
θt and θt+1. We assume without loss of generality that the initial angle with β∗, θ0 is in [0, π/2).
We exclude π/2 because it is a measure zero event for our random initialization. An initialization
falling in the remainder of the circle has precisely the same behavior, but with convergence to −β∗
in place of β∗. Rather than add an additional subscript, we use the same notation in the infinite and
finite sample analysis, as the context makes the distinction clear.

Every norm operator ‖ · ‖ without subscript is taken as the l2 norm. We use σ to denote the
standard deviation of the additive noise in each sample. An important parameter in the sequel is the
signal-to-noise ratio (SNR); we use η to denote this:

η =
‖β∗‖
σ

.
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2.2 The EM Update
As in [4], the population EM operator for the problem we consider is

βt+1 = 2E[wβt(X,Y )Y X], (4)

where wβt(X,Y ) is defined as

wβt(X,Y ) =
exp

(
− (Y−β>t X)2

2σ2

)
exp

(
− (Y+β>t X)2

2σ2

)
+ exp

(
− (Y−β>t X)2

2σ2

) , (5)

and the expectation is taken over the joint distribution of X × Y .
We can check that the conditional distribution, Y |X ∼ 0.5N (β∗>X,σ2) + 0.5(− β∗>X,σ2), is

symmetric in sign. Thus, we can further simplify Eq. (4) by substituting it and dividing common
factors in wβt . This yields

βt+1 = Ex∼N (0,I)

[(
Ey|x∼N (x>β∗,σ2)

[
tanh

(
β>t x

σ2
y

)
y

])
x

]
. (6)

We focus on one update of population EM to see how each iteration yields the next estimator.
First, we change the basis by choosing v1 = β/‖β‖, the unit vector in the direction of the current
estimator, and v2 to be the orthogonal complement of v1 in span{β,β∗}. We let v3, ...,vd be a
completion to an orthonormal basis for the full parameter space, Rd, along with v1 and v2. By the
spherical symmetry of the distribution of x, we have

β′ = Eαi

[
Ey|αi

[
tanh

(
b1α1

σ2
y

)
y

]∑
i

αivi

]
, (7)

where the expectation is taken over αi ∼ N (0, 1), and y|αi ∼ N (α1b
∗
1 + α2b

∗
2, σ

2), and we defined
b1 = 〈β,v1〉 = ‖β‖, b∗1 = 〈β∗,v1〉, and b∗2 = 〈β∗,v2〉. Without loss of generality, we assume
b1, b

∗
1, b
∗
2 ≥ 0.

The inner expectation over y does not have any dependence on αi for i ≥ 3. Therefore, taking
expectation over αi for i ≥ 3 yields 0, which implies β′ is also on the plane spanned by v1,v2. It
enables us to rewrite it as β′ = b′1v1 + b′2v2 where

b′1 = Eα1,α2

[
Ey|α1,α2

[
tanh

(
b1α1

σ2
y

)
y

]
α1

]
, (8)

b′2 = Eα1,α2

[
Ey|α1,α2

[
tanh

(
b1α1

σ2
y

)
y

]
α2

]
, (9)

where the expectation is similarly taken over αi ∼ N (0, 1), and y|αi ∼ N (α1b
∗
1 + α2b

∗
2, σ

2).
Before we move on to the convergence analysis, we further simplify b′1 and b′2 with the following

lemma.

Lemma 1. Let the variables b∗1, b∗2, b1, b′1, b′2 be as defined above. Further, define σ2
2 = σ2 + b∗2

2.
Then, we can derive the following simplified equations

b′1 = b∗1S +R,

b′2 = b∗2S, (10)

where S and R are defined as

S = E
[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
+
α1b1
σ2

(y + α1b
∗
1) tanh′

(
α1b1
σ2

(y + α1b
∗
1)

)]
(11)

R = (σ2 + ‖β∗‖2)E
[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(y + α1b
∗
1)

)]
, (12)
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where expectation is taken over α1 ∼ N (0, 1), y ∼ N (0, σ2
2).

Lemma 1 is the consequence of several applications of Stein’s lemma [18], and the proof can be
found in Appendix A.1. From this lemma, we can deduce that the new β′ forms a smaller angle with
β∗. To see this, compare the cotangent of angles which β′ and β∗ form with base axis, b

′
1

b′2
≥ b∗1

b∗2
.

Since β′ lies on the plane spanned by β∗ and β, it always lies between the two vectors. Note that
R ≥ 0 since it is the expectation of positive values. Lemma 7 in the appendix shows that S ≥ 0.

3 Main Results on Population EM
In this section, we provide our main results on the global convergence of the population EM algorithm
for mixed linear regression. As described in the introduction, we adopt a different strategy from
previous works that have established local convergence for mixed regression. Rather than trying to
show the distance to the optimal parameter is contracting in all regions, we initially show the angle
decreases. Specifically, as long as we begin from an initial vector not exactly orthogonal to β∗, then
(i) the sine of angle between βt and β∗ geometrically decreases, (ii) when the angle has become less
than π/8, we show that ‖βt − β∗‖ is bounded by geometrically decreasing error. The amount of
decrease in each case depends on the angle and SNR.

In d-dimensional space, a random initialization is highly likely to yield a vector whose inner
product with β∗ is Θ(1/

√
d). Recall that this was also discussed as a technical challenge in [8]. In

Subsection 3.2, we build our result on the growth of the cosine. We use this to show that O(log d)
iterations of the EM algorithm suffice to bring the current iterate within a range of O(1) inner
product with β∗.

Then Section 3.3 completes the result, proving linear convergence in a neighborhood of the optimal
parameter.

3.1 Convergence of Sine
As the problem is symmetric in sign, without loss of generality, we assume that the inner product of
β0 and β∗ is positive where β0 is the initial guess. Then, we prove sine of the angle geometrically
converges to 0. This is reminiscent of the proof for Theorem 3 in [11] where they used a similar
logic to show the convergence of population EM for the non-centered mixture of two Gaussians.
However, that work does not provide an explicit rate of convergence. This makes it difficult to
analyze the exact behavior of the angle at each iteration – something that is critical in order to port
the population-level results to the finite sample setting.

The next result proves the convergence, and also provides a convergence rate, for the sine value
of the angle between the current estimate and the true solution.

Theorem 1 (Convergence of sine). Let 0 ≤ θ < π
2 be the angle between β and β∗. Similarly, we

denote by θ′ the angle between β′ and β∗. Then for every population EM iteration,

sin θ′ ≤ κ sin θ,

where κ =

(√
1 + 2

b∗1
2

σ2+‖β∗‖2

)−1

< 1.

Proof. (Sketch) We provide a brief proof sketch here, and defer the details to the appendix. From
Lemma 1, straightforward algebra yields

sin θ′ = sin θ
R√

R2 + S2‖β∗‖2 + 2SRb∗1
.
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Our strategy is to find a good lower bound for S
R . Applying Stein’s Lemma yields S

R ≥
b∗1

σ2+‖β∗‖2 ,
which in turn gives the desired result by plugging in to the inequality. See Appendix A.2 for
details.

Remark (Convergence Rate). The constant κ can be rewritten in terms of η and θ, as:

κ =

(√
1 +

2η2

1 + η2
cos2 θ

)−1

.

From this expression, we can infer that the convergence rate increases as the angle decreases. We note
that in the high SNR regime (η � 1), κ can be much smaller than 1 (depending on the initialization
angle). In low SNR (γ � 1) regime, however, the convergence rate cannot be faster than 1−O(η2),
regardless of the initial angle.

While we do not (and cannot) guarantee the contraction in distance between the estimator and
true parameter, we want the norm of the estimator to remain bounded so that it does not blow up.
The following lemma guarantees that while EM may increase the norm of β, the growth can be
controlled, i.e., we have bounds for ‖β′‖.

Lemma 2. For any β ∈ Rd, we have

‖β′‖ ≤ 3
√
σ2 + ‖β∗‖2. (13)

3.2 Convergence of Cosine
The previous section establishes the convergence of sine. While we could use this to conclude that
eventually EM pushes any random initialization into a local neighborhood of the optimal solution,
we need to further strengthen the results to establish a good bound on the number of steps of EM
required to achieve this.

We accomplish this by turning to the cosine of the angle, and obtaining bounds on how quickly it
grows with each EM iteration. In particular, we show that if we start from cos θ0 = Θ(1/

√
d), then

t = O(log(d) max(1, η−2)) iterations of EM is sufficient to guarantee cos θt = O(1).

Theorem 2. As long as π
2 > θ ≥ π

3 , one population EM iteration yields

cos θ′ ≥ κ cos θ,

where κ =
√

1 + η2
2
3 +η2

.

If cos θ0 = Θ(1/
√
d), after t = O(log(d) max(1, η−2)) iterations, we get θt < π/3 or cos θt ≥ 1

2 .

We defer the proof to Appendix A.3.

3.3 Convergence of Distance
We have established that sin θt is geometrically decreasing, and cos θt geometrically increasing, and in
particular that after at most O(log(d) max(1, η−2)) iterations, the angle between the current iterate
and the optimal solution is no more than π/8. We now turn our attention to the convergence to the
true β∗. The next result shows that the distance does in fact contract, once the angle has become
smaller than π/8.

Theorem 3 (Convergence in Distance). Assume that θ < π/8, and define σ2
2 = σ2 + b∗2

2. If b∗2 < σ

or σ2
2

σ2 b1 < b∗1, then

‖β′ − β∗‖ ≤ κ‖β − β∗‖+ κ(16 sin3 θ)‖β∗‖ η2

1 + η2
, (14)
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where κ =

(√
1 +

min(
σ22
σ2
b1,b∗1)2

σ2
2

)−1

.

Otherwise, we get
‖β′ − β∗‖ ≤ 0.6‖β − β∗‖. (15)

Proof. (Sketch) We show this result holds by finding a bound for the difference in each coordinate
separately after one EM update. That is, we obtain bounds for |b′1 − b∗1| and |b′2 − b∗2| respectively.
While this is a standard way to get an upper bound for ‖β′ − β∗‖, the challenge comes from the fact
that bounding |b′1 − b∗1| solely in terms of |b1 − b∗1| is not always possible.

To see that, consider the case when b1 = b∗1. If b∗2 were 0, then b∗1 becomes a fixed point in
equation (8), yielding b′1 = b∗1 as desired. However, if b∗2 > 0, then b∗1 is not a fixed point and b′1 will
be moved slightly apart from it. As a result, |b′1 − b∗1| > |b1 − b∗1| = 0.

Instead, we obtain a bound using |b1 − b∗1| and b∗2. In Appendix A.4, we prove the following
inequality holds:

|b′1 − b∗1| ≤ κ3

∣∣∣∣(b1 − b∗1) +
b∗2

2

σ2
b1

∣∣∣∣ , (16)

using the similar logic used in [8]. While this does not directly yield (14), an intuition can be obtained
from it. If b∗2 = 0, i.e., if β is perfectly aligned to β∗, we easily get a contraction in distance. It can
be then combined with the fact that b∗2 = ‖β∗‖ sin θ decreases geometrically as shown in the previous
subsection to conclude that EM converges to β∗.

However, another technical difficulty arises when σ → 0, i.e., in the noiseless case, as the right-hand
side becomes infinitely large, making (16) useless. Therefore, we divide the cases by when b∗2 < σ
and b∗2 ≥ σ to avoid pitfalls in the limit of small σ. See Appendix A.4 for a detailed proof.

We note that this result does not conflict with any previous result on local convergence of EM.
In fact, if we start from smaller angle and assume noise is small enough, we can guarantee locally
constant rate of contraction in distance.

Corollary 1 (Local Convergence with Small Noise). If β is a point close enough to β∗ and η is
sufficiently large, then

‖β′ − β∗‖ ≤ 0.6‖β − β∗‖. (17)

Proof. First note that the proximity of β implies small angle θ. Large η and small θ gives a proper
upper bound on κ. Suppose we set a condition such that κ is guaranteed to be less than 0.5. For
instance, we can set 2 ≤ η and ‖β∗ − β‖ < ‖β∗‖/16. This condition leads us to

b∗1 ≥
15

16
‖β∗‖, b1 ≥

15

16
‖β∗‖,

σ2
2 ≤ σ2(1 +

1

16
η2),

which altogether gives a numerical bound to κ =

(√
1 +

min(
σ22
σ2
b1,b∗1)2

σ2
2

)−1

less than 0.5.

Then small sin θ < 1/16 restricts the second term in (14) to be smaller than 0.1‖β∗‖ sin θ ≤
0.1‖β − β∗‖. Then they altogether become less than 0.6‖β − β∗‖.

To conclude on the convergence of distance in arbitrary noise level, we bound the error after t
iterations of population EM.

9



Corollary 2. Assume we start from θ0 < π/8. After t iterations of population EM, there exists
some constant κ < 1 such that,

‖βt − β∗‖ < κt‖β0 − β∗‖+ tκt‖β∗‖ η2

1 + η2
. (18)

In particular, the result is satisfied if we take κ to be the maximum among

0.6,

√(
1 +
‖β0‖2
σ2

)−1
,

√
1− 0.8η2

1 + η2
. (19)

Remark. For the convergence rate, observe that it depends on the norm of initial guess and the
SNR, η. In the Appendix, we show that the convergence rate only becomes faster as the EM algorithm
proceeds. Depending on the SNR, the convergence rate is either constant or 1−O(η2), as was in the
case of sine. Therefore, the required number of iterations t is O(max(1, η−2) log(1/ε)) to achieve an
ε-optimal solution. Note that tη2

1+η2 = Õ(1).

3.4 Summary of Phases in Convergence Behavior
Collecting all results we have, we can summarize the behavior of population EM algorithm in three
phases.

1. Starting from randomly initialized vector in d-dimensional space, after O(max(1, η−2) log d)
iterations, we reach the angle below π/3.

2. Starting from a vector whose angle formed with β∗ is less than π/3, after O(max(1, η−2))
iterations we have an estimator whose angle with β∗ is less than π/8.

3. Starting from a vector which is well aligned with β∗ such that the angle between two vectors is
less than π/8, after O(max(1, η−2) log(1/ε)) iterations, we have an error less than O(ε).

4 Finite Sample Analysis
We now turn to prove the convergence of finite-sample based EM. As discussed in the outline, our
approach is to couple the finite sample EM to the population EM.

Along the way, we also prove the convergence of the Easy-EM algorithm. As we discuss in length
below, this is interesting on its own, but also useful in the setting where ε is chosen as an O(1)
quantity, rather than when we take it very small.

We define additional notation that we use in this section. When we focus on one finite-sample
based EM iteration, we use β to denote our current estimator, β′ to denote the result from one step
of the population EM operator, and β̃′ to denote the result from one step of the finite-sample EM
operator. We use θ̃′ to represent the angle formed by β̃′ and β∗. When we consider the sequence of
estimators from finite-sample based EM, we use βt for the estimator at the tth iteration.

We consider sample-splitting as an analysis technique, as it renders subsequent steps of the EM
algorithm independent. As with the many other papers that have used this technique, we believe it
is an artifact of the analysis, but we as well are unable to find a way to remove it. Recall that the
closed form equation for sample-based EM operator with current estimator β is as given in Eq. (2),
which we reproduce here:

β̃′ = (
1

n

n∑
i=1

xix
>
i )−1(

1

n

n∑
i=1

tanh(
β>xi
σ2

yi)yixi).
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For simplicity, let us assume that the problem is normalized, i.e., ‖β∗‖ = 1. In this normalized
setting, σ2 = η−2. We use η−2 when we control statistical error in this section, in order to state the
dependence of statistical error and sample complexity on SNR more explicitly. All statistical error in
l2 norm will therefore implicitly have a dependence on ‖β∗‖.

Work in [4] establishes a bound between the population EM update and the finite sample EM
update. Specifically, starting from β, then with probability at least 1− δ, the update β̃′ from one
iteration of finite-sample EM with n samples is controlled by β′, the population-EM update, as
follows:

‖β̃′ − β′‖ ≤ c
√

(σ2 + ‖β∗‖2)
d

n
log(1/δ).

Equivalently, that with n = Õ(max(1, η−2)d/ε2) samples, we have ‖β̃′ − β′‖ ≤ ε.
Recall, however, that to make our analysis global, we need to make use of contraction of sine

and cosine. We thus need to couple these sufficiently strongly to the finite sample setting. That is,
we must show that cosine and sine of the angle are concentrated around the respective quantities
from population EM. For that purpose, we need a more fine-grained concentration result. This is the
content of the next theorem.

Theorem 4. Consider one iteration of sample-based EM algorithm. There exist absolute constants
c1, c2 > 0, such that statistical error in a fixed direction β∗ can be bounded with probability at least
1− δ, by

|(β̃′ − β′)>β∗| ≤
√
σ2 + ‖β∗‖2

(
c1

√
1

n
log(1/δ) + c2

d

n
log(1/δ)

)
. (20)

Corollary 3. Suppose that the norm of the estimator ‖β‖ is larger than ‖β
∗‖

10 . Then, with n =

Õ(max(1, η−2)d/ε2) samples for one finite-sample based EM iteration, we have

cos θ̃′ ≥ κ(1− 10ε) cos θ −O
(

max
( ε√

d
, ε2
))

, (21)

sin2 θ̃′ ≤ κ′ sin2 θ +O(ε), (22)

with κ =
√

1 + sin2 θ
cos2 θ+ 1

2 (1+η−2)
≥ 1, and κ′ = (1 + 2η2

1+η2 cos2 θ)−1 < 1.

The theorem implies that the statistical error is very small in a fixed direction β∗. We note the
extra factor ε2 in the bound. Technically, this arises from controlling the impact of the inverse of
sample covariance matrix ( 1

n

∑n
i=1 xix

>
i )−1. This term is negligible when we select ε small enough,

namely, ε < 1/
√
d. In fact, the proofs of Theorem 4 and Corollary 3 (in the Appendix), demonstrate

that the ε2 term becomes negligible as soon as ε < 〈β0,β
∗〉, i.e., as soon as ε is smaller than the dot

product of the estimate with the true solution. Thus the term is negligible either if ε is very small
(smaller than 1/

√
d), or if the current iterate is good. In Section 4.1 we show that Easy-EM exhibits

very similar convergence behavior, without the appearance (at all) of the ε2 term. Therefore, one
can simply run Easy-EM to ε-convergence, as guaranteed by the results of Section 4.1, or one could
run Easy-EM and then switch to EM.

For now, we assume that one of the conditions described above holds, and thus we can assume
that the ε2 term can be safely ignored.

The condition for the norm of initial guess is to guarantee that the overall statistical error ε
cannot dominate the angle. We show that once the norm of estimator is greater than ‖β

∗‖
10 , the EM

algorithm maintains the norm of our next estimator larger than ‖β
∗‖

10 .

Lemma 3. If ‖β‖ ≥ ‖β
∗‖

10 , then after one finite-sample EM update with n = O(max(1, poly(η−2))

(d/ε2)) samples, ‖β̃′‖ ≥ ‖β
∗‖

10 .

11



Thus, if our initial guess is sufficiently large in norm, we keep having estimator large enough so
that we can ignore ε in norm. It can be easily satisfied by setting the norm of initial estimator large
enough. We note here that ‖β

∗‖
10 is a pessimistic choice of lower bound for the norm of the estimator,

and in practice it quickly increases to ‖β∗‖ even if we start from small initial vector. The proof for
Theorem 4 and Lemma 3 are given in Appendix C.

With (21) and (22), we can give our results on sample-splitting finite-sample based EM for
our problem. Recall that the convergence rates of sine and distance are 1 − O(η2) in low SNR
regime. Therefore, the statistical error has to be smaller than η2 in order to guarantee that every
iteration improves the estimator. It makes the sample complexity heavily dependent on η, which
becomes O(η−6d/ε2) in low SNR regime. We revisit this high dependency on SNR after we state our
main theorem. For the following results, we will slightly abuse the notation ε so that it is in fact
ε1 min(1, η2) where ε1 > 0 is the desired statistical error we control, instead of ε.

Lemma 4 (Increasing Cosine in Finite-Sample EM). Let β0 be the initial guess and θt be the
angle formed by βt and β∗ and assume ‖β0‖ ≥ ‖β∗‖

10 . We run sample-splitting sample-based EM
algorithm, each step with n/T = Õ(max(1, η−2)d/ε2) samples, T = O(max(1, η−2) log d) iterations,
and ε = ε1 min(1, η2). We also take ε1 > 0 small enough such that there exists a constant κ =

(1− 10ε)
√

1 + η2
2
3 +η2

> 1. As long as θt > π/3 for t ≤ T , with high probability,

cos θT ≥ κ> cos θ0 −
κ> − 1

κ− 1
O
( ε√

d

)
. (23)

In particular, when cos θ0 = Θ
(

1√
d

)
, we get cos θT ≥ 1

2 −O(ε1).

Lemma 5 (Convergence of Sine in Finite-Sample EM). Suppose we get a β0 whose angle formed
with β∗ is less than π/3 from previous phase. We run sample-splitting sample-based EM with sample
complexity n/T = Õ(max(1, η−2)d/ε2) and error ε = ε1 min(1, η2). Then with high probability, with

a constant κ =
(√

1 + 0.5η2

1+η2

)−1
< 1,

sin2 θT ≤ κ2T sin2 θ0 +O(ε1). (24)

After T = O(max(1, η−2)) iterations, we have sin2 θT ≤ sin2 π
8 +O(ε1).

Remark. We will take ε1 > 0 small enough such that as long as sin2 θ is not too small, in each
iteration (

1 +
0.5η2

1 + η2

)−1
sin2 θ +O(ε) ≤ sin2 θ,

i.e., θ′ keeps remaining less than previous angle with high probability. Therefore, we are convinced
that our estimator stays in the second phase of convergence. Note that we set ε = ε1 min(1, η2) such
that it is guaranteed with sufficiently small ε1.

Finally, suppose we have reached the angle below π/8. We provide a convergence guarantee in l2
distance for sample based EM.

Lemma 6 (Convergence of Distance in Finite-Sample EM). Suppose we get β0 whose angle
formed with β∗ is less than π/8 from previous phase. We run sample-splitting EM with n/T =
Õ(max(1, η−2)d/ε2) and ε = ε1 min(1, η2), getting

‖βT − β∗‖ ≤ κ>‖β0 − β∗‖+ Tκ>
η2

1 + η2
+O(ε1), (25)

where κ is the maximum among (19) as in Corollary 2.
After T = O(max(1, η−2) log(1/ε1)) iterations, we get O(ε1) optimal error.
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Collecting all the lemmas we have stated in this section, we can conclude this section with the
following theorem for sample-splitting sample-based EM.

Theorem 5. Suppose we start from initial vector whose correlation with β∗ is at least Ω( 1√
d
), with

norm larger than at least ‖β
∗‖

10 in d-dimensional space. We run sample-splitting sample-based EM
algorithm with O(max(1, poly(η−2)) (d/ε2) log(T/δ)) fresh samples in each iteration, where ε is the
desired statistical error less than 1/

√
d. After T = O(max(1, η−2) max(log d, log(1/ε))) iterations,

we get
P(‖βT − β∗‖ ≤ ε) ≥ 1− δ.

The overall sample complexity in order to achieve ε error is n = Õ(max(1, poly(η−2))(d/ε2)). In
the high SNR regime, this is the optimal rate of sample complexity up to logarithmic factors. In the
low SNR regime, we can see that EM algorithm is very sensitive to SNR and we need presumably
large number of samples. This high dependency on SNR is to guarantee the statistical error be less
than η2, as we are trying to convince that every iteration improves the estimator. It seems to be the
nature of EM algorithm as we have seen similarly high dependence on SNR in GMM settings [8].
Nevertheless, once enough number of samples are given to offset low SNR, the statistical error is still
optimal up to logarithmic factors in dimension and error.

4.1 Initialization of EM with non-small ε
As mentioned, we believe the ε2 in equation (21) is simply an artifact of our analysis. Therefore here,
we analyze Easy-EM. Recall that the Easy-EM update is given by:

β̃′′ = (
1

n

n∑
i=1

tanh(
β>xi
σ2

yi)yixi).

We note that this too is an unbiased estimator of population EM operator.
We show that Easy-EM behaves in an almost identical fashion as EM. Because of the absence of

the inverse of the empirical covariance matrix, our analysis does not require the ε2 term. Thus, for
large ε, one can obtain the same guarantees as the main theorem above, either by simply using this
Easy-EM algorithm until convergence, or by using Easy-EM, and then transitioning to EM.

Our main result is as follows.

Theorem 6. Consider one iteration of Easy-EM algorithm. There exist absolute constants c1, c2 > 0,
such that with probability at least 1− δ,

‖β̃′′ − β′‖ ≤ c1
√
σ2 + ‖β∗‖2

√
d

n
log(1/δ),

|(β̃′′ − β′)>β∗| ≤ c2
√
σ2 + ‖β∗‖2

√
1

n
log(1/δ).

Furthermore, suppose that the norm of current estimator ‖β‖ is larger than ‖β
∗‖

10 . Then, with
n = Õ(max(1, η−2)d/ε2) samples for one Easy-EM iteration, we have

cos θ̃′′ ≥ κ(1− 10ε) cos θ −O
( ε√

d

)
,

sin2 θ̃′′ ≤ κ′ sin2 θ +O(ε),

with κ =
√

1 + sin2 θ
cos2 θ+ 1

2 (1+η−2)
≥ 1, and κ′ =

(
1 + 2η2

1+η2 cos2 θ
)−1

< 1.
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The only difference between Theorem 4 and 6 is that we do not have an extra factor ε2 in equation
(6). Thus, we do not require ε to be smaller than 1/

√
d anymore, and Lemmas 4, 5, and 6, and

Theorem 5 can be identically applied to this simplified version of EM.
The reason we obtain the same results for Easy-EM and standard finite-sample EM is that the

statistical error we use for both versions of EM relies on the concentration of β̃′′ around β′. The
inverse of the sample covariance matrix in standard EM presents a technical analytical challenge
under the framework where we are trying to control the behavior of finite-sample EM through
coupling with population EM; as practical experience also supports, the effect of the inverse of the
sample covariance matrix is beneficial. For instance, using a different approach that does not have
a global analog, we know that we have an exact (but local) recovery guarantee when finite-sample
EM is directly analyzed in noiseless case [6]. It would be interesting to explore precisely how the
standard EM has advantages over Easy-EM in more general settings. We leave it as a future work.

To conclude this section, we propose that when ε is larger than 1/
√
d, we run Easy-EM for

O(log(ε/
√
d) max(1, η−2)) iterations to get cos θ larger than ε. At this point, both ε√

d
and ε2 become

small enough compared to cosine. Then we return to standard version of finite-sample EM, and run
it until it converges. We summarize our proposition as follows.

Summary of Finite-Sample EM In all iterations, we use n = O(max(1, poly(η−2))d/ε2) fresh
samples.

1. Starting from randomly initialized vector with large enough norm in d-dimensional space,
compare the statistical error ε to 1/

√
d. If it is smaller than 1/

√
d, then go to step 2.

Otherwise, run Easy-EM for O(log(ε/
√
d) max(1, η−2)) iterations to get cos θ ≥ O(ε).

2. Run finite-sample based EM for O(min(log d, log(1/ε)) max(1, η−2)) iterations to get cos θ ≥
1/2.

3. Run finite-sample based EM for O(max(1, η−2)) iterations to get sin θ ≤ sin(π/8).

4. Run finite-sample based EM for O(max(1, η−2) log(1/ε)) iterations to get ‖β − β∗‖ ≤ O(ε).

5 Conclusion
We studied the convergence behavior of both population EM and sample-based EM, and at least for
two mixture of symmetric linear regression models we have shown that EM algorithm can recover the
true parameters. In particular, we found that EM converges to true parameters globally without any
specialized initialization algorithm in large sample limits. The explicit convergence rates of cosine,
sine, and distances were presented, from which we concluded O(max(1, η−2) max(log d, log(1/ε)))
steps are required to get l2 error less than ε. This is the first result that has shown the global
convergence of EM, as well as the convergence in low SNR regime.

In finite sample case, we showed that EM enjoys the same convergences behavior, though it may
need the aid of Easy-EM in the first few steps, given the number of samples Õ(max(1, poly(η−2))d/ε2)
in each iteration. It would be interesting to explore whether we can remove the dependency on
Easy-EM steps, as well as if we can improve the sample complexity in terms of SNR. Extensions of
this work could be analyzing the performance of EM when the weight of each component is not equal
or there are more than two components, as well as applying our results to high-dimensional setting.
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Appendix A Proofs for Main Results on Population EM

A.1 Proof of Lemma 1
Lemma 1. Let the variables b∗1, b∗2, b1, b′1, b′2 be as defined above. Further, define σ2

2 = σ2 + b∗2
2.

Then, we can derive the following simplified equations

b′1 = b∗1S +R,

b′2 = b∗2S, (10)

where S and R are defined as

S = E
[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
+
α1b1
σ2

(y + α1b
∗
1) tanh′

(
α1b1
σ2

(y + α1b
∗
1)

)]
(11)

R = (σ2 + ‖β∗‖2)E
[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(y + α1b
∗
1)

)]
, (12)

where expectation is taken over α1 ∼ N (0, 1), y ∼ N (0, σ2
2).

Proof. We start with second coordinate b′2. We will occasionally omit variables for expectation when
it is clear over which variable the expectation is taken. We can rewrite the equation (9) as

b′2 = E[g(α1, α2)α2],

where g(α1, α2) = Ey∼N (0,σ2))[tanh( b1α1

σ2 (y + α1b
∗
1 + α2b

∗
2))(y + α1b

∗
1 + α2b

∗
2)]. Apply Stein’s lemma

with respect to α2 yields

b′2 = E[g(α1, α2)α2] = E
[
∂

∂α2
g(α1, α2)

]
,

∂

∂α2
g(α1, α2) = b∗2Ey∼N (0,σ2))

[
tanh

(
α1b1
σ2

(y + α1b
∗
1 + α2b

∗
2)

)
+

α1b1
σ2

(y + α1b
∗
1 + α2b

∗
2) tanh′

(
α1b1
σ2

(y + α1b
∗
1 + α2b

∗
2)

)]
(a)
= b∗2Ey∼N (0,σ2

2))

[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
+
α1b1
σ2

(y + α1b
∗
1) tanh′

(
α1b1
σ2

(y + α1b
∗
1)

)]
.

∴ b′2 = b∗2S,

where in (a), we replaced y+α2b
∗
2 with a new Gaussian variable as they are the sum of two Gaussian

variables.
For the first coordinate b′1, we take the similar strategy but we arrange it in a different way. First,

we rewrite equation (8) as

b′1 = Eα1∼N (0,1)

[
Ey∼N (0,σ2

2))

[
tanh

(
b1α1

σ2
(y + α1b

∗
1)

)
(y + α1b

∗
1)

]
α1

]
, (26)
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where we again replaced y+α2b
∗
2 with one Gaussian variable. Then observe that another application

of Stein’s lemma yields

E
[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
α2

1

]
= E

[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
+

(
2b∗1b1
σ2

α1 +
b1
σ2
y

)
α1 tanh′

(
α1b1
σ2

(y + α1b
∗
1)

)]
= E

[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
+
α1b1
σ2

(y + α1b
∗
1) tanh′

(
α1b1
σ2

(y + α1b
∗
1)

)]
+ b∗1E

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(y + α1b
∗
1)

)]
. (27)

On the other hand,

E α1∼N (0,1)

y∼N (0,σ2
2))

[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
α1y

]
= σ2

2E
[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(y + α1b
∗
1)

)]
,

where we applied Stein’s lemma for y this time. Plugging the above two equations into (26), we get

b′1 = b∗1S +R,

completing the proof.

A.2 Proof of Theorem 1
Theorem 1 (Convergence of sine). Let 0 ≤ θ < π

2 be the angle between β and β∗. Similarly, we
denote by θ′ the angle between β′ and β∗. Then for every population EM iteration,

sin θ′ ≤ κ sin θ,

where κ =

(√
1 + 2

b∗1
2

σ2+‖β∗‖2

)−1

< 1.

Proof. From equation (10), we can compute cosine and sine.

cos θ′ =
< β∗,β′ >

||β∗||||β′||
=

S||β∗||2 +Rb∗1
||β∗||

√
R2 + S2||β∗||2 + 2SRb∗1

, (28)

sin θ′ =
Rb∗2

||β∗||
√
R2 + S2||β∗||2 + 2SRb∗1

= sin θ
1√

1 + (S/R)2||β∗||2 + 2(S/R)b∗1

≤ sin θ
1√

1 + 2(S/R)b∗1
. (29)

Now we are left with proving S
Rb
∗
1 ≥

b∗1
2

σ2+||β∗||2 , which gives us the claimed result by plugging it
into (29). To see that, we first observe

S = E
[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
+
α1b1
σ2

y tanh′
(
α1b1
σ2

(y + α1b
∗
1)

)]
︸ ︷︷ ︸

A

+ b∗1E
[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(y + α1b
∗
1)

)]
︸ ︷︷ ︸

(
b∗1

σ2+||β∗||2
)R

.
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Since R ≥ 0 as it is the expectation of positive function, if A is greater than 0, then we get the
desired result. Another application of Stein’s lemma yields

E
[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
y2

]
= σ2

2E
[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
+
α1b1
σ2

y tanh′
(
α1b1
σ2

(y + α1b
∗
1)

)]
= σ2

2A.

We can rewrite the left side as

E
[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
y2

]
=

1

2
E
[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
y2

]
+

1

2
E
[
tanh

(
α1b1
σ2

(−y + α1b
∗
1)

)
y2

]
=

1

2
E
[(

tanh

(
α1b1
σ2

(−y + α1b
∗
1)

)
+ tanh

(
α1b1
σ2

(y + α1b
∗
1)

))
y2

]
≥ 0,

where in the last inequality, we used the fact that tanh(c+ x) + tanh(−c+ x) ≥ 0 when x ≥ 0 for
any real value c. Consequently, A ≥ 0 and we complete the proof.

A.3 Proof of Theorem 2
Theorem 2. As long as π

2 > θ ≥ π
3 , one population EM iteration yields

cos θ′ ≥ κ cos θ,

where κ =
√

1 + η2
2
3 +η2

.

If cos θ0 = Θ(1/
√
d), after t = O(log(d) max(1, η−2)) iterations, we get θt < π/3 or cos θt ≥ 1

2 .

Proof. Recall that from the proof in Theorem 1, we have

cos θ′ =
S||β∗||2 +Rb∗1

||β∗||
√
R2 + 2SRb∗1 + S2||β∗||2

, and
S

R
≥ b∗1
σ2 + ||β∗||2

.

Starting from these two equations, we can get a lower bound of cos θ′ in terms of cos θ and σ.
First observe that

cos θ′ =
(S/R)||β∗||2 + b∗1

||β∗||
√

1 + 2(S/R)b∗1 + (S/R)2||β∗||2

(a)

≥
b∗1(1 + ||β∗||2

||β∗||2+σ2 )

||β∗||
√

1 + b∗1
2 1
||β∗||2+σ2 (2 + ||β∗||2

||β∗||2+σ2 )

(b)

≥ cos θ

√
1 +

b∗2
2

k(σ2)−1 + b∗1
2 ,

where k(σ2) = 1
||β∗||2+σ2 (2 + ||β∗||2

||β∗||2+σ2 ). (a) comes from the following:

(S/R)||β∗||2 + b∗1
||β∗||

√
1 + 2(S/R)b∗1 + (S/R)2||β∗||2

=

√
(S/R)2||β∗||2 + 2(S/R)b∗1 + b∗1

2/||β∗||2
1 + 2(S/R)b∗1 + (S/R)2||β∗||2

=

√
1− b∗2

2/||β∗||2
1 + 2(S/R)b∗1 + (S/R)2||β∗||2

,
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which shows us that cos θ′ is an increasing in (S/R) and therefore lower bounded by the lowest
possible value of (S/R).

From (b), we can infer that the amount of increase gets smaller as the angle gets smaller. Thus,
we can further bound it with straight-forward algebra by

cos θ

√
1 +

b∗2
2

k(σ2)−1 + b∗1
2 ≥ cos θ

√
1 +

sin2 θ

cos2 θ + 1
2 (1 + η−2)

(30)

≥ cos θ

√
1 +

η2

2
3 + η2

, (31)

where the last inequality is established since we assumed θ ≥ π/3.

A.4 Proof of Theorem 3
Before we prove Theorem 3, we state two lemmas that are essential in our proof. Let all the symbols
be as defined in Section 2. Recall that

S = Eα1∼N (0,1)

y∼N (0,σ2
2)

[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
+
α1b1
σ2

(y + α1b
∗
1) tanh′

(
α1b1
σ2

(y + α1b
∗
1)

)]
R = (σ2 + ||β∗||2)Eα1∼N (0,1)

y∼N (0,σ2
2)

[
α2

1b1
σ2

tanh′
(
α1b1
σ2

(y + α1b
∗
1)

)]
.

Lemma 7. 1−
(√

1 +
min(

σ22
σ2
b1,b∗1)b∗1
σ2
2

)−1

≤ S ≤ 1.

Proof. From equation (27) in proof of lemma 1, we get

S = E
[
α2

1 tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
− b1b

∗
1

σ2
α2

1 tanh′
(
α1b1
σ2

(y + α1b
∗
1)

)]
≤ E

[
α2

1 tanh

(
α1b1
σ2

(y + α1b
∗
1)

)]
≤ E[α2

1] = 1,

where we used tanh′(x) ≥ 0 and tanh(x) ≤ 1 for any x.
For the lower bound of S, we can apply the lemmas 1, 2 from [8].

Lemma 1 in [8] Let α, β ≥ 0 and X ∼ N (α, σ2), then E[tanh′(βX/σ2)X] ≥ 0.

Lemma 2 in [8] Let α, β ≥ 0 and X ∼ N (α, σ2), then E[tanh(βX/σ2)] ≥ 1− exp[−min(α,β),α
2σ2 ].

We can apply these two lemmas by setting α = α1b
∗
1, β = α1

b∗2
2

σ2 b1 (when α1 < 0, we can get the
same result due to the symmetry of the expression in sign). It yields

S ≥ Eα1

[
1− exp

[
−
α2

1b
∗
1 min(b∗1,

σ2
2

σ2 b1)

2σ2
2

]]

= 1− 1√
1 +

min(
σ22
σ2
b1,b∗1)b∗1
σ2
2

.
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Lemma 8. b′1 is increasing in b1. Furthermore, in the limit b1 →∞,

lim
b1→∞

b′1 =
2

π
(b∗1 tan−1

( b∗1
σ2

)
+ σ2). (32)

Proof. First, we show that b′1 is increasing in b1. From (8), differentiate it with respect to b1 yields

db′1
db1

= E
[
tanh′(

b1α1

σ2
y)y2α2

1

]
≥ 0. (33)

Next, we show the limit value of b′1. Recall that b′1 = b∗1S +R. Again from Stein’s lemma, R can
be rewritten as

R =
σ2 + ||β∗||2

σ2
2

Eα1,y

[
tanh

(
α1b1
σ2

(y + α1b
∗
1)

)
yα1

]
.

In the limit b1 →∞, tanh function becomes sign function. Therefore,

Eα1,y[sign(α1(y + α1b
∗
1))yα1] =

1

π

∫ ∞
0

2
α1

σ2
e−

α2
1
2

( ∫ ∞
α1β∗1

ye
− y2

2σ22 dy
)
dα1

=
2

π

∫ ∞
0

α1σ2e
−α

2
1(b∗1)2

2σ22 e−
α2
1
2 dα1

=
2

π
σ2/(1 + (b∗1/σ2)2),

∴ lim
b1→∞

R =
2

π
σ2.

Now we find a limit value of S. In the limit, limc→∞ cx tanh′(cx) = 0 for all x. Therefore,

lim
b1→∞

S = E[sign(α1(y + α1b
∗
1))] =

1

π

∫ ∞
0

∫ α1b
∗
1

−α1b∗1

e
− y2

2σ22 e−
α2
1
2

=
2

π

∫ ∞
0

∫ α1b
∗
1/σ2

0

e−
y2

2 e−
α2
1
2 =

2

π
tan−1(b∗1/σ2).

Combining the results, we get the desired lemma.

Now we are ready to prove Theorem 3.

Theorem 3 (Convergence in Distance). Assume that θ < π/8, and define σ2
2 = σ2 + b∗2

2. If b∗2 < σ

or σ2
2

σ2 b1 < b∗1, then

‖β′ − β∗‖ ≤ κ‖β − β∗‖+ κ(16 sin3 θ)‖β∗‖ η2

1 + η2
, (14)

where κ =

(√
1 +

min(
σ22
σ2
b1,b∗1)2

σ2
2

)−1

.

Otherwise, we get
‖β′ − β∗‖ ≤ 0.6‖β − β∗‖. (15)
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Proof of Theorem 3. First, difference in second coordinate is easily bounded.

(b∗2 − b′2) = (1− S)b∗2 ≤
(√

1 +
min(

σ2
2

σ2 b1, b∗1)b∗1
σ2

2

)−1

b∗2. (34)

We therefore focus on giving a bound for |b′1 − b∗1|.
We start from the following observation. Suppose b1 = σ2

σ2
2
b∗1. From equation (26), we have

b′1 = Eα1
[Ey∼N (α1b∗1 ,σ

2
2)[tanh(

α1b
∗
1

σ2
2

y)y]α1] = Eα1
[α2

1b
∗
1] = b∗1. (35)

Also from Lemma 8, b′1 is increasing in b1. We will separate the cases based on this point.

1. b1 ≤ σ2

σ2
2
b∗1:

b′1 −
σ2

2

σ2
b1 = Eα1

[
α1

(
Ey∼N (α1b∗1 ,σ

2
2)

[
tanh

(
α1(

σ2
2

σ2 b1)

σ2
2

y

)
y

]
− E

y∼N (α1(
σ22
σ2
b1),σ2

2)

[
tanh

(
α1(

σ2
2

σ2 b1)

σ2
2

y

)
y

])]
(a)

≥
(
b∗1 −

σ2
2

σ2
b1
)
E

α2
1 min
µ∈(

σ22
σ2
b1,b∗1)

∂

∂µ

(
E

[
tanh

(
α1(

σ2
2

σ2 b1)

σ2
2

(y + µ)

)
(y + µ)

])
(b)

≥
(
b∗1 −

σ2
2

σ2
b1
)
E

α2
1

(
1− exp

(
−
α2

1min(
σ2
2

σ2 b1, b
∗
1)

2

2σ2
2

)) ,
where in (a) we used mean-value theorem, and in (b) we applied lemma 1, 2 in [8]. In turn, we
have

b∗1 − b′1 ≤ κ3
(
b∗1 −

σ2
2

σ2
b1
)
≤ κ3(b∗1 − b1), (36)

where we have κ =
(√

1 +
min(

σ22
σ2
b1,b∗1)2

σ2
2

)−1 and plugging the relation b1 ≤ σ2
2

σ2 b1 ≤ b∗1 into the
above.

Finally, we have
(√

1 +
min(

σ22
σ2
b1,b∗1)b∗1
σ2
2

)−1

≤ κ. Combining them altogether, we have

||β∗ − β′|| ≤ κ||β∗ − β||.

2. b1 > σ2

σ2
2
b∗1, σ > b∗2: Following the exactly same procedure above, we have

b′1 − b∗1 ≤ κ3(
σ2

2

σ2
b1 − b∗1) = κ3(b1 − b∗1) + κ3 b

∗
2

2

σ2
b1. (37)

By the condition in this case, κ =
(√

1 +
b∗1

2

σ2
2

)−1
=
√

σ2+b∗2
2

σ2+||β∗||2 . We divided cases into two parts.

(i) Suppose b1 > 2b∗1, or b1 < 2(b1 − b∗1). Then,

b′1 − b∗1 ≤ κ3(b1 − b∗1)(1 + 2
b∗2

2

σ2
)

= κ(b1 − b∗1)(
σ2 + b∗2

2

σ2 + ||β∗||2
)(1 +

2b∗2
2

σ2
)

= κ
( σ2 + b∗2

2

σ2 + b∗1
2 + b∗2

2

σ2 + 2b∗2
2

σ2

)
︸ ︷︷ ︸

A

(β1 − β∗1).
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Check if A is less than 1. To see that,

σ2(σ2 + b∗1
2 + b∗2

2)− (σ2 + (b∗2)2)(σ2 + 2(b∗2)2)

= σ2(b∗1
2 − 2b∗2

2)− 2b∗2
4

(a)

≥ σ2(b∗1
2 − 4b∗2

2)
(b)

≥ 0,

where (a) comes from b∗2 < σ and (b) comes from tan π
8 < 1/2.

∴ b′1 − b∗1 ≤ κ(b1 − b∗1)

(ii) b1 < 2b∗1. We will assume b1
b∗2

2

σ2 ≥ ( 1
κ2 − 1)(b1 − b∗1). Otherwise, we can easily get

b′1 − b∗1 ≤ κ(b1 − b∗1) similarly by plugging it into equation (37).

(b′1 − b∗1)2 ≤ κ6(b1 − b∗1)2 + κ6

(
2(
b∗2
σ

)2b1(b1 − b∗1) + (
b∗2
σ

)4b21

)
≤ κ6(b1 − b∗1)2 + κ6(

b∗2
σ

)4b21

(
2(

κ2

1− κ2
) + 1

)
= κ6(b1 − b∗1)2 + κ6(

b∗2
σ

)4b21

(
2σ2 + 2b∗2

2 + b∗1
2

b∗1
2

)
︸ ︷︷ ︸

B

.

We bound B. We rearrange terms as below:

B = κ6(
b∗2
σ

)4b21

(
2σ2 + 2b∗2

2 + b∗1
2

b∗1
2

)
= κ2(

b∗2
σ

)4b21

(
2σ2 + 2b∗2

2 + b∗1
2

b∗1
2

)(
σ2 + b∗2

2

σ2 + ||β∗||2

)2

= κ2b∗2
4(
b21
b∗1

2 )

(
2σ2 + 2b∗2

2 + b∗1
2

σ2 + b∗2
2 + b∗1

2

)(
(σ2 + b∗2

2)2

σ4

)
1

σ2 + ||β∗||2

≤ κ2b∗2
4 ∗ 4 ∗ 2 ∗ 4 ∗

( 1

σ2 + ||β∗||2
)

= κ2 32b∗2
2

σ2 + ||β∗||2
b∗2

2

Therefore, we get (b′1 − b∗1)2 ≤ κ2(b1 − b∗1)2 + κ2 32b∗2
2

σ2+||β∗||2 b
∗
2

2. Combining it with (b′2 − b∗2)2 ≤
κ2(b2 − b∗2)2 yields

||β′ − β∗||2 ≤ κ2||β − β∗||2 + κ2 32b∗2
2

σ2 + ||β∗||2
b∗2

2

Now using
√
a2 + b2 ≤ a+ b2

2a ,

||β′ − β∗|| ≤ κ||β − β∗||+ κ
16b∗2

2

σ2 + ||β∗||2
b∗2

||β − β∗||
b∗2

≤ κ||β − β∗||+ κ(16 sin3 θ)||β∗|| η2

1 + η2
,

where we used b∗2
||β−β∗|| ≤ 1.
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3. b1 > σ2

σ2
2
b∗1, σ < b∗2:

This condition leads us to a special analysis, a constant rate of contraction in local region with
high SNR.

First note that, b′1 ≥ b∗1 and its difference (b′1 − b∗1) is increasing in b1. Therefore, invoking
lemma 8 yields

b′1 − b∗1 ≤
2

π
(σ2 + b∗1 tan−1(

b∗1
σ2

))− b∗1

≤ 2

π
(σ2 + b∗1 tan−1(

b∗1
b∗2

))− b∗1

≤ 2

π
(
√

2− θ cot θ)b∗2,

where we used σ2
2 = σ2 + b∗2

2 ≤ 2b∗2
2, tan−1(

b∗1
b∗2

) = π
2 − θ, and b

∗
1 = b∗2 cot θ.

One can easily check that θ cot θ is decreasing in [0, π2 ]. Therefore, we can further bound it:

b′1 − b∗1 ≤
2

π
(
√

2− π

8
cot

π

8
)b∗2 ≤ 0.3b∗2.

On the other side,

b∗2 − b′2 = (1− S)b∗2 ≤
b∗2√

1 + (b∗1/σ2)2

≤ b∗2√
1 + 1

2 (b∗1/b
∗
2)2

=
b∗2√

1 +
cot2 π

8

2

≤ 0.51b∗2.

Combining the result, we get

||β′ − β∗|| ≤ 0.6b∗2 ≤ 0.6||β − β∗||,

as claimed.

Proof of Corollary 2

Corollary 2. Assume we start from θ0 < π/8. After t iterations of population EM, there exists
some constant κ < 1 such that,

‖βt − β∗‖ < κt‖β0 − β∗‖+ tκt‖β∗‖ η2

1 + η2
. (18)

In particular, the result is satisfied if we take κ to be the maximum among

0.6,

√(
1 +
‖β0‖2
σ2

)−1
,

√
1− 0.8η2

1 + η2
. (19)

Proof. We first show that κ is only decreasing as iteration goes on. It is enough to show that after
one EM iteration, b′1 ≥ min(

σ2
2

σ2 b1, b
∗
1), and b∗1 is increasing as the iteration is going on.

If σ
2
2

σ2 b1 is larger than b∗1, b′1 becomes larger than b∗1 as we can conclude from Lemma 8 and (35).

If σ
2
2

σ2 b1 were less than b∗1, then the corresponding σ2
2

σ2 b1 at the next iteration is larger than it, as it is
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inferred from (36). The fact that b∗1 = ||β∗|| cos θt is increasing is obvious from the fact that angle is
always decreasing.

Now we will fix κ, the contraction rate at the first iteration. We compare the following quantities:

0.6,

(√
1 +

2b∗1
2

σ2 + ||β∗||2

)−3

,

(√
1 +

min(
σ2
2

σ2 b1, b∗1)2

σ2
2

)−1

.

each of which can be rewritten as

0.6,

(√
1 +

2η2 cos2 θ0

1 + η2

)−3

,

(√
1 + (1 + η2 sin2 θ0)

||β0||2
σ2

)−1

,

(√
1 +

η2 cos2 θ0

1 + η2 sin2 θ0

)−1

.

Since we start from θ0 < π/8, we can plug θ0 = π/8 above and simplify the candidates as (19). We
will pick the maximum among these values and fix κ.

Next, we rewrite the equation now with subscript t on each variable:

||βt+1 − β∗|| ≤ κ||βt − β∗||+ κ(16 sin3 θt)
η2

1 + η2

≤ κ2||βt−1 − β∗||+ 2κ2(16 sin3 θt−1)
η2

1 + η2

...

≤ κt||β0 − β∗||+ tκt(16 sin3 θ0)
η2

1 + η2

≤ κt||β0 − β∗||+ tκt
η2

1 + η2
,

where for the last inequality, we used θ0 < π/8.

Appendix B Proofs for Finite-Sample Based EM
Throughout this section, we use the concentration results that with probability 1− δ/T in each EM
iteration, ||β̃′ − β′|| ≤ ε from [4] as well as Theorem 4.

Now we are ready to prove lemmas on finite-sample based EM in three convergence phases.

Proof of Lemma 4

Lemma 4 (Increasing Cosine in Finite-Sample EM). Let β0 be the initial guess and θt be the
angle formed by βt and β∗ and assume ‖β0‖ ≥ ‖β∗‖

10 . We run sample-splitting sample-based EM
algorithm, each step with n/T = Õ(max(1, η−2)d/ε2) samples, T = O(max(1, η−2) log d) iterations,
and ε = ε1 min(1, η2). We also take ε1 > 0 small enough such that there exists a constant κ =

(1− 10ε)
√

1 + η2
2
3 +η2

> 1. As long as θt > π/3 for t ≤ T , with high probability,

cos θT ≥ κ> cos θ0 −
κ> − 1

κ− 1
O
( ε√

d

)
. (23)

In particular, when cos θ0 = Θ
(

1√
d

)
, we get cos θT ≥ 1

2 −O(ε1).
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Proof. From equation (21) with sufficiently small ε, we have

cos θT ≥ κ cos θT−1 −O(
ε√
d

)

≥ κ2 cos θT−2 − (1 + κ)O(
ε√
d

)

...

≥ κT cos θ0 − (1 + κ+ κ2 + ...+ κT−1)O(
ε√
d

)

≥ κT cos θ0 −
κT − 1

κ− 1
O(

ε√
d

),

where each inequality holds with probability at least 1−δ/T , and all inequalities hold with probability
1− δ by taking a union bound.

Proof of lemma 5

Lemma 5 (Convergence of Sine in Finite-Sample EM). Suppose we get a β0 whose angle formed
with β∗ is less than π/3 from previous phase. We run sample-splitting sample-based EM with sample
complexity n/T = Õ(max(1, η−2)d/ε2) and error ε = ε1 min(1, η2). Then with high probability, with

a constant κ =
(√

1 + 0.5η2

1+η2

)−1
< 1,

sin2 θT ≤ κ2T sin2 θ0 +O(ε1). (24)

After T = O(max(1, η−2)) iterations, we have sin2 θT ≤ sin2 π
8 +O(ε1).

Proof. Similarly,

sin2 θT ≤ κ2 sin2 θT−1 +O(ε)

≤ κ4 sin2 θT−2 + (1 + κ2)O(ε)

...

≤ κ2T sin2 θ0 + (1 + κ2 + κ4 + ...+ κ2(T−1))O(ε)

≤ κ2T sin2 θ0 +
1

1− κ2
O(ε),

with probability 1− δ.
Finally,

1

1− κ2
O(ε) =

min(1, η2)

1− κ2
O(ε1) = min(1, η2)

1 + 1.5η2

0.5η2
O(ε1) = O(ε1),

which yields the desired result.

Proof of Lemma 6

Lemma 6 (Convergence of Distance in Finite-Sample EM). Suppose we get β0 whose angle
formed with β∗ is less than π/8 from previous phase. We run sample-splitting EM with n/T =
Õ(max(1, η−2)d/ε2) and ε = ε1 min(1, η2), getting

‖βT − β∗‖ ≤ κ>‖β0 − β∗‖+ Tκ>
η2

1 + η2
+O(ε1), (25)

where κ is the maximum among (19) as in Corollary 2.
After T = O(max(1, η−2) log(1/ε1)) iterations, we get O(ε1) optimal error.
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Proof. We start from Theorem 3. Note that the chosen κ satisfies sin3 θt ≤ κt sin3 θ0 + 1
1−κO(ε),

which can shown similarly as Lemma 5.

||βT − β∗|| ≤ κ||βT−1 − β∗||+O(ε) + κ(16 sin3 θT−1)
η2

1 + η2

≤ κ2||βT−2 − β∗||+ (1 + κ)O(ε) +
16η2

1 + η2
(κ2 sin3 θT−2 + κ sin3 θT−1)

...

≤ κT ||β0 − β∗||+
1

1− κ
O(ε) +

16η2

1 + η2
(κT sin3 θ0 + κT−1 sin3 θ1 + ...+ κ sin3 θT−1)

≤ κT ||β0 − β∗||+
1

1− κ
O(ε) +

16η2

1 + η2
(TκT sin3 θ0 +

κ+ κ2 + ...+ κT

1− κ
O(ε))

≤ κT ||β0 − β∗||+
1

1− κ
O(ε) + TκT

η2

1 + η2
+

16η2

1 + η2

1

(1− κ)2
O(ε)

= κT ||β0 − β∗||+ TκT
η2

1 + η2
+

1

1− κ
O(ε) +

1

(1− κ)2

η2

1 + η2
O(ε).

Finally, check that 1− κ is O(min(1, η2)). Then the statistical error is in O(ε1), as desired.

Appendix C Proofs for Auxiliary Results

C.1 Proof of Lemma 2
Lemma 2. For any β ∈ Rd, we have

‖β′‖ ≤ 3
√
σ2 + ‖β∗‖2. (13)

Proof. From Lemma 8, we know that b′1 ≤ b∗1 + 2
π

√
σ2 + b∗2

2. On the other side, from lemma 7 we
have b′2 ≤ b∗2. Therefore,

b′1 ≤ b∗1 +
2

π

√
σ2 + b∗2

2

≤ ||β∗||+ 2

π

√
σ2 + ||β∗||2

≤ 2
√
σ2 + ||β∗||2,

b′2 ≤ ||β∗||.

Combining the bound for each, we get ||β′|| ≤ 3
√
σ2 + ||β∗||2.

C.2 Proof of Lemma 3
Lemma 3. If ‖β‖ ≥ ‖β

∗‖
10 , then after one finite-sample EM update with n = O(max(1, poly(η−2))

(d/ε2)) samples, ‖β̃′‖ ≥ ‖β
∗‖

10 .

Proof. We divide the cases by varying θ. Note that n is now proportional to poly(η−2), and we
control the number of samples so that statistical error in norm is ||β̃′ − β′|| ≤ O(ε) min(1, η2). We
first show that population EM operator ||β′|| is larger enough than ||β

∗||
10 , therefore ||β′|| − ||β̃′ −β′||

is greater than ||β
∗||

10 .
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cos θ ≥ 0.2, sin θ ≥ 0.2: Suppose ||β|| ≥ ||β∗||
10 . If cos θ ≥ 0.2 or b∗1 ≥

||β∗||
5 , then as shown in

the proof of Corollary 2, ||β′|| ≥ min(
σ2
2

σ2 b1, b
∗
1) ≥ min((1 + η2 sin2 θ) ||β

∗||
10 , 0.2||β∗||). We take small

enough ε, we have ||β̃′|| ≥ ||β′|| − ε ≥ ||β
∗||

10 .

cos θ ≤ 0.2: Recall that ||β′|| ≥ b′1 = E[tanh( b1α1

σ2 (α1b
∗
1 + y))(α1b

∗
1 + y)α1], where α1 ∼ N (0, 1),

y ∼ N (0, σ2
2). We first claim that b′1 ≥ E[tanh

(
b1
σ2α1y

)
α1y], i.e., lower bounded by setting b∗1 = 0.

In order to show that, we differentiate b′1 with respect to b∗1, which yields

E[α2
1 tanh(

b1α1

σ2
(α1b

∗
1 + y))] + E[

α3
1b1
σ2

(α1b
∗
1 + y) tanh′(

b1α1

σ2
(α1b

∗
1 + y))].

However,

E[α2
1 tanh(

b1α1

σ2
(α1b

∗
1 + y))] =

1

πσ2

∫ ∞
0

α2
1e
−α2

1/2

∫ ∞
0

tanh(
b1α1

σ2
y)(e

− (y−α1b
∗
1)2

2σ22 − e
− (y+α1b

∗
1)2

2σ22 )dydα1 ≥ 0.

Simiarly,

E[
α3

1b1
σ2

(α1b
∗
1 + y) tanh′(

b1α1

σ2
(α1b

∗
1 + y))] =

1

πσ2

∫ ∞
0

α3
1b1
σ2

e−α
2
1/2

∫ ∞
0

y tanh′(
b1α1

σ2
y)(e

− (y−α1b
∗
1)2

2σ22 − e
− (y+α1b

∗
1)2

2σ22 )dydα1 ≥ 0.

Now it becomes clear that b′1 is increasing in b∗1, thus the claim is verified.
Next, we bound E[tanh( b1σ2α1y)α1y].

E[tanh(
b1
σ2
α1y)α1y] =

2

πσ2

∫ ∞
0

∫ ∞
0

α1y tanh(
b1
σ2
α1y)e

− y2

2σ22 e−
α2
1
2 dα1dy

=
2

π
σ2

∫ ∞
0

∫ ∞
0

α1y tanh(
b1
σ2
σ2α1y)e−

y2

2 e−
α2
1
2 dα1dy

≥ 2

π
σ2

∫ ∞
0

∫ ∞
0

α1y tanh(
b1
σ
α1y)e−

y2

2 e−
α2
1
2 dα1dy.

Now suppose if b1σ ≥
1
2 . We can get a numerical result for the integration∫ ∞

0

∫ ∞
0

xy tanh(
1

2
xy)e−

y2

2 e−
x2

2 dxdy,

which is greater than 0.5. Thus we can conclude b′1 ≥ 1
πσ2 ≥ 1

π b
∗
2, which is much greater than

||β∗||/10 when sin θ ≥
√

1− 0.22.
If b1σ is less than 1/2, then we use the Taylor bound for tanh(x) ≥ x− x3

3 to get

2

π
σ2

∫ ∞
0

∫ ∞
0

α1y tanh(
b1
σ
α1y)e−

y2

2 e−
α2
1
2 dα1dy

≥ 2

π
σ2

∫ ∞
0

∫ ∞
0

α1y(
b1
σ
α1y −

1

3
(
b1
σ
α1y)3)e−

y2

2 e−
α2
1
2 dα1dy

= b1
σ2

σ
(1− 3

b21
σ2

) ≥ b1

√
1 +

24

25
η2(1− 3

b21
σ2

). (38)
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If η = ||β∗||
σ ≥ 5, then since we assumed b1

σ < 1/2, we have b1
√

1 + 24
25η

2(1 − 3
b21
σ2 ) ≥ 5

4b1.

Otherwise, suppose b1 = ||β∗||/10, then we have b′1 ≥ b1
√

1 + 24
25η

2(1− 3
100η

2). When 1 ≤ η ≤ 5, we
have b′1 ≥ 5

4b1. When 0 ≤ η ≤ 1, we have b′1 ≥ b1(1 + 0.3η2). Since by (33) we know b′1 is increasing
as b1 increases, and ||β′|| ≥ b′1. Therefore, we conclude that sufficiently ε guarantees ||β̃′|| ≥ ||β

∗||
10 .

sin θ ≤ 0.2: Assume b1 = ||β∗||
10 < σ2

σ2
2
b∗1. Otherwise we can do as in the first case. From equation

(36), we have
b′1 ≥ b1 + (1− κ3)(b∗1 − b1),

where κ =
(√

1 +
min(

σ22
σ2
b1,b∗1)2

σ2
2

)−1 ≥
√

1 +
b21
σ2

−1

. Since b∗1 − b1 ≥ ||β∗||
2 in this case, we have

b′1 ≥ b1 + η2

100+η2
||β∗||

2 . Similarly as in other cases, since b′1 is increasing in b1 = ||β||, with sufficiently

small ε we have ||β̃′|| ≥ ||β
∗||

10 whenever ||β|| ≥ ||β
∗||

10 .

C.3 Proof of Theorem 4
Theorem 4. Consider one iteration of sample-based EM algorithm. There exist absolute constants
c1, c2 > 0, such that statistical error in a fixed direction β∗ can be bounded with probability at least
1− δ, by

|(β̃′ − β′)>β∗| ≤
√
σ2 + ‖β∗‖2

(
c1

√
1

n
log(1/δ) + c2

d

n
log(1/δ)

)
. (20)

Proof. The error for which we are interested in giving a bound is

β̃′ − β′ = (
1

n

n∑
i=1

xix
T
i )−1

︸ ︷︷ ︸
Σ̂−1

(
1

n

n∑
i=1

(2wβ(xi, yi)− 1)yixi)︸ ︷︷ ︸
µ̂

− 2E[wβ(x, y)yx]︸ ︷︷ ︸
µ

, (39)

where wβ is defined in equation (5). Now we fix some v ∈ Rd such that ||v|| = 1, and give a bound
for |(β̃′ − β)T v|. First observe that,

|(β̃′ − β′)T v| = |(Σ̂−1µ̂− µ)T v|
= |(µ̂− µ)T v + µT (Σ̂−1 − I)v + (µ̂− µ)T (Σ̂−1 − I)v|
≤ | (µ̂− µ)T v︸ ︷︷ ︸

A

|+ |µT (Σ̂−1 − I)v︸ ︷︷ ︸
B

|+ | (µ̂− µ)T (Σ̂−1 − I)v︸ ︷︷ ︸
C

|.

We will bound A,B and C separately. For simplicity, we will assume the problem is normalized, i.e.,
||β∗|| = 1.

Bounding A: We follow the same procedure that is in [4] with slight refinement in the argument.
The main difference is not taking an union bound over the covering set at the end of the stage, since
we are only interested in one fixed direction.

We start from symmetrization argument. For symmetrization, we first introduce (x′i, y
′
i), indepen-
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dent copy of (xi, yi). Then,

P
(
| 1
n

n∑
i=1

(2wβ(xi, yi)− 1)yi〈xi, v〉 −
n∑
i=1

(2wβ(x′i, y
′
i)− 1)y′i〈x′i, v〉| ≥ t/2

)
≥ P

(
| 1
n

n∑
i=1

(2wβ(xi, yi)− 1)yi〈xi, v〉 − 〈µ, v〉| ≥ t, |
1

n

n∑
i=1

(2wβ(x′i, y
′
i)− 1)y′i〈x′i, v〉 − 〈µ, v〉| ≤ t/2

)
= P

(
| 1
n

n∑
i=1

(2wβ(xi, yi)− 1)yi〈xi, v〉 − 〈µ, v〉| ≥ t)P
(
| 1
n

n∑
i=1

(2wβ(x′i, y
′
i)− 1)y′i〈x′i, v〉 − 〈µ, v〉| ≤ t/2

)
≥ 1

2
P
(
| 1
n

n∑
i=1

(2wβ(xi, yi)− 1)yi〈xi, v〉 − 〈µ, v〉| ≥ t),

where the first inequality comes from the fact that condition in the second line implies one in the
first line. For the last inequality we used Chevyshev’s inequality as the following:

P
(
| 1
n

n∑
i=1

(2wβ(x′i, y
′
i)− 1)y′i〈x′i, v〉 − 〈µ, v〉| ≥ t/2

)
≤ Var((2wβ(x′i, y

′
i)− 1)y′i〈x′i, v〉)

nt2/4

≤ E[(2wβ(x′i, y
′
i)− 1)2(y′〈x′, v〉)2]

nt2/4
≤ E[(σ2 + 〈x′,β∗〉2)〈x′, v〉2]

nt2/4

≤ (σ2 + 3||β∗||2)

nt2/4
≤ 1

2
,

where in the last two inequalities we used E[〈x′, u〉2〈x′, v〉2] ≤ 3||u||2||v||2 from lemma 7 in [4] and
the fact that we will use the number of samples such that nt2 > c3(σ2 + ||β∗||2) for some c3.

Then, we introduce Rademacher variables {εi} to conclude that

P
(
| 1
n

n∑
i=1

(2wβ(xi, yi)− 1)yi〈xi, v〉−
1

n

n∑
i=1

(2wβ(x′i, y
′
i)− 1)y′i〈x′i, v〉| ≥ t

)
≤ 2P

(
| 1
n

n∑
i=1

εi(2wβ(xi, yi)− 1)yi〈xi, v〉| ≥ t/2
)
,

which in turn yields P(A ≥ 4t) ≤ 4P
(
| 1n
∑n
i=1 εi(2wβ(xi, yi)− 1)yi〈xi, v〉| ≥ t

)
.

Now let us define two events E1 = { 1
n

∑n
i=1〈xi, v〉2 ≤ 2} and E2 = { 1

n

∑n
i=1 εi(〈xi,β∗〉〈xi, v〉 −

〈β∗, v〉) ≤ t/2}. Let E = E1 ∩ E2. Then,

P
( 1

n

n∑
i=1

εi(2wβ(xi, yi)− 1)yi〈xi, v〉 ≥ t
)
≤ P

( 1

n

n∑
i=1

εi(2wβ(xi, yi)− 1)yi〈xi, v〉 ≥ t|E
)

+ P (Ec)

In order to apply Chernoff’s bound, we bound the expectation given the event.

E
[

exp
(λ
n

n∑
i=1

εi(2wβ(xi, yi)− 1)yi〈xi, v〉
)
|E
]
≤ E

[
exp

(λ
n

n∑
i=1

εiyi〈xi, v〉
)
|E
]
,

where we used the fact that ea + e−a ≤ eb + e−b whenever |a| < |b|, and |2wβ(xi, yi) − 1| < 1.
Conditioned on xi, yi ∼ ε′i〈xi,β∗〉+ wi, where wi ∼ N (0, σ2) and ε′i is a latent variable taking value
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+1 or −1 with equal probability. Then,

E
[

exp
(λ
n

n∑
i=1

εiyi〈xi, v〉
)
|E
]

= E
[

exp
(λ
n

n∑
i=1

(εi〈xi,β∗〉〈xi, v〉+ εiwi〈xi,β∗〉)
)
|E
]

≤ {E
[

exp
(2λ

n

n∑
i=1

(εi〈xiβ∗〉〈xi, v〉
)
|E
]
E
[

exp
(2λ

n

n∑
i=1

εiwi〈xi, v〉
)
|E
]
}1/2

≤ {exp(λt) E
[

exp
(2λ

n

n∑
i=1

εi〈β∗, v〉
)
|E
]
E
[

exp
(2λ2

n2
σ2

n∑
i=1

〈xi, v〉2
)
|E
]
}1/2

≤ {exp
(
λt+

2λ2

n
〈β∗, v〉2 +

4λ2

n
σ2
)
}1/2

≤ exp
(λt

2
+

2λ2

n
(σ2 + ||β∗||2)

)
,

where we used Cauchy-Schwartz inequality first, then Gaussian-tail bound, and sub-Gaussian bound
for rademacher variables and definition of E. Using this, we use the Chernoff bound to get

P
( 1

n

n∑
i=1

εi(2wβ(xi, yi)− 1)yi〈xi, v〉 ≥ t|E
)
≤ exp

(2λ2

n
(||β∗||2 + σ2)− λt

2

)
,

from which optimal choice of λ gives

P
( 1

n

n∑
i=1

εi(2wβ(xi, yi)− 1)yi〈xi, v〉 ≥ t|E
)
≤ exp

(
− nt2

32(||β∗||2 + σ2)

)
.

Now we are left with bounding P (Ec). As it is less than P (Ec1) + P (Ec2), we are bounding
probability of these two events. As each 〈xi, v〉2 is a Chi-square random variable, using the sub-
exponential tail bound, we have P (Ec1) ≤ e−n/8. For bounding probability of Ec2, we first introduce
two random variables Z1 = 〈xi, u〉 and Z2 = 〈xi, v〉 where u = β∗/||β∗||. Note that Z1, Z2 is jointly
Gaussian with zero-mean and covariance

[ 1 〈u,v〉
〈u,v〉 1

]
. We are bounding

P(
1

n

n∑
i=1

εi(Z1Z2 − 〈u, v〉) >
t

2||β∗||
) ≤ E[exp(λε(Z1Z2 − 〈u, v〉)]n

eλnt/2||β∗||

First observe that Z2|Z1 ∼ N (〈u, v〉Z1, 1−〈u, v〉2). Using it to get an expectation over Z2 conditioned
on Z1, we get

E[exp(λεZ1Z2)] = E[exp(
λ2

2
(1− 〈u, v〉2) + λε〈u, v〉)Z2

1 ].

Since Z2
1 is Chi-square variable, which is sub-exponential. Thus,

E[exp(λε(Z1Z2 − 〈u, v〉))] = E
[
exp

(
λ2

2
(1− 〈u, v〉2) + λε〈u, v〉

)
(Z2

1 − 1)

]
exp

(
λ2

2
(1− 〈u, v〉2)

)
≤ exp

(
2

(
λ2

2
(1− 〈u, v〉2) + λε〈u, v〉

)2
)

exp

(
λ2

2
(1− 〈u, v〉2)

)
≤ exp(3λ2),

where we first used sub-exponential tail bound for Chi-square distribution, used a+ 1−a2
2 < 1 for

a < 1, and the fact that we will use small enough λ < 1. Finally, with optimal choice of λ, we have

P(Ec2) ≤ exp(− nt2

48||β∗||2
).
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Combining all bounds for the probability, with probability at least 1 − δ, we have A ≤
c1

√
(σ2 + ||β∗||2) 1

n log(1/δ) for some universal constant c1.

Bounding B: Standard results from random matrix theory imply that ||Σ̂p − I||op ≤ c2
√

d
n log(1/δ)

with high probability. We will consider events under this condition.
Since inverse operator is hard to handle, we modify it using Taylor’s expansion

Σ̂−1 = (I − (I − Σ̂))−1

= I + (I − Σ̂) + (I − Σ̂)2 + ...,

which in turn yields µT (Σ̂−1 − I)v = µT (I − Σ̂)v + ||µ||Õ( dn ).
For simplicity, let us define u = µ

||µ|| and derive a bound for uT (I − Σ̂)v. Now we are left with
bounding uT (I − Σ̂)v = uT v − 1

n

∑
i(x

T
i u)(xTi v). Let two random variables Z1 = XTu, Z2 = XT v.

Then Z1, Z2 are jointly Gaussian with zero-mean and covariance
[ 1 〈u,v〉
〈u,v〉 1

]
. Then the probability

we are to give a concentration bound is

P(
1

n

∑
i

z1,iz2,i − 〈u, v〉 ≥ t) ≤
E[exp(λZ1Z2)]n

eλntenλ〈u,v〉
.

Using the same procedure used to bound P(Ec2) before, we have

P(
1

n

∑
i

z1,iz2,i − 〈u, v〉 ≥ t) ≤ exp(−nt2/12),

which gives with high probability, uT (I − Σ̂)v ≤ Õ(
√

1
n ).

Finally, ||µ|| ≤ O(
√
σ2 + ||β∗||2) due to Lemma 2, we have B ≤ c4

√
σ2 + ||β∗||2(

√
1
n log(1/δ) +

d
n ).

Bounding C: We have ||µ̂ − µ|| ≤ c5
√
σ2 + ||β∗||2

√
d
n log(1/δ) from [4] with probability at least

1− δ, as well as ||Σ̂−1 − I||op ≤ c2
√

d
n log(1/δ) from random matrix theory. Therefore, we get

|(µ̂− µ)T (Σ̂−1 − I)v| ≤ ||µ̂− µ|| ||Σ̂−1 − I||op ||v|| ≤ Õ(
√
σ2 + ||β∗||2 d

n
).

This gives a bound for C.
Finally, combining the bounds on A,B and C with v = β∗, we get the first part of the theorem.

Corollary 3. Suppose that the norm of the estimator ‖β‖ is larger than ‖β
∗‖

10 . Then, with n =

Õ(max(1, η−2)d/ε2) samples for one finite-sample based EM iteration, we have

cos θ̃′ ≥ κ(1− 10ε) cos θ −O
(

max
( ε√

d
, ε2
))

, (21)

sin2 θ̃′ ≤ κ′ sin2 θ +O(ε), (22)

with κ =
√

1 + sin2 θ
cos2 θ+ 1

2 (1+η−2)
≥ 1, and κ′ = (1 + 2η2

1+η2 cos2 θ)−1 < 1.
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Proof. We start from the end of the proof for Theorem 4. We now replace statistical errors in terms
of ε using the sample complexity n = Õ((1 + η−2)d/ε2). Recall the way we compute cosine,

cos θ̃′ =
〈β̃′,β∗〉
||β̃′|| ||β∗||

=
〈β′,β∗〉
||β̃′|| ||β∗||

+
〈β̃′ − β′,β∗〉
||β̃′|| ||β∗||

= cos θ′
||β′||
||β̃′||

+
〈β̃′ − β′,β∗〉
||β̃′|| ||β∗||

≥ cos θ′
(
1− ε

||β′||/||β∗||+ ε

)
−max

( ε√
d
, ε2
) ||β∗||
||β̃′||

≥ cos θ′(1− 10ε)−O
(

max
( ε√

d
, ε2
))

≥ κ(1− 10ε) cos θ −O
(

max
( ε√

d
, ε2
))
,

where the last two inequalities follows from the Lemma 2 and equation (30) in the proof of Theorem
2.

Now for sine, we have that

sin2 θ̃′ = 1− cos2 θ̃′

≤ 1− cos2 θ′ +O(ε)

≤ sin2 θ′ +O(ε)

≤ κ′ sin2 θ +O(ε),

where the last inequality comes from Theorem 1.

C.4 Proof of Theorem 6
Theorem 6. Consider one iteration of Easy-EM algorithm. There exist absolute constants c1, c2 > 0,
such that with probability at least 1− δ,

‖β̃′′ − β′‖ ≤ c1
√
σ2 + ‖β∗‖2

√
d

n
log(1/δ),

|(β̃′′ − β′)>β∗| ≤ c2
√
σ2 + ‖β∗‖2

√
1

n
log(1/δ).

Furthermore, suppose that the norm of current estimator ‖β‖ is larger than ‖β
∗‖

10 . Then, with
n = Õ(max(1, η−2)d/ε2) samples for one Easy-EM iteration, we have

cos θ̃′′ ≥ κ(1− 10ε) cos θ −O
( ε√

d

)
,

sin2 θ̃′′ ≤ κ′ sin2 θ +O(ε),

with κ =
√

1 + sin2 θ
cos2 θ+ 1

2 (1+η−2)
≥ 1, and κ′ =

(
1 + 2η2

1+η2 cos2 θ
)−1

< 1.

Proof. Bound for |(β̃′′ − β′)>β∗| directly follows from bounding A in the proof of Theorem 4. For
the norm, standard covering set argument tells we can take union bound over 1/2-covering set of
unit sphere to bound P (supv∈Sd |(β̃′′ − β′)>v| ≥ t), from which we can conclude

‖β̃′′ − β′‖ ≤ c1
√
σ2 + ‖β∗‖2

√
d

n
log(1/δ),
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with probability at least 1− δ.
Finally, bound for cosine and sine can be derived by the exactly same procedure used in the proof

of Corollary 3.
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