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Abstract
We present a novel inference framework for convex empirical risk min-

imization, using approximate stochastic Newton steps. The proposed
algorithm is based on the notion of finite differences and allows the ap-
proximation of a Hessian-vector product from first-order information. In
theory, our method efficiently computes the statistical error covariance
in M -estimation, both for unregularized convex learning problems and
high-dimensional LASSO regression, without using exact second order
information, or resampling the entire data set. In practice, we demon-
strate the effectiveness of our framework on large-scale machine learning
problems, that go even beyond convexity: as a highlight, our work can be
used to detect certain adversarial attacks on neural networks.

1 Introduction

Statistical inference is an important tool for assessing uncertainties, both for
estimation and prediction purposes [25, 21]. E.g., in unregularized linear re-
gression and high-dimensional LASSO settings [53, 32, 49], we are interested in
computing coordinate-wise confidence intervals and p-values of a p-dimensional
variable, in order to infer which coordinates are active or not [58]. Traditionally,
the inverse Fisher information matrix [20] contains the answer to such inference
questions; however it requires storing and computing a p× p matrix structure,
often prohibitive for large-scale applications [52]. Alternatively, the Bootstrap
method is a popular statistical inference algorithm, where we solve an optimiza-
tion problem per dataset replicate, but can be expensive for large data sets
[35].
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While optimization is mostly used for point estimates, recently it is also used
as a means for statistical inference in large scale machine learning [37, 14, 48, 24].
This manuscript follows this path: we propose an inference framework that uses
stochastic gradients to approximate second-order, Newton steps. This is enabled
by the fact that we only need to compute Hessian-vector products; in math, this

can be approximated using ∇2f(θ)v ≈ ∇f(θ+δv)−∇f(θ)
δ , where f is the objective

function, and ∇f , ∇2f denote the gradient and Hessian of f . Our method can
be interpreted as a generalization of the SVRG approach in optimization [34]
(Appendix D); further, it is related to other stochastic Newton methods (e.g.
[3]) when δ → 0. We defer the reader to Section 5 for more details. In this work,
we apply our algorithm to unregularized M -estimation, and we use a similar
approach, with proximal approximate Newton steps, in high-dimensional linear
regression.

Our contributions can be summarized as follows; a more detailed discussion
is deferred to Section 5:

o For the case of unregularized M -estimation, our method efficiently computes
the statistical error covariance, useful for confidence intervals and p-values.
Compared to state of the art, our scheme (i)(i)(i) guarantees consistency of
computing the statistical error covariance, (ii)(ii)(ii) exploits better the available
information (without wasting computational resources to compute quantities
that are thereafter discarded), and (iii)(iii)(iii) converges to the optimum (without
swaying around it).

o For high-dimensional linear regression, we propose a different estimator (see
(13)) than the current literature. It is the result of a different optimization
problem that is strongly convex with high probability. This permits the use
of linearly convergent proximal algorithms [61, 36] towards the optimum; in
contrast, state of the art only guarantees convergence to a neighborhood
of the LASSO solution within statistical error. Our model also does not
assume that absolute values of the true parameter’s non-zero entries are lower
bounded.

o The effectiveness of our framework goes even beyond convexity. As a highlight,
we show that our work can be used to detect certain adversarial attacks on
neural networks.

2 Unregularized M-estimation

In unregularized, low-dimensional M -estimation problems, we estimate a param-
eter of interest:

θ? = arg min
θ∈Rp

EX∼P [`(X; θ)] , where P (X) is the data distribution,

using empirical risk minimization (ERM) on n > p i.i.d. data points {Xi}ni=1:

θ̂ = arg min
θ∈Rp

1
n

n∑
i=1

`(Xi; θ).
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Statistical inference, such as computing one-dimensional confidence intervals,
gives us information beyond the point estimate θ̂, when θ̂ has an asymptotic limit
distribution [58]. E.g., under regularity conditions, the M -estimator satisfies

asymptotic normality [54, Theorem 5.21]. I.e.,
√
n(θ̂ − θ?) weakly converges to

a normal distribution:

√
n
(
θ̂ − θ?

)
→ N

(
0, H?−1G?H?−1

)
,

where H? = EX∼P [∇2
θ`(X; θ?)] and G? = EX∼P [∇θ`(X; θ?)∇θ`(X; θ?)>]. We

can perform statistical inference when we have a good estimate of H?−1G?H?−1.
In this work, we use the plug-in covariance estimator Ĥ−1ĜĤ−1 forH?−1G?H?−1,
where:

Ĥ = 1
n

n∑
i=1

∇2
θ`(Xi; θ̂), and Ĝ = 1

n

n∑
i=1

∇θ`(Xi; θ̂)∇θ`(Xi; θ̂)
>.

Observe that, in the naive case of directly computing Ĝ and Ĥ−1, we require both
high computational- and space-complexity. Here, instead, we utilize approximate
stochastic Newton motions from first order information to compute the quantity
Ĥ−1ĜĤ−1.

2.1 Statistical inference with approximate Newton steps
using only stochastic gradients

Based on the above, we are interested in solving the following p-dimensional
optimization problem:

θ̂ = arg min
θ∈Rp

f(θ) := 1
n

n∑
i=1

fi(θ), where fi(θ) = `(Xi; θ).

Notice that Ĥ−1ĜĤ−1 can be written as 1
n

∑n
i=1

(
Ĥ−1∇θ`(Xi; θ̂)

) (
Ĥ−1∇θ`(Xi; θ̂)

)>
,

which can be interpreted as the covariance of stochastic –inverse-Hessian conditioned–
gradients at θ̂. Thus, the covariance of stochastic Newton steps can be used for
statistical inference.

Algorithm 1 approximates each stochastic Newton Ĥ−1∇θ`(Xi; θ̂) step using

only first order information. We start from θ0 which is sufficiently close to θ̂,
which can be effectively achieved using SVRG [34]; a description of the SVRG
algorithm can be found in Appendix D. Lines 4, 5 compute a stochastic gradient
whose covariance is used as part of statistical inference. Lines 6 to 12 use SGD
to solve the Newton step,

min
g∈Rp

〈
1
So

∑
i∈Io

∇fi(θt), g

〉
+ 1

2ρt

〈
g,∇2f(θt)g

〉
, (1)
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Algorithm 1 Unregularized M-estimation statistical inference

1: Parameters: So, Si ∈ Z+; ρ0, τ0 ∈ R+; do, di ∈
(

1
2 , 1
)

Initial state:
θ0 ∈ Rp

2: for t = 0 to T − 1 do // approximate stochastic Newton descent
3: ρt ← ρ0(t+ 1)−d0

4: Io ← uniformly sample So indices with replacement from [n]

5: g0
t ← −ρt

(
1
So

∑
i∈Io ∇fi(θt)

)
6: for j = 0 to L− 1 do // solving (1) approximately using SGD
7: τj ← τ0(j + 1)−di and δjt ← O(ρ4

t τ
4
j )

8: Ii ← uniformly sample Si indices without replacement from [n]

9: gj+1
t ← gjt − τj

(
1
Si

∑
k∈Ii

∇fk(θt+δ
j
t g
j
t )−∇fk(θt)

δjt

)
+ τjg

0
t

10: end for
11: Use

√
So · ḡtρt for statistical inference, where ḡt = 1

L+1

∑L
j=0 g

j
t

12: θt+1 ← θt + gLt
13: end for

which can be seen as a generalization of SVRG; this relationship is described in
more detail in Appendix D. In particular, these lines correspond to solving (1)
using SGD by uniformly sampling a random fi, and approximating:

∇2f(θ)g ≈ ∇f(θ+δjt g)−∇f(θ)

δjt
= E

[
∇fi(θ+δjt g)−∇fi(θ)

δjt
| θ
]
. (2)

Finally, the outer loop (lines 2 to 13) can be viewed as solving inverse Hessian
conditioned stochastic gradient descent, similar to stochastic natural gradient
descent [4].

In terms of parameters, similar to [43, 46], we use a decaying step size in Line
8 to control the error of approximating H−1g. We set δjt = O(ρ4

t τ
4
j ) to control

the error of approximating Hessian vector product using a finite difference of
gradients, so that it is smaller than the error of approximating H−1g using
stochastic approximation. For similar reasons, we use a decaying step size in the
outer loop to control the optimization error.

The following theorem characterizes the behavior of Algorithm 1.

Theorem 1. For a twice continuously differentiable and convex function f(θ) =
1
n

∑n
i=1 fi(θ) where each fi is also convex and twice continuously differentiable,

assume f satisfies

o strong convexity: ∀θ1, θ2, f(θ2) ≥ f(θ1) + 〈∇f(θ1), θ2 − θ1〉+ 1
2α‖θ2 − θ1‖22;

o ∀θ, each ‖∇2fi(θ)‖2 ≤ βi, which implies that fi has Lipschitz gradient:
∀θ1, θ2, ‖∇fi(θ1)−∇fi(θ2)‖2 ≤ βi‖θ1 − θ2‖2;

o each ∇2fi is Lipschitz continuous: ∀θ1, θ2, ‖∇2fi(θ2)−∇2fi(θ1)‖2 ≤ hi‖θ2−
θ1‖2.
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In Algorithm 1, we assume that batch sizes So—in the outer loop—and Si—in
the inner loops—are O(1). The outer loop step size is

ρt = ρ0 · (t+ 1)−do , where do ∈
(

1
2 , 1
)

is the decaying rate. (3)

In each outer loop, the inner loop step size is

τj = τ0 · (j + 1)−di , where di ∈
(

1
2 , 1
)

is the decaying rate. (4)

The scaling constant for Hessian vector product approximation is

δjt = δ0 · ρ4
t · τ4

j = o
(

1
(t+1)2(j+1)2

)
. (5)

Then, for the outer iterate θt we have

E
[
‖θt − θ̂‖22

]
. t−do , (6) and E

[
‖θt − θ̂‖42

]
. t−2do . (7)

In each outer loop, after L steps of the inner loop, we have:

E
[∥∥∥ ḡtρt − [∇2f(θt)]

−1g0
t

∥∥∥2

2
| θt
]
. 1

L

∥∥g0
t

∥∥2

2
, (8)

and at each step of the inner loop, we have:

E
[∥∥∥gj+1

t − [∇2f(θt)]
−1g0

t

∥∥∥4

2
| θt
]
. (j + 1)−2di

∥∥g0
t

∥∥4

2
. (9)

After T steps of the outer loop, we have a non-asymptotic bound on the
“covariance”:

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

]
. T−

do
2 + L−

1
2 , (10)

where H = ∇2f(θ̂) and G = 1
n

∑n
i=1∇fi(θ̂)∇fi(θ̂)>.

Some comments on the results in Theorem 1. The main outcome is that
(10) provides a non-asymptotic bound and consistency guarantee for computing
the estimator covariance using Algorithm 1. This is based on the bound for
approximating the inverse-Hessian conditioned stochastic gradient in (8), and
the optimization bound in (6). As a side note, the rates in Theorem 1 are
very similar to classic results in stochastic approximation [43, 46]; however the
nested structure of outer and inner loops is different from standard stochastic
approximation algorithms. Heuristically, calibration methods for parameter
tuning in subsampling methods ([42], Ch. 9) can be used for hyper-parameter
tuning in our algorithm.

In Algorithm 1, {ḡt/ρt}ni=1 does not have asymptotic normality. I.e., 1√
T

∑T
t=1

ḡt
ρt

does not weakly converge to N
(

0, 1
So
H−1GH−1

)
; we give an example using

mean estimation in Appendix C.1. For a similar algorithm based on SVRG
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(Algorithm 5 in Appendix C), we show that we have asymptotic normality and
improved bounds for the “covariance”; however, this requires a full gradient
evaluation in each outer loop. In Appendix B, we present corollaries for the
case where the iterations in the inner loop increase, as the counter in the outer
loop increases (i.e., (L)t is an increasing series). This guarantees consistency
(convergence of the covariance estimate to H−1GH−1), although it is less effi-
cient than using a constant number of inner loop iterations. Our procedure also
serves as a general and flexible framework for using different stochastic gradient
optimization algorithms [50, 28, 38, 16] in the inner and outer loop parts.

Finally, we present the following corollary that states that the average of
consecutive iterates, in the outer loop, has asymptotic normality, similar to
[43, 46].

Corollary 1. In Algorithm 1’s outer loop, the average of consecutive iterates
satisfies

E
[∥∥∥∑T

t=1 θt
T − θ̂

∥∥∥2

2

]
. 1

T , (11) and 1√
T

(∑T
t=1 θt
T − θ̂

)
= W + ∆, (12)

where W weakly converges to N (0, 1
So
H−1GH−1), and ∆ = oP (1) when T →∞

and L→∞
(
E[‖∆‖22] . T 1−2do + T do−1 + 1

L

)
.

Corollary 1 uses 2nd , 4th moment bounds on individual iterates (eqs. (6),
(7) in the above theorem), and the approximation of inverse Hessian conditioned
stochastic gradient in (9).

3 High dimensional LASSO linear regression

In this section, we focus on the case of high-dimensional linear regression.
Statistical inference in such settings, where p� n, is arguably a more difficult
task: the bias introduced by the regularizer is of the same order with the
estimator’s variance. Recent works [63, 53, 32] propose statistical inference
via de-biased LASSO estimators. Here, we present a new `1-norm regularized
objective and propose an approximate stochastic proximal Newton algorithm,
using only first order information.

We consider the linear model yi = 〈θ?, xi〉+ εi, for some sparse θ? ∈ Rp. For
each sample, εi ∼ N (0, σ2) is i.i.d. noise. And each data point xi ∼ N (0,Σ) ∈
Rp.

o Assumptions on θ: (i)(i)(i) θ? is s-sparse; (ii)(ii)(ii) ‖θ?‖2 = O(1), which implies that
‖θ?‖1 .

√
s.

o Assumptions on Σ: (i)(i)(i) Σ is sparse, where each column (and row) has at most
b non-zero entries;1 (ii)(ii)(ii) Σ is well conditioned: all of Σ’s eigenvalues are Θ(1);

1This is satisfied when Σ is block diagonal or banded. Covariance estimation under this
sparsity assumption has been extensively studied [7, 8, 13], and soft thresholding is an effective
yet simple estimation method [45].
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(iii)(iii)(iii) Σ is diagonally dominant (Σii −
∑
j 6=i|Σij | ≥ DΣ > 0 for all 1 ≤ i ≤ p),

and this will be used to bound the `∞ norm of Ŝ−1 [55]. A commonly used
design covariance that satisfies all of our assumptions is I.

We estimate θ? using:

θ̂ = arg min
θ∈Rp

1
2

〈
θ,

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ

〉
+ 1

n

n∑
i=1

1
2

(
x>i θ − yi

)2
+ λ‖θ‖1, (13)

where Ŝjk = sign
( (

1
n

∑n
i=1xix

>
i

)
jk

)( ∣∣∣( 1
n

∑n
i=1xix

>
i

)
jk

∣∣∣ − ω)+ is an estimate

of Σ by soft-thresholding each element of 1
n

∑n
i=1xix

>
i with ω = Θ

(√
log p
n

)
[45]. Under our assumptions, Ŝ is positive definite with high probability when
n � b2 log p (Lemma 4), and this guarantees that the optimization problem
(13) is well defined. I.e., we replace the degenerate Hessian in regular LASSO
regression with an estimate, which is positive definite with high probability under
our assumptions.

We set the regularization parameter

λ = Θ

(
(σ + ‖θ?‖1)

√
log p
n

)
,

which is similar to LASSO regression [12, 41] and related estimators using
thresholded covariance [62, 33].

Point estimate. Theorem 2 provides guarantees for our proposed point esti-
mate (13).

Theorem 2. When n� b2 log p, the solution θ̂ in (13) satisfies∥∥∥θ̂ − θ?∥∥∥
1
. s (σ + ‖θ?‖1)

√
log p
n . s

(
σ +
√
s
)√

log p
n , (14)∥∥∥θ̂ − θ?∥∥∥

2
.
√
s (σ + ‖θ?‖1)

√
log p
n .

√
s
(
σ +
√
s
)√

log p
n , (15)

with probability at least 1− p−Θ(1).

Confidence intervals. We next present a de-biased estimator θ̂d (16), based

on our proposed estimator. θ̂d can be used to compute confidence intervals and
p-values for each coordinate of θ̂d, which can be used for false discovery rate
control [30]. The estimator satisfies:

θ̂d = θ̂ + Ŝ−1

[
1
n

n∑
i=1

(
yi − x>i θ̂

)
xi

]
. (16)

Our de-biased estimator is similar to [63, 53, 31, 32]. however, we have
different terms, since we need to de-bias covariance estimation. Our estimator
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assumes n � b2 log p, since then Ŝ is positive definite with high probability
(Lemma 4). The assumption that Σ is diagonally dominant guarantees that

the `∞ norm ‖Ŝ−1‖∞ is bounded by O
(

1
DΣ

)
with high probability when n�

1
DΣ

2 log p.
Theorem 3 shows that we can compute valid confidence intervals for each

coordinate when n � ( 1
DΣ

s (σ + ‖θ?‖1) log p)2. This is satisfied when n �
( 1
DΣ

s (σ +
√
s) log p)2. And the covariance is similar to the sandwich estimator

[29, 59].

Theorem 3. Under our assumptions, when n� max{b2, 1
DΣ

2 } log p, we have:

√
n(θ̂d − θ?) = Z +R, (17)

where the conditional distribution satisfies Z | {xi}ni=1 ∼ N
(

0, σ2 ·
[
Ŝ−1

(
1
n

∑n
i=1 xix

>
i

)
Ŝ−1

])
,

and ‖R‖∞ . 1
DΣ

s (σ + ‖θ?‖1) log p√
n

. 1
DΣ

s (σ +
√
s) log p√

n
with probability at least

1− p−Θ(1).

Our estimate in (13) has similar error rates to the estimator in [62]; however,
no confidence interval guarantees are provided, and the estimator is based on
inverting a large covariance matrix. Further, although it does not match minimax
rates achieved by regular LASSO regression [44], and the sample complexity in
Theorem 3 is slightly higher than other methods [53, 31, 32], our criterion is
strongly convex with high probability: this allows us to use linearly convergent
proximal algorithms [61, 36], whereas provable linearly convergent optimization
bounds for LASSO only guarantees convergence to a neighborhood of the LASSO
solution within statistical error [1]. This is crucial for computing the de-biased
estimator, as we need the optimization error to be much less than the statistical
error.

In Appendix A, we present our algorithm for statistical inference in high di-
mensional linear regression using stochastic gradients. It estimates the statistical
error covariance using the plug-in estimator:

Ŝ−1

(
1
n

n∑
i=1

(x>i θ̂ − yi)2xix
>
i

)
Ŝ−1,

which is related to the empirical sandwich estimator [29, 59]. Algorithm 2
computes the statistical error covariance. Similar to Algorithm 1, Algorithm 2
has an outer loop part and an inner loop part, where the outer loops corre-
spond to approximate proximal Newton steps, and the inner loops solve each
proximal Newton step using proximal SVRG [61]. To control the variance, we
use SVRG and proximal SVRG to solve the Newton steps. This is because
in the high dimensional setting, the variance is too large when we use SGD
[40] and proximal SGD [5] for solving Newton steps. However, since we have
p � n , instead of sampling by sample, we sample by feature. When we set
Lto = Θ(log(p) · log(t)), we can estimate the statistical error covariance with
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element-wise error less than O
(

max{1,σ}polylog(n,p)√
T

)
with high probability, using

O
(
T · n · p2 · log(p) · log(T )

)
numerical operations. And Algorithm 3 calculates

the de-biased estimator θ̂d (16) via SVRG. For more details, we defer the reader
to the appendix.

4 Experiments

4.1 Synthetic data

The coverage probability is defined as 1
p

∑p
i=1 P[θ?i ∈ Ĉi], where Ĉi is the esti-

mated confidence interval for the ith coordinate. The average confidence interval
length is defined as 1

p

∑p
i=1(Ĉui − Ĉli), where [Ĉli , Ĉ

u
i ] is the estimated confidence

interval for the ith coordinate. In our experiments, coverage probability and
average confidence interval length are estimated through simulation. Result
given as a pair (α, β) indicates (coverage probability, confidence interval length).

Approximate Newton Bootstrap Inverse Fisher information Averaged SGD

Lin1 (0.906, 0.289) (0.933, 0.294) (0.918, 0.274) (0.458, 0.094)
Lin2 (0.915, 0.321) (0.942, 0.332) (0.921,0.308) (0.455 0.103)

(a) Linear regression

Approximate Newton Jackknife Inverse Fisher information Averaged SGD

Log1 (0.902, 0.840) (0.966 1.018) (0.938, 0.892) (0.075 0.044)
Log2 (0.925, 1.006) (0.979, 1.167) (0.948, 1.025) (0.065 0.045)

(b) Logistic regression

Table 1: Synthetic data average coverage & confidence interval length for low
dimensional problems.

Low dimensional problems. Table 1 shows 95% confidence interval’s cov-
erage and length of 200 simulations for linear and logistic regression. The
exact configurations for linear/logistic regression examples are provided in Ap-
pendix G.1.1. Compared with Bootstrap and Jackknife [22], Algorithm 1 uses
less numerical operations, while achieving similar results. Compared with the
averaged SGD method [37, 14], our algorithm performs much better, while
using the same amount of computation, and is much less sensitive to the choice
hyper-parameters.

0 5 10 15

0.1

0.0

0.1

0.2

0.3

0.4

0.5 coordinates of 
coordinates of d

Figure 1: 95% confidence inter-
vals

High dimensional linear regression. We
use 600 i.i.d. samples from a model with Σ = I,
σ = 0.7, θ? = [1/

√
8, · · · , 1/√8, 0, · · · , 0]> ∈

R1000 which is 8-sparse. Figure 1 shows 95%
confidence intervals for the first 20 coordinates.
The average confidence interval length is 0.14
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and average coverage is 0.83. Additional exper-
imental results, including p-value distribution,
are presented in Appendix G.1.2.

4.2 Real data

Neural network adversarial attack detection. Here we use ideas from
statistical inference to detect certain adversarial attacks on neural networks.
A key observation is that neural networks are effective at representing low
dimensional manifolds such as natural images [6, 15], and this causes the risk
function’s Hessian to be degenerate [47]. From a statistical inference perspective,
we interpret this as meaning that the confidence intervals in the null space of
H+GH+ is infinity, where H+ is the pseudo-inverse of the Hessian (see Section 2).

When we make a prediction Ψ(x; θ̂) using a fixed data point x as input (i.e.,
conditioned on x), using the delta method [54], the confidence interval of the

prediction can be derived from the asymptotic normality of Ψ(x; θ̂)

√
n
(

Ψ(x; θ̂)−Ψ(x; θ?)
)
→ N

(
0,∇θΨ(x; θ̂)>

[
Ĥ−1ĜĤ−1

]
∇θΨ(x; θ̂)

)
.

To detect adversarial attacks, we use the score

‖(I−PH+GH+)∇θΨ(x;θ̂)‖
2

‖∇θΨ(x;θ̂)‖
2

,

to measure how much ∇θΨ(x; θ̂) lies in null space of H+GH+, where PH+GH+

is the projection matrix onto the range of H+GH+. Conceptually, for the
same image, the randomly perturbed image’s score should be larger than the
original image’s score, and the adversarial image’s score should be larger than
the randomly perturbed image’s score.

We train a binary classification neural network with 1 hidden layer and
softplus activation function, to distinguish between “Shirt” and “T-shirt/top”
in the Fashion MNIST data set [60]. Figure 2 shows distributions of scores of
original images, adversarial images generated using the fast gradient sign method
[27], and randomly perturbed images. Adversarial and random perturbations
have the same `∞ norm. The adversarial perturbations and example images are
shown in Appendix G.2.1. Although the scores’ values are small, they are still
significantly larger than 64-bit floating point precision (2−53 ≈ 1.11 × 10−16).
We observe that scores of randomly perturbed images is an order of magnitude
larger than scores of original images, and scores of adversarial images is an order
of magnitude larger than scores of randomly perturbed images.

High dimensional linear regression. We apply our high dimensional linear
regression statistical inference procedure to a high-throughput genomic data set
concerning riboflavin (vitamin B2) production rate [11], which contains n = 71
samples of p = 4088 genes. We set λ = 4.260 and ω = 0.5. In Appendix G.2.2,
we show that our point estimate is similar to the vanilla LASSO estimate, and
compare our statistical inference results with those of [31, 11, 10, 39].

10
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Figure 2: Distribution of scores for original, randomly perturbed, and adversari-
ally perturbed images

5 Related work

Unregularized M-estimation. This work provides a general, flexible frame-
work for simultaneous point estimation and statistical inference, and improves
upon previous methods, based on averaged stochastic gradient descent [37, 14].

Compared to [14] (and similar works [48, 24] using SGD with decreasing step
size), our method does not need to increase the lengths of “segments” (inner
loops) to reduce correlations between different “replicates”. Even in that case, if
we use T replicates and increasing “segment” length (number of inner loops is

t
do

1−do · L) with a total of O(T
1

1−do · L) stochastic gradient steps, [14] guarantees

O(L−
1−do

2 + T−
1
2 + Tmax{ 1

2−
do

4(1−do)
,0}− 1

2 · L−
do
4 + Tmax{ 1−2do

2(1−do)
,0}− 1

2 · L
1−2do

2 ) ,

whereas our method guarantees O(T−
do
2 ). Further, [14] is inconsistent, whereas

our scheme guarantees consistency of computing the statistical error covariance.
[37] uses fixed step size SGD for statistical inference, and discards iterates

between different “segments” to reduce correlation, whereas we do not discard
any iterates in our computations. Although [37] states empirically constant step
SGD performs well in statistical inference, it has been empirically shown [17]
that averaging consecutive iterates in constant step SGD does not guarantee
convergence to the optimal – the average will be “wobbling” around the optimal,
whereas decreasing step size stochastic approximation methods ([43, 46] and our
work) will converge to the optimal, and averaging consecutive iterates guarantees
“fast” rates.

Finally, from an optimization perspective, our method is similar to stochastic
Newton methods (e.g. [3]); however, our method only uses first-order information

to approximate a Hessian vector product (∇2f(θ)v ≈ ∇f(θ+δv)−∇f(θ)
δ ). Algo-

rithm 1’s outer loops are similar to stochastic natural gradient descent [4]. Also,
we demonstrate an intuitive view of SVRG [34] as a special case of approximate
stochastic Newton steps using first order information (Appendix D).

High dimensional linear regression. [14]’s high dimensional inference algo-
rithm is based on [2], and only guarantees that optimization error is at the same
scale as the statistical error. However, proper de-biasing of the LASSO estimator
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requires the optimization error to be much less than the statistical error, oth-
erwise the optimization error introduces additional bias that de-biasing cannot
handle. Our optimization objective is strongly convex with high probability:
this permits the use of linearly convergent proximal algorithms [61, 36] towards
the optimum, which guarantees the optimization error to be much smaller than
the statistical error.

Our method of de-biasing the LASSO in Section 3 is similar to [63, 53, 31, 32].
Our method uses a new `1 regularized objective (13) for high dimensional linear
regression, and we have different de-biasing terms, because we also need to
de-bias the covariance estimation.

In Algorithm 2, our covariance estimate is similar to the classic sandwich
estimator [29, 59]. Previous methods require O(p2) space which unsuitable for
large scale problems, whereas our method only requires O(p) space.

Similar to our `1-norm regularized objective, [62, 33] shows similar point
estimate statistical guarantees for related estimators; however there are no
confidence interval results. Further, although [62] is an elementary estimator in
closed form, it still requires computing the inverse of the thresholded covariance,
which is challenging in high dimensions, and may not computationally outperform
optimization approaches.

Finally, for feature selection, we do not assume that absolute values of the
true parameter’s non-zero entries are lower bounded. [23, 56, 12].
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[9] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations
and Trends in Machine Learning, 8(3-4):231–357, 2015.
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A High dimensional linear regression statistical
inference using stochastic gradients (Section 3)

A.1 Statistical inference using approximate proximal New-
ton steps with stochastic gradients

Here, we present a statistical inference procedure for high dimensional linear
regression via approximate proximal Newton steps using stochastic gradients. It
uses the plug-in estimator:

Ŝ−1

(
1
n

n∑
i=1

(x>i θ̂ − yi)2xix
>
i

)
Ŝ−1,

which is related to the empirical sandwich estimator [29, 59]. Lemma 1 shows this
is a good estimate of the covariance when n� 1

DΣ
4 max{1, σ2}s2(σ + ‖θ?‖1)2.

Algorithm 2 performs statistical inference in high dimensional linear regression
(13), by computing the statistical error covariance in Theorem 3, based on the
plug-in estimate in Lemma 1. We denote the soft thresholding of A by ω as
an element-wise procedure (Sω(A))e = sign(Ae)(|Ae| − ω)+. For a vector v, we
write v’s ith coordinate as v(i). The optimization objective (13) is denoted as:

1
2θ
>
(
Ŝ − 1

n

∑n
i=1xix

>
i

)
θ + 1

n

∑n
i=1fi,

where fi = 1
2

(
x>i − yi

)2
. Further,

gŜ(v) = ∇v
[

1
2v
>Ŝv

]
= Ŝv =

p∑
j=1

v(j) · Sω

(
1
n

n∑
i=1

[∇fi(θ + ej)−∇fi(θ)]

)
,

where ei ∈ Rp is the basis vector where the ith coordinate is 1 and others are 0,
and Ŝv is computed in a column-wise manner.

For point estimate optimization, the proximal Newton step [36] at θ solves
the optimization problem

min
∆

1
2ρ∆>Ŝ∆ +

〈
(Ŝ − 1

n

∑n
i=1xix

>
i )θ + 1

n

n∑
i=1

∇fi(θ),∆

〉
+ λ‖θ + ∆‖1,

to determine a descent direction. For statistical inference, we solve a Newton
step:

min
∆

1
2ρ∆>Ŝ∆ +

〈
1
So

∑
k∈Io

∇fk(θt),∆

〉

to compute −Ŝ−1 1
So

∑
i∈Io ∇fi(θ), whose covariance is the statistical error co-

variance.
To control variance, we solve Newton steps using SVRG and proximal SVRG

[61], because in the high dimensional setting, the variance using SGD [40] and
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proximal SGD [5] for solving Newton steps is too large. However because p� n,
instead of sampling by sample, we sample by feature. We start from θ0 sufficiently
close to θ̂ (see Theorem 4 for details), which can be effectively achieved using
proximal SVRG (Appendix A.3). Line 7 corresponds to SVRG’s outer loop part
that computes the full gradient, and line 12 corresponds to SVRG’s inner loop
update. Line 8 corresponds to proximal SVRG’s outer loop part that computes
the full gradient, and line 13 corresponds to proximal SVRG’s inner loop update.

The covariance estimate bound, asymptotic normality result, and choice of
hyper-parameters are described in Appendix A.4. When Lto = Θ(log(p) · log(t)),

we can estimate the covariance with element-wise error less thanO
(

max{1,σ}polylog(n,p)√
T

)
with high probability, using O

(
T · n · p2 · log(p) · log(T )

)
numerical operations.

Calculation of the de-biased estimator θ̂d (16) via SVRG is described in Ap-
pendix A.2.

Algorithm 2 High dimensional linear regression statistical inference

1: Parameters: So, Si ∈ Z+; η, τ ∈ R+; Initial state: θ0 ∈ Rp

2: for t = 0 to T − 1 do
3: Io ← uniformly sample So indices with replacement from [n]
4: g0

t ← − 1
So

∑
k∈Io ∇fk(θt)

5: d0
t ← −

(
gŜ(θt)− 1

n

∑n
i=1 [∇fi(θt + θt)−∇fi(θt)] + 1

n

∑n
i=1∇fi(θt)

)
6: for j = 1 to Lto− do // solving Newton steps using SVRG
7: ujt ← gŜ(gj−1

t )− g0
t

8: vjt ← gŜ(dj−1
t )− d0

t

9: gjt ← gj−1
t , djt ← dj−1

t

10: for l = 1 to Li do
11: Ii ← uniformly sample Si indices without replacement from [p]

12: gjt ← gjt−τ
[
ujt + p

Si

∑
k∈Si

[
gjt (k)− gj−1

t (k)
]
· Sω (∇fk(θt + ek)−∇fk(θt))

]
13: djt ← Sηλ

(
djt − η

[
vjt + p

Si

∑
k∈Si

[
djt(k)− dj−1

t (k)
]
· Sω (∇fk(θt + ek)−∇fk(θt))

])
14: end for
15: end for
16: Use

√
So · ḡtρt for statistical inference, where ḡt = 1

Lto+1

∑Lto
j=0 g

j
t

17: θt+1 = θt + d̄t, where d̄t = 1
Lo+1

∑Lto
j=0 d

j
t // point estimation (optimiza-

tion)
18: end for

A.2 Computing the de-biased estimator (16) via SVRG

To control variance, we solve each proximal Newton step using SVRG, in stead
of SGD as in Algorithm 1. Because However because the number of features
is much larger than the number of samples, instead of sampling by sample, we
sample by feature.
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The de-biased estimator is

θ̂d =θ̂ + Ŝ−1

[
1

n

n∑
i=1

yixi −

(
1

n

n∑
i=1

xix
>
i

)
θ̂

]

=θ̂ + Ŝ−1

(
− 1

n

n∑
i=1

∇fi(θ̂)

)
.

And we compute Ŝ−1 1
n

∑n
i=1∇fi(θ̂) using SVRG [34] by solving the following

optimization problem using SVRG and sampling by feature

min
u

1

2
u>Ŝu+

〈
1

n

n∑
i=1

∇fi(θ̂), u

〉
.

Algorithm 3 Computing the de-biased estimator (16) via SVRG

1: for i = 0 to Lo − 1 do
2: d0

i ← −η[gŜ(ui) + 1
n

∑n
k=1∇fk(θ̂)]

3: for j = 0 to Li − 1 do
4: I ← sample S indices uniformly from [p] without replacement

5: dj+1
i ← dji + d0

t − η
(

1
S

∑
k∈I d

j
i (k) · Sω(∇fk(θ̂ + ek)− fk(θ̂))

)
6: end for
7: ui+1 ← ui + d̄i, where d̄i = 1

Li+1

∑Li
j=0 d

j
i

8: end for

Similar to Algorithm 2, we choose η = Θ
(

1
p

)
and Li = Θ(p).

A.3 Solving the high dimensional linear regression opti-
mization objective (13) using proximal SVRG

We solve our high dimensional linear regression optimization problem using
proximal SVRG [61]

θ̂ = arg min
θ

1

2
θ>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ +

1

n

n∑
i=1

1

2

(
x>i θ − yi

)2
+ λ‖θ‖1. (18)

Similar to Algorithm 2, we choose η = Θ
(

1
p

)
and Li = Θ(p).

A.4 Non-asymptotic covariance estimate bound and asymp-
totic normality in Algorithm 2

We have a non-asymptotic covariance estimate bound and an asymptotic nor-
mality result.
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Algorithm 4 Solving the high dimensional linear regression optimization objec-
tive (13) using proximal SVRG

1: for i = 0 to Lo − 1 do
2: u0

i ← θi
3: dt ← gŜ(θi)− 1

n

∑n
k=1[∇fk(θi + θi)−∇fk(θi)] + 1

n

∑n
k=1∇fk(θi)

4: for j = 0 to Li − 1 do

5: uj+1
i ← Sηλ(uji − η[dt + 1

S

∑
k∈I

(
uji (k)− θi(k)

)
·

Sω (∇fk(θt + ek)−∇fk(θt))])
6: end for
7: θt+1 ← 1

Li+1

∑Li
j=0 u

j
i

8: end for

Theorem 4. Under our assumptions, when n� max{b2, 1
DΣ

2 } log p, So = O(1),

Si = O(1), and conditioned on {xi}ni=1 and following events which simultaneously
with probability at least 1− p−Θ(1) − n−Θ(1)

o [A]: max1≤i≤n |εi| . σ
√

log n,

o [B]: max1≤i≤n ‖xi‖∞ .
√

log p+ log n,

o [C]: ‖Ŝ−1‖∞ . 1
DΣ

,

we choose Li = Θ(p), τ = Θ( 1
p ), η = Θ( 1

p ) in Algorithm 2.
Here, we denote the objective function as

P (θ) =
1

2
θ>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ +

1

n

n∑
i=1

1

2

(
x>i θ − yi

)2
+ λ‖θ‖1.

Then, we have a non-asymptotic covariance estimate bound∥∥∥SoT ∑T
t=1ḡtḡ

>
t − Ŝ−1

(
1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i

)
Ŝ−1

∥∥∥
max

.

√(
(log p+ log n)‖θ̂ − θ?‖1 + σ

√
(log p+ log n) log n

)
log p
T

+ 1
u

[
1√
T

∑T
t=10.95L

t
o(1 +

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o) +

√
p(log p+ log n)

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o

]
,

where ‖A‖max = max{1 ≤ j, k ≤ p}|Ajk| is the matrix max norm, with probability
at least 1− p−Θ(−1) − u.

And we have asymptotic normality

1√
t

(∑T
t=1

√
Soḡt + 1

n

∑n
i=1xi(x

>
i θ̂ − yi)

)
= W +R,

where W weakly converges to N
(

0,Ŝ−1
[

1
n

∑n
i=1(x>i θ̂−yi)

2xix
>
i −( 1

n

∑n
i=1 xi(x

>
i θ̂−yi))( 1

n

∑n
i=1 xi(x

>
i θ̂−yi))

>]
Ŝ−1

)
,

and E[‖R‖∞ | {xi}ni=1, [A], [B], [C]] . 1√
T

∑T
t=1 0.95L

t
o(1+

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o)+

√
p(log p+ log n)

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o .
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Note that when we choose Lto = Θ(log(p) · log(t)), and start from θ0 satisfying

P (θ0)− P (θ̂) . 1
p(log p+logn)2 which can be effectively achieved using proximal

SVRG (Appendix A.3), we can estimate the statistical error covariance with

element-wise error less than O
(

max{1,σ}polylog(n,p)√
T

)
with high probability, using

O
(
T · n · p2 · log(p) · log(T )

)
numerical operations.

A.5 Plug-in statistical error covariance estimate

Algorithm 2 is similar to using plug-in estimator 1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i for

σ2
(

1
n

∑n
i=1 xix

>
i

)
in Theorem 3, similar to the sandwich estimator [29, 59].

Lemma 1 gives a bound on using this plug-in estimator in the statistical error
covariance (Theorem 3) for coordinate-wise confidence intervals.

Lemma 1. Under our assumptions, when n� max{b2, 1
DΣ

2 } log p, we have∥∥∥Ŝ−1
(

1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i

)
Ŝ−1 − σ2Ŝ−1

(
1
n

∑n
i=1xix

>
i

)
Ŝ−1

∥∥∥
max

. 1
DΣ

2

(
σ
√

log n+ s (σ + ‖θ?‖1)
√

log p+ log n
√

log p
n

)
s (σ + ‖θ?‖1) (log p+ log n)

3
2

√
log p
n ,

where ‖A‖max = max1≤j,k≤p |Ajk| is the matrix max norm, with probability at
least 1− p−Θ(1) − n−Θ(1).

B Statistical inference via approximate stochas-
tic Newton steps using first order information
with increasing inner loop counts

Here, we present corollaries when the number of inner loops increases in the
outer loops (i.e., (L)t is an increasing series). This guarantees convergence of
the covariance estimate to H−1GH−1, although it is less efficient than using a
constant number of inner loops.

B.1 Unregularized M-estimation

Similar to Theorem 1’s proof, we have the following result when the number of
inner loop increases in the outer loops.

Corollary 2. In Algorithm 1, if the number of inner loop in each outer loop
(L)t increases in the outer loops, then we have

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

]
. T−

do
2 +

√√√√ 1

T

T∑
i=1

1

(L)t
.

For example, when we choose choose (L)t = L(t + 1)dL for some dL > 0,

then
√

1
T

∑T
i=1

1
(L)t

= O( 1√
L
T−

dL
2 ).
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C SVRG based statistical inference algorithm
in unregularized M-estimation

Here we present a SVRG based statistical inference algorithm in unregularized
M-estimation, which has asymptotic normality and improved bounds for the
“covariance”. Although Algorithm 5 has stronger guarantees than Algorithm 1,
Algorithm 5 requires a full gradient evaluation in each outer loop.

Algorithm 5 SVRG based statistical inference algorithm in unregularized
M-estimation

1: for t← 0; t < T ; + + t do
2: d0

t ← −η∇f(θt) = −η
(

1
n

∑n
i=1∇fi(θ)

)
// point estimation via SVRG

3: Io ← uniformly sample So indices with replacement from [n]

4: g0
t ← −ρt

(
1
So

∑
i∈Io ∇fi(θt)

)
// statistical inference

5: for j ← 0; j < L; + + j do // solving (1) approximately using SGD
6: Ii ← uniformly sample Si indices without replacement from [n]

7: dj+1
t ← djt − η

(
1
Si

∑
k∈Ii(∇fk(θt + djt )−∇fk(θt)

)
+ d0

t // point es-

timation via SVRG
8: gj+1

t ← gjt − τj

(
1
Si

∑
k∈Ii

1

δjt
[∇fk(θt + δjt g

j
t )−∇fk(θt)]

)
+ τjg

0
t //

statistical inference
9: end for

10: Use
√
So · ḡtρt for statistical inference // ḡt = 1

L+1

∑L
j=0 g

j
t

11: θt+1 ← θt + d̄t // d̄t = 1
L+1

∑L
j=0 d

j
t

12: end for

Corollary 3. In Algorithm 5, when L ≥ 20
max1≤i≤n βi

α and η = 1
10 max1≤i≤n βi

,

after T steps of the outer loop, we have a non-asymptotic bound on the “covari-
ance”

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

]
. L−

1
2 , (19)

and asymptotic normality

1√
T

(
T∑
t=1

ḡt
ρt

) = W + ∆,

where W weakly converges to N (0, 1
So
H−1GH−1) and ∆ = oP (1) when T →∞

and L→∞ (E[‖∆‖2] . 1√
T

+ 1
L).

When the number of inner loops increases in the outer loops (i.e., (L)t is an
increasing series), we have a result similar to Corollary 2.
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A better understanding of concentration, and Edgeworth expansion of the
average consecutive iterates averaged (beyond [18, 19]) in stochastic approxima-
tion, would give stronger guarantees for our algorithms, and better compare and
understand different algorithms.

C.1 Lack of asymptotic normality in Algorithm 1 for mean
estimation

In mean estimation, we solve the following optimization problem

θ̂ = arg min
θ

1

n

n∑
i=1

1

2
‖θ −X(i)‖22,

where we assume that {X(i)}ni=1 are constants.
For ease of explanation we use So = 1, ρt = ρ, and θ0 = 0,and we have

ḡt
ρt

= −θt +Xt,

where Xt is uniformly sampled from {X(i)}ni=1.
And for t ≥ 1 we have

θt =
t−1∑
i=0

ρ(1− ρ)t−1−iXi.

Then, we have

1√
T

(

T∑
i=1

ḡt
ρt

)

=
1√
T

(

T∑
t=1

Xt −
T∑
t=1

t−1∑
i=0

ρ(1− ρ)t−1−iXi)

=
1√
T

(
T∑
t=1

Xt −
T−1∑
i=0

(
T∑

t=i+1

ρ(1− ρ)t−1−i)Xi)

=
1√
T

(
T∑
t=1

Xt −
T−1∑
i=0

(1− (1− ρ)T−i)Xi)

=
1√
T

(XT −X0 +

T−1∑
i=1

(1− ρ)T−iXi),

whose `2 norm’s expectation converges to 0 when T →∞, which implies that it

converges to 0 with probability 1. Thus, in this setting 1√
T

(∑T
t=1

ḡt
ρt

)
does not

weakly converge to N
(

0, 1
So
H−1GH−1

)
.
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D An intuitive view of SVRG as approximate
stochastic Newton descent

Here we present an intuitive view of SVRG as approximate stochastic Newton
descent, which is the inspiration behind our work.

Gradient descent solves the optimization problem θ̂ = arg minθ f(θ), where
the function is a sum of n functions f(θ) = 1

n

∑n
i=1 fi(θ), using

θt+1 = θt − η∇f(θt),

and stochastic gradient descent uniformly samples a random index at each step

θt+1 = θt − ηt∇fi(θt).

o Outer loop:

o g ← ∇f(θt) =
∑n
i=1∇fi(θt)

o Let d be the descent direction

o – Inner loop:

– Choose a random index k

– d ← d − η(∇fk(θt + d) −
∇fk(θt) + g)

o θt+1 = θt + d

SVRG [34] improves gradient descent and SGD by having an outer loop and
an inner loop.

Here, we give an intuitive explanation of SVRG as stochastic proximal Newton
descent, by arguing that

o each outer loop approximately computes the Newton direction−(∇2f)−1∇f

o the inner loops can be viewed as SGD steps solving a proximal Newton
step mind〈∇f, d〉+ 1

2d
>(∇2f)d

First, it is well known [9] that the Newton direction is exactly the solution of

min
d
〈∇f(θ), d〉+

1

2
d>[∇2f(θ)]d. (20)

Next, let’s consider solving (20) using gradient descent on a function of d,
and notice that its gradient with respect to d is

∇f(θ) + [∇2f(θ)]d,

which can be approximated through f ’s Taylor expansion ([∇2f(θ)]d ≈ ∇f(θ +
d)−∇f(θ)) as

∇f(θ) + [∇f(θ + d)−∇f(θ)].
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Thus, SVRG’s inner loops can be viewed as using SGD to solve proximal New-
ton steps in outer loops. And it can be viewed as the power series identity for ma-
trix inverse H−1 =

∑∞
i=0(I−ηH), which corresponds to unrolling the gradient de-

scent recursion for the optimization problem H−1 = arg minΩ Tr
(

1
2Ω>HΩ− Ω

)
.

E Proofs

E.1 Proof of Theorem 1

Given assumptions about strong convexity, Lipschitz gradient continuity and
Hessian Lipschitz continuity in Theorem 1, we denote:

β̄ = βi
n , h̄ = hi

n .

Then, ∀θ1, θ2 we have:

‖∇f(θ2)−∇f(θ1)‖2 ≤ β̄‖θ2 − θ1‖2, and ‖∇2f(θ2)−∇2f(θ1)‖2 ≤ h̄‖θ2 − θ1‖2.

and ∀θ:

‖∇2f(θ)‖2 ≤ β̄.

In our proof, we also use the following:

h̄2 = 1
n

n∑
i=1

h2
i , β̄2 = 1

n

n∑
i=1

β2
i , and β = sup

θ
‖∇2f(θ)‖2.

Observe that:

h̄ ≤
√
h̄2, and α ≤ β ≤ β̄ ≤

√
β̄2.

E.1.1 Proof of (8)

We first prove (8); the proof is similar to standard SGD convergence proofs (e.g.
[37, 14, 43]). For the rest of our discussion, we assume that

δjt · h̄ ≤ δ
j
t ·
√
h̄2 � 1, ∀t, j.

Using ∇f(θ)’s Taylor series expansion with a Lagrange remainder, we have
the following lemma, which bounds the Hessian vector product approximation
error.

Lemma 2. ∀, θ, g, δ ∈ Rp, we have:∥∥∥∇fi(θ+δg)−∇fi(θ)
δ −∇2fi(θ)g

∥∥∥
2
≤ hi · |δ| · ‖g‖2,∥∥∥∇f(θ+δg)−∇f(θ)

δ −∇2f(θ)g
∥∥∥

2
≤ h̄ · |δ| · ‖g‖2.
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Denote Ht = ∇2f(θt) and

ejt =

(
1
Si
·
∑
k∈Ii

∇fk(θt+δ
j
t g
j
t )−∇fk(θt)

δjt

)
− ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
,

then we have

gj+1
t −H−1

t g0
t = gjt −H−1

t g0
t − τj ·

∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t − τje

j
t . (21)

Because E[etj | gtj , θt] = 0, we have

E
[∥∥∥gj+1

t −H−1
t g0

t

∥∥∥2

2
| θt
]

= E

[∥∥∥gjt −H−1
t g0

t

∥∥∥2

2
− τj

〈
gjt −H−1

t g0
t ,
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
− g0

t

〉
︸ ︷︷ ︸

[1]

+ τ2
j

∥∥∥∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
− g0

t

∥∥∥2

2︸ ︷︷ ︸
[2]

+τ2
j

∥∥∥ejt∥∥∥2

2︸ ︷︷ ︸
[3])

| θt
]
.

(22)

For term [1], we have〈
gjt −H−1

t g0
t ,
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
− g0

t

〉
=
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
+
〈
gjt −H−1

t g0
t ,
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Ht

〉
≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
−
∣∣∣〈gjt −H−1

t g0
t ,
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Ht〉

∣∣∣
by Hessian approximation

≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− δjt · h̄ ·

∥∥∥gjt −H−1
t g0

t

∥∥∥
2
·
∥∥∥gjt∥∥∥

2

by AM-GM inequality

≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− δjt ·h̄

2 ·
∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
− δjt ·h̄

2 ·
∥∥∥gjt∥∥∥2

2

=
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− δjt ·h̄

2 ·
∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
− δjt ·h̄

2 ·
∥∥∥gjt −H−1

t g0
t +H−1

t g0
t

∥∥∥2

2

‖x+ u‖22 ≤ 2‖x‖22 + 2‖y‖22

≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− 3δjt ·h̄

2 ·
∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
− δjt h̄ ·

∥∥H−1
t g0

t

∥∥2

2

by strong convexity

≥
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
− 3δjt ·h̄

2 ·
∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
− δjt h̄

α2 ·
∥∥g0
t

∥∥2

2
.

(23)

For term [2], by repeatedly applying AM-GM inequality, using f ’s smoothness
and strong convexity, and assuming δjt h̄� 1, we have:∥∥∥∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
− g0

t

∥∥∥2

2
=
∥∥∥∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Htg

j
t +Htg

j
t − g0

t

∥∥∥2

2
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≤
∥∥∥∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Htg

j
t

∥∥∥2

2

+ 2
∥∥∥∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Htg

j
t

∥∥∥
2
·
∥∥∥Htg

j
t − g0

t

∥∥∥
2

+
∥∥∥Htg

j
t − g0

t

∥∥∥2

2

≤
(
δjt h̄
)2

‖gjt ‖22 + 2δjt h̄
∥∥∥gjt∥∥∥

2
·
∥∥∥Htg

j
t − g0

t

∥∥∥
2

+
∥∥∥Htg

j
t − g0

t

∥∥∥2

2

≤
(
δjt h̄+

(
δjt h̄
)2
)
·
∥∥∥gjt∥∥∥2

2
+
(

1 + δjt h̄
)
· ‖Htg

j
t − g0

t ‖22

≤ 2

(
δjt h̄+

(
δjt h̄
)2
)
·
(∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
+
∥∥H−1

t g0
t

∥∥2

2

)
+
(

1 + δjt h̄
)
·
∥∥∥Htg

j
t − g0

t

∥∥∥2

2

≤
2
(
δjt h̄+(δjt h̄)

2
)

α2 ·
∥∥g0
t

∥∥2

2
+

(
1 + 3δjt h̄+ 2

(
δjt h̄
)2
)
·
∥∥∥Htg

j
t − g0

t

∥∥∥2

2

≤ 4δjt h̄
α2 ·

∥∥g0
t

∥∥2

2
+
(

1 + 5δjt h̄
)
· ‖Htg

j
t − g0

t ‖22.

For term [3], because we sample uniformly without replacement, we obtain:

EIi
[∥∥∥ejt∥∥∥2

2
| gjt , θt

]
= 1

Si

(
1− Si−1

n−1

)
· Ek

[∥∥∥∇fk(θt+δ
j
t g
j
t )−∇fk(θt)

δjt
− ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt

∥∥∥2

2

]
,

where k is uniformly sampled from [n]. Denote Hk
t = ∇2fk(θt), and by Lipschitz

gradient we have ‖Hk
t ‖2 ≤ βk. We can bound the above∥∥∥∥∥∇fk(θt+δ

j
t g
j
t )−∇fk(θt)

δjt
− ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt

∥∥∥∥∥
2

2

=
∥∥∥∇fk(θt+δ

j
t g
j
t )−∇fk(θt)

δjt
−Hk

t g
j
t +Hk

t g
j
t −

∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t −Htg

j
t

∥∥∥2

2

≤ 3

(∥∥∥(Ht −Hk
t

)
gjt

∥∥∥2

2
+
∥∥∥∇fk(θt+δ

j
t g
j
t )−∇fk(θt)

δjt
−Hk

t g
j
t

∥∥∥2

2
+
∥∥∥∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
−Htg

j
t

∥∥∥2

2

)
≤ 3

(∥∥Ht −Hk
t

∥∥2

2
+ (δjt )

2
(
h̄2 + h2

k

))
·
∥∥∥gjt∥∥∥2

2

‖Ht −Hk
t ‖22 ≤ 2(β̄2 + β2

k)

≤ 3
(

2
(
β̄2 + β2

k

)
+ (δjt )

2(h̄2 + h2
k)
)
·
∥∥∥gjt∥∥∥2

2

≤ 6
(

2
(
β̄2 + β2

k

)
+ (δjt )

2(h̄2 + h2
k)
)
·
(∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
+
∥∥H−1

t g0
t

∥∥2

2

)
.

Taking the expectation over inner loop’s random indices, for term [3], we
have

EIi
[∥∥∥ejt∥∥∥2

2
| gjt , θt

]
≤ 6

(
1
Si
·
(

1− Si−1
n−1

))((
δjt h̄
)2

+ 2β̄2 + (δjt )
2h̄2 + 2β̄2

)
·
(∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
+ 1

α2 ·
∥∥g0
t

∥∥2

2

)
≤ 18

(
1
Si

(
1− Si−1

n−1

))
·
(

(δjt )
2h̄2 + β̄2

)
·
(∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
+ 1

α2

∥∥g0
t

∥∥2

2

)
.

(24)
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Combining all above, we have

E
[∥∥∥gj+1

t −H−1
t g0

t

∥∥∥2

2
| gjt , θt

]
≤
∥∥∥gjt −H−1

t g0
t

∥∥∥2

2

− τj
(
gjt −H−1

t g0
t

)>
Ht

(
gjt −H−1

t g0
t

)
+

3τjδ
j
t h̄

2

∥∥∥gjt −H−1
t g0

t

∥∥∥2

2
+

τjδ
j
t h̄

α2

∥∥g0
t

∥∥2

2

+
4τ2
j δ
j
t h̄

α2 ·
∥∥g0
t

∥∥2

2
+ τ2

j

(
1 + 5δjt h̄

)
·
∥∥∥Htg

j
t − g0

t

∥∥∥2

2

+ 18τ2
j

(
1
Si

(
1− Si−1

n−1

))
·
(

(δjt )
2h̄2 + β̄2

)
·
(∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
+ 1

α2 ‖g0
t ‖22
)
.

When we choose the Hessian vector product approximation scaling constant
δjt to be sufficiently small

δjt h̄ ≤ δ
j
t

√
h̄2 ≤ 0.01,

3δjt h̄
2 ≤ 0.01α,

δjt h̄ ≤ δ
j
t

√
h̄2 ≤ 0.01

Si

(
1− Si−1

n−1

)
β̄2 ≤ 0.01

Si

(
1− Si−1

n−1

)
β̄2,

δjt h̄ ≤ δ
j
t

√
h̄2 ≤ 0.01τj

Si

(
1− Si−1

n−1

)
β̄2 ≤ 0.01τj

Si

(
1− Si−1

n−1

)
β̄2,

δjt h̄ ≤ δ
j
t

√
h̄2 ≤ 0.01α ≤ 0.01β̄ ≤ 0.01

√
β̄2,

we have

E
[∥∥∥gj+1

t −H−1
t g0

t

∥∥∥2

2
| gjt , θt

]
≤
∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
−τj

(
gjt −H

−1
t g0

t

)>
Ht
(
gjt −H

−1
t g0

t

)
+ 1.05τ2

j ‖Htgjt − g
0
t ‖22︸ ︷︷ ︸

[4]

+ 18.5τ2
j

(
1
Si

(
1− Si−1

n−1

))
β̄2

∥∥∥gjt −H−1
t g0

t

∥∥∥2

2

+ 18.5τ2
j

(
1
Si

(
1− Si−1

n−1

))
β̄2
α2 ·

∥∥g0
t

∥∥2

2
.

For term [4], let us consider the α strongly convex and β smooth quadratic
function

F (g) = 1
2g
>Htg − 〈g0

t , g〉,

who attains its minimum at g = H−1
t g0

t . Using a well known property of α
strongly convex and β smooth functions (Lemma 5), we have

−
(
gjt −H

−1
t g0

t

)>
Ht
(
gjt −H

−1
t g0

t

)
+ 1

2β
‖Htgjt − g

0
t ‖22 ≤−

(
gjt −H

−1
t g0

t

)>
Ht
(
gjt −H

−1
t g0

t

)
+ 1

α+β
‖Htgjt − g

0
t ‖22

≤− αβ
α+β
‖gjt −H

−1
t g0

t ‖22
≤− α

2
‖gjt −H

−1
t g0

t ‖22.
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Thus, when we choose

τj ≤ 0.476
β ,

we have

−τj
(
gjt −H

−1
t g0

t

)>
Ht
(
gjt −H

−1
t g0

t

)
+ 1.05τ2

j ·
∥∥∥Htgjt − g0

t

∥∥∥2

2
≤ −τj

(
gjt −H

−1
t g0

t

)>
Ht
(
gjt −H

−1
t g0

t

)
+

τj
2β

∥∥∥Htgjt − g0
t

∥∥∥2

2
,

≤ − τjα
2
· ‖gjt −H

−1
t g0

t ‖22,

and we have

E
[∥∥∥gj+1

t −H−1
t g0

t

∥∥∥2

2
| gjt , θt

]
≤
(

1− τjα+ 18.5τ2
j

(
1
Si

(
1− Si−1

n−1

))
β̄2

)
·
∥∥∥gjt −H−1

t g0
t

∥∥∥2

2

+ 18.5τ2
j

(
1
Si

(
1− Si−1

n−1

))
· β̄2

α2 · ‖g0
t ‖22.

Next, we set

τ0 = min

 0.476
β , 0.025·α

1
Si

(
1−Si−1

n−1

)
β̄2

 , Dj = (j + 1)−di , τj = τ0Dj , (25)

where di is inner loop’s step size decay rate, and we have:

E
[∥∥∥gj+1

t −H−1
t g0

t

∥∥∥2

2
| θt
]
≤

1−min

 α
2β ,

0.013·α2

1
Si

(
1−Si−1

n−1

)
β̄2

Dj

 · E [∥∥∥gjt −H−1
t g0

t

∥∥∥2

2
| θt
]

+ 18.5D2
j τ

2
0

(
1
Si

(
1− Si−1

n−1

))
β̄2

α2 ·
∥∥g0
t

∥∥2

2
.

To satisfy the above requirements, for the Hessian vector product approxi-
mation scaling constant, we choose:

δjt = o

(
min

{
1, 1

h̄

}
·min

{
1, α,min

{
1, τ4

0

(
τj
τ0

)4
}

1
Si

(
1− Si−1

n−1

)})
· δ0
t = o

(
(j + 1)

−2
)
· δ0
t ,

δ0
t = O(ρ4

t ) = o((t+ 1)−2) = o(1). (26)

which is trivially satisfied for quadratic functions because all hi = 0.
Note that:

18.5τ2
0

(
1
Si

(
1− Si−1

n−1

))
· β̄2

α2 = Θ

min

( 1
Si

(
1− Si−1

n−1

))
· β̄2

β2α2 ,
1

1
Si

(
1−Si−1

n−1

)
·β̄2


 .

Applying Lemma 6, we have:

E
[∥∥∥gjt −H−1

t g0
t

∥∥∥2

2
| θt
]

= O
(
t−di · ‖g0

t ‖22
)
, (27)
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where we have assumed that α, β, Si, etc. are (data dependent) constants.
Further, (27) implies:

E
[∥∥∥gjt∥∥∥2

2

]
≤ 2E

[∥∥∥gjt −H−1
t g0

t

∥∥∥2

2
+
∥∥H−1

t g0
t

∥∥2

2
| θt
]
. ‖g0

t ‖22, for all j. (28)

In Algorithm 1, we have

gj+1
t −H−1

t g0
t = (I − τjHt)(g

j
t −H−1

t g0
t ) + τj

(
−ejt −

∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t

)
.

By unrolling the recursion we have:

gj+1
t −H−1

t g0
t =

j∑
k=0

(
j∏

l=k+1

(I − τlHt)

)
· τk ·

(
−ekt −

∇f(θt+δ
k
t g
k
t )−∇f(θt)

δkt
+Htg

k
t

)
.

(29)

For the average ḡt, we have:

ḡt −H−1
t g0

t = 1
L+1

L∑
j=0

(gjt −H−1
t g0

t )

= 1
L+1

L∑
j=0

j−1∑
k=0

(
j−1∏
l=k+1

(I − τlHt)

)
· τk

(
−ekt −

∇f(θt+δ
k
t g
k
t )−∇f(θt)

δkt
+Htg

k
t

)

= 1
L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)︸ ︷︷ ︸
[5]

(
−ekt −

∇f(θt+δ
k
t g
k
t )−∇f(θt)

δkt
+Htg

k
t

)

= 1
L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)
(
−ekt

)
︸ ︷︷ ︸

[6]

+ 1
L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)
(
−∇f(θt+δ

k
t g
k
t )−∇f(θt)

δkt
+Htg

k
t

)
︸ ︷︷ ︸

[7]

.

(30)

For the term [5], we have:∥∥∥∥∥∥τk
L∑

j=k+1

j−1∏
l=k+1

(I − τlHt)

∥∥∥∥∥∥
2

≤ τk
L∑

j=k+1

j−1∏
l=k+1

‖I − τlHt‖2

I − τlHt is positive definite by our choice of τl (25) and ‖I − τlHt‖2 ≤ 1− τlα
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≤ τk
L∑

j=k+1

j−1∏
l=k+1

(1− τlα)

≤ τk
L∑

j=k+1

j−1∏
l=k+1

(
1− 1

2
τlα

)2

τk

j−1∏
l=k+1

(1− 1

2
τlα) ≤ τk exp(−1

2
α

j−1∑
l=k+1

τl) . k−di exp(Θ(−j1−di + k1−di)) . j−di . τj

because for a fixed di x
−dieΘ(x1−di ) is an increasing function when x is sufficiently large

.
L∑

j=k+1

τj

j−1∏
l=k+1

(
1− τlα

2

)
= 2

α

L∑
j=k+1

1

2
τjα

j−1∏
l=k+1

(
1− τlα

2

)

= 2
α

1−
L∏

j=k+1

(
1− τlα

2

) = O(1), (31)

where we have assumed that α, β, Si, etc. are (data-dependent) constants.
For the term [6], its norm is bounded by:

E


∥∥∥∥∥∥ 1
L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)(−ekt )

∥∥∥∥∥∥
2

2

| θt

 = 1
(L+1)2E

L−1∑
k=0

∥∥∥∥∥∥τk
L∑

j=k+1

j−1∏
l=k+1

(I − τlHt)(−ekt )

∥∥∥∥∥∥
2

2

| θt


using (31)

. 1
(L+1)2E

[
L−1∑
k=0

‖ekt ‖22 | θt

]
using (24) and (27)

. 1
L‖g

0
t ‖22. (32)

where the first equality is due to a < b, E[eat
>ebt | θt] = 0, when we first condition

on b.
For the term [7], its norm is bounded by:

E


∥∥∥∥∥∥ 1
L+1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)
(
−∇f(θt+δ

k
t g
k
t )−∇f(θt)

δkt
+Htg

k
t

)∥∥∥∥∥∥
2

2

| θt


= 1

(L+1)2E

[ ∑
0≤a,b,≤L−1

〈
τa

L∑
j=a+1

j−1∏
l=a+1

(I − τlHt)
(
−∇f(θt+δ

a
t g
a
t )−∇f(θt)
δat

+Htg
a
t

)
,

τb

L∑
j=b+1

j−1∏
l=b+1

(I − τlHt)
(
−∇f(θt+δ

b
tg
b
t )−∇f(θt)

δbt
+Htg

b
t

)〉
| θt

]
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≤ 1
(L+1)2E

[ ∑
0≤a,b,≤L−1

∥∥∥∥∥∥τa
L∑

j=a+1

j−1∏
l=a+1

(I − τlHt)
(
−∇f(θt+δ

a
t g
a
t )−∇f(θt)
δat

+Htg
a
t

)∥∥∥∥∥∥
2

·

∥∥∥∥∥∥τb
L∑

j=b+1

j−1∏
l=b+1

(I − τlHt)
(
−∇f(θt+δ

b
tg
b
t )−∇f(θt)

δbt
+Htg

b
t

)∥∥∥∥∥∥
2

| θt

]
using (31) and Lemma 2

. 1
(L+1)2E

 ∑
0≤a,b,≤L−1

δat h̄‖gat ‖2δbt h̄‖gbt‖2 | θt

 ≤ 2h̄2

(L+1)2

∑
0≤a,b,≤L−1

δat δ
b
t · E

[
‖gat ‖22 + ‖gbt‖22 | θt

]

. ‖g0
t ‖

2
2

(L+1)2

∑
0≤a,b,≤L−1

δat δ
b
t .

‖g0
t ‖

2
2

L2

(
L∑
k=0

δkt

)2

(33)

using (28) and our choice of δkt (26)

. 1
L2 δ

0
t

2

(
L∑
k=0

τk

)2

· ‖g0
t ‖22 . 1

L2 δ
0
t

2

(
L∑
k=0

(k + 1)−di

)2

· ‖g0
t ‖22

because

(
L∑
k=0

(k + 1)−di

)2

= O
(
L1−di

)
and di ∈

(
1
2 , 1
)

� 1
L‖g

0
t ‖22. (34)

Combining (32) and (34), we have

‖ḡt −H−1
t g0

t ‖22 = O
(

1
L‖g

0
t ‖22
)
.

E.1.2 Proof of (9)

Using (21), we have

E[‖gj+1
t −H−1

t g0
t ‖42 | g

j
t ]

= E[‖gjt −H−1
t g0

t − τj
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t − τje

j
t‖42 | g

j
t ]

= E[(‖gjt −H−1
t g0

t − τj
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖22

− 2〈τjejt , g
j
t −H−1

t g0
t − τj

∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t 〉+ τ2

j ‖e
j
t‖22)2 | gjt ]

= E[‖gjt −H−1
t g0

t − τj
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖42

+ 4(〈τjejt , g
j
t −H−1

t g0
t − τj

∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t 〉)2 + τ4

j ‖e
j
t‖42

+ 2‖gjt −H−1
t g0

t − τj
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖22τ2

j ‖e
j
t‖22

− 4〈τjejt , g
j
t −H−1

t g0
t − τj

∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t 〉‖g

j
t −H−1

t g0
t − τj

∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖22
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− 4〈τjejt , g
j
t −H−1

t g0
t − τj

∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t 〉τ2

j ‖e
j
t‖22 | g

j
t ]. (35)

Because we have

E[ejt | g
j
t ] = 0,

‖gjt −H−1
t g0

t − τj
∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+ τjg

0
t ‖42

= ‖(I − τjHt)(g
j
t −H−1

t g0
t ) + τj(−∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t )‖42

= (‖(I − τjHt)(g
j
t −H−1

t g0
t )‖22

+ 2τj〈(I − τjHt)(g
j
t −H−1

t g0
t ),−∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t 〉

+ τ2
j ‖ −

∇f(θt+δ
j
t g
j
t )−∇f(θt)

δjt
+Htg

j
t ‖22)2

using Lemma 2

≤(‖(I − τjHt)(g
j
t −H−1

t g0
t )‖22 + 2τj‖I − τjHt‖2‖gjt −H−1

t g0
t ‖2δ

j
t ‖g

j
t ‖2 + τ2

j δ
j
t

2
‖gjt ‖22)2

= ‖(I − τjHt)(g
j
t −H−1

t g0
t )‖42

+ 2τj‖(I − τjHt)(g
j
t −H−1

t g0
t )‖22(2δjt ‖I − τjHt‖2‖gjt −H−1

t g0
t ‖2‖g

j
t ‖2 + τjδ

j
t

2
‖gjt ‖22)

+ τ2
j (2δjt ‖I − τjHt‖2‖gjt −H−1

t g0
t ‖2‖g

j
t ‖2 + τjδ

j
t

2
‖gjt ‖22)2

by our choice of τj = Θ((j + 1)−di) = o(1) (25)

and using ‖gjt ‖2 ≤ ‖g
j
t −H−1

t g0
t ‖2 + ‖H−1

t g0
t ‖2 . ‖gjt −H−1

t g0
t ‖2 +4 ‖g0

t ‖2
= (1−Θ(τj))‖gjt −H−1

t g0
t ‖42

+O(τjδ
j
t (‖g

j
t −H−1

t g0
t ‖42 + ‖gjt −H−1

t g0
t ‖32‖g0

t ‖2) + 2τ2
j δ
j
t

3
(‖gjt −H−1

t g0
t ‖42 + ‖gjt −H−1

t g0
t ‖22‖g0

t ‖22)

+ τ2
j δ
j
t

2
(‖gjt −H−1

t g0
t ‖42 + ‖gjt −H−1

t g0
t ‖22‖g0

t ‖22 + τjδ
j
t (‖g

j
t −H−1

t g0
t ‖42 + ‖g0

t ‖42))),

E[‖ejt‖42 | g
j
t ]

=E[‖

(
1

Si

1

δjt

∑
k∈Ii

(∇fk(θt + δjt g
j
t )−∇fk(θt))

)
− ∇f(θt+δ

j
t g
j
t )−∇f(θt)

δjt
‖42 | g

j
t ]

=E[‖

(
1

Si

1

δjt

∑
k∈Ii

((∇fk(θt + δjt g
j
t )−∇fk(θt))−Hk

t g
j
t +Hk

t g
j
t )

)

− (
1

δjt
(∇f(θt + δjt g

j
t )−∇f(θt))−Htg

j
t +Htg

j
t )‖42 | g

j
t ]

using Lemma 2 and repeatedly applying the AM-GM inequality

.(1 + δjt
4
)‖gjt ‖42

.(1 + δjt
4
)δjt

4
(‖gjt −H−1

t g0
t ‖42 + ‖g0

t ‖42),
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and by our choice of τj = Θ((j + 1)−di) = o(1) (25) and δjt = O(τ4
j ) (26), after

repeatedly applying the AM-GM inequality, Lemma 2, triangle inequality, and
(27), we can bound (35) by

E[‖gj+1
t −H−1

t g0
t ‖42 | g

j
t ]

≤(1−Θ(τj))‖gjt −H−1
t g0

t ‖42 +O(τ3
j ‖g0

t ‖42)). (36)

Applying Lemma 6, we have

E[‖gj+1
t −H−1

t g0
t ‖42 | θt] = O((j + 1)−2di‖g0

t ‖42), (37)

and using the AM-GM in equality we have

E[‖gj+1
t ‖42 | θt] = O(‖g0

t ‖42). (38)

E.1.3 Proof of (6)

To prove bounds on ‖θt − θ̂‖22, we will use the following lemma

Lemma 3.

E[〈∇f(θt),−gLt 〉 | θt] &ρt‖∇f(θt)‖22 − δ0
t ‖∇f(θt)‖2‖g0

t ‖2
&ρt‖∇f(θt)‖22 − δ0

t
2‖g0

t ‖22.

Proof. Using (29), and because E[ejt | θt = 0], we have

E[〈∇f(θt),−gLt 〉 | θt]

= ρt∇f(θt)
>H−1

t ∇f(θt)− E

[〈
∇f(θt),

L−1∑
k=0

(
L−1∏
l=k+1

(I − τlHt))τk(
∇f(θt+δ

k
t g
k
t )−∇f(θt)

δkt
−Htg

k
t )

〉∣∣∣∣∣ θt
]

using strong convexity and Lemma 2

≥ 1

β
ρt‖∇f(θt)‖22 − ‖∇f(θt)‖2 E

[
L−1∑
k=0

L−1∏
l=k+1

‖I − τlHt‖2τkδkt ‖gkt ‖2

∣∣∣∣∣ θt
]

︸ ︷︷ ︸
[8]

.

By our choice of τj = Θ((j + 1)−di) = o(1) (25) and δjt = O(δ0
t τ

4
j ) (26), and

using (28), term [8] is bounded by

E

[
L−1∑
k=0

L−1∏
l=k+1

‖I − τlHt‖2τkδkt ‖gkt ‖2 | θt

]

.
L−1∑
k=0

τkδ
k
t

.‖g0
t ‖2δ0

t

L−1∑
k=0

τ5
k︸ ︷︷ ︸

=O(1)

.
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And we can conclude

E[〈∇f(θt),−gLt 〉 | θt]
≥ C1ρt‖∇f(θt)‖22 − C2δ

0
t ‖∇f(θt)‖2‖g0

t ‖2

= C1ρt‖∇f(θt)‖22 −
C1

2
δ0
t

2
[
2
‖∇f(θt)‖2

δ0
t

C2

C1
‖g0
t ‖2
]

≥ C1ρt‖∇f(θt)‖22 −
C1

2
δ0
t

2

((
‖∇f(θt)‖2

δ0
t

)2 + (
C2

C1
‖g0
t ‖2
)2
)

=
C1

2
ρt‖∇f(θt)‖22 −

C2
2

2C1
δ0
t

2‖g0
t ‖22,

for some (data dependent) positive constants C1, C2.

Now, we continue our proof of (6).
In Algorithm 1, because f is β smooth, we have

E[f(θt+1)− f(θ̂) | θt]

= E[f(θt + gLt )− f(θ̂) | θt]

≤f(θt)− f(θ̂) + E
[〈
∇f(θt), g

L
t

〉
+
β

2
‖gLt ‖22 | θt

]
using Lemma 3 and (28)

≤f(θt)− f(θ̂)− Ω(ρt‖∇f(θt)‖22) + E[O(‖g0
t ‖22 + δ0

t ‖g0
t ‖2‖∇f(θt)‖2) | θt]. (39)

For g0
t , we have

g0
t

ρt
=

1

So

∑
i∈Io

∇fi(θt)

=
1

So

∑
i∈Io

∇fi(θ̂) +
1

So

∑
i∈Io

(∇fi(θt)−∇fi(θ̂)), (40)

which implies that

E

[∥∥∥∥g0
t

ρt

∥∥∥∥2

2

| θt

]

≤2E

∥∥∥∥∥ 1

So

∑
i∈Io

∇fi(θ̂)‖22 | θt] + 2E[‖ 1

So

∑
i∈Io

(∇fi(θt)−∇fi(θ̂))

∥∥∥∥∥
2

2

| θt


because we sample uniformly with replacement and ∇f(θ̂) = 0

≤ 2

So

n∑
i=1

‖∇fi(θ̂)‖22 + E[‖∇fi(θt)−∇fi(θ̂)‖22 | θt]
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≤ 2

So

n∑
i=1

‖∇fi(θ̂)‖22 + ‖θt − θ̂‖22E[β2
i | θt]

.1 + ‖θt − θ̂‖22. (41)

Thus, continuing (39), using (41) and strong convexity α2‖θt − θ̂‖22 ≤
‖∇f(θt)‖22, we have

E[f(θt+1)− f(θ̂) | θt]

≤f(θt)− f(θ̂)− C1ρt‖∇f(θt)‖22 + C2ρtδ
0
t (1 + ‖∇f(θt)‖2)‖∇f(θt)‖2 + C3ρ

2
t (1 + ‖∇f(θt)‖22)

= f(θt)− f(θ̂)− ρt(C1 − C2δ
0
t − C3ρt)‖∇f(θt)‖22 + C3ρ

2
t + C2ρtδ

0
t ‖∇f(θt)‖2

because we have C2ρtδ
0
t ‖∇f(θt)‖2=

1

2
C1ρtδ

0
t

2
2
C2

C1
‖∇f(θt)‖2
δ0
t

≤ 1

2
C1ρtδ

0
t

2

((
C2

C1
)2 + (

‖∇f(θt)‖2
δ0
t

)2
)

≤f(θt)− f(θ̂)− ρt( 1
2C1 − C2δ

0
t − C3ρt)‖∇f(θt)‖22 + C3ρ

2
t +

C2
2

C1
ρtδ

0
t

2

using strong convexity
1

2α
‖∇f(θt)‖22 ≥ f(θt)− f(θ̂) and smoothness

1

2β
‖∇f(θt)‖22 ≤ f(θt)− f(θ̂)

≤[f(θt)− f(θ̂)]− ρt( 1
2C1 − C2δ

0
t − C3ρt)

1
2α [f(θt)− f(θ̂)] + C3ρ

2
t +

C2
2

C1
ρtδ

0
t

2

when we set δ0
t = O(ρt) in (26)

≤[f(θt)− f(θ̂)]− ρt( 1
2C1 − C2δ

0
t − C3ρt)

1
2α [f(θt)− f(θ̂)] + (C3 +O(1))ρ2

t ,
(42)

for some (data dependent) positive constants C1, C2, C3.
In (42) we choose ρt = Θ((t+ 1)−do) for some do ∈ ( 1

2 , 1), and after applying
Lemma 6 we have

E[‖θt − θ̂‖22]

≤E[ 2
α (f(θt)− f(θ̂))]

.t−do + e−Θ(t1−do )‖θ0 − θ̂‖22, (43)

which is O(t−do) when ‖θ0 − θ̂‖2 = O(1).

E.1.4 Proof of (7)

In Algorithm 1, because f is β smooth, and ∀θ f(θ)− f(θ̂) ≥ 0, we have

(f(θt+1)− f(θ̂))2

= (f(θt + gLt )− f(θ̂))2

≤(f(θt)− f(θ̂) + 〈∇f(θt), g
L
t 〉+ β

2 ‖g
L
t ‖22)2

= (f(θt)− f(θ̂))2 + 2〈∇f(θt), g
L
t 〉(f(θt)− f(θ̂))

+ 〈∇f(θt), g
L
t 〉2 + β2

4 ‖g
L
t ‖42 + 2(f(θt)− f(θ̂) + 〈∇f(θt), g

L
t 〉)

β
2 ‖g

L
t ‖22.
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Because we have

E[〈∇f(θt), g
L
t 〉(f(θt)− f(θ̂)) | θt]

.− ρt‖∇f(θt)‖22(f(θt)− f(θ̂)) + δ0
t ‖g0

t ‖22(f(θt)− f(θ̂)),

E
[∥∥∥ g0

t

ρt

∥∥∥4

2
| θt
]

= E

∥∥∥∥∥ 1
So

∑
i∈Io

(∇fi(θt)−∇fi(θ̂) +∇fi(θ̂))

∥∥∥∥∥
4

2

| θt


.1 + ‖θt − θ̂‖42,

f(θt)− f(θ̂) = Θ(‖θt − θ̂‖22) = Θ(‖∇f(θt)‖22),

and by our choice of ρt = Θ((t + 1)−do) = o(1) and δ0
t = O(ρ4

t ) (26), after
repeatedly applying the AM-GM inequality and (43), we have

E[(f(θt+1)− f(θ̂))2 | θt]

≤(1−Θ(ρt))(f(θt)− f(θ̂))2 +O(ρ3
t ).

Applying Lemma 6, we have

E[‖θt − θ̂‖42]

≤E
[

4
α2 (f(θt)− f(θ̂))2

]
.t−2do . (44)

E.1.5 Proof of (10)

For ḡt
ρt

, we have

ḡt
ρt

= −H−1 1

So

∑
i∈Io

∇fi(θ̂)︸ ︷︷ ︸
[1]

+H−1 1

So

∑
i∈Io

∇fi(θ̂)−H−1
t

1

So

∑
i∈Io

∇fi(θ̂) +H−1
t

1

So

∑
i∈Io

∇fi(θ̂)−H−1
t

1

So

∑
i∈Io

∇fi(θt)︸ ︷︷ ︸
[2]

−H−1
t

g0
t

ρt
+
ḡt
ρt︸ ︷︷ ︸

[3]

. (45)
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Thus, for the “covariance” of our replicates, we have∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

.

∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

[1]t[1]>t

∥∥∥∥∥
2

+

∥∥∥∥∥SoT
T∑
t=1

[1]t([2]t + [3]t)
>

∥∥∥∥∥
2

+

∥∥∥∥∥SoT
T∑
t=1

([2]t + [3]t)[1]>t

∥∥∥∥∥
2

+

∥∥∥∥∥SoT
T∑
t=1

([2]t + [3]t)([2]t + [3]t)
>

∥∥∥∥∥
2

because for two vectors a, b the operator norm ‖ab>‖2 ≤ ‖a‖2‖b‖2

.

∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

[1]t[1]>t

∥∥∥∥∥
2

+
1

T

T∑
t=1

‖[1]t‖2(‖[2]t‖2 + ‖[3]t‖2)

+
1

T

T∑
t=1

(‖[2]t‖22 + ‖[3]t‖22).

Because
∑T
t=1[1]t consists of So ·T i.i.d. samples from {H−1∇fi(htheta)}ni=1

and the mean H−1∇f(θ̂) = 0, using matrix concentration [51], we know that

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

[1]t[1]>t

∥∥∥∥∥
2

]
.

1√
T
.

For term [3], using (30), because we have

T∑
t=1

[3]t

=
T∑
t=1

1

L+ 1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)(−ekt )︸ ︷︷ ︸
when a 6= b E[〈eat ,ebt〉]=0

+
T∑
t=1

1

L+ 1

L−1∑
k=0

τk

L∑
j=k+1

j−1∏
l=k+1

(I − τlHt)(−∇f(θt+δ
k
t g
k
t )−∇f(θt)

δkt
+Htg

k
t ),

by using (31) and (33), we have

E

∥∥∥∥∥ 1√
T

T∑
t=1

[3]t

∥∥∥∥∥
2

2


38



.E

[
1

T
(
T∑
t=1

1

L
+ (

T∑
t=1

∑L
k=0 δ

k
t

L
)2)
∥∥∥ g0

t

ρt

∥∥∥2

2

]
using (41), and by our choice of δkt = δ0

t o((k + 1)−2) and δ0
t = o((t+ 1)−2) (26)

.E
[(

1
L +

∑T
t=1 δ

0
t

2

T

)(
1 + ‖θt − θ̂|‖22

)]
.

1

L
+

1

T
. (46)

And because we have

E[‖[1]t‖2] = E[‖ −H−1 1

So

∑
i∈Io

∇fi(θ̂)‖2] = O(1),

E[‖[2]t‖22 | θt]

.E

∥∥∥∥∥(H−1 −H−1
t )

1

So

∑
i∈Io

∇fi(θ̂)

∥∥∥∥∥
2

2

+

∥∥∥∥∥H−1
t

1

So

∑
i∈Io

(∇fi(θ̂)−∇fi(θt))

∥∥∥∥∥
2

2

| θt


because H−1 −H−1

t = H−1(Ht −H)H−1
t and using Lemma 2 (47)

.E[‖θt − θ̂|‖22 | θt]

.(t+ 1)−do , (48)

by repeatedly applying Cauchy-Schwarz inequality and AM-GM inequality, we
can conclude that

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

]

.
1√
T

+
1

T

T∑
t=1

(t+ 1)−
do
2 +

1

T

T∑
t=1

(t+ 1)−do +
1√
L

+
1

L

because
T∑
t=1

(t+ 1)−
do
2 = T 1− do2 for do ∈ (

1

2
, 1)

.
1

T
do
2

+
1√
L
.

E.2 Proof of Corollary 1

For
gLt
ρt

, we have

gLt
ρt

= −H−1 1

So

∑
i∈Io

∇fi(θ̂)︸ ︷︷ ︸
[1]
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+H−1 1

So

∑
i∈Io

∇fi(θ̂)−H−1
t

1

So

∑
i∈Io

∇fi(θ̂) +H−1
t

1

So

∑
i∈Io

∇fi(θ̂)−H−1
t

1

So

∑
i∈Io

∇fi(θt) +H−1
t ∇f(θt)︸ ︷︷ ︸

[2]

−H−1
t ∇f(θt) + (θt − θ̂)︸ ︷︷ ︸

[3]

−H−1
t

g0
t

ρt
+
gLt
ρt︸ ︷︷ ︸

[4]

−(θt − θ̂), (49)

which gives

θt − θ̂

= (1− ρt−1)(θt−1 − θ̂) + ρt−1([1]t−1 + [2]t−1 + [3]t−1 + [4]t−1)

= (
t−1∏
i=0

(1− ρi))(θ0 − θ̂) +
t−1∑
i=0

(
t−1∏
j=i+1

(1− ρj))ρi([1]i + [2]i + [3]i + [4]i).

And we have

√
T (

∑T
t=1 θt
T

− θ̂)

=
1√
T

(
T∑
t=1

t−1∏
i=0

(1− ρi))(θ0 − θ̂) +
1√
T

T∑
t=1

t−1∑
i=0

(
t−1∏
j=i+1

(1− ρj))ρi([1]i + [2]i + [3]i + [4]i)

=
1√
T

(
T∑
t=1

t−1∏
i=0

(1− ρi))(θ0 − θ̂) +
1√
T

T−1∑
i=0

T∑
t=i+1

(
t−1∏
j=i+1

(1− ρj))ρi([1]i + [2]i + [3]i + [4]i).

(50)

For the first term in (50), which is non-stochastic, we have∥∥∥∥∥ 1√
T

(
T∑
t=1

t−1∏
i=0

(1− ρi))(θ0 − θ̂)

∥∥∥∥∥
2

.
1√
T
.

For the second term in (50), which is stochastic, we first consider ρi
∑T
t=i+1

∏t−1
j=i+1(1−

ρj), which is O(1) (similar to (31)) and satisfies

ρi

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)

=
T∑

t=i+1

ρi
ρt
ρt

t−1∏
j=i+1

(1− ρj)

≤ ρi
ρs

s∑
t=i+1

ρt

t−1∏
j=i+1

(1− ρj) + ρi(
s∏

j=i+1

(1− ρj))
T∑

t=s+1

t−1∏
j=s+1

(1− ρj)

= (1 +
ρi − ρs
ρs

)(1−
s∏

t=i+1

(1− ρt)) + ρi(
s∏

j=i+1

(1− ρj))
T∑

t=s+1

t−1∏
j=s+1

(1− ρj)
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≤(1 +
ρi − ρs
ρs

)(1− (1− ρs)s−i) + ρi(1− ρs)s−i
T∑

t=s+1

t−1∏
j=s+1

(1− ρj)

≤1 + ((1 +
s− i
i+ 1

)do − 1) + ρie
−(s−i)ρs

∞∑
t=s+1

t−1∏
j=s+1

(1− ρj)

≤1 +
s− i
i

+ ρie
−(s−i)ρs

∞∑
t=s+1

t−1∏
j=s+1

(1− ρj),

for all i ≤ s ≤ T , and

ρi

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)

≥
T∑

t=i+1

(
t−1∏
j=i+1

(1− ρj))ρt

= 1−
T∏

t=i+1

(1− ρt)

≥ 1− exp(−
T∑

t=i+1

ρt)

≥ 1− exp(− 1

1− do
((T + 2)1−do − (i+ 2)1−do))

When we choose s = i+d(i+1)
do+1

2 e, we have s−i
i . i

−1+do
2 , (s−i)ρs & (i+1)

1−do
2 ,

and ρie
− 1

2 (s−i)ρs . ρs. And these imply |ρi
∑T
t=i+1

∏t−1
j=i+1(1 − ρj) − 1| =

O(max{(i + 1)
−1+do

2 , exp(− 1
1−do ((T + 2)1−do − (i + 2)1−do)}). Thus, for term

[1], we have

1√
T

T−1∑
i=0

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)ρi[1]i =
1√
T

T−1∑
i=0

[1]i +
1√
T

T−1∑
i=0

(

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)ρi − 1)[1]i,

where the first term weakly converges to N (0, 1
So
H−1GH−1) by Central Limit

Theorem, and the second term satisfies E[‖ 1√
T

∑T−1
i=0 (

∑T
t=i+1

∏t−1
j=i+1(1−ρj))ρi−

1)[1]i‖22] = E[ 1
T

∑T−1
i=0 |(

∑T
t=i+1

∏t−1
j=i+1(1− ρj))ρi − 1)|2‖[1]i‖22] . T do−1 + 1

T .
For term [2], we have

‖[2]t‖2 . ‖θt − θ̂‖2,

and E[〈[2]a, [2]b〉] = 0 when a 6= b. Thus

E


∥∥∥∥∥∥ 1√

T

T−1∑
i=0

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)ρi[2]i

∥∥∥∥∥∥
2

2

 .
1

T

T−1∑
i=0

‖θt − θ̂‖22 . T−do .
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For term [3], we have

‖ −H−1
t ∇f(θt) + (θt − θ̂)‖2 . ‖θt − θ̂‖22.

By using (7) and Cauchy-Schwarz inequality, we have

E


∥∥∥∥∥∥ 1√

T

T−1∑
i=0

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)ρi[3]i

∥∥∥∥∥∥
2

2

 . T 1−2do .

For term [4], similar to similar to (46), we have

E


∥∥∥∥∥∥ 1√

T

T−1∑
i=0

T∑
t=i+1

t−1∏
j=i+1

(1− ρj)ρi[4]i

∥∥∥∥∥∥
2

2

 .
1

T
+

1

L
.

E.3 Proof of Corollary 3

Using Theorem 6.5 of [9], we have

E[‖θt − θ̂‖22] . 0.9t.

Similar to (8) in Theorem 1 (Appendix E.1.1), we have

E

[∥∥∥∥ ḡtρt − [∇2f(θt)]
−1g0

t

∥∥∥∥2

2

| θt

]
. 1

L‖g
0
t ‖22.

Similar to the proof of (10) in Theorem 1 (Appendix E.1.5), using (45), we
have

E

[∥∥∥∥∥H−1GH−1 − So
T

T∑
t=1

ḡtḡ
>
t

ρ2
t

∥∥∥∥∥
2

]
. L−

1
2 .

For
gLt
ρt

, we have

ḡt
ρt

= −H−1 1

So

∑
i∈Io

∇fi(θ̂)︸ ︷︷ ︸
[1]

+H−1 1

So

∑
i∈Io

∇fi(θ̂)−H−1
t

1

So

∑
i∈Io

∇fi(θ̂) +H−1
t

1

So

∑
i∈Io

∇fi(θ̂)−H−1
t

1

So

∑
i∈Io

∇fi(θt) +H−1
t ∇f(θt)︸ ︷︷ ︸

[2]

−H−1
t ∇f(θt)︸ ︷︷ ︸

[3]

−H−1
t

g0
t

ρt
+
gLt
ρt︸ ︷︷ ︸

[4]

. (51)
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For term [1], we have

1√
T

T∑
i=1

[1]t =
1√
T

T∑
i=1

(
−H−1 1

So

∑
i∈Io

∇fi(θ̂)

)
t

,

which consists of So cotT i.i.d samples from 0 mean set {H−1∇fi(θ̂)}ni=1, and
weakly converges to N (0, 1

So
H−1GH−1) by the Central Limit Theorem.

For term [2], similar to (47), we have

E

∥∥∥∥∥ 1√
T

T∑
i=1

[2]t

∥∥∥∥∥
2

2

 =
1

T
E[

T∑
i=1

‖[2]t‖22] .
1

T

T∑
t=1

E[‖θt − θ̂‖22] .
1

T
.

For term [3], we have

E

[∥∥∥∥∥ 1√
T

T∑
i=1

[3]t

∥∥∥∥∥
2

]
.

1√
T
E[‖θt − θ̂‖2] .

1√
T
.

For term [4], similar to (46), we have

E

[∥∥∥∥∥ 1√
T

T∑
i=1

[4]t

∥∥∥∥∥
2

]
.

1√
T

+
1√
L
.

E.4 Proof of Theorem 2

The error bound proof is similar to standard LASSO proofs [12, 41].
We will use Lemma 4 for the covariance estimate using soft thresholding.
We denote “soft thresholding by ω” as an element-wise procedure Sω(A) =

sign(A)(|A| − ω)+ , where A is an arbitrary number, vector, or matrix, and ω is
non-negative.

Lemma 4. Under our assumptions in Section 3, we choose soft threshold
1
n

∑n
i=1XiX

>
i using

ω = Θ

(√
log p

n

)
.

When n� log p, the matrix max norm of 1
n

∑n
i=1 xix

>
i − Σ is bounded by

max
1≤i,j≤p

∣∣∣∣∣∣
(

1

n

n∑
i=1

xix
>
i

)
ij

− Σij

∣∣∣∣∣∣ .
√

log p

n
,

with probability at least 1− p−Θ(1).
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Under this event, `2 operator norm of Ŝ − Σ satisfies

‖Ŝ − Σ‖2 . b

√
log p

n
,

`1 and `∞ operator norm of Ŝ − Σ satisfies

‖Ŝ − Σ‖∞ = ‖Ŝ − Σ‖1 . b

√
log p

n
.

Proof. The proof is similar to that of Theorem 1, [7].
Our assumption that Σ is well conditioned implies that each off diagonal

entry is bounded, and each diagonal entry is Θ(1) and positive.
Omitting the subscript for the ith sample, for each i.i.d. sample x =

[x(1), x(2), . . . , x(p)]> ∼ N (0,Σ), each x(j)x(k) satisfies

x(j)x(k) =
1

4
(x(j) + x(k))2 − 1

4
(x(j)− x(k))2,

where x(j) ± x(k) are Gaussian random variables with variance Σjj ± 2Σjk +
Σkk = Θ(1), because all of Σ’s eigenvalues are upper and lower bounded. Thus,
x(j)± x(k) are χ2

1 random variables scaled by Σjj ± 2Σjk + Σkk = Θ(1), and
they are sub-exponential with parameters that are Θ(1) [57]. And this implies
that, x(j)x(k)− Σjk is sub-exponential

P[|x(j)x(k)− Σjk| > t] . exp(−Θ(min{t2, t})),

for all 1 ≤ j, k ≤ p.
Using Bernstein inequality [57], we have

P

∣∣∣∣∣∣
(

1

n

n∑
i=1

xix
>
i

)
jk

− Σjk

∣∣∣∣∣∣ > t

 . exp(−nΘ(min{t2, t})),

for all 1 ≤ j, k ≤ p.
Taking a union bound over all matrix entries, and using n� log p, we have

max
1≤j,k≤p

∣∣∣∣∣∣
(

(
1

n

n∑
i=1

xix
>
i

)
jk

− Σjk

∣∣∣∣∣∣ .
√

log p+ log 1
δ

n
,

with probability at least 1− δ.
Under this event, the soft thresholding estimate Sω( 1

n

∑n
i=1 xix

>
i )ij with

ω = Θ(
√

log p
n ) is 0 when Σij = 0, and |Σij − Sω( 1

n

∑n
i=1 xix

>
i )ij | ≤ ω (even

when |Σij | ≤ ω). And this implies our bounds.
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Lemma 4 guarantees that the optimization problem (13) is well defined with

high probability when n� b
√

log p
n . Because the `2 operator norm ‖Ŝ − Σ‖2 .

b
√

log p
n � 1, and the positive definite matrix Σ’s eigenvalues are all Θ(1), the

symmetric matrix Ŝ is positive definite, and Ŝ’s eigenvalues are all Θ(1), and for
all v ∈ Rp we have

0 ≤ v>Ŝv = Θ(‖v‖22). (52)

Because θ̂ attains the minimum, by definition, we have

1
2 θ̂
>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ̂ + 1

n

n∑
i=1

1
2 (x>i θ̂ − yi)2 + λ‖θ̂‖1

≤ 1
2θ
?>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ? + 1

n

n∑
i=1

1
2

(
x>i θ

? − yi
)2

+ λ‖θ?‖1,

which, after rearranging terms, is equivalent to

1
2 (θ̂ − θ?)>Ŝ(θ̂ − θ?) +

〈(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ? + 1

n

∑
i=1

εixi, θ̂ − θ?
〉
≤ λ(‖θ?‖1 − ‖θ̂‖1).

(53)

Because Ŝ = Sω( 1
n

∑n
i=1 xix

>
i ) soft thresholds each entry of 1

n

∑n
i=1 xix

>
i

with ω = Θ(
√

log p
n ), each entry of Ŝ− 1

n

∑n
i=1 xix

>
i will lie in the interval [−ω, ω].

And this implies , with probability at least 1− p−Θ(1), we have∥∥∥∥∥
(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ?

∥∥∥∥∥
∞

.

√
log p

n
‖θ?‖1 .

√
s log p

n
,

where we used the assumption that θ? is s sparse and ‖θ?‖2 = O(1), which
implies ‖θ?‖1 .

√
s.

For the jth coordinate of εixi, because εi and xi are independent Gaussian
random variables, we know that it is sub-exponential [57]

P[|εixi(j)| > t] . exp
(
−Θ

(
min

{
t2

σ2 ,
t
σ

}))
, (54)

for all 1 ≤ i ≤ n and 1 ≤ j ≤ p.
Using Bernstein inequality, we have

P[| 1
n

n∑
i=1

εixi(j)| > t] . exp
(
−Θ

(
nmin

{
t2

σ2 ,
t
σ

}))
,

for all 1 ≤ j ≤ p.
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Taking a union bound over all p coordinates, with probability at least 1−
p−Θ(1), we have

‖ 1

n

n∑
i=1

εixi‖∞ . σ

√
log p

n
, (55)

when n� log p.
Thus, we set the regularization parameter

λ =Θ

(
(σ + ‖θ?‖1)

√
log p

n

)

≥2

∥∥∥∥∥
(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ? +

1

n

∑
i=1

εixi

∥∥∥∥∥
∞

, (56)

which holds under the events in Lemma 4 and (55).
For a vector v ∈ Rp, let vS indicate the sub-vector of on the support of θ?,

and vS̄ the sub-vector not on the support of θ?.
(53) and (56) implies that

− 1
2λ(‖(θ − θ?)S‖1 + ‖θS̄‖1) = − 1

2λ‖θ − θ
?‖1 ≤ λ(‖θ?‖1 − ‖θ̂‖1) ≤ λ(‖(θ − θ?)S‖1 − ‖θS̄‖1),

which is equivalent to

‖θS̄‖1 ≤ 3‖(θ − θ?)S‖1, (57)

because λ > 0.
For any vector v ∈ Rp, it satisfies ‖v‖22 ≥ ‖vS‖22 ≥ 1

s‖v
S‖21. Using this in

(53), we have

1
s‖(θ − θ

?)S‖21 . λ‖(θ − θ?)S‖1,

which implies that

‖(θ − θ?)S‖1 . s(σ + ‖θ?‖1)

√
log p

n
. (58)

Combining (58) and (57), we have proven (14)

‖θ − θ?‖1 . s (σ + ‖θ?‖1)

√
log p

n
. s

(
σ +
√
s
)√ log p

n
.

In (53) because 〈(Ŝ− 1
n

∑n
i=1 xix

>
i )θ?+ 1

n

∑
i=1 εixi, θ̂−θ?〉 ≥ 0 by convexity,

and using (52), we have proven (15)

‖θ − θ?‖22 . λ‖(θ − θ?)S‖1 . s (σ + ‖θ?‖1)
2 log p

n
. s

(
σ +
√
s
)2 log p

n
.
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E.5 Proof of Theorem 3

At the solution θ̂ of the optimization problem (13), using the KKT condition,
we have (

Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ̂ +

1

n

n∑
i=1

xi(x
>
i θ̂ − yi) + λĝ = 0, (59)

where ĝ ∈ ∂‖θ̂‖1. And this is equivalent to

Ŝθ̂ − 1

n

n∑
i=1

xi(x
>
i θ

? + εi) + λĝ = 0, . (60)

By Lemma 4, we know that Ŝ is invertible when n� b2 log p.
Plugging (16) into (60), we have

Ŝ(θ̂d − Ŝ−1

[
1

n

n∑
i=1

yixi −

(
1

n

n∑
i=1

xix
>
i

)
θ̂

]
)− 1

n

n∑
i=1

xi(x
>
i θ

? + εi) + λĝ = 0,

which is equivalent to

Ŝ(θ̂d − θ?)− 1

n

n∑
i=1

εixi +

(
1

n

n∑
i=1

xix
>
i − Ŝ

)
(θ̂ − θ?) = 0, (61)

where we used the fact that λĝ = −Ŝθ̂ + 1
n

∑n
i=1 xi(x

>
i θ

? + εi).
Rewriting (61), we have

θ̂d − θ? = Ŝ−1 1

n

n∑
i=1

εixi +

(
I − Ŝ−1

(
1

n

n∑
i=1

xix
>
i

))
(θ̂ − θ?). (62)

For max1≤j,k≤p

∣∣∣∣(I − Ŝ−1
(

1
n

∑n
i=1 xix

>
i

))
jk

∣∣∣∣, we have

max
1≤j,k≤p

∣∣∣∣∣∣
(
I − Ŝ−1

(
1

n

n∑
i=1

xix
>
i

))
jk

∣∣∣∣∣∣
= max

1≤j,k≤p

∣∣∣∣∣∣
(
Ŝ−1

(
S − 1

n

n∑
i=1

xix
>
i

))
jk

∣∣∣∣∣∣
≤‖Ŝ−1‖∞ max

1≤j,k≤p

∣∣∣∣∣∣
(
S − 1

n

n∑
i=1

xix
>
i

)
jk

∣∣∣∣∣∣ . (63)

Under the event in Lemma 4, we have

max
1≤j,k≤p

∣∣∣∣∣∣
(
S − 1

n

n∑
i=1

xix
>
i

)
jk

∣∣∣∣∣∣ .
√

log p

n
. (64)
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Also under the event in Lemma 4, we have

Ŝii −
∑
j 6=i

|Ŝij | ≥ Σii −Θ

(√
log p
n

)
−
∑
j 6=i

|Σij | ≥ DΣ −Θ

(√
log p
n

)
,

where we used Ŝii > 0 and |Σij | ≥ |Ŝij | by definition of the soft thresholding
operation.

Thus, when n� 1
DΣ

2 log p, we have

Ŝii −
∑
j 6=i

|Ŝij | & DΣ,

which implies that Ŝ is also diagonally dominant. Thus, using Theorem 1, [55],
when n� 1

DΣ
2 log p, we have

‖Ŝ‖∞ .
1

DΣ
, (65)

with probability at least 1− p−Θ(1)

And using (64) and (65) in (63), we have

max
1≤j,k≤p

∣∣∣∣∣∣
(
I − Ŝ−1(

1

n

n∑
i=1

xix
>
i

)
jk

∣∣∣∣∣∣ . 1

DΣ

√
log p

n
. (66)

Using (66) and the bound on ‖θ̂ − θ?‖1 (14), in (62), we have∥∥∥∥∥
(
I − Ŝ−1

(
1

n

n∑
i=1

xix
>
i

))
(θ̂ − θ?)

∥∥∥∥∥
∞

.
1

DΣ
s (σ + ‖θ?‖1)

log p

n
.

1

DΣ
s
(
σ +
√
s
) log p

n
.

(67)

Combining (67) and (62), we have proven Theorem 3, when n� max{b2, 1
DΣ

2 } log p,
we have

√
n(θ̂d − θ?) = Z +R,

where Z | {xi}ni=1 ∼N
(

0, σ2Ŝ−1
(

1
n

∑n
i=1 xix

>
i

)
Ŝ−1

)
, and ‖R‖∞ . 1

DΣ
s (σ + ‖θ?‖1) log p√

n
.

1
DΣ

s (σ +
√
s) log p√

n
with probability at least 1− p−Θ(1).

E.6 Proof of Theorem 4

We analyze the optimization problem conditioned on the data set {xi}ni=1, which
satisfies Lemma 4 with probability at least 1− pΘ(−1) when n� b2 log p.

Here, we denote the objective function as

P (θ) =
1

2
θ>

(
Ŝ − 1

n

n∑
i=1

xix
>
i

)
θ +

1

n

n∑
i=1

1

2

(
x>i θ − yi

)2
+ λ‖θ‖1.
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In Algorithm 2, lines 6 to 15 are using SVRG [34] to solve the Newton step

min
∆

1

2
∆>Ŝ∆ +

〈
1

So

∑
k∈Io

∇fk(θt),∆

〉
, (68)

and using proximal SVRG [61] to solve the proximal Newton step

min
∆

1

2
∆>Ŝ∆ +

〈
1

n

n∑
k=1

∇fk(θt),∆

〉
+ λ‖θ + ∆‖1. (69)

The gradient of (68) is

Ŝ∆ +
1

So

∑
k∈Io

∇fk(θt) =
1

p

p∑
k=1

[
pŜk

]
∆(k)︸ ︷︷ ︸

sample by feature in SVRG

+
1

So

∑
k∈Io

∇fk(θt)︸ ︷︷ ︸
compute exactly in SVRG

,

where Ŝk is the kth column of Ŝ and ∆(k) is the kth coordinate of ∆.
Line 7 corresponds to SVRG’s outer loop part that computes the full gradient.

Line 12 corresponds to SVRG’s inner loop update.
By Lemma 4, when n � b2 log p, the `2 operator norm of ‖Ŝ‖2 = O(1).

And this implies ‖Ŝ>Ŝ‖2 = O(1). Because ‖Ŝk‖22 is the kth diagonal element

of Ŝ>Ŝ, we have ‖Ŝk‖22 = O(1) for all 1 ≤ k ≤ p. Thus, each
[
pŜk

]
∆(k) is a

O(p)-Lipschitz function.
By Theorem 6.5 of [9], when conditioned on θt, and choosing

τ = Θ
(

1
p

)
,

Li & p,

after Lto SVRG outer steps, we have

E

∥∥∥∥∥∥ ḡt + Ŝ−1

(
1

So

∑
k∈Io

∇fk(θt)

)∥∥∥∥∥
2

2

∣∣∣∣∣∣ θt, {xi}ni=1

 .0.9L
t
o

∥∥∥∥∥ 1

So

∑
k∈Io

∇fk(θt)

∥∥∥∥∥
2

2

.0.9L
t
o(1 + ‖θt − θ̂‖2),

where ḡt = 1
Lto

∑Lto
j=0 g

j
t .

The gradient of the smooth component 1
2∆>Ŝ∆ +

〈
1
n

∑n
k=1∇fk(θt),∆

〉
in

(69) is

Ŝ∆ +
1

n

n∑
k=1

∇fk(θt) =
1

p

p∑
k=1

[
pŜk

]
∆(k)︸ ︷︷ ︸

sample by feature in proximal SVRG

+
1

n

n∑
k=1

∇fk(θt)︸ ︷︷ ︸
compute exactly in proximal SVRG

.
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Line 8 corresponds to proximal SVRG’s outer loop part that computes the
full gradient. Line 13 corresponds to proximal SVRG’s inner loop update.

By Theorem 3.1 of [61], when conditioned on θt, and choosing

η = Θ
(

1
p

)
,

Li & p,

after Lto proximal SVRG outer steps, we have

E[P (θt+1 − P (θ̂)) | θt] =E
[
P (θt + d̄t − θ̂)− P (θ̂)

∣∣∣ θt, {xi}ni=1

]
.0.9L

t
o(P (θt)− P (θ̂)),

where d̄t = 1
Lto

∑Lto
j=0 d

j
t . And this implies

E[‖θt − θ̂‖22] . 0.9
∑t−1
i=0 L

t
o(P (θ0)− P (θ̂)).

At each θt, we have

xi(x
>
i θt − yi) = xix

>
i (θt − θ̂) + xi(x

>
i θ̂ − yi).

For the first term, we have

‖xix>i (θt − θ̂)‖∞ ≤|x>i (θt − θ̂)|‖xi‖∞
≤‖xi‖2‖θt − θ̂‖2‖xi‖∞
≤√p‖xi‖2∞‖θt − θ̂‖2,

which implies that

max
1≤j,k≤p

∣∣∣∣∣
[(
xix
>
i (θt − θ̂)

)(
xix
>
i (θt − θ̂)

)>]
jk

∣∣∣∣∣ ≤‖xix>i (θt − θ̂)‖2∞

≤p‖xi‖4∞‖θt − θ̂‖22.

For the second term, we have

‖xi(x>i θ̂ − yi)‖∞ ≤‖xix>i (θ̂ − θ?)‖∞ + ‖xiεi‖∞
≤‖xi‖2∞‖θ̂ − θ?‖1 + |εi|‖xi‖∞

Because when n� log p, from (72) we have with probability at least 1−p−Θ(1)

max
1≤i≤n

‖xi‖∞ .
√

log p+ log n,

and from (74) we have with probability at least 1− n−Θ(1)

max
1≤i≤n

|εi| . σ
√

log n,
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when conditioned on θt (and the data set {xi}ni=1) we have

max
1≤j,k≤p

∣∣∣∣∣
[(
Ŝ−1g0

t

)(
Ŝ−1g0

t

)>
−
(
Ŝ−1 1

So

∑
k∈Io∇fk(θt)

)(
Ŝ−1 1

So

∑
k∈Io∇fk(θt)

)>]
jk

∣∣∣∣∣
.

1

DΣ
2 (‖xix>i (θt − θ̂)‖2∞ + 2‖xix>i (θt − θ̂)‖∞‖xi(x>i θ̂ − yi)‖∞)

.
1

DΣ
2 (p(log p+ log n)2‖θt − θ̂‖22 +

√
p(log p+ log n)‖θt − θ̂‖2((log p+ log n)‖θ̂ − θ?‖1 + σ

√
(log p+ log n) log n))

.
1

DΣ
2 (p‖θt − θ̂‖22 +

√
p‖θ − θ̂‖2(σ + ‖θ̂ − θ?‖1))polylog(p, n)

under the events of (72), (65) , and (74), where we used the fact (65) that the

`∞ operator norm ‖Ŝ−1‖∞ . 1
DΣ

with probability at least 1 − p−Θ(1) when

n� max{b2, 1
DΣ

2 } log p.

Thus, we can conclude that, conditioned on the data set {xi}ni=1, and the
events (72), (74), and (65), we have we have an asymptotic normality result

1√
t

(∑T
t=1

√
Soḡt + 1

n

∑n
i=1xi(x

>
i θ̂ − yi)

)
= W +R,

whereW weakly converges to N
(

0,Ŝ−1
[

1
n

∑n
i=1(x>i θ̂−yi)

2xix
>
i −( 1

n

∑n
i=1 xi(x

>
i θ̂−yi))( 1

n

∑n
i=1 xi(x

>
i θ̂−yi))

>]
Ŝ−1

)
,

and

‖R‖∞ ≤
1√
t

T∑
t=1

(
‖ḡt − Ŝ−1g0

t ‖∞ + ‖Ŝ−1g0
t − 1

So

∑
k∈Io∇fk(θ̂)‖∞

)
≤ 1√

t

T∑
t=1

(
‖ḡt − Ŝ−1g0

t ‖2 + ‖Ŝ−1g0
t − 1

So

∑
k∈Io∇fk(θ̂)‖∞

)
,

which implies

E [‖R‖∞ | {xi}ni=1, (72), (74), (65)]

.E

[
1√
t

T∑
t=1

0.95L
t
o(1 + ‖θt − θ̂‖2) +

√
p(log p+ log n)‖θt − θ̂‖2 | {xi}ni=1, (72), (74), (65)

]

.
1√
T

T∑
t=1

0.95L
t
o(1 +

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o) +

√
p(log p+ log n)

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o .

And, because
(

1
So

∑
k∈Io ∇fk(θ̂)

)
t

are i.i.d., and bounded when conditioned

on the data set {xi}ni=1, and the events (72), (74), and (65), using a union bound
over all matrix entries, and sub-Gaussian concentration inequalities [57] similar to

Lemma 1’s proof, when T �
(

(log p+ log n)‖θ̂ − θ?‖1 + σ
√

(log p+ log n) log n
)

log p,

we also have∥∥∥SoT ∑T
t=1ḡtḡ

>
t − Ŝ−1

(
1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i

)
Ŝ−1

∥∥∥
max
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.

√(
(log p+ log n)‖θ̂ − θ?‖1 + σ

√
(log p+ log n) log n

)
log p
T

+ 1
u

[
1√
T

∑T
t=10.95L

t
o(1 +

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o) +

√
p(log p+ log n)

√
P (θ0)− P (θ̂)0.95

∑t−1
i=0 L

t
o

]
,

with probability at least 1− p−Θ(−1) − u, where we used Markov inequality for
the remainder term.

E.7 Proof of Lemma 1

We analyze the optimization problem conditioned on the data set {xi}ni=1, which
satisfies Lemma 4 with probability at least 1− pΘ(−1) when n� b2 log p.

Because we have

(x>i θ̂ − yi)2

=(x>i (θ̂ − θ?)− εi)2

=ε2i − 2εix
>
i (θ̂ − θ?) + (x>i (θ̂ − θ?))2,

we can write

σ2 1
n

∑n
i=1xix

>
i − 1

n

∑n
i=1(x>i θ̂ − yi)2xix

>
i

= 1
n

∑n
i=1(σ2 − ε2i )xix>i + 1

n

∑n
i=1(2εix

>
i (θ̂ − θ?)− (x>i (θ̂ − θ?))2)xix

>
i . (70)

Conditioned on {xi}ni=1, because εi ∼ N (0, σ2) are i.i.d., and ε2i is sub-
exponential, using Bernstein inequality [57], we have

P
[∣∣∣ 1
n

∑n
i=1

(
1− ε2i

σ2

)
xi(j)xi(k)

∣∣∣ > t | {xi}ni=1

]
. exp

(
−nmin

{
t

max1≤i≤n |xi(j)xi(k)| ,
(

t
max1≤i≤n |xi(j)xi(k)|

)2
})

, (71)

for 1 ≤ j, k ≤ p, where xi(j) is the jth coordinate of xi.
Because each xi(j) is N (0,Θ(1)) by our assumptions, using a union bound

over all samples’ coordinates we have

max
1≤i≤n
1≤j≤p

|xi(j)| .
√

log p+ log n, (72)

with probability at least 1− (pn)−Θ(1) .
Combining (71) and (72), and taking a union bound over all entries of the

matrix 1
n

∑n
i=1(σ2 − ε2i )xix>i , when n� log p, we have

max
1≤j,k≤p

|( 1
n

∑n
i=1(σ2 − ε2i )xix>i )|jk . σ2(log p+ log n)

√
log p

n
, (73)

with probability at least (1− (pn)−Θ(1))(1− p−Θ(1)) = 1− (pn)−Θ(1) − p−Θ(1).
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Because εi ∼ N (0, σ2), by a union bound, we have

max
1≤i≤n

|εi| . σ
√

log n, (74)

with probability at least 1− n−Θ(1).
Using (72), we have

max
1≤i≤n

|x>i (θ̂ − θ?)|

≤‖θ̂ − θ?‖1 max
1≤i≤n

max
1≤j≤p

|xi(j)|

.s (σ + ‖θ?‖1)
√

log p
n (log p+ log n) . s

(
σ +
√
s
)√

log p
n (log p+ log n), (75)

with probability at least 1− p−Θ(1) − (pn)−Θ(1).
Combining (72), (73), (74), (75), and using (70), when n� log p, we have

max
1≤j,k≤p

∣∣∣∣( 1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i − σ2 1

n

∑n
i=1xix

>
i

)
jk

∣∣∣∣
.σ2(log p+ log n)

√
log p
n + σs (σ + ‖θ?‖1) (log p+ log n)

3
2

√
log p·logn

n

+ s2 (σ + ‖θ?‖1)
2

(log p+ log n)2 log p
n , (76)

with probability at least 1− p−Θ(1) − n−Θ(1).
Combining (76) and (65), when n� max{b2, 1

DΣ
2 } log p, we have

max
1≤j,k≤p

∣∣∣∣(Ŝ−1
(

1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i

)
Ŝ−1 − σ2Ŝ−1

(
1
n

∑n
i=1xix

>
i

)
Ŝ−1

)
jk

∣∣∣∣
. 1
DΣ

2

(
σ2 + σs (σ + ‖θ?‖1)

√
log p+ log n

√
log n+ s2 (σ + ‖θ?‖1)

2
(log p+ log n)

√
log p
n

)
(log p+ log n)

√
log p
n ,

with probability at least 1− p−Θ(1) − n−Θ(1).

F Technical lemmas

F.1 Lemma 5

Next lemma is a well known property of convex functions (Lemma 3.11 of [9]).

Lemma 5. For a α strongly convex and β smooth function F (x), we have

〈∇F (x1)−∇F (x2), x1 − x2〉 ≥
αβ

α+ β
‖x1 − x2‖22 +

1

β + α
‖∇F (x1)−∇F (x2)‖22

≥1

2
α‖x1 − x2‖22 +

1

2β
‖∇F (x1)−∇F (x2)‖22.
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F.2 Lemma 6

Next lemma provides a bound on a geometric-like sequence.

Lemma 6. Suppose we have a sequence

at+1 = (1− κt−d)at + Ct−pd,

where a1 ≥ 0, 0 < κ < 1, p ≥ 2 and d ∈ ( 1
2 , 1) is the decaying rate.

Then, ∀1 ≤ s ≤ t we have

at ≤ C
1

pd− 1
(1− t1−pd) exp

(
−κ 1

1− d
(
(t+ 1)1−d − (s+ 1)1−d))+ a1s

−(p−1)d 1

κ
.

When we assume that a1, C, κ, p, d are all constants, we have

at = O(t−(p−1)d).

Proof. Unrolling the recursion, we have

at = C
t−1∑
i=1

(
t−1∏
j=i+1

(1− κj−d))i−pd︸ ︷︷ ︸
[1]

+a1

t−1∏
i=1

(1− κi−d)︸ ︷︷ ︸
[2]

.

Splitting term [1] into two parts, we have

t−1∑
i=1

 t−1∏
j=i+1

(1− κj−d)

 i−pd

=
s−1∑
i=1

 t−1∏
j=i+1

(1− κj−d)

 i−pd +
t−1∑
i=s

 t−1∏
j=i+1

(1− κj−d)

 i−pd.

For the first part, we have

s−1∑
i=1

(
t−1∏
j=i+1

(1− κj−d))i−pd

≤

t−1∏
j=s

(1− κj−d)

 s−1∑
i=1

i−pd

≤ 1

pd− 1
(1− t1−pd) exp

(
−κ 1

1− d
((t+ 1)1−d − (s+ 1)1−d)

)
where we used

s∑
i=r

i−pd
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≤
∫ s+1

r

u−pd du

≤ 1

pd− 1
(r1−pd − (s+ 1)1−pd).

For term [2], notice that for 1 ≤ r ≤ s, using 1−x ≤ exp(−x) when x ∈ [0, 1],
we have

s∏
i=r

(1− κi−d) ≤ exp(−κ
∑s
i=ri

−d),

and using the fact that

s∑
i=r

i−d ≥
∫ s+1

r

(u+ 1)−d du

=
1

1− d
(
(s+ 2)1−d − (r + 1)1−d) ,

we have

t−1∏
i=1

(1− κi−d) ≤ exp
(
−κ 1

1−d (t1−d − 21−d)
)
.

For the second part, we have

t−1∑
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 t−1∏
j=i+1

(1− κj−d)

 i−pd

≤s−(p−1)d
t−1∑
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 t−1∏
j=i+1
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 i−d

=s−(p−1)d 1

κ

t−1∑
i=s

 t−1∏
j=i+1

(1− κj−d)

κi−d

=s−(p−1)d 1

κ

(
1−

t−1∏
i=s

(1− κi−d)

)

≤s−(p−1)d 1

κ
,

where we used the fact that

t−1∑
i=s

κi−d
t−1∏
j=i+1

(1− κj−d)

=1−
t−1∏
i=s

(1− κj−d)
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<1.

When we assume that a1, C, κ, p, d are all constants, setting s = bn2 c, we have

at = O(t−(p−1)d).

G Experiments

G.1 Synthetic data

G.1.1 Low dimensional problems

Here, we provide the exact configurations for linear/logistic regression examples
provided in Table 1.

Linear regression. We consider the model y = 〈[1, · · · , 1]>/
√

10, x〉+ ε, where
x ∼ N (0,Σ) ∈ R10 and ε ∼ N (0, 0.72), with 100 i.i.d. data points.

Lin1: We used Σ = I. For Algorithm 1, we set T = 100, do = di = 2/3,
ρ0 = 0.1, L = 200, τ0 = 20, So = Si = 10. In bootstrap we used 100 replicates.
For averaged SGD, we used 100 averages each of length 50, with step size
0.7 · (t+ 1)−

2/3 and batch size 10.
Lin2: We used Σjk = 0.4|j−k|. For Algorithm 1, we set T = 100, do =

di = 2/3, ρ0 = 0.7, L = 100, τ0 = 1, So = Si = 10. In bootstrap we used 100
replicates. For averaged SGD, we used 100 averages each of length 50, with step
size (t+ 1)−

2/3 and batch size 10.

Logistic regression. Although logistic regression does not satisfy strong
convexity, experimentally Algorithm 1 still gives valid confidence intervals ([26]
recently has shown that SGD in logistic regression behaves similar to strongly
convex problems). We consider the model P[y = 1] = P[y = 0] = 1/2 and
x | y ∼ N (0.1/

√
10 · [1, · · · , 1]>,Σ) ∈ R10, with 100 i.i.d. data points. Because in

bootstrap resampling the Hessian is singular for some replicates, we use jackknife
and solve each replicate using Newton’s method, which approximately needs 25
steps per replicate.

Log1: We used Σ = I. For Algorithm 1, we set T = 50, do = di = 2/3,
ρ0 = 0.1, L = 100, τ0 = 2, So = Si = 10, δ0 = 0.01. For averaged SGD, we used
50 averages each of length 100, with step size 2 · (t+ 1)−

2/3 and batch size 10.
Log2: We used Σjk = 0.4|j−k|. For Algorithm 1, we set T = 50, do = di = 2/3,

ρ0 = 0.1, L = 100, τ0 = 5, So = Si = 10, δ0 = 0.01 For averaged SGD, we used
50 averages each of length 100, with step size 5 · (t+ 1)−

2/3 and batch size 10.
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G.1.2 High dimensional linear regression

For comparison with de-biased LASSO [32, 53], we use the oracle de-biased
LASSO estimator

θ̂d
oracle = θ̂LASSO + 1

n · Σ
−1

(
1
n

n∑
i=1

yixi −
n∑
i=1

xix
>
i θ̂LASSO

)
,

and its corresponding statistical error covariance estimate

σ2 · Σ−1

(
1
n

n∑
i=1

xix
>
i

)
Σ−1,

which assumes that the true inverse covariance Σ−1 and observation noise
variance σ2 are known.

Experiment 1. We use 600 i.i.d. samples from a model with Σ = I, σ = 0.7,
θ? = [1/

√
8, · · · , 1/√8, 0, · · · , 0]> ∈ R1000 which is 8-sparse.

For our method, the average confidence interval length is 0.14 and aver-
age coverage is 0.83. For the oracle de-biased LASSO estimator, the average
confidence interval length is 0.11 and average coverage is 0.98.

0 5 10 15

0.0

0.1

0.2

0.3

0.4
coordinates of 
de-biased LASSO
coordinates of d

Figure 3: Comparison of our de-biased estimator and oracle de-biased LASSO
estimator

Experiment 2. We use 600 i.i.d. samples from a model with Σ = I, σ = 0.7,
θ? = 0 ∈ R1000 which is 8-sparse.

Figure 4 shows p-value distribution for our method and the oracle de-biased
LASSO estimator.

G.2 Real data

G.2.1 Neural network adversarial attack detection

The adversarial perturbation used in our experiments is shown in Figure 7. It is
generated using the fast gradient sign method [27] Figure 5 shows images in a
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Figure 4: Distribution of two-sided Z-test p-values

“Shirt” example. Figure 6 shows images in a “T-shirt/top” example.
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Figure 5: “Shirt” example
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Figure 6: “T-shirt/top” example

G.2.2 High dimensional linear regression

For the vanilla LASSO estimate on the high-throughput genomic data set
concerning riboflavin (vitamin B2) production rate [11], we set λ = 0.021864.
Figure 8, and we see that our point estimate is similar to the vanilla LASSO
point estimate.

For statistical inference, in our method, we compute p-values using two-sided
Z-test. Adjusting FWER to 5% signifi-cance level, our method does not find
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Figure 7: Adversarial perturbation generated using the fast gradient sign method
[27]

any significant gene. [31, 11] report that [10] also does not find any significant
gene, whereas [39] finds one significant gene (YXLD-at), and [31] finds two
significant genes (YXLD-at and YXLE-at). This indicates that our method is
more conservative than [31, 39].
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Figure 8: Comparison of our high dimensional linear regression point estimate
with the vanilla LASSO estimate
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Abstract

We present a novel method for frequentist statistical inference in M -estimation problems, based on
stochastic gradient descent (SGD) with a fixed step size: we demonstrate that the average of such SGD
sequences can be used for statistical inference, after proper scaling. An intuitive analysis using the Ornstein-
Uhlenbeck process suggests that such averages are asymptotically normal. From a practical perspective, our
SGD-based inference procedure is a first order method, and is well-suited for large scale problems. To show
its merits, we apply it to both synthetic and real datasets, and demonstrate that its accuracy is comparable to
classical statistical methods, while requiring potentially far less computation.

1 Introduction

In M -estimation, the minimization of empirical risk functions (RFs) provides point estimates of the model
parameters. Statistical inference then seeks to assess the quality of these estimates, for example, obtaining
confidence intervals or solving hypothesis testing problems. Within this context, a classical result in statistics
states that the asymptotic distribution of the empirical RF’s minimizer is normal, centered around the
population RF’s minimizer [24]. Thus, given the mean and covariance of this normal distribution, we can
infer a range of values, along with probabilities, that allows us to quantify the probability that this interval
includes the true minimizer.

The Bootstrap [8, 9] is a classical tool for obtaining estimates of the mean and covariance of this distribution.
The Bootstrap operates by generating samples from this distribution (usually, by re-sampling with or without
replacement from the entire data set) and repeating the estimation procedure over these different re-samplings.
As the data dimensionality and size grow, the Bootstrap becomes increasingly –even prohibitively– expensive.

In this context, we follow a different path: we show that inference can also be accomplished by directly
using stochastic gradient descent (SGD) with a fixed step size over the data set. It is well-established that fixed
step-size SGD is by and large the dominant method used for large scale data analysis. We prove, and also
demonstrate empirically, that the average of SGD sequences, obtained by minimizing RFs, can also be used for
statistical inference. Unlike the Bootstrap, our approach does not require creating many large-size subsamples
from the data, neither re-running SGD from scratch for each of these subsamples. Our method only uses first
order information from gradient computations, and does not require any second order information. Both of
these are important for large scale problems, where re-sampling many times, or computing Hessians, may be
computationally prohibitive.

Outline and main contributions: This paper studies and analyzes a simple, fixed step size1, SGD-based
algorithm for inference in M -estimation problems. Our algorithm produces samples, whose covariance
converges to the covariance of the M -estimate, without relying on bootstrap-based schemes, and also
avoiding direct and costly computation of second order information. Much work has been done on the
asymptotic normality of SGD, as well as on the Stochastic Gradient Langevin Dynamics (and variants) in the
Bayesian setting. As we discuss in detail in Section 4, this is the first work to provide finite sample inference
results, using fixed step size, and without imposing overly restrictive assumptions on the convergence of
fixed step size SGD.

1Fixed step size means we use the same step size every iteration, but the step size is smaller with more total number of iterations.
Constant step size means the step size is constant no matter how many iterations taken.
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The remainder of the paper is organized as follows. In the next section, we define the inference problem
for M -estimation, and recall basic results of asymptotic normality and how these are used. Section 3 is the
main body of the paper: we provide the algorithm for creating bootstrap-like samples, and also provide the
main theorem of this work. As the details are involved, we provide an intuitive analysis of our algorithm
and explanation of our main results, using an asymptotic Ornstein-Uhlenbeck process approximation for the
SGD process [12, 18, 4, 13, 15], and we postpone the full proof until the appendix. We specialize our main
theorem to the case of linear regression (see supplementary material), and also that of logistic regression.
For logistic regression in particular, we require a somewhat different approach, as the logistic regression
objective is not strongly convex. In Section 4, we present related work and elaborate how this work differs
from existing research in the literature. Finally, in the experimental section, we provide parts of our numerical
experiments that illustrate the behavior of our algorithm, and corroborate our theoretical findings. We do this
using synthetic data for linear and logistic regression, and also by considering the Higgs detection [3] and
the LIBSVM Splice data sets. A considerably expanded set of empirical results is deferred to the appendix.

Supporting our theoretical results, our empirical findings suggest that the SGD inference procedure
produces results similar to bootstrap while using far fewer operations, thereby producing a more efficient
inference procedure applicable in large scale settings where other approaches fail.

2 Statistical inference for M -estimators
Consider the problem of estimating a set of parameters θ? ∈ Rp using n samples {Xi}ni=1, drawn from some
distribution P on the sample space X . In frequentist inference, we are interested in estimating the minimizer
θ? of the population risk:

θ? = argmin
θ∈Rp

EP [f(θ;X)] = argmin
θ∈Rp

∫
x

f(θ;x) dP (x), (1)

where we assume that f(·;x) : Rp → R is real-valued and convex; further, we use E ≡ EP , unless otherwise
stated. In practice, the distribution P is unknown. We thus estimate θ? by solving an empirical risk
minimization (ERM) problem, where we use the estimate θ̂:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

f(θ;Xi). (2)

Statistical inference consists of techniques for obtaining information beyond point estimates θ̂, such as
confidence intervals. These can be performed if there is an asymptotic limiting distribution associated with
θ̂ [25]. Indeed, under standard and well-understood regularity conditions, the solution to M -estimation
problems satisfies asymptotic normality. That is, the distribution

√
n(θ̂ − θ?) converges weakly to a normal:

√
n(θ̂ − θ?) −→ N (0, H?−1G?H?−1), (3)

where H? = E[∇2f(θ?;X)], and G? = E[∇f(θ?;X)∇f(θ?;X)>] (Theorem 5.21, [24]). We can therefore use
this result, as long as we have a good estimate of the covariance matrix: H?−1G?H?−1. The central goal of
this paper is obtaining accurate estimates for H?−1G?H?−1.

A naive way to estimate H?−1G?H?−1 is through the empirical estimator Ĥ−1ĜĤ−1 where:

Ĥ =
1

n

n∑
i=1

∇2f(θ̂;Xi) and

Ĝ =
1

n

n∑
i=1

∇f(θ̂;Xi)∇f(θ̂;Xi)
>. (4)

Beyond calculating Ĥ and Ĝ,2 this computation requires an inversion of Ĥ and matrix-matrix multiplications
in order to compute Ĥ−1ĜĤ−1 – a key computational bottleneck in high dimensions. Instead, our method
uses SGD to directly estimate Ĥ−1ĜĤ−1.

2In the case of maximum likelihood estimation, we have H? = G? which is called Fisher information, thus the covariance of interest
is H?−1 = G?−1. This can be estimated either using Ĥ or Ĝ.
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3 Statistical inference using SGD

In this section, we provide our main results, including the algorithm and its theoretical guarantees. We also
describe its specialization to linear regression and logistic regression.

Consider the optimization problem in (2). For instance, in maximum likelihood estimation (MLE), fi(θ;Xi)
is a negative log-likelihood function. For simplicity of notation, we use fi(θ) and f(θ) in the rest of the paper.

The SGD algorithm with a fixed step size η, is given by the iteration

θt+1 = θt − ηgs(θt), (5)

where gs(·) is an unbiased estimator of the gradient, i.e., E[gs(θ) | θ] = ∇f(θ), where the expectation is w.r.t.
the stochasticity in the gs(·) calculation. A classical example of an unbiased estimator of the gradient is
gs(·) ≡ ∇fj(·), where j is a uniformly random index over the samples Xj .

burn in︷ ︸︸ ︷
θ−b, θ−b+1, · · · θ−1, θ0,

↙
θ̄
(i)
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Figure 1: Our SGD inference procedure

Our inference procedure uses the average of t SGD iterations.
Denote such sequences as θ̄t:

θ̄t =
1

t

t∑
i=1

θi. (6)

The algorithm proceeds as follows: Given a sequence of SGD
iterates, we use the first SGD iterates θ−b, θ−b+1, . . . , θ0 as a
burn in period; we discard these iterates. Next, for each “seg-
ment” of t + d iterates, we use the first t iterates to compute
θ̄

(i)
t = 1

t

∑t
j=1 θ

(i)
j and discard the last d iterates, where i indi-

cates the i-th segment. This procedure is illustrated in Figure
1.

Similar to ensemble learning [17], we use i = 1, 2, . . . , R
estimators for statistical inference.

θ(i) = θ̂ +

√
Ks

√
t√

n
(θ̄

(i)
t − θ̂). (7)

Here, Ks is a scaling factor that depends on how the stochastic gradient gs is computed. We show examples of
Ks for mini batch SGD in linear regression and logistic regression in the corresponding sections. In practice,
we can use θ̂ ≈ 1

R

∑R
i=1 θ̄

(i)
t [5].

Step size η selection and length t: Theorem 1 below is consistent only for SGD with fixed step size that
depends on the number of samples taken. Our experiments, however, demonstrate that choosing a constant
(large) η gives equally accurate results with significantly reduced running time. A better understanding of
t’s and η’s influence requires (conjectured) stronger bounds for SGD with constant step size. Heuristically,
calibration methods for parameter tuning in subsampling methods ([19], Ch. 9) could be used for hyper-
parameter tuning in our SGD procedure. We leave the problem of finding maximal (provable) learning rates
for future work.

Discarded length d: Based on the analysis of mean estimation, if we discard d SGD iterates in every segment,
the correlation between consecutive θ(i) and θ(i+1) is on the order of C1e

−C2ηd, where C1 and C2 are data
dependent constants. This can be used as a rule of thumb to reduce correlation between samples from our
SGD inference procedure.

Burn-in period b: The purpose of the burn-in period b, is to ensure that samples are generated when SGD
iterates are sufficiently close to the optimum. This can be determined using heuristics for SGD convergence
diagnostics. Another approach is to use other methods (e.g., SVRG [11]) to find the optimum, and use a
relatively small b for SGD to reach stationarity, similar to Markov Chain Monte Carlo burn in.

3.1 Theoretical guarantees

Next, we provide the main theorem of our paper. Essentially, this provides conditions under which our
algorithm is guaranteed to succeed, and hence has inference capabilities.
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Theorem 1. For a differentiable convex function f(θ) = 1
n

∑n
i=1 fi(θ), with gradient ∇f(θ), let θ̂ ∈ Rp be its

minimizer, according to (2), and denote its Hessian at θ̂ by H := ∇2f(θ̂) . Assume that ∀θ ∈ Rp, f satisfies:

(F1) Weak strong convexity: (θ − θ̂)>∇f(θ) ≥ α‖θ − θ̂‖22, for constant α > 0,
(F2) Lipschitz gradient continuity: ‖∇f(θ)‖2 ≤ L‖θ − θ̂‖2, for constant L > 0,
(F3) Bounded Taylor remainder: ‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖22, for constant E > 0,
(F4) Bounded Hessian spectrum at θ̂: 0 < λL ≤ λi(H) ≤ λU <∞, ∀i.

Furthermore, let gs(θ) be a stochastic gradient of f , satisfying:

(G1) E [gs(θ) | θ] = ∇f(θ),
(G2) E

[
‖gs(θ)‖22 | θ

]
≤ A‖θ − θ̂‖22 +B,

(G3) E
[
‖gs(θ)‖42 | θ

]
≤ C‖θ − θ̂‖42 +D,

(G4)
∥∥E [gs(θ)gs(θ)> | θ]−G∥∥2

≤ A1‖θ − θ̂‖2 +A2‖θ − θ̂‖22 +A3‖θ − θ̂‖32 +A4‖θ − θ̂‖42,

for positive, data dependent constants A,B,C,D,Ai, for i = 1, . . . , 4. Assume that ‖θ1 − θ̂‖22 = O(η); then for
sufficiently small step size η > 0, the average SGD sequence in (6) satisfies:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1

∥∥∥
2
.
√
η +

√
1
tη + tη2,

where G = E[gs(θ̂)gs(θ̂)
> | θ̂].

We provide the full proof in the appendix, and also we give precise (data-dependent) formulas for the
above constants. For ease of exposition, we leave them as constants in the expressions above.

Discussion. For linear regression, assumptions (F1), (F2), (F3), and (F4) are satisfied when the empirical
risk function is not degenerate. In mini batch SGD using sampling with replacement, assumptions (G1), (G2),
(G3), and (G4) are satisfied. Linear regression’s result is presented in Corollary 1.

For logistic regression, assumption (F1) is not satisfied because the empirical risk function in this case is
strictly but not strongly convex. Thus, we cannot apply Theorem 1 directly. Instead, we consider the use
of SGD on the square of the empirical risk function plus a constant; see eq. (13) below. When the empirical risk
function is not degenerate, (13) satisfies assumptions (F1), (F2), (F3), and (F4). We cannot directly use vanilla
SGD to minimize (13), instead we describe a modified SGD procedure for minimizing (13) in Section 3.5,
which satisfies assumptions (G1), (G2), (G3), and (G4). We believe that this result is of interest by its own. We
present the result specialized for logistic regression in Corollary 2.

Note that Theorem 1 proves consistency for SGD with fixed step size, requiring η → 0 when t → ∞.
However, we empirically observe in our experiments that a sufficiently large constant η gives better results.
We conjecture that the average of consecutive iterates in SGD with larger constant step size converges to the
optimum and we consider it for future work.

3.2 Intuitive interpretation via the Ornstein-Uhlenbeck process approximation

Here, we describe a continuous approximation of the discrete SGD process and relate it to the Ornstein-
Uhlenbeck process [21], to give an intuitive explanation of our results—the complete proofs appear in the
appendix. In particular, under regularity conditions, the stochastic process ∆t = θt − θ̂ asymptotically
converges to an Ornstein-Uhlenbeck process ∆(t), [12, 18, 4, 13, 15] that satisfies:

d∆(T ) = −H∆(T ) dT +
√
ηG

1
2 dB(T ), (8)

where B(T ) is a standard Brownian motion. Given (8),
√
t(θ̄t − θ̂) can be approximated as

√
t(θ̄t − θ̂) = 1√

t

t∑
i=1

(θi − θ̂)

= 1
η
√
t

t∑
i=1

(θi − θ̂)η ≈ 1
η
√
t

∫ tη

0

∆(T ) dT,

(9)
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where we use the approximation that η ≈ dT . By rearranging terms in (8) and multiplying both sides by
H−1, we can rewrite the stochastic differential equation (8) as ∆(T ) dT = −H−1 d∆(T ) +

√
ηH−1G

1
2 dB(T ).

Thus, we have ∫ tη

0

∆(T ) dT =

−H−1(∆(tη)−∆(0)) +
√
ηH−1G

1
2B(tη). (10)

After plugging (10) into (9) we have
√
t
(
θ̄t − θ̂

)
≈

− 1
η
√
t
H−1 (∆(tη)−∆(0)) + 1√

tη
H−1G

1
2B(tη).

When ∆(0) = 0, the variance Var
[
−1/η

√
t ·H−1 (∆(tη)−∆(0))

]
= O (1/tη). Since 1/

√
tη · H−1G

1
2B(tη) ∼

N (0, H−1GH−1), when η → 0 and ηt→∞, we conclude that
√
t(θ̄t − θ̂) ∼ N (0, H−1GH−1).

3.3 Exact analysis of mean estimation

In this section, we give an exact analysis of our method in the least squares, mean estimation problem. For n
i.i.d. samples X1, X2, . . . , Xn, the mean is estimated by solving the following optimization problem

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

1
2‖Xi − θ‖22 =

1

n

n∑
i=1

Xi.

In the case of mini-batch SGD, we sample S = O(1) indexes uniformly randomly with replacement from [n];
denote that index set as It. For convenience, we write Yt = 1

S

∑
i∈It Xi, Then, in the tth mini batch SGD step,

the update step is

θt+1 = θt − η(θt − Yt) = (1− η)θt + ηYt, (11)

which is the same as the exponential moving average. And we have

√
tθ̂t = − 1

η
√
t
(θt+1 − θ1) +

1√
t

n∑
i=1

Yi. (12)

Assume that ‖θ1 − θ̂‖22 = O(η), then from Chebyshev’s inequality − 1
η
√
t
(θt+1 − θ1)→ 0 almost surely when

tη → ∞. By the central limit theorem, 1√
t

∑n
i=1 Yi converges weakly to N (θ̂, 1

S Σ̂) with Σ̂ = 1
n

∑n
i=1(Xi −

θ̂)(Xi − θ̂)>. From (11), we have ‖Cov(θa, θb)‖2 = O(η(1− η)|a−b|) uniformly for all a, b, where the constant
is data dependent. Thus, for our SGD inference procedure, we have ‖Cov(θ(i), θ(j))‖2 = O(η(1− η)d+t|i−j|).
Our SGD inference procedure does not generate samples that are independent conditioned on the data,
whereas replicates are independent conditioned on the data in bootstrap, but this suggests that our SGD
inference procedure can produce “almost independent” samples if we discard sufficient number of SGD
iterates in each segment.

When estimating a mean using our SGD inference procedure where each mini batch is S elements sampled
with replacement, we set Ks = S in (7).

3.4 Linear Regression

In linear regression, the empirical risk function is given by:

f(θ) =
1

n

n∑
i=1

1
2 (θ>xi − yi)2,
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where yi denotes the observations of the linear model and xi are the regressors. To find an estimate to θ?, one
can use SGD with stochastic gradient given by:

gs[θt] =
1

S

∑
i∈It

∇fi(θt),

where It are S indices uniformly sampled from [n] with replacement.
Next, we state a special case of Theorem 1. Because the Taylor remainder∇f(θ)−H(θ − θ̂) = 0, linear

regression has a stronger result than general M -estimation problems.

Corollary 1. Assume that ‖θ1 − θ̂‖22 = O(η). We have∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
.
√
η +

1√
tη
,

where H = 1
n

∑n
i=1 xix

>
i and G = 1

S
1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i .

We assume that S = O(1) is bounded, and quantities other than t and η are data dependent constants.

As with our main theorem, in the appendix we provide explicit data-dependent expressions for the
constants in the result.

Because in linear regression the estimate’s covariance is 1
n ( 1

n

∑n
i=1 xix

>
i )−1)( 1

n (x>i θ̂−yi)(x>i θ̂−yi)>)( 1
n

∑n
i=1 xix

>
i )−1),

we set the scaling factor Ks = S in (7) for statistical inference.

3.5 Logistic regression

We next apply our method to logistic regression. We have n samples (X1, y1), (X2, y2), . . . (Xn, yn) where
Xi ∈ Rp consists of features and yi ∈ {+1,−1} is the label. We estimate θ of a linear classifier sign(θTX) by:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

log(1 + exp(−yiθ>Xi)).

We cannot apply Theorem 1 directly because the empirical logistic risk is not strongly convex; it does not
satisfy assumption (F1). Instead, we consider the convex function

f(θ) =
1

2

(
c+

1

n

n∑
i=1

log
(

1 + exp(−yiθ>Xi)
))2

,

where c > 0 (e.g., c = 1). (13)

The gradient of f(θ) is a product of two terms

∇f(θ) =

(
c+

1

n

n∑
i=1

log
(

1 + exp(−yiθ>Xi)
))

︸ ︷︷ ︸
Ψ

×

∇

(
1

n

n∑
i=1

log
(

1 + exp(−yiθ>Xi)
))

︸ ︷︷ ︸
Υ

.

Therefore, we can compute gs = ΨsΥs, using two independent random variables satisfying E[Ψs | θ] = Ψ and
E[Υs | θ] = Υ. For Υs, we have Υs = 1

SΥ

∑
i∈IΥ

t
∇ log(1 + exp(−yiθ>Xi)), where IΥ

t are SΥ indices sampled
from [n] uniformly at random with replacement. For Ψs, we have Ψs = c+ 1

SΨ

∑
i∈IΨ

t
log(1 + exp(−yiθ>Xi)),

where IΨ
t are SΨ indices uniformly sampled from [n] with or without replacement. Given the above, we have

∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22 for some constant α by the generalized self-concordance of logistic regression
[1, 2], and therefore the assumptions are now satisfied.

For convenience, we write k(θ) = 1
n

∑n
i=1 ki(θ) where ki(θ) = log(1 + exp(−yiθ>Xi)). Thus f(θ) =

(k(θ + c)2, E[Ψs | θ] = k(θ) + c, and E[Υs | θ] = ∇k(θ).
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Corollary 2. Assume ‖θ1 − θ̂‖22 = O(η); also SΨ = O(1), SΥ = O(1) are bounded. Then, we have∥∥∥tE [(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2

.
√
η +

√
1
tη

+ tη2,

where H = ∇2f(θ̂) = (c + k(θ̂))∇2k(θ̂). Here, G = 1
SΥ
KG(θ̂) 1

n

∑n
i=1∇ki(θ̂)ki(θ̂)> with KG(θ) = E[Ψ(θ)2]

depending on how indexes are sampled to compute Ψs:

• with replacement: KG(θ) = 1
SΨ

( 1
n

∑n
i=1(c+ ki(θ))

2) + SΨ−1
SΨ

(c+ k(θ))2 ,

• no replacement: KG(θ) =
1−SΨ−1

n−1

SΨ
( 1
n

∑n
i=1(c+ ki(θ))

2) + SΨ−1
SΨ

n
n−1

(c+ k(θ))2.

Quantities other than t and η are data dependent constants.

As with the results above, in the appendix we give data-dependent expressions for the constants. Simula-
tions suggest that the term tη2 in our bound is an artifact of our analysis. Because in logistic regression the

estimate’s covariance is (∇2k(θ̂))
−1

n

(∑n
i=1∇ki(θ̂)∇ki(θ̂)

>

n

)(
∇2k(θ̂)

)−1

, we set the scaling factor Ks = (c+k(θ̂))2

KG(θ̂)

in (7) for statistical inference. Note that Ks ≈ 1 for sufficiently large SΨ.

4 Related work

Bayesian inference: First and second order iterative optimization algorithms – including SGD, gradient descent,
and variants – naturally define a Markov chain. Based on this principle, most related to this work is the case
of stochastic gradient Langevin dynamics (SGLD) for Bayesian inference – namely, for sampling from the
posterior distributions – using a variant of SGD [26, 6, 15, 16]. We note that, here as well, the vast majority of
the results rely on using a decreasing step size. Very recently, [16] uses a heuristic approximation for Bayesian
inference, and provides results for fixed step size.

Our problem is different in important ways from the Bayesian inference problem. In such likelihood
parameter estimation problems, the covariance of the estimator only depends on the gradient of the likelihood
function. This is not the case, however, in general frequentist M -estimation problems (e.g., linear regression).
In these cases, the covariance of the estimator depends both on the gradient and Hessian of the empirical risk
function. For this reason, without second order information, SGLD methods are poorly suited for general
M -estimation problems in frequentist inference. In contrast, our method exploits properties of averaged
SGD, and computes the estimator’s covariance without second order information.

Connection with Bootstrap methods: The classical approach for statistical inference is to use the bootstrap
[9, 22]. Bootstrap samples are generated by replicating the entire data set by resampling, and then solving the
optimization problem on each generated set of the data. We identify our algorithm and its analysis as an
alternative to bootstrap methods. Our analysis is also specific to SGD, and thus sheds light on the statistical
properties of this very widely used algorithm.

Connection with stochastic approximation methods: It has been long observed in stochastic approximation
that under certain conditions, SGD displays asymptotic normality for both the setting of decreasing step size,
e.g., [14, 20], and more recently, [23, 7]; and also for fixed step size, e.g., [4], Chapter 4. All of these results,
however, provide their guarantees with the requirement that the stochastic approximation iterate converges
to the optimum. For decreasing step size, this is not an overly burdensome assumption, since with mild
assumptions it can be shown directly. As far as we know, however, it is not clear if this holds in the fixed step
size regime. To side-step this issue, [4] provides results only when the (constant) step-size approaches 0 (see
Section 4.4 and 4.6, and in particular Theorem 7 in [4]). Similarly, while [13] has asymptotic results on the
average of consecutive stochastic approximation iterates with constant step size, it assumes convergence of
iterates (assumption A1.7 in Ch. 10) – an assumption we are unable to justify in even simple settings.

Beyond the critical difference in the assumptions, the majority of the “classical” subject matter seeks to
prove asymptotic results about different flavors of SGD, but does not properly consider its use for inference.
Key exceptions are the recent work in [23] and [7], which follow up on [20]. Both of these rely on decreasing
step size, for reasons mentioned above. The work in [7] uses SGD with decreasing step size for estimating
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Figure 2: Estimation in univariate models.

an M -estimate’s covariance. Work in [23] studies implicit SGD with decreasing step size and proves results
similar to [20], however it does not use SGD to compute confidence intervals.

Overall, to the best of our knowledge, there are no prior results establishing asymptotic normality for SGD
with fixed step size for general M-estimation problems (that do not rely on overly restrictive assumptions, as
discussed).

5 Experiments

5.1 Synthetic data

The coverage probability is defined as 1
p

∑p
i=1 P[θ?i ∈ Ĉi] where θ? = arg minθ E[f(θ,X)] ∈ Rp, and Ĉi is the

estimated confidence interval for the ith coordinate. The average confidence interval width is defined as
1
p

∑p
i=1(Ĉui −Ĉli) where [Ĉli , Ĉ

u
i ] is the estimated confidence interval for the ith coordinate. In our experiments,

coverage probability and average confidence interval width are estimated through simulation. We use the
empirical quantile of our SGD inference procedure and bootstrap to compute the 95% confidence intervals
for each coordinate of the parameter. Because theoretical justifications of our SGD inference procedure do not
yet deal with pivotal quantities, here we have not included such comparisons. For results given as a pair
(α, β), it usually indicates (coverage probability, confidence interval length).

5.1.1 Univariate models

In Figure 2, we compare our SGD inference procedure with (i) Bootstrap and (ii) normal approximation with
inverse Fisher information in univariate models. We observe that our method and Bootstrap have similar
statistical properties. Figure 8 in the appendix shows Q-Q plots of samples from our SGD inference procedure.
Normal distribution mean estimation: Figure 2a compares 500 samples from SGD inference procedure and
Bootstrap versus the distribution N (0, 1/n), using n = 20 i.i.d. samples from N (0, 1). We used mini batch
SGD described in Sec. 3.3. For the parameters, we used η = 0.8, t = 5, d = 10, b = 20, and mini batch
size of 2. Our SGD inference procedure gives (0.916 , 0.806), Bootstrap gives (0.926 , 0.841), and normal
approximation gives (0.922 , 0.851). Exponential distribution parameter estimation: Figure 2b compares 500
samples from inference procedure and Bootstrap, using n = 100 samples from an exponential distribution
with PDF λe−λx where λ = 1. We used SGD for MLE with mini batch sampled with replacement. For the
parameters, we used η = 0.1, t = 100, d = 5, b = 100, and mini batch size of 5. Our SGD inference procedure
gives (0.922, 0.364), Bootstrap gives (0.942 , 0.392), and normal approximation gives (0.922, 0.393). Poisson
distribution parameter estimation: Figure 2c compares 500 samples from inference procedure and Bootstrap,
using n = 100 samples from a Poisson distribution with PDF λxe−λx where λ = 1. We used SGD for MLE
with mini batch sampled with replacement. For the parameters, we used η = 0.1, t = 100, d = 5, b = 100, and
mini batch size of 5. Our SGD inference procedure gives (0.942 , 0.364), Bootstrap gives (0.946 , 0.386), and
normal approximation gives (0.960 , 0.393).
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η t = 100 t = 500 t = 2500

0.1 (0.957, 4.41) (0.955, 4.51) (0.960, 4.53)
0.02 (0.869, 3.30) (0.923, 3.77) (0.918, 3.87)
0.004 (0.634, 2.01) (0.862, 3.20) (0.916, 3.70)

(a) Bootstrap (0.941, 4.14), normal approximation (0.928, 3.87)

η t = 100 t = 500 t = 2500

0.1 (0.949, 4.74) (0.962, 4.91) (0.963, 4.94)
0.02 (0.845, 3.37) (0.916, 4.01) (0.927, 4.17)
0.004 (0.616, 2.00) (0.832, 3.30) (0.897, 3.93)

(b) Bootstrap (0.938, 4.47), normal approximation (0.925, 4.18)

Table 1: Linear regression. Left: Experiment 1, Right: Experiment 2.

η t = 100 t = 500 t = 2500

0.1 (0.872, 0.204) (0.937, 0.249) (0.939, 0.258)
0.02 (0.610, 0.112) (0.871, 0.196) (0.926, 0.237)
0.004 (0.312, 0.051) (0.596, 0.111) (0.86, 0.194)

(a) Bootstrap (0.932, 0.253), normal approximation (0.957, 0.264)

η t = 100 t = 500 t = 2500

0.1 (0.859, 0.206) (0.931, 0.255) (0.947, 0.266)
0.02 (0.600, 0.112) (0.847, 0.197) (0.931, 0.244)
0.004 (0.302, 0.051) (0.583, 0.111) (0.851, 0.195)

(b) Bootstrap (0.932, 0.245), normal approximation (0.954, 0.256)

Table 2: Logistic regression. Left: Experiment 1, Right: Experiment 2.

5.1.2 Multivariate models

In these experiments, we set d = 100, used mini-batch size of 4, and used 200 SGD samples. In all cases, we
compared with Bootstrap using 200 replicates. We computed the coverage probabilities using 500 simulations.
Also, we denote 1p =

[
1 1 . . . 1

]> ∈ Rp. Additional simulations comparing covariance matrix computed
with different methods are given in Sec. B.1.2.

Linear regression: Experiment 1: Results for the case where X ∼ N (0, I) ∈ R10, Y = w∗TX + ε, w∗ =
1p/
√
p, and ε ∼ N (0, σ2 = 102) with n = 100 samples is given in Table 1a. Bootstrap gives (0.941, 4.14), and

confidence intervals computed using the error covariance and normal approximation gives (0.928, 3.87).
Experiment 2: Results for the case where X ∼ N (0,Σ) ∈ R10, Σij = 0.3|i−j|, Y = w∗TX + ε, w∗ = 1p/

√
p, and

ε ∼ N (0, σ2 = 102) with n = 100 samples is given in Table 1b. Bootstrap gives (0.938, 4.47), and confidence
intervals computed using the error covariance and normal approximation gives (0.925, 4.18).

Logistic regression: Here we show results for logistic regression trained using vanilla SGD with mini
batch sampled with replacement. Results for modified SGD (Sec. 3.5) are given in Sec. B.1.2. Experiment 1:
Results for the case where P[Y = +1] = P[Y = −1] = 1/2, X | Y ∼ N (0.01Y 1p/

√
p, I) ∈ R10 with n = 1000

samples is given in Table 2a. Bootstrap gives (0.932, 0.245), and confidence intervals computed using inverse
Fisher matrix as the error covariance and normal approximation gives (0.954, 0.256). Experiment 2: Results
for the case where P[Y = +1] = P[Y = −1] = 1/2, X | Y ∼ N (0.01Y 1p/

√
p,Σ) ∈ R10, Σij = 0.2|i−j| with

n = 1000 samples is given in Table 2b. Bootstrap gives (0.932, 0.253), and confidence intervals computed
using inverse Fisher matrix as the error covariance and normal approximation gives (0.957, 0.264).

5.2 Real data

Here, we compare covariance matrix computed using our SGD inference procedure, bootstrap, and inverse
Fisher information matrix on the Higgs data set [3] and the LIBSVM Splice data set, and we observe that they
have similar statistical properties.

5.2.1 Higgs data set

The Higgs data set 3 [3] contains 28 distinct features with 11,000,000 data samples. This is a classification
problem between two types of physical processes: one produces Higgs bosons and the other is a background
process that does not. We use a logistic regression model, trained using vanilla SGD, instead of the modified
SGD described in Section 3.5.

3https://archive.ics.uci.edu/ml/datasets/HIGGS
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Figure 3: Higgs data set with n = 200
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(b) SGD inference covariance

Figure 4: Higgs data set with n = 50000

To understand different settings of sample size, we subsampled the data set with different sample
size levels: n = 200 and n = 50000. We investigate the empirical performance of SGD inference on this
subsampled data set. In all experiments below, the batch size of the mini batch SGD is 10.

In the case n = 200, the asymptotic normality for the MLE is not a good enough approximation. Hence,
in this small-sample inference, we compare the SGD inference covariance matrix with the one obtained by
inverse Fisher information matrix and bootstrap in Figure 3.

For our SGD inference procedure, we use t = 100 samples to average, and discard d = 50 samples. We
use R = 20 averages from 20 segments (as in Figure 1). For bootstrap, we use 2000 replicates, which is much
larger than the sample size n = 200.

Figure 3 shows that the covariance matrix obtained by SGD inference is comparable to the estimation
given by bootstrap and inverse Fisher information.

In the case n = 50000, we use t = 5000 samples to average, and discard d = 500 samples. We use R = 20
averages from 20 segments (as in Figure 1). For this large data set, we present the estimated covariance of
SGD inference procedure and inverse Fisher information (the asymptotic covariance) in Figure 4 because
bootstrap is computationally prohibitive. Similar to the small sample result in Figure 3, the covariance of our
SGD inference procedure is comparable to the inverse Fisher information.

In Figure 5, we compare the covariance matrix computed using our SGD inference procedure and inverse
Fisher information with n = 90000 samples . We used 25 samples from our SGD inference procedure with
t = 5000, d = 1000, η = 0.2, and mini batch size of 10.

5.2.2 Splice data set

The Splice data set 4 contains 60 distinct features with 1000 data samples. This is a classification problem
between two classes of splice junctions in a DNA sequence. Similar to the Higgs data set, we use a logistic
regression model, trained using vanilla SGD.

4https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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Figure 6: Splice data set

In Figure 6, we compare the covariance matrix computed using our SGD inference procedure and
bootstrap n = 1000 samples. We used 10000 samples from both bootstrap and our SGD inference procedure
with t = 500, d = 100, η = 0.2, and mini batch size of 6.
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(a) Original “0”: logit -46.3,
CI (-64.2, -27.9)
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CI (-10.9, 30.5)

Figure 7: MNIST

5.2.3 MNIST

Here, we train a binary logistic regression classifier to classify 0/1 using perturbed MNIST data set, and
demonstrate that certain adversarial examples (e.g. [10]) can be detected using prediction confidence intervals.
For each image, where each original pixel is either 0 or 1, we randomly changed 70% pixels to random
numbers uniformly on [0, 0.9]. Figure 7 shows each image’s logit value (log

P[1|image]
P[0|image] ) and its 95% confidence

interval (CI) computed using our SGD inference procedure.
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5.3 Discussion

In our experiments, we observed that using a larger step size η produces accurate results with significantly
accelerated convergence time. This might imply that the η term in Theorem 1’s bound is an artifact of our
analysis. Indeed, although Theorem 1 only applies to SGD with fixed step size, where ηt→∞ and η2t→ 0
imply that the step size should be smaller when the number of consecutive iterates used for the average is
larger, our experiments suggest that we can use a (data dependent) constant step size η and only require
ηt→∞.

In the experiments, our SGD inference procedure uses (t+ d) · S · p operations to produce a sample, and
Newton method uses n·(matrix inversion complexity = Ω(p2))·(number of Newton iterations t) operations
to produce a sample. The experiments therefore suggest that our SGD inference procedure produces results
similar to Bootstrap while using far fewer operations.
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A Proofs

A.1 Proof of Theorem 1

We first assume that θ1 = θ̂ for more precise constants in our bounds, the same analysis applies when ‖θ1‖22
For ease of notation, we denote

∆t = θt − θ̂, (14)

and, without loss of generality, we assume that θ̂ = 0. The stochastic gradient descent recursion satisfies:

θt+1 = θt − η · gs(θt)
= θt − η · (gs(θt)−∇f(θt) +∇f(θt))

= θt − η · ∇f(θt)− η · et,

where et = gs(θt)−∇f(θt). Note that e1, e2, . . . is a martingale difference sequence. We use

gi = ∇fi(θ̂) and Hi = ∇2fi(θ̂) (15)

to denote the gradient component at index i, and the Hessian component at index i, at optimum θ̂, respectively. Note that∑
gi = 0 and 1

n

∑
Hi = H .

For each fi, its Taylor expansion around θ̂ is

fi(θ) = fi(θ̂) + g>i (θ − θ̂) +
1

2
(θ − θ̂)>Hi(θ − θ̂) +Ri(θ, θ̂), (16)

where Ri(θ, θ̂) is the remainder term. For convenience, we write R = 1
n

∑
Ri.

For the proof, we require the following lemmata. The following lemma states that E[‖∆t‖22] = O(η) as t→∞ and η → 0.

Lemma 1. For data dependent, positive constants α,A,B according to assumptions (F1) and (G2) in Theorem 1, and given assumption
(G1), we have

E
[
‖∆t‖22

]
≤ (1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη , (17)

under the assumption η < 2α
A .

Proof. As already stated, we assume without loss of generality that θ̂ = 0. This further implies that: gs(θt) = gs(θt−θ̂) = gs(∆t),
and

∆t+1 = ∆t − η · gs(∆t).

Given the above and assuming expectation E[·] w.r.t. the selection of a sample from {Xi}ni=1, we have:

E
[
‖∆t+1‖22 | ∆t

]
= E

[
‖∆t − ηgs(∆t)‖22 | ∆t

]
= E

[
‖∆t‖22 | ∆t

]
+ η2 · E

[
‖gs(∆t)‖22 | ∆t

]
− 2η · E

[
gs(∆t)

>∆t | ∆t

]
= ‖∆t‖22 + η2 · E

[
‖gs(∆t)‖22 | ∆t

]
− 2η · ∇f(∆t)

>∆t

(i)

≤ ‖∆t‖22 + η2 ·
(
A · ‖∆t‖22 +B

)
− 2η · α‖∆t‖22

= (1− 2αη +Aη2)‖∆t‖22 + η2B. (18)
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where (i) is due to assumptions (F1) and (G2) of Theorem 1. Taking expectations for every step t = 1, · over the whole history,
we obtain the recursion:

E
[
‖∆t+1‖22

]
≤ (1− 2αη +Aη2)t−1‖∆1‖22 + η2B ·

t−1∑
i=0

(1− 2αη +Aη2)i

= (1− 2αη +Aη2)t−1‖∆1‖22 + η2B · 1−(1−2αη+Aη2)t

2αη−Aη2

≤ (1− 2αη +Aη2)t−1‖∆1‖22 + ηB
2α−Aη .

The following lemma states that E[‖∆t‖42] = O(η2) as t→∞ and η → 0.

Lemma 2. For data dependent, positive constants α,A,B,C,D according to assumptions (F1), (G1), (G2) in Theorem 1, we have:

E[‖∆t‖42] ≤(1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖42

+
B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)−B(3 + η)− C(2η2 + η3)
. (19)

Proof. Given ∆t, we have the following sets of (in)equalities:

E
[
‖∆t+1‖42 | ∆t

]
=E

[
‖∆t − ηgs(∆t)‖42 | ∆t

]
=E

[
(‖∆t‖22 − 2η · gs(∆t)

>∆t + η2‖gs(∆t)‖22)2 | ∆t

]
=E
[
‖∆t‖42 + 4η2(gs(∆t)

>∆t)
2 + η4‖gs(∆t)‖42 − 4η · gs(∆t)

>∆t‖∆t‖22
+ 2η2 · ‖gs(∆t)‖22‖∆t‖22 − 4η3 · gs(∆t)

>∆t‖gs(∆t)‖22 | ∆t

]
(i)

≤E
[
‖∆t‖42 + 4η2 · ‖gs(∆t)‖22 · ‖∆t‖22 + η4‖gs(∆t)‖42 − 4η · gs(∆t)

>∆t‖∆t‖22
+ 2η2 · ‖gs(∆t)‖22 · ‖∆t‖22 + 2η3 · (‖gs(∆t)‖22 + ‖∆t‖22) · ‖gs(∆t)‖22 | ∆t

]
(ii)

≤ E
[
‖∆t‖42 + (2η3 + η4)‖gs(∆t)‖42 + (6η2 + 2η3)‖gs(∆t)‖22‖∆t‖22 | ∆t

]
− 4αη‖∆t‖42

(iii)

≤ (1− 4αη)‖∆t‖42 + (6η2 + 2η3)(A‖∆t‖22 +B)‖∆t‖22 + (2η3 + η4)(C‖∆t‖42 +D)

=(1− 4αη +A(6η2 + 2η3) + C(2η3 + η4))‖∆t‖42 +B(6η2 + 2η3)‖∆t‖22 +D(2η3 + η4)

(iv)

≤ (1− 4αη +A(6η2 + 2η3) + C(2η3 + η4)) · ‖∆t‖42 +B(3η + η2)(η2 + ‖∆t‖42) +D(2η3 + η4)

=(1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4)) · ‖∆t‖42 +Bη2(3η + η2) +D(2η3 + η4), (20)

where (i) is due to (gs(∆t)
>∆t)

2 ≤ ‖gs(∆t)‖22 · ‖∆t‖22 and −2gs(∆t)
>∆t ≤ ‖gs(∆t)‖22 + ‖∆t‖22, (ii) is due to assumptions (G1)

and (F1) in Theorem 1, (iii) is due to assumptions (G2) and (G3) in Theorem 1, and (iv) is due to 2η‖∆t‖22 ≤ η2 + ‖∆t‖42.
Similar to the proof of the previous lemma, applying the above rule recursively and w.r.t. the whole history of estimates, we
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obtain:

E
[
‖∆t+1‖42

]
≤ (1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖42

+
(
Bη2(3η + η2) +D(2η3 + η4)

)
·
t−1∑
i=0

(
1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4)

)i
≤ (1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖42

+
Bη2(3η + η2) +D(2η3 + η4)

4αη −A(6η2 + 2η3)−B(3η + η2)− C(2η3 + η4)
,

which is the target inequality, after simple transformations.

For SGD, we have

∆t = (I − ηH)∆t−1 − η(∇R(∆t−1) + et−1)

= (I − ηH)t−1∆1 − η
t−1∑
i=1

(I − ηH)t−1−i(ei +∇R(∆i)). (21)

For t ≥ 2,

t(θ̄ − θ̂) =

>∑
i=1

∆i

= (I − (I − ηH)t)
H−1

η
∆1 − η

t−1∑
j=1

j∑
i=1

(I − ηH)j−1−i(ei +∇R(∆i)). (22)

For the latter term,

η
t−1∑
j=1

j∑
i=1

(I − ηH)j−i(ei +∇R(∆i))

=η

t−1∑
i=1

(

t−i−1∑
j=0

(I − ηH)j)(ei +∇R(∆i))

=
t−1∑
i=1

(I − (I − ηH)t−i)H−1(ei +∇R(∆i))

=H−1
t−1∑
i=1

ei +H−1
t−1∑
i=1

∇R(∆i)−H−1
t−1∑
i=1

(I − ηH)t−i(ei +∇R(∆i))

(i)
=H−1

t−1∑
i=1

ei +H−1
t−1∑
i=1

∇R(∆i) +H−1(I − ηH)
1

η
(∆t − (I − ηH)t−1∆1), (23)

where step (i) follows from the fact
∑t−1
i=1(I − ηH)t−i(ei +∇R(∆i)) = (I − ηH) 1

η (∆t − (I − ηH)t−1∆1) .
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Thus, we have

√
t∆̄t =

1√
t
(I − (I − ηH)t)

H−1

η
∆1

− 1√
t
H−1

t−1∑
i=1

ei

− 1√
t
H−1

t−1∑
i=1

∇R(∆i)

− 1√
t
H−1(I − ηH)

1

η
(∆t − (I − ηH)t−1∆1). (24)

In the statement of the theorem we have ∆1 = 0 (however similar bounds will hold if ‖∆1‖22 = O(η)), thus for above terms
we have

1√
t
(I − (I − ηH)t)

H−1

η
∆1 = 0, (25)

E[‖ 1√
t
H−1(I − ηH)

1

η
(∆t − (I − ηH)t−1∆1)‖22]

≤1− ηλU
λL

E[
‖∆t‖22
η2t

]

≤1− ηλU
λL

1

η2t
((1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη )

≤1− ηλU
λL

B

tη(2α−Aη)

=O(
1

tη
). (26)

18



E[‖ 1√
t
H−1

t−1∑
i=1

∇R(∆i)‖22]

≤E[
1

λL

1

t
(
t−1∑
i=1

‖∇R(∆i)‖2)2]

≤E[
E2

λLt
(
t−1∑
i=1

‖∆i‖22)2]

≤ E
2

λLt
(t− 1)E[

t−1∑
i=1

‖∆i‖42]

≤E
2

λL

t

t− 1

t−1∑
i=1

((1− 4αη +A(6η2 + 2η3) + C(2η3 + η4))t−1‖∆1‖42 +
B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
)

=
E2

λL
t

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)

=O(tη2). (27)

For the term − 1√
t
H−1

∑t−1
i=1 ei, we have

E[‖ − 1√
t
H−1

t−1∑
i=1

ei‖22]

(i)
=

1

t

t−1∑
i=1

E[‖H−1ei‖22]

≤λU
t

t−1∑
i=1

E[‖ei‖22]

=
λU
t

t−1∑
i=1

E[‖gs(∆i)−∇f(∆i)‖22]

≤2
λU
t

(

t−1∑
i=1

E[‖gs(∆i)‖22] +

t−1∑
i=1

E[‖∇f(∆i)‖22])

≤2
λU
t

((t− 1)B + (A+ L2)
t−1∑
i=1

‖∆i‖22)

≤2
λU
t

((t− 1)B + (A+ L2)
t−1∑
i=1

((1− 2αη +Aη2)t−1‖∆1‖22 +
Bη

2α−Aη ))

=2λU
t− 1

t
(B + (A+ L2)

Bη

2α−Aη )

=O(1), (28)
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where step (i) follows from i 6= j leading to E[(H−1ei)
>H−1ej ] = 0. We also have

E[(− 1√
t
H−1

t−1∑
i=1

ei)(−
1√
t
H−1

t−1∑
i=1

ei)
>]

=
1

t
H−1(

t−1∑
i=1

E[eie
>
i ])H−1. (29)

For each term E[eie
>
i ], we have

‖E[eie
>
i ]−G‖2

=‖E[gs(∆i)gs(∆i)
>]− E[(∇f(∆i))(∇f(∆i))

>]−G‖2
≤E[‖∇f(∆i)‖22] + E[A1‖∆i‖2 +A2‖∆i‖22 +A3‖∆i‖32 +A4‖∆i‖42]

≤L2E[‖∆i‖22] +A1

√
E[‖∆i‖22] +A2E[‖∆i‖22] +

A3

2
E[‖∆i‖22 + ‖∆i‖42] +A4E[‖∆i‖42]

=A1

√
E[‖∆i‖22] + (L2 +A2 +

A3

2
)E[‖∆i‖22] + (

A3

2
+A4)E[‖∆i‖42]

≤A1

√
(1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη + (L2 +A2 +
A3

2
)((1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη )

+ (
A3

2
+A4)((1− 4αη +A(6η2 + 2η3) + C(2η3 + η4))t−1‖∆1‖42 +

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
)

=A1

√
Bη

2α−Aη + (L2 +A2 +
A3

2
)

Bη

2α−Aη + (
A3

2
+A4)

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
. (30)

Thus, we have

‖1

t
H−1(

t−1∑
i=1

E[eie
>
i ])H−1 −H−1GH−1‖2

≤1

t
‖H−1GH−1‖2

+
t− 1

t

1

λ2
L

(A1

√
Bη

2α−Aη + (L2 +A2 +
A3

2
)

Bη

2α−Aη + (
A3

2
+A4)

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
)

=O(
√
η). (31)
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For convenience, denote

�0 =
1√
t
(I − (I − ηH)t)

H−1

η
∆1,

�1 = − 1√
t
H−1(I − ηH)

1

η
(∆t − (I − ηH)t−1∆1),

�2 = − 1√
t
H−1

t−1∑
i=1

∇R(∆i),

�3 = − 1√
t
H−1

t−1∑
i=1

ei, (32)

and we have E[t∆̄t∆̄t] = E[(�0 +�1 +�2 +�3)(�0 +�1 +�2 +�3)>].
Combining above results, we can bound

‖tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1‖2
=‖E[(�0 +�1 +�2 +�3)(�0 +�1 +�2 +�3)>]−H−1GH−1‖2
=‖E[�3�

>
3 ]−H−1GH−1 + E[�3(�0 +�1 +�2)> + (�0 +�1 +�2)�>3 + (�0 +�1 +�2)(�0 +�1 +�2)>]‖2

.‖E[�3�
>
3 ]−H−1GH−1‖2 +

√
E[‖�3‖22](E[‖�0‖22] + E[‖�1‖22] + E[‖�2‖22]) + E[‖�0‖22] + E[‖�1‖22] + E[‖�2‖22]

.
√
η +

√
1

tη
+ tη2. (33)

Here we have used the fact that for two p-dimensional random vectors a and b, the expectation of the matrix ab> satisfies

‖E[ab>]‖2 ≤
√

E[‖a‖22]E[‖b‖22] ≤ 1

2
E[‖a‖22] + E[‖b‖22]. (34)

Indeed, for any fixed unit vector u we have ‖E[ab>]u‖2 = ‖E[a(b>u)]‖2 ≤ E[‖a‖2|b>u|] ≤ E[‖a‖2‖b‖2] ≤
√
E[‖a‖22]E[‖b‖22].

Here we used the fact ‖E[x]‖2 ≤ E[‖x‖2] because ‖x‖2 is convex.
�

A.2 Proof of Corollary 1

Proof of Corollary 1. Here we use the same notations as the proof of Theorem 1.
Because linear regression satisfies ∇f(θ) −H(θ − θ̂) = 0, we do not have to consider the Taylor remainder term in our

analysis. And we do not need 4-th order bound for SGD.
Because the quadratic function is strongly convex, we have ∆>∇f(∆ + θ̂) ≥ λL‖∆‖22.

21



By sampling with replacement, we have

E[‖gs(θt)‖22 | θt]
=‖∇f(θt)‖22 + E[‖et‖22 | θt]

=‖∇f(θt)‖22 +
1

S
(

1

n

∑
‖∇fi(θt)‖22 − ‖∇f(θt)‖22)

≤L2(1− 1

S
)‖∆t‖22 +

1

S

1

n

∑
‖xi(x>i θt − yi)‖22

=L2(1− 1

S
)‖∆t‖22 +

1

S

1

n

∑
‖xix>i ∆t + xix

>
i θ̂ − yixi‖22

≤L2(1− 1

S
)‖∆t‖22 + 2

1

S

1

n

∑
(‖xix>i ∆t‖22 + ‖xix>i θ̂ − yixi‖22)

≤(L2(1− 1

S
) + 2

1

S

1

n

∑
‖xi‖42)‖∆t‖22 + 2

1

S

1

n

∑
‖xix>i θ̂ − yixi‖22. (35)

We also have

‖E[gs(θ)gs(θ)
> | θ]−G‖2

=‖ 1

S

1

n

∑
∇fi(θ)fi(θ)> −∇f(θ)∇f(θ)> −G‖2

≤‖∇f(θ)‖22 +
1

S
‖ 1

n

∑
∇fi(θ)fi(θ)> −G‖2

≤‖∇f(θ)‖22 +
1

S
‖ 1

n

∑
(gi +Hi∆)(gi +Hi∆)> −G‖2

≤‖∇f(θ)‖22 +
1

S
‖ 1

n

∑
Hi∆g

>
i + gi∆

>Hi +Hi∆∆>Hi‖2

≤‖∇f(θ)‖22 +
1

S
(

2

n
‖Hi‖2‖gi‖2)‖∆‖2 +

1

S
(

1

n

∑
‖Hi‖22)‖∆‖22

≤ 1

S
(

2

n
‖Hi‖2‖gi‖2)‖∆‖2 + (L2 +

1

S

1

n

∑
‖Hi‖22)‖∆‖22, (36)

where gi = xi(x
>
i θ̂ − yi) and Hi = xix

>
i .

Following Theorem 1’s proof, we have

‖tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1‖2 .
√
η +

1√
tη
. (37)

A.3 Proof of Corollary 2

Proof of Corollary 2. Here we use the same notations as the proof of Theorem 1.
Because∇2f(θ) = ∇k(θ)∇k(θ)> + (k(θ) + c)∇2k(θ), f(θ) is convex.
The following lemma shows that∇f(θ) = (k(θ) + c)∇k(θ) is Lipschitz.

Lemma 3.

‖∇f(θ)‖2 ≤ L‖∆‖2 (38)

for some data dependent constant L.
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Proof. First, because

∇k(θ) =
1

n

∑
− −yixi

1 + exp(yiθ>xi)
, (39)

we have

‖∇k(θ)‖2 ≤
1

n

∑
‖xi‖2. (40)

Also, we have

‖∇2k(θ)‖2 =‖ 1

n

∑ exp(yiθ
>xi)

(1 + exp(yiθ>xi))2
xix
>
i ‖2

≤ 1

4

1

n

∑
‖xi‖22, (41)

which implies

‖∇k(θ)‖2 ≤
1

4

1

n

∑
‖xi‖22‖∆‖2. (42)

And, we have

k(θ) =
1

n

∑
log(1 + exp(−yi∆>xi − yiθ̂>xi))

≤ 1

n

∑
log(1 + exp(‖xi‖2‖∆‖2 − yiθ̂>xi))

(i)

≤ 1

n

∑
(log(1 + exp(−yiθ̂>xi)) + ‖xi‖2‖∆‖2) (43)

where step (i) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|. Thus, we have

‖∇f(θ)‖2
=‖(k(θ) + c)∇k(θ)‖2
≤k(θ)‖∇k(θ)‖2 + c‖∇k(θ)‖2
≤(c+

1

n

∑
log(1 + exp(−yiθ̂>xi)))‖∇k(θ)‖2 + (

1

n

∑
‖xi‖2)2‖∆‖2, (44)

and we can conclude that ‖∇f(θ)‖2 ≤ L‖∆‖2 for some data dependent constant L.

Next, we show that f(θ) has a bounded Taylor remainder.

Lemma 4.

‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖22, (45)

for some data dependent constant E.
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Proof. Because∇f(θ) = (k(θ) + c)∇k(θ), we know that ‖∇f(θ)‖2 = O(‖∆‖2) when ‖∆‖2 = Ω(1) where the constants are data
dependent.

Because f(θ) is infinitely differentiable, by the Taylor expansion we know that ‖∇f(θ)−H(θ − θ̂)‖2 = O(‖θ − θ̂‖22) when
‖∆‖2 = O(1) where the constants are data dependent.

Combining the above, we can conclude ‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖22 for some data dependent constant E.

In the following lemma, we will show that∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22 for some data dependent constant α.

Lemma 5.

∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22, (46)

for some data dependent constant α.

Proof.

∇f(θ)>∆ = (k(θ) + c)∇k(θ)>∆. (47)

First, notice that locally (when ‖∆‖2 = O(λL

E )) we have

∇k(θ)>∆ & ∆>H∆ & λL‖∆‖22, (48)

because of the optimality condition. This lower bounds ∇f(θ)>(θ − θ̂) when ‖∆‖2 = O(λL

E ). Next we will lower bound it
when ‖∆‖2 = Ω(λL

E ).
Consider the function for t ∈ [0,∞), we have

g(t) = ∇f(θ̂ + ut)>ut

= (k(θ̂ + ut) + c)∇k(θ̂ + ut)>ut

= k(θ̂ + ut)∇k(θ̂ + ut)>ut+ c∇k(θ̂ + ut)>ut, (49)

where u = ∆
‖∆‖2 .

Because k(θ) is convex,∇k(θ̂ + ut)>u is an increasing function in t, thus we have∇k(θ̂ + ut)>u = Ω(
λ2
L

E ) when t = Ω(λL

E ).

And we can deduce∇k(θ̂ + ut)>ut = Ω(
λ2
L

E t) when t = Ω(λL

E ).

Similarly, because k(θ) is convex, k(θ̂ + ut) is an increasing function in t. Its derivative ∇k(θ̂ + ut)>u = Ω(
λ2
L

E ) when

t = Ω(λL

E ). So we have k(θ̂ + ut) = Ω(
λ2
L

E t) when t = Ω(λL

E ).
Thus, we have

k(θ̂ + ut)∇k(θ̂ + ut)>ut = Ω(
λ4
L

E2
t2), (50)

when t = Ω( EλL
).

And we can conclude that∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22 for some data dependent constant α = Ω(min{λL, λ
4
L

E2 }).
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Next, we will prove properties about gs = ΨsΥs.

E[‖Υ‖22 | θ] =
1

SΥ
(

1

n

∑
‖∇ki(θ)‖22 − ‖∇k(θ)‖22) + ‖∇k(θ)‖22

.
1

n
‖xi‖22 (51)

E[Ψ2
s]

(i)

≤ 1

n

∑
(c+ ki(θ))

2

=
1

n

∑
(c+ log(1 + exp(−yiθ̂>xi − yi∆xi)))2

(ii)

.
1

n

∑
‖xi‖2‖∆‖22 +

1

n

∑
(c+ log(1 + exp(−yiθ̂>xi)))2, (52)

where (i) follows from E[(
∑S

j=1 Xj

S )2] ≤ E[
∑S

j=1 X
2
j

S ] and (ii) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|.
Thus we have

E[‖gs‖22(θ) | θ]
=E[Ψ2 | θ]E[‖Υ‖22 | θ]
.A‖∆‖22 +B (53)

for some data dependent constants A and B.

E[‖Υ‖42 | θ]

=E[‖ 1

SΥ

∑
i∈IΥ

t

∇ log(1 + exp(−yiθ>xi))‖42]

≤E[(
1

SΥ

∑
i∈IΥ

t

‖∇ log(1 + exp(−yiθ>xi))‖2)4]

≤E[(
1

SΥ

∑
i∈IΥ

t

‖xi‖2)4]

≤ 1

n

∑
‖xi‖42. (54)

E[Ψ4
s]

(i)

≤ 1

n

∑
(c+ ki(θ))

4

=
1

n

∑
(c+ log(1 + exp(−yiθ̂>xi − yi∆xi)))4

(ii)

.
1

n

∑
‖xi‖4‖∆‖42 +

1

n

∑
(c+ log(1 + exp(−yiθ̂>xi)))4, (55)
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where (i) follows from E[(
∑S

j=1 Xj

S )4] ≤ E[
∑S

j=1 X
4
j

S ] and (ii) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|.
Thus we have

E[‖gs‖42(θ) | θ]
=E[Ψ4 | θ]E[‖Υ‖42 | θ]
.C‖∆‖42 +D, (56)

for some data dependent constants C and D.

‖E[∇gs(θ)∇gs(θ)>]−G‖2
≤‖KG(θ)

1

n

∑
∇ki(θ)∇ki(θ)> −KG(θ̂)

1

n

∑
∇ki(θ̂)∇ki(θ̂)>‖2

≤‖KG(θ)
1

n

∑
∇ki(θ)∇ki(θ)> −KG(θ)

1

n

∑
∇ki(θ̂)∇ki(θ̂)> +KG(θ)

1

n

∑
∇ki(θ̂)∇ki(θ̂)> −KG(θ̂)

1

n

∑
∇ki(θ̂)∇ki(θ̂)>‖2

≤KG(θ)
1

n
‖
∑

(∇ki(θ)∇ki(θ)> −∇ki(θ̂)∇ki(θ̂)>)‖2 + |KG(θ)−KG(θ̂)|‖ 1

n

∑
∇ki(θ̂)∇ki(θ̂)>‖2. (57)

Because

KG(θ) = O(1 + ‖∆‖2 + ‖∆‖22), (58)
1

n
‖
∑

(∇ki(θ)∇ki(θ)> −∇ki(θ̂)∇ki(θ̂)>)‖2 = O(‖∆‖2 + ‖∆‖22), (59)

|KG(θ)−KG(θ̂)| = O(‖∆‖2 + ‖∆‖22), (60)

where we have data dependent constants.
Then, we have

‖E[gs(θ)gs(θ)
> | θ]−G‖2 ≤ A1‖θ − θ̂‖2 +A2‖θ − θ̂‖22 +A3‖θ − θ̂‖32 +A4‖θ − θ̂‖42, (61)

for some data dependent constants A1, A2, A3, and A4.
Combining above results and using Theorem 1, we have

‖tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1‖2

.
√
η +

√
1

tη
+ tη2. (62)

B Experiments

Here we present additional experiments on our SGD inference procedure.

B.1 Synthetic data

B.1.1 Univariate models

Figure 8 shows Q-Q plots for samples shown in Figure 2.
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(a) Normal.
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(b) Exponential.
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(c) Poisson.

Figure 8: Estimation in univariate models: Q-Q plots for samples shown in Figure 2

B.1.2 Multivariate models

Here we show Q-Q plots per coordinate for samples from our SGD inference procedure.
Q-Q plots per coordinate for samples in linear regression experiment 1 is shown in Figure 9. Q-Q plots per coordinate for

samples in linear regression experiment 2 is shown in Figure 10.
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Figure 9: Linear regression experiment 1: Q-Q plots per coordinate

Q-Q plots per coordinate for samples in logistic regression experiment 1 is shown in Figure 11. Q-Q plots per coordinate
for samples in logistic regression experiment 2 is shown in Figure 12.

Additional experiments
2-Dimensional Linear Regression. Consider:

y = x1 + x2 + ε, where
[
x1

x2

]
∼ N

(
0,

[
1 0.8

0.8 1

])
and ε ∼ N (0, σ2 = 102).

Each sample consists of Y = y and X = [x1, x2]>. We use linear regression to estimate w1, w2 in y = w1x1 + w2x2. In this
case, the minimizer of the population least square risk is w?1 = 1, w?2 = 1.
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Figure 10: Linear regression experiment 2: Q-Q plots per coordinate
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Figure 11: Logistic regression experiment 1: Q-Q plots per coordinate

For 300 i.i.d. samples, we plotted 100 samples from SGD inference in Figure 13. We compare our SGD inference procedure
against bootstrap in Figure 13a. Figure 13b and Figure 13c show samples from our SGD inference procedure with different
parameters.

10-Dimensional Linear Regression.
Here we consider the following model

y = x>w? + ε,

where w? = 1√
10

[1, 1, · · · , 1]> ∈ R10, x ∼ N (0,Σ) with Σij = 0.8|i−j|, and ε ∼ N (0, σ2 = 202), and use n = 1000 samples.
We estimate the parameter using

ŵ = argmin
w

1

n

n∑
i=1

1
2 (x>i w − yi)2.

Figure 14 shows the diagonal terms of of the covariance matrix computed using the sandwich estimator and our SGD
inference procedure with different parameters. 100000 samples from our SGD inference procedure are used to reduce the
effect of randomness.
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Figure 12: Logistic regression experiment 2: Q-Q plots per coordinate

2-Dimensional Logistic Regression.
Here we consider the following model

P[Y = +1] = P[Y = −1] =
1

2
, X | Y ∼ N

(
µ = 1.1 + 0.1Y, σ2 = 1

)
. (63)

We use logistic regression to estimate w, b in the classifier sign(wx+ b) where the minimizer of the population logistic risk is
w? = 0.2, b? = −0.22.

For 100 i.i.d. samples, we plot 1000 samples from SGD in Figure 15. In our simulations, we notice that our modified
SGD for logistic regression behaves similar to vanilla logistic regression. T his suggests that an assumption weaker than
(θ − θ̂)>∇f(θ) ≥ α‖θ − θ̂‖22 (assumption (F1) in Theorem 1) is sufficient for SGD analysis. Figure 15b and Figure 15d suggest
that the tη2 term in Corollary 2 is an artifact of our analysis, and can be improved.

11-Dimensional Logistic Regression.
Here we consider the following model

P[Y = +1] = P[Y = −1] =
1

2
, X | Y ∼ N (0.01Y µ,Σ) ,
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Figure 13: 2-dimensional linear regression
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Figure 14: 11-dimensional linear regression: covariance matrix diagonal terms of SGD inference and sandwich estimator
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Figure 15: 2-dimensional logistic regression

where Σii = 1 and when i 6= j Σij = ρ|i−j| for some ρ ∈ [0, 1), and µ = 1√
10

[1, 1, · · · , 1]> ∈ R10. We estimate a classifier
sign(w>x+ b) using

ŵ, b̂ = argmin
w,b

1

n

n∑
i=1

log
(
1 + exp(−Yi(w>Xi + b))

)
. (64)

Figure 16 shows results for ρ = 0 with n = 80 samples. We use t = 100, d = 70, η = 0.8, and mini batch of size 4 in vanilla
SGD. Bootstrap and our SGD inference procedure each generated 2000 samples. In bootstrap, we used Newton method to
perform optimization over each replicate, and 6-7 iterations were used. In figure 17, we follow the same procedure for ρ = 0.6
with n = 80 samples. Here, we use t = 200, d = 70, η = 0.85; the rest of the setting is the same.

B.2 Real Data

B.2.1 MNIST

Here, we train a binary logistic regression classifier to classify 0/1 using perturbed MNIST data set, and demonstrate that
certain adversarial examples (e.g. [10]) can be detected using prediction confidence intervals. For each image, where each
original pixel is either 0 or 1, we randomly changed 70% pixels to random numbers uniformly on [0, 0.9]. Figure 18 shows
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Figure 16: 11-dimensional logistic regression: ρ = 0
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Figure 17: 11-dimensional logistic regression: ρ = 0.6
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each image’s logit value (log
P[1|image]
P[0|image] ) and its 95% confidence interval computed using our SGD inference procedure. The

adversarial perturbation used here is shown in Figure 19 (scaled for display).
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(h) Adversarial “0”: logit 13.3,
CI (-8.0, 25.7)

Figure 18: MNIST
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Figure 19: MNIST adversarial perturbation (scaled for display)
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