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Chapter 1.  Project Overview 

The field of transportation modeling has seen many advances in recent years with 
approaches involving activity-based modeling and agent-based simulations. There have 
also been advances to the traditional four-step model, with researchers developing faster 
and more efficient sub-models. The basic structure of the four-step model, however, has 
remained fundamentally the same: trip generation, trip distribution, mode choice, and trip 
assignment. The long-lasting nature of this structure speaks not only to the model’s 
flexibility, but also to its transparency and (comparative) ease of use. 
Recent technological developments have led to the creation of whole new modes of 
transportation, such as ride-hailing services. Furthermore, the advent of self-driving 
automated vehicles (AVs) seem to be a tangible and concrete possibility the near future. 
In light of these changes, transportation agencies need to review and update their models 
to more accurately analyze future scenarios and plan accordingly.  
The main objective of this report is to document the changes made to the North Central 
Texas Council of Government’s (NCTCOG) four-step model in order to accommodate 
those two new features: ride-hailing services and AVs. Chapter 1 contains a review of 
recent literature on the subject, including projections made by several researchers. 
Chapter 3 presents the general modeling framework, while Chapter 4 contains more 
detailed documentation on actual changes made to the NCTCOG’s TransCAD/GISDK 
codes. Chapter 5 contains simulation results from the new models. Finally, Chapter 6 
contains closing remarks on the process so far and points to new directions for further 
modifications.  
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Chapter 2.  Literature Review 

2.1 Introduction 
Transportation planning typically relies on an iterative modeling process that considers 
the inter-dependencies of travel demand and the performance of multi-modal 
transportation networks on which travel occurs. The traditional planning process 
considers a four-step process that consists of separate models to estimate trip generation, 
trip distribution, mode choice and route assignment. There is a growing belief that the 
traditional methods used for performing these four steps may be unsuitable for 
forecasting the traffic more than 10 years from now. This is because there is considerable 
uncertainty regarding how transportation systems will operate in the future with the 
introduction of autonomous and connected vehicle technologies. These technologies will 
have an impact on every step in the four-step model.  
Transportation that is more efficient, cheaper and convenient (devoid of the hassle of 
driving) may have an incremental effect on trip generation. At the same time, advances in 
areas other than transportation such as augmented reality and virtual reality may cause a 
reduction in transportation as working and socializing becomes easier to do from home in 
a virtual environment. Even when transportation is required, the convenience of AV 
travel may promote more individuals to live farther from the urban center. 
The high cost of purchasing an AV combined with the low cost of operation makes AVs 
more suitable for use in ride-hailing than for ownership. The concept of Mobility-as-a-
Service has been gaining traction in recent years. The low cost and reliability of using 
AV based ride-hailing will further mobility being viewed as a service. 
Information regarding travel times and road conditions gathered and shared by connected 
vehicles will make it easier for individuals or algorithms in routing systems to make 
optimal decisions regarding route choice. Complex traffic rules can be implemented if 
vehicles in the traffic are autonomous as they can perceive and react instantaneously. 
Advanced traffic control systems and tolling mechanism can add a new layer of 
complexity to how autonomous vehicles decide on which routes to take. Without the 
human element, the operation of vehicle fleets can be much more strategic and 
coordinated. As a result, they may be more efficient in meeting traffic demand with less 
number of vehicles. The improved coordination combined with precise information can 
further improve the efficiency of the system. 
This document provides a summary of several studies that have been conducted in trying 
to understand the impact disruptive technologies such as connected and autonomous 
vehicles (CAV) will have on travel demand and supply. The impact on mobility of these 
technologies will occur from the following fronts: 

1. Travel demand 
2. Network Capacity 
3. Market Penetration 
4. Ride-hailing Operation 
5. Current MPO practices 
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2.2 Travel Demand 
AVs are expected to reduce many of the inconvenience that are associated with traveling 
by non-AVs. The stress of driving through congested roads is eliminated and the time 
spent inside the car can be utilized for more productive or relaxing pursuits. The trouble 
of finding a parking spot can also be delegated to the vehicle. These conveniences make 
AV travel modes superior to most of the existing modes and this in turn would increase 
the overall travel demand. 
One of the main reasons individuals choose transit over a private vehicle is unavailability 
of parking. Once AVs become commonplace, unavailability of parking will no longer be 
a significant deterrent to traveling by a private vehicle. The AV can be asked to 
reposition itself to a suitable location once the passengers have been dropped off. This 
will lead to more number of trips using private vehicles and reduce the mode share of 
transit. However, the increased congestion because of more trips by private vehicles and 
repositioning of empty vehicles would increase cost of trips because of the extra fuel 
consumption. This will offset some of the reduction in transit mode share (Levin and 
Boyles, 2015). Also the use of autonomous vehicles for first and last mile commute can 
further improve the prospect of transit (Scheltes and de Almeida Correia, 2017; Shen et 
al., 2017). Cities such as Los Angeles have already revealed plans to incorporate 
autonomous pods to provide last mile connectivity for transit (Walker, 2016). 
The number of trips by cars may increase not just because of mode shift from other 
modes such as transit but also because of increased mobility. Certain demographics such 
as senior citizens, individuals below the age of 18 and differently abled citizens will 
make significantly more number of trips as they will experience a much higher 
improvement in mobility. Quantification of the number of such additional trips has been 
attempted in Truong et al. (2017). 
The increased convenience and the possibility of spending time more productively in an 
autonomous vehicle would make individuals more tolerant of higher in-vehicle travel 
times. To model this fact, it has been suggested in literature to apply a Value of Time 
(VOT) reduction factor when computing mode utilities. The range of VOT reductions is 
generally between 25% and 35% (Childress et al., 2015; Kröger et al., 2016). 
Although the convenience of traveling via AVs may have an incremental impact on travel 
demand, it cannot be concluded that the overall travel demand will increase. Several 
technologies are under development which would reduce our need for travel. Promoters 
of technologies such as Augmented Reality (AR) and Virtual Reality (VR) promise to 
virtually provide the experience of meeting in person or exploring travel destinations 
without leaving the comfort of the living room. If the experience from these technologies 
hold up to their promise it may reduce the need to make trips for commuting, socializing 
or sightseeing. However, the determining the effects of these technologies is outside the 
scope of this project. It was predicted in the 1980s that advances in telecommunications 
would decrease commuting drastically, but this never materialized (Rosalsky, 2017). 
Another technology that could impact travel demand is delivery by drones (Martin Joerss 
et al., 2016). 
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2.3 Network Capacity 
Infinitesimally small reaction times and better awareness of its environment because of 
an array of sensors and vehicle-to-everything (V2X) communication allows CAV to 
utilize road space much more efficiently than human drivers. Several technologies have 
been conceptualized and some have already been implemented which can improve the 
safety and travel times of CAVs. 
Automated Cruise Control (ACC) allows vehicles to follow its lead vehicles without any 
human intervention. Two parameters that are set before the activation of this feature are 
desired speed and minimum headway. The ACC enabled vehicle maintains the desired 
speed when it is unobstructed by any vehicle. When obstructed by a slow moving vehicle, 
it maintains the minimum time headway with the vehicle in front. Okamura et al. (2011) 
showed that vehicles with ACC improves traffic safety. But the impact of ACC on 
highway capacity depends on the minimum headway parameter. At low values of 
minimum time headway, the capacity may improve but in the more general case, the 
highway capacity is expected to reduce since conservative headways may be used to 
ensure safety (Okamura et al., 2011; Vander Werf et al., 2002). It has also been shown 
that ACC vehicles, like human driven vehicles, may not be string stable (Sheikholeslam 
and Desoer, 1990). String stability gives a measure of the ease with which perturbations 
in the speed of a vehicle can propagate through a string of vehicles. Lower string stability 
results in the increased occurrence and severity of phantom traffic jams which negatively 
impacts road capacity. 
Cooperative Adaptive Cruise Control (CACC) is an advanced version of ACC which also 
used Vehicle-to-Vehicle (V2V) communication. Because of V2V, a vehicle with CACC 
not only knows the speed and position of the vehicle in front, but of all the vehicles 
within a short radius of it. In effect, CACC enabled vehicles can “see” beyond just the 
vehicle in front. Therefore, these vehicles can afford to maintain shorter time gaps with 
the vehicles in front (Vander Werf et al., (2002) uses a time gap of 0.5 second). Vehicles 
with CACC improve traffic capacity and traffic stability (Delis et al., 2015; Milanés and 
Shladover, 2014; Talebpour and Mahmassani, 2016; Tientrakool et al., 2011; van Arem 
et al., 2006). Vehicle platooning can be considered as an application of CACC 
technology. 
The current system of traffic signals and signs are designed for human drivers. More 
complex and efficient intersection management systems can be implemented if all the 
vehicles in traffic are CAVs. Autonomous Intersection Management (AIM) is one such 
system that was conceptualized by Dresner and Stone (2005, 2004). In this system, AVs 
call ahead to reserve time-space slots to pass through an intersection. A centralized agent 
called the intersection manager receives all the reservation requests from vehicles and 
allots time slots to them in a manner that there is no conflicting vehicle movement. Since 
all vehicles are autonomous, these space time slots can be quite narrow resulting in a 
much more efficient use of space. A simulation conducted by Dresner and Stone (2005) 
shows that at moderate traffic volumes, this system can be as efficient as an overpass. 
If movements of CAVs are programmed to dampen traffic waves, road capacity can be 
improved. Stern et al. (2017) shows how 5% of vehicles being CAVs can dampen stop-
and-go traffic waves. Talebpour et al., (2016) studies the effectiveness of speed 
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harmonization algorithms when implemented using Dedicated Short Range 
Communication (DSRC). 

2.4 Market Penetration 
Penetration rates can, in a general sense, be studied in three different ways: percentage of 
the whole fleet of vehicles owned by the population; percentage of new cars sold; and 
percentage of trips.  
Bansal and Kockelman (2017) compile the main literature regarding the adoption of 
autonomous vehicles and also provide their own estimates. Tables 1, 2, and 3 summarize 
their findings in terms of the three aforementioned types of penetration rates. 

 
Table 1 Penetration rates - Vehicle Ownership 

Paper Automation 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 
Laslau et al. (2014) Level 2    92%       
Laslau et al. (2014) Level 3    8%       
Morgan Stanley (2013) Level 3    100%       
Rowe (2016) Level 4          100% 
Morgan Stanley (2013) Level 4         100%  
Bierstedt et al. (2014) Level 4     25%      
IHS Automotive (2014) Level 4        100%   
Litman (2017) Level 4  1-2%  10-20%  20-40%  40-60%   

 
Table 2 Penetration rates – New Vehicles Sold 

Paper Automation 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 
Litman (2017) Level 4  2-5%  20-40%  40-60%  80-100%   
ABI Research (2013) Level 4     50%      
Mosquet et al. (2015) Level 4     10%      
Alexander & Gartner (2014) ?     75%      
 

Table 3 Penetration rates - Trips 

Paper Automation 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 
Litman (2017) Level 4  1-4%  10-30%  30-50%  50-80%   
Hars (2014) Level 4    90%       

 
Bansal and Kochelman (2017) note that the existing literature has only a few such 
forecasting studies by academic researchers, with most studies conducted by consulting 
firms, investment banks, and other private enterprises, most of which do not focus on the 
forecasting methods used in their reports. 
Besides compiling information regarding penetration rates, Bansal and Kochelman 
(2017) also generated their own estimates, as presented in Table 4. 
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Table 4 Penetration rates from Bansal & Kochelman 

Scenario Automation 2015 2020 2025 2030 2035 2040 2045 
Scenario 1 Level 3 0.0% 2.1% 4.6% 7.6% 8.3% 8.0% 10.4% 
Scenario 1 Level 4 0.0% 3.9% 11.1% 19.7% 28.6% 37.0% 43.0% 
Scenario 2 Level 3 0.0% 3.0% 5.3% 7.7% 8.7% 7.9% 13.7% 
Scenario 2 Level 4 0.0% 3.0% 10.2% 19.0% 28.7% 37.9% 43.8% 
Scenario 3 Level 3 0.0% 1.9% 3.2% 4.5% 6.5% 8.1% 8.9% 
Scenario 3 Level 4 0.0% 2.0% 5.2% 10.3% 15.0% 19.2% 24.8% 
Scenario 4 Level 3 0.0% 2.7% 5.1% 7.5% 8.7% 8.2% 13.9% 
Scenario 4 Level 4 0.0% 2.9% 10.2% 18.8% 28.5% 36.3% 43.4% 
Scenario 5 Level 3 0.0% 2.3% 5.3% 8.1% 8.5% 8.3% 8.2% 
Scenario 5 Level 4 0.0% 3.3% 10.8% 19.0% 27.2% 35.9% 43.2% 
Scenario 6 Level 3 0.0% 2.1% 6.1% 8.4% 8.5% 28.6% 16.3% 
Scenario 6 Level 4 0.0% 4.7% 15.1% 27.2% 38.3% 45.7% 70.7% 
Scenario 7 Level 3 0.0% 2.5% 5.9% 8.3% 8.2% 26.5% 25.5% 
Scenario 7 Level 4 0.0% 4.7% 13.8% 25.5% 36.4% 44.3% 59.7% 
Scenario 8 Level 3 0.0% 3.5% 6.0% 7.7% 27.7% 11.6% 2.9% 
Scenario 8 Level 4 0.0% 5.5% 19.4% 33.8% 44.2% 74.7% 87.2% 

 
One of the most cited works on the topic of market penetration of AVs is from Litman 
(2017), where he generates predictions for level 4 AV penetration, presented Table 5 and 
Figure 1. 
 

Table 5 Level 4 AV predictions from Litman (2017) 
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Figure 1 Projections for level 4 AVs from Litman (2017) 

 
We can now use these multiple AV penetration rates proposed by experts and create 
“optimistic” and “pessimistic” scenarios. The overall proportions can then be used to 
calibrate AV adoption models on a disaggregate household level. Finally, we can initiate 
the Four-step process in parallel for both households with and without AVs. 

2.5 Ride-hailing Operation 
Many sectors of the world of transportation are interested in studying ride-sourcing 
services. There is, however, very scarce peer-reviewed literature on the matter, likely due 
to the fact that these markets are very recent. One statistic regularly cited to illustrate 
both, the disruptive power and emerging nature of these services, is the fact that it took 
Uber, the largest TNC, six years to reach the one billion trip milestone in 2015, but only 
six additional months to reach the two billion milestone; currently, the company has 
exceeded 5 billion trips (Uber, 2017).  
The highly exponential nature of the service’s growth in recent years makes predictions 
of future ride-sourcing trends quite difficult. Furthermore, the possibility of incorporating 
autonomous vehicles into their fleets also likely affect the real usage of these services in 
the future. Yet another layer of complexity is understanding what paradigm will prevail: 
private or shared economy.  
The few studies that do exist refer mainly to the service users’ characteristics and to 
controversies regarding the services’ fairness in competing with taxis.  
Regarding the taxi/ride sourcing controversy, Rayle et al. (2016) points out that taxis 
have directed significant criticism towards ride sourcing companies because they see 
them as “an illegal service that flouts existing laws and competes unfairly”.  
In an analysis of ride sourcing users in the Puget Sound region, Dias et al. (2017) note 
that younger, richer, employed people with smartphones, higher education levels, and 
fewer vehicles tend to have higher propensities to use ride sourcing services. Using the 
same dataset, Lavieri et al. (2017b) analyzed the determinants of ride-hailing adoption (as 
a sub component of a larger model), and found that living in high residential density areas 
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and having a tech-savvy life-style were important contributing factors that encouraged 
the adoption of ride-hailing. Lavieri et al. (2017a) focused their attention on Austin, 
Texas, and estimated that regions that have a higher male population proportion are more 
likely to have at least one ride sourcing trip during the weekday and no ride sourcing trips 
during the weekend days. Unsurprisingly, zones with high vehicle ownership rates are 
more likely to have no ride sourcing trips during weekdays, while zones that have parks 
are less likely to have zero trips generated during weekends. There have been very few 
studies that analyze the network-level impacts of ridesourcing. Levin et al. (2016) modify 
the classic 4 step model structure to incorporate shared autonomous vehicles, which in 
this context, can be seen as ridesourcing services that use AVs. Even though they found 
that the AV ridesourcing system was highly effective at reducing congestion, their results 
are somewhat difficult to generalize for the case with ridesourcing services that use non-
AVs.  
One possibility of incorporating ridesourcing in the traditional 4 step modeling procedure 
is by creating parallel procedures for the first three steps exclusively for ridesourcing 
trips. In that case, we would perform trip generation and distribution for these trips using 
currently available data. Mode choice would not be necessary for these trips since they 
are already mode-specific. Finally, the trip matrices can be incorporated into the traffic 
assignment stage. Assumptions can also be made about how ridesourcing drivers are 
repositioned between trips. 

2.6 Current MPO Practices 
Guerra (2016) explores the extent to which MPOs have considered the impact of AVs on 
their long-range regional transportation plans (LRTP). Guerra explains that most MPOs 
have not considered AVs in their current RTPs mainly. The main reasons for this are,  

• High uncertainty regarding the effects of the technology 

• Potential impact of AVs are too far removed from decisions about where and how to 
invest in transportation infrastructure 

• AVs are just one of several other factors which can impact traffic such as 
improvement in telecommunication, climate change polices and federal funding. 

We attempted to contact 3 MPOs: the New York Metropolitan Transportation Council 
(NYMTC), Puget Sound Regional Council (PSRC) and Los Angeles County 
Metropolitan Transportation Authority (LA Metro) to enquire about how these MPOs 
have accommodated impact of AVs on their travel forecasts. NYMTC responded that 
they are currently not incorporating these effects into the model as AVs are not yet legal 
in the state and their future is uncertain. The other 2 MPOs had not responded. However, 
the recent paper (Childress et al., 2015) may be an indication of the direction in which 
PSRC is predicting the impact of AVs (The author Suzanne Childress is a principal travel 
modeler at PSRC). 
According to Guerra (2016), MPOs of Atlanta, San Francisco and Seattle (PSRC) have 
attempted to incorporate AVs into their existing models. The results from these models 
are summarized in Table 6. These model results were obtained by altering parameters in 
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their existing activity based models. Childress et al. (2015) cautions that such an 
approach stretches the capabilities of the activity-based models. 

 
Table 6  Impact of AVs on VMT predicted by MPOs using their activity-based planning 

model 

 
Source: Guerra (2016) 

 
The impact AVs and related new technologies are likely to have on difference stages of 
the planning process is summarized in Table 7. 
Most of the papers focus on the impact AVs have on certain aspects of traffic modeling. 
Some aspects such as trip distribution and modeling of ride sharing are relatively 
underrepresented in the literature. There are very few papers which provide a holistic 
analysis of the impact of AVs on travel. However, the methodologies and assumptions 
presented in these papers will be valuable in developing better models to predict the 
impact of AVs. 
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Table 7 Impact of AVs on different stages of the planning process 

Step Impacts 
Trip Generation • Increased convenience of travel 

boosts demand 
• Significant improvement in 

mobility for certain demographics 
such as senior citizens, people 
with disabilities and children 

• Ease of parking 

• New technologies such as 
augmented reality, virtual reality 
and delivery by drones and AVs 

Trip Distribution • Increased travel convenience may 
cause individuals to live further 
away from city centers 
decreasing urban density 

• The presence of high utility AV 
based mobility services may 
increase the attractiveness of 
living in cities 

Mode Choice • Convenience of travelling in AVs decrease the perceived value of time for 
these modes 

• The option of parking further for AV users also affect mode choice 

Assignment • Technologies such as CACC 
enable vehicles to maintain lower 
headways at higher speeds 
increasing traffic capacity 

• Communicating with traffic 
infrastructure such as traffic 
lights can further boost capacity 

• Some technologies such as ACCs 
may decrease traffic capacity 
depending on how they are 
implemented. 

• Increased travel demand may lead 
to more congestion and lowering 
of network capacity  
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Chapter 3.  Modeling Framework 

3.1 Introduction 
In this chapter we propose a modeling strategy, within the framework provided by 
NCTCOG’s current planning model, to capture the impact of new mobility services and 
technologies, such as ride-hailing (e.g. Uber, Lyft and other comparable services) and 
connected/autonomous vehicles (CAVs/AVs).  This strategy is composed of a series of 
modifications to the existing four-step planning model, which normally consists of 1) 
Trip Generation, 2) Trip Distribution, 3) Mode Choice and 4) Traffic Assignment. Figure 
2 presents the general structure of the proposed changes to the existing methodological 
approach. 

 
Figure 2 Model diagram 

 
In the following sections, we describe each of these models and the alterations being 
proposed. 
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3.2 Overall AV Adoption 
The initial step in our methodology produces an estimate of the overall AV adoption by 
network users, also known as the “penetration rate,” for a desired year or scenario. This 
penetration rate will control how many households will be modeled as AV adopters and, 
therefore, prone to generating trips with AVs. The remaining households without AVs 
will only generate trips using regular human-driven vehicles.  
Bansal and Kochelman (2017) compile the main literature regarding the adoption of 
autonomous vehicles and also provide their own estimates in terms of the three types of 
penetration rates: 1) percentage of the whole fleet of vehicles owned by the population, 2) 
percentage of new cars sold, and 3) percentage of trips, respectively. They note that the 
existing literature has only a few such forecasting studies by academic researchers, with 
most studies being conducted by consulting firms, investment banks, and other private 
enterprises. The majority of these entities do not report the forecasting methods used in 
their reports. 
Due to the wide disparity in available predictions of actual AV adoptions for the future, 
the current modeling efforts will not try to forecast these values. Instead, the approach 
used will be closer to sensitivity analysis, where certain arbitrary AV adoption values of 
interest will be used, such as 20% and 30%. The other parts of the model will use these 
estimates as input values. The researchers acknowledge that while this will uncouple the 
work from any set timeline, as penetration predictions improve in the coming years, this 
work will be easily matched to any likely timeline of adoption. 

3.3 Household AV Adoption 
Household AV ownership is established based on the overall market penetration of AV 
technology as defined in Section 3.2. To avoid the assumption that all households are 
equally likely to purchase an AV, we utilize survey data to define different adoption 
patterns based on household income level.  
An online survey was developed and administered in the fall of 2017 targeting 
commuters of Dallas-Fort Worth-Arlington Metropolitan Area. The survey distribution 
was achieved through mailing lists held by multiple entities (local transportation planning 
organizations, universities, private transportation sector companies, non-profit 
organizations, and social media), reaching a final clean sample of 1,607 respondents. One 
of the survey questions asked about an individual’s willingness to purchase an AV under 
different cost scenarios, as shown in Table 8. Answers to this question are used to 
compute ratios of likelihood of purchasing an AV between individuals (and households) 
of different income levels under two different AV cost scenarios: (1) if AVs were at least 
$5,000 (five thousand) dollars more expensive than a regular vehicles (t0), and (2) if AVs 
were exactly the same price as a regular vehicles (t1). 
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Table 8 Survey question and sample distribution of answers 

Imagine that you are planning to buy a car and self-driving cars are an available option. 
Consider also that ride-sourcing services already operate with self-driving cars. Which of 

the following options would you choose? 
Alternative raw %  cumulative %  

I would buy a regular vehicle (that is not self-driving). I still 
want to drive myself.  39.0  39.0 

I would buy a self-driving car only if it was exactly the same 
price as a regular vehicle (that is not self-driving).  26.0  65.0  

I would buy a self-driving car only if it was no more than 
$5,000 (five thousand) dollars more expensive than a regular 
vehicle (that is not self-driving).  

24.4  89.4  

I would buy a self-driving car even if it were more than $5,000 
(five thousand) dollars more expensive than a regular vehicle 
(that is not self-driving).  

7.6  97.0  

I would not buy a car and I would rely on the use of ride-
sourcing services (that operate with self-driving cars).  3.0  100.00  

 

The adoption rates observed in the survey correspond to individuals’ current perceptions 
(that are highly sensitive to the current technology developmental stage and associated 
safety) and, therefore, are not suitable for directly predicting AV adoption in future 
scenarios. However, these data can still be used to capture individuals’ sensitivity to AV 
technology cost for each household income segment.  
A simple binary logit model was developed, in which the adoption of AVs (in this case, 
accepting to buy AVs even if they were more than $5.000) was explained by individuals’ 
household income, using the lowest income category as the base. The estimated results 
were then used in tandem with the number of households in each income segment in each 
of the Traffic Simulation Zones (TSZs) to find out the overall AV adoption. Finally, the 
logit model’s constant was manually calibrated to reach the pre-defined overall AV 
adoption. 

3.4 Trip Generation 
The NCTCOG model performs trip generation in two steps: home based trips followed 
by non-home based trips. This section describes the proposed methodological changes for 
all production and attraction models.  
Table 9 presents the 14 different trip types considered by the NCTCOG model, which are 
generated using the market segmentations shown in Table 10. 
Figure 3 illustrates the proposed workflow for trip generation, which maintains 
NCTCOG’s existing trip types and their segmentations while incorporating trips by 
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households with AVs as per the previous model, and introducing a new segment to 
account for trips induced by ride-hailing.  
The current NCTCOG model only generates the regular trips for non-AV households and 
uses the segmentations presented in Table 10. The changes proposed include generating 
trips induced trips due to the existence of new mobility services (such as ride-hailing) and 
all trips generated by AV households. 

Table 9 Trip types 

Name Trip Type 
HBW Home based – work trips 
HBSHOP Home based – shopping trips 
HBEDUK12 Home based – education trips – K-12 
HBEDUCOL Home based – education trips – College 
HBSRE Home based – social and recreational trips 
HBPBO Home based – personal, business, other trips 
NHWRK_WRK Non-home based – work/work trips 

NHWRK_ESH Non-home based – work/education trips, work/shopping 
trips, work/social-recreational trips 

NHWRK_OTH Non-home based – work/other trips 
NHSHP_SHP Non-home based – shopping/shopping trips 
NHSHP_OTH Non-home based – shopping/other trips 
NHOTH_OTH  Non-home based – other/other trips 
NHB_UNK Non-home based – unknown trips 
NHEDU Non-home based – education trips 
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Figure 3 Diagram for trip generation 

 
Table 10 Market segmentation for Trip Generation 

Trip Purpose 
Market Segmentation 

Trip Production Trip Attraction 
HBW Income × wrkcnt × vehcnt Income×Industry 

HBSHOP Income × wrkcnt × hhsize Income×Industry 

HBEDUK12 numchild Special Process by School 
District 

HBEDUCOL Income × wrkcnt Num. of College/ 
University Students 

HBSRE and HBPBO Income × numchild Income×Industry 
NHWRK_WRK, NHWRK_ESH 

and NHWRK_OTH, NHSHP_SHP, 
NHSHP_OTH 

wrkcnt Income×Industry 

NHOTH_OTH  numchild Income×Industry 

NHB_UNK numchild Proportional to all other 
NHB trips 

NHEDU A fixed rate per HH from 
Survey School Type 
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The induced trips (for both non-AV and AV households) are created by applying a simple 
factor to the regular trips they produce. This is, in essence a point of exogenous 
variability. For instance, if there is reason to believe that the induced demand due to ride-
hailing is about 2%, the regular trip tables from AV households and non-AV households 
are multiplied by 0.02 to generate their induced trip tables. The survey conducted in the 
Dallas-Fort Worth-Arlington Metropolitan region (mentioned in Section 3.3) revealed 
that approximately 6% of ride-hailing trips are induced trips. Furthermore, according to 
the 2017 National Household Travel Survey, approximately 0.4% of all trips Dallas-Fort 
Worth-Arlington Metropolitan region are made by taxis and ride-hailing services. The 
amount of induced ride-hailing trips can be obtained by combining these two figures: the 
additional induced ride-hailing trips represent 0.02% of all trips. 
Once the trips for all groups have been generated, induced and regular trips are combined 
to form the total trips generated by households without AVs (Group A) and by 
households with AVs (Group B). In the mode choice stage, as explained in further detail 
in Section 3.6, the modes involving a personal vehicle (such as Drive Alone and Carpool) 
will be substituted by AV versions (such as Drive Alone – AV and Carpool – AV) for 
Group B. Its counterpart Group A will be subject to the regular mode choice, where AVs 
are not an eligible mode. 

3.5 Trip Distribution 
The current NCTCOG model uses the gravity model for trip distribution. Similarly to the 
trip generation stage, trip distribution is performed separately for home-based and non-
home based trips. The changes presented in this section are applicable to both trip types. 
Table 11 presents the segmentation used by the current NCTCOG model to distribute the 
trips generated in the previous step. 
 

Table 11 Market segmentation for Trip Distribution 

Trip Purpose Segmentation for 
Trip Distribution 

HBW Income×Time Period (PK/OP) 
HBSHOP Income 

HBEDUK12 Elementary, Middle and High 
School 

HBEDUCOL N/A (no further segmentation) 
HBSRE and HBPBO Income 

NHWRK_WRK, NHWRK_ESH and 
NHWRK_OTH, NHSHP_SHP, NHSHP_OTH 

N/A 
(no further segmentation) NHOTH_OTH  

NHB_UNK 
NHEDU 
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The trip distribution model used in this stage is based on travel times between OD pairs. 
The main modification proposed here is to modify the already-calibrated impedance 
functions to reduce individual’s sensitivity to travel time, which would only apply to 
Group B in Figure 3.  

3.6 Mode Choice 
In this section we propose changes to the current NCTCOG model to include ride-hailing 
as a separate mode and consider the increased convenience of travel modes that use AVs. 
The current NCTCOG model uses separate mode choice models for different activity 
purposes and different market segments. The market segments are based on income level 
and number of vehicles owned by the household relative to number of workers in the 
household. The mode choices available are drive alone, shared rides, walk to bus, walk to 
rail, walk to premium bus, drive to bus, drive to rail and drive to premium bus. 

3.6.1 Addition of Ride-hailing 

Since we expect ride-hailing to have a significant market share in the future, ride-hailing 
will be added to the mode choice set.  
The utility function of this mode would include in-vehicle travel time, waiting time and 
travel cost, as well as an alternate-specific constant. The coefficients for some of these 
variables (i.e. cost, travel time and waiting time) will be the same as those used in the 
other models: the in-vehicle travel times for ride-hailing are considered to be the same as 
that for drive alone. The skim for cost of ride-haling will be generated as a function of the 
travel time and travel distance skims. The wait times for ride hailing can be made a 
function of the population density.   
When generating multiple scenarios, the cost function, waiting time skims and overall 
attractiveness of ride-hailing trips can be altered based on the assumptions of overall 
usage of 9ride-hailing. 

3.6.2 Modifications to Incorporate AVs in Households’ Choice Sets 

Following the structure so far, households have been split into two categories: those 
without AVs and those with AVs. The mode choice models proposed here differentiate 
between these two types of households as well. In essence, the modifications include the 
consideration that AVs will affect the following aspects of the trip: 

• Value of in-vehicle travel time: Travel time in AVs would be less onerous than 
travel time in regular vehicles because passengers of AVs can be more relaxed and 
engage in other activities.  

• No driver’s license needed: Since AVs do not require drivers, individuals without 
license (children, differently abled individual) can also make use of AVs 

• Last mile connectivity: AVs can be summoned for last mile connectivity from other 
modes 



 

18 

We propose the addition of market segments for households that own AVs. Since a single 
AV could possibly serve the needs of multiple members in a household, there need not be 
distinct market segments for households owning different number of AVs. The final 
market segmentation for the mode choice step is as shown in Figure 4. 
 

 
Figure 4 Market segmentation for mode choice 

 
In households with AVs, all mode choices that require the use of household vehicles, 
namely drive alone, drive to bus, drive to premium bus, drive to rail, shared ride with 2 
individuals and shared ride with at least 3 individuals is assumed to be carried out using 
AVs. To model the greater convenience of using AVs, the mode choice model for 
individuals from households owning at least one AV is prepared by modifying the mode 
choice model for trips generated in households with number of vehicles greater than or 
equal to number of workers as described below 
In a general sense, the baseline constant for a mode captures the propensity of a person to 
use the mode due to unexplained factors. These coefficients can be adjusted to increase 
the mode share of AV based alternatives. 

Modifications for lowering IVTT cost 

In-vehicle travel time (IVTT) in AVs is less onerous than in-vehicle time in regular 
vehicles. We use data from a recent survey conducted in Dallas to estimate the difference 
of value of IVTT for drive-alone mode between households that own AVs and 
households that do not own AVs. In the mode choice model, if the coefficient of IVTT 

Market Segments

Zero vehicles owned

Income level 1

Income level > 1

At least one regular 
vehicle but no CAVs

Number of vehicles less 
than number of workers

Income level 1

Income level 2

Income level 3

Income level 4

Number of vehicles 
greater than or equal to 

numbe rof workers

Income level 1

Income level 2

Income level 3

Income level 4

At least one CAV owned

Income level 1

Income level 2

Income level 3

Income level 4
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for a mode 𝑚𝑚 is 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and the coefficient for cost is (considered the same for all modes) 
𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the value of IVTT in that mode is, 
 

𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

Households that own an AV and households that have more vehicles than number of 
workers are assumed to have the same 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 if both the households have the same income 
level. So, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 for households with AVs is computed as, 
 
 

𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉 = 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉 × (1 − ∆𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) 

where, 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉  is the coefficient for IVTT of drive alone for households that own AVs, 
𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉 is the coefficient for IVTT of drive alone for households that do not own AVs 
and ∆𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is the difference of value of IVTT estimated in the survey. 

The correction for coefficients associated with IVTT has to be made for the modes drive 
alone, shared ride with 2 individuals and shared ride with at least 3 individuals. For the 
modes, drive to bus, drive to premium bus, and drive to rail, the correction should be 
applied only to the coefficient for IVTT inside the household vehicle and not the other 
mode. 

Possible improvements 

In this section, we outline some possible considerations that could further improve the 
proposed mode choice modeling strategy. Currently, these have not been incorporated 
into the proposed changes. 

• Address potential increased parking convenience when using AVs 

• Consider the change in the utility of the mode associated with transit vehicles if they 
are themselves, AVs. 

• Account for the increased cost and delays when multiple people in the household use 
the same AV 

• Given that drivers are not required in AVs, home-based education (K-12) trips will 
likely see an increase in the use of certain modes, namely drive alone. 

• The modes drive to bus, drive to premium bus and drive to rail will likely be more 
attractive for households with AVs given the ease with which AVs can drop 
individuals at the bus or rail terminal and return home. 
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3.7 Production/Attraction to Origin/Destination 
The section of the model that transforms productions and attractions into origins and 
destinations (PA2OD) will remain intact. The procedure originally used will be copied 
for both Groups A and B (Figure 3). 

3.8 Time-of-day Split 
The current NCTCOG model splits the 24 hour origin and destination (OD) trip matrices 
into four different time-specific OD matrices: morning peak (AMPK), evening peak 
(PMPK) and off-peak (OPK).  
The same procedure from the current NCTCOG model will be utilized for Groups A and 
B. 

3.9 Trip Assignment 
In this section we detail the changes proposed to the trip assignment stage. The 
fundamental change proposed is to model the impact of AVs by varying how much road 
capacity each AV consumes while on a trip (instead of by changing the actual capacities 
of network links). This approach is expected to perform better for scenarios where the 
AV market penetration is not 100%, since it can reflect the actual number of AVs on 
specific road segments, which in turn depends on the travel patterns of households that 
own such vehicles. 

3.9.1 The Passenger Car Equivalent (PCE) 

The proposed approach assumes that, given a road where all vehicles are moving at the 
same speed, the total throughput for any given traffic volume depends on the proportion 
of AVs on the traffic stream. The latter is a result of the potentially smaller distance 
headways maintained by AVs when compared to manually driven vehicles. In planning 
models the maximum throughput is typically given by a fixed capacity value. However, 
given that the fraction of AV in any given segments is not known a priori, a network-
wide change in link capacities may overestimate the performance of the system for low 
and medium levels of AV market penetration. In this context, we propose to maintain 
capacities as estimated in the original planning model, and to use the concept of 
passenger car equivalent (PCE) to capture the impact of the smaller headways enabled 
through automation. If we assume that the PCE of a regular manually driven vehicle is 1, 
the PCE of an AV represents the ratio of road capacity consumed by an AV to the 
capacity consumed by a regular vehicle traveling at the same speed. The PCE of a vehicle 
of type 𝑥𝑥 is computed as follows: 

 

𝜌𝜌𝑥𝑥 =
𝑙𝑙𝑥𝑥 + 𝐷𝐷𝑥𝑥
𝑙𝑙𝑐𝑐 + 𝐷𝐷𝑐𝑐

 

where, 𝜌𝜌𝑥𝑥 is the PCE of a vehicle of type 𝑥𝑥, 𝑙𝑙𝑥𝑥 is the length of a vehicle of type 𝑥𝑥, 𝑙𝑙𝑐𝑐 is the 
length of a standard vehicle which consumes a capacity of 1 PCE, 𝐷𝐷𝑥𝑥 is the headway 
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maintained by a vehicle of type 𝑥𝑥 and 𝐷𝐷𝑐𝑐 is the headway maintained by a vehicle having 
PCE of 1. 
At this stage we consider 2 different cases of AV technology implementation. In Case 1, 
AVs rely solely on their onboard sensors to detect the position of other vehicles and 
obstacles in its surroundings. In Case 2, AVs are able to communicate with each other 
(CAVs) in addition to being equipped with sensors to detect their surroundings. We 
assume that humans do not actively vary their time headway based on speed of the 
leading vehicle (Tientrakool et al., 2011). In both cases, the time headway of human 
driven vehicles is kept constant at 1.1 seconds which is the mean of time headways 
maintained by human drivers according to a study by Sayer et al. (1997). 
 

𝐷𝐷𝐼𝐼 = 𝑉𝑉𝑡𝑡𝐼𝐼 

where, 𝐷𝐷𝐼𝐼: distance headway of regular vehicle, 𝑉𝑉: speed, 𝑡𝑡𝐼𝐼: reaction time of humans. 
The headways and resulting traffic flows of AVs and CAVs is explained below. 

Case 1: Autonomous vehicles cannot communicate with each other 

It is assumed that an autonomous vehicle would continuously determine the speed of its 
leading vehicle and its distance headway. Based on these parameters, the AV ensures that 
there is always sufficient headway for it to come to a complete stop behind the leading 
vehicle in the worst-case scenario that the leading vehicle decelerates to its maximum 
possible extent. To ensure this safe following distance, the headway left by the AV would 
be the sum of distance that would be covered by the AV in the time it requires to sense 
and react to movements by the leading vehicle (reaction time of AV) and the maximum 
possible difference in stopping distance between the two vehicles. 
 

𝐷𝐷𝑎𝑎 = 𝑉𝑉𝑡𝑡𝑐𝑐 +
𝑉𝑉2

2𝑎𝑎
−

𝑉𝑉2

2𝑎𝑎𝐼𝐼𝑎𝑎𝑥𝑥
 

where, 𝐷𝐷𝑎𝑎is distance headway of AVs, 𝑉𝑉is speed, 𝑡𝑡𝑎𝑎is maximum reaction time of sensing 
system of AVs, 𝑎𝑎 is preferred deceleration of AV, 𝑑𝑑𝐼𝐼𝑎𝑎𝑥𝑥 is maximum possible 
acceleration of vehicle in front. Then the passenger car equivalent (PCE) of an AV would 
be, 
 

𝜌𝜌𝐼𝐼𝐼𝐼 =
𝑙𝑙𝐼𝐼𝐼𝐼 + 𝐷𝐷𝑎𝑎
𝑙𝑙𝑐𝑐 + 𝐷𝐷𝐼𝐼

 

where, 𝜌𝜌𝐼𝐼𝐼𝐼 is the passenger car equivalent of the AV, 𝑙𝑙𝐼𝐼𝐼𝐼 is the length of an AV and 𝑙𝑙𝑐𝑐 is 
the length of a standard vehicle which consumes a capacity of 1 PCE. 

Case 2: Autonomous vehicles can communicate with each other 

The main difference between Case 1 and Case 2 is that in 2, the headway maintained by a 
CAV would differ based on whether the vehicle in front of it is a CAV or not. If the 
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vehicle in front of it is a regular vehicle, the headway maintained by a CAV would be the 
same as that maintained by an AV in scenario 1.  
 

𝐷𝐷𝑐𝑐𝐼𝐼 = 𝐷𝐷𝑎𝑎 = 𝑉𝑉𝑡𝑡𝑐𝑐 +
𝑉𝑉2

2𝑎𝑎
−

𝑉𝑉2

2𝑎𝑎𝐼𝐼𝑎𝑎𝑥𝑥
 

where, 𝐷𝐷𝑐𝑐𝐼𝐼 is the distance headway maintained by a CAV when following a vehicle that 
cannot communicate. 
However, if a CAV is following another CAV, it can afford to maintain a much lower 
headway because acceleration rates may be coordinated via inter-vehicle communication. 
In the case of multiple CAVs following one after the other (CAV platooning), all 
platooned vehicles can agree on a common deceleration rate. The stopping distance of all 
CAVs in the platoon will be exactly the same (within a small tolerance). In this context 
the CAV would only need to leave a headway distance sufficient to compensate for the 
time it requires to communicate with the vehicle in front.  
 

𝐷𝐷𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑡𝑡𝑐𝑐 

where, 𝐷𝐷𝑐𝑐𝑐𝑐 is distance headway maintained by CAV when following another CAV, 𝑉𝑉is 
speed, 𝑡𝑡𝑐𝑐is maximum time required for CAV to communicate with vehicle in front and 
react. The PCE of a CAV will be, 
 

𝜌𝜌𝐶𝐶𝐼𝐼𝐼𝐼 =
𝑙𝑙𝐶𝐶𝐼𝐼𝐼𝐼 + 𝐷𝐷�𝑐𝑐
𝑙𝑙𝑐𝑐 + 𝐷𝐷𝐼𝐼

 

𝐷𝐷�𝑐𝑐 = 𝑃𝑃𝐼𝐼𝐷𝐷𝑐𝑐𝐼𝐼 + 𝑃𝑃𝑐𝑐𝐷𝐷𝑐𝑐𝑐𝑐 

where, 𝜌𝜌𝐶𝐶𝐼𝐼𝐼𝐼 is the passenger car equivalent of the CAV, 𝑙𝑙𝐶𝐶𝐼𝐼𝐼𝐼 is the length of the CAV, 
𝐷𝐷�𝑐𝑐 is the average headway maintained by a CAV, 𝑃𝑃𝐼𝐼is the probability of  the CAV 
following a vehicle that cannot communicate and 𝑃𝑃𝑐𝑐 is the probability of the CAV 
following another CAV. 𝑃𝑃𝑐𝑐 can be considered as the market penetration of CAVs. Then, 
 

𝑃𝑃𝐼𝐼 = 1 − 𝑃𝑃𝑐𝑐 

Note that in scenario 1, 𝜌𝜌𝐼𝐼𝐼𝐼 is independent of the proportion of AVs on the road whereas 
𝜌𝜌𝐶𝐶𝐼𝐼𝐼𝐼 is dependent on the proportion of CAVs. 

3.9.2 Sample Values 

Using the parameter values that are shown in Table 12, sample values for 𝜌𝜌𝐼𝐼𝐼𝐼 and 𝜌𝜌𝐶𝐶𝐼𝐼𝐼𝐼 
for different values of speed (𝑉𝑉) and market penetration of AVs/CAVs (𝑃𝑃𝑐𝑐) are shown in 
Figure 5 and Figure 6. The ratio of vehicle flow with CAV/AVs to the vehicle flow with 
only regular vehicles is shown in Figure 7 and Figure 8 respectively. 
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Table 12 Parameters used to calculate sample PCE and flow ratios 

Parameter Value 
𝑑𝑑𝐼𝐼𝑎𝑎𝑥𝑥  8 

𝑑𝑑𝐼𝐼𝑚𝑚𝑚𝑚  5 

𝑑𝑑  Uniformly distributed between 𝑑𝑑𝐼𝐼𝑎𝑎𝑥𝑥 and 
𝑑𝑑𝐼𝐼𝑚𝑚𝑚𝑚  

𝑡𝑡𝐼𝐼  1.1 

𝑡𝑡𝑎𝑎  0.245 

𝑡𝑡𝑐𝑐  0.181 

𝑙𝑙𝑐𝑐 = 𝑙𝑙𝐼𝐼𝐼𝐼 = 𝑙𝑙𝐶𝐶𝐼𝐼𝐼𝐼  4.8 
 

 
Figure 5 Passenger car equivalent of AVs vs speed 

 

 
Figure 6 Passenger car equivalent of CAVs vs market penetration for different speeds 
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Figure 7 Ratio of flow of traffic with AVs to flow of traffic with only regular vehicles vs 

market penetration for different speeds 

 
Figure 8 Ratio of flow of traffic with CAVs to flow of traffic with only regular vehicles vs 

market penetration for different speeds 

3.9.3 Implementation 

TransCAD provides the option to have different vehicle classes and assign different PCEs 
to each class. The current NCTCOG model has 3 classes of vehicles. A new class is to be 
added for AVs. To capture the difference in space utilization of AVs when compared to 
regular vehicles, we assign a different value of PCE for AVs. Figure 5 and Figure 6 show 
that PCE values which corrects for the difference in capacity utilization is dependent on 
the speed of vehicles and market penetration of AVs on the road. Since speed of vehicles 
and proportion of AVs on links are dynamic and difficult to be determined beforehand, to 
simplify the modeling task, we propose the use of a single PCE value that best represents 
the entire range of PCE values that would be observed in the network. If the proportion of 
AVs and speed of some links in the system can be known prior to the trip assignment 
procedure, the capacity of these links can be adjusted so that it exactly matches the 
expected capacity. For example, if we assume that there are managed technology lanes in 
the network where only AVs operate and a minimum speed is maintained, the capacity of 
these links can be changed. 
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3.9.4 Possible Improvements 

In this section, we outline some possible improvements to the proposed traffic 
assignment modeling strategy that have not been incorporated into the current proposed 
changes. 

• PCEs (in the traditional sense) are computed empirically from field data. The PCEs 
determined above may have to be further adjusted and validated using microscopic 
simulations. 

• The improvement in traffic efficiency because of speed stabilizing and shockwave 
dampening effect of AVs is not considered. 

• CAVs may actively try to group together and form platoons for more efficient traffic 
flow (the probability of a CAV to follow another CAV would be higher than the 
market penetration of CAVs). The above procedure only considers the grouping 
together of CAVs by chance.  

• Mechanism can be added to capture the difference in capacity utilization of AVs at 
different speeds and market penetrations 

• If AVs are used for transit, transit assignment steps also need to be changed. 

3.10 Framework Summary 
In this chapter we outlined a comprehensive methodology to extend the capabilities of an 
existing four-step planning model in order to consider the impacts of new transportation 
technologies and services. The proposed approach can endogenously model the impacts 
of such technologies on trip generation, distribution and ultimately on traffic 
performance, given a number of assumptions summarized in Table 7. Such assumptions 
are necessary to compensate for model limitations and/or due to insufficient data to 
explicitly model some aspects of the decision process. By combining different possible 
values for the exogenous factors we expect to generate multiple scenarios that can 
describe the range of potential impacts of CAVs. 
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Table 13 Main assumptions and exogenous parameters 

Forecasting Phase Assumptions 

AV Adoption 
Overall AV Ownership 
Distribution of AVs in households 

Trip Generation 
Trip production factor for households with AVs 
Induced trip production factor due to the availability of ride-hailing 

Trip Distribution Generalized cost for distribution function 

Mode Choice 

Ride Hailing 
Overall attractiveness 
Ride-hailing cost function 
Ride-hailing availability (wait times) 

AV based modes 
Overall attractiveness 
Reduction factors of sensitivity towards in-vehicle travel time 

Trip Assignment PCE of CAVs 
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Chapter 4.  Code Documentation 

4.1 Introduction 
This chapter describes the modifications made to the existing codes and new programs 
that were written to perform the simulations. 

4.2 GISDK Code for Running Model in TransCAD 
This section documents the changes made to the GISDK code provided by NCTCOG. In 
the rest of this section, we refer to the original code provided by NCTCOG as version 1 
and the code produced after modification as version 2. 

4.3 AVAllocation.rsc 
This is a new module that has been added in version 2. This module classifies households 
as households that own AVs and households that do not. This module uses the household 
segmentation files as input, adds one more layer of segmentation based on AV ownership 
of households and writes this as output. In the current version, the segmentation of 
households based on AV ownership is purely determined by income. The proportion of 
households at each income level that own AVs is specified externally in the configuration 
file. 

4.4 TripGen.rsc (Home based) 
This module performs home based trip generation for households with and without AVs. 
The household segmentations (including segmentation based on AV ownership), trip 
production and attraction rates are used as input files. For non-homebased trips, the trip 
production and attraction rates used for trip generation is the same as those provided in 
the input files. In the case of households with AVs, for every trip purpose there is a “Trip 
Generation AV factor” that is read as input from the configuration file. The trip 
production rate for AV households will be the trip production rate of non-AV households 
multiplied by this trip generation factor. Trip attractions are also computed separately for 
households with different income and different AV ownership. After calculating trip 
productions and attractions independently, they are balanced so that the total trip 
generation is equal to total trip attraction. 
For educational trips, version 1 did not compute trips produced and attracted at different 
school levels such as “Elementary”, “Middle school” and “High school” separately. 
However this classification would be required at the non-home based education trips 
generation stage. So total trips generated were disaggregated into these 3 levels in the 
proportion of the average number of years spend by students at these three school levels. 

4.5 CVM.rsc 
This module in version 2 is exactly the same as that in version 1. 
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4.6 InitializeACTRDWY.rsc 
This module in version 2 is exactly the same as that in version 1. 

4.7 RoadwaySkim.rsc 
This module in version 2 is exactly the same as that in version 1. 

4.8 HBTripDist.rsc 
This module performs home based trip distribution. There is no change in the procedure 
used for distribution of trips of households without AVs between version 1 and version 2. 
For households with AVs, the effective impedance matrix used for trip distribution is 
scaled by the AV trip distribution factor that is read from the configuration file.  
In version 1, trip distribution of home-based K12 trips is not done in this step. The 
production-attraction matrix for K12 trips is directly made available as an input. Since 
this production-attraction matrix is not segmented based on income, we were unable to 
classify home-based K-12 trips as AV trips or non-AV trips. As a temporary fix, we have 
assumed all K-12 trips to be non-AV trips. 

4.9 NHBTripGen.rsc 
In version 2, the procedure used for non-home based trip generation of households with 
AVs and households without AVs remains the same as the procedure used for non-home 
based trip generation in version 1. All changes in code were made to accommodate the 
extra household segments produced because of the classification based on AV ownership. 

4.10 NHBTripDist.rsc 
This module performs non-home based trip distribution. This module uses the same AV 
trip distribution factor used in the module for home based trip distribution to adjust the 
impedance experienced by individuals from households that own AVs. This module also 
splits the home-based and non-home based trip distribution matrices into trip distribution 
matrices specific to the household segments used by the mode choice model. 

4.11 TransitPrep.rsc 
This module in version 2 is exactly the same as that in version 1. 

4.12 TransitSkim.rsc 
This module in version 2 is exactly the same as that in version 1. 

4.13 ModeChoice.rsc 
This module performs the mode choice for different household segments. Changes were 
made to this module to accommodate household segmentation based on AV ownership. 
The mode choice is performed based on the mode choice model (.mdl) files provided as 
input. These model files were changed externally to accommodate ride hailing and 
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different characteristics for drive alone and shared ride options for households that own 
AVs.  

4.14 PA2OD.rsc 
This module performs the PA2OD conversion for the PA trip matrices of each mode. 
Time of day factors are used as input in the PA2OD conversion. The same time of day 
factors is used irrespective of whether the trip is made by an AV or a non-AV. For ride-
hailing trips, all OD trips are reduced by a factor of the average occupancy (not including 
the driver) in these vehicles. This factor is read from the configuration file. 

4.15 RoadwayAssignment.rsc 
This module performs the traffic assignment of non-transit OD trips created at the 
PA2OD stage. The relative gap required for convergence in the last feedback loop was 
changed from 0.0001 to 0.001 for faster convergence. The effective passenger car 
equivalent of AVs is read as input from the configuration file. The modes, AV and SAV 
(equivalent to DA and SR in households without AVs) use the PCE for AVs. The 
vehicles used for ride hailing is considered as AVs if the parameter “AV Ride Hailing” is 
set to 1 in the configuration file, in which case the PCE of AVs will be set for ride hailing 
as well. Otherwise, the PCE of ride-hailing will remain 1. 

4.16 TransitAssignment.rsc 
This module performs the traffic assignment of transit OD trips created at the PA2OD 
stage. Modifications were made to this module, to accommodate the new household 
segments generated based on AV ownership. Transit assignment for households with 
AVs and without AVs is done in the same way. 

4.16.1 ModeChoiceModeler.py 

ModeChoiceModeler.py is a python script used to produce the mode choice model files 
(.mdl) that is to be used as input in the mode choice step of version 2 of the NCTCOG 
model. It takes in as input the mode choice model files in version 1 and based on input 
parameters read in the configuration file, outputs the mode choice model files that is to be 
used with version 2. All configuration variables are located in the configuration section of 
the script (line 4 to line 34). The input folder, output folder, ride hailing service 
characteristics and change in value of time for AV users is set in the configuration 
section. 
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Chapter 5.  Modeling Results 

In this chapter, we outline the simulation results of three scenarios using the updated 
NCTCOG model. The demographics and networks used during this stage correspond to 
that of 2014. 
The main objective of these three scenarios was two-fold: 

• To verify that the model yielded reasonable results; 

• To have a first glimpse of understanding what the initial effects of AVs will be. 

The summary of the main inputs used in the three scenarios can be found in Table 14. 
 

Table 14 Main input parameters for scenarios 

Parameter Scenario 1 Scenario 2 Scenario 3 
Overall AV Ownership Rate 0.00 0.20 0.30 
AV Trip Generation Inflation Factor NA 1.05 1.05 
Mobility Inflation Factor 1.00 1.01 1.01 
AV VOT Factor NA 0.75 0.75 
AV Passenger Car Equivalent NA 0.70 0.70 
Ride-Hailing Cost/Min 0.49 0.49 0.49 
Ride-Hailing Occupancy 1.10 1.10 1.10 
Ride-Hailing uses AVs No No No 

The main household and employment demographics, common to all three scenarios, are 
listed in Table 15. 
 

Table 15 Household and employment demographics 

Population - Total 6,894,870 
Households - Total 2,477,569 

Household Income < 35k 710,032 
35k < Household Income < 50k 323,195 
50k < Household Income < 75k 446,265 
75k < Household Income 998,077 

Employment - Total 4,302,808 
Employment - Basic 1,038,815 
Employment - Retail 411,492 
Employment - Service 2,852,501 

 
The main results from the trip generation can be found in Table 16, which show a 
consistent growth in number of trips as was expected given Scenario 2 and 3’s increased 
trip production rates. Curiously, HNW trips seem to have absorbed most of the extra 
trips. It should be noted that, for the current implementation, NHB trips were not subject 
to the increased trip rates, making their totals constant throughout all three scenarios. 
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Table 16 Summary of trip generation results – Number of trips during AM peak 

Trip 
Type 

Scenario 1 Scenario 2 Scenario 3 
Non-AV 

HHs 
Non-AV 

HHs AV HHs All HHs Non-AV 
HHs AV HHs Total 

HBW 3,831,243 3,005,439 864,117 3,869,555 2,589,784 1,279,771 3,869,555 
HNW 9,865,583 7,954,905 2,112,901 10,067,806 6,953,101 3,166,365 10,119,466 
NHB 911,077 729,836 181,242 911,077 639,007 272,070 911,077 
Total 14,607,903 11,690,180 3,158,260 14,848,438 10,181,892 4,718,206 14,900,098 

 

A summary of the trip distribution can be found in Table 17. As expected, AV 
households seem to be engaging in longer trips than their non-AV counterparts.  
 

Table 17 Summary of trip distribution results – Average trip length (minutes)  

Trip 
Type 

Scenario 1 Scenario 2 Scenario 3 
Non-AV HHs Non-AV HHs AV HHs Non-AV HHs AV HHs 

HBW 28.24 27.43 28.81 27.04 28.40 
HNW 15.10 14.88 15.88 14.75 15.75 
NHB 15.86 15.76 15.85 15.72 15.78 
Total 18.59 18.16 19.42 18.01 18.97 

 

The main results from the mode choice stage can be seen in Table 18. Ride-hailing 
services comprise approximately 4% of all trips. This is considerably higher than what is 
observed in reality (less than 1% of all trips), most likely due to the service being widely 
available throughout the whole modeled area with the same level of service.  
Table 18 also shows that the number of AV trips seems to roughly follow the AV 
penetration rates of scenarios 2 and 3 (20% and 30%, respectively). As the penetration 
rates increase, we can see a significant drop in the transit shares. Given transit already 
small has a considerably small number of trips to begin with, the approximately 30,000 
transit trips “lost” are quite significant. 
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Table 18 Summary of mode choice results – Number of trips and mode shares during AM 
peak 

Mode 
Scenario 1 Scenario 2 Scenario 3 

Trips Share Trips Share Trips Share 
AV -    0.00% 3,833,440 18.68% 5,725,616 27.81% 
Non-AV 19,147,733 94.81% 15,632,927 76.20% 13,828,184 67.16% 
Ride-Hailing 857,904 4.25% 877,235 4.28% 872,594 4.24% 
Transit 190,952 0.95% 172,938 0.84% 162,873 0.79% 
Total 20,196,590 100.00% 20,516,540 100.00% 20,589,267 100.00% 

 

The main assignment results are summarized in Table 19 and Table 20. As penetration 
rates increase, Table 19 illustrates that total VMT go up while the VHT stay fairly 
undisturbed. This is likely due to the AV efficiency gains in the network. 
 

Table 19 Assignment results - VMT and VHT 

Mode 
Scenario 1 Scenario 2 Scenario 3 

VMT VHT VMT VHT VMT VHT 
Non-AV 187,562,388 5,363,363 156,309,168 4,325,250 140,498,142 3,815,996 
AV -- -- 35,518,603 1,052,285 52,948,020 1,548,822 
Ride-hailing 2,935,936 97,938 2,986,247 98,553 2,975,708 97,324 
Trucks 16,157,948 340,892 16,196,312 338,350 16,219,713 337,049 
Total 206,671,594 5,802,658 211,010,330 5,814,438 212,641,582 5,799,191 

 

The average trip lengths, as seen in Table 20, seem to follow most expectations: AVs 
engage in longer trips (in terms of travel time) than their non-AV counterparts. In terms 
of distance, however, there seems to be little difference between the two modes. 
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Table 20 Assignment results - Average trip lengths 

Mode 

Scenario 1 Scenario 2 Scenario 3 

Veh. Trips 
(x100,000) 

Avg 
Dist. 
(mi) 

Avg. 
Length 

(min) 

Veh. Trips 
(x100,000) 

Avg 
Dist. 
(mi) 

Avg. 
Length 

(min) 

Veh. Trips 
(x100,000) 

Avg 
Dist. 
(mi) 

Avg. 
Length 

(min) 

Non-AV 198.40 9.45 16.22 163.28 9.57 15.89 145.23 9.67 15.77 
AV -- -- -- 38.33 9.27 16.47 57.25 9.25 16.23 
Ride-hailing 7.80 3.76 7.54 7.97 3.74 7.42 7.93 3.75 7.36 
Trucks 5.67 28.49 36.07 5.67 28.56 35.80 5.67 28.60 35.66 
Total 211.89 9.75 16.43 215.25 9.80 16.21 216.09 9.84 16.10 
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Chapter 6.  Conclusions 

In this document, we presented recent trends in the literature regarding how 
transportation agencies can deal with modeling AVs and ride-hailing services, as well as 
several authors’ predictions regarding AV technology’s penetration rates. 
We also outlined a clear framework for incorporating AV trips and ride-hailing trips into 
NCTCOG’s current TransCAD model, along with supporting documentation of the code.  
Finally, we presented the results from three simulation scenarios, all of which yielded 
reasonably sound results that conformed with the changes made to the model (e.g. lower 
sensitivity to travel time lead to longer trips).  
The next steps in this effort can involve two main fronts: 

• Developing further improvements to the model, such as: considering the repositioning 
trips performed by ride-hailing vehicles as well as the empty trips for AVs; modifying 
the “ride+transit” modes such that they more accurately reflect AVs ease of picking 
up and dropping off passengers at transit stations 

• Running further scenarios with different inputs, such as: demographics, networks, 
penetration rates. 
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