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ABSTRACT

The IEEE 802.11ad waveform can be used for automotive
radar by exploiting the Golay complementary sequences in
the preamble of a frame. The performance of radar, however,
is limited by the preamble structure. In this paper, we pro-
pose an adaptive preamble design that permits a trade-off be-
tween radar parameters’ estimation accuracy and communi-
cation rate. To quantify this trade-off, we propose a minimum
mean square error (MMSE) metric based on rate distortion
theory. The simulation results demonstrate that by adapting
the preamble structure, we can achieve decimeter-level range
mean square error (MSE) per symbol duration and gigabit per
second (Gbps) data rates simultaneously for a distance upto
280 m.

Index Terms— IEEE 802.11ad, automotive radar, vehic-
ular communication, joint waveform design.

1. INTRODUCTION

Advanced driver-assisted applications will benefit from the
integration of vehicle-to-vehicle (V2V) communication and
automotive radar systems at the millimeter-wave (mmWave)
band. Major advantages include efficient spectrum usage,
reduced cost, size, and power consumption, high-resolution
radar sensing, Gbps data rate, and higher penetration of
mmWave communication-capable vehicles.

Most prior approaches for joint radar and communica-
tion system have either exploited proprietary radar or non-
standardized communication waveforms [1]. In [2], the IEEE
802.11p vehicular communication waveform was also used
for radar sensing in the 5.9 GHz band but the radar range and
velocity estimates do not meet the desired accuracy require-
ments of automotive radar applications [3]. An alternative is
to leverage the IEEE 802.11ad standard for automotive radar
[4]. In our prior work, we used the preamble of an IEEE
802.11ad single carrier physical layer (SC PHY) frame for
radar parameter estimation. The accuracy was limited, how-

This material is based upon work supported in part by the National Sci-
ence Foundation under Grant No. NSF-1549663 and by the U.S. Department
of Transportation through the Data-Supported Transportation Operations and
Planning (D-STOP) Tier 1 University Transportation Center.
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Fig. 1. A system model for joint vehicular communication
and radar based on the IEEE 802.11ad standard.

ever, due to the small preamble duration in the IEEE 802.11ad
standard.

In this paper, we propose an adaptive IEEE 802.11ad
waveform design to combine radar and communication in a
common analytical framework for different vehicular scenar-
ios. First, we derive a trade-off between radar and commu-
nication performance for an adaptive preamble duration in
a two-vehicle scenario. Then, we quantify the trade-off by
developing an effective communication MMSE metric analo-
gous to the distortion metric in rate distortion theory. Second,
we optimize the preamble duration to adapt the waveform
to different vehicular scenarios. The simulation results for
the optimized preamble show that at a vehicle separation dis-
tance of 270 m, range MMSE decreases by a factor of 25 dB,
while decreasing the spectral efficiency by 1.4 bits/s/Hz (still
achieving Gbps data rate) as compared to the IEEE 802.11ad
preamble.

2. SYSTEM MODEL

We consider the use case where a source vehicle sends an
adaptive IEEE 802.11ad single-carrier physical layer (SC
PHY) frame to a target vehicle via the vehicle-to-vehicle
(V2V) communication service and uses the reflections from
the target vehicle to derive its range and velocity, as shown in
Fig. 1. The complex baseband continuous-time representation
of the waveform is

4281978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017
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Fig. 2. Frame structure of an adaptive IEEE 802.11ad V2V-
radar SC PHY waveform with variable Kc and Kr.

x(t) =
√
Es

∞∑
n=−∞

s[n]g(t− nTs), (1)

where g(t) is the unit energy transmit pulse-shaping filter, Ts

is the symbol duration, Es is the symbol energy, and s[n] is the
transmitted symbol sequence of an adaptive IEEE 802.11ad
frame. The symbol duration is related to the signaling band-
width (B) as Ts ≈ 1/B. We consider there are total K sym-
bols in a frame, with α = Kc

K fraction of data symbols, as
shown in Fig. 2.

We consider a multiple antenna system with Ntx co-
located transmit (TX) antennas and Nrx co-located receive
(RX) antennas configuration, as in [4], mounted on the source
and the target vehicles. We assume that the TX and the RX
antenna arrays on a vehicle are closely separated uniform
linear arrays. We assume enough isolation and cancellation
of the transmit signal to the receiver at the source vehicle
such that there is no residual self-interference. For simplicity,
we assume that the target vehicle is represented by a single
point target, there is no blockage between the source and
the target vehicles and the mmWave channel has a domi-
nant line-of-sight (LOS) component [4]. The discrete-time
communication signal received at the target vehicle after ana-
log radio frequency (RF) combining, matched filtering, and
time/frequency synchronizations can be represented as

yc[n] =
√
EsGcs[n] + wc[n], (2)

where Es is the symbol energy, Gc denotes the communi-
cation channel gain corresponding to the one-way path, and
TX/RX array gain, and wc[n] is the complex additive white
Gaussian noise (AWGN) with power spectral density (PSD)
of N0.

The continuous-time radar signal received at the source
vehicle after the analog RF combining and matched filtering
can be represented as

yr(t) =
√
Grx(t− 2d/c)ej4πvt/λ + wr(t), (3)

where d denotes the range or the separation distance between
the source and the target vehicles, c is the speed of light,
λ is the wavelength of the IEEE 802.11ad waveform, v de-
notes the relative velocity of the target vehicle with respect
to the source vehicle, and wr(t) is the complex AWGN with
power spectral density (PSD) of N0. Assuming equal TX
and RX gain at the source and the target vehicles, the radar

channel gain at the target vehicle is Gr ≈ Gc/LPL with
LPL = (4πdn)/σRCS, where σRCS is the radar cross section
of the target vehicle, and n is the path-loss exponent [5, 6, 7].

3. PERFORMANCE METRICS AND BOUNDS

In this section, we develop a new communication perfor-
mance metric for assessing the trade-off between radar and
communication performances for a joint waveform design.

3.1. Communication

Assuming sc[n] is distributed as NC(0, 1), the maximum
achievable communication spectral efficiency for an adaptive
IEEE 802.11ad V2V-radar system with α = 1 is given by

r = log2 (1 + SNRc) (4)

where, SNRc = EsGc/N0. When α < 1, the effective max-
imum achievable communication spectral efficiency, reff , de-
creases by a factor of α and is expressed as

reff = α log2 (1 + SNRc) = log2 (1 + SNRc)
α
. (5)

3.2. Radar

The Cramer-Rao lower bound (CRB) is a lower bound on the
variance of an unbiased estimator. For AWGN noise, the CRB
is also a lower bound on the MSE for radar parameter estima-
tion. In case of velocity estimation using the preamble of an
adaptive IEEE 802.11ad frame, the CRB is given by [7]

CRBv =
6λ2

16π2(1− α)3K3T 2
s SNRr

. (6)

where SNRr = EsGr/N0 is the radar SNR.
The CRB for the range estimation of a target vehicle using

the preamble is [7]

CRBd =
c2

32π2B2
rms(1− α)KSNRr

, (7)

where Brms is the root-mean square bandwidth of X(f),
which is the Fourier transform of the preamble [8]. We as-
sume a flat spectral shape of the preamble, which will allow
better channel equalization of the communication system
(e.g., Zadoff-Chu sequences used in LTE [9]) and better radar
parameter estimation of the target vehicle (e.g., linear fre-
quency modulated chirp used in automotive radar [10]). Due
to the assumption of flat spectral shape, Brms = B/

√
12 [8].

3.3. Joint Communication and Radar

The performance metrics of radar and communication are de-
pendent on α, as can be seen from (4), (6), and (7). With
an increase in α, the information rate improves, whereas the
CRB for radar parameters estimation degrades. Therefore, we
focus on optimizing α for the adaptive IEEE 802.11ad V2V-
radar waveform design. This requires the development of a
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new metric to accurately quantify both radar and communica-
tion system performances.

In [11], a radar round-trip delay estimation rate is devel-
oped which parallels the concept of communication informa-
tion rate and is bounded by

Rτ ≤
1

KTs
log2

(
1 +

σ2
τ,proc

CRBd

)
, (8)

where σ2
τ,proc is the variance of the round-trip delay fluctua-

tion of the target echo due to some underlying target process.
The round-trip delay is related to range as τ = 2d/c.

The radar estimation rate metric is not drawn from a
countable distribution [11]. Therefore, this metric is not
an accurate representation of the radar performance. The
derivation for radar round-trip delay estimation information
rate is also not easily extendable to other radar parameters
estimation because several underlying simplifications in [11]
may become invalid for other parameters estimation [12].
Additionally, the number of radar performance metrics (e.g.
range/velocity/direction of multiple targets, number of de-
tectable targets, probability of detection and false alarm,
range/velocity/angular resolution) that depend on α is much
larger than the few performance metrics used in communi-
cation. Therefore, instead of deriving equivalent estimation
or information rates for each of these radar parameters in
different scenarios, as in [13], we derive the equivalent of
communication information rate similarly to a radar perfor-
mance metric.

Assuming sc[n] is distributed asNC(0, 1), the MMSE es-
timator of sc[n] based on the observation yc[n] is linear. For
the case of α = 1, this estimator then yields [14]

MMSE =
1

1 + SNRc
= 2−r. (9)

Therefore, for α < 1, we define the average effective MMSE
per symbol based on reff as

MMSEeff = 2−reff =
1

(1 + SNRc)α
= MMSEα. (10)

According to (9) and (10), each bit of description reduces the
MMSE by a factor of 2. This implies that as the spectral
efficiency decreases by a factor of α, the effective average
MMSE per symbol increases exponentially by the same fac-
tor α. Since there is a simple one-to-one relation between
spectral efficiency and effective MMSE per symbol, it is easy
to use and understand.

Additionally, the expressions (9) and (10) are analogous
to the relation between mean squared-error distortion, D, and
rate R in the rate distortion theory, where [15]

D = 2−R. (11)

Therefore, the effective average MMSE per symbol is ar-
guably an appropriate metric of communication performance
for assessing trade-off in a joint communication and radar
waveform design.

4. SMART IEEE 802.11AD V2V-RADAR WAVEFORM
DESIGN

In this section, we will develop an objective function to deter-
mine the optimal α for adaptive waveform design of an IEEE
802.11ad V2V-radar. One such formulation is the weighted
sum of radar and communication MSE bounds. The MSE
bounds for range estimation, velocity estimation and commu-
nication are substantially dissimilar with velocity estimation
performance being the worst in most of the cases. We found
that this tends to skew the value of α close to 0 and is not
favorable for communication. This can, to some extent, be
corrected by resorting to a proper choice of weighted sum,
whose choice is itself not devoid of difficulty. This is be-
cause the MSE bounds are very different from each other and
change very rapidly with different values of α.

The different MSE bounds is similar to the problem of
resource allocation in multi-user communication, where the
user SNRs are highly dissimilar and the balance between
fairness and aggregate spectral efficiency is provided using
a proportional fair point. Therefore, to achieve proportional
MMSE fairness, the adaptive waveform design can be formu-
lated as

minimize
α

ωd log(CRBd) + ωv log(CRBv) (12)

−ωc log(MMSEeff)

subject to 0 ≤ α ≤ 1

where, the weighting factors ωv , ωd and ωc are positive and
can be adjusted adaptively to the requirements imposed by
different vehicular scenarios. In (12), we use K = 1 to calcu-
late both radar and communication MSE bound per symbol.
From (6) and (7), we see that the velocity/range CRB bounds
for a longer frame can easily be calculated by dividing the
velocity MSE per symbol with K3 and the range MSE per
symbol with K.

The optimization (12) can be reformulated as

minimize
α

ωd log

(
λd

1− α

)
+ ωv log

(
λv

(1− α)3

)
+ωc log(MMSEα) (13)

subject to 0 ≤ α ≤ 1

where the parameters λd and λv are set accordingly to (7) and
(6) respectively. Fortunately, (13) is a convex problem. For
SNRc > 0, the optimal α for the unconstrained optimization
corresponding to (13) is always < 1, whereas it is > 0 only
when the weighting factors satisfy the condition

ωd + 3ωv
ωc

> r. (14)

The positive α will always ensure fairness to the communica-
tion system, even at low SNR, by choosing the weights that
satisfies (14).
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Fig. 3. Variation in radar and communication MSE bounds
per symbol with change in d and α.

5. SIMULATION RESULTS

To investigate of the trade-off between radar and communi-
cation performance, we varied α from 0 to 1 and d from
10 to 250 m with a path-loss exponent of 2.0 [16]. Fig. 3
demonstrates that with an increase in vehicles separation, the
range MSE bound per symbol degrades more severely than
the communication effective MSE bound per symbol. Indeed,
the degradation in velocity estimation MSE bound per symbol
will be the worst because the velocity CRB per symbol gets
effected thrice as much as the range CRB per symbol in log-
arithmic scale for a corresponding increase in α, as per (13).
Additionally, the rate of change of communication rate is con-
stant with respect to the change in α. However, the range and
velocity estimation MSE bound per symbol decreases more
drastically for α close to 1, which is before the dip in the α
dimension. This implies that it is desirable to have the value
of α at least as small as the one corresponding to the dip,
which decreases with increase in the separation distance.

We design the adaptive 802.11ad waveform for a max-
imum range of 280 m. Therefore, we vary ωc (subject to
(14)) to study the effect of weighting on the choice of α and
the radar/communication MSE bounds per symbol. Fig. 4(a)
demonstrates the trade-off between radar and communication
at a vehicle separation distance of 270 m. It shows that the
range MMSE decreases by 100 m2/symbol and meets the
desired centimeter-level accuracy for automotive radar [3],
while decreasing the spectral efficiency by 1.4 bits/s/Hz as
compared to the IEEE 802.11ad preamble for a frame dura-
tion of 1 ms. Numerical simulations for a vehicle separation
of 5 m with equal weighting, however, results in spectral ef-
ficiency increase by 1.4 bits/s/Hz, while increasing the range
MMSE by a factor of 1.4 dB that still meets the desired ac-
curacy requirement. The optimum α for this simulation is
0.6431 and the frame consists of 6400 samples. Fig. 4 (b),
(c) and (d) depict that the optimum α for adaptive wave-
form design decreases with an increase in vehicles separation
distance due to more degradation in radar CRB bound per
symbol.
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6. CONCLUSION

In this paper, we designed an adaptive waveform for joint
vehicular communication and radar by varying the preamble
duration of an IEEE 802.11ad SC PHY frame. To formu-
late a joint communication and radar performance metric, we
developed an effective communication MMSE metric analo-
gous to the distortion metric in rate distortion theory. The
simulations demonstrated that with an increase in the sepa-
ration between the target and the source vehicles, the trade-
off between radar and communication gets tightened and the
range/velocity CRB bounds per symbol get degraded more
severely than the communication MMSE per symbol. The op-
timum α for different weightings were explored, while main-
taining Gbps communication data rate and cm-level range ac-
curacy. At a vehicles separation distance of 270 m, the adap-
tive preamble design resulted in an improvement of the range
MMSE by 3.2 cm2, while decreasing the spectral efficiency
by 1.4 bits/s/Hz as compared to the IEEE 802.11ad pream-
ble. At 5 m distance, the spectral efficiency increased by 1.4
bits/s/Hz, while degrading the range MMSE by a factor of
1.4 dB and the velocity MMSE by 4.2 dB as compared to the
IEEE 802.11ad preamble. This work can be extended to a
large number of interesting time-domain duplex frameworks
for joint radar and communication.
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