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ABSTRACT1
In the field, queue spillback contributes substantially to urban congestion. Therefore, most dy-2
namic network loading models either explicitly include spillback, or frame a failure to model3
spillback as an unfortunate consequence of mathematical or computational tractability that should4
be relaxed in future work. While models with spillback are undeniably more realistic, they are also5
less robust to errors in input demand. We show that when there is high uncertainty in input de-6
mand, excluding spillback can actually reduce error by reducing sensitivity to demand errors. Our7
demonstrations include a small network that can be solved analytically, and dynamic user equi-8
librium on two real-world networks representing Austin, TX, and San Antonio, TX. We conclude9
that model realism must be carefully balanced against accuracy of the input parameters, and the10
sensitivity of the model to any such errors in these inputs.11

12
Keywords: Dynamic traffic assignment, network loading, demand uncertainty, sensitivity analysis,13
queue spillback14
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INTRODUCTION1
The natural course of research is to move from simpler, stylized models to more realistic ones2
by relaxing assumptions. Obviously, more realistic models are ceteris paribus preferable to less3
realistic ones. Realism, however, is not the only criterion for model selection, and realism must4
be balanced against tractability, availability of data for calibration and validation, mathematical5
regularity, and robustness to errors in the input data. Practitioners must make modeling choices6
taking all these factors into account, given their relevance in a specific application.7

This paper specifically examines the tradeoffs between model realism and robustness to8
input errors, in the context of dynamic network loading. The point queue model is perhaps the9
simplest link model, but neglects queue spillback, which is responsible for considerable delay in10
congested networks. More sophisticated link models do represent queue spillback, which improves11
their realism and accuracy — however, this feature also increases sensitivity of the model to the12
input parameters. Queue spillback can introduce discontinuities into flow models, which suggests13
that even small errors in the input data could potentially propagate into much larger errors in the14
output.15

In practice, input data are never known with exact precision due to measurement, estima-16
tion, and forecasting errors. Therefore, it is not obvious that the more “realistic” model is prefer-17
able to one which is more robust to these errors. Rather, one or the other model may be preferable18
depending on (1) the level of uncertainty in the input data, (2) the relative sensitivities of the two19
models, (3) and the magnitude of the error introduced by ignoring spillback.20

We explore this idea in two settings. The first is a simple freeway interchange, where21
dynamic network loading can be performed in closed-form. The second is regional dynamic traffic22
assignment, using real-world networks representing the cities of San Antonio, TX, and Austin, TX.23
In addition to being larger, the latter scenarios allow for route choice, and the resulting equilibrium24
may partially counteract errors in demand. In both of these settings, we vary the uncertainty in the25
demand, compare dynamic network loadings with spillback and no-spillback models, and identify26
the relative performance of the two models. In particular, if there is high uncertainty in input27
demand, we find cases where the no-spillback model produces a more accurate answer than the28
model with spillback.29

This investigation contributes to the transportation science literature by highlighting the30
importance of model robustness to input error, and showing that a more realistic model need not31
produce more accurate answers. Practitioners should thus make modeling choices based not only32
on arguments of realism and tractability, but also in awareness of input data quality and model33
sensitivity. If modeling spillback is critical for a particular application, our findings suggest that34
input data should be known with high confidence.35

The remainder of the paper is structured as follows. We first review literature related to36
transportation modeling, focusing on dynamic network loading, and on the effects of parameter37
uncertainty. We then describe the general framework for our tests, and then present results on a38
single interchange, and on two large networks. The paper concludes by discussing the implications39
of these findings for practice.40

LITERATURE REVIEW41
Queue spillback has long been recognized as a major source of congestion, and one that must be42
managed in a different way from queues that are confined to a single link. For instance, signalized43
intersections should be controlled differently on a corridor where queues spill back (1–4). Ramp44
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meters must balance restricting freeway inflows with arterial disruptions if the queue exceeds the1
ramp length, and these disruptions are a common source of complaints (5–7). Daganzo (8) showed2
that, paradoxically, increasing the capacity on a bottleneck may actually decrease network capacity3
in the presence of queue spillback. In more severe cases, queue spillback can cause gridlock (9),4
as when a cycle of network links becomes blocked and no vehicles can move.5

Therefore, queue spillback is often treated as a sine qua non in contemporary dynamic6
traffic assignment. Models without spillback, such as point queues, are generally used only because7
of their favorable mathematical properties — some recent examples are Ban et al. (10), Friesz8
et al. (11), and Han et al. (12) — and the same researchers often follow such work with more9
sophisticated models where queues can spill back (13–15), as a natural progression to their earlier10
work. Dynamic network loading procedures intended for large-scale simulation, including the cell11
transmission model (16, 17), link transmission model (18), and double-queue model (19), all allow12
queues to spill back.13

A separate line of research concerns the challenges in obtaining accurate inputs for trans-14
portation models, particularly predictions in future years. Demand forecasts are often substantially15
different than the demand realized in the field; the research of Flyvbjerg et al. (20) found that16
roughly 90% of rail projects forecasted demand in excess of what was actually realized, by an17
average of 106%. Errors for road projects are smaller, but still significant, with particular impli-18
cations for toll revenue forecasting. The same authors also noted that forecast accuracy has not19
improved significantly over the last 30 years, despite substantial advances in travel demand model-20
ing. Other authors have confirmed these findings (21–23), but also note that there is no consensus21
as to how forecasting error should be addressed in practice.22

To study the effects of uncertainty, researchers have applied Monte Carlo simulations (24–23
27) or sensitivity analyses (28) to model parameters. For instance, Zhao and Kockelman (29)24
tracked how errors propagate through the traditional four-step travel demand model, finding that25
input errors were amplified through the trip generation, trip distribution, and mode choice steps; but26
then reduced through route choice (likely because the equilibrium principle acts as a compensating27
mechanism for demand errors), resulting in output errors of the same relative size as the input28
errors.29

Today, researchers know that uncertain demand has significant implications for project30
selection (30, 31), network design (32–35), evacuation planning (36), roadway pricing (37–41),31
and other applications of transportation models. However, less attention has been given to the32
effect of demand uncertainty on the choice of models themselves. Two exceptions are Bar-Gera33
(42), who lists “ability to obtain inputs” and “stability” among a list of modeling desiderata, and34
Daganzo (43). In the logistics context, the latter paper shows that replacing continuous costs35
or demand with step functions (to make a model more “realistic,” as orders and truckloads are36
necessarily discrete) may in fact increase error if the inputs are only known approximately, a result37
that deserves more attention than it has received. Our manuscript is in the same spirit as Daganzo38
(43), but in the setting of dynamic network loading and spillback, as we investigate the interaction39
between demand errors and model realism.40

DYNAMIC NETWORK LOADING AND SPILLBACK41
Dynamic network loading is the process of mapping driver behavior (e.g., route and departure42
time choice) to observed network traffic conditions (e.g., congestion and delay). Dynamic network43
loading thus plays a central role in dynamic traffic assignment. Many dynamic network loading44
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procedures are modular, and can be divided into link models and node models. A link model1
represents traffic flow on a single network link, treating the upstream and downstream nodes as2
boundary conditions or constraints. A node model serves as the “glue” connecting link models,3
representing priority and vehicle interactions at physical intersections.4

In the discrete-time version of this framework, each link reports its sending flow S(t) and5
receiving flow R(t) at each timestep.1 The sending flow S(t) is the number of vehicles which would6
exit the link during the t-th timestep, if there were no constraints from downstream. The receiving7
flow R(t) is the number of vehicles which would enter the link during the t-th timestep, if there8
were an infinite number of vehicles waiting to enter from upstream. The values S(t) and R(t) thus9
are upper bounds on the number of vehicles that actually leave and enter the link during the t-th10
step. These values are calculated only from the conditions on the link, without referring to other11
links or nodes, and can thus be computed in parallel.12

A simple link model is the point queue (PQ). Consider a link with a uniform capacity qmax13
and an integer free-flow travel time t0 (both measured with a time unit of one timestep). Denote14
by N↑(t) and N↓(t) the cumulative number of vehicles which have entered and left the link by the15
start of the t-th timestep, since the beginning of loading. The PQ sending flow is given by16

S(t) = min
{

N↑(t +1− t0)−N↓(t),qmax

}
, (1)17

and the PQ receiving flow by18
R(t) = qmax . (2)19
This model is called a “point” queue because R(t) does not depend on the link’s condition, and20
vehicles are never blocked from entering the link — it is as if the vehicles on the link occupy no21
physical space, so the queue will never spill back to upstream links.22

The spatial queue (SQ) model modifies the point queue model to represent the physical23
space used by queued vehicles. (44) If the link can hold at most N̄ vehicles at one instant, the SQ24
receiving flow is given by25

R(t) = min
{

N̄− (N↑(t)−N↓(t)),qmax

}
. (3)26

The SQ sending flow is identical to the PQ sending flow, and is given by equation (1). Equation (3)27
ensures that the number of vehicles on the link will never exceed N̄ at any time.28

More sophisticated link models exist, such as the cell transmission model (16, 17), link29
transmission model (18), and double-queue model (19). Compared to the SQ, these models further30
reflect the time needed for shockwaves to propagate on a link.31

Node models capture the interactions which occur between links at a junction, and calculate32
the transition flows yab(t) representing the actual number of vehicles which leave link a and enter33
link b during the t-th time step. The simplest node has a single incoming link i, and a single34
outgoing link o. A typical model for such a node is35
yio(t) = min{Si(t),Ro(t)} (4)36
The number of vehicles which transition between link i and o is thus the smaller of the sending37
flow from the upstream link and the receiving flow for the downstream link.38

These y values are then used to update the cumulative entries and exits to links:39
N↑i (t +1) = N↑i (t)+∑y·i(t) (5)40

41
N↓i (t +1) = N↓i (t)+∑yi·(t) (6)42

1Some authors use the terms demand and supply for the same concepts.
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TABLE 1 Errors from Model Choice and Data Quality

Right model Wrong model
Right data Accurate Modeling errors

Wrong data Data errors Modeling AND data errors

where the sums are over all upstream and downstream links, respectively. Node models must1
respect the sending and receiving flows for links, so that ∑y·i(t)≤ Ri(t) and ∑yi·(t)≤ Si(t).2

These latter conditions permit modeling of the spillback phenomenon: if N̄ vehicles are3
on an SQ link, no additional vehicles can enter, and no vehicles can leave the upstream links,4
spreading the queue to previous links. If this process continues, the queue can spill over multiple5
links, and if the queued links form a cycle, no vehicles can move and gridlock results.6

At a diverge node with one incoming link i and two outgoing links 1 and 2, let pio(t) be the7
fraction of the sending flow Si(t) desiring to exit the node on link o ∈ {1,2}. Under the standard8
assumption that vehicles exit a link in the same order they enter, we have9
yio(t) = φ pio(t)Si(t) for o ∈ {1,2} (7)10
with11

φ = min
{

R1

pi1Si
,

R2

pi2Si
,1
}
. (8)12

At a merge node with two incoming links 1 and 2, and one outgoing link o, each incoming13
link is given a nonnegative priority value αi, with α1 +α2 = 1. There are three possible cases for14
the merge; in the first case, the merge is uncongested (S1(t)+S2(t)≤ R(t)) and flows freely:15
yio(t) = Si(t) for i ∈ {1,2} . (9)16
In the second case, the merge is congested (S1(t)+S2(t)> R(t)) and there is a queue on both links17
(that is, Si(t)> αiRo(t) for i ∈ {1,2}):18
yio(t) = αiRo(t) for i ∈ {1,2} . (10)19
In the last case, the merge is congested, but a queue only exists on one of the links. Without loss20
of generality, assume the queue is on link 1; then S2(t)≤ α2Ro(t) and we have21
y1o(t) = Ro(t)−S2(t) y2o(t) = S2(t) . (11)22
More discussion on these node models, as well as alternatives and generalizations for nodes with23
multiple incoming and outgoing links, can be found in the literature. (17, 18, 45–47)24

MOTIVATION AND EXPERIMENTAL PHILOSOPHY25
The purpose of our experiments is to compare a model with spillback to one without spillback26
when model parameters are uncertain. Queue spillback and gridlock clearly exist in practice, and27
have significant impacts on congestion. These are strong arguments for the spillback model, which28
is clearly more realistic.29

We thus assume that the spillback model is the right choice, if the input data are known30
precisely. With this assumption, using the no-spillback model will introduce modeling errors, even31
with the correct input data. If the input data are not fully known, then even using the spillback32
model will introduce errors due to data uncertainty. Using the no-spillback model would seem to33
add insult to injury, introducing modeling error on top of data errors. (Table 1 illustrates these34
possibilities schematically.)35

However, if the “wrong” model is more robust to errors in the input data, it may in fact36
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Metric

InputTrue value

True 
value

Right model

Wrong model

FIGURE 1 A stylized example illustrating right and wrong models.

Metric

InputInput distribution

Metric
distributions

Right model

Wrong model

Wrong

Right

FIGURE 2 Mapping from a distribution on the input to distributions on the metric.

yield a more accurate answer. Figure 1 shows a stylized scenario with a single input parameter,1
and a single metric of interest. The dashed lines indicate accurate (ground truth) values, while the2
solid lines indicate the predictions of two models. The right model passes through the intersection3
of the dashed lines, as it should: given the correct input, the right model gives the correct metric.4
The wrong model, by contrast, does not produce the correct metric even with the correct input, and5
should not be used.6

This conclusion holds true even if the input data are not known precisely, as long as the7
error is fairly small; the right model will still produce a metric closer to the horizontal line (true8
value) than the wrong model. If input errors are large, this need not be true. Figure 2 shows a9
distribution of errors on the inputs, and the resulting impact on the distribution of output error, on10
the metric. The metric error distribution for the right model is centered around the correct value —11
but the greater sensitivity of the right model yields a large spread. The metric error distribution for12
the wrong model is not centered around the correct value, but it is more tightly distributed, and the13
expected absolute deviation from the horizontal line is smaller for the “wrong” model. The wrong14
model actually produces the smaller error!15

We hypothesize that similar effects exist in dynamic network loading, and manifest when16
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y11

y2

p

FIGURE 3 Freeway interchange for first experiment; mainlines have capacity 1 and ramp
has capacity 1/2. y2 is a model parameter that must be input; y1 is a metric that must be
calculated.)

the error in the input parameters is sufficiently large. The following sections describe our exper-1
iments to investigate this hypothesis, by comparing the spillback model (the “right” one) to the2
no-spillback model (the “wrong” one). We introduce errors into the demand rates (and in one of3
the experiments, also in the route choice), and compare metrics such as link flows and travel times,4
using the spillback model results with zero error as the assumed truth.5

EXPERIMENT 1: A SINGLE INTERCHANGE6
Consider the freeway interchange shown in Figure 3. The two mainlines have equal capacity, and7
the ramp connecting them has half the capacity of the mainlines. For simplicity, assume that units8
are chosen such that the capacity of each mainline is equal to one, and that the inflow rate on the9
horizontal mainline is also one. There are two input parameters which must be estimated: the10
proportion p of flow on the horizontal link choosing the ramp, and the flow y2 on the vertical11
mainline link. In this experiment both are assumed stationary in time. We wish to predict the12
steady-state flow rate y1 on the horizontal link downstream of the diverge, located at the circular13
detector in Figure 3, after any initial transient conditions have subsided.14

We use the standard merge and diverge equations in dynamic network loading (described15
in equations (7)–(11)), giving the ramp a merge priority value of αr = 1/3 and the southbound16
mainline a priority value of α2 = 2/3. Since the inflow to the ramp is initially p, if p+ y2 ≤ 117
the merge is uncongested and all flow can move freely. If p+ y2 > 1, three cases are possible:18
if p < 1/3, a queue forms on the vertical link but not the ramp; if y2 < 2/3, a queue forms on19
the ramp but not the vertical link; and if p ≥ 1/3 and y2 ≥ 2/3, queues form on both approaches.20
Without spillback, the presence of queues at the merge has no bearing on behavior at the diverge,21
and the total outflow from the diverge is given by min{1,1/(2p)}, with the detector registering22
yNS

1 = (1− p)min{1,1/(2p)} . (12)23
In the case of spillback, equation (12) only holds if there is no queue on the ramp. Otherwise, at24
steady-state, the ramp outflow (and thus its inflow) is given by 1− y2 if the queue is only on the25
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1/2

1 - p

10

1

p

y2 No spillback

0

p

y2 Spillback

1/2 1

1/2

2/3

11/3

1 - p
(1-p)/(2p)

(1-p)/3p  (*)

(1-p)/(2p)
(1-p)(1-y2 )/p (*)

FIGURE 4 Steady-state y1 values for no-spillback and spillback cases. Asterisks indicate
regions where the ramp queue spills back and restricts flow.

ramp, and by 1/3 if queues exist on both the ramp and vertical link. The corresponding flow at1
the detector is obtained by multiplying the ramp flow by (1− p)/p. These results are summarized2
in Figure 4, and are denoted by the mappings yNS

1 (y2, p) and yS
1(y2, p) for the no-spillback and3

spillback cases, respectively. Full derivations of these results are routine and omitted here for4
reasons of space.5

The possible values of inputs y2 and p lie within the unit square [0,1]2. Within this range,6
twenty evenly-spaced values of y2 and p were combined to produce four hundred scenarios for7
analysis. For each of these scenarios, the following procedure was performed.8

1. Let ŷ2 and p̂ denote the values corresponding to this scenario. These are assumed to9
be the true values of these parameters, corresponding to a true flow rate of yS

1(ŷ2, p̂).10
(That is, the spillback model is presumed completely accurate if given the true y2 and p11
values.)12

2. Generate n sampled values of y2 and p, using independent normal distributions with13
respective means ŷ2 and p̂, and a provided standard deviation. These samples were14
truncated to the range [0,1] to respect feasibility.15

3. For each sample, the error associated with the no-spillback model is calculated as16
ε

NS = |yNS
1 (y2, p)− yS

1(ŷ2, p̂)| , (13)17
while the error associated with the spillback model is18
ε

S = |yS
1(y2, p)− yS

1(ŷ2, p̂)| . (14)19
4. Based on the sampled values of εNS and εS, calculate the additional expected error in20

the no-spillback model to be21
δ = E[εNS− ε

S] , (15)22
along with the standard deviation s of this difference.23

5. Calculate the t score t = δ/(s/
√

n).24
If the resulting t score is greater than a specified positive critical value, the error in the no-spillback25
model is significantly greater than that in the spillback model, and the spillback model is to be26
preferred. If it is smaller than a negative critical value, the error in the no-spillback model is signif-27
icantly less than that of the spillback model, and the no-spillback model is preferred. Otherwise,28
there is no significant difference in the errors produced by the models.29
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FIGURE 5 Model with less error for each scenario, if significant (p = 0.05).

Figure 5 presents the results of these simulations for three cases: when the standard devia-1
tion of the sampled Q2 and p values was small (0.01), moderate (0.1), and large (0.25). A sample2
size of n = 2500 was used for each scenario, and critical values of±1.96 were used for the statisti-3
cal test, corresponding to 5% significance. In this figure, an S denotes that the model with spillback4
produces less expected error, N denotes that the no-spillback model produces less expected error,5
and ‘=’ denotes no statistically significant difference in errors. Owing to the sample size, the t6
scores were typically quite large, averaging +87.4 across all scenarios where the spillback model7
was preferred, and −13.9 across all scenarios where the no-spillback model was preferred.8

When input error is small, the model with spillback is almost always preferred, while the9
no-spillback model often produces less expected error when input errors are large, specifically10
when the diverge proportion is small. This demonstrates that the no-spillback model may be prefer-11
able to the model with spillback under certain circumstances: even though it contains model error,12
it is more robust to data error.13

EXPERIMENT 2: LARGE NETWORKS14
The second experiment involves regional dynamic traffic assignment on two calibrated, real-world15
networks representing portions of San Antonio, TX, and Austin, TX. Table 2 gives descriptive16
statistics for these networks, and Figure 6 shows their topology. The San Antonio network is17
centered around US-281 and represents a suburban area, with larger spacing between signalized18
intersections and higher speed limits. The Austin network represents an urban area, with closely-19
spaced signals and speed limits generally below 40 mph, with a north-south freeway on the western20
boundary.21

Base data for these networks was provided by the Capital Area Metropolitan Planning Or-22
ganization and San Antonio Metropolitan Planning Organizations. Information on signal timings23
was provided by the City of Austin and the City of San Antonio. Both sets of data were then24
manually refined and adjusted to improve consistency with field observations.25

The VISTA software (48) was used to solve for dynamic user equilibrium on each network.26
This software uses the cell transmission model (CTM) as its link model. The primary difference27
between CTM and the SQ model is that backward-moving shockwaves propagate with finite speed,28
so link space freed when vehicles depart the downstream end of the link is not immediately avail-29
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TABLE 2 Descriptive Statistics for Experiment 2 Networks
San Antonio Austin

Total demand 341,710 236,940
Time period 4 PM–7 PM 6 AM–9 AM

Links 1258 1247
Nodes 864 587

Centroids 122 166
Signalized intersections 100 137
Average capacity (vph) 1505 1492

FIGURE 6 Schematic of San Antonio and Austin networks.
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TABLE 3 Metrics from Demand Error Scenarios.
TSTT (veh-hr ×103) Average OD travel time (min)

Demand error Spillback No-spillback Spillback No-spillback
San Antonio, TX

−30% 19 19 5 5
−15% 25 23 6 5

0% 42 33 8 6
+15% 58 47 10 8
+30% 90 69 14 10

Austin, TX
−30% 9 6 3 3
−15% 9 8 3 3

0% 13 10 3 3
+15% 18 13 4 3
+30% 30 20 6 4

able for entering vehicles at the upstream end. CTM models spillback. To create a no-spillback1
version of CTM, the jam density on links was set to infinity, allowing an unlimited number of2
vehicles to fit on a link. It is possible to show that the CTM sending and receiving flow coincide3
with the PQ formulas (1) and (2) with this modification.4

For the experiments in this paper, VISTA was applied with a timestep of 6 seconds. The5
method of successive averages was used to solve for an approximate dynamic user equilibrium. In6
the dynamic user equilibrium state, for each origin, destination, departure time, all used paths have7
equal and minimal travel time. It is possible that the equilibrium principle can act as a “restoring8
force” compensating for errors in the input demand, for instance, by routing vehicles to less-9
congested routes if demand is too high. We thus want to see if the phenomena seen in Experiment10
1 persist in practical networks with equilibrium.11

To simulate demand errors, the origin-destination (OD) matrices for the two networks were12
first inflated or deflated by a uniform value across all scenarios. This value ranged from −30%13
(underprediction of demand) to +30% (overprediction). Table 3 shows the five demand scenarios,14
and the total system travel time (TSTT) and average OD travel times obtained from VISTA. The15
boldface values indicate the assumed true values: metrics obtained from the spillback model with16
no error in demand. Figure 7 shows the results for TSTT in Austin, in the manner of the stylized17
plots in Figures 1 and 2; plots for San Antonio and average OD travel times are similar and omitted18
for brevity.19

Using the results from Table 3, we can now test the performance of the spillback and no-20
spillback versions of CTM for different levels of uncertainty in demand. We represent demand21
uncertainty by creating a probability distribution on the demand error, parameterized by a scalar e.22
When e = 0, the forecast is perfect and the error is 0% with probability 1. When e = 1, the forecast23
is uniform among all five possible demand errors, as if the errors in the modeling process combined24
to produce a random value within 30% of the truth. (Figure 8) For e ∈ (0,1), the distribution is25
obtained by a linear interpolation between these two extremes.26

For values of e ranging from 0 to 1, we compute the expected absolute TSTT error of the27
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FIGURE 7 TSTT for Austin, TX as demand varies. Horizontal/vertical lines indicate true
values.

Probability

Demand
error

-30% -15%-30% 0% 30%15%

1

Probability

Demand
error

-30% -15%-30% 0% 30%15%

0.20.20.2 0.2 0.2

e = 0 e = 1

FIGURE 8 Forecasting error distributions; for e ∈ (0,1) the distribution is a convex combi-
nation of the two shown here.
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TABLE 4 Expected Absolute Errors for Demand Uncertainty Levels.
e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

San Antonio, TX: TSTT (veh-hr ×103)
S 0 2.1 4.2 6.2 8.3 10.4 12.5 14.6 16.6 18.7 20.8

NS 9.0 9.8 10.5 11.3 12.0 12.8 13.6 14.3 15.1 15.8 16.6
San Antonio, TX: Average OD travel time (min)

S 0 0.3 0.5 0.8 1.0 1.3 1.6 1.8 2.1 2.3 2.6
NS 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Austin, TX: TSTT (veh-hr ×103)
S 0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0

NS 3.0 3.1 3.3 3.4 3.6 3.7 3.8 4.0 4.1 4.3 4.4
Austin, TX: Average OD travel time (min)

S 0 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80
NS 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

spillback and no-spillback models as E[|T ST T S−T ST T ∗|] and E[|T ST T NS−T ST T ∗|], respec-1
tively, where T ST T ∗ is the assumed true value (e.g., 42,000 for Austin; see the boldface values in2
Table 3). Expected error in average OD travel times is calculated analogously.3

Table 4 shows these expected absolute errors for both networks and metrics. The row labels4
S and NS correspond to the spillback and no-spillback models, respectively. The values in boldface5
indicate the model with lower error.6

For both networks and metrics, when the forecast uncertainty e is low, the model with spill-7
back produces lower absolute error, as is expected. When the forecast uncertainty is sufficiently8
high, however, the model without spillback produces lower error. This happens for the reasons9
discussed in the Motivation section: although the model with spillback contains modeling error (it10
does not pass through the intersection of the lines in Figure 7), it is less sensitive to data errors11
(the slope is less steep than the spillback model). If the demand is sufficiently uncertain, this latter12
effect dominates the former, and the model without spillback gives an answer closer to the true13
value, on average.14

The threshold uncertainty level where the spillback model produces less error varies by15
network and the metric chosen. In particular, for the Austin network and average OD travel times,16
the no-spillback model is almost always more accurate than the spillback model. This is because17
the no-spillback model gives nearly constant OD travel times in our tests, and this value happens18
to be very close to the true one — it is essentially immune to demand errors over the range we19
considered. By contrast, the model with spillback is sensitive to the demand level, and predicts20
much higher delay if demand is overpredicted.21

DISCUSSION AND CONCLUSIONS22
We compare dynamic network loading models with and without spillback, with a view of trading23
off modeling errors with robustness to data errors. Queues do spill back in reality, causing insta-24
bility in traffic flow; but this instability also makes models more sensitive to having the correct25
input parameters. In two experimental settings, we show that if demand uncertainty is sufficiently26
high, the model with spillback produces higher errors than the model with spillback. In such cases,27
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the fidelity of the spillback model to reality (higher demand would indeed cause spillbacks and1
increase delay) is in fact a liability, if our ability to predict that reality is limited.2

The distributions used in this paper (and the use of the e parameter) are a simple way to3
model demand uncertainty, but we have no evidence that this is an accurate model for demand4
errors in practice. The question of how forecasting and demand errors arise and should best be5
described remains open. There are many factors which combine to produce errors in demand,6
including sampling errors, land use and demand model specification errors, uncertainty in future7
economic or technological scenarios, and so forth. Further research in this area would be highly8
valuable.9

We thus advise against interpreting the significance of the particular e thresholds observed10
in this paper. Nevertheless, the conclusions of the paper still have qualitative value: that models11
with spillback perform well when the input demand is known with high precision, but less well if12
there is much uncertainty. In the latter case, neglecting spillback may in fact improve the accuracy13
of the model. In practice, there may be scenarios where modeling spillback is essential. In such14
cases, one must be willing to invest the resources needed to produce accurate demand inputs.15

Future research should also broaden the scope of these experiments to encompass more16
modeling choices. For concreteness, we have focused on whether spillback should be included17
or not, but there are many other decisions which must be made when building a model: to name18
only a few, the network size, modeling resolution, node models, whether demand should be elastic,19
whether perception errors are present, whether network conditions are stochastic or deterministic,20
and even the choice of a microsimulator, dynamic traffic assignment, or static traffic assignment.21

In all of these cases, the realism of alternative models should be compared with confidence22
in the inputs, and the models’ robustness to errors in these inputs. A more realistic, but less robust23
model should only be used if the inputs are known with high precision.24

ACKNOWLEDGEMENTS25
The authors gratefully acknowledge the support of the National Science Foundation (CMMI-26
1254921) and the Data-Supported Transportation Operations and Planning Center. Thanks are27
also due to the Capital Area Metropolitan Planning Organization and San Antonio Metropolitan28
Planning Organization for providing the base network and travel demand data used to generate the29
DTA models for the second experiment.30

AUTHOR CONTRIBUTION STATEMENT31
The authors confirm contribution to the paper as follows: study conception and design: S. D.32
Boyles and N. Ruiz Juri; data collection: N. Ruiz Juri; analysis and interpretation of results: S. D.33
Boyles and N. Ruiz Juri; draft manuscript preparation: S. D. Boyles and N. Ruiz Juri. All authors34
reviewed the results and approved the final version of the manuscript.35



Boyles and Ruiz Juri 16

REFERENCES1
[1] Skabardonis, A. and N. Geroliminis, Real-time monitoring and control on signalized arterials.2

Journal of Intelligent Transportation Systems, Vol. 12, 2008, pp. 64–74.3
[2] Wu, X., H. X. Liu, and D. Gettman, Identification of oversaturated intersections using high-4

resolution traffic signal data. Transportation Research Part C, Vol. 18, 2010, pp. 626–638.5
[3] Liu, Y. and G.-L. Chang, An arterial signal optimization model for intersections experiencing6

queue spillback and lane blockage. Transportation Research Part C, Vol. 19, 2011, pp. 130–7
144.8

[4] Ban, X. J., P. Hao, and Z. Sun, Real time queue length estimation for signalized intersections9
using travel times from mobile sensors. Transportation Research Part C, Vol. 19, 2011, pp.10
1133–1156.11

[5] Havinovski, G. N., Ramp queues? Not in my backyard: a survey of queue detector design and12
operating criteria for metered freeway entrances, 1991, institute of Transportation Engineers,13
Compendium of Technical Papers.14

[6] Taylor, C. and D. Meldrum, Evaluation of a Fuzzy Logic Ramp Metering Algorithm: A Com-15
parative Study Among Three Ramp Metering Algorithms Used in the Greater Seattle Area.16
Washington State Transportation Center (TRAC), 2000.17

[7] Gordon, R., Algorithm for controlling spillback from ramp meters. Transportation Research18
Record, Vol. 1554, 2014, pp. 162–171.19

[8] Daganzo, C. F., Queue spillovers in transportation networks with a route choice. Transporta-20
tion Science, Vol. 32, 1998, pp. 3–11.21

[9] Daganzo, C. F., Urban gridlock: macroscopic modeling and mitigation approaches. Trans-22
portation Research Part B, Vol. 41, 2007, pp. 49–62.23

[10] Ban, X., J.-S. Pang, H. X. Liu, and R. Ma, Continuous-time point-queue models in dynamic24
network loading. Transportation Research Part B, Vol. 46, 2012, pp. 360–380.25

[11] Friesz, T. L., K. Han, P. A. Neto, and T. Yao, Dynamic user equilibrium based on a hydrody-26
namic model. Transportation Research Part B, Vol. 47, 2013, pp. 102–126.27

[12] Han, K., T. L. Friesz, and T. Yao, Existence of simultaneous route and departure choice28
dynamic user equilibrium. Transportation Research Part B, Vol. 53, 2013, pp. 17–30.29

[13] Ma, R., X. Ban, and J.-S. Pang, Continuous-time dynamic system optimum for single-30
destination traffic networks with queue spillbacks. Transportation Research Part B, Vol. 68,31
2014, pp. 98–122.32

[14] Ma, R., X. Ban, and J.-S. Pang, A link-based differential complementarity system formulation33
for continuous-time dynamic user equilibria with queue spillbacks. Transportation Science,34
Vol. 52, 2017, pp. 564–592.35

[15] Han, K., B. Piccoli, and T. L. Friesz, Continuity of the path delay operator for dynamic36
network loading with spillback. Transportation Research Part B, Vol. 92B, 2016, pp. 211–37
233.38

[16] Daganzo, C. F., The cell transmission model: a dynamic representation of highway traffic39
consistent with the hydrodynamic theory. Transportation Research Part B, Vol. 28, No. 4,40
1994, pp. 269–287.41

[17] Daganzo, C. F., The cell transmission model, part II: network traffic. Transportation Research42
Part B, Vol. 29, No. 2, 1995, pp. 79–93.43

[18] Yperman, I., The Link Transmission Model for Dynamic Newtork Loading. Ph.D. thesis,44
Katholieke Universiteit Leuven, Belgium, 2007.45



Boyles and Ruiz Juri 17

[19] Osorio, C., G. Flötteröd, and M. Bierlaire, Dynamic network loading: a stochastic differen-1
tiable model that derives link state distributions. Transportation Research Part B, Vol. 45,2
2015, pp. 420–431.3

[20] Flyvbjerg, B., M. K. S. Holm, and S. L. Buhl, How (in)accurate are demand forecasts in4
public works projects?: the case of transportation. Journal of the American Planning Orga-5
nization, Vol. 71, 2005, pp. 131–146.6

[21] de Jong, G., A. Daly, M. Pieters, S. Miller, R. Plasmeijer, and F. Hofman, Uncertainty in traf-7
fic forecasts: literature review and new results for The Netherlands. Transportation, Vol. 34,8
2007, pp. 375–395.9

[22] van Wee, B., Large infrastructure projects: a review of the quality of demand forecasts and10
cost estimations. Environment and Planning B, Vol. 34, 2007, pp. 611–625.11

[23] Nicolaisen, M. S. and P. A. Driscoll, Ex-post evaluations of demand forecast accuracy: a12
literature review. Transport Reviews, Vol. 34, 2014, pp. 540–557.13

[24] Ashley, D. J., Uncertainty in the context of highway appraisal. Transportation, Vol. 9, 1980,14
pp. 249–267.15

[25] Leurent, F., An analysis of modelling error, with application to a traffic assignment model16
with continuously distributed values of time, 1996, presented at the European Transport Con-17
ference, Uxbridge, United Kingdom.18

[26] Boyce, A. M., Risk analysis for privately funded transport schemes, 1999, presented at the19
European Transport Conference, Uxbridge, United Kingdom.20

[27] Boyce, A. M. and M. J. Bright, Reducing or managing the forecasting risk in privately-21
financed projects, 2003, presented at the European Transport Conference, Uxbridge, United22
Kingdom.23

[28] Rodier, C. J. and R. A. Johnston, Uncertain socioeconomic projections used in travel demand24
and emissions models: could plausible errors result in air quality nonconformity? Trans-25
portation Research Part A, Vol. 36, 2002, pp. 613–631.26

[29] Zhao, Y. and K. M. Kockelman, The propagation of uncertainty through travel demand mod-27
els: an exploratory analysis. Annals of Regional Science, Vol. 36, 2002, pp. 145–163.28

[30] Waller, S. T., J. Schofer, and A. K. Ziliaskopoulos, Evaluation with traffic assignment under29
demand uncertainty. Transportation Research Record, Vol. 1771, 2001, pp. 69–74.30

[31] Duthie, J. C., A. Unnikrishnan, and S. T. Waller, Influence of demand uncertainty and cor-31
relations on traffic predictions and decisions. Computer-Aided Civil and Infrastructure Engi-32
neering, Vol. 26, 2011, pp. 16–29.33

[32] Ukkusuri, S. V., T. V. Mathew, and S. T. Waller, Robust transportation network design under34
demand uncertainty. Computer-Aided Civil and Infrastructure Engineering, Vol. 22, 2007,35
pp. 6–18.36

[33] Yin, Y., S. M. Madanat, and X.-Y. Lu, Robust improvement schemes for road networks under37
demand uncertainty. European Journal of Operational Research, Vol. 198, 2009, pp. 470–38
479.39

[34] Ukkusuri, S. V. and G. Patil, Multi-period transportation network design under demand un-40
certainty. Transportation Research Part B, Vol. 43, 2009, pp. 625–642.41

[35] Chen, A., Z. Zhou, P. Chootinan, S. Ryu, C. Yang, and S. C. Wong, Transportation net-42
work design problem under uncertainty: a review and new developments. Transport Reviews,43
Vol. 31, 2011, pp. 743–768.44



Boyles and Ruiz Juri 18

[36] Ng, M. and S. T. Waller, Reliable evacuation planning via demand inflation and supply defla-1
tion. Transportation Research Part E, Vol. 46, 2010, pp. 1086–1094.2

[37] Gardner, L. M., A. Unnikrishnan, and S. T. Waller, Robust pricing of transportation networks3
under uncertain demand. Transportation Research Record, Vol. 2085, 2008, pp. 21–30.4

[38] Boyles, S. D., K. M. Kockelman, and S. T. Waller, Congestion pricing under operational,5
supply-side uncertainty. Transportation Research Part C, Vol. 18, 2010, pp. 519–535.6

[39] Gardner, L. M., A. Unnikrishnan, and S. T. Waller, Solution methods for robust pricing of7
transportation networks under uncertain demand. Transportation Research Part C, Vol. 18,8
2010, pp. 656–667.9

[40] Gardner, L. M., S. D. Boyles, and S. T. Waller, Quantifying the benefit of responsive pricing10
and travel information in the stochastic congestion pricing problem. Transportation Research11
Part A, Vol. 45, 2011, pp. 204–218.12

[41] Li, Z.-C., W. H. K. Lam, S. C. Wong, and A. Sumalee, Environmentally sustainable toll13
design for congested road networks with uncertain demand. International Journal of Sustain-14
able Transportation, Vol. 6, 2012, pp. 127–155.15

[42] Bar-Gera, H., Traffic assignment by paired alternative segments. Transportation Research16
Part B, Vol. 44, 2010, pp. 1022–1046.17

[43] Daganzo, C. F., Increasing model precision can reduce accuracy. Transportation Science,18
Vol. 21, 1987, pp. 100–105.19

[44] Zhang, H. M. and Y. Nie, Modeling network flow with and without link interaction: properties20
and implications, 2006, presented at the 84th Annual Meeting of the Transportation Research21
Board, Washington, DC.22

[45] Nie, Y. M., J. Ma, and H. M. Zhang, A polymorphic dynamic network loading model.23
Computer-Aided Civil and Infrastructure Engineering, Vol. 23, No. 2, 2008, pp. 86–103.24

[46] Tampère, C. M. J., R. Corthout, D. Cattrysse, and L. H. Immers, A generic class of first order25
node models for dynamic macroscopic simulation of traffic flows. Transportation Research26
Part B, Vol. 45, 2011, pp. 289–309.27

[47] Corthout, R., G. Flötteröd, F. Viti, and C. M. J. Tampère, Non-unique flows in macroscopic28
first-order intersection models. Transportation Research Part B, Vol. 46, 2012, pp. 343–359.29

[48] Ziliaskopoulos, A. K. and S. T. Waller, An Internet-based geographic information system that30
integrates data, models and users for transportation applications. Transportation Research31
Part C, Vol. 8, 2000, pp. 427–444.32



 

Volume 2: An Efficient Simulation Framework for Estimating 
Work-Zone Impacts 

 



AN EFFICIENT SIMULATION FRAMEWORK FOR ESTIMATING WORK-1 
ZONE IMPACTS 2 
 3 
 4 

Tengkuo Zhu  5 
Researcher 6 

Network Modeling Center 7 
Center for Transportation Research 8 

Cockrell School of Engineering 9 
The University of Texas at Austin 10 

3925 W Braker Ln 11 
Austin, TX 78759 12 

E-Mail: zhutengkuo@utexas.edu 13 
 14 

Natalia Ruiz Juri 15 
Director 16 

Network Modeling Center 17 
Center for Transportation Research 18 

Cockrell School of Engineering 19 
The University of Texas at Austin 20 

3925 W Braker Ln 21 
Austin, TX 78759 22 

E-Mail: nruizjuri@mail.utexas.edu 23 
Phone: (512) 232-3099 24 

 25 
Stephen D. Boyles  26 
Associate Professor 27 

Department of Civil, Architectural, and Environmental Engineering  28 
Cockrell School of Engineering 29 

The University of Texas at Austin 30 
301 E Dean Keeton St 31 

Austin, TX 78712 32 
E-Mail: sboyles@utexas.edu 33 

 34 
Kenneth Perrine  35 

Research Associate  36 
Network Modeling Center  37 

Center for Transportation Research 38 
Cockrell School of Engineering  39 

The University of Texas at Austin  40 
3925 W Braker Ln 41 
Austin, TX 78759 42 

E-Mail: kperrine@utexas.edu 43 
Phone: (512) 232-3123 44 

 45 
 46 
 47 



Zhu, Ruiz-Juri, Boyles, Perrine, Chen, and Li  2 
 

Amber Chen  1 
Researcher  2 

Network Modeling Center  3 
Center for Transportation Research 4 

Cockrell School of Engineering  5 
The University of Texas at Austin  6 

3925 W Braker Ln 7 
Austin, TX 78759  8 

E-Mail: amber14@utexas.edu 9 
Phone: (512) 232-3075 10 

 11 
Yun Li 12 

Jiangsu Key Laboratory of Traffic and Transportation Security 13 
 Huaiyin Institute of Technology 14 

No.1 Meicheng Road  15 
Huaian, Jiangsu Province, China 223003 16 

E-mail: liyunxiaobu@gmail.com 17 
Phone: +86-182-523-40440 18 

 19 
 20 
Word count: 6,511 words text + 3 tables × 250 words (each) = 7261 words 21 
 22 
 23 
 24 
Submission Date: November 13, 2018 25 
  26 

mailto:liyunxiaobu@gmail.com


Zhu, Ruiz-Juri, Boyles, Perrine, Chen, and Li  3 
 

ABSTRACT 1 
Realistic estimations of queue propagation and traffic delays due to freeway lane closures 2 
are critical for planning and managing work zones. The current practical methods include 3 
deterministic queuing theory and microsimulation. However, these approaches 4 
are either too simple to capture the complex traffic entry/exit patterns or require 5 
significant modeling effort. This paper proposes a framework to use kinematic wave 6 
theory to estimate queue position and the user’s traffic delay. Link transmission model 7 
(LTM) is implemented in the analysis of work zone impacts due to its efficiency and is 8 
validated in different scenarios. A comparison of LTM method with microsimulation 9 
suggests that LTM method produces comparable queue propagation and dissipation 10 
patterns, with runtimes of only one second. LTM method estimations were also consistent 11 
with field data collected on IH35 through Austin, TX, suggesting that model results are 12 
realistic, and could support decision-making given adequate input data and parameter 13 
calibration. The method presented can be used by agencies to support planning and 14 
operational decisions, such as the placement of variable message signs, for events that 15 
happen frequently and cannot be modeled in extensive detail. It can also facilitate the 16 
computation of meaningful performance metrics to communicate with stakeholders for 17 
strategic planning, and to conduct cost-benefit analyses, among others.  18 
 19 
 20 
 21 
 22 
 23 
Keywords: Freeway Lane Closure, Link Transmission Model, Queue Length, User Delay 24 
Cost  25 
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INTRODUCTION 1 
Freeway lane closures, which include restoration, resurfacing, reconstruction of traffic 2 
facilities, accidents, or special events, typically lead to traffic congestion and travel time 3 
delays. Although a variety of traffic management techniques, from ramp closure to 4 
variable message signs (VMS), are available to mitigate the impacts of temporary 5 
closures, their effective implementation typically depends on understanding the expected 6 
impacts of a given work zone. A detailed understanding of work-zone impacts is also 7 
critical for quantifying their costs, which plays an important role in work-zone planning, 8 
communication with stakeholders, and when evaluating the benefits of delay mitigation 9 
technologies and strategies. Queue length plays an important role in characterizing traffic 10 
in the proximity of a freeway lane closure. An accurate estimation of position and length 11 
can be used, for example, to inform the placement and activation of VMS, which are 12 
expected to be most effective when their placement allows drivers to take alternative 13 
paths before entering the congested portion of the freeway.   14 

Several methods exist to estimate work-zone impacts, including microsimulation 15 
models (1), simpler simulation-based or analytical approaches (2), and data-centric 16 
artificial intelligence techniques (3). While the latter is promising, the volume and quality 17 
of data needed to ensure reliable performance differ in a variety of contexts, and the 18 
associated computational effort still presents a significant challenge. Technologies based 19 
on traffic flow and/or car-following theory are appealing because, once properly 20 
calibrated, these methods could be effective under a range of scenarios. Among these, 21 
analytical approaches, which implement macroscopic flow models or queuing theory (4), 22 
are most commonly used in practice. According to FHWA’s Work Zone and Traffic 23 
Analysis Technical Resources (5), at least fifteen state department of transportation use 24 
this method, which is implemented into a simple spreadsheet, to estimate queue length 25 
and user’s traffic delay of construction and maintenance activities. However, this 26 
technique may not be accurate when analyzing work zones that affect several entry/exit 27 
ramps and do not always provide a fair evaluation of user delay. Microsimulation models 28 
are also popular, which are expected to provide the most realistic assessment of work-29 
zone impacts, but model preparation effort and the corresponding operation times may be 30 
prohibitive for some applications.  31 

This paper aims to propose an approach for realistically simulating the queue 32 
propagation and dissipation process resulting from freeway closures and estimating the 33 
user’s traffic delay. The goal is to obtain results comparable to microsimulation but with 34 
significantly lower modeling effort, runtime and budget, so that it can be used for 35 
planning and managing short-term/nightly work zones with limited resources. The 36 
efficient approach can also enable the computation of more detail metrics for economic 37 
analysis and strategic planning, and potentially be extended to be used in real time. 38 

The method is based on Yperman’s link transmission model (LTM) (6), which 39 
provides a simulation-based approximation to the hydrodynamic theory of traffic flow (7, 40 
8). This approach can account for varying geometric configurations and can be efficiently 41 
implemented through spreadsheets or programming. The paper also proposes a heuristic 42 
adjustment of model parameters to account for weaving effect in the proximity of entry 43 
and exit ramps using Highway Capacity Manual (HCM). The issue of model parameter 44 
selection and how they affect estimate results are also addressed. 45 
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 Two types of numerical experiments are used to validate the performance of the 1 
LTM method: a set of microsimulation experiments using synthetic data explores model 2 
performance under varying origin-destination (OD) demand patterns, and real-world data 3 
from a lane closure on IH35 in Austin, Texas, which is used to understand the model’s 4 
ability to replicate field conditions based on field traffic counts. Results suggest that LTM 5 
models provide an accurate approximation of microsimulation results when analyzing 6 
queues resulting from freeway closures. Furthermore, the LTM framework can generate 7 
acceptable estimates of work-zone impacts when incorporating field data.  8 

The following sections provide additional background on work-zone impacts 9 
estimation, LTM implementation, numerical experiments, and corresponding results. 10 
 11 
LITERATURE REVIEW 12 
The estimation of work-zone impacts is critical to support strategic planning, 13 
communication among relevant stakeholders, and the quantification of user delay costs 14 
for cost-benefit analyses. Existing approaches in the literature include analytical and 15 
simulation-based methodologies. Among analytical approaches, the deterministic 16 
queuing theory has been widely used due to its simplicity (2, 4). According to the FHWA 17 
(5), more than fifteen state departments of transportation use tools based on deterministic 18 
queuing theory to analyze traffic delays. Research on this topic is typically focused on 19 
quantifying adequate capacity value for the work, e.g. (4), which is later used to estimate 20 
queue length. While efficient, many such tools are not suitable to study work zones that 21 
lead to long queues and affect several entry and exit ramps because they are unable to 22 
modeling complex traffic in such scenarios. Microsimulation models have also been 23 
successfully used in the context of work-zone impact analysis (e.g., 1), but model 24 
development effort and running times are often excessive for some applications, such as 25 
short-term construction.  26 

In this context, the mesoscopic model, which combines the advantages of the 27 
analytical approach and microsimulation, has drawn increasing attention in recent years. 28 
Researchers have studied the use of mesoscopic models, including the cell transmission 29 
model (CTM) (10) and link transmission model (5), to analyze congestion propagation 30 
and delays during closures. Corthout et al. (11) propose a framework to assess the 31 
network-level impact of incidents without re-computing link flows throughout the 32 
network using LTM. Osorio et al. (12) develop a dynamic network loading (DNL) model 33 
based on finite capacity queuing theory to compute the probability of a queue being 34 
present at the downstream end of a link, as well as the probability of a spillback.  35 

Previous work has also considered corridor-level mesoscopic models that 36 
leverage data for improved realism. Ruiz et al. (13) utilize CTM to predict travel times on 37 
freeway segments based on real-time traffic sensor data. Xia et al. (14) predict delays 38 
under incident conditions based on loop detector data and kinematic wave theory, while 39 
Liu et al. (15) use similar data and assumptions to study queues at congested urban 40 
intersections. Also, in the context of urban intersections, Comert and Cetin (16) propose a 41 
different approach that estimates queue lengths based on probe-vehicle data. To the 42 
knowledge of the authors, previous research has not discussed some of the practical 43 
considerations of sustainable implementing mesoscopic models such as parameter 44 
adjustment, or explicitly analyzed their performance given typically available field data. 45 
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This research implements and extends an offline version of the framework 1 
proposed in Ruiz et al. (13) to the analysis of closure-related queues on freeways using 2 
LTM. Discussion about how traffic data available from smart work-zone trailers may be 3 
used to inform model development and validation and to refine model parameters is also 4 
included in the paper. Additionally, a heuristic method, based on the HCM (17), is used 5 
to adjust model parameters to account for lane-changing maneuvers.  6 

 7 
METHODOLOGICAL APPROACH 8 
This section introduces the LTM model and its corresponding parameters. Additionally, 9 
this section describes the procedure to estimate queue length and user’s traffic delay and 10 
procedures to analyze work zone impact using the proposed framework. 11 

 12 
The Link Transmission Model 13 
The link transmission model (5), first introduced by Yperman, is an effective tool that 14 
implements Newell’s simplified kinematic traffic flow theory (18), in which traffic is 15 
modeled as a fluid that is a continuous function of time and space. LTM discretizes space 16 
and represents roadway segments as links connected at nodes. Each link is characterized 17 
by its length 𝐿𝑎, free-flow speed 𝑢𝑎

𝑓, capacity 𝑞𝑎
𝑚𝑎𝑥, jam density 𝑘𝑎

𝑗  and backward wave 18 
speed 𝑤𝑎. Parameter values assume a homogeneous, time-independent, and triangular 19 
fundamental diagram (Figure 1). 20 

 21 
FIGURE 1. Fundamental diagram for LTM 22 

 23 
LTM updates the variables representing cumulative counts upstream and 24 

downstream end of a link, 𝑁↑(𝑡) and 𝑁↓(𝑡), at a pre-defined time step based on the flow 25 
transmitted between links. Transmitted flow between links 1 and 2 at time step t, 𝑞12(𝑡) , is 26 
a function of link receiving flow 𝑅(𝑡) and sending flow 𝑆(𝑡), which characterize the 27 
maximum flow that link 𝑎 could receive or send at time 𝑡, respectively (Equations [1] and 28 
[2] in which  ∆𝑡 denotes the time step size), 29 

𝑅𝑎(𝑡) = min{𝑞𝑎
𝑚𝑎𝑥∆𝑡, 𝑘𝑎

𝑗
 𝐿𝑎 + 𝑁𝑎

↓ (𝑡 −
 𝐿𝑎

𝑤𝑎
+ ∆𝑡) −  𝑁𝑎

↑(𝑡)}                            [1] 30 

𝑆𝑎(𝑡) = min{𝑞𝑎
𝑚𝑎𝑥∆𝑡, 𝑁𝑎

↑ (𝑡 −
 𝐿𝑎

𝑢𝑎
𝑓 + ∆𝑡) −  𝑁𝑎

↓(𝑡)}                                      [2] 31 

The calculation of transmitted flows depends on the type of geometry and corresponding 32 
node model assumptions. General node models and intersection types are proposed in (19). 33 
The following sections describe the approach used in this work to represent links in series, 34 
merges, and diverges.  35 
 36 



Zhu, Ruiz-Juri, Boyles, Perrine, Chen, and Li  7 
 

Links in series 1 
For nodes in which there is one incoming and one outgoing link, 𝑞12(𝑡) is given by 2 
equation [3], where link 1 is the incoming link and link 2 is the outgoing link. 3 

 𝑞12(𝑡) = min{𝑆1(𝑡), 𝑅2(𝑡)}                                                       [3] 4 
 5 
Diverge 6 
Diverge scenario is characterized by one incoming link (link 1) and two or more outgoing 7 
links (links 2 and 3). Assuming the fraction of flow destined to each outgoing link is 8 
given by 𝑝12 and 𝑝13, two possible scenarios for flow calculation may arise. Case I 9 
represents a situation in which both downstream links can accommodate the sending 10 
flow, making the transmitted flow equal to the appropriate fraction of sending flow 11 
(Equations [4] and [5]). 12 

  𝑝12𝑆1(𝑡)  ≤  𝑅2(𝑡) ,  𝑝13𝑆1(𝑡)  ≤  𝑅3(𝑡)                                     [4] 13 
𝑞12(𝑡) =  𝑝12𝑆1(𝑡),  𝑞13(𝑡) =  𝑝13𝑆1(𝑡)                                     [5] 14 

In Case II, at least one of the downstream links cannot accommodate the 15 
incoming flow, then a moving fraction φ(t) is computed to maximize flow (Equations [6] 16 
and [7]) 17 

φ(t) = min {
𝑅2(𝑡)

𝑝12𝑆1(𝑡)
,

𝑅3(𝑡)

𝑝13𝑆1(𝑡)
}                                                     [6] 18 

𝑞12(𝑡) =  φ(t) 𝑝12𝑆1(𝑡),   𝑞13(𝑡) = φ(t) 𝑝13𝑆1(𝑡)                            [7] 19 
 20 
Merge with priority 21 
In a merge scenario, there is one outgoing link (link 1) and two incoming links (link 2 22 
and link 3). The calculation of transmitted flow requires defining the relative priority of 23 
the incoming links, 𝜌, for cases in which the receiving link cannot accommodate the total 24 
sending flow.  25 

Three possible scenarios may arise, depending on downstream conditions. In Case I 26 
the receiving link can accommodate all incoming flow (Equations [8] and [9]). 27 

𝑆2(𝑡) + 𝑆3(𝑡)  ≤  𝑅1(𝑡)                                                          [8] 28 
𝑞21(𝑡) =  𝑆2(𝑡) ,  𝑞31(𝑡) =  𝑆3(𝑡)                                          [9] 29 

Case II represents the situation where flow from both upstream links is restricted by 30 
the downstream link, and transmitted flow is given by Equations [10] and [11]. 31 

                  𝑆2(𝑡) >  
𝑞2

𝑚𝑎𝑥

𝑞2
𝑚𝑎𝑥+ 𝑞3

𝑚𝑎𝑥 𝑅1(𝑡), 𝑆3(𝑡) >  
𝑞3

𝑚𝑎𝑥

𝑞2
𝑚𝑎𝑥+ 𝑞3

𝑚𝑎𝑥 𝑅1(𝑡)                      [10] 32 

𝑞21(𝑡) =  
𝑞2

𝑚𝑎𝑥∙ 𝜌2

𝑞2
𝑚𝑎𝑥+ 𝑞3

𝑚𝑎𝑥 𝑅1(𝑡), 𝑞31(𝑡) =  
𝑞3

𝑚𝑎𝑥∙ 𝜌3

𝑞2
𝑚𝑎𝑥+ 𝑞3

𝑚𝑎𝑥 𝑅1(𝑡)                     [11] 33 
In Case III only one of the upstream links is restricted by the downstream link 34 

receiving flow. Equations [12] and [13] illustrate the case where a queue forms in link 2.  35 
𝑆2(𝑡) >  

𝑞2
𝑚𝑎𝑥

𝑞2
𝑚𝑎𝑥+ 𝑞3

𝑚𝑎𝑥 𝑅1(𝑡),  𝑆3(𝑡) <  
𝑞3

𝑚𝑎𝑥

𝑞2
𝑚𝑎𝑥+ 𝑞3

𝑚𝑎𝑥 𝑅1(𝑡)                        [12] 36 

𝑞21(𝑡) =  
𝑞2

𝑚𝑎𝑥 ∙ 𝜌2

𝑞2
𝑚𝑎𝑥+ 𝑞3

𝑚𝑎𝑥 𝑅1(𝑡), 𝑞31(𝑡) =   𝑅1(𝑡) − 𝑞21(𝑡)                       [13] 37 
The value of link priority depends on the geometric characteristics of the 38 

intersection and incoming link capacities. In the applications studied in this paper, the 39 
throughput of entry ramps suggests a much higher priority as a result of the presence of 40 
an auxiliary lane, and of generally low speeds during the analyzed period, because 41 
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geometric conditions make it easier for entering vehicles to join and merge into the main 1 
lanes even at the expense of main lane vehicles. 2 
 3 
Queue Length Estimation 4 
This section describes the calculation of queue length and queue tail based on traffic 5 
shockwave position. 6 

Equation [14] illustrates the calculation of shockwave speed 𝑣, where 𝑞↑(𝑡), 𝑞↓(𝑡) 7 
are upstream and downstream outflow rate, and 𝑘↑(𝑡), 𝑘↓(𝑡) are upstream and 8 
downstream densities, respectively.  9 

𝑣 =
𝑞↑(𝑡)−𝑞↓(𝑡) 

𝑘↑(𝑡)−𝑘↓(𝑡)
                                                                 [14]  10 

The shockwave movement per time step is 𝑣∆𝑡 and queue length can be estimated by 11 
tracking the shockwave in every time step. The computation of densities is shown in 12 
Equations [15] and [16]. 13 

𝑘↑(𝑡) = {

𝑞↑(𝑡)

𝑢𝑓   𝑖𝑓 𝑞↑(𝑡) < 𝑅(𝑡) and 𝑅(𝑡) =  𝑞𝑚𝑎𝑥  

𝑘𝑗 −
𝑞↑(𝑡)

𝑤
  Otherwise

                                [15] 14 

𝑘↓(𝑡) = {

𝑞↓(𝑡)

𝑢𝑓  if 𝑞↓(𝑡) = 𝑆(𝑡)

𝑘𝑗 −
𝑞↓(𝑡)

𝑤
 Otherwise

                                                    [16] 15 

 16 
User’s Traffic Delay Calculation 17 
The user’s traffic delay is defined as the difference between the total system travel time 18 
(TSTT) under construction and normal operating conditions. TSTT could be estimated as 19 
illustrated in Figure 2. At time 𝑡, 𝑁𝑎

↑(𝑡) − 𝑁𝑎
↓(𝑡) represents the number of vehicles on link 20 

a. So, TSTT of link a during time interval (𝑡, 𝑡 + ∆𝑡) is (𝑁𝑎
↑(𝑡) −  𝑁𝑎

↓(𝑡)) ∗ ∆𝑡. Denote 𝑇 21 
as the total number of time steps in the simulation, and A as the set of all the links in the 22 
network, the TSTT of the network is given by: 23 

𝑇𝑆𝑇𝑇 =  ∑ ∑  [(𝑁𝑎
↑(𝑡) −  𝑁𝑎

↓(𝑡)) ∗ ∆𝑡]𝑇
𝑡𝑎∈𝐴                                             [17] 24 

and the user’s traffic delay is  25 
𝐷𝑒𝑙𝑎𝑦 =  𝑇𝑆𝑇𝑇𝑐 − 𝑇𝑆𝑇𝑇0                                                        [18] 26 

where 𝑇𝑆𝑇𝑇𝑐 and 𝑇𝑆𝑇𝑇0  are the TSTT of the network under construction and normal 27 
operating conditions.  28 
 29 
 30 

 31 
FIGURE 2.  Total system travel time between  𝒕𝟎 and 𝒕𝟎 + ∆𝒕 32 

 33 
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Estimation of capacity through a work zone 1 
The work zone capacity is a critical parameter in any user delay cost estimation approach. 2 
This study implements the HCM (17) method to estimate work-zone capacity, presented 3 
in Equation [19],  4 

100
100

wz
wz

wz

QDR
C

a
= 

−
                                                           [19] 5 

where 𝐶𝑤𝑧 is work-zone capacity (passenger car per hour per lane[pcphpl]); 𝑎𝑤𝑧 is the 6 
percentage drop in pre-breakdown capacity at the work zone; 𝑄𝐷𝑅𝑤𝑧 is the average 7 
fifteen-minute queue discharge rate (pcphpl) and can be calculated using Equation [20], 8 

2093 154 194 179 9 59wz BT AT LAT DNQDR LCSI f f f f= −  −  −  +  −                  [20] 9 
in which 𝑓𝐵𝑇 is an indictor variable for barrier type; 𝑓𝐴𝑇 is an indictor factor for area type; 10 
𝑓𝐿𝐴𝑇 is lateral distance from the edge of travel lane to the barriers; 𝑓𝐷𝑁 is an indicator 11 
variable for day or night conditions. 12 
 13 
Accounting for Lane-changing Effects 14 
When work zones are present, additional lane-changing activity is typically observed 15 
upstream from closed lanes and exit ramps, leading to a reduced capacity. In this paper, 16 
this impact is accounted by limiting the receiving flow on links downstream from the 17 
“lane-changing influence area” (Figure 3) based on HCM. The detailed procedure is as 18 
follows.  19 

 20 
(a) 21 

             22 
(b) 23 

FIGURE 3.  Illustration of (a) diverging scenario and (b) lane-changing effect area for 24 
diverge and merge. 25 

 26 
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 1 
FIGURE 4.  Workflow to account for the lane-changing effect. 2 

 3 
Imagine a diverging scenario as shown in Figure 3 (a), based on HCM, a lane-4 

changing effect area appears upstream of the exit ramp. If the upstream traffic flow is 5 
low, the lane-changing effect is marginal and could be ignored. However, as the upstream 6 
traffic flow increases, the straight-moving vehicles would be affected by the lane-7 
changing maneuvers of the diverging vehicles and the actual number of straight-moving 8 
vehicles is restricted.  9 

In LTM, this scenario could be model as four links as shown in the Figure 3 (b), 10 
in which link 2 represents the link to account for the lane-changing effect. If the traffic 11 
that flows into the lane-changing effect area exceeds the suggested value of HCM, the 12 
capacity of link 3 should be restricted so that the actual flow that diverges and moves 13 
straight would decrease. Note that for multiple lane freeways, for example, a three-lane 14 
freeway as shown in Figure 3 (b), the link upstream flow 𝑞𝐹 is different from the traffic 15 
that flows into the lane-changing effect area 𝑞𝑎𝑏 because the lane-changing effect area 16 
only covers the lateral two lanes while the link upstream flow is the traffic that flows into 17 
all three lanes. Typically, 𝑞𝑎𝑏 is a function of 𝑞𝐹 and readers could refer to (17) for a 18 
detailed calculation of the lane-changing effect flow.  19 

In this regard, the workflow to account for lane-changing effect is shown in 20 
Figure 4. 21 
 22 
Implementing the LTM Method 23 
When lane closure presents due to construction or maintenance activities, the capacity of 24 
the road segment decreases, and the queue begins to accumulate upstream of the work 25 
zone segment when the traffic flow exceeds the capacity.  The proposed method could 26 
simulate this process by assigning a low capacity to the links that represent the work zone 27 
area. Besides, the user’s delay could be estimated as the difference between the TSTT 28 
under construction and normal operating conditions. The analysis procedure is illustrated 29 
in Figure 5.  30 
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 1 

 2 
FIGURE 5.  Illustration of the work zone impact analysis procedure. 3 

 4 
VALIDATION USING MICROSIMULATION 5 
This section presents the comparison of the queue propagation and dissipation process as 6 
simulated by LTM with VISSIM microsimulation under a range of travel demand inputs.  7 

The experiments consider a hypothetical freeway (Figure 6(a)) with four continuous 8 
main-lane roadway segments. In Figure 6(b) Link 1 is one mile long, and the remaining 9 
links are 0.5 miles long. The free-flow speed is assumed to be 60 mph in the main-lane 10 
segments and 45 mph in exit ramps. A lane closure in Link 7 is represented by a 11 
reduction in the number of lanes from 3 to 2. The experiments consider different 12 
scenarios involving various demand patterns (Table 1). 13 

 14 

 15 
FIGURE 6.  (a) Freeway network in which the arrows represent the location of potential 16 

bottleneck points and (b) corresponding LTM model 17 
 18 
Microsimulation model 19 
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Vehicle distributions and driver behavior parameters are chosen to mirror the United 1 
States driving patterns. Trucks percentage is chosen as 3 percent. The decision-making 2 
distance is 2,000 feet upstream of the respective diverges and lane closure. The simulator 3 
is configured to work at 5 times per simulation second.  4 

For each scenario, simulation runs are conducted with different random number 5 
seeds. The queue tail position results are then analyzed to find the averages and 95 6 
percent confidence intervals according to the t-distribution with 12 degrees of freedom. It 7 
is indirectly obtained by analyzing VISSIM queue counter primitives that are placed 8 
throughout the main lanes, which are “active” when vehicles crossing the counter 9 
location travel less than 3 mph, with a headway of fewer than 66 feet. Then, queue 10 
counters deem the queue dissipated (or “deactivated”) when speeds exceed 6 mph.  11 
 12 
LTM implementation 13 
For all scenarios, the backward wave speed is assumed to be half of the free-flow speed, 14 
and the jam density is 193 vehicles per mile per lane (vpmpl). A time step of 10 seconds 15 
is selected. The base capacity of main lanes and ramps are 2300 vehicles per hour per 16 
lane (vphpl) and 2000 vphpl respectively. 17 
 18 
Comparison scenarios 19 
Eighteen scenarios are considered (Table 1), each of which presents a different demand 20 
defined by the total volume entering on Link 1 and the diverge proportion at each exit 21 
ramp.  22 

In scenarios with “simple” geometry type, Ramp 3 is closed. The “compound” 23 
cases include a 10 percent exit volume on Ramp 3 that causes merge and diverge 24 
maneuvers to overlap in the same freeway region.  25 

In both approaches, the demand is maintained for simulation minutes and then 26 
reduced to a “cool down” traffic of 2000 vehicles per hour (vph). In some scenarios, the 27 
combination of input flow and OD pattern results in travel demands higher than available 28 
capacity (𝑞𝑎/𝑞𝑎

𝑚𝑎𝑥 > 1) at one or more locations. The last column identifies these 29 
locations, which are also shown in Figure 6(a).  30 

 31 
TABLE 1.  Demand Scenarios 32 

ID Geometry Type Demand Ramp 1 Ramp 2 Ramp 3 𝑞𝑎/𝑞𝑎
𝑚𝑎𝑥

> 1 
U1a Simple 

(without 
merge/diverge) 

5500 vph 10% 10% Closed M 
U1b 10% 25% Closed  
U1c 10% 40% Closed A 
U2a 6000 vph 10% 10% Closed MZ 
U2b 10% 25% Closed A M 
U2c 10% 40% Closed A C 
U3a 6500 vph 10% 10% Closed A MZ 
U3b 10% 25% Closed A MA 
U3c 10% 40% Closed A C 
D1a Compounded 

(merge/diverge) 
5500 vph Closed 10% 10% M 

D1b Closed 10% 25%  
D1c Closed 10% 40% B 
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D2a 6000 vph Closed 10% 10% MZ 
D2b Closed 10% 25% B M 
D2c Closed 10% 40% B D 
D3a 6500 vph Closed 10% 10% B MZ 
D3b Closed 10% 25% B M 
D3c Closed 10% 40% B D 

* A: Link 4 diverge influence area, B: Link 6 diverge influence area, C: Link 4 diverge, 1 
D: Link 6 diverge, M: the lane closure merge influence area, and Z: the downstream main lanes 2 
link. 3 
 4 
Results and Analysis 5 
In this section, the evolution of the queue tail position over time is presented for all 6 
scenarios. The queue position is measured in feet from the tail of Link 7.  7 

As the demand and ramp exit fractions are varied, the evolution of the queue tail 8 
position and corresponding estimation accuracy are largely dependent upon dominant 9 
bottleneck locations.  10 

For all the “simple” geometry type scenarios (Figure 7(a)), the bottleneck is 11 
located at the merge section leading to the lane closure, and the queue starts forming at 12 
the beginning of the simulation. The queue build-up continues until the travel demand is 13 
reduced to its cool-down value. In all these cases, both the queue build-up process and 14 
maximum queue length are captured fairly accurately. For scenarios D1c, D2c, and D3c, 15 
the maximum tail position is slightly underestimated. The former is expected to improve 16 
for a better selection of model parameters, particularly jam density (𝑘𝑎

𝑗𝑎𝑚). In the more 17 
congested scenarios in the compound geometry category (D1a, D2a, and D3a) the LTM-18 
based model tends to underestimate the queue dissipation speed. This is likely the result 19 
of implementing a static approach to adjust the capacity of the combined merge/diverge 20 
section, which relies on the worst-case demands during the analyzed period. Such an 21 
approach may over-penalize the merge section, leading to the observed slower queue 22 
dissipation. In reality, the impact of lane changing maneuvers is a function of prevailing 23 
traffic volumes that evolve during the simulation. Further research will implement a 24 
dynamic analysis considering time-varying demands at the corresponding nodes and 25 
links. A second factor that may influence the speed at which the queue tail recedes is the 26 
definition of queue in the context of this study.   27 

Figure 7(a) displays the results corresponding to the “simple” geometry-type 28 
scenarios. In the least congested cases (scenarios U1and U1b), a single queue forms at the 29 
merge location. The evolution of the queue tail position follows a similar pattern to that 30 
in the “compound” geometry cases. For scenario U1b, the LTM approach does not 31 
predict a queue formation. The corresponding microsimulation results present 32 
considerable “noise,” produced by very small queues that form and disappear erratically.  33 
Such queues, observed across most low-volume scenarios, are likely to be the result of 34 
random vehicle interactions which cannot be captured by the mesoscopic model. Their 35 
impact in terms of traffic operations is expected to be minimal, so this is not considered a 36 
serious limitation of the proposed framework.  37 

In the remaining scenarios, the queue formation consistently begins at Link 4, 38 
given that 𝑞𝑎/𝑞𝑎

𝑚𝑎𝑥 > 1 at such location. For scenario U3a, LTM correctly captures the 39 
early formation of a queue at Link 4 followed by the arrival of a shockwave originated on 40 
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Link 6 due to the higher volume of vehicles that do not exit the freeway. In scenarios 1 
U2b, U3b, and U1c, the LTM model overestimates the queue tail position throughout the 2 
simulation. These results support the previous conclusion suggesting the need to refine 3 
the proposed heuristic method. 4 

The results are very encouraging: the queue formation and dissipation patterns 5 
obtained from the LTM-based framework are remarkably similar to the ones observed in 6 
the microsimulation experiments. The corresponding root means squared errors values 7 
are below 0.1 miles in most cases. Further, the proposed LTM-based method requires a 8 
quarter-second to run in a mainstream 3.30 GHz, 4 GB Pentium Core i3 desktop 9 
computer. This is a sizeable improvement over the time of a microsimulation cycle, 10 
which is about 25 minutes for a set of 12 runs. 11 



 1 

 2 
(a) 3 



 1 

 2 
(b) 3 

FIGURE 7.  Queue tail position for scenarios with (a) “simple” geometry and (b) “compound” geometry4 



 1 
VALIDATION USING FIELD DATA 2 
This section describes the implementation of the proposed LTM framework to the 3 
analysis of a freeway closure on IH35 in Austin, Texas. The model is developed with 4 
traffic volume data collected by the Texas Department of Transportation (TxDOT) using 5 
smart work-zone trailers. Probe-based speed data from the National Performance 6 
Management Research Data Set (NPMRDS) (20) and point-speed data from work-zone 7 
trailers are used to validate estimated queue lengths, duration, and tail position. 8 
 9 
Work-zone Description and Simulation Parameters  10 
The analyzed road segment locates on northbound IH35 between Exit 232B and the East 11 
Riverside Drive interchange (Figure 8(a)). This road section consists of three lanes, two 12 
of which were closed for 7 hours for construction activities beginning on 10/16/2017 at 13 
21:50 pm. There are two on-ramps and two off-ramps in the study area, all of which are 14 
single-lane ramps. One off-ramp was closed during the construction period, as illustrated 15 
in Figure 8(b). Figure 8(c) presents the LTM representation of the study area. As 16 
illustrated, link 1 to link 4 correspond to the IH35 main lanes, with links 5 and 6 17 
representing construction segments and links 7 to 9 representing exit or entry ramps.  18 
 19 

 20 
(a) 21 
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 1 
(b) 2 

 3 
FIGURE 8. (a) Work-zone location and study area where the arrows represent the trailer 4 

location and black lines represent NPMRDS segments and (b) schematic representation and 5 
LTM network set-up of the study area  6 

 7 
LTM Model Network and Parameters 8 

The total capacity of normal links, work zone links, and ramps are 5,700 vph, 9 
2,300 vph, and 1,350 vph, respectively, based on HCM. Jam density is 190 vplpm for 10 
normal links. However, the jam density of links 2 and 4 is calculated using only three of 11 
the four lanes, to account for observed behavior that auxiliary lanes are not filled by 12 
queued vehicles. The free-flow speed is 60 mph for normal links and 45 mph for ramps 13 
and work-zone links according to available traffic control plans. The relative priority of 14 
the entry ramp is set to 10 based on the previous discussion (see “methodological 15 
approach”). 16 

In the study, the simulation starts at 21:00 pm to incorporate a “warm-up” period 17 
before construction starts (21:50 pm), with a time step of 10 seconds. 18 
 19 
Input Traffic Volumes  20 
In this study, the input traffic volume is derived from smart work-zone trailers data, 21 
which use a radar-based detection system to provide 5-minute traffic counts. The location 22 
of work-zone trailers is illustrated in Figure 8(b).  23 

The input traffic volume is estimated as follows: Trailer A provides the main lane 24 
traffic volumes, while the difference in volumes between trailer A and trailer B is used to 25 
estimate the volumes on the first off-ramp. Similarly, the volume of the remaining ramps 26 
is calculated as the difference between its nearby upstream and downstream link 27 
volumes.   28 

However, when modeling non-recurrent congestion, through traffic of the study area 29 
on a closure day may be different from a typical day. A comparison of cumulative traffic 30 
counts at three locations (main lanes and first on and off ramps) on a typical day and a 31 
closure day (Figure 9(a)) suggests that the main lanes volumes are not significantly 32 
affected by construction. However, a larger number of vehicles are observed to exit on 33 
link 7 and to enter on link 8 and link 9 on closure day after the work-zone start time 34 
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(21:50). The phenomenon suggests that some drivers may be diverted to alternative paths, 1 
while others may be queue-jumping: exiting before joining the queue and re-entering 2 
closer to the end of the queue. Such behaviors are likely to have an impact on the 3 
resulting traffic patterns and should be considered when developing decision support 4 
models.    5 

In this context, two sets of results are presented, one that uses typical day traffic 6 
input (“typical day inputs”), and one that uses closure day traffic input (“closure day 7 
inputs”). While the closure day inputs would not be available on a typical predictive 8 
application, the corresponding results illustrate the potential performance of LTM when 9 
accurate inputs are available, highlighting the importance of developing adequate 10 
techniques to approximate driver behavior during non-recurrent congestion. Table 2 11 
presents the corresponding values. 12 

 13 

 14 
(a) 15 

 16 

 17 
(b) 18 

 19 

 20 
(c) 21 

 22 
FIGURE 9. Comparison of cumulative counts at main lanes and on-/off-ramps on a typical 23 

day and closure day24 



 1 
TABLE 2.  Two input traffic volume profiles  2 

 Closure Day Typical  Day 
Time Interval Main lanes 

Traffic 
Flow (vph) 

Exit ramp 1 
diverge rate 

Entry ramp 
1 flow 
(vph) 

Entry ramp 
2 flow (vph) 

Main lanes 
Traffic Flow 

(vph) 

Exit ramp 1 
diverge rate 

Entry ramp 
1 flow 
(vph) 

Entry ramp 
2 flow 
(vph) 

21:00 – 21:30 1500 0.0% 1128 480 1534 0.0% 1024 482 
21:30 – 21:50 1516 10.0% 1100 285 1570 17.0% 1100 280 
21:50 – 22:00 1500 38.0% 816 624 1500 82.0% 876 444 
22:00 – 22:10 1626 73.0% 870 954 1110 57.0% 1062 606 
22:10 – 22:20 1149 50.0% 726 624 1272 42.0% 720 666 
22:20 – 22:30 1056 60.0% 690 930 1000 46.0% 564 648 
22:30 – 22:40 900 70.0% 700 516 1230 50.0% 582 354 
22:40 – 23:00 900 70.0% 700 516 900 40.0% 700 0 
23:00 – 5:00 500 60.0% 500 0 500 40.0% 500 0 

 3 



 1 
Validation Data 2 
In this case, the field data is considered as “ground truth”. The LTM results are compared 3 
with the validation data to examine the accuracy of the proposed framework. The 4 
NPMRDS are chosen as validation data, which provides 5-minute average speeds for 5 
freeway segments denoted traffic message channel (TMC). Relevant TMCs for this study 6 
are shown in Figure 8(a).  7 
 8 
Results Analysis 9 
Figure 10 presents the queue length comparison of LTM with NPMRDS. Grey scales are 10 
used to indicate average speeds: the darker color indicate the lower speed. Dark areas 11 
roughly indicate the position of the queue over time. This is an approximate location, 12 
considering that TMC segments may be long and that identifying the position of the 13 
queue within a segment requires further processing. 14 
 15 

 16 
FIGURE 10.  Illustration of queue propagation and dissipation process using NPMRDS and 17 

LTM 18 
 19 

The two curves in Figure 10 represent the position of the tail of the queue over 20 
time, as estimated by the LTM model using typical day and closure day traffic volume 21 
input. Table 3 compares maximum queue length, queue duration, and estimated total 22 
traffic delay. 23 

According to Figure 10, the closure day curve reaches its maximum length (1.1 24 
miles) around 22:25, which coincides with the lowest speeds reported by NPMRDS. The 25 
typical day curves peaks at almost the same time, with maximum length (0.9 mi.) shorter 26 
than the closure day. This is probably a result of the increased input volume on the entry 27 
ramp due to queue jumping and suggests that preventing such behavior could mitigate the 28 
impacts of construction. For both traffic input, the queue begins to dissipate around 23:00 29 
and fully dissipated by 23:50, when the NPMRDS speed increases to 60 mph. 30 
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According to Table 3, the total traffic delay is 505 hours when using closure day 1 
inputs, and 348 hours for typical day data, which corresponds to 10 and 7 minutes per 2 
vehicle, respectively. Based on the value of time of $17.91 per hour for passenger cars 3 
(21), the total user delay cost is $9,044 and $6,233, respectively. These values may be 4 
used to estimate the economic impact of construction activity on the road system and 5 
served as a reference for DoTs to charge to the related construction agencies. 6 

The result suggests that LTM adequately captures the queue duration, and roughly 7 
captures the propagation and dissipation process. Although the maximum queue length of 8 
the closure day is lower than the NPMRDS, note that LTM is a first order model that do 9 
not consider the vehicle acceleration and deceleration process, which means that there 10 
might be vehicles approaching the queue with a decreased speed. As a result, the actual 11 
queue length should be longer when taking these decelerating vehicles into account. 12 
Moreover, the actual queue length is probably lower than the length indicated by the 13 
figure, when considering the possibilities that actual queue occupies part of the TMC 14 
segments and decrease the average speed of the whole segment. For these reasons, the 15 
difference between the LTM and NPMRDS are not as significant as indicated by the 16 
figure.  17 

 18 
TABLE 3.  Comparison of field data with LTM results 19 

 NPMRDS Data Closure Day 
Input 

Typical Day 
Input 

Maximum Queue Length 
(miles) 

1.4 1.1 0.9 

Queue Start and End Time 21:50 – 23:40 21:50 – 23:45 21:50- 23:25 
Total Traffic Delay (hours) Unknown 398.8 378 
User’s Delay Cost (dollars) Unknown 7142.5 6770 

 20 
CONCLUSIONS 21 
This work develops and implements an LTM-based model for rapid calculation of queue 22 
length, tail position, and total traffic delay in freeway segments. One of the salient 23 
characteristics of the proposed method is its ability to easily accommodate any desired 24 
geometric configurations. It is also computationally efficient, producing results 25 
comparable to those of a microsimulator but with less set-up and run-time efforts. The 26 
approach also accounts for the impact of lane-changing in the proximity of lane closures 27 
and exit ramps through a heuristic procedure based on HCM recommendations.  28 

Model results are validated using microsimulation on a hypothetical freeway 29 
segment to explore model performance under a variety of traffic flow inputs and network 30 
configurations. Results are promising, suggesting that the LTM-based framework can 31 
replicate the queue formation and dissipation patterns produced by a microsimulator with 32 
remarkable accuracy. The analyzed cases include situations with more than one queue in 33 
the considered segment. The LTM approach also captured successfully the effect of 34 
queues that form one or more ramps upstream from the lane closure. Such queues, which 35 
result from an increased utilization of exit ramps, can be inadvertently introduced by 36 
using VMS to suggest detours. The former exemplifies the value of implementing 37 
simulation-based approaches in the design and implementation of traffic management 38 
plans. 39 
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This work also discusses the use of field data, increasingly available from fixed 1 
and mobile sensors, in the development and validation of simulation models. Traffic 2 
count and speed data from work-zone trailers are combined with segment-level speed 3 
data NPMRDS to test the LTM performance during a real-world closure. A qualitative 4 
analysis of the results suggests that the proposed approach can recreate the queue 5 
duration, and reasonable estimate the formation and dissipation process and estimate the 6 
maximum queue length. Our proposed use of probe-based and sensor data to validate 7 
model results qualitatively may be extended to the analysis of other models.  8 

Model results are sensitive to input data and model parameters. In this effort, two 9 
traffic volume inputs, closure day and typical day are presented. Aside from illustrating 10 
the sensitivity of the model to these inputs, the analysis suggests that queue-jumping 11 
prevention may improve traffic flow in the analyzed location, thus demonstrating the 12 
value of the proposed framework.  13 

This work made relatively simple assumptions on the values of other parameters 14 
such as work-zone capacity and merge-ramp priority. These parameters have a significant 15 
impact on model performance, and understanding how to inform their estimation based 16 
on a systematic analysis of field data and model results will be the subject of further 17 
research. Developing methods to better understand the position of the queue using field 18 
data can support quantitative validation efforts, which is the subject of ongoing research 19 
by the authors. Additionally, the framework may also be extended to incorporate real-20 
time information and predict expected queues within given planning horizons, providing 21 
a simple yet accurate modeling framework to support traffic operations in real time. 22 

The results presented in this paper suggest that the proposed simulation 23 
framework can provide results comparable to those of microsimulation, and consistent 24 
with field observations, with only one-second running time. This characteristic makes it 25 
suitable to support traffic management decisions, including the location of variable 26 
message signs in the traffic planning stage. The data workflows may be adjusted to use 27 
the tool in real time to support quick-response decisions for unexpected variations in 28 
traffic. The relatively low effort and negligible running time make this tool appropriate 29 
for applications for which budget and time constraints do not allow for detailed modeling, 30 
but which can benefit for more precise results than those from simpler analytical 31 
methods.  32 
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