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Project	Update:	Greedy	Subspace	Clustering	
PI:	Constantine	Caramanis	
	
Subspace clustering is the problem of fitting a collection of high-dimensional data 
points to a union of subspaces. This problem can be regarded as ‘‘Mixture of 
PCA’’ because the points are to be partitioned into subsets, each of which is 
modeled by a low-dimensional subspace. This model naturally arises in settings 
where data from multiple latent phenomena are mixed together and need to be 
separated. 

Recent algorithms for subspace clustering are based on two steps. At the first 
step, a number of neighbor points are collected for each data point. Then the 
points are segmented using spectral clustering. The state-of-the-art algorithms 
solve a convex program with size as large as the squared number of data points.  
As the amount of the data increases, the computational cost becomes critical. To 
reduce the cost, we proposed greedy algorithms. 

Our algorithms are provable in the sense that the exactly correct clustering is 
guaranteed under certain conditions in the standard models. For example, 
when  -dimensional subspaces are drawn uniformly at random in , 
and  random data points are iid uniformly generated on each subspace, exact 
clustering is guaranteed with high probability 

if  and . This condition is no worse than the 
existing statistical guarantees. 

In practice, our greedy algorithm, which is in general significantly faster than 
solving a convex program, performs competitively against the algorithms on real-
world benchmark datasets. We observed that our algorithm outperforms the 
existing greedy algorithms.  

This was the result reported in the following report. Since the publication of those 
results  in the Proceedings of the Neural Information Processing Systems 
conference (NIPS) in December 2014, we continued to work on this project in 
collaboration with Prof. Sujay Sanghavi (UT Austin) and Dr. Dohyung Park (now 
a researcher at Facebook) through August 2016. Our empirical results continue to 
represent the state of the art among all currently available algorithms. Therefore 
we believed it important to seek deeper theoretical insight into precisely why our 
algorithm seems to perform better than others. While we have been able to 
understand much about how our algorithm operates and why it succeeds, we 
were unable to obtain new theoretical guarantees beyond those already reported. 
As a consequence, no further publications were a direct consequence of this line 
of work, though in general this topic then led us to consider mixed regression, 
which has produced further publications as reported elsewhere. 
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Abstract

We consider the problem of subspace clustering: given points that lie on or near
the union of many low-dimensional linear subspaces, recover the subspaces. To
this end, one first identifies sets of points close to the same subspace and uses the
sets to estimate the subspaces. As the geometric structure of the clusters (linear
subspaces) forbids proper performance of general distance based approches such
as K-means, many model-specific methods have been proposed. In this paper,
we provide new simple and efficient algorithms for this problem. Our statisti-
cal analysis shows that the algorithms are guaranteed exact (perfect) clustering
performance under certain conditions on the number of points and the affinity be-
tween subspaces. These conditions are weaker than those considered in the stan-
dard statistical literature. Experimental results on synthetic data generated from
the standard unions of subspaces model demonstrate our theory. We also show
that our algorithm performs competitively against state-of-the-art algorithms on
real-world applications such as motion segmentation and face clustering, but with
much simpler implementation and lower computational cost.

1 Introduction

Subspace clustering is a classic problem where one is given points in a high-dimensional ambient
space and would like to approximate them by a union of lower-dimensional linear subspaces. In
particular, each subspace contains a subset of the points. This problem is hard because one needs to
jointly find the subspaces, and the points corresponding to each; the data we are given are unlabeled.
The unions of subspaces model naturally arises in settings where data from multiple latent phenom-
ena are mixed together and need to be separated. Applications of subspace clustering include motion
segmentation [23], face clustering [8], gene expression analysis [10], and system identification [22].
In these applications, data points with the same label (e.g., face images of a person under varying
illumination conditions, feature points of a moving rigid object in a video sequence) lie on a low-
dimensional subspace, and the mixed dataset can be modeled by unions of subspaces. For detailed
description of the applications, we refer the readers to the reviews [10, 20] and references therein.

There is now a sizable literature on empirical methods for this particular problem and some statis-
tical analysis as well. Many recently proposed methods, which perform remarkably well and have
theoretical guarantees on their performances, can be characterized as involving two steps: (a) find-
ing a “neighborhood” for each data point, and (b) finding the subspaces and/or clustering the points
given these neighborhoods. Here, neighbors of a point are other points that the algorithm estimates
to lie on the same subspace as the point (and not necessarily just closest in Euclidean distance).
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Subspace Conditions for:
Algorithm What is guaranteed condition Fully random model Semi-random model

SSC [4, 16] Correct neighborhoods None d
p = O(

log(n/d)
log(nL)

) max aff = O(

√
log(n/d)

log(nL)
)

LRR [14] Exact clustering No intersection - -
SSC-OMP [3] Correct neighborhoods No intersection - -

TSC [6, 7] Exact clustering None d
p = O( 1

log(nL)
) max aff = O( 1

log(nL)
)

LRSSC [24] Correct neighborhoods None d
p = O( 1

log(nL)
) -

NSN+GSR Exact clustering None d
p = O( logn

log(ndL)
) max aff = O(

√
logn

(log dL)·log(ndL)
)

NSN+Spectral Exact clustering None d
p = O( logn

log(ndL)
) -

Table 1: Subspace clustering algorithms with theoretical guarantees. LRR and SSC-OMP have only
deterministic guarantees, not statistical ones. In the two standard statistical models, there are n data
points on each of L d-dimensional subspaces in Rp. For the definition of max aff , we refer the
readers to Section 3.1.

Our contributions: In this paper we devise new algorithms for each of the two steps above; (a) we
develop a new method, Nearest Subspace Neighbor (NSN), to determine a neighborhood set for each
point, and (b) a new method, Greedy Subspace Recovery (GSR), to recover subspaces from given
neighborhoods. Each of these two methods can be used in conjunction with other methods for the
corresponding other step; however, in this paper we focus on two algorithms that use NSN followed
by GSR and Spectral clustering, respectively. Our main result is establishing statistical guarantees
for exact clustering with general subspace conditions, in the standard models considered in recent
analytical literature on subspace clustering. Our condition for exact recovery is weaker than the
conditions of other existing algorithms that only guarantee correct neighborhoods1, which do not
always lead to correct clustering. We provide numerical results which demonstrate our theory. We
also show that for the real-world applications our algorithm performs competitively against those
of state-of-the-art algorithms, but the computational cost is much lower than them. Moreover, our
algorithms are much simpler to implement.

1.1 Related work

The problem was first formulated in the data mining community [10]. Most of the related work in
this field assumes that an underlying subspace is parallel to some canonical axes. Subspace cluster-
ing for unions of arbitrary subspaces is considered mostly in the machine learning and the computer
vision communities [20]. Most of the results from those communities are based on empirical justi-
fication. They provided algorithms derived from theoretical intuition and showed that they perform
empirically well with practical dataset. To name a few, GPCA [21], Spectral curvature clustering
(SCC) [2], and many iterative methods [1, 19, 26] show their good empirical performance for sub-
space clustering. However, they lack theoretical analysis that guarantees exact clustering.

As described above, several algorithms with a common structure are recently proposed with both
theoretical guarantees and remarkable empirical performance. Elhamifar and Vidal [4] proposed an
algorithm called Sparse Subspace Clustering (SSC), which uses `1-minimization for neighborhood
construction. They proved that if the subspaces have no intersection2, SSC always finds a correct
neighborhood matrix. Later, Soltanolkotabi and Candes [16] provided a statistical guarantee of the
algorithm for subspaces with intersection. Dyer et al. [3] proposed another algorithm called SSC-
OMP, which uses Orthogonal Matching Pursuit (OMP) instead of `1-minimization in SSC. Another
algorithm called Low-Rank Representation (LRR) which uses nuclear norm minimization is pro-
posed by Liu et al. [14]. Wang et al. [24] proposed an hybrid algorithm, Low-Rank and Sparse Sub-
space Clustering (LRSSC), which involves both `1-norm and nuclear norm. Heckel and Bölcskei [6]
presented Thresholding based Subspace Clustering (TSC), which constructs neighborhoods based
on the inner products between data points. All of these algorithms use spectral clustering for the
clustering step.

The analysis in those papers focuses on neither exact recovery of the subspaces nor exact clustering
in general subspace conditions. SSC, SSC-OMP, and LRSSC only guarantee correct neighbor-
hoods which do not always lead to exact clustering. LRR guarantees exact clustering only when

1By correct neighborhood, we mean that for each point every neighbor point lies on the same subspace.
2By no intersection between subspaces, we mean that they share only the null point.
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the subspaces have no intersections. In this paper, we provide novel algorithms that guarantee exact
clustering in general subspace conditions. When we were preparing this manuscript, it is proved
that TSC guarantees exact clustering under certain conditions [7], but the conditions are stricter than
ours. (See Table 1)

1.2 Notation

There is a set of N data points in Rp, denoted by Y = {y1, . . . , yN}. The data points are lying on
or near a union of L subspaces D = ∪Li=1Di. Each subspace Di is of dimension di which is smaller
than p. For each point yj , wj denotes the index of the nearest subspace. Let Ni denote the number
of points whose nearest subspace is Di, i.e., Ni =

∑N
j=1 Iwj=i. Throughout this paper, sets and

subspaces are denoted by calligraphic letters. Matrices and key parameters are denoted by letters
in upper case, and vectors and scalars are denoted by letters in lower case. We frequently denote
the set of n indices by [n] = {1, 2, . . . , n}. As usual, span{·} denotes a subspace spanned by a
set of vectors. For example, span{v1, . . . , vn} = {v : v =

∑n
i=1 αivi, α1, . . . , αn ∈ R}. ProjUy

is defined as the projection of y onto subspace U . That is, ProjUy = arg minu∈U ‖y − u‖2. I{·}
denotes the indicator function which is one if the statement is true and zero otherwise. Finally,

⊕
denotes the direct sum.

2 Algorithms

We propose two algorithms for subspace clustering as follows.

• NSN+GSR : Run Nearest Subspace Neighbor (NSN) to construct a neighborhood matrix
W ∈ {0, 1}N×N , and then run Greedy Subspace Recovery (GSR) for W .

• NSN+Spectral : Run Nearest Subspace Neighbor (NSN) to construct a neighborhood ma-
trix W ∈ {0, 1}N×N , and then run spectral clustering for Z = W +W>.

2.1 Nearest Subspace Neighbor (NSN)

NSN approaches the problem of finding neighbor points most likely to be on the same subspace in
a greedy fashion. At first, given a point y without any other knowledge, the one single point that is
most likely to be a neighbor of y is the nearest point of the line span{y}. In the following steps, if
we have found a few correct neighbor points (lying on the same true subspace) and have no other
knowledge about the true subspace and the rest of the points, then the most potentially correct point
is the one closest to the subspace spanned by the correct neighbors we have. This motivates us to
propose NSN described in the following.

Algorithm 1 Nearest Subspace Neighbor (NSN)

Input: A set of N samples Y = {y1, . . . , yN}, The number of required neighbors K, Maximum
subspace dimension kmax.

Output: A neighborhood matrix W ∈ {0, 1}N×N
yi ← yi/‖yi‖2, ∀i ∈ [N ] . Normalize magnitudes
for i = 1, . . . , N do . Run NSN for each data point
Ii ← {i}
for k = 1, . . . ,K do . Iteratively add the closest point to the current subspace

if k ≤ kmax then
U ← span{yj : j ∈ Ii}

end if
j∗ ← arg maxj∈[N ]\Ii ‖ProjUyj‖2
Ii ← Ii ∪ {j∗}

end for
Wij ← Ij∈Ii or yj∈U , ∀j ∈ [N ] . Construct the neighborhood matrix

end for

NSN collects K neighbors sequentially for each point. At each step k, a k-dimensional subspace U
spanned by the point and its k − 1 neighbors is constructed, and the point closest to the subspace is

3



newly collected. After k ≥ kmax, the subspace U constructed at the kmaxth step is used for collect-
ing neighbors. At last, if there are more points lying on U , they are also counted as neighbors. The
subspace U can be stored in the form of a matrix U ∈ Rp×dim(U) whose columns form an orthonor-
mal basis of U . Then ‖ProjUyj‖2 can be computed easily because it is equal to ‖U>yj‖2. While
a naive implementation requires O(K2pN2) computational cost, this can be reduced to O(KpN2),
and the faster implementation is described in Section A.1. We note that this computational cost is
much lower than that of the convex optimization based methods (e.g., SSC [4] and LRR [14]) which
solve a convex program with N2 variables and pN constraints.

NSN for subspace clustering shares the same philosophy with Orthogonal Matching Pursuit (OMP)
for sparse recovery in the sense that it incrementally picks the point (dictionary element) that is
the most likely to be correct, assuming that the algorithms have found the correct ones. In subspace
clustering, that point is the one closest to the subspace spanned by the currently selected points, while
in sparse recovery it is the one closest to the residual of linear regression by the selected points. In
the sparse recovery literature, the performance of OMP is shown to be comparable to that of Basis
Pursuit (`1-minimization) both theoretically and empirically [18, 11]. One of the contributions of
this work is to show that this high-level intuition is indeed born out, provable, as we show that NSN
also performs well in collecting neighbors lying on the same subspace.

2.2 Greedy Subspace Recovery (GSR)

Suppose that NSN has found correct neighbors for a data point. How can we check if they are
indeed correct, that is, lying on the same true subspace? One natural way is to count the number
of points close to the subspace spanned by the neighbors. If they span one of the true subspaces,
then many other points will be lying on the span. If they do not span any true subspaces, few points
will be close to it. This fact motivates us to use a greedy algorithm to recover the subspaces. Using
the neighborhood constructed by NSN (or some other algorithm), we recover the L subspaces. If
there is a neighborhood set containing only the points on the same subspace for each subspace, the
algorithm successfully recovers the unions of the true subspaces exactly.

Algorithm 2 Greedy Subspace Recovery (GSR)

Input: N points Y = {y1, . . . , yN}, A neighborhood matrix W ∈ {0, 1}N×N , Error bound ε
Output: Estimated subspaces D̂ = ∪Ll=1D̂l. Estimated labels ŵ1, . . . , ŵN
yi ← yi/‖yi‖2, ∀i ∈ [N ] . Normalize magnitudes
Wi ← Top-d{yj : Wij = 1}, ∀i ∈ [N ] . Estimate a subspace using the neighbors for each point
I ← [N ]
while I 6= ∅ do . Iteratively pick the best subspace estimates

i∗ ← arg maxi∈I
∑N
j=1 I{‖ProjWi

yj‖2 ≥ 1− ε}
D̂l ← Ŵi∗

I ← I \ {j : ‖ProjWi∗
yj‖2 ≥ 1− ε}

end while
ŵi ← arg maxl∈[L] ‖ProjD̂lyi‖2, ∀i ∈ [N ] . Label the points using the subspace estimates

Recall that the matrix W contains the labelings of the points, so that Wij = 1 if point i is assigned
to subspace j. Top-d{yj : Wij = 1} denotes the d-dimensional principal subspace of the set of
vectors {yj : Wij = 1}. This can be obtained by taking the first d left singular vectors of the
matrix whose columns are the vector in the set. If there are only d vectors in the set, Gram-Schmidt
orthogonalization will give us the subspace. As in NSN, it is efficient to store a subspace Wi in
the form of its orthogonal basis because we can easily compute the norm of a projection onto the
subspace.

Testing a candidate subspace by counting the number of near points has already been considered in
the subspace clustering literature. In [25], the authors proposed to run RANdom SAmple Consensus
(RANSAC) iteratively. RANSAC randomly selects a few points and checks if there are many other
points near the subspace spanned by the collected points. Instead of randomly choosing sample
points, GSR receives some candidate subspaces (in the form of sets of points) from NSN (or possibly
some other algorithm) and selects subspaces in a greedy way as specified in the algorithm above.
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3 Theoretical results

We analyze our algorithms in two standard noiseless models. The main theorems present sufficient
conditions under which the algorithms cluster the points exactly with high probability. For simplicity
of analysis, we assume that every subspace is of the same dimension, and the number of data points
on each subspace is the same, i.e., d , d1 = · · · = dL, n , N1 = · · · = NL. We assume that d
is known to the algorithm. Nonetheless, our analysis can extend to the general case.

3.1 Statistical models

We consider two models which have been used in the subspace clustering literature:

• Fully random model: The subspaces are drawn iid uniformly at random, and the points are
also iid randomly generated.

• Semi-random model: The subspaces are arbitrarily determined, but the points are iid ran-
domly generated.

Let Di ∈ Rp×d, i ∈ [L] be a matrix whose columns form an orthonormal basis of Di. An important
measure that we use in the analysis is the affinity between two subspaces, defined as

aff(i, j) ,
‖D>i Dj‖F√

d
=

√∑d
k=1 cos2 θi,jk

d
∈ [0, 1],

where θi,jk is the kth principal angle between Di and Dj . Two subspaces Di and Dj are identical if
and only if aff(i, j) = 1. If aff(i, j) = 0, every vector on Di is orthogonal to any vectors on Dj . We
also define the maximum affinity as

max aff , max
i,j∈[L],i6=j

aff(i, j) ∈ [0, 1].

There are N = nL points, and there are n points exactly lying on each subspace. We assume that
each data point yi is drawn iid uniformly at random from Sp−1 ∩Dwi where Sp−1 is the unit sphere
in Rp. Equivalently,

yi = Dwixi, xi ∼ Unif(Sd−1), ∀i ∈ [N ].

As the points are generated randomly on their corresponding subspaces, there are no points lying on
an intersection of two subspaces, almost surely. This implies that with probability one the points are
clustered correctly provided that the true subspaces are recovered exactly.

3.2 Main theorems

The first theorem gives a statistical guarantee for the fully random model.

Theorem 1 Suppose L d-dimensional subspaces and n points on each subspace are generated in
the fully random model with n polynomial in d. There are constants C1, C2 > 0 such that if

n

d
> C1

(
log

ne

dδ

)2

,
d

p
<

C2 log n

log(ndLδ−1)
, (1)

then with probability at least 1 − 3Lδ
1−δ , NSN+GSR3 clusters the points exactly. Also, there are

other constants C ′1, C
′
2 > 0 such that if (1) with C1 and C2 replaced by C ′1 and C ′2 holds then

NSN+Spectral4 clusters the points exactly with probability at least 1 − 3Lδ
1−δ . e is the exponential

constant.

3NSN with K = kmax = d followed by GSR with arbitrarily small ε.
4NSN with K = kmax = d.
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Our sufficient conditions for exact clustering explain when subspace clustering becomes easy or
difficult, and they are consistent with our intuition. For NSN to find correct neighbors, the points on
the same subspace should be many enough so that they look like lying on a subspace. This condition
is spelled out in the first inequality of (1). We note that the condition holds even when n/d is a
constant, i.e., n is linear in d. The second inequality implies that the dimension of the subspaces
should not be too high for subspaces to be distinguishable. If d is high, the random subspaces are
more likely to be close to each other, and hence they become more difficult to be distinguished.
However, as n increases, the points become dense on the subspaces, and hence it becomes easier to
identify different subspaces.

Let us compare our result with the conditions required for success in the fully random model in the
existing literature. In [16], it is required for SSC to have correct neighborhoods that n should be
superlinear in d when d/p fixed. In [6, 24], the conditions on d/p becomes worse as we have more
points. On the other hand, our algorithms are guaranteed exact clustering of the points, and the
sufficient condition is order-wise at least as good as the conditions for correct neighborhoods by the
existing algorithms (See Table 1). Moreover, exact clustering is guaranteed even when n is linear in
d, and d/p fixed.

For the semi-random model, we have the following general theorem.

Theorem 2 Suppose L d-dimensional subspaces are arbitrarily chosen, and n points on each
subspace are generated in the semi-random model with n polynomial in d. There are constants
C1, C2 > 0 such that if

n

d
> C1

(
log

ne

dδ

)2

, max aff <

√
C2 log n

log(dLδ−1) · log(ndLδ−1)
. (2)

then with probability at least 1− 3Lδ
1−δ , NSN+GSR5 clusters the points exactly.

In the semi-random model, the sufficient condition does not depend on the ambient dimension p.
When the affinities between subspaces are fixed, and the points are exactly lying on the subspaces,
the difficulty of the problem does not depend on the ambient dimension. It rather depends on
max aff , which measures how close the subspaces are. As they become closer to each other, it
becomes more difficult to distinguish the subspaces. The second inequality of (2) explains this in-
tuition. The inequality also shows that if we have more data points, the problem becomes easier to
identify different subspaces.

Compared with other algorithms, NSN+GSR is guaranteed exact clustering, and more importantly,
the condition on max aff improves as n grows. This remark is consistent with the practical per-
formance of the algorithm which improves as the number of data points increases, while the ex-
isting guarantees of other algorithms are not. In [16], correct neighborhoods in SSC are guar-
anteed if max aff = O(

√
log(n/d)/ log(nL)). In [6], exact clustering of TSC is guaranteed if

max aff = O(1/ log(nL)). However, these algorithms perform empirically better as the number of
data points increases.

4 Experimental results

In this section, we empirically compare our algorithms with the existing algorithms in terms of
clustering performance and computational time (on a single desktop). For NSN, we used the fast
implementation described in Section A.1. The compared algorithms are K-means, K-flats6, SSC,
LRR, SCC, TSC7, and SSC-OMP8. The numbers of replicates in K-means, K-flats, and the K-

5NSN with K = d− 1 and kmax = d2 log de followed by GSR with arbitrarily small ε.
6K-flats is similar to K-means. At each iteration, it computes top-d principal subspaces of the points with

the same label, and then labels every point based on its distances to those subspaces.
7The MATLAB codes for SSC, LRR, SCC, and TSC are obtained from http://www.cis.

jhu.edu/˜ehsan/code.htm, https://sites.google.com/site/guangcanliu, and
http://www.math.duke.edu/˜glchen/scc.html, http://www.nari.ee.ethz.ch/
commth/research/downloads/sc.html, respectively.

8For each data point, OMP constructs a neighborhood for each point by regressing the point on the other
points up to 10−4 accuracy.

6
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Figure 1: CE of algorithms on 5 random d-dimensional subspaces and n random points on each
subspace. The figures shows CE for different numbers of n/d and ambient dimension p. d/p is
fixed to be 3/5. Brighter cells represent that less data points are clustered incorrectly.

l1−minimization (SSC)

Am
bi

en
t d

im
en

si
on

 (p
)

2 4 6 8 10

50

35

20

10

5

OMP (SSC−OMP)

2 4 6 8 10

50

35

20

10

5

Nuclear norm min. (LRR)

Number of points per dimension for each subspace (n/d)
2 4 6 8 10

50

35

20

10

5

Nearest neighbor (TSC)

2 4 6 8 10

50

35

20

10

5

NSN

 

 

2 4 6 8 10

50

35

20

10

5
0

0.2

0.4

0.6

0.8

1

Figure 2: NSE for the same model parameters as those in Figure 1. Brighter cells represent that
more data points have all correct neighbors.
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Figure 3: Average computational time of the neighborhood selection algorithms

means used in the spectral clustering are all fixed to 10. The algorithms are compared in terms of
Clustering error (CE) and Neighborhood selection error (NSE), defined as

(CE) = min
π∈ΠL

1

N

N∑
i=1

I(wi 6= π(ŵi)), (NSE) =
1

N

N∑
i=1

I(∃j : Wij 6= 0, wi 6= wj)

where ΠL is the permutation space of [L]. CE is the proportion of incorrectly labeled data points.
Since clustering is invariant up to permutation of label indices, the error is equal to the minimum
disagreement over the permutation of label indices. NSE measures the proportion of the points
which do not have all correct neighbors.9

4.1 Synthetic data

We compare the performances on synthetic data generated from the fully random model. In Rp,
five d-dimensional subspaces are generated uniformly at random. Then for each subspace n unit-
norm points are generated iid uniformly at random on the subspace. To see the agreement with the
theoretical result, we ran the algorithms under fixed d/p and varied n and d. We set d/p = 3/5 so
that each pair of subspaces has intersection. Figures 1 and 2 show CE and NSE, respectively. Each
error value is averaged over 100 trials. Figure 1 indicates that our algorithm clusters the data points
better than the other algorithms. As predicted in the theorems, the clustering performance improves

9For the neighborhood matrices from SSC, LRR, and SSC-OMP, the d points with the maximum weights
are regarded as neighbors for each point. For TSC, the d nearest neighbors are collected for each point.
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L Algorithms K-means K-flats SSC LRR SCC SSC-OMP(8) TSC(10) NSN+Spectral(5)
Mean CE (%) 19.80 13.62 1.52 2.13 2.06 16.92 18.44 3.62

2 Median CE (%) 17.92 10.65 0.00 0.00 0.00 12.77 16.92 0.00
Avg. Time (sec) - 0.80 3.03 3.42 1.28 0.50 0.50 0.25

Mean CE (%) 26.10 14.07 4.40 4.03 6.37 27.96 28.58 8.28
3 Median CE (%) 20.48 14.18 0.56 1.43 0.21 30.98 29.67 2.76

Avg. Time (sec) - 1.89 5.39 4.05 2.16 0.82 1.15 0.51

Table 2: CE and computational time of algorithms on Hopkins155 dataset. L is the number of
clusters (motions). The numbers in the parentheses represent the number of neighbors for each
point collected in the corresponding algorithms.

L Algorithms K-means K-flats SSC SSC-OMP TSC NSN+Spectral
Mean CE (%) 45.98 37.62 1.77 4.45 11.84 1.71

2 Median CE (%) 47.66 39.06 0.00 1.17 1.56 0.78
Avg. Time (sec) - 15.78 37.72 0.45 0.33 0.78

Mean CE (%) 62.55 45.81 5.77 6.35 20.02 3.63
3 Median CE (%) 63.54 47.92 1.56 2.86 15.62 3.12

Avg. Time (sec) - 27.91 49.45 0.76 0.60 3.37
Mean CE (%) 73.77 55.51 4.79 8.93 11.90 5.81

5 Median CE (%) 74.06 56.25 2.97 5.00 33.91 4.69
Avg. Time (sec) - 52.90 74.91 1.41 1.17 5.62

Mean CE (%) 82.68 62.72 9.43 15.32 39.48 9.82
10 Median CE (%) 82.97 62.89 8.75 17.11 39.45 9.06

Avg. Time (sec) - 134.0 157.5 5.26 3.17 14.73

Table 3: CE and computational time of algorithms on Extended Yale B dataset. For each number of
clusters (faces) L, the algorithms ran over 100 random subsets drawn from the overall 38 clusters.

as the number of points increases. However, it also improves as the dimension of subspaces grows in
contrast to the theoretical analysis. We believe that this is because our analysis on GSR is not tight.
In Figure 2, we can see that more data points obtain correct neighbors as n increases or d decreases,
which conforms the theoretical analysis.

We also compare the computational time of the neighborhood selection algorithms for different
numbers of subspaces and data points. As shown in Figure 3, the greedy algorithms (OMP, Thresh-
olding, and NSN) are significantly more scalable than the convex optimization based algorithms
(`1-minimization and nuclear norm minimization).

4.2 Real-world data : motion segmentation and face clustering

We compare our algorithm with the existing ones in the applications of motion segmentation and
face clustering. For the motion segmentation, we used Hopkins155 dataset [17], which contains
155 video sequences of 2 or 3 motions. For the face clustering, we used Extended Yale B dataset
with cropped images from [5, 13]. The dataset contains 64 images for each of 38 individuals in
frontal view and different illumination conditions. To compare with the existing algorithms, we
used the set of 48 × 42 resized raw images provided by the authors of [4]. The parameters of the
existing algorithms were set as provided in their source codes.10 Tables 2 and 3 show CE and average
computational time.11 We can see that NSN+Spectral performs competitively with the methods with
the lowest errors, but much faster. Compared to the other greedy neighborhood construction based
algorithms, SSC-OMP and TSC, our algorithm performs significantly better.
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A Discussion on implementation issues

A.1 A faster implementation for NSN

At each step of NSN, the algorithm computes the projections of all points onto a subspace and
find one with the largest norm. A naive implementation of the algorithm requires O(pK2N2) time
complexity.

In fact, we can reduce the complexity to O(pKN2). Instead of finding the maximum norm of the
projections, we can find the maximum squared norm of the projections. Let Uk be the subspace U
at step k. For any data point y, we have

‖ProjUky‖
2
2 = ‖ProjUk−1

y‖22 + |u>k y|2

where uk is the new orthogonal axis added from Uk−1 to make Uk. That is, Uk−1 ⊥ uk and
Uk = Uk−1

⊕
uk. As ‖ProjUk−1

y‖22 is already computed in the (k − 1)’th step, we do not need to
compute it again at step k. Based on this fact, we have a faster implementation as described in the
following. Note that Pj at the kth step is equal to ‖ProjUkyj‖

2
2 in the original NSN algorithm.

Algorithm 3 Fast Nearest Subspace Neighbor (F-NSN)

Input: A set of N samples Y = {y1, . . . , yN}, The number of required neighbors K, Maximum
subspace dimension kmax.

Output: A neighborhood matrix W ∈ {0, 1}N×N
yi ← yi/‖yi‖2, ∀i ∈ [N ]
for i = 1, . . . , N do
Ii ← {i}, u1 ← yi
Pj ← 0,∀j ∈ [N ]
for k = 1, . . . ,K do

if k ≤ kmax then
Pj ← Pj + ‖u>k yj‖2, ∀j ∈ [N ]

end if
j∗ ← arg maxj∈[N ],j /∈Ii Pj
Ii ← Ii ∪ {j∗}
if k < kmax then

uk+1 ←
yj∗−

∑k
l=1(u>l yj∗ )ul

‖yj∗−
∑k
l=1(u>l yj∗ )ul‖2

end if
end for
Wij ← Ij∈Ii or Pj=1, ∀j ∈ [N ]

end for

A.2 Estimation of the number of clusters

When L is unknown, it can be estimated at the clustering step. For Spectral clustering, a well-known
approach to estimate L is to find a knee point in the singular values of the neighborhood matrix. It
is the point where the difference between two consecutive singular values are the largest. For GSR,
we do not need to estimate the number of clusters a priori. Once the algorithms finishes, the number
of the resulting groups will be our estimate of L.

A.3 Parameter setting

The choices of K and kmax depend on the dimension of the subspaces d. If data points are lying
exactly on the model subspaces, K = kmax = d is enough for GSR to recover a subspace. In
practical situations where the points are near the subspaces, it is better to set K to be larger than d.
kmax can also be larger than d because the kmax − d additional dimensions, which may be induced
from the noise, do no intersect with the other subspaces in practice. For Extended Yale B dataset
and Hopkins155 dataset, we found that NSN+Spectral performs well if K is set to be around 2d.
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B Proofs

B.1 Proof outline

We describe the first few high-level steps in the proofs of our main theorems. Exact clustering of
our algorithms depends on whether NSN can find all correct neighbors for the data points so that
the following algorithm (GSR or Spectral clustering) can cluster the points exactly. For NSN+GSR,
exact clustering is guaranteed when there is a point on each subspace that have all correct neighbors
which are at least d− 1. For NSN+Spectral, exact clustering is guaranteed when each data point has
only the n − 1 other points on the same subspace as neighbors. In the following, we explain why
these are true.

Step 1-1: Exact clustering condition for GSR

The two statistical models have a property that for any d-dimensional subspace in Rp other than the
true subspaces D1, . . . ,DL the probability of any points lying on the subspace is zero. Hence, we
claim the following.

Fact 3 (Best d-dimensional fit) With probability one, the true subspacesD1, . . . ,DL are theL sub-
spaces containing the most points among the set of all possible d-dimensional subspaces.

Then it suffices for each subspace to have one point whose neighbors are d− 1 all correct points on
the same subspace. This is because the subspace spanned by those d points is almost surely identical
to the true subspace they are lying on, and that subspace will be picked by GSR.

Fact 4 If NSN with K ≥ d − 1 finds all correct neighbors for at least one point on each subspace,
GSR recovers all the true subspaces and clusters the data points exactly with probability one.

In the following steps, we consider one data point for each subspace. We show that NSN with
K = kmax = d finds all correct neighbors for the point with probability at least 1− 3δ

1−δ . Then the
union bound and Fact 4 establish exact clustering with probability at least 1− 3Lδ

1−δ .

Step 1-2: Exact clustering condition for spectral clustering

It is difficult to analyze spectral clustering for the resulting neighborhood matrix of NSN. A trivial
case for a neighborhood matrix to result in exact clustering is when the points on the same subspace
form a single fully connected component. If NSN with K = kmax = d finds all correct neighbors
for every data point, the subspace U at the last step (k = K) is almost surely identical to the true
subspace that the points lie on. Hence, the resulting neighborhood matrixW form L fully connected
components each of which contains all of the points on the same subspace.

In the rest of the proof, we show that if (1) holds, NSN finds all correct neighbors for a fixed point
with probability 1− 3δ

1−δ . Let us assume that this is true. If (1) with C1 and C2 replaced by C1

4 and
C2

2 holds, we have

n > C1d

(
log

ne

d(δ/n)

)2

,
d

p
<

C2 log n

log(ndL(δ/n)−1)
.

Then it follows from the union bound that NSN finds all correct neighbors for all of the n points
on each subspace with probability at least 1 − 3Lδ

1−δ , and hence we obtain Wij = Iwi=wj for every
(i, j) ∈ [N ]2. Exact clustering is guaranteed.

Step 2: Success condition for NSN

Now the only proposition that we need to prove is that for each subspace Di NSN finds all correct
neighbors for a data point (which is a uniformly random unit vector on the subspace) with probability
at least 1 − 3δ

1−δ . As our analysis is independent of the subspaces, we only consider D1. Without
loss of generality, we assume that y1 lies on D1 (w1 = 1) and focus on this data point.
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When NSN finds neighbors of y1, the algorithm constructs kmax subspaces incrementally. At each
step k = 1, . . . ,K, if the largest projection onto U of the uncollected points on the same true
subspace D1 is greater than the largest projection among the points on different subspaces, then
NSN collects a correct neighbor. In a mathematical expression, we want to satisfy

max
j:wj=1,j /∈I1

‖ProjUyj‖2 > max
j:wj 6=1,j /∈I1

‖ProjUyj‖2 (3)

for each step of k = 1, . . . ,K.

The rest of the proof is to show (1) and (2) lead to (3) with probability 1− 3δ
1−δ in their corresponding

models. It is difficult to prove (3) itself because the subspaces, the data points, and the index set I1

are all dependent of each other. Instead, we introduce an Oracle algorithm whose success is equiv-
alent to the success of NSN, but the analysis is easier. Then the Oracle algorithm is analyzed using
stochastic ordering, bounds on order statistics of random projections, and the measure concentration
inequalities for random subspaces. The rest of the proof is provided in Sections B.3 and B.4.

B.2 Preliminary lemmas

Before we step into the technical parts of the proof, we introduce the main ingredients which will
be used. The following lemma is about upper and lower bounds on the order statistics for the
projections of iid uniformly random unit vectors.

Lemma 5 Let x1, . . . , xn be drawn iid uniformly at random from the d-dimensional unit ball Sd−1.
Let z(n−m+1) denote the m’th largest value of {zi , ‖Axi‖2, 1 ≤ i ≤ n} where A ∈ Rk×d.

a. Suppose that the rows of A are orthonormal to each other. For any α ∈ (0, 1), there exists
a constant C > 0 such that for n,m, d, k ∈ N where

n−m+ 1 ≥ Cm
(

log
ne

mδ

)2

(4)

we have

z2
(n−m+1) >

k

d
+

1

d
·min

{
2 log

(
n−m+ 1

Cm
(
log ne

mδ

)2
)
, α
√
d− k

}
(5)

with probability at least 1− δm.

b. For any k × d matrix A,

z(n−m+1) <
‖A‖F√

d
+
‖A‖2√
d
·
(√

2π +

√
2 log

ne

mδ

)
(6)

with probability at least 1− δm.

Lemma 5b can be proved by using the measure concentration inequalities [12]. Not only can they
provide inequalities for random unit vectors, they also give us inequalities for random subspaces.

Lemma 6 Let the columns of X ∈ Rd×k be the orthonormal basis of a k-dimensional random
subspace drawn uniformly at random in d-dimensional space.

a. For any matrix A ∈ Rp×d.

E[‖AX‖2F ] =
k

d
‖A‖2F

b. [15, 12] If ‖A‖2 is bounded, then we have

Pr

{
‖AX‖F >

√
k

d
‖A‖F + ‖A‖2 ·

(√
8π

d− 1
+ t

)}
≤ e−

(d−1)t2

8 .
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B.3 Proof of Theorem 2

Following Section B.1, we show in this section that if (2) holds then NSN finds all correct neighbors
for y1 (which is assumed to be on D1) with probability at least 1− 3δ

1−δ .

Step 3: NSN Oracle algorithm

Consider the Oracle algorithm in the following. Unlike NSN, this algorithm knows the true label of
each data point. It picks the point closest to the current subspace among the points with the same
label. Since we assume w1 = 1, the Oracle algorithm for y1 picks a point in {yj : wj = 1} at every
step.

Algorithm 4 NSN Oracle algorithm for y1 (assuming w1 = 1)

Input: A set of N samples Y = {y1, . . . , yN}, The number of required neighbors K = d − 1,
Maximum subspace dimension kmax = d2 log de
I(1)

1 ← {1}
for k = 1, . . . ,K do

if k ≤ kmax then
Vk ← span{yj : j ∈ I(k)

1 }
j∗k ← arg max

j∈[N ]:wj=1,j /∈I(k)1
‖ProjVkyj‖2

else
j∗k ← arg max

j∈[N ]:wj=1,j /∈I(k)1
‖ProjVkmax yj‖2

end if
if max

j∈[N ]:wj=1,j /∈I(k)i
‖ProjVkyj‖2 ≤ maxj∈[N ]:wj 6=1 ‖ProjVky‖2 then

Return FAILURE
end if
I(k+1)

1 ← I(k)
1 ∪ {j∗k}

end for
Return SUCCESS

Note that the Oracle algorithm returns failure if and only if the original algorithm picks an incorrect
neighbor for y1. The reason is as follows. Suppose that NSN for y1 picks the first incorrect point at
step k. By the step k− 1, correct points have been chosen because they are the nearest points for the
subspaces in the corresponding steps. The Oracle algorithm will also pick those points because they
are the nearest points among the correct points. Hence U ≡ Vk. At step k, NSN picks an incorrect
point as it is the closest to U . The Oracle algorithm will declare failure because that incorrect point
is closer than the closest point among the correct points. In the same manner, we see that NSN fails
if the Oracle NSN fails. Therefore, we can instead analyze the success of the Oracle algorithm. The
success condition is written as

‖ProjVkyj∗k‖2 > max
j∈[N ]:wj 6=1

‖ProjVky‖2, ∀k = 1, . . . , kmax,

‖ProjVkmax yj
∗
k
‖2 > max

j∈[N ]:wj 6=1
‖ProjVkmax y‖2, ∀k = kmax + 1, . . . ,K. (7)

Note that Vk’s are independent of the points {yj : j ∈ [N ], wj 6= 1}. We will use this fact in the
following steps.

Step 4: Lower bounds on the projection of correct points (the LHS of (7))

Let Vk ∈ Rd×k be such that the columns of D1Vk form an orthogonal basis of Vk. Such a Vk exists
because Vk is a k-dimensional subspace of D1. Then we have

‖ProjVkyj∗k‖2 = ‖V >k D>1 D1xj∗k‖2 = ‖V >k xj∗k‖2

In this step, we obtain lower bounds on ‖V >k xj∗k‖2 for k ≤ kmax and ‖V >kmaxxj∗k‖2 for k > kmax.
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It is difficult to analyze ‖V >k xj∗k‖2 because Vk and xj∗k are dependent. We instead analyze another
random variable that is stochastically dominated by ‖V >k xj∗k‖

2
2. Then we use a high-probability

lower bound on that variable which also lower bounds ‖V >k xj∗k‖
2
2 with high probability.

Define Pk,(m) as the m’th largest norm of the projections of n− 1 iid uniformly random unit vector
on Sd−1 onto a k-dimensional subspace. Since the distribution of the random unit vector is isotropic,
the distribution of Pk,(m) is identical for any k-dimensional subspaces independent of the random
unit vectors. We have the following key lemma.

Lemma 7 ‖V >k xj∗k‖2 stochastically dominates Pk,(k), i.e.,

Pr{‖V >k xj∗k‖2 ≥ t} ≥ Pr{Pk,(k) ≥ t}

for any t ≥ 0. Moreover, Pk,(k) ≥ Pk̂,(k) for any k̂ ≤ k.

The proof of the lemma is provided in Appendix B.5. Now we can use the lower bound on Pk,(k)

given in Lemma 5a to bound ‖V >k xj∗k‖2. Let us pick α and C for which the lemma holds. The first

inequality of (2) with C1 = C + 1 leads to n− d > Cd
(
log ne

dδ

)2
, and also

n− k > Ck
(

log
ne

kδ

)2

, ∀k = 1, . . . , d− 1. (8)

Hence, it follow from Lemma 5a that for each k = 1, . . . , kmax, we have

‖V >k xj∗k‖2 ≥
k

d
+

1

d
min

{
2 log

(
n− k + 1

Ck
(
log ne

kδ

)2
)
, α
√
d− k

}

≥ k

d
+

1

d
min

{
2 log

(
n− d

Cd
(
log ne

δ

)2
)
, α
√
d− 2 log d

}
(9)

with probability at least 1− δk.

For k > kmax, we want to bound ‖ProjVkmax yj
∗
k
‖2. We again use Lemma 7 to obtain the bound.

Since the condition for the lemma holds as shown in (8), we have

‖V >kmaxxj∗k‖2 ≥
2 log d

d
+

1

d
min

{
2 log

(
n− k + 1

Ck
(
log ne

kδ

)2
)
, α
√
d− 2 log d

}

≥ 2 log d

d
+

1

d
min

{
2 log

(
n− d

Cd
(
log ne

δ

)2
)
, α
√
d− 2 log d

}
(10)

with probability at least 1− δk, for every k = kmax + 1, . . . , d− 1.

The union bound gives that (9) and (10) hold for all k = 1, . . . , d − 1 simultaneously with
probability at least 1− δ

1−δ .

Step 5: Upper bounds on the projection of incorrect points (the RHS of (7))

Since we have ‖ProjVkyj‖2 = ‖V >k D>1 Dwjxj‖2, the RHS of (7) can be written as

max
j:j∈[N ],wj 6=1

‖V >k D>1 Dwjxj‖2 (11)

In this step, we want to bound (11) for every k = 1, . . . , d−1 by using the concentration inequalities
for Vk and xj . Since Vk and xj are independent, the inequality for xj holds for any fixed Vk.
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It follows from Lemma 5b and the union bound that with probability at least 1− δ,

max
j:j∈[N ],wj 6=1

‖V >k D>1 Dwjxj‖2

≤ maxl 6=1 ‖V >k D>1 Dl‖F√
d

+
maxl 6=1 ‖V >k D>1 Dl‖2√

d
·

(
√

2π +

√
2 log

n(L− 1)e

δ/d

)

≤ maxl 6=1 ‖V >k D>1 Dl‖F√
d

·

(
5 +

√
2 log

ndL

δ

)
for all k = 1, . . . , d − 1. The last inequality follows from the fact ‖V >k D>1 Dl‖2 ≤ ‖V >k D>1 Dl‖F .
Since ‖V >k D>1 Dwjxj‖2 ≤ ‖V >k D>1 Dwj‖F ≤ maxl 6=1 ‖V >k D>1 Dl‖F for every j such that wj 6= 1,
we have

max
j:j∈[N ],wj 6=1

‖V >k D>1 Dwjxj‖2 ≤
maxl 6=1 ‖V >k D>1 Dl‖F√

d
·min

{
5 +

√
2 log

ndL

δ
,
√
d

}
. (12)

Now let us consider maxl 6=1 ‖V >k D>1 Dl‖F . In our statistical model, the new axis added to Vk at the
kth step (uk+1 in Algorithm 3) is chosen uniformly at random from the subspace in D1 orthogonal
to Vk. Therefore, Vk is a random matrix drawn uniformly from the d × k Stiefel manifold, and the
probability measure is the normalized Haar (rotation-invariant) measure. From Lemma 6b and the
union bound, we obtain that with probability at least 1− δ/dL,

‖V >k D>1 Dl‖F ≤
√
k

d
‖D>1 Dl‖F + ‖D>1 Dl‖2 ·

(√
8π

d− 1
+

√
8

d− 1
log

dL

δ

)

≤ ‖D>1 Dl‖F ·

(√
k

d
+

√
8π

d− 1
+

√
8

d− 1
log

dL

δ

)

≤ max aff ·
√
d ·

(√
k

d
+

√
8π

d− 1
+

√
8

d− 1
log

dL

δ

)
. (13)

The union bound gives that with probability at least 1 − δ, maxl 6=1 ‖V >k D>1 Dl‖F is also bounded
by (13) for every k = 1, . . . , kmax.

Putting (13) and (12) together, we obtain

max
j:j∈[N ],wj 6=1

‖V >k D>1 Dwjxj‖2

≤ max aff ·

(√
k

d
+

√
8π

d− 1
+

√
8

d− 1
log

dL

δ

)
·min

{
5 +

√
2 log

ndL

δ
,
√
d

}
(14)

for all k = 1, . . . , d− 1 with probability at least 1− 2δ.

Final Step: Proof of the main theorem

Putting (9), (10), and (14) together, we obtain that if

max aff < min
1≤k≤d−1

√
min{k, 2 log d}+ min

{
2 log

(
n−d
Cd

)
− 4 log log ne

δ , α
√
d− 2 log d

}
(√

min{k, 2 log d}+
√

8πd
d−1 +

√
8d
d−1 log dL

δ

)
·min

{
5 +

√
2 log ndL

δ ,
√
d

} ,
(15)

then (7) holds, and hence NSN finds all correct neighbors for y1 with probability at least 1 − 3δ
1−δ .

The RHS of (15) is minimized when k ≥ 2 log d, and consequently the condition (15) is equivalent
to

max aff <

√
2 log d+ min

{
2 log

(
n−d
Cd

)
− 4 log log ne

δ , α
√
d− 2 log d

}
(√

2 log d+
√

8πd
d−1 +

√
8d
d−1 log dL

δ

)
·min

{
5 +

√
2 log ndL

δ ,
√
d

} . (16)
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As n is polynomial in d, there is a constant C3 > 0 such that

(RHS of (16)) >
C3

√
log (n− d)− log log ne

δ√
log dL

δ · log ndL
δ

This completes the proof.

B.4 Proof of Theorem 1

As we did in Section B.3, we prove in this section that if (1) holds then NSN finds all correct
neighbors for y1 with probability at least 1− 3δ

1−δ .

The only difference between the semi-random model and the fully random model is the statistical
dependence between subspaces. We can follow Step 3 in Section B.3 because they do not take any
statistical dependence between subspaces into account. We assert that (7) is the success condition
also for the fully random model. However, as K = kmax = d, there is no case where k > kmax in
this proof.

Now we provide a new proof of the last three steps for the fully random model.

Step 4: Lower bounds on the projection of correct points (the LHS of (7))

We again use Lemma 7. For k > d/2, we use the fact that ‖V >k xj∗k‖2 stochastically dominates
Pbd/2c,(k). Then it follows from Lemma 5a that

‖V >k xj∗k‖2 ≥
k

2d
+

1

d
min

{
2 log

(
n− k + 1

Ck
(
log ne

kδ

)2
)
, α
√
d/2

}
(17)

for all k = 1, . . . , d− 1 simultaneously with probability at least 1− δ
1−δ .

Step 5: Upper bounds on the projection of incorrect points (the RHS of (7))

We again use the notion of Xk ∈ Rd×k which is defined in the proof of Theorem 2. Since
‖ProjVkyj‖2 = ‖V >k D>1 yj‖2, the RHS of (7) can be written as

max
j:j∈[N ],wj 6=1

‖V >k D>1 yj‖2 (18)

Since the true subspaces are independent of each other, yj with wj 6= 1 is also independent of D1

and Vk, and its marginal distribution is uniform over Sp−1. It follows from Lemma 5b that with
probability at least 1− δ/d,

(18) ≤ ‖V
>
k D

>
1 ‖F√
p

+
‖V >k D>1 ‖2√

p
·

√
2 log

n(L− 1)e

δ/d

≤

√
k

p
+

√
2

p
log

ndLe

δ
. (19)

The last inequality is obtained using the facts ‖D1Vk‖F =
√
k and ‖D1Vk‖2 ≤ 1. The union bound

provides that (19) holds for every k = 1, . . . , d− 1 with probability at least 1− δ.

Final Step: Proof of the main theorem

Now it suffices to show that (17) > (19) for every k = 1, 2, . . . , d− 1, i.e.,√√√√ k

2d
+

1

d
min

{
2 log

(
n− k + 1

Ck
(
log ne

kδ

)2
)
, α

√
d

2

}
>

√
k

p
+

√
2

p
log

ndLe

δ
, ∀k = 1, 2, . . . , d− 1.

(20)
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where α,C are the constants described in Lemma 5a. (20) is equivalent to

d

p
< min

1≤k≤d−1

k/2 + min
{

2 log
(
n−k+1
Ck

)
− 4 log

(
log ne

kδ

)
, α
√
d/2
}

(√
k +

√
2 log(ndLδ−1e)

)2 . (21)

As n is polynomial in d, the numerator can be replaced by O(k + log(n − k + 1)). The RHS is
minimized when k = O(log(ndLδ−1)). Hence, the above condition is satisfied if (1) holds.

B.5 Proof of Lemma 7

We construct a generative model for two random variables that are equal in distribution to ‖V >k xj∗k‖
2
2

and P 2
k,(k). Then we show that the one corresponding to ‖V >k xj∗k‖

2
2 is greater than the other cor-

responding to P 2
k,(k). This generative model uses the fact that for any isotropic distributions the

marginal distributions of the components along any orthogonal axes are invariant.

The generative model is given as follows.

1. For k = 1, . . . , kmax, repeat 2.

2. Draw n− 1 iid random variables Y (k)
1 , . . . , Y

(k)
n−1 as follows.

Y
(k)
j =

(
1−

k−1∑
i=1

Y
(i)
j

)
· (X(k)

j1 )2, X
(k)
j ∼ Unif(Sd−k), ∀j = 1, . . . , n− 1.

where X(k)
j1 is the first coordinate of X(k)

j . Define

πk , arg max
j:j 6=π1,...,πk−1

(
k∑
i=1

Y
(i)
j

)
.

3. For k = kmax + 1, . . . , d− 1, repeat

πk , arg max
j:j 6=π1,...,πk−1

(
kmax∑
i=1

Y
(i)
j

)
.

We first claim that (
∑k
i=1 Y

(i)
πk ) is equal in distribution to ‖V >k xj∗k‖

2
2. Consider the following two

sets of random variables.

Ak ,

(
k∑
i=1

Y
(i)
j : j ∈ [n− 1], j 6= π1, . . . , πk−1

)
,

Bk ,
(
‖V >k xj‖22 : wj = 1, j 6= 1, j∗1 , . . . , j

∗
k−1

)
.

Each set contains (n− k) random variables. We prove by induction that the joint distribution of the
random variables of Ak is equal to those of Bk. Then the claim follows because (

∑k
i=1 Y

(i)
πk ) and

‖V >k xj∗k‖
2
2 are the maximums of Ak and Bk, respectively.

• Base case : As V1 = x1, B1 = (‖V >1 xj‖22 : wj = 1, j 6= 1) is the set of squared inner
products with x1 for the n−1 other points. Since the n−1 points are iid uniformly random
unit vectors independent of x1, the squared inner products with x1 are equal in distribution
to Y (1)

j = (X
(1)
j1 )2. Therefore, the joint distribution of B1 = (‖V >1 xj‖22 : wj = 1, j 6= 1)

is equal to the joint distribution of A1 = (Y
(1)
j : j = 1, . . . , n− 1).

• Induction : Assume that the joint distribution of Ak is equal to the joint distribution of Bk.
It is sufficient to show that given Ak ≡ Bk the conditional joint distribution of Ak+1 =

(
∑k+1
i=1 Y

(i)
j : j ∈ [n − 1], j 6= π1, . . . , πk) is equal to the conditional joint distribution of

Bk+1 = (‖V >k+1xj‖22 : wj = 1, j 6= 1, j∗1 , . . . , j
∗
k). Define

vk =
xj∗k − VkV

>
k xj∗k

‖xj∗k − VkV
>
k xj∗k‖2

.
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vk is the unit vector along the new orthogonal axis added on Vk for Vk+1. Since we have

‖V >k+1xj‖22 = ‖V >k xj‖22 + (v>k xj)
2, ∀j : wj = 1,

The two terms are independent of each other because Vk ⊥ vk, and xj is isotropically
distributed. Hence, we only need to show that ((v>k xj)

2 : wj = 1, j 6= 1, j∗1 , . . . , j
∗
k) is

equal in distribution to (Y
(k+1)
j : j ∈ [n− 1], j 6= π1, . . . , πk).

Since vk is a normalized vector on the subspace V⊥k ∩ D1, and xj∗k is drawn iid from an
isotropic distribution, vk is independent of V >k xj∗k . Hence, the marginal distribution of vk
given Vk is uniform over (V⊥k ∩ D1) ∩ Sp−1. Also, vk is also independent of the points
{xj : wj = 1, j 6= 1, j∗1 , . . . , j

∗
k}. Therefore, the random variables (v>k xj)

2 for j with
wj = 1, j 6= 1, j∗1 , . . . , j

∗
k are iid equal in distribution to Y (k+1)

j for any j.

Second, we can see that the k’th maximum of {
∑k
i=1 Y

(i)
j : j ∈ [n − 1]} is equal in distribution

to P 2
k,(k). This is because each

∑k
i=1 Y

(i)
j can be seen as the norm of the projection of a uniformly

random unit vector in Rd onto a k-dimensional subspace.

Now we are ready to complete the proof. Since
(∑k

i=1 Y
(i)
πk

)
is the maximum of the n−k variables

of Ak, it is greater than or equal to the k’th maximum of
(∑k

i=1 Y
(i)
j : j ∈ [n− 1]

)
. Therefore,

‖V >k xj∗k‖
2
2 stochastically dominates P 2

k,(k).

The second claim is clear because Vk̂ ⊆ Vk, and hence the norm of the projection onto Vk is always
larger than the norm of the projection onto Vk̂.

B.6 Proof of Lemma 5a

Let x be an unit vector drawn uniformly at random from Sd−1. Equivalently, x can be drawn from

x =
w

‖w‖2
, w ∼ N (0, Id×d).

Define A⊥ ∈ R(d−k)×d as a matrix with orthonormal rows such that ‖w‖22 = ‖Aw‖22 + ‖A⊥w‖22
for any w ∈ Rd. We have

Pr

{
‖Ax‖22 >

k

d
(1 + ε)

}
= Pr

{
‖Aw‖22
‖w‖22

>
k

d
(1 + ε)

}
= Pr

{
‖Aw‖22

‖Aw‖22 + ‖A⊥w‖22
>
k

d
(1 + ε)

}
≥ Pr

{
‖Aw‖22 > k(1 + ε), ‖A⊥w‖22 < (d− k)− kε

}
= Pr

{
‖Aw‖22 > k(1 + ε)

}
· Pr

{
‖A⊥w‖22 < (d− k)− kε

}
, (22)

where the last equality follows from that ‖Aw‖2 and ‖A⊥w‖2 are independent of each other because
w ∼ N (0, Id×d). Note that ‖Aw‖22 and ‖A⊥w‖22 are Chi-square random variables with degrees of
freedom k and d− k, respectively.

Now we use the following lemma.

Lemma 8 (Chi-square upper-tail lower-bound) For any k ∈ N and any ε ≥ 0, we have

Pr{χ2
k ≥ k(1 + ε)} ≥ 1

3
√
kε+ 6

exp

(
−kε

2

)
.

where χ2
k is the chi-square random variable with k degrees of freedom.
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Suppose 0 ≤ ε ≤ α (d−k)
1
2

k for some α ∈ (0, 1). It follows from Lemma 8 and the central limit
theorem that

(22) ≥ Pr
{
‖Aw‖22 > k(1 + ε)

}
· Pr

{
‖A⊥w‖22 − (d− k) < −α(d− k)

1
2

}
≥ f(α)

3kε+ 6
exp

(
−kε

2

)
where f(α) ∈ (0, 1) is some constant depending only on α.

Then it follows that

Pr

{
z2

(n−m+1) <
k

d
(1 + ε)

}
= Pr

{
∃I ⊂ [n], |I| = n−m+ 1 : z2

i <
k

d
(1 + ε),∀i ∈ I

}
≤
(

n

m− 1

)
· Pr

{
z2

1 <
k

d
(1 + ε)

}n−m+1

≤
(ne
m

)m
·
(

1− f(α)

3kε+ 6
exp

(
−kε

2

))n−m+1

≤ exp

{
m log

ne

m
− f(α) · (n−m+ 1)

3kε+ 6
exp

(
−kε

2

)}
(23)

where we use the facts
(
n
m

)
≤
(
ne
m

)m
and 1 + x ≤ ex,∀x.

Set C = 6
f(α) , and choose ε such that

ε =
1

k
min

{
2 log

(
n−m+ 1

Cm
(
log ne

mδ

)2
)
, α
√
d− k

}
.

This ε is valid because 0 ≤ ε ≤ α (d−k)
1
2

k . Then we obtain

(23) ≤ exp

m log
ne

m
− f(α) · (n−m+ 1)

6 log

(
n−m+1

Cm(log ne
mδ )

2

)
+ 6

·
Cm

(
log ne

mδ

)2
n−m+ 1


= exp

m log
ne

m
−

6 log ne
mδ

6
(

1 + log
(
f(α)

6 · n−m+1
m · (log ne

mδ )−2
)) ·m log

ne

mδ


≤ exp

{
m log

ne

m
−

6(1 + log n
m )

6(1 + log f(α)
6 + log n

m )
m log

ne

mδ

}
≤ exp

{
m log

ne

m
−m log

ne

mδ

}
≤ δm.

This completes the proof.

B.7 Proof of Lemma 5b

We use a special case of Levy’s lemma for this proof.

Lemma 9 ([12]) For x ∼ Unif(Sd−1),

Pr{‖Ax‖2 > m‖Ax‖2 + t} ≤ exp

(
− dt2

2‖A‖22

)
,

Pr{‖Ax‖2 < m‖Ax‖2 − t} ≤ exp

(
− dt2

2‖A‖22

)
.

for any matrix A ∈ Rp×d and t > 0. m‖Ax‖2 is the median of ‖Ax‖2.
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It follows from the lemma that

|E‖Ax‖2 −m‖Ax‖2| ≤ E [|‖Ax‖2 −m‖Ax‖2|] ≤
∫ ∞

0

2e
− dt2

2‖A‖22 dt =

√
2π

d
‖A‖2.

Then we have

Pr

{
‖Axi‖2 >

√
‖A‖2F
d

+

√
2π

d
‖A‖2 + t

}
= Pr

{
‖Axi‖2 >

√
E‖Axi‖22 +

√
2π

d
‖A‖2 + t

}

≤ Pr

{
‖Axi‖2 > E‖Axi‖2 +

√
2π

d
‖A‖2 + t

}
≤ Pr {‖Axi‖2 > m‖Axi‖2 + t}

≤ exp

(
− dt2

2‖A‖22

)
.

It follows that

Pr

{
z(n−m+1) >

√
‖A‖2F
d

+

√
2π

d
‖A‖2 + t

}

≤ Pr

{
∃I ⊂ [n], |I| = m : ‖Axi‖2 >

√
‖A‖2F
d

+

√
2π

d
‖A‖2 + t,∀i ∈ I

}

≤
(
n

m

)
· Pr

{
‖Ax1‖2 >

√
‖A‖2F
d

+

√
2π

d
‖A‖2 + t

}m
≤
(ne
m

)m
· exp

(
− mdt2

2‖A‖22

)
= exp

{
m log

ne

m
− mdt2

2‖A‖22

}
.

Replacing t with
√

2‖A‖22
d log ne

mδ , we obtain the desired result.

B.8 Proof of Lemma 6a

Let A = UΣV > be the singular value decomposition of A. Then we have

E[‖AX‖2F ] = E[‖UΣV >X‖2F ] = E[‖ΣX‖2F ] =

min(p,d)∑
i=1

σ2
i ·

 k∑
j=1

E[X2
ij ]

 =

min(p,d)∑
i=1

σ2
i ·

k

d
=
k

d
‖A‖2F .

where the second last equality follows from that Xij is a coordinate of a uniformly random unit
vector, and thus

E[X2
ij ] =

1

d
, ∀i, j.

B.9 Proof of Lemma 6b

Consider the Stiefel manifold Vk(Rd) equipped with the Euclidean metric. We see that X is drawn
from Vk(Rd) with the normalized Harr probability measure. We have

‖AX‖F − ‖AY ‖F ≤ ‖AX −AY ‖F = ‖A(X − Y )‖F ≤ ‖A‖2‖X − Y ‖F
for any X,Y ∈ Rd×k. Since ‖A‖2 ≤ 1, ‖AX‖F is a 1-Lipschitz function of X . Then it follows
from [15, 12] that

Pr{‖AX‖F > m‖AX‖F + t} ≤ e−
(d−1)t2

8 ,
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where m‖AX‖F is the median of ‖AX‖F . Also, we have

Pr{|‖AX‖F −m‖AX‖F | > t} ≤ 2e−
(d−1)t2

8 ,

and then it follows that

|E‖AX‖F −m‖AX‖F | ≤ E [|‖AX‖F −m‖AX‖F |] ≤
∫ ∞

0

2e−
(d−1)t2

8 dt =

√
8π

d− 1
.

It follows from Jensen’s inequality and Lemma 6a that

E‖AX‖F ≤
√
E‖AX‖2F =

√
k

d
‖A‖F

Putting the above inequalities together using the triangle inequality, we obtain the desired result.

B.10 Proof of Lemma 8

For k ≥ 2, it follows from [9, Proposition 3.1] that

Pr{χ2
k ≥ k(1 + ε)} ≥ 1− e−2

2

k(1 + ε)

kε+ 2
√
k

exp

(
−1

2
(kε− (k − 2) log(1 + ε) + log k)

)
≥ 1

3
√
kε+ 6

exp

(
−k

2
(ε− log(1 + ε))

)
≥ 1

3
√
kε+ 6

exp

(
−kε

2

)
.

For k = 1, we can see numerically that the inequality holds.
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