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Matrix Completion with Column Manipulation:
Near-Optimal Sample-Robustness-Rank Tradeoffs

Yudong Chen, Huan Xu, Constantine Caramanis, Member, IEEE, and Sujay Sanghavi, Member, IEEE

Abstract—This paper considers the problem of matrix com-
pletion when some number of the columns are completely and
arbitrarily corrupted, potentially by a malicious adversary. It
is well-known that standard algorithms for matrix completion
can return arbitrarily poor results, if even a single column
is corrupted. One direct application comes from robust col-
laborative filtering. Here, some number of users are so-called
manipulators who try to skew the predictions of the algorithm
by calibrating their inputs to the system. In this paper, we develop
an efficient algorithm for this problem based on a combination
of a trimming procedure and a convex program that minimizes
the nuclear norm and the `1,2 norm. Our theoretical results
show that given a vanishing fraction of observed entries, it is
nevertheless possible to complete the underlying matrix even
when the number of corrupted columns grows. Significantly, our
results hold without any assumptions on the locations or values of
the observed entries of the manipulated columns. Moreover, we
show by an information-theoretic argument that our guarantees
are nearly optimal in terms of the fraction of sampled entries on
the authentic columns, the fraction of corrupted columns, and
the rank of the underlying matrix. Our results therefore sharply
characterize the tradeoffs between sample, robustness and rank
in matrix completion.

I. INTRODUCTION

Previous work in low-rank matrix completion [10], [11],
[19], [15] has demonstrated the following remarkable fact:
given a m × n matrix of rank r, if its entries are sam-
pled uniformly at random, then with high probability, the
solution to a convex and in particular tractable optimization
problem yields exact reconstruction of the matrix when only
O((m+ n)r log(m+ n)) entries are sampled.

Yet as our simulations demonstrate, if even a few columns
of this matrix are corrupted, the output of these algorithms
can be arbitrarily skewed from the true matrix. This problem
is particularly relevant in so-called collaborative filtering, or
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recommender systems. Here, based on only partial observation
of users’ preferences, one tries to obtain accurate predictions
for their unrevealed preferences. It is well known and well
documented [29], [47] that such recommender systems are sus-
ceptible to manipulation by malicious users who can calibrate
all their inputs adversarially. It is of great interest to develop
efficiently scalable algorithms that can successfully predict
preferences of the honest users based on the corrupted and
partially observed data, while identifying the manipulators.

The presence of partial observation and potentially
adversarial input makes a priori identification of corrupted
column versus good column a challenging task. For example,
a simple method that works fairly well under full observation
and purely random corruption, is to use the correlation
between the columns. Since the authentic columns of a low-
rank matrix are linearly correlated, under suitable conditions
they can be identified as those which have a high correlation
with many other columns. However, when partial observations
are present, this method fails since it is not immediately clear
even how to compute the correlation—most pairs of columns
do not share an observed coordinate—let alone finding the
corrupted columns which can disguise themselves to look
like a partially observed authentic column. At first sight, it
is unclear how to accomplish the two tasks simultaneously:
completing unobserved entries, and identifying corrupted
columns.

This paper studies this precise problem. We do so by
exploiting the algebraic structure of the problem: the non-
corrupted columns form a low-rank matrix, while the corrupted
columns can be seen as a column-sparse matrix. Thus, the
mathematical problem we address is to decompose a low-
rank matrix from a column-sparse matrix, based on only
partial observation. Specifically, suppose we are given partial
observation of a matrix M , which can be written as

M = L0 + C0, (1)

where L0 is low-rank and C0 has only a few non-zero columns.
Here the entries of C0 may have arbitrary magnitude and
can even be adversarially built; the column/row space of
L0 as well as the positions of non-zero columns of C0 are
unknown. With a subset of the entries of M observed, can we
efficiently recover L0 on the non-corrupted columns, and also
identify the non-zero columns of C0? And, how do the rank
and the number of corrupted columns impact the number of
observations needed?

We provide an affirmative answer to the first question, and
a quantitative solution to the second. In particular, we develop
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an efficient algorithm, which is based on a trimming procedure
followed by a convex program that minimizes the nuclear norm
and the `1,2 norm. We provide sufficient conditions under
which this algorithm provably recovers L0 and identifies the
corrupted columns. Our algorithm succeeds even when a van-
ishing fraction of randomly located entries are observed and
a significant fraction of the columns are corrupted; moreover,
the number of observations we need depends near optimally,
in an information-theoretic sense, on the rank of L0 and the
number of corrupted columns. Significantly, we do not assume
anything about the values nor the locations of observations on
the corrupted columns.

We note that our corruption model is very general. By
making no assumption on the corrupted columns, our results
cover, but are not limited to, adversarial manipulation. For
example, the corrupted columns can also represent persistent
noise and abnormal sub-populations that are not well modeled
by a (known) probabilistic model. We discuss several such
examples in Section I-A.

Conceptually, our results establish the relation and tradeoffs
between three aspects of the problem: sample complexity
(the number of observed entries), model complexity (the
rank of the matrix) and adversary robustness (the number of
arbitrarily corrupted columns). While the interplay between
sample and model complexities is a recurring theme in modern
work of statistics and machine learning, their relation with
robustness (particularly to arbitrary and adversarial corruption,
as opposed to neutral, stochastic noise) seems much less well
understood. Our results show that with more samples, one can
not only estimate matrices of higher rank, but also be robust to
more adversarial columns. Importantly, we provide both (and
nearly matching) upper and lower bounds, thus establishing
a complete and sharp characterization of this phenomenon.
To establish lower bounds under arbitrary corruption, we use
techniques that are quite different from existing ones for
stochastic corruption that largely rely on Fano’s inequality and
the alike.

a) Paper Organization: We postpone the discussion of
related work to Section III after we state our main theorems.
In Section I-A we describe several application motivating
our study, followed by a summary of our main technical
contributions in Section I-B. In Section II we give the math-
ematical setup of the robust matrix completion problem with
corrupted columns. In Section III we provide the main results
of the paper: a robust matrix completion algorithm, a sufficient
condition for the success of the algorithm, and a matching
inverse theorem showing the optimality of the algorithm.
We also survey relevant work in the literature and discuss
their connection to our results. In Section IV we discuss
implementation issues and provide empirical results. We prove
the two main theorems in Sections V and VI, respectively,
with some of the technical details deferred to the appendix.
The paper concludes with a discussion in Section VII.

A. Motivating Applications
Our investigation is motivated by several important prob-

lems in machine learning and statistics, which we discuss
below.

b) Manipulation-Robust Collaborative Filtering: In on-
line commerce and advertisement, companies collect user
ratings for products, and would like to predict user preferences
based on these incomplete ratings—a problem known as col-
laborative filtering (CF). There is a large and growing literature
on CF; most well-known is the work on the Netflix prize [4],
but also see [1], [45] and the references therein. Various CF
algorithms have been developed [20], [35], [40], [39], [44]. A
typical approach to cast it as a matrix completion problem:
the preferences across users are known to be correlated and
thus modeled as a low-rank matrix L0, and the goal is to
estimate L0 from its partially observed entries. However, the
quality of prediction may be seriously hampered by (even a
small number of) manipulators—potentially malicious users,
who calibrate (possibly in a coordinated way) their ratings
and the entries they choose to rank in an attempt to skew
predictions [47], [29]. In the matrix completion framework,
this corresponds to the setting where some of the columns of
the observed matrix are provided by manipulative users. As the
ratings of the authentic users correspond to a low-rank matrix
L0, the corrupted ratings correspond to a column-sparse matrix
C0. Therefore, in order to perform collaborative filtering with
robustness to manipulation, we need to identify the non-zero
columns of C0 and at the same time recover L0, given only
a set of incomplete entries. This falls precisely into the scope
of our problem.

c) Robust PCA: In the robust Principal Component Anal-
ysis (PCA) problem [48], [50], [32], [38], one is given a data
matrix M , of which most of the columns correspond to authen-
tic data points that lie in a low-dimensional space—the space
of principal components. The remaining columns are outliers,
which are not (known to be) captured by a low-dimensional
linear model. The goal is to negate the effect of outliers and
recover the true +principal components. In many situations
such as problems in medical research (see e.g., [12]), there
are unobserved variables/attributes for each data point. The
problem of robust PCA with partial observation—recovering
the principal components in the face of partially observed
samples and also corrupted points—falls directly into our
framework.

d) Crowdsourcing: Crowdsourcing has emerged as a
popular approach for using human power to solve learn-
ing problems. Here multiple-choice questions are distributed
to several workers, whose answers are then collected and
aggregated in an attempt to obtain an accurate answer to
each question. In a simplified setting called the Hammer-
Spammer model [24], [25], a worker is either a hammer who
gives correct answers, or a spammer who answers completely
randomly. A more general setting is considered in [26], where
the spammers need not follow a probabilistic model and may
submit any answers they want, for instance with an unknown
bias, or even adversarially. This problem can be mapped to
our matrix framework, where rows correspond to questions
and columns to workers, with L0 representing the matrix of
true answers from the hammers and C0 the answers from the
spammers. Each worker typically answers only a subset of the
questions, leading to partial observation.
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e) Model Mismatch: More generally, the corrupted
columns can encompass any observations that are not captured
by the assumed low-rank model. These observations may be
generated from an unknown population or affected by factors
beyond the knowledge of the modeler, but not necessarily
adversarial. Such mismatch between the models and data is
ubiquitous. For instance, in collaborative filtering there may
exist a small set of atypical users whose preferences are very
weakly correlated with the majority and thus difficult to infer
using data from the majority. In PCA some data points may
simply not conform to the low-dimensional linear model. The
answers from some workers in crowdsourcing systems may
be erroneous as the data collecting process is non-ideal and
not fully controllable. It is difficult to accurately model or
recover these columns, but our results guarantee that they do
not hinder the recovery of the other columns.

B. Main Contributions

In this paper, we propose a new algorithm for matrix
completion in the presence of corrupted columns and provide
performance guarantees. Specifically, we have the following
results:

1) We develop a two-step matrix completion algorithm,
which first trims the over-sampled columns of the ma-
trix, and then solves a convex optimization problem
involving the nuclear norm and the `1,2 norm. Our al-
gorithm extends the standard nuclear norm minimization
approach for matrix completion, and the use of trimming
and the `1,2 norm plays a crucial role in achieving
robustness to arbitrary column-wise corruption.

2) For an n × n incoherent matrix with rank r and a
subset of its columns arbitrarily corrupted, we show
that if a fraction of p randomly located entries are
observed in the uncorrupted columns, then our algorithm
provably identifies the corrupted columns and completes
the uncorrupted ones as long as p obeys the usual
condition p & r log2 n

n for matrix completion, and in
addition the fraction γ of corrupted columns satisfies
γ . p

r
√
r log3 n

.
3) We further show that the two conditions are near-

optimal, in the sense that if p . r logn
n or γ & p

r , then
an adversary can corrupt the columns in such a way that
all algorithms fail with probability bounded away from
zero. Therefore, our results establish tight bounds for the
sample-robustness-rank tradeoffs in matrix completion.

4) We develop a variant of the Augmented Lagrangian
Multipliers (ALM) method for solving the convex opti-
mization problem in our algorithm. Empirical results on
synthetic data are provided, which corroborate with our
theoretical findings and show that our algorithm is more
robust than standard matrix completion algorithms.

II. PROBLEM SETUP

Suppose M is a ground-truth matrix in Rm×(n+nc). Among
the n + nc columns of M , n of them (we will call them
authentic or non-corrupted) span an r-dimensional subspace
of Rm, and the remaining nc columns are arbitrary (we will

call them corrupted). We only observe a subset of the entries
of the matrix M , and the goal is to infer the true subspace of
the authentic columns and the identities of the corrupted ones.

Under the above setup, it is clear that the matrix M can
be decomposed as M = L0 + C0. Here L0 ∈ Rm×(n+nc)

is the matrix containing the authentic columns, and therefore
rank(L0) = r. The matrix C0 ∈ Rm×(n+nc) contains the
corrupted columns, so at most nc of the columns of C0

are non-zero. Let I0 ⊂ [n + nc] be the indices of the
corrupted columns; that is, I0 := column-support(C0), where
|I0| = nc. Let Ω ⊆ [m] × [n + nc] be the set of indices of
the observed entries of M , and PΩ the projection onto the
matrices supported on Ω, which is given by

(PΩX)ij =

{
Xij , (i, j) ∈ Ω,

0, (i, j) /∈ Ω.

With this notation, our goal is to exactly recover from PΩM
the authentic columns in L0 and the corresponding column
space as well as the locations I0 of the non-zero columns of
C0.

A. Assumptions

In general, it is not always possible to complete a low-rank
matrix in the presence of corrupted columns. For example,
if L0 has only one non-zero column, it is impossible to
distinguish L0 from C0 even when M is fully observed. It
is also well-known in the matrix completion literature [10],
[19], [27] that if L0 has only one non-zero row, or if one
row or column of L0 is completely unobserved, then asking
to recover L0 from partial observations is problematic. To
avoid these pathological situations, we will assume that L0

satisfy the now standard incoherence condition [10] and the
observed entries on the authentic columns of L0 are sampled at
random. We note that we make no assumptions on the values
or locations of the observed entries of corrupted columns in
C0.

1) Incoherence Condition: Suppose L0 has the Singular
Value Decomposition (SVD) L0 = U0Σ0V

>
0 , where U0 ∈

Rm×r, V0 ∈ R(n+nc)×r and Σ0 ∈ Rr×r. We use ‖·‖2 to
denote the vector `2 norm, and ei be the i-th standard basis
vector whose dimension will be clear in context.

Assumption 1 (Incoherence). The matrix L0 is zero on
the columns in I0. Moreover, L0 satisfies the following two
incoherence conditions with parameter µ:

max
1≤i≤m

∥∥U>0 ei∥∥2

2
≤ µ r

m
,

max
1≤j≤n+nc

∥∥V >0 ej
∥∥2

2
≤ µ r

n
.

Since the columns of L0 in I0 are superposed with the
arbitrary C0, there is no hope of recovering these columns.
Therefore, there is no loss of generality to assume L0 is zero
on I0. Consequently, the matrix V >0 has at most n non-zero
columns (all in Ic0), and accordingly the denominator on the
right hand side of the second inequality above is n instead of
the full dimension n+ nc.
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The two incoherence conditions are needed for comple-
tion of L0 from partial observations even with no corrupted
columns. The incoherence parameter µ is known to be small in
various natural models and applications [10], [11]. The second
inequality in Assumption 1 is necessary in the presence of
corrupted columns, even when the matrix is fully observed.
This inequality essentially enforces that the information about
the column space of L0 is spread out among the columns. If,
for instance, an authentic column of L0 were not in the span
of all the other columns, one could not hope to distinguish it
from a corrupted column (cf. [50]).

Finally, we note that previous work on matrix com-
pletion often imposes a strong incoherence condition
maxi,j

∣∣∣(U0V
>
0

)
ij

∣∣∣ ≤ √
µr
mn [10], [11], [19], [42]. We do

not need this assumption, thus improving over these previous
results. Further discussion on this point is provided after our
main theorems.

2) Sampling Model: Recall that I0 is the indices of the
corrupted columns. Let Ω̃ := Ω ∩ ([m]× Ic0) be the set of
indices of observed entries on the non-corrupted columns. We
use the following definition.

Definition 1 (Bernoulli model). Suppose Θ0 ⊆ [m]× [n+nc].
A set Θ is said to be sampled from the Bernoulli model with
probabilities {pj}n+nc

j=1 on Θ0 if each element (i, j) of Θ0

is contained in Θ with probability pj , independently of all
others. If pj = p for j, then Θ is said to be sampled from the
Bernoulli model on Θ0 with uniform probability p.

We can now specify our assumption on how the observed
entries are sampled.

Assumption 2 (Sampling). The set Ω̃ is sampled from the
Bernoulli model with probabilities {pj} on [m] × Ic0 , where
pj ≥ p for all j ∈ Ic0 . Moreover, Ω̃ is independent of PΩC0,
the observed entries on the corrupted columns.

Note that our model is more general than the uniform sam-
pling model assumed in some previous work—we only require
a lower bound on the observation probabilities of the non-
corrupted columns, so some columns may have an observation
probability higher than p. Importantly, the Bernoulli model is
not imposed on the corrupted columns. The adversary may
choose to reveal all entries on columns in I0 or just a fraction
of them, and the locations of these observed entries may
be chosen randomly or adversarially depending on L0. The
assumption of Ω̃ being independent of the corrupted columns
is needed for technical reasons. We conjecture that it is only an
artifact of our analysis and not actually necessary, as indicated
by our empirical results.

3) Corrupted Columns: Let γ := nc
n be the ratio of the

number of corrupted columns to the number of authentic
columns. Other than the independence requirement above, we
make no assumption whatsoever on the corrupted columns in
C0. The incoherence assumption is imposed on the authentic
L0, not on M or C0, as is the sampling assumption, and
therefore the corrupted columns are not restricted in any way
by these. These columns need not follow any probabilistic
distributions, and they may be chosen by some adversary who
aims to skew one’s inference of the non-corrupted columns.

One consequence of this is that we will not be able to recover
the values of the completely corrupted columns of C0, but we
are able to reveal their identities.

III. MAIN RESULTS: ALGORITHMS, GUARANTEES AND
LIMITS

The main result of this paper says that despite the corrupted
columns and partial observation, we can simultaneously re-
cover L0, the non-corrupted columns, and identify I0, the
position of the corrupted columns, as long as the number
of corrupted columns and unobserved entries are controlled.
Moreover, this can be achieved efficiently via a tractable
procedure, given as Algorithm 1.

The algorithm has two steps. In the first trimming step,
we find columns with a large number of observed entries,
and throw away some of these entries randomly. This step
is important, both in theory and empirically, to achieve good
performance: an adversary may choose to reveal (and corrupt)
a large number of entries on certain columns, which may
skew the next step of the algorithm; the trimming step protects
against this effect. Note that we cannot directly identify these
over-sampled corrupted columns by counting the number of
observations—under the (non-uniform) sampling model in
Assumption 2, some authentic columns are also allowed to
have many observed entries.

In the next step of the algorithm, we solve a convex
program with the trimmed observations as the input. The
convex program, in fact a Semidefinite Program (SDP), finds
a pair (L∗, C∗) that is consistent with the observations and
minimizes the weighted sum of the nuclear norm ‖L‖∗ and the
matrix `1,2 norm ‖C‖1,2, where ‖L‖∗ is the sum of singular
values of L and a convex surrogate of its rank, and ‖C‖1,2 is
the sum of the column `2 norms of C and a convex surrogate
of its column sparsity. The algorithm has two parameters: the
threshold 0 < ρ < 1 for trimming and the coefficient λ > 0
for the weighted sum in the convex program. Our theoretical
results specify how to choose their values.

We say Algorithm 1 succeeds if we have PU0
(L∗) = L∗,

PIc0 (L∗) = L0 and I∗ ⊆ I0 for any optimal solution (L∗, C∗)
of (2), where PU0

(L∗) := U0U
>
0 L
∗ is the projection of the

columns of L∗ onto the column space of L0, and PIc0 (L∗)

Algorithm 1 Manipulator Pursuit
Input: PΩ(M),Ω,λ, ρ.
Trimming: For j = 1, . . . , n+ nc, if the number of observed
entries hj on the j-th column satisfies hj > ρm, then
randomly select ρm entries (by sampling without replacement)
from these hj entries and set the rest as unobserved. Let Ω̂ be
the set of remaining observed indices.
Solve for optimum (L∗, C∗):

minimizeL,C ‖L‖∗ + λ ‖C‖1,2 (2)
subject to PΩ̂(L+ C) = PΩ̂(M)

Set I∗ = column-support (C∗) := {j : C∗ij 6= 0 for some i}.
Output: L∗, C∗ and I∗.
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is the projection of L∗ onto the matrices supported on the
column indices in Ic0 , given by

[
PIc0 (L∗)

]
ij

=

{
L∗ij , if j 6∈ I0,
0, if j ∈ I0.

That is, the algorithm succeeds we recover the true col-
umn space of the original L0 and complete its uncorrupted
columns, and at the same time identify the locations of the
corrupted columns. Note that the definition of success allows
for I∗ ( I0. In this case it may appear that some corrupted
columns are unidentified and included in L∗, but it is actually
not a problem: the requirement PU0

(L∗) = L∗ means that
these unidentified “corrupted” columns can be completed to
lie in the true column space of L0, so they are essentially
not corrupted, as they are indistinguishable from a partially
observed authentic column and do not affect the completion.

A. Sufficient Conditions for Recovery

Our first main theorem guarantees that under some natural
conditions, our algorithm exactly recovers the non-corrupted
columns and the identities of the corrupted columns with high
probability. Recall that p is a lower bound of the observation
probability on the non-corrupted columns, γ := nc

n the ratio
between the numbers of corrupted and uncorrupted columns,
and ρ the trimming threshold.

Theorem 1. Let α := ρ
p . There exist universal positive

constant c1 and c2 for which the following holds. Suppose
the Assumptions 1 and 2 hold. If in Algorithm 1 we take any
λ that satisfies√(

1 +
1

α

)
µr log(m+ n)

pn

≤λ ≤ 1

48
√√

(1 + α)µrγn log(m+ n)
,

and (p, γ) satisfies

p ≥ c1
(

1 +
1

α

)
µr log2(m+ n)

min(m,n)
, (3)

γ ≤ c2
α

1 + α
√
α

p

µr
√
µr log3(m+ n)

, (4)

then Algorithm 1 succeeds with probability at least 1−20(m+
n)−5. Note that the interval for λ is non-empty under the
condition (4).

We prove this theorem in Section V.
The two conditions (3) and (4) have the natural interpreta-

tion that the algorithm succeeds as long as there is sufficiently
many observed entries (in particular, more than the degrees of
freedom of a rank-r matrix), and the number of corrupted
columns is not too large relative to the number of observed
entries. We discuss these two conditions in more details in the
next sub-section. The theorem also shows that the parameter
λ in the convex program (2) can take any value in a certain
range.

1) Consequences: We explore several consequences of
Theorem 1. The conditions (3) and (4) above involve the
value of the parameter ρ from trimming in Algorithm 1. The
conditions become the least restrictive if α := ρ

p = Θ(1), i.e.,
when ρ is of the same order of p. Choosing ρ optimally in
this way gives the following corollary.

Corollary 1 (Optimal Bound). There exist universal constant
c1 and c2 such that the following holds. Suppose the Assump-
tions 1 and 2 hold, and we take ρ = p and λ =

√
2µr log(m+n)

pn

in Algorithm 1. Algorithm 1 succeeds with probability at least
1 − 20(m + n)−5 as long as (p, γ) satisfy (3) and (4) with
α = 1.

For a more concrete example, suppose the observation prob-

ability satisfies p &
√
µ3r3 log3 n

n1−κ , then Corollary 1 guarantees
success of our algorithms when the number of corrupted
entries γn is less than nκ.

In a conference version [18] of this paper, we analyze
the second step of Algorithm 1 (i.e., without trimming, or
equivalently ρ = 1) and show that it succeeds if (p, γ) satisfy
(among other things) the condition

γ .
p2(

1 + µr
p
√
n

)2

µ3r3 log6(m+ n)
.

This result is significantly improved by Corollary 1 (in par-
ticular, compared to the condition (4) with α = 1), which
allows for an order-wise larger number of corrupted columns.
Our analysis reveals that the trimming step in Algorithm 2 is
crucial to this improvement.

Remark 1. In practice, we may estimate the value of p
by using a robust mean estimator (e.g., the median or
trimmed mean) of the fraction of observed entries over
the columns. Given such an estimate p̂, we can set ρ = p̂

and λ =
√

c log(m+n)
p̂n for some constant c (say 50), and

the algorithm’s success is guaranteed by Theorem 1 and
Corollary 1 for µr = O(1). (Note that while we may not
know n, we do know the value of n+ nc, which differs from
n by at most a factor of 2 whenever nc ≤ n.) This approach
is taken in our empirical studies in Section IV.

Setting p = 1 in Corollary 1 immediately yields a guarantee
for the full observation setting.

Corollary 2 (Full Observation). Suppose the Assumptions 1
and 2 hold with p = 1. If we take ρ = 1 and λ =√

2µr log(m+n)
n in Algorithm 1, and γ := nc

n satisfies

γ ≤ c′1
1

µr
√
µr log3(m+ n)

for some universal constant c′1, then Algorithm 1 succeeds with
probability at least 1− 20(m+ n)−5.

The full observation setting of our model corresponds to
the Robust PCA problem with sample-wise corruption (cf.
Section I-A), which is previously considered in [49], [50].
There they propose an algorithm called Outlier Pursuit, which
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is similar to the second step of our Algorithm1 and shown to
succeed in the full observation setting if γ . 1

µr . Our result in
Corollary 2 is off by a small factor of

√
µr log3(m+n). This

sub-optimality can be removed by a more careful analysis in
the setting with p close to 1, but we choose not to delve into it.

On the other hand, setting γ = 0 gives a guarantee
for the standard exact matrix completion setting with clean
observations. Our result is powerful enough that it in fact
improves upon some previous results in this setting.

Corollary 3 (Matrix Completion). Suppose γ = 0 and the
Assumption 1 and 2 hold. If we take ρ = 1 and λ ≥√

2µr log(m+n)
pn in Algorithm 1, and p satisfies

p ≥ c′′1
µr log2(m+ n)

min(m,n)

for some universal constant c′′1 , then Algorithm 1 succeeds
with probability at least 1− 20(m+ n)−5.

Exact matrix completion is considered in the seminal
work [10] and subsequently in [11], [19], [42], in which the
low-rank matrix L0 is assumed to satisfied two incoherence
conditions: the standard incoherence condition with parameter
µ as in Assumption 1, and an additional strong incoherence
condition ‖UV ‖∞ ≤

√
µstrr
mn . They show that L0 can

be exactly recovered via nuclear norm minimization if
p & max{µ,µstr}r log2(m+n)

min{m,n} . Corollary 3 improves upon this
result by removing the dependence on the strong incoherence
parameter µstr, which can be as large as µr. This improvement
was also observed in the recent work in [15], [16].

We have seen that Theorem 1 and Corollary 1 give, as
immediate corollaries, strong bounds for the special cases of
full observation and standard matrix completion, which is a
testament to the sharpness of our results. In fact, we show
in the next sub-section that the conditions in Theorem 1 are
near-optimal.

B. Information-Theoretic Limits for Recovery

Corollary 1 says that the conditions (3) and (4) with
α = 1 are sufficient for our algorithm to succeed. Theorem 2
below shows that these conditions are in fact close to being
information-theoretic (minimax) optimal. That is, they cannot
be significantly improved by any algorithm regardless of its
computational complexity. Note that the theorem tracks the
values of µ, r, p and γ, so all of them can scale in a non-
trivial way with respect to n.

Theorem 2. Suppose m = n ≥ 4, µr ≤ n
log(2n) , and (p, γ)

satisfy

p ≤ µr log(2n)

2n
(5)

or γ :=
nc
n
≥ 2p

µr
. (6)

Then any algorithm will fail to output the correct column space
with probability at least 1

16 ; more precisely, for all measurable
functions L̂ of M and Ω,

max
L0,C0,Ω\Ω̃

P
[
PU0(L̂) 6= L̂

]
≥ 1

16
,

where the maximization ranges over all matrix pairs (L0, C0)
and observed indices on the corrupted columns Ω\Ω̃ that
satisfy the Assumptions 1 and 2, and the probability is with
respect to the distribution of the observed indices on the non-
corrupted columns Ω̃.

We prove this theorem in Section VI.
By comparing with Theorem 2, we see that the conditions

in Corollary 1 are close to the achievable limit. In particular,
with α = 1, the condition (3) on p matches (5) up to one
logarithmic factor, and the condition (4) on γ is worse than (6)
by a factor of c

√
µr log3 n. In particular, both conditions are

optimal up to logarithmic factors in the case of constant rank
and incoherence µr = O(1). It is of interest to study whether
this small gap can be closed, potentially by tightening up the
sufficient conditions in Theorem 1 and Corollary 1.

The failure condition (5) is an extension of a standard result
for matrix completion in [11, Theorem 1.7]. To gain some
intuition on the second condition (6), we consider the case with
µr = 1, for which the condition becomes nc & pn. This means
that with probability bounded away from zero, the number
of observed corrupted entries in the first row exceeds that of
observed authentic entries in the same row. In this case, if the
corrupted entries in the other rows are chosen to be consistent
with the true column space (on all but the first coordinates),
then no algorithm can tell which of the two sets of entries in
the first row is actually authentic, and therefore recovery of
this row is impossible. Theorem 2 is proved using an extension
of the above argument—by demonstrating a particular way
of corrupting nc & pn

µr columns that provably confuses any
algorithm.

Implications for Robust PCA:: Recall the Robust PCA
setting with full observations (p = 1) and the Outlier Pursuit
algorithm discussed after Corollary 2 in Section III-A. Theo-
rem 2 shows that γ & 1

µr is necessary, so the guarantee for
Outlier Pursuit given in [50] is order-wise optimal.

C. Sample-Robustness-Rank Tradeoffs

The results in the last two-subsections highlight the tradeoffs
between sample complexity, outlier robustness and model
complexity (matrix rank). In particular, given a higher the
observation probability p, one can handle a higher fraction
γ of corrupted columns and a higher rank r of the underlying
matrix. The other direction is also true: with a smaller p, the
fraction of allowable corrupted columns and the allowable rank
will necessarily become smaller, regardless of the algorithm
and the amount of computational. Theorems 1 and 2 provide
the precise conditions that p, γ and r need to obey.

We emphasize that here we consider robustness to arbitrary
and possibly adversarial corruption. Our results characterize,
in terms of both upper and lower bounds, the tradeoffs
between adversary robustness and sample/model complexities.
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This can be put into the context of the study of modern
high-dimensional statistics [41], [7], where the relationship
between sample and model complexities is a central topic
of interest. More recently, a line of work has focused on
the tradeoffs between computational complexity and various
statistical quantities [13], [5], [36], [53]. Our results can be
viewed as adding a new dimension to these recent lines of
work: we consider another axis of the problem—robustness
(to adversarial corruption)—and its relation to other statistical
quantities. Therefore, while we investigate a specific problem
(matrix completion), we expect sample-robustness tradeoffs to
be relevant in a broader context.

Finally, we note that our empirical study in Section IV
demonstrate the following phenomenon: If we further assume
that the corrupted columns are randomly generated and in-
dependent of each other, then our algorithm can recover L0

from a much higher number nc of corrupted columns than
is predicted by Theorems 1 and 2 (which require, among
other things, nc = γn ≤ 1). In particular, the corrupted
columns can significantly out-number the authentic columns.
This means our algorithm is useful well beyond the adversarial
corruption setting considered in the theorems above, and its
actual performance can become better if the corruption is more
restricted and “benign”. A similar phenomenon is observed
in [32], [52] for the special case of full observation. Here we
therefore see another level of sample-robustness-rank trade-
offs: If we only ask for a weaker sense of robustness, namely,
robustness against randomly corrupted columns as opposed to
arbitrary ones, then we have more relaxed requirements on the
observation probability, the rank and the number of corrupted
columns. It is an interesting open problem to rigorously
quantify the interplay between the nature of the corruption
and the recovery performance.

D. Connections to Prior Work and Innovation

Recent work in matrix completion shows that by using
convex optimization [10], [11], [19], [42] or other algo-
rithms [27], [23], [8], one can exactly recover an n×n rank-r
matrix with high probability from as few as O(nrpoly log n)
(clean) entries. Our paper extends this line of work and shows
that even if all the observed entries on some columns are
completely corrupted (by possibly adversarial noise), one can
still recover the non-corrupted columns as well as the identity
of the corrupted ones. As discussed before, our work also
extends the work in [49], [50], which only considers the full
observation setting; see also [2] for results on the full obser-
vation setting with noise. The centerpiece of our algorithm
is a convex optimization problem that is a convex proxy to
a very natural but intractable algorithm for our task, namely,
finding a low-rank matrix L and a column-sparse matrix C
consistent with the observed data. Such convex surrogates for
rank and support functions have been used (often separately)
in problems involving low-rank matrices [43], [10]) and in
problems with group-sparsity [51], [21]. When this manuscript
is under preparation, we learn about the very recent work [28],
which also studies robust matrix completion under column-
wise sparse corruption, albeit under a somewhat different

setting. Their results are focused on the noisy setting with
general sampling distributions, but do not guarantee exact
recovery in the noiseless case.

Our work is also related to the problem of separating a
low-rank matrix and an overall (element-wise) sparse matrix
from their sum [9], [14] (this is sometimes called the low-
rank-plus-sparse problem, or L + S for short). This problem
has also been studied under the partial observation setting [9],
[17], [33]. Compared to this line of work, our results indicate
that separation is possible even if the low-rank matrix is
added with a column sparse matrix instead of an overall
sparse matrix. In particular, we allow all the observations
from some columns to be completely corrupted. In contrast,
existing guarantees for the L + S problem require that from
each row and column at least some observations are clean,
thus not suitable for our setting; this is also demonstrated in
our experiments. Moreover, although we do not pursue in this
paper, our techniques allow us to establish results on separating
three components—a low rank matrix, an element-wise sparse
matrix, and a column-sparse matrix.

Besides the obvious difference in the problem setup, our
paper also departs from the previous work in terms of math-
ematical analysis. In particular, in previous works in exact
matrix completion and decomposition, the intended outcome
is known a priori—their goal is to output a matrix or a pair of
matrices, exactly equal to the original one(s). In our setting,
however, the optimal solution of the convex problem is in
general neither the original low rank matrix L0 nor the matrix
C0 which consists of only the corrupted columns. This critical
difference requires a novel analysis that builds on a variant
of the primal-dual witness (or oracle problem) method. This
method has been applied to study support recovery in problems
involving sparsity [3], [31]. Here we use the method for the
recovery of the eigen space and column support. A related
problem is considered in [49], [50], which, however, only stud-
ies with the full observation setting. The presence of (many)
missing entries makes the problem much more complicated,
as we need to deal with three matrix structures simultaneously,
i.e., low-rankness, column sparsity, and overall/element-wise
sparsity. This requires the introduction of new ingredients in
the analysis; in particular, one important technical innovation
requires the development of new concentration results that
involve these three structures, including bounds on the ‖·‖∞,2
norms of certain randomly sampled low-rank matrices (see
Lemmas 9 and 11).

IV. IMPLEMENTATION AND EMPIRICAL RESULTS

In this section, we discuss implementation issues of our
algorithm and provide empirical results.

A. An ADMM Solver for the Convex Program

The optimization problem (2) is a semi-definite program
(SDP), and can be solved by off-the-shelf SDP solvers.
However, these general-purpose solvers can only handle small
problems (e.g., 400-by-400 matrices) and do not scale well
to large datasets. Here we use a family of first order algo-
rithms called the Alternating Direction Method of Multipliers
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(ADMM) methods [6], [34], shown to be effective on problems
involving non-smooth objective functions.

We adapt this method to our partially observed, ‖·‖∗ +
λ ‖·‖1,2-type problem; see Algorithm 2. Here Lε(S) is the
entry-wise soft-thresholding operator: if |Sij | ≤ ε, then set
it to zero, and otherwise let Sij := Sij − εSij/ |Sij |. Sim-
ilarly, Cε(C) is the column-wise soft-thresholding operator:
if ‖Ci‖2 ≤ ε, then set it to zero, and otherwise let Ci :=
Ci − εCi/ ‖Ci‖2. Note that the matrix E(k) accounts for the
unobserved entries. In our experiments, the parameters are set

to u0 =
(
‖M‖1,2

)−1

and α = 1.1, and the criterion for con-

vergence is
∥∥M − E(k) − L(k) − C(k)

∥∥
F
/ ‖M‖F ≤ 10−6.

The main cost of Algorithm 2 is computing the SVD of
the matrix Z := M − E(k) − C(k) + u−1

k Y (k) in each
iteration. We can speed up the computation by taking ad-
vantage of the specific structure of our problem, namely
partial observation and low-rankness. Observe that the iter-
ate Z can be written as the sum of two matrices Z =(
M − E(k) − L(k) − C(k) + u−1

k Y (k)
)

+ L(k). A careful ex-
amination of Algorithm 2 reveals that the first matrix is
non-zero only on the observed indices Ω, while the second
matrix has rank equal to the number of singular values that
remain non-zero after the soft-thresholding in the last iteration.
We can therefore employ a celebrated SVD routine called
PROPACK [30], which can make use of such sparse and low-
rank structures. Using this strategy, we are able to apply the
algorithm to moderately large instances in our experiments,
especially in the setting we care most, i.e., when only a small
number of entries are observed.

Algorithm 2 The ALM Algorithm for Robust Matrix Com-
pletion

input: PΩM ∈ Rm×(n+nc) (assuming PΩcM = 0), Ω, λ
initialize: Y (0) = 0; L(0) = 0; C(0) = 0; E(0) = 0; u0 > 0;
α > 1; k = 0.
while not converged do

(U, S, V ) = SVD
(
M − E(k) − C(k) + u−1

k Y (k)
)
;

L(k+1) = ULu−1
k

(S)V >;
C(k+1) = Cλu−1

k

(
M − E(k) − L(k+1) + u−1

k Y (k)
)
;

E(k+1) = PΩc
(
M − L(k+1) − C(k+1) + u−1

k Y (k)
)
;

Y (k+1) = Y (k) + uk
(
M − E(k+1) − L(k+1) − C(k+1)

)
;

uk+1 = αuk;
k ← k + 1;

end while
return

(
L(k), C(k)

)

B. Simulations

We test the performance of our method on synthetic data.
For a given rank r, we generate two matrices A ∈ Rm×r
and B ∈ Rn×r with i.i.d. standard Gaussian entries, and then
build the rank-r matrix L0 ∈ Rm×(n+nc) by L0 = AB>

padded with nc zero columns. The set of observed entries on
the authentic columns is generated according to the Bernoulli
model in Assumption 2. The observation probabilities {pj} on
the authentic columns, as well as the nc corrupted columns in

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

10
−4

10
−2

10
0

Number of corrupted columns

R
el

at
iv

e 
F

ro
be

ni
us

 e
rr

or

 

 

With Trimming
No Trimming

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

10
−4

10
−2

10
0

Number of corrupted columns

R
el

at
iv

e 
F

ro
be

ni
us

 e
rr

or

 

 

With Trimming
No Trimming

(a) (b)
Fig. 1. Comparison of the performance of Algorithm 1 with and without
trimming. The plots show the relative Frobenius norm errors on recovering
the uncorrupted columns of a 400 × 400 rank-2 matrix with observation
probabilities (a) p = 0.2, (b) p = 0.3. Each point in the plots is the average
of 10 trials.

C0 and their observed entries, are specified later. The observed
matrix PΩM = PΩ (L0 + C0) and the set of observed entries
Ω are then given as input to Algorithm 1, with the convex
program solved using the ADMM solver described above.
We set the parameters ρ and λ in Algorithm 1 according to
Corollary 1, estimating pj by 1.1 × median ({p̃j}), where p̃j
is the empirical observation probability of the j-th columns,

1) Effect of Trimming: In the first set of experiments, we
study the performance of Algorithm 1 with and without the
trimming step. We consider recovering a matrix L0 with rank
r = 2 and dimensions m × (n + nc) = 400 × 400. The nc
corrupted columns in C0 are identical and equal to a random
column vector in Rm, with all of them fully observed. The
observation probability pj of the j-th authentic equal to 1 if j
is a multiple of 3, and equal to p otherwise, where we consider
different values of p. Note that many authentic columns are
fully observed, so one cannot distinguish them from the
corrupted columns based on only the number of observations.
Figure 1 shows the relative errors of the output L∗ on the
uncorrupted columns, i.e.,

∥∥PIc0 (L∗ − L0)
∥∥
F
/
∥∥PIc0L0

∥∥
F

,
for different values of the observation probability p and the
number of corrupted columns nc. Compared to no trimming,
the trimming step often leads to much lower errors and allows
for more corrupted columns. This agrees with our theoretical
findings and shows that trimming is indeed crucial to good
performance.

Having demonstrated the benefit of trimming when the pj’s
are non-uniform, in the remaining experiments we set pj ≡ p
for simplicity.

2) Comparison with standard matrix completion and L+S:
While our theory and algorithm allow for the corrupted
columns of C0 to have entries with arbitrarily large magni-
tude, we perform comparison in a more realistic setting with
bounded corruption. In the second set of experiments, the
nc non-zero columns of C0 are identical, which equal the
first column of L0 on the locations of its observed entries,
and are i.i.d. standard Gaussian on the other locations. These
columns are normalized to have the same norm as the first
column of L0. The locations of the observed entries are also
identical across the columns of C0, and are randomly selected
according to the Bernoulli model with probability p. Note
that the columns of C0 have the same norm and observation
probabilities as the authentic columns. If we think of each
column of L0 as the ratings of movies from an authentic



IEEE TRANSACTIONS OF INFORMATION THEORY, VOL. XX, NO. XX, JANUARY 20XX 9

0 10 20 30 40 50 60 70

10−4

10−3

10−2

10−1

Number of corrupted columns

C
ol

um
n 

sp
ac

e 
er

ro
r

 

 

RMC
L+S
MC

0 10 20 30 40 50 60 70

10−4

10−3

10−2

10−1

Number of corrupted columns

R
el

at
iv

e 
Fr

ob
en

iu
s 

er
ro

r

 

 

RMC
L+S
MC

0 10 20 30 40 50 60 70

10−4

10−3

10−2

10−1

Number of corrupted columns

C
ol

um
n 

sp
ac

e 
er

ro
r

 

 

RMC
L+S
MC

0 10 20 30 40 50 60 70

10−4

10−3

10−2

10−1

Number of corrupted columns

R
el

at
iv

e 
Fr

ob
en

iu
s 

er
ro

r

 

 

RMC
L+S
MC

(a) (b)
Fig. 2. Comparison of robust matrix completion in Algorithm 1 (RMC),
standard matrix completion (MC) and the L + S approach. The relative
Frobenius norm errors are shown for recovering a 400× 400 rank-4 matrix
with observation probabilities (a) p = 0.2 and (b) p = 0.4. Each point in the
plots is the average of 10 trials.

user, then the above construction of C0 mimics a rating
manipulation scheme that is reported to be effective in the
literature [47]. In particular, the columns of C0 are meant to
be similar to the ratings from an authentic user in L0 on the
observed locations, while trying to skew the unobserved ones
in a coordinated fashion.

When only a small fraction of the entries are observed, the
corrupted columns PΩ(C0) can be viewed as a sparse matrix.
Therefore, to separate L0 from PΩ(C0), one might think it is
possible to apply the techniques in [9], [14], dubbed the L+S
approach, which decomposes a low-rank matrix and a sparse
matrix from their sum. In particular, one tries to decompose the
input matrix PΩ(M) by solving the following convex program:

(L∗, S∗) = arg min
L,S
‖L‖∗ + λ ‖S‖1 (7)

s.t. PΩ(L+ S) = PΩ(M).

However, a central assumption of the L+S approach, namely,
the support of the sparse matrix is spread out over the columns
and rows, is violated in the setup considered in this paper.
Therefore, it is no surprise that using the L + S approach
should not be successful. This is indeed the case, as is
illustrated numerically in our experiments.

In particular, we compare our algorithm with the L + S
approach (with λ set to 1/

√
max (m,n) according to [9]), as

well as with standard matrix completion (which is equivalent
to solving (7) with the additional constraint S = 0). The
convex program (7) is solved using the ADMM methods
in [34]. The results are shown in Figure 2 for various values of
p and nc. We see that the L+S and standard matrix completion
approaches are not robust under our setting, and our algorithm
has consistently better performance under both metrics con-
sidered. Moreover, with a higher observation probability p,
we can handle a larger number nc of corrupted columns and
achieve essentially exact recovery, which is consistent with
our theory.

3) Random Corruption: In this third set of experiments,
we consider a more benign setting of the corrupted columns,
where these columns are generated randomly and indepen-
dently with i.i.d. Gaussian entries. The experiments are done
under the setting with rank r = 4, m = 200 rows and
n + nc = 1000 columns. Figure 3 shows the performance
of the three algorithms for various p and nc. Our algorithm
again outperforms standard matrix completion and the L+ S
approaches. Perhaps more importantly, we see that our algo-
rithm succeeds under a much higher value of nc than in the
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Fig. 3. Comparison of robust matrix completion in Algorithm 1 (RMC),
standard matrix completion (MC) and the L + S approach, with randomly
corrupted columns. The relative Frobenius norm errors are shown for recov-
ering a 200× 1000 rank-4 matrix with observation probabilities (a) p = 0.3
and (b) p = 0.6. Each point in the plots is the average of 10 trials.
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Fig. 4. Performance of our Algorithm 1 with random corruption. The relative
Frobenius norm errors are shown for recovering a 1000×5000 rank-8 matrix
with randomly corrupted columns and observation probabilities (a) p = 0.05
and (b) p = 0.1. Each point is the average of 10 trials.

adversarial setting above. In particular, we recover the authen-
tic columns even when they are significantly out-numbered by
the corrupted columns, e.g., with n = 200 and nc = 800. This
result shows that with such “less adversarial” corruption, the
performance of our algorithm is better than is guaranteed by
our theory on worse case corruption. Rigorously characterizing
this phenomenon is an interesting future direction.

Finally, we demonstrate the applicability of our algorithms
to larger matrices with sparse observation. We consider a
setting with rank r = 8, m = 1000 rows and n+ nc = 5000
columns, with observation probability p = 0.05 or p = 0.1.
The performance of our algorithm is shown in Figure 4. Again
we see that our algorithm is able to recover the true matrix
even when there are many corrupted columns. The average
running time of each trial is less than 2 minutes, indicating
scalability to large problems.

V. PROOF OF THEOREM 1

In this section we prove the main Theorem 1. The proof
requires a number of intermediate steps. Here we provide
a brief overview of the proof roadmap. By definition of
the success of Algorithm 1, we need to show that any
optimal solution (L∗, C∗) of the program (2) has the
properties (i) PIc0L

∗ = L0, (ii) PU0
L∗ = L∗ and (iii)

I∗ = column-support(C∗) ⊆ I0. A central roadblock to this
goal is that unless the adversary’s corrupted columns happen
to be perfectly perpendicular to the column space of the true
low-rank matrix, (L∗, C∗) will not be precisely equal to the
ground truth (L0, C0). The reason is simple: if the corrupted
columns have a non-perpendicular component, then some
part of that will be put into the L∗ matrix recovered by the
optimization. Algorithmically, this matter is irrelevant: as long
as the corrupted columns are identified, and the recovered
L∗ matches the desired L0 on the non-corrupted columns,
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our objective is met, and the problem is solved. The analysis,
however, is significantly complicated: because L∗ 6= L0 in
general and we do not know what L∗ is exactly, we can no
longer use the standard approach in the matrix completion
literature of proving the ground-truth is the unique optimal
solution of the convex program.

To prove the theorem, we use the idea of a primal-dual
witness: we construct a primal solution (L̄, C̄) and a dual
certificate Q̄ such that:
• (L̄, C̄) has the desired properties (i)–(iii);
• Q̄ certifies that any optimal solution to (2) is either equal

to
(
L̄, C̄

)
, or is in a subspace defined by

(
L̄, C̄

)
and still

has the properties (i)–(iii).
Beyond the above obstacle, challenges arise because of the
simultaneous presence of three matrix structures: low rank,
entry-wise sparse, and column sparse. This requires a num-
ber of additional innovations, including concentration bounds
involving these structures.

In the rest of the section we present the details of the proof,
which is divided into several steps. In Section V-A, we provide
the notation and preliminaries of the proof, and show that
it suffices to consider a simpler setting. In Section V-B we
construct the primal solution (L̄, C̄) and study its properties. In
Section V-C, we describe the conditions that a dual certificate
Q̄ needs to satisfy. We construct the dual certificate Q̄ in
Section V-D, and then prove that it indeed satisfies the desired
conditions with high probability in Section V-E. The proofs
of several technical lemmas are deferred to the appendix.

A. Notation and Preliminaries

For a vector x, xi is its i-th entry. For a matrix A, A·j is
its j-th column and Aij is its (i, j)-th entry. Several standard
matrix norms are used: ‖A‖∗ is the nuclear norm (the sum
of singular values), ‖A‖ is the spectral/operator norm (the
largest singular values), ‖A‖∞ is the matrix infinity norm
(the largest absolute value of the entries), ‖A‖1,2 is the sum
of `2 norms of the columns of A, ‖A‖∞,2 is the largest
`2 norm of the columns of A, and finally ‖A‖F is the
Frobenius norm. We also define `(∞,2)2 norm of a matrix
by ‖A‖(∞,2)2 := max

{
‖A‖∞,2 ,

∥∥A>∥∥∞,2}, which is the
largest `2 norm of the columns and rows of A. For any positive
integer k, [k] := {1, 2, . . . , k}. We also use the notation
a∧ b := min {a, b} and a∨ b := max {a, b} . The letter c and
their derivatives (c2 etc.) denote unspecified constants that are,
however, universal in that they are independent of p, γ, β, ρ,
n, nc, m and r. By with high probability (w.h.p.), we mean
with probability at least 1− c(m+n)−10 for some numerical
constant c > 0.

Recall that Ω̃ := Ω ∩ ([m]× Ic0) is the set of observed
entries on the non-corrupted columns in Ic0 . We use Ωc :=
Ω ∩ ([m]× I0) to denote the set of observed entries on the
corrupted columns in I0. We abuse notation by using Ω (and
similarly Ωc, Ω̃, Ω̃c etc) to denote both the set of matrix entries
and the linear subspace of matrices supported on these entries.
Similarly I0 and Ic0 denote both the set of column indices and
the linear subspace of matrices supported on these columns.

The operators PΩ̃,PΩc ,PI0 and PIc0 etc. are the corresponding
projections onto the sets of matrices supported on Ω̃,Ωc, I0, I

c
0

etc.
Denote the SVD of L0 as U0Σ0V

>
0 , where U0 ∈ Rm×r

and V0 ∈ R(n+nc)×r. Let PU0
be the projection given by

PU0
A = U0U

>
0 A, i.e., projecting each column of A onto

the column space of L0, where A is any matrix with m
rows. The complimentary operation PU⊥0 A := A − PU0A
projects the columns of A onto the subspace orthogonal to
the column space of L0. Similarly for the row space we define
the projection PV0

A := AV0V
>
0 . We define the subspace of

Rm×(n+nc):

T0 :=
{
U0X

> + Y V >0 :X ∈ R(n+nc)×r with PI0X> = 0,

Y ∈ Rm×r
}

;

that is, the set of matrices which has the same column or row
space as L0 and is supported on the columns in Ic0 ; note that
T0 ⊂ Ic0 . The projection PT0

is given by

PT0A := PU0A+ PV0A− PU0PV0A = PU0A+ PU⊥0 PV0A

for A ∈ Rm×(n+nc), and the complementary projection is

PT⊥0 A := A− PT0
A = (Id− U0U

>
0 )A(Id− V0V

>
0 ),

where Id is the identity matrix with appropriate dimension.
We note that the range of PT0 is larger than T0 since the
matrix PT0A may have non-zero columns in I0. Neverthe-
less, when restricted to the subspace Ic0 , PT0

is indeed the
Euclidean projection onto T0. Also note that the column-wise
projection PU0

commutes with the row-wise projections PV0
,

PI0 and PIc0 , since row-wise projections are given by right
multiplying a matrix, whereas column-wise projections are left
multiplications. We use I to denote the identity mapping on
Rm×(n+nc).

We provide a summary of the notation used in the proof in
Table I.

1) Equivalent Models and Trimming: It turns out that
we may simplify the proof by transferring to an equivalent
setting with a simpler observation model and no trimming.
Let p̂ := min {p, ρ} and β := ρ

p̂ . The conditions for p, γ and
λ in Theorem 1 can be written equivalently as (with possibly
different constants c1 and c2)

p̂ ≥ c1
µr log2(m+ n)

min(m,n)
, (8)

γ ≤ c2
p̂

µr
√
βµr log3(m+ n)

, (9)

λ ∈

[√
µr log(m+ n)

p̂n
,

1

48
√√

βµrγn log(m+ n)

]
. (10)

We first note that the only randomness in the problem is the
distribution of Ω̃, the set of observed indices on the non-
corrupted columns in Ic0 . We claim that it suffices to establish
the theorem assuming uniform observation probability on Ic0 .
To establish this claim, we need some notation. Without loss
of generality we assume Ic0 = [n]. Let ~p be the vector in Rn+
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TABLE I
SUMMARY OF NOTATION

Notation Meaning
M Input data matrix
Ω Set of observed indices
Ω̃ Set of observed indices on the non-corrupted columns
Ωc Set of observed indices on the corrupted columns
Ω̂ Trimmed set of observed indices

L∗, C∗ An optimal solution to the program (2)
L0, C0 True low-rank matrix and outlier matrix

U0, V0, T0 The left and right singular vectors of L0 and the corresponding tangent space
I0 Set of the indices of the corrupted columns (i.e., non-zero columns of C0)

L̄, C̄ A solution to the oracle problem (11)
Ū , V̄ , T̄ The left and right singular vectors of L̄ and the corresponding tangent space

Ī The set of the indices of the non-zero columns of C̄
H̄ The column-wise normalized version of C̄
Q̄ The dual certificate corresponding to

(
L̄, C̄

)
PT0 ,PŪ ,PĪc ,PΩ̃, etc. Projection operators on Rm×(n+nc)

I The identity mapping on Rm×(n+nc)

Id The identity matrix

with elements p1, . . . , pn, where we recall that pj ≥ p ≥ p̂ for
all j ∈ [n] by Assumption 2. Denote by PBer(~p) and PUBer(p̂/4)

the probabilities calculated respectively when Ω̃ follows the
Bernoulli model with probabilities ~p = (pj), and when Ω̃
follows the Bernoulli model with uniform probability p̂/4. The
following lemma, proved in Appendix A, connects the success
probabilities of Algorithm 1 under these two models.

Lemma 1. Recall that pj ≥ p̂ for all j, and suppose
that the condition (8) holds with a sufficiently large con-
stant c1. If PUBer(p̂/4) [success] ≥ 1 − 17(m + n)−5 , then
PBer(~p) [success] ≥ 1− 20(m+ n)−5.

The lemma implies that it suffices to prove Theorem 1
assuming Ω̃ follows the Bernoulli model with uniform proba-
bility p̂/4.

Now define the set Ω′ := Ω̃ ∪
(

Ω̂ ∩ ([m]× I0)
)

, which
is the set of observed indices with only the columns in I0
trimmed. If the condition (8) holds with a sufficiently large
constant c1, then w.h.p. with respect to PUBer(p̂/4), Ω′ is equal
to Ω̂, the fully trimmed set. (This is because by Bernstein’s
inequality, each uncorrupted column in Ic0 has no more than
2 · p̂4m ≤ ρm observed entries w.h.p. and therefore is not
changed by trimming.) In other words, the convex program (2)
with Ω′ as the input is identical to the one with input Ω̂
w.h.p., so it suffices to prove Algorithm 1 succeeds w.h.p.
assuming the columns in Ic0 are not trimmed. Finally, note
that after trimming the number of remaining observations on
each corrupted column in I0 is at most ρm. Combining these
observations, we conclude that we may replace the sampling
Assumption 2 with the following new Assumption 3, and study
Algorithm 1 without trimming (i.e., only the convex program).
Note that in Assumption 3 we have changed the probability
from p̂/4 to p̂, which only affects the constant c1 in the
condition (8).

Assumption 3 (Sampling 2). The set Ω̃ is sampled from
the Bernoulli model with uniform probability p̂ on [m] × Ic0 ,
and is independent of the locations of the observed entries
on the corrupted columns. For each j ∈ I0, we have

|Ω ∩ ([m]× {j})| ≤ 2ρm.

Summarizing the arguments above, we have established that
in order to prove Theorem 1, it suffices to prove the following:

Under Assumptions 1 and 3, if the conditions (8)–
(10) hold, then with probability at least 1− 16(m+
n)−5, the program (2) with Ω as the input succeeds,
i.e., any optimal solution to the program satisfies
the properties (i)–(iii) stated at the beginning of this
section.

B. Primal Construction
We now construct the primal solution

(
L̄, C̄

)
. Recall that

Ωc is the observed indices on the corrupted columns I0. Let
(L̄, C̄) be an optimal solution to the following oracle problem:

min
L,C

‖L‖∗ + λ ‖C‖1,2

s.t. PΩc(L+ C) = PΩc(M)

PIc0 (L) = L0.

PU0
(L) = L

PI0(C) = C.

(11)

Note that we have imposed the desired properties of (L∗, C∗)
as constraints in the oracle problem. Let Ū Σ̄V̄ be the rank-
r SVD of L̄ (the lemma below shows that L̄ has rank
r) and Ī := column-support(C̄). We define several sub-
spaces and projections analogously to those for L0: PŪA :=
Ū Ū>A, PŪ⊥A = A − PŪA, PV̄ := AV̄ V̄ >, T̄ :={
ŪX> + Y V̄ > : X ∈ R(n+nc)×r, Y ∈ Rm×r

}
, PT̄A :=

PŪA+ PV̄A− PŪPV̄A, and PT̄⊥A := A− PT̄A.
The following lemma, whose proof is given in Ap-

pendix B-A, relates some basic properties of the oracle so-
lution (L̄, C̄) to the ground truth (L0, C0).

Lemma 2. We have the following: (a) PŪ = PU0
and Ī ⊆

I0; (b) max1≤j≤n+nc

∥∥(PIc0 V̄ >) ej∥∥2
≤
√

µr
n ; (c) PIc0PT̄ =

PT0
PIc0PT̄ ; (d) PT̄PIc0 = PT̄PT0

PIc0 ; (e) PT̄⊥PT⊥0 PIc0 =
PT⊥0 PIc0 .

Since all the constraint in (11) are linear, by standard convex
analysis the optimal solution (L̄, C̄) must satisfy the KKT
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conditions. That is, there exist Lagrange multipliers A1, A2,
A3 and A4 (corresponding to the four constraints in the oracle
problem) and matrices F and G such that PT̄F = 0 , ‖F‖ ≤
1, PĪcH̄ = 0, H̄·j = C̄·j/

∥∥C̄·j∥∥2
for all j ∈ Ī , G ∈ Īc,

‖G‖∞,2 ≤ 1, and

Ū V̄ > + F + PIc0A2 + (I − PU0
)A3 =λ

(
H̄ +G

)
+ PIc0A4

=PΩcA1; (12)

here Ū V̄ > + F is a subgradient of ‖L‖∗ at L̄, and H̄ + G
is a subgradient of ‖C‖1,2 at C̄. Also note that H̄ is the
column-wise normalized version of C̄ with unit-norm nonzero
columns. Define the matrix H̄ ′ := H̄ + PI0G. The following
lemma characterizes H̄ ′ and is proved in Appendix B-B.

Lemma 3. We have the following: (a) H̄ ′ ∈ Ωc; (b) PĪH̄ ′ =
H̄; (c)

∥∥PĪcH̄ ′∥∥∞2
≤ 1; (d) ŪPI0 V̄ > = PU0

(λH̄ ′); (e) H̄
and H̄ ′ are independent of Ω̃.

C. Success Condition
Recall that in Section V-A1 we show that it suffices to

prove the convex program (2) succeeds without trimming.
The following proposition, proved in Appendix C, provides a
deterministic sufficient condition for such success. The success
condition involves the quantities T̄ , Ū , V̄ , Ī and H̄ of the
oracle solution (L̄, C̄) constructed in the last subsection.

Proposition 1. If the following conditions hold:
1)
∥∥(p̂−1PT0

PΩ̃PT0
− PT0

)
Z
∥∥
F
≤ 1

2 ‖Z‖F for all Z ∈
Ic0 .

2) I0 ∩ range (PV̄ ) = {0}.
3) There exists a matrix Q̄ ∈ Rm×(n+nc) (called an

approximate dual certificate) which satisfies
a) Q̄ ∈ Ω;
b) Ū V̄ > − PT̄ Q̄ = PT̄D for some D ∈ Rm×(n+nc)

with D ∈ Ic0 and ‖D‖F ≤
√

p̂
2 min

{
1
4 ,

λ
4

}
;

c)
∥∥PT̄⊥Q̄∥∥ ≤ 1

2 ;
d) PĪQ̄ = λH̄;
e)
∥∥PĪc∩I0Q̄∥∥∞,2 ≤ λ;

f)
∥∥PIc0 Q̄∥∥∞,2 ≤ λ

2 .
Then any optimal solution (L∗, C∗) to the program (2) must
satisfy PIc0L

∗ = L0, PU0
L∗ = L∗ and PI0C∗ = C∗, which

means Algorithm 1 succeeds.

1) Approximate Isometry and Contraction: We now show
that the conditions 1 and 2 in Proposition 1 are satisfied
w.h.p. under our model assumptions and the conditions (8)–
(10). Recall that by Assumption 3 the set Ω̃ follows the
Bernoulli model with uniform probability p̂. The following
lemma establishes the approximate isometry property in the
condition 1.

Lemma 4. Suppose p̂ ≥ µr
m∧n log(m + n), then w.h.p. we

have: for all Z ∈ Ic0 ,∥∥(p̂−1PT0PΩ̃PT0 − PT0

)
Z
∥∥
F
≤ 1

2
‖Z‖F . (13)

The lemma is a variant of the standard approximate
isometry inequality in the literature of matrix comple-
tion/decomposition [9], [17], [33]. In particular, we note that

the operator p̂−1PT0
PΩ̃PT0

−PT0
maps the subspace T0 ⊂ Ic0

to itself, so Lemma 4 is an immediate consequence of Part 1)
of Lemma 11 in [17].

The next lemma, proved in Appendix D, shows that the op-
erator PV̄ PI0PV̄ is a contraction, which in particular implies
the condition 2 in Proposition 1.

Lemma 5. If λ2 ≤ 1
2γn , then ‖PV̄ PI0PV̄ (Z)‖F ≤

1
2 ‖Z‖F

and ‖PV̄ PI0PV̄ (Z)‖ ≤ 1
2 ‖Z‖ for any matrix Z.

Note that the requirements on p̂ and λ in the above lemmas
are satisfied under the conditions (8) and (10). We therefore
have established the conditions 1 and 2 in Proposition 1. To
prove the theorem, it remains to construct a dual certificate
Q̄ obeying the conditions 3(a)–(f) in Proposition 1 w.h.p.,
which is done in the next subsection.

D. Dual Construction

We build Q̄ in two steps. In the first step we construct a
matrix Q that satisfies all the requirements except 3(a). By
Lemma 5, we know the operator PV̄ PIc0PV̄ = PV̄−PV̄ PI0PV̄
is invertible on range (PV̄ ) (as a subspace of Rm×(n+nc)), with
its inverse given by

B :=
(
PV̄ PIc0PV̄

)−1
= PV̄ +

∞∑
i=1

(PV̄ PI0PV̄ )
i
. (14)

We define a matrix Q by

Q := Ū V̄ > + λH̄ ′ − λPU0H̄
′ − PIc0PV̄ BPV̄ PŪ⊥

(
λH̄ ′

)
.

It is straightforward to check that Q has the following prop-
erties (see Appendix E the proof).

Lemma 6. We have PI0Q = λH̄ ′, PT̄Q = Ū V̄ >, and∥∥PV̄ PŪ⊥(λH̄ ′)
∥∥ ≤ ∥∥λH̄ ′∥∥ ≤ ∥∥λH̄ ′∥∥

F
≤ λ√γn.

While not needed in the sequel, it is a simple exercise
to check that Lemmas 6 and 5 together imply ‖PT̄⊥Q‖ ≤
3λ
√
γn ≤ 1

2 and
∥∥PIc0Q∥∥∞,2 ≤ (1 + 2λ

√
γn
)√

µr
n ≤

1
2λ

under the condition (10). Therefore, Q satisfies the condition 3
in Proposition 1 except for the requirement of being an element
of Ω. Note that this requirement can only potentially fail on the
columns in Ic0 since PI0Q = λH̄ ′ ∈ Ωc. As the second step of
building the dual certificate, we use the a variant of the golfing
scheme in [19] to convert Q to a matrix Q̄ that obeys this
requirement. Set k0 = 20 log(m+n) and p′ = 1−(1− p̂)1/k0 .
Let Ω̃k, k = 1, . . . , k0 be sets of entries sampled independently
from the Bernoulli model on [m]×Ic0 with uniform probability
p′; that is, P

(
(i, j) ∈ Ω̃k

)
= p′ independently of all others

for all (i, j) ∈ [m] × Ic0 and k ∈ [k0]. We may assume
Ω̃ =

⋃k0
k=1 Ω̃k, which does not change the distribution of Ω̃.

Note that p′ ≥ p̂/k0 ≥ c1 µr log(m+n)
20(m∧n) under the condition (8).

We set Y0 := 0 and define the matrices {Yk} recursively by

Yk := Yk−1 +
1

p′
PΩ̃k
PT0

(
PIc0Q− Yk−1

)
, k = 1, . . . , k0.

The final dual certificate is given by Q̄ = PI0Q+ Yk0 .



IEEE TRANSACTIONS OF INFORMATION THEORY, VOL. XX, NO. XX, JANUARY 20XX 13

E. Verification of the Dual Certificate

We now verify that the dual certificate Q̄ constructed above
satisfies all the requirements 3(a)–3(f) in Proposition 1 under
the conditions (8)–(10). We have PIc0 Q̄ = Yk0 ∈ Ω̃ by
construction and PI0Q̄ = PI0Q = λH̄ ′ ∈ Ωc by part (a) of
Lemma 3, so the condition 3(a) holds. Moreover, by part (b)
and (c) of Lemma 3 we have PĪQ̄ = λPĪH̄ ′ = H̄ and∥∥PĪc∩I0Q̄∥∥∞.2 = λ

∥∥PĪc∩I0H̄ ′∥∥∞,2 ≤ λ, so the conditions
3(d) and 3(e) are also satisfied. It remains to verify 3(b), 3(c)
and 3(f).

1) Condition 3(b): Define the linear operators Ak :=
PT0 − 1

p′PT0PΩ̃k
PT0 for k = 1, . . . , ko and the matrices

Dk = PT0

(
PIc0Q− Yk

)
for k = 0, . . . , k0. With this notation,

we have Yk = Yk−1+ 1
p′PΩ̃k

Dk−1 by definition, which implies

Dk =

(
PT0
− 1

p′
PT0
PΩ̃k
PT0

)
Dk−1

= Ak(Dk−1), for k = 1, . . . , k0. (15)

It follows that with high probability,

‖Dk0‖F = ‖Ak0Ak0−1 · · · A1 (D0)‖F
(a)

≤ 1

2k0
‖D0‖F

(b)

≤ 1

(m+ n)10
‖D0‖F ,

where (a) follows from Lemma 4 with Ω̃ replaced by Ω̃k
and (b) follows from our choice of k0. To bound ‖D0‖F , we
observe that by definition of Q,

D0 = PT0
PIc0Q

= ŪPIc0 V̄
> + PV0

PIc0PV̄ BPV̄ PŪ⊥
(
λH̄ ′

)
(16)

By (14) and Lemma 5, we know that for any matrix Z,

‖B(Z)‖F ≤
∞∑
i=0

(
1

2

)i
‖Z‖F ≤ 2 ‖Z‖F . (17)

Combining the last two equations (16) and (17) gives

‖D0‖F ≤
∥∥Ū V̄ >∥∥

F
+ 2

∥∥λH̄ ′∥∥
F
≤
√
r + 2λ

√
γn,

where the last inequality follows from Lemma 6. It follows
that

‖Dk0‖F ≤
1

(m+ n)10

(√
r + 2λ

√
γn
)

≤
√
p̂

2
min

{
1

4
,
λ

4

}
, (18)

where the last inequality follows from the conditions (8)
and (10). On the other hand, since Q̄ = PIc0Yk0 + PI0Q and
PT̄Q = Ū V̄ > by Lemma , we have

Ū V̄ − PT̄ Q̄ = PT̄Q− PT̄
(
PIc0Yk0 + PI0Q

)
= PT̄PIc0 (Q− Yk0) = PT̄Dk0 , (19)

where the last equality follows from Part (d) of Lemma 2.
We conclude that the condition 3(b) in Proposition 1 holds by
combining (19), (18) and the fact that Dk0 ∈ T0 ⊆ Ic0 .

2) Condition 3(c): We may write

PT̄⊥Q̄
=PT̄⊥

(
λH̄ ′

)
+ PT̄⊥PT0

Yk0 + PT̄⊥PT⊥0 Yk0
=PT̄⊥

(
λH̄ ′

)
+
(
PT̄⊥PT0PIc0Q− PT̄⊥Dk0

)
+ PT⊥0 Yk0 ,

where the first equality follows from definition of Q̄, and the
second equality follows from Yk0 ∈ T0 ⊆ Ic0 and part (e) of
Lemma 2. Hence we have∥∥PT̄⊥Q̄∥∥ ≤ ∥∥λH̄ ′∥∥+‖Dk0‖+

∥∥PT̄⊥PT0
PIc0Q

∥∥+
∥∥∥PT⊥0 Yk0∥∥∥ .

The condition 3(c) holds if each of the terms above is upper
bounded by 1

8 . By Lemma , we have
∥∥λH̄ ′∥∥ ≤ λ

√
γn ≤

1
16 , where the last inequality holds under the condition (10).
In (18) we already showed that ‖Dk0‖ ≤ ‖Dk0‖F ≤

√
p̂

8 ≤
1
8 .

Moreover, using (16), we have∥∥PT̄⊥PT0
PIc0Q

∥∥ ≤ ∥∥PV̄ ⊥PV0
PIc0PV̄ BPV̄ PŪ⊥(λH̄ ′)

∥∥
F

(a)

≤ 2
∥∥λH̄ ′∥∥

F

≤ 1

8
,

where (a) follows (17) and the fact that projections do not
increase the Frobenius norm. It remains to bound

∥∥∥PT⊥0 Yk0∥∥∥
by 1

8 .
For brevity we introduce some additional notation. Let

DU
0 := ŪPIc0 V̄ , and DV

0 := PŪ⊥PV0PIc0BPV̄
(
λH̄ ′

)
, DU

k :=
AkAk−1 · · · A1(DU

0 ) and DV
k := AkAk−1 · · · A1(DV

0 ) for
k = 1, . . . , k0. Note that for each k ≥ 2, DU

k−1 and DV
k−1

are independent of Ω̃k by construction the Ω̃k’s and part (e)
of Lemma 3. With these definitions, we have Dk = DU

k +DV
k

for k = 0, . . . , k0 by (16) and (15), and hence

Yk0 =

k0∑
k=1

1

p′
PΩ̃k

Dk−1

=

k0∑
i=1

1

p′
PΩ̃k

DU
k−1 +

k0∑
k=1

1

p′
PΩ̃k

DV
k−1. (20)

Let t be either U or V . Since Dt
k−1 ∈ T0 for each k, we have

k0∑
k=1

∥∥∥∥PT⊥0 1

p′
PΩ̃k

Dt
k−1

∥∥∥∥
=

k0∑
k=1

∥∥∥∥PT⊥0
(

1

p′
PΩ̃k

Dt
k−1 −Dt

k−1

)∥∥∥∥
≤

k0∑
k=1

∥∥∥∥( 1

p′
PΩ̃k
− I

)
Dt
k−1

∥∥∥∥ . (21)

To proceed, we need three lemmas involving the norms of
a matrix after certain random projections. Recall that Ω̃ and
Ω̃k are sampled from the Bernoulli model with uniform
probability p̂ and p′, respectively. The first lemma bounds the
spectral norm using the `∞ and `(∞,2)2 norm. This lemma is
proved in a recent report by the author [15], but we provide
a proof in Appendix F-D for completeness.
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Lemma 7. Let Z be a fixed m × (n + nc) matrix in Ic0 . We
have w.h.p.∥∥∥∥1

p̂
PΩ̃Z − Z

∥∥∥∥
≤

(
15 log(m+ n)

p̂
‖Z‖∞ +

√
60 log(m+ n)

p̂
‖Z‖(∞,2)2

)
.

The next lemma, standard in matrix completion literature,
further controls the `∞ norm.

Lemma 8. [17, Lemma 13, part 1] Let Z be a fixed m×(n+

nc) matrix in T0. If p̂ > 66 log(m+n)
m∧n , then w.h.p. we have∥∥∥∥1

p̂
PT0
PΩ̃PT0

Z − PT0
Z

∥∥∥∥
∞
≤ 1

2
‖Z‖∞ .

The third lemma is new, which controls the `(∞,2)2 norm.

Lemma 9. The following holds for some constant c0 > 0 and
any fixed matrix Z ∈ T0. If p̂ ≥ c0

µr log(m+n)
m∧n , then we have

w.h.p.∥∥∥∥1

p̂
PT0PΩ̃PT0Z − PT0Z

∥∥∥∥
∞,2

≤40 log(m+ n)

p̂

√
µr

n ∧m
‖Z‖∞ +

√
250µr log(m+ n)

p̂(n ∧m)
‖Z‖∞,2

≤1

2

√
log(m+ n)

p̂
‖Z‖∞ +

1

2
‖Z‖∞,2 .

The same bound holds with the ‖·‖∞,2 norm replaced by the
‖·‖(∞,2)2 norm.

See Appendix F-B for a proof os this claim.
Applying Lemma 7 with Ω̃ replaced by Ω̃k to the R.H.S.

of (21) and using p′ ≥ p̂
20 log(m+n) & µr log(m+n)

m∧n under the
condition (8), we have for t = U or V ,

k0∑
k=1

∥∥∥∥( 1

p′
PΩ̃k
− I

)
Dt
k−1

∥∥∥∥
≤

k0∑
k=1

15 log2(m+ n)

p̂

∥∥Dt
k−1

∥∥
∞

+

k0∑
k=1

√
60 log2(m+ n)

p̂

∥∥Dt
k−1

∥∥
(∞,2)2

. (22)

We then apply Lemmas 8 and 9 with Ω̃ replaced by Ω̃k to the
two norms in the last R.H.S., which gives∥∥Dt

k−1

∥∥
∞ =

∥∥Ak−1Ai−2 · · · A1

(
Dt

0

)∥∥
∞ ≤

1

2k−1

∥∥Dt
0

∥∥
∞

and ∥∥Dt
k−1

∥∥
(∞,2)2

=
∥∥Ak−1Ai−2 · · · A1

(
Dt

0

)∥∥
(∞,2)2

≤ 1

2k−1

∥∥Dt
0

∥∥
(∞,2)2

+
k − 1

2k−1

√
log2(m+ n)

p̂

∥∥Dt
0

∥∥
∞ .

It follows that
k0∑
k=1

log(m+ n)

p′
∥∥Dt

k−1

∥∥
∞ +

k0∑
k=1

√
log(m+ n)

p′
∥∥Dt

k−1

∥∥
(∞,2)2

≤ 6 log2(m+ n)

p̂

∥∥Dt
0

∥∥
∞ + 2

√
log2(m+ n)

p̂

∥∥Dt
0

∥∥
(∞,2)2

.

(23)

Combining (20)–(23), we obtain∥∥∥PT⊥0 Yk0∥∥∥
≤90 log2(m+ n)

p̂

(∥∥DU
0

∥∥
∞ +

∥∥DV
0

∥∥
∞

)
+ 16

√
log2(m+ n)

p̂

(∥∥DU
0

∥∥
(∞,2)2

+
∥∥DV

0

∥∥
(∞,2)2

)
.

The following lemma, proved in Appendix F-A, bounds the
norms of DU

0 and DV
0 above. The lemma relies on the second

part of Assumption 3, which is a consequence of the trimming
procedure in Algorithm 1.

Lemma 10. Recall that β := ρ
p̂ . Under Assumptions 1 and 3,

we have ∥∥DU
0

∥∥
∞ ≤

√
µ2r2

mn
,∥∥DU

0

∥∥
∞,2 ≤

√
µr

n
,

∥∥DU
0

∥∥
(∞,2)2

≤
√

µr

m ∧ n
,∥∥DV

0

∥∥
∞ ≤

∥∥DV
0

∥∥
∞,2 ≤ 4λ2γµr

√
βp̂n,∥∥DV

0

∥∥
(∞,2)2

≤
∥∥DV

0

∥∥
F
≤ 4λ2γn

√
µrβp̂.

Using this lemma, we conclude that∥∥∥PT⊥0 Yk0∥∥∥
≤90µr log2(m+ n)

p̂
√
mn

+ 90 · 4λ2γµr

√
βn

p̂
log2(m+ n)

+ 16

√
µr log2(m+ n)

p̂(m ∧ n)
+ 48λ2γn

√
µrβ log(m+ n).

One checks that each term above is bounded by 1
32 under

the conditions (8) and (10). This means that
∥∥∥PT⊥0 Yk0∥∥∥ ≤ 1

8 ,
proving the condition 3(c) in Proposition 1.

3) Condition 3(f): We need to show
∥∥PIc0 Q̄∥∥∞,2 =

‖Yk0‖∞,2 ≤
λ
2 . By (20), we have

‖Yk0‖∞,2

≤
k0∑
k=1

∥∥∥∥( 1

p′
PΩ̃k
− I

)
DU
k−1

∥∥∥∥
∞,2

+

k0∑
k=1

∥∥DU
k−1

∥∥
∞,2︸ ︷︷ ︸

S1

+

k0∑
k=1

∥∥∥∥( 1

p′
PΩ̃k
− I

)
DV
k−1

∥∥∥∥
∞,2

+

k0∑
k=1

∥∥DV
k−1

∥∥
∞,2︸ ︷︷ ︸

S2

.

(24)
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It suffices to bound each of S1 and S2 by λ
4 . We need the

following lemma, which is proved in Appendix F-C.

Lemma 11. For any fixed matrix Z ∈ T0, we have w.h.p.,∥∥∥∥1

p̂
PΩ̃Z − Z

∥∥∥∥
∞,2

≤20 log(m+ n)

p̂
‖Z‖∞ +

√
50 log(m+ n)

p̂
‖Z‖∞,2 .

Using the lemma with Ω̃ replaced by Ω̃k, we have w.h.p.

S1 ≤
k0∑
k=1

20 log(m+ n)

p′
∥∥DU

k−1

∥∥
∞

+ 2

k0∑
k=1

√
50 log(m+ n)

p′
∥∥DU

k−1

∥∥
∞,2 .

Thanks to the second part of Lemma 9, we know that (23)
holds with ‖·‖(∞,2)2 replaced by ‖·‖∞,2. Using this, we obtain
that w.h.p.

S1 ≤
120 log2(m+ n)

p̂

∥∥DU
0

∥∥
∞ + 4

√
50 log2(m+ n)

p̂

∥∥DU
0

∥∥
∞,2

≤120µr log2(m+ n)

p̂
√
mn

+ 4

√
50µr log2(m+ n)

p̂n
,

where the last inequality follows from Lemma 10. The last
R.H.S. is no more than λ

4 under the conditions (8) and (10).
Turning to the term S2 in (24), we apply Lemma 11 with

Ω̃ replaced by Ω̃k to obtain that w.h.p.,

S2 ≤
k0∑
k=1

20 log(m+ n)

p′
∥∥DV

k−1

∥∥
∞

+ 2

k0∑
k=1

√
50 log(m+ n)

p′
∥∥DV

k−1

∥∥
∞,2 .

Since (23) holds with ‖·‖(∞,2)2 replaced by ‖·‖∞,2, we obtain
that w.h.p.,

S2 ≤
120 log2(m+ n)

p̂

∥∥DV
0

∥∥
∞

+ 4

√
50 log2(m+ n)

p̂

∥∥DV
0

∥∥
∞,2 .

It then follows from Lemma 10 that w.h.p. S2 is bounded by

480λ2γµr

√
βn

p̂
log2(m+n) + 16λ2γµr

√
50βn log2(m+n)

≤600λ2γµr

√
βn

p̂
log2(m+n).

The last R.H.S. is bounded by λ
4 under the conditions (8)

and (10). This establishes the condition 3(f) in Proposition 1.
Finally, note that each random event above holds w.h.p., so by
the union bound they hold simultaneously with probability at
least 1−20(m+n)−5. This completes the proof of Theorem 1.

1	  

-‐1	  
0 

0 

1 n/µr 

n/µr 

n/µr n/µr 

n 

n 

Fig. 5. An illustration of L constructed in Section VI-A with rank r = 2.

VI. PROOF OF THEOREM 2

We consider the two conditions (5) and (6) separately.

A. Condition (5): p ≤ µr log(2n)
2n

In this case we use a modified argument from [11, Theorem
1.7] to establish the impossibility of determining the column
space (i.e., the left singular vectors). We may assume nc = 0.

Without loss of generality, assume that s := n
µr is an integer.

We use ei to denote the i-th standard basis whose dimension
will become clear in context. For k ∈ [r], define the set

Bk = {(k − 1)s+ 1, (k − 1)s+ 2, . . . , ks} . (25)

Consider the matrix L =
∑r
k=1 ukv

>
k ∈ Rn, where the

(unnormalized) singular vectors uk ∈ Rn and vk ∈ Rn are
given by

uk =
∑
i∈Bk

ωiei, vk =
∑
k∈Bk

ei,

where the ωi’s take values in {−1, 1}. Clearly, L has rank-r
and incoherence parameter µ, and is a block diagonal matrix
with r blocks of size s × s. In particular, each row of a
block is either all 1 or −1 with its sign determined by ωi.
An illustration of L is given in Figure 5. Therefore, in order
to uniquely determine the left singular vectors uk from the
observed entries of L, we must be on event that there is at
least one observed entry on every row i of each diagonal
block, since otherwise there would be no information on wi.
Under the Bernoulli sampling model in Assumption 2, the
probability of this event is π = [1− (1− p)s]n . Using the
premise 2p ≤ log(2n)

s ≤ 1 of the theorem and the inequality
1− x+ x2/2 > e−x,∀x ≥ 0, we have

1−p ≥ 1− log(2n)

2s
≥ 1− log(2n)

s
+

log2(2n)

2s2
> e− log(2n)/s.

It follows that

π ≤ exp [−n(1− p)s] ≤ exp
[
−ne− log 2n

]
= e−

1
2 ≤ 3

4
,

where the first inequality follows from 1−x ≤ e−x. Therefore,
with probability 1−π ≥ 1

4 , there exists one row of a diagonal
block that is unobserved, in which case the uk’s cannot be
determined. It is easy to see that this implies the conclusion
of the theorem.
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B. Condition (6): γ ≥ 2p
µr

W.L.O.G. we assume ps is a positive integer. Under the
above condition, we have nc = γn ≥ 2ps > ps, where
s := n

µr as before. We prove the theorem by constructing a
family of candidate solutions (Li, Ci), i = 1, 2, . . . , 2M and
showing it is difficult to accurately distinguish them based
on the observed data Ω and PΩ (Li + Ci). In this subsection,
we use capital letters (B1, I2, J , etc.) to denote sets of
column indices (i.e., subsets of [n + nc]), and Greek letters
(Ω,Θ, ξ etc.) to denote sets of entry indices (i.e., subsets of
[n]× [n+ nc]).

Let J := {(r− 1)s+ 1, . . . , rs+ nc}. Recall the definition
of the Bk’s in (25), which satisfies Br ⊆ J . We further let
I := J\Br and

uk =
∑
i∈Bk

ei, k ∈ [r]; ūr = −ers +
∑

i∈Br,i6=rs

ei;

vk =
∑
i∈Bk

ei, k ∈ [r]; w =
∑
i∈I

ei.

We build two candidate solutions (L1, C1) and (L2, C2) as
follows:

L1 =

r∑
k=1

ukv
>
k , C1 = ūrw

>;

L2 =

r−1∑
k=1

ukv
>
k + ūrv

>
r , C2 = urw

>.

We illustrate them in Figure 6.
Let M :=

(
s+nc
s

)
. In the definition of the (L1, C1), if

we let the set Bk vary in all M possible subsets of J with
size s (i.e., we permute the columns in J), then we get M
different candidates (Li, Ci) , i = 1, 3, . . . , 2M − 1. Similarly,
by varying Bk in(L2, C2) we can get another M candidates
(Li, Ci) , i = 2, 4, . . . , 2M . We thus have defined a family of
2M pairs. Let Ii := column-support(Ci). Note that for the
Li’s, only the locations of the last s authentic columns vary
in J , and the sign of these columns’ rs-th row changes. The
corrupted columns in Ci are identical to the last s authentic
columns of Li except with the sign of the rs-th row flipped.
Therefore, to recover the column space of Li, one needs to
determine the sign of the rs-th row. The idea of the proof is
simple: under the Bernoulli model and with nc > 2ps columns
in Ii, with positive probability the rs-row has roughly as many
observed 1’s as −1’s, so there is no way to determine which
sign is authentic.

We make this precise by specifying the set of observed
entries Ω = Ω̃i ∪ Ωc,i, for each candidate i ∈ [2M ].
According to our assumption, the observations Ω̃i on the
authentic columns follow the Bernoulli model with uniform
probability p. It remains to specify the observations Ωc,i on
the corrupted columns. Recall Definition 1 of the Bernoulli
model, and let Ω+

c,i be drawn from the Bernoulli model on
[rs − 1] × Ii with uniform probability p; this will be the
observed entries on the first rs − 1 rows of the corrupted
columns. Let Γi be independent from Ω̃i and drawn according
to the Bernoulli model on [s] with uniform probability p . If
|Γi| ≥ nc, then Ω−c,i, the set of observed entries on the rs-th

row of the corrupted columns, is set as Ω−c,i = {rs} × Ii. If
|Γi| = t < nc, then we set Ω−ci = {rs} × Ii (t), where Ii(t)
denotes the t smallest indices in Ii. The set of observed entries
on the corrupted columns Ii is then given by Ωc,i = Ω+

c,i∪Ω−c,i.
We see that the authentic observations Ω̃i are independent of
Ci and Ωc,i, so Assumption 2 is satisfied. In the sequel, we
use PLi,Ci to denote the probability computed under the i-th
candidate solution (Li, Ci).

Now suppose the true solution is the first candidate
(L1, C1). Let Θ1 := Ω̃1∩({rs}×J) be the set of observations
on the rs-th row of the authentic columns in J . If we define
the event

E := {|Γ1| ≤ |Θ1| ≤ ps} ,

then we have

PL1,C1
[E ]

(i)

≥ 1

2
PL1,C1

[|Γ1| < ps and |Θ1| < ps]

(ii)

≥ 1

2
· PL1,C1

[|Γ1| < ps] · PL1,C1
[|Θ1| < ps]

(iii)

≥ 1

8
,

where (i) follows from symmetry, and (ii)–(iii) hold because
|Θ1| and |Γ1| are independent and both follow the Binomial
distribution with s trials and probability p, whose median is
ps. On this event E , we can always find another candidate
solution i0 ∈ {2, 4, . . . , 2M} (which means the last row of Li
has a negative sign so the column space is different) such that
Θ1 = {rs}×Ii0 (|Θ1|); this is because Θ1 ⊆ {rs}×J and the
Ii’s enumerates the subsets of J with size nc > ps ≥ |Θ1|.
See Figure 7 for an illustration. Let ω ⊆ [n] × [n + nc] be
a realization of Ω that is consistent with E , i.e., it satisfies
PL1,C1

[Ω = ω and E ] > 0. We claim that (proved below) for
any such ω, we have

PL1,C1
[Ω = ω] ≤ PLi0 ,Ci0 [Ω = ω] ,

and

PΩ (L1 + C1) = Z := PΩ (Li0 + Ci0) for Ω = ω.

This means the observed data is identical under both candidate
solutions, but the i0-th candidate has a higher likelihood. In
this case, the maximum likelihood estimator (MLE), which is
given by

f (ω,Z) := arg max
(Li,Ci)

PLi,Ci [Ω = ω,PΩ (Li0 + Ci0) = Z]

will incorrectly output a solution other than (L1, C1) with
probability at least 1

2 . The above argument in fact holds if any
one of the (Li, Ci)’s is the true solution. Therefore, the average
probability of error for the MLE is at least 1

2 ·PL1,C1 [E ] ≥ 1
16 .

Since the MLE minimizes the average probability of error,
which in turn lower bounds the worst case error probability,
we conclude that any estimator makes an error with worst case
probability at least 1

16 . This proves the theorem.
Proof of the claim: When Ω = ω, the equality
PΩ (L1 + C1) = PΩ (Li0 + Ci0) holds by construction of the
(Li, Ci)’s and the assumption on ω (cf. Figure 7). To prove
the inequality, we note the distribution of Ω under (L1, C1)
and (Li0 , Ci0) only differs on the entries in Υ := {rs} × J .
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Fig. 6. An illustration of (L1, C1) and (L2, C2) constructed in Section VI-B with rank r = 2.

1 

L1 

Li 

C1 

Ci 

I1 I1 

1 

Ii 

J J 

Ii 

0 0 

0 0 

Θ1 

ϒ 

= observed 1 = observed -1 = observed 0 = unobserved 

Fig. 7. An illustration of the two solutions (L1, C1), (Li0 , Ci0 ) and the
locations of the observed entries Ω in Section VI-B, where |Θ1| ≤ nc. In
this case the two solutions generate the same observed data PΩ (L1 + C1) =
PΩ (Li0 + Li0 ) and it is impossible to distinguish between them.

Let ξ := ω∩({rs} × Ii0) and ζ := ω∩({rs} × I1) . Note that
because ω is consistent with E , we have |ζ| ≤ |ξ| ≤ ps < nc;
moreover, the observed entries in Υ are either on the columns
Ii or Ii0 , so ω ∩ Υ = ξ ∪ ζ. Let g(·) denote the probability
mass function of the Binomial distribution with s trials and
probability p. Then, according to our specification of Ω under
each candidate solution, we have

PL1,C1
[Ω = ω]

PLi0 ,Ci0 [Ω = ω]

=
PL1,C1

[Ω ∩Υ = ω ∩Υ]

PLi0 ,Ci0 [Ω ∩Υ = ω ∩Υ]

=
p|ξ|(1− p)s−|ξ|g(|ζ|)
g(|ξ|)p|ζ|(1− p)s−|ζ|

=
g(|ζ|)
g(|ξ|)

·
(

p

1− p

)|ξ|−|ζ|
.

Observe that g(·) is unimodal with mode ps, and |ζ| ≤ |ξ| ≤
ps, so g(|ζ|) ≤ g(|ξ|). Moreover, we have

(
p

1−p

)|ξ|−|ζ|
≤ 1

by the assumption p ≤ 1
2 . This means

PL1,C1
[Ω = ω]

PLi0 ,Ci0 [Ω = ω]
≤ 1,

proving the claim.

VII. CONCLUSION

In this paper, we study the problem of completing a low-
rank matrix from sparsely observed entries when observations
from some columns are completely and arbitrarily corrupted.
We propose a new algorithm based on trimming and convex
optimization, and provide performance guarantees showing its
robustness to column-wise corruption. We further show that
the performance of our algorithm is close to the information-
theoretic limit under adversarial corruption, thus achieving
near-optimal tradeoffs between sample complexity, robustness
and rank.

Immediate future directions include removing the sub-
optimality in bounds and allowing for noise and sparse cor-
ruption. It may be possible to further improve the robustness
of matrix completion by combining our approach with other
outlier detection techniques [22], [37]. As our work is mo-
tivated by the practical applications in collaborative filtering
and crowdsourcing, it is important to study in more depth
the computational aspects and develop fast online/parallel
algorithms. A more systematic exploration of the relation
between sample complexity, model complexity, computational
complexity and robustness, will also be of much theoretical
and practical interest.

APPENDIX A
PROOF OF LEMMA 1

We need a simple observation first: the convex program (2)
has a monotonicity property, that is, having more observed
entries on the uncorrupted columns only makes the program
more likely to succeed.

Lemma 12 (Monotonicity). Suppose the indices set Ω1 and
Ω2 are such that Ω1 ∩ ([m]× Ic0) ⊆ Ω2 ∩ ([m]× Ic0) and
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Ω1 ∩ ([m]× I0) = Ω2 ∩ ([m]× I0). If the program (2) with
Ω̂ = Ω1 as the input succeeds, then using Ω̂ = Ω2 as the input
also succeeds.

Proof. Define the set

X :=
{

(L,C) : PIc0 (L) = L0,PU0
(L) = L,PI0(C) = C,

PΩ1∩([m]×I0) (L+ C) = PΩ1∩([m]×I0) (M)
}
,

which are the solutions that correspond to the success of the al-
gorithm and are consistent on the entries in Ω1∩([m]× I0) =
Ω2 ∩ ([m]× I0). Observe that any solution in X is feasible to
the program with Ω̂ equal to Ω1 or Ω2. Suppose (L∗

′
, C∗

′
) is

any optimal solution to the program (2) with Ω2. By optimality
we must have

∥∥∥L∗′∥∥∥
∗

+ λ
∥∥∥C∗′∥∥∥

1,2
≤ ‖L‖∗ + λ ‖C‖1,2,

∀ (L,C) ∈ X. On the other hand, the program with Ω1

succeeds by assumption, meaning that any optimal solution
(L∗, C∗) of it must be in the set X. It follows that (L∗

′
, C∗

′
)

has an objective value lower or equal to (L∗, C∗). But
(L∗

′
, C∗

′
) is also feasible to the program with Ω1 since

Ω1 ⊆ Ω2, so (L∗
′
, C∗

′
) is optimal to the program with Ω1

and hence in the set X. This means the program with Ω2

succeeds.

We turn to the proof of Lemma 1. We use the shorthand
S := {success} for the event that Algorithm 1 succeeds.
Given a vector ~k ∈ Rn with elements kj , let PUnif(~k) denote the
probability when Ω̃ follows the uniform model with parameter
~k, meaning that the observed entries on the j-th column is
sampled uniformly at random without replacement from all
size-kj subsets of the entries in this column. Recall that hj
is the number of observed entries on the j-th column before
trimming. We use bxc to denote the largest integer no more
than x. The probability PBer(~p) [S] satisfies

PBer(~p) [S]

=

m∑
k1=1

· · ·
m∑

kn=1

PBer(~p) [S|hj = kj , j ∈ [n]]

× PBer(~p) [hj = kj , j ∈ [n]]

≥
m∑

k1=bp̂m/2c

· · ·
m∑

kn=bp̂m/2c

PBer(~p) [S|hj = kj , j ∈ [n]]

× PBer(~p) [hj = kj , j ∈ [n]] .

For the summand above, we have

PBer(~p) [S|hj = kj , j ∈ [n]]× PBer(~p) [hj = kj , j ∈ [n]]

(a)
=PUnif(~k) [S]PBer(~p) [hj = kj , j ∈ [n]]

(b)
=PUnif(~k∧bρmc) [S]PBer(~p) [hj = kj , j ∈ [n]]

(c)

≥PUnif(bp̂m/2c) [S]PBer(~p) [hj = kj , j ∈ [n]] ,

valid for each vector ~k with bp̂mc/2 ≤ ki ≤ m, j = 1, 2, . . . n,
where (a) follows from the fact that the conditional distribu-
tion of a set following the Bernoulli model given its cardinality
is the same as sampling uniformly without replacement, (b)
is a consequence of the trimming step in Algorithm 1, as a

uniform subset of a uniformly sampled set is still uniform,
and (c) follows from the fact that ρm ≥ p̂m/2 and the
monotonicity in Lemma 12. Combing the inequalities above,
we obtain

PBer(~p) [S]

≥PUnif(bp̂m/2c) [S]PBer(~p) [hj ≥ bp̂m/2c , j ∈ [n]]

≥PUnif(bp̂m/2c) [S]
(
1− (m+ n)−10

)
, (26)

where the last step follows from the Bernstein inequality under
the condition (8) with c1 large enough. The probability on the
last right hand side can be bounded by similar reasoning as
follows. We start with the bound

PUnif(bp̂m/2c) [S]

≥PUnif(bp̂m/2c) [S]

bp̂m/2c∑
k1=1

· · ·
bp̂m/2c∑
kn=1

PUBer(p̂/4) [hj = kj , j ∈ [n]]

≥
bp̂m/2c∑
k1=1

· · ·
bp̂m/2c∑
kn=1

PUnif(~k) [S]PUBer(p̂/4) [hj = kj , j ∈ [n]] ,

where the last step follows from the monotonicity Lemma 12.
Observe that the summand above satisfies

PUnif(~k) [S]PUBer(p̂/4) [hj = kj , j ∈ [n]]

(a)
=PUBer(p̂/4) [S|hj = kj , j ∈ [n]]PUBer(p̂/4) [hj = kj , j ∈ [n]]

=PUBer(p̂/4) [S, hj = kj , j ∈ [n]]

for each ~k with 1 ≤ kj ≤ bp̂m/2c, where (a) follows from
the fact that conditional Bernoulli distribution is uniform. It
follows that

PUnif(bp̂m/2c) [S]

=

bp̂m/2c∑
k1=1

· · ·
bp̂m/2c∑
kn=1

PUBer(p̂/4) [S, hj = kj , j ∈ [n]]

=PUBer(p̂/4) [S] −
∑

~k:maxj kj>bp̂m/2c

PUBer(p̂/4) [S, hj = kj , j ∈ [n]]

≥PUBer(p̂/4) [S]− PUBer(p̂/4)

[
max
j
hj > bp′m/2c

]
≥PUBer(p̂/4) [S]− (m+ n)−10,

where the last step follows from the Bernstein inequality under
the condition (8). Combining with (26), we get that

PBer(~p) [S]

≥
(
1− (m+ n)−10

) (
PUber(p̂/4) [S]− (m+ n)−10

)
.

The lemma follows.

APPENDIX B
PROOF OF LEMMAS IN SECTION V-B

In this section, we prove the lemmas used in Section V-B.
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A. Proof of Lemma 2

Let col(Z) denote the column space of a matrix Z. Observe
that PU0

L̄ = L̄ implies col(L̄) ⊆ col(U0), and PIc0 (L̄) = L0

implies col(L̄) ⊇ col(U0). It follows that col(Ū) = col(L̄) =
col(U0). Because C̄ satisfies the last constraint in the oracle
problem (11), we have Ī ∈ I0. This proves part (a) of the
lemma. A consequence is that rank(L̄) = rank(L0) = r.

Since PIc0 L̄ = L0, we conclude that the matrix V̄ >c :=
PIc0 V̄

> has the same rank-r row space as V >0 . Therefore,
V̄ >c V̄c ∈ Rr×r is positive definite and there exists a symmetric
and invertible matrix K1 ∈ Rr×r with K2

1 = V̄ >c V̄c and
‖K1‖ ≤

∥∥V̄c∥∥ ≤ ∥∥V̄ ∥∥ ≤ 1. This implies that K−1
1 V̄ >c

has orthonormal rows spanning the same row space as V >0 .
Because V >0 also has orthonormal rows, there must exist an
orthonormal matrix K2 ∈ Rr×r such that K2K

−1
1 V̄ >c = V >0 .

Hence we have V̄ >c = NV >0 , where the matrix N :=
K−1

2 K1 ∈ Rr×r is invertible. It follows that

max
1≤j≤n+nc

∥∥(PIc0 V̄ >) ej∥∥2

2
= max

j

∥∥K−1
2 K1V

>
0 ej

∥∥2

2

≤
∥∥K−1

2

∥∥2 ‖K1‖2 max
j

∥∥V >0 ej
∥∥2

2

≤µr
n
,

where in the last inequality we use the incoherence of L0 in
Assumption 1. This proves part (b).

Now consider part (c). Let Z be an arbitrary ma-
trix in Rm×(n+nc). By part (a) of the lemma, we have
PU0
PŪ
(
PIc0Z

)
= PŪ

(
PIc0Z

)
. We also have

PIc0PŪ⊥PV̄ Z = (PŪ⊥Z) V̄ PIc0
(
V̄ >
)

= (PŪ⊥Z) V̄ V̄ >c ,

where the R.H.S. spans the same row space as V >0 by the
discussion in the last paragraph. It follows that

PT0
PIc0PT̄Z = PT0

PŪPIc0Z + PT0
PIc0PŪ⊥PV̄ Z

= PŪPIc0Z + PIc0PŪ⊥PV̄ Z = PIc0PT̄Z.

For part (d), the previous discussion shows that V̄c =
V0N

>. Therefore, for any Y ∈ Rm×(n+nc), we have(
PIc0Y

)
V0V

>
0 V̄ V̄ > =

(
PIc0Y

)
V0V

>
0 V̄cV̄

>

=
(
PIc0Y

)
V0V

>
0 V0N

>V̄ >

=
(
PIc0Y

)
V̄cV̄

> =
(
PIc0Y

)
V̄ V̄ >.

Applying this equality with Y = PŪ⊥Z, we obtain

PT̄PT0
PIc0Z = PŪ

(
PIc0Z

)
+
(
PIc0 (I−PU0

)Z
)
V0V

>
0 V̄ V̄ >

= PŪPIc0Z +
(
PIc0PŪ⊥Z

)
V̄ V̄ >

= PT̄PIc0Z.

Finally, to prove part (e), we note that

PT̄⊥PT⊥0 PIc0Z = (I − PT̄ ) (I − PT0
)PIc0Z.

Expanding the last R.H.S and applying part (d) of the lemma
gives the desired result.

B. Proof of Lemma 3

Applying PI0 to both sides of the last equality in (12)
proves part (a) of the lemma. Part (b) follows from G ∈ Īc,
and part (c) follows from PĪcH̄ ′ = PĪcPI0G. Applying the
projection PŪPI0 = PU0

PI0 to both sides of the first equality
in (12), we obtain part (d). Finally, note that H̄ and H̄ ′ are
determined by the oracle program (11), which only depends
on PΩcM = PΩcC0 and dose not involve Ω̃. Therefore,
independence between Ω̃ and PΩcC0 imposed in Assumption 3
implies part (e).

APPENDIX C
PROOF OF PROPOSITION 1

To prove the proposition, we need a technical lemma.

Lemma 13. Suppose (13) holds, then for any ∆l,∆c ∈
Rm×(n+nc) with PΩ∆l + PΩ∆c = 0, we have∥∥PIc0PT̄∆l

∥∥
F
≤
√

2

p̂

(
‖PT̄⊥∆l‖∗ +

∥∥PIc0 ∆c

∥∥
1,2

)
.

Proof. Since PΩ∆c = −PΩ∆l, we have∥∥PIc0 ∆c

∥∥
1,2
≥ ‖PΩ̃∆c‖F = ‖PΩ̃∆l‖F .

By triangle inequality, we get

‖PΩ̃∆l‖F ≥ ‖PΩ̃PT̄∆l‖F − ‖PΩ̃PT̄⊥∆l‖F
≥
∥∥PΩ̃PIc0PT̄∆l

∥∥
F
− ‖PT̄⊥∆l‖∗ .

We bound the first term in the last R.H.S.:∥∥PΩ̃PIc0PT̄∆l

∥∥2

F

=
〈
PΩ̃PIc0PT̄∆l,PΩ̃PIc0PT̄∆l

〉
(a)
=
〈
PIc0PT̄∆l,PT0

PΩ̃PT0
PIc0PT̄∆l

〉
(b)
=
〈
PIc0PT̄∆l, (PT0

PΩ̃PT0
)PIc0PT̄∆l − p̂PT0

PIc0PT̄∆l

+ p̂PIc0PT̄∆l

〉
(c)

≥ p̂
2

∥∥PIc0PT̄∆l

∥∥2

F
.

where (a) follows from Part (c) of Lemma 2 and the fact that
PT0

is a projection when restricted to Ic0 , (b) uses Part (c) of
Lemma 2 again, and (c) uses (13). Combining the last three
equations proves the lemma.

Back to the proof of Proposition 1. Suppose (L∗, C∗) =
(L̄ + ∆l, C̄ + ∆c) is an optimal solution to (2), with
PΩ∆l + PΩ∆c = 0. Take any matrix F ∈ T̄⊥ such that
‖F‖ = 1, 〈F, PT̄⊥∆l〉 = ‖PT̄⊥∆l‖∗ and another matrix
G ∈ Īc such that ‖G‖∞,2 = 1, 〈G, PĪc∆c〉 = ‖PĪc∆c‖1,2 =∥∥PĪc∩I0∆c

∥∥
1,2

+
∥∥PIc0 ∆c

∥∥
1,2

. Then Ū V̄ >+F is a subgradient
of
∥∥L̄∥∥∗ and PĪQ̄ + λG is a subgradient of λ

∥∥C̄∥∥
1,2

. By
optimality of (L∗, C∗), we have

0 ≥
∥∥L̄+ ∆l

∥∥
∗ + λ

∥∥C̄ + ∆c

∥∥
1,2
−
∥∥L̄∥∥∗ − λ ∥∥C̄∥∥1,2

(i)

≥
〈
Ū V̄ > + F,∆l

〉
+
〈
PI0Q̄+ λG,∆c

〉
(ii)
= ‖PT̄⊥∆l‖∗ + λ

(∥∥PĪc∩I0∆c

∥∥
1,2

+
∥∥PIc0 ∆c

∥∥
1,2

)
+
〈
Ū V̄ > − Q̄,∆l

〉
+
〈
PĪQ̄− Q̄,∆c

〉
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where (i) follows from the definition of a subgradient, and (ii)
is due to Condition (a) and PΩ∆l+PΩ∆c = 0. Now observe
that Conditions 3(b) and 3(c) imply〈

Ū V̄ > − Q̄, ∆l

〉
=
〈
PT̄D − PT̄⊥Q̄, ∆l

〉
≥−

√
p̂

2
min

{
1

4
,
λ

4

}∥∥PIc0PT̄∆l

∥∥
F
− 1

2
‖PT̄⊥∆l‖∗ ,

and Conditions 3(e) and 3(f) imply〈
PĪQ̄− Q̄,∆c

〉
≥ −λ

∥∥PĪc∩I0∆c

∥∥
1,2
− λ

2

∥∥PIc0 ∆c

∥∥
1,2

Putting together, we obtain

0 ≥1

2
‖PT̄⊥∆l‖∗ +

1

2
λ
∥∥PIc0 ∆c

∥∥
1,2
−
√
p̂

2

∥∥PIc0PT̄∆l

∥∥
F

(iii)

≥ 1

2
‖PT̄⊥∆l‖∗ +

1

2
λ
∥∥PIc0 ∆c

∥∥
1,2

−min

{
1

4
,
λ

4

}(
‖PT̄⊥∆l‖∗ +

∥∥PIc0 ∆c

∥∥
1,2

)
≥1

4
‖PT̄⊥∆l‖F +

1

4
λ
∥∥PIc0 ∆c

∥∥
1,2

≥0,

where (iii) follows from Lemma 13. Therefore, we must have

‖PT̄⊥∆l‖F =
∥∥PIc0 ∆c

∥∥
1,2

= 0,

which means ∆l ∈ T̄ , PIc0 ∆c = 0 and PI0C∗ = C∗. It
follows that PT0

PIc0PT̄∆l = PIc0PT̄∆l = PIc0 ∆l by Part (c)
of Lemma 2, and PΩ̃∆l = −PΩ̃∆c = 0, so PIc0 ∆l ∈ T0 ∩ Ω̃.
But this intersection is trivial by Condition 1 in the proposition,
so PIc0 ∆l = 0 and thus PIc0L

∗ = L0. Furthermore, we have

PŪ⊥∆l = PŪ⊥PT̄∆l = PV̄ PŪ⊥∆l

and thus PŪ⊥∆l ∈ range (PV̄ ). But we also have PŪ⊥∆l =
PŪ⊥

(
PIc0 + PI0

)
∆l = PŪ⊥PI0∆l ∈ I0. This implies

PŪ⊥∆l = 0 by Condition 2 in the proposition. This shows
that PU0∆l = PŪ∆l = ∆l, where the first equality follows
from part (a) of Lemma 2. This completes the proof of the
proposition.

APPENDIX D
PROOF OF LEMMA 5

For any matrices A and B, we have

‖AB‖F ≤ ‖A‖ ‖B‖F , (27)

which follows from ‖AB‖2F =
∑
j ‖ABej‖

2
2 ≤∑

j ‖A‖
2 ‖Bej‖22 = ‖A‖2 ‖B‖2F . Using part (d) of

Lemma 3, we know PI0 V̄ > = λŪ>H̄ ′. It follows that for
any matrix Z,

PV̄ PI0PV̄ (Z) =PI0
(
ZV̄ V̄ >

)
V̄ V̄ >

=ZV̄
(
PI0 V̄ >

) (
PI0 V̄ >

)>
V̄ >

=λ2ZV̄
(
Ū>H̄ ′

) (
H̄ ′>Ū

)
V̄ >.

Using (27), we obtain

‖PV̄ PI0PV̄ (Z)‖F ≤λ
2 ‖Z‖F

∥∥V̄ ∥∥2 ∥∥Ū∥∥2 ∥∥H̄ ′∥∥2

(i)

≤λ2γn ‖Z‖F
≤1

2
‖Z‖F ,

where the inequality (i) follows from
∥∥H̄ ′∥∥∞,2 ≤ 1 and H̄ ′ ∈

I0 has at most γn non-zero columns. The second part of the
lemma is a proved in similar manner using the sub-multiplicity
of the matrix spectral norm.

APPENDIX E
PROOF OF LEMMA 6

By part (d) of Lemma 3, we have

PI0Q = ŪPI0 V̄ > + λH̄ ′ − λPU0
H̄ ′ = λH̄ ′.

Using (14) and PU0 = PŪ , we have

PT̄Q = Ū V̄ > +
(
λPŪ H̄ ′ + λPŪ⊥PV̄ H̄ ′

)
− λPU0

H̄ ′

− λ
(
PV̄ PIc0PV̄

)
BPV̄ PŪ⊥H̄ ′

= Ū V̄ >.

This proves the two equalities in the lemma. Observe that H̄ ′ ∈
I0 has at most nc = γn non-zero columns, each of which has
norm at most one by part (b) and (c) of Lemma 3. It follows
that

∥∥H̄ ′∥∥ ≤ ∥∥H̄ ′∥∥
F
≤ √γn. We also have

∥∥PV̄ PŪ⊥H̄ ′∥∥ ≤∥∥Id− Ū Ū>∥∥∥∥H̄ ′∥∥∥∥V̄ V̄ >∥∥ ≤ ∥∥H̄ ′∥∥ by sub-multiplicity of
the spectral norm. This proves the first set of inequalities in
the lemma.

APPENDIX F
PROOF OF LEMMAS IN SECTION V-E

In this section, we prove the technical lemmas used in
Section V-E.

A. Proof of Lemma 10

Recall that DU
0 := ŪPĪc(V̄ ), and DV

0 :=
PŪ⊥PV0

PIc0BPV̄
(
λH̄ ′

)
. The first three inequalities follow

directly from the incoherence Assumption 1 and part (b) of
Lemma 2. Now, by Assumption 3 and part (a) of Lemma 3,
we know each column of H̄ ′ has at most 2ρm non-zeros.
Because Ū has the same column space as U0 by Lemma 2,
Ū satisfies the same incoherence property as U0 given in
Assumption 1. Therefore, we have∥∥e>a H̄>Ū∥∥2

≤
∥∥H̄ea∥∥1

∥∥Ū>∥∥∞,2
≤
√

2ρm
∥∥H̄ea∥∥2

·
√
µr

m
=
√

2ρµr.

It follows that∥∥H̄>Ū∥∥ ≤ ∥∥H̄>Ū∥∥
F
≤ √γn

√
2ρµr =

√
γn
√

2βp̂µr,
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where we use the definition β := ρ
p̂ . Using Lemma 5 and the

fact that
∥∥H̄∥∥ ≤ √γn, we get∥∥B (H̄H̄>Ū V̄ >)∥∥
=

∥∥∥∥∥PIc0PV̄
∞∑
i=0

(PV̄ PI0PV̄ )
i (
H̄H̄>Ū V̄ >

)∥∥∥∥∥
≤

( ∞∑
i=0

1

2

)∥∥H̄∥∥ ∥∥H̄>Ū∥∥∥∥V̄ >∥∥
≤4γn

√
βp̂µr. (28)

On the other hand, note that by part (d) of Lemma 3 we have
PI0 V̄ > = λŪ>H̄ ′. Since H̄ ′ ∈ I0, we have∥∥λ (PŪ⊥PV0

PIc0BPV̄ H̄
′) ej∥∥2

=λ
∥∥(Id− Ū Ū>)B (H̄ ′V̄ V̄ >)V0V

>
0 ej

∥∥
2

=λ
∥∥(Id− Ū Ū>)B (H̄ ′(PI0 V̄ >)>V̄ >

)
V0V

>
0 ej

∥∥
2

=λ2
∥∥∥(Id− Ū Ū>)B (H̄ ′H̄ ′>Ū V̄ >)V0V

>
0 ej

∥∥∥
2
. (29)

Combining (28) and (29), we obtain∥∥DV
0

∥∥
∞,2

= max
j

∥∥λ (PŪ⊥PV0
PIc0BPV̄ H̄

′) ej∥∥2

≤λ2
∥∥Id− Ū Ū>∥∥∥∥B (H̄H̄>Ū V̄ >)∥∥max

j

∥∥V0V
>
0 ej

∥∥
2

≤λ2 · 1 · 4γn
√
βp̂µr ·

√
µr

n

=4λ2γµr
√
βp̂n,

which proves the forth equation in the lemma. The last
equation in the lemma can be established in a similar manner
using Lemma 5:∥∥DV

0

∥∥
F

=
∥∥PŪ⊥PV0BPV̄

(
λH̄ ′

)∥∥
F

≤ λ2
∥∥Id− Ū Ū>∥∥ ∥∥B (H̄H̄>Ū V̄ >)∥∥

F

∥∥V0V
>
0

∥∥
≤ 2λ2

∥∥H̄H̄>Ū V̄ >∥∥
F

≤ 2λ2 ·
∥∥H̄∥∥ · ∥∥H̄>Ū∥∥

F
·
∥∥V̄ >∥∥

≤ 2λ2 · √γn · √γn
√

2βp̂µr · 1.

B. Proof of Lemma 9

Let ei be the i-th standard basis whose dimension will
become clear in the context. The following inequality is used
repeatedly: from the incoherence Assumption 1, we have∥∥PT0

(
eie
>
j

)∥∥2

F

= ‖PU0
ei‖22 + ‖PV0

ej‖22 − ‖PU0
ei‖22 ‖PV0

ej‖22
≤ 2µr

n ∧m
, ∀i ∈ [m], j ∈ [n+ nc]. (30)

We also need the matrix Bernstein inequality, restated below.

Theorem 3 (Matrix Bernstein [46]). Let X1, . . . , XN ∈
Rm×n be independent zero mean random matrices. Suppose
there exist two numbers B and σ2 such that

max

{∥∥∥∥∥E
N∑
k=1

XkX
>
k

∥∥∥∥∥ ,
∥∥∥∥∥E

N∑
k=1

X>k Xk

∥∥∥∥∥
}
≤ σ2

and ‖Xk‖ ≤ B almost surely for all k. Then with probability
at least 1− 2(m+ n)−12, we have∥∥∥∥∥

N∑
k=1

Xk

∥∥∥∥∥ ≤ 20B log(m+ n) +
√

50σ2 log(m+ n).

We now turn to the proof of the lemma.

Proof. (of Lemma 9) Observe that 1
p̂PT0

PΩ̃PT0
Z − PT0

Z ∈
Ic0 for any matrix Z ∈ T0 ⊆ Ic0 . Fix an index b ∈ Ic0 . For
each (i, j) ∈ [m]×Ic0 , let δ(ij) be the indicator variable which
equals one if and only if (i, j) ∈ Ω̃. We have P

[
δ(ij) = 1

]
= p̂

by assumption 3. Define

S(ij) :=

(
1

p̂
δ(ij) − 1

)
ZijPT0

(eie
>
j )eb,

which is a column vector in Rm. Since PT0Z = Z for Z ∈ T0,
the b-th column of the matrix

(
1
pPT0

PΩ̃ − PT0

)
Z can be

written as((
1

p̂
PT0
PΩ̃ − I

)
Z

)
eb =

∑
(i,j)∈[m]×Ic0

S(ij),

which is the sum of independent vectors in Rm. Note that
E
[
S(ij)

]
= 0 and

∥∥S(ij)

∥∥
2
≤
∣∣∣∣1p̂ δ(ij) − 1

∣∣∣∣ |Zij |∥∥PT0
(eie

>
j )
∥∥
F

≤1

p̂

√
2µr

n ∧m
‖Z‖∞ , almost surely,

where the second inequality follows from (30). We also have∣∣∣∣∣∣E
 ∑

(i,j)∈[m]×Ic0

S>(ij)S(ij)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

E

[(
1

p
δ(ij) − 1

)2
]
Z2
ij

∥∥PT0

(
eie
>
j

)
eb
∥∥2

2

∣∣∣∣∣∣
=

1− p̂
p̂

∑
i,j

Z2
ij

∥∥PT0

(
eie
>
j

)
eb
∥∥2

2
.

We bound the term in the summand in the last R.H.S. Recall
that Id denotes the identity matrix. For each (i, j) ∈ [m]×Ic0 ,
we have∥∥PT0

(
eie
>
j

)
eb
∥∥

2

=
∥∥U0U

>
0 eie

>
j eb +

(
Id− U0U

>
0

)
eie
>
j V0V

>
0 eb

∥∥
2

=

{∥∥∥U0U
>
0 ei +

(
Id− U0U

>
0

)
ei
∥∥V >0 eb

∥∥2

2

∥∥∥
2
, if j = b,∥∥(Id− U0U

>
0

)
eie
>
j V0V

>
0 eb

∥∥
2
, if j 6= b,

≤

{∥∥U>0 ei∥∥2
+
∥∥V >0 eb

∥∥2

2
, if j = b,∣∣e>j V0V

>
0 eb

∣∣ , if j 6= b,

≤

{
2
√

µr
m∧n , if j = b,∣∣e>j V0V

>
0 eb

∣∣ , if j 6= b,
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where in the last inequality we use
∥∥V >0 eb

∥∥
2
≤ 1 and the

incoherence Assumption 1. It follows that∥∥∥∥∥∥E
∑
i,j

S(ij)S
>
(ij)

∥∥∥∥∥∥ =

∣∣∣∣∣∣E
∑
i,j

S>(ij)S(ij)

∣∣∣∣∣∣
≤1

p̂

∑
i∈[m],j=b

Z2
ij

4µr

n ∧m
+

1

p̂

∑
i∈[m],j 6=b

Z2
ij

∣∣e>j V V >eb∣∣2
=

4µr

p̂(n ∧m)

∑
i

Z2
ib +

1

p̂

∑
j 6=b

∣∣e>j V V >eb∣∣2∑
i

Z2
ij

≤4

p̂

µr

n ∧m
‖Z‖2∞,2 +

1

p̂

∥∥V V >eb∥∥2

2
‖Z‖2∞,2

≤4

p̂

µr

n ∧m
‖Z‖2∞,2 +

1

p̂

µr

n
· ‖Z‖2∞,2

≤ 5µr

p̂(n ∧m)
‖Z‖2∞,2 .

Treating {S(ij)} as zero-padded m×n matrices and applying
the Matrix Bernstein inequality in Theorem 3, we obtain that
with probability at least 1− 2(m+ n)−12,∥∥∥∥((1

p̂
PT0
PΩ̃ − I

)
Z

)
eb

∥∥∥∥
2

≤20
1

p̂

√
2µr

n ∧m
‖Z‖∞ log(m+ n)

+

√
50 · 5µr

p̂(n ∧m)
‖Z‖2∞,2 log(m+ n)

≤1

2

√
log(m+ n)

p̂
‖Z‖∞ +

1

2
‖Z‖∞,2 ,

where the second inequality holds provided c0 in the condition
of the lemma is sufficiently large. In a similar fashion we
can prove that for each a ∈ [m] and with probability at least
1− 2(m+ n)−12, there holds the bound∥∥∥∥e>a ((1

p̂
PT0
PΩ̃ − I

)
Z

)∥∥∥∥
≤40

p̂

√
µr

n ∧m
‖Z‖∞ log(m+ n)

+

√
250µr

p̂(n ∧m)
log(m+ n) ‖Z‖∞,2

≤1

2

√
log(m+ n)

p̂
‖Z‖∞ +

1

2

∥∥Z>∥∥∞,2 .
The lemma follows from a union bound over all indices a ∈
[m] and b ∈ Ic0 .

C. Proof of Lemma 11

Observe that 1
p̂PΩ̃Z −Z ∈ Ic0 for any matrix Z ∈ T0 ⊆ Ic0 .

Fix an index b ∈ Ic0 . For each i ∈ [m], we recall that the
indicator variable δ(ib) defined in the last section, and define
the vector

ξ(i) := Zib

(
1

p̂
δ(ib) − 1

)
ei ∈ Rm.

Then the b-th column of the matrix 1
p̂PΩ̃Z−Z can be written

as (
1

p̂
PΩ̃Z − Z

)
eb =

∑
i∈[m]

ξ(i).

which is the sum of independent vectors. Note that each ξ(i)
has mean zero and satisfies

∥∥ξ(i)∥∥2
≤
(

1
p̂ − 1

)
Zib ≤ 1

p̂ ‖Z‖∞
almost surely. Moreover, we have

max


∥∥∥∥∥∥E

∑
i∈[m]

ξ>(i)ξ(i)

∥∥∥∥∥∥ ,
∥∥∥∥∥∥E

∑
i∈[m]

ξ(i)ξ
>
(i)

∥∥∥∥∥∥


= max

{∣∣∣∣∣1− p̂p̂ ∑
i

Z2
ib

∣∣∣∣∣ ,
∥∥∥∥∥1− p̂

p̂

∑
i

Z2
ibeie

>
i

∥∥∥∥∥
}

≤1

p̂
‖Z‖2∞,2 .

Treating {ξ(i)} as zero-padded m × n matrices and applying
the matrix Bernstein inequality in Theorem 3, we obtain that
with probability at least 1− 2(m+ n)−12,∥∥∥∥(1

p̂
PΩ̃Z − Z

)
eb

∥∥∥∥
2

≤20 log(m+ n)

p̂
‖Z‖∞ +

√
50 log(m+ n)

p̂
‖Z‖∞,2 .

The lemma follows from a union bound over all indices b ∈ Ic0 .

D. Proof of Lemma 7

Recall the indicator variables
{
δ(ij)

}
defined in the last

section. Since Z ∈ Ic0 , we may write

1

p̂
PΩ̂Z − Z =

∑
(i,j)∈[m]×Ic0

S(ij)

:=
∑

(i,j)∈[m]×Ic0

(
1

p̂
δ(ij) − 1

)
Zijeie

>
j ,

where
{
S(ij)

}
are independent matrices satisfying E[S(ij)] =

0 and
∥∥S(ij)

∥∥ ≤ 1
p̂ ‖Z‖∞ . Moreover, we have

E
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=
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ijeie

>
j eje

>
i E
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=
∑
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Z2
ijeie
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and thus∥∥∥∥∥∥E
∑

(i,j)∈[m]×Ic0

S>(ij)S(ij)

∥∥∥∥∥∥ ≤1

p̂
max
i∈[m]
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∑
j∈Ic0

Z2
ij

∣∣∣∣∣∣
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‖Z‖2(∞,2)2 .

We can bound
∥∥∥E∑(i,j)∈[m]×Ic0

S(ij)S
>
(ij)

∥∥∥ in a similar way.
Applying the matrix Bernstein inequality in Theorem 3 proves
the lemma.
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[12] Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. Efficient
learning with partially observed attributes. In Proceedings of the 27th
International Conference on Machine learning, pages 216–223, 2010.

[13] Venkat Chandrasekaran and Michael I. Jordan. Computational and
statistical tradeoffs via convex relaxation. Proceedings of the National
Academy of Sciences, 110(13):E1181–E1190, 2013.

[14] Venkat Chandrasekaran, Sujay Sanghavi, Pablo Parrilo, and Alan Will-
sky. Rank-sparsity incoherence for matrix decomposition. SIAM Journal
on Optimization, 21(2):572–596, 2011.

[15] Yudong Chen. Incoherence-optimal matrix completion. IEEE Transac-
tions on Information Theory, 61(5):2909–2923, 2015.

[16] Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, and Rachel Ward.
Coherent Matrix Completion. In Proceedings of International Confer-
ence on Machine Learning, 2014.

[17] Yudong Chen, Ali Jalali, Sujay Sanghavi, and Constantine Caramanis.
Low-rank matrix recovery from errors and erasures. IEEE Transactions
on Information Theory, 59(7):4324–4337, 2013.

[18] Yudong Chen, Huan Xu, Constantine Caramanis, and Sujay Sanghavi.
Robust matrix completion and corrupted columns. In Proceedings of
the 28th International Conference on Machine Learning, pages 873–
880, 2011.

[19] David Gross. Recovering low-rank matrices from few coefficients in
any basis. IEEE Transactions on Information Theory, 57(3):1548–1566,
2011.

[20] Jonathan. L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl.
An algorithmic framework for performing collaborative filtering. In
Proceedings of the 22nd annual international ACM SIGIR conference
on Research and development in information retrieval, pages 230–237.
ACM, 1999.

[21] Junzhou Huang and Tong Zhang. The benefit of group sparsity. The
Annals of Statistics, 38(4):1978–2004, 2010.

[22] Peter Huber. Robust Statistics. Wiley, New York, 1981.
[23] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix

completion using alternating minimization. In Proceedings of the 45th
Annual ACM Symposium on Theory of Computing, pages 665–674.
ACM, 2013.

[24] David R. Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal
crowdsourcing using low-rank matrix approximations. In 49th Annual
Allerton Conference on Communication, Control, and Computing, pages
284–291. IEEE, 2011.

[25] David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative learning
for reliable crowdsourcing systems. In Advances in neural information
processing systems, pages 1953–1961, 2011.

[26] David R. Karger, Sewoong Oh, and Devavrat Shah. Efficient crowd-
sourcing for multi-class labeling. In Proceedings of the ACM SIG-
METRICS/international conference on Measurement and modeling of
computer systems, pages 81–92. ACM, 2013.

[27] Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Matrix
completion from a few entries. IEEE Transactions on Information
Theory, 56(6):2980–2998, 2010.

[28] Olga Klopp, Karim Lounici, and Alexandre B. Tsybakov. Robust Matrix
Completion. arXiv preprint arXiv:1412.8132, 2014.

[29] Shyong K. Lam and John Riedl. Shilling recommender systems for
fun and profit. In Proceedings of the 13th International Conference on
World Wide Web, 2004.

[30] Rasmus Larsen. PROPACK: a software for large and sparse SVD
calculations. Available on http:// sun.stanford.edu/∼rmunk/PROPACK/ .

[31] Jason D. Lee, Yuekai Sun, and Jonathan E. Taylor. On model selection
consistency of penalized m-estimators: a geometric theory. In Advances
in Neural Information Processing Systems, pages 342–350, 2013.

[32] Gilad Lerman, Michael B. McCoy, Joel A. Tropp, and Teng Zhang.
Robust computation of linear models by convex relaxation. Foundations
of Computational Mathematics, 15(2):363–410.

[33] Xiaodong Li. Compressed sensing and matrix completion with constant
proportion of corruptions. Constructive Approximation, 37(1):73–99,
2013.

[34] Zhouchen Lin, Minming Chen, Leqin Wu, and Yi Ma. The augmented
Lagrange multiplier method for exact recovery of corrupted low-rank
matrices. UIUC Technical Report UILU-ENG-09-2215, 2009.

[35] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet Computing,
7(1), 2003.

[36] Zongming Ma and Yihong Wu. Computational barriers in minimax
submatrix detection. The Annals of Statistics, 43(3):1089–1116, 2015.

[37] Ricardo A. Maronna, R. Douglas Martin, and Vı́ctor J. Yohai. Robust
statistics. Wiley, 2006.

[38] Michael McCoy, Joel A Tropp, et al. Two proposals for robust pca using
semidefinite programming. Electronic Journal of Statistics, 5:1123–
1160, 2011.

[39] Sangkil Moon and Gary J. Russell. Predicting product purchase from
inferred customer similarity: An autologistic model approach. Manage-
ment Science, 54(1):71, 2008.

[40] Rajeev Motwani and Sergei Vassilvitskii. Tracing the path: new model
and algorithms for collaborative filtering. In IEEE 23rd International
Conference on Data Engineering Workshop, pages 853–862. IEEE,
2007.

[41] Sahand Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin
Yu. A unified framework for high-dimensional analysis of m-estimators
with decomposable regularizers. Statistical Science, 27(4):538–557,
2012.

[42] Benjamin Recht. A simpler approach to matrix completion. Journal of
Machine Learning Research, 12:3413–3430, 2011.

[43] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed
Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm
Minimization. SIAM Review, 52(471), 2010.

[44] J. J. Sandvig, Bamshad Mobasher, and Robin Burke. Robustness of
collaborative recommendation based on association rule mining. In
Proceedings of the 2007 ACM conference on Recommender Systems,
page 112. ACM, 2007.

[45] J. Ben Schafer, Joseph A. Konstan, and John Riedl. E-commerce
recommendation applications. Data Mining and Knowledge Discovery,
5(1):115–153, 2001.

[46] Joel A. Tropp. User-friendly tail bounds for sums of random matrices.
Foundations of Computational Mathematics, 12(4):389–434, 2012.

[47] Benjamin Van Roy and Xiang Yan. Manipulation robustness of collab-
orative filtering. Management Science, 56(11):1911–1929, 2010.

[48] Huan Xu, Constantine Caramanis, and Shie Mannor. Outlier-Robust
PCA: The High Dimensional Case. IEEE Transactions on Information
Theory, 59(1), 2013.

[49] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust PCA via
outlier pursuit. In Advances in Neural Information Processing Systems
23, pages 2496–2504, 2010.

[50] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust PCA via
outlier pursuit. IEEE Transactions on Information Theory, 58(5):3047–
3064, 2012.

http://sun.stanford.edu/~rmunk/PROPACK/


IEEE TRANSACTIONS OF INFORMATION THEORY, VOL. XX, NO. XX, JANUARY 20XX 24

[51] Ming Yuan and Yi Lin. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 68(1):49–67, 2006.

[52] Hongyang Zhang and Zhouchen Lin. Personal communication.
[53] Yuchen Zhang, Martin J. Wainwright, and Michael I. Jordan. Lower

bounds on the performance of polynomial-time algorithms for sparse
linear regression. In Proceedings of The 27th Conference on Learning
Theory, pages 921–948, 2014.

Yudong Chen is an Assistant Professor at the School of Operations Research
and Information Engineering at Cornell University. From 2013 to 2015 he
was a postdoctoral scholar at the Department of Electrical Engineering and
Computer Sciences at University of California, Berkeley. He received his
Ph.D. in electrical and computer engineering from the University of Texas at
Austin in 2013. He obtained his BS and MS degrees from Tsinghua University,
Beijing, China. His research interests include statistics, machine learning,
optimization and applications in large-scale problems.

Huan Xu received the B.Eng. degree in automation from Shanghai Jiaotong
University, Shanghai, China in 1997, the M.Eng. degree in electrical engi-
neering from the National University of Singapore in 2003, and the Ph.D.
degree in electrical engineering from McGill University, Canada in 2009.
From 2009 to 2010, he was a postdoctoral associate at The University of Texas
at Austin. Since 2011, he has been an assistant professor at the Department of
Mechanical Engineering at the National University of Singapore. His research
interests include statistics, machine learning, robust optimization, and planning
and control. He is an associate editor of IEEE Transactions on Pattern Analysis
and Machine Intelligence and is on the editorial board of Computational
Management Science.

Constantine Caramanis (M06) received his Ph.D. in electrical engineering
and computer science from the Massachusetts Institute of Technology, and his
A.B. in Mathematics from Harvard. Since 2006, he has been on the faculty in
the Department of Electrical and Computer Engineering at The University of
Texas at Austin. He received the NSF CAREER award in 2011. His current
research interests include robust and large scale optimization and control,
machine learning and high-dimensional statistics, with applications to large
scale networks.

Sujay Sanghavi (M08) is an Associate Professor in Electrical and Computer
Engineering at the University of Texas at Austin. Sujay has an MS in ECE,
and MS in Mathematics, and a PhD in ECE all from the University of Illinois,
and a B. Tech in EE from IIT Bombay. Sujay’s research lies in the areas of
statistical inference, optimization, algorithms and networks. He has an NSF
Career award, and a Young Investigator award from the DoD. He has been a
visiting scientist at Google Research and Qualcomm. He serves as an Action
Editor on the editorial board of the Journal of Machine Learning Research.


	Front matter
	Front cover
	Center information
	Tech.Rpt.Doc.Pg.
	Disclaimer
	Acknowledgements
	Abstract
	I. INTRODUCTION
	II. PROBLEM SETUP
	III. MAIN RESULTS: ALGORITHMS, GUARANTEES AND LIMITS
	IV. IMPLEMENTATION AND EMPIRICAL RESULTS
	V. PROOF OF THEOREM 1
	VI. PROOF OF THEOREM 2
	VII. CONCLUSION
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	REFERENCES

