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Solving a Mixture of Many Random Linear Equations by
Tensor Decomposition and Alternating Minimization

Xinyang Yi Constantine Caramanis Sujay Sanghavi

The University of Texas at Austin
{yixy,constantine}@utexas.edu sanghavi@mail.utexas.edu

Abstract

We consider the problem of solving mixed random linear equations with k components. This
is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models
from mixed samples in the case where the labels (which sample corresponds to which model) are
not observed. We give a tractable algorithm for the mixed linear equation problem, and show
that under some technical conditions, our algorithm is guaranteed to solve the problem exactly
with sample complexity linear in the dimension, and polynomial in k, the number of compo-
nents. Previous approaches have required either exponential dependence on k, or super-linear
dependence on the dimension. The proposed algorithm is a combination of tensor decomposition
and alternating minimization. Our analysis involves proving that the initialization provided by
the tensor method allows alternating minimization, which is equivalent to EM in our setting, to
converge to the global optimum at a linear rate.

1 Introduction

In this paper, we consider the following mixed linear equation problem. Suppose we are given n
samples of response-covariate pairs {(yi,xi)}ni=1 that are determined by equations

yi =
k∑
j=1

〈xi, βj〉1(zi = j), for i = 1, . . . , n, (1)

where xi,βj ∈ Rp, {βj} are k model parameters corresponding to k different linear models, and zi
is the unobserved label of sample i indicating which model it is generated from. We assume random
label assignment, i.e., {zi} are i.i.d. copies of a multinomial random variable Z that has distribution

P[Z = j] = ωj , for j = 1, 2, . . . k. (2)

Here {ωj} represent the weights of every linear model, and naturally satisfy
∑

j∈[k] ωj = 1. Our
goal is to find parameters {βj} from mixed samples {(yi,xi)}ni=1. While solving linear systems is
straightforward, this problem, with the introduction of latent variables, is hard to solve in general.
Work in [25] shows that the subset sum problem can be reduced to mixed linear equations in the case
of k = 2 and certain designs of xi and βj . Therefore, given {(yi,xi)}ni=1, determining whether there
exist two β’s that satisfy (1) is NP-complete, and thus in general the k = 2 case is already hard. In
this paper, we consider the setting for general k, where the covariates xi’s are independently drawn
from the standard Gaussian distribution:

xi ∼ N (0, Ip). (3)
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Under this random design, we provide a tractable algorithm for the mixed linear equation prob-
lem, and give sufficient conditions on the βi’s under which we guarantee exact recovery with high
probability.

The problem of solving mixed linear equations (or regression when each yi is perturbed by a
small amount of noise) arises in applications where samples are from a mixture of discriminative
linear models and the interest is in parameter estimation. Mixed standard and generalized linear
regression models are introduced in 1990s [23] and have become an important set of techniques for
market segmentation [24]. These models have also been applied to study music perception [22] and
health care demand [10]. See [11] for other related applications and datasets. Mixed linear regression
is closely related to another classical model called hierarchical mixtures of experts [13], which also
allows the distribution of labels to be adaptive to covariate vectors.

Due to the combinatorial nature of mixture models, popular approaches, including EM and
gradient descent, are often based on local optimization and thus suffer from local minima. Indeed,
to the best of our knowledge, there is no rigorous analysis of the convergence behavior of EM or
other gradient descent-based methods for k ≥ 3. Beyond real-world applications, the statistical
limits of solving problem (1) by computationally efficient algorithms are even less well understood.
This paper is motivated by this question: how many samples are necessary to recover {βj} exactly
and efficiently?

In a nutshell, we prove that under certain technical conditions, there exists an efficient algorithm
for solving mixed linear equations with sample size Õ(k10p), and we provide an algorithm which
achieves this. Notably, the dependence on p is nearly linear and thus optimal up to some log
factors. Our proposed algorithm has two phases. The first step is a spectral method called tensor
decomposition, which is guaranteed to produce ε-close solutions with O(1/ε2) samples. In the
second step, we apply an alternating minimization (AltMin) procedure to successively refine the
estimation until exact recovery happens. As a key ingredient, we show that AltMin, as a non-
convex optimization technique, enjoys linear convergence to the global optima when initialized
closely enough to the optimal solution.

1.1 Comparison to Prior Art

The use of the method of moments for learning latent variable models can be dated back to Pear-
son’s work [15] on estimating Gaussian mixtures. There is now an increasing interest in computing
high order moments and leveraging tensor decomposition for parameter estimation in various mix-
ture models including Hidden Markov Models [1], Gaussian mixtures [12], and topic models [3].
Following the same idea, we propose some novel moments for mixed linear equations, on which
approximate estimation of parameters can be computed by tensor decomposition. Different from
our moments, Chaganty and Liang [6] propose a method of regressing y3

i against x⊗3
i to estimate

a certain third-moment tensor of mixed linear regression under bounded and random covariates.
Because of performing regression in the lifted space with dimension p3, their method suffers from
much higher sample complexity O(p6) compared to our results, while the latter builds on a different
covariate assumption (3).

Mixed linear equation/regression with two components is now well understood. In particular,
our earlier work [25] proves the local convergence of AltMin for mixed linear equations with two
components. Through a convex optimization formula, work in [8] establishes the minimax optimal
statistical rates under stochastic and deterministic noises. Notably, Balakrishnan et al. [4] develop
a framework for analyzing the local convergence of expectation-maximization (EM), i.e., EM is
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guaranteed to produce statistically consistent points with good initializations. In the case of mixed
linear regression with β1 = −β2 and Gaussian noise with variance σ2, applying the framework leads
to estimation error Õ(

√
(σ2 + ‖β1‖2)p/n). Even in the case of no noise (σ = 0), their results do

not imply exact recovery. Moreover, it is unclear how to apply the framework to the case of k ≥ 3
components. It is obvious that AltMin is equivalent to EM in the noiseless setting. Our analysis of
AltMin takes a step further towards understanding EM in the case of multiple latent clusters.

Beyond linear models, learning mixture of generalized linear models is recently studied in [19]
and [16]. Specifically, [19] proposes a spectral method based on second order moments for estimating
the subspace spanned by model parameters. Later on, Sedghi et al. [16] construct specific third order
moments that allow tensor decomposition to be applied to estimate individual vectors. In detail,
when k = O(1), they show that obtaining recovery error ε requires sample size n = Õ(p3/ε2). In a
more recent update [17] of their paper, they establish the same sample complexity for mixed linear
regression using different moments, which we realize coincide with ours during the preparation of
this paper. Nevertheless, we perform a sharper analysis that leads to a near-linear-in-p sample
complexity n = Õ(p/ε2).

Conceptually, we establish the power of combining spectral method and likelihood based esti-
mation for learning latent variable models. Spectral method excludes most bad local optima on the
surface of likelihood loss, and as a consequence, it becomes much easier for non-convex local search
methods such as EM and AltMin, to find statistically efficient solutions. Such phenomenon in the
context of mixed linear regression is observed empirically in [6]. We provide a theoretical explana-
tion in this paper. It is worth mentioning the applications of such idea in other problems including
crowdsourcing [26], phase retrieval (e.g. [5, 9]) and matrix completion (e.g. [14, 18, 7]). Most of
these works focus on estimating bilinear or low rank structures. In the context of crowdsourcing,
work in [26] shows that performing one step of EM can achieve optimal rate given good initializa-
tion. In contrast, we establish an explicit convergence trajectory of multiple steps of AltMin for our
problem. It would be interesting to study the convergence path of AltMin or EM for other latent
variable models.

1.2 Notation and Outline

We lay down some notations commonly used throughout this paper. For counting number k, we
use [k] to denote the set {1, 2, . . . , k}. We let a ∨ b, a ∧ b denote max{a, b},min{a, b} respectively.
For sub-Gaussian random variable X, we denote its ψ2-Orlicz norm [20] by ‖X‖ψ2 , i.e.,

‖X‖ψ2 := inf
{
z ∈ (0,∞)

∣∣ E[ψ2(|X|/z)] ≤ 1
}
,

where ψ2(x) = exp(x2) − 1. For vector a ∈ Rp, we use ‖a‖q to denote the standard `q norm of a.
For matrix A ∈ Rp1×p2 , we use σk(A) to denote its k-th largest singular value. We also commonly
use σmax(A), σmin(A) to denote σ1(A) and σp1∧p2(A). In particular, we denote the operator norm
of matrix A as ‖A‖op. We also use ‖T ‖op to denote the operator norm of symmetric third order
tensor T ∈ Rp×p×p, namely

‖T ‖op := sup
u∈Sp−1

|T (u,u,u)|.

Here, T (A,B,C) denotes the multi-linear matrix multiplication of T byA ∈ Rp×p1 ,B ∈ Rp×p2 ,C ∈
Rp×p3 , namely,

(T (A,B,C))(m,n,t) =
∑

i,j,k∈[p]

T(i,j,k)A(i,m)B(j,n)C(k,t), for all (m,n, t) ∈ [p1]× [p2]× [p3].
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For two sequences f(n), g(n) indexed by n ∈ N, we write f(n) = O(g(n)) to mean there exists
a constant C > 0 such that f(n) ≤ Cg(n) for all n ∈ N. By f(n) = Õ(g(n)), we mean there exist
constants C,C ′ > 0 such that f(n) ≤ Cg(n) · (log n)C

′ . We also use f(n) . g(n) as shorthand for
f(n) = O(g(n)). Similarly, we say f(n) & g(n) if g(n) = O(f(n)).

The rest of this paper is organized as follows. In Section 2, we describe the specific details
of our two-phase algorithm for solving mixed linear equations. We present the theoretical results
of initialization and AltMin in Section 3.1 and 3.2 respectively. We combine these two parts and
give the overall sample and time complexities for exact recovery in Section 3.3. We provide the
experimental results in Section 4. All proofs are collected in Section 5.

2 Algorithm

A natural idea to solve problem (1) is to apply an alternating minimization (AltMin) procedure
between parameters {βj} and labels {zi}: (1) Given {βj}, assign the labels for each sample by
choosing a model β that has minimal recovery error |yi − 〈xi, β〉|; (2) When labels are available,
each parameter is updated by applying the method of least square optimization to samples with
the corresponding labels. One can show that in our setting, alternating minimization is equivalent
to Expectation-Maximization (EM), which is one of the most important algorithms for inference
in latent variable models. In general, similar to EM, AltMin is vulnerable to local optima. Our
experiment (see Figure 1) demonstrates that even under random setting xi ∼ N (0, Ip), AltMin
with random initializations fails to exactly recover each βj with significantly large probability.

To overcome the local-optima issue of AltMin, our algorithm consists of two stages. The first
stage builds on carefully designed moments of samples, and aims to find rough estimates of {βj}.
Starting with the initialization, the second stage involves using AltMin to successively refine the
estimates. In the following, we describe these two steps with more details.

2.1 Tensor Decomposition

In the first step, we use method of moments to compute initial estimates of {βj}. Consider moments
m0 ∈ R,m1 ∈ Rp, M2 ∈ Rp×p and M3 ∈ Rp×p×p as

m0 :=
1

n

n∑
i=1

y2
i , m1 :=

1

6n

n∑
i=1

y3
i xi, (4)

M2 :=
1

2n

n∑
i=1

y2
i xi ⊗ xi −

1

2
m0 · Ip, (5)

M3 :=
1

6n

n∑
i=1

y3
i xi ⊗ xi ⊗ xi − T (m1), (6)

where T (·) is a mapping from Rp to Rp×p×p with form

T (m1) :=
∑
i∈[p]

m1 ⊗ ei ⊗ ei + ei ⊗m1 ⊗ ei + ei ⊗ ei ⊗m1.

It is reasonable to choose these moments because of the next result, which shows that the expecta-
tions of M2 and M3 contain the structure of {βj}. See Section 5.1 for its proof.
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Lemma 1 (Moment Expectation). Consider the random model for mixed linear equations given in
(1), (2) and (3). For moments M2 and M3 in (5) and (6), we have

E[M2] =
k∑
j=1

ωj · βj ⊗ βj , (7)

E[M3] =
k∑
j=1

ωj · βj ⊗ βj ⊗ βj . (8)

With the special structure given on the right hand sides of (7) and (8), tensor decomposition
techniques can discover {(ωj ,βj)} in three steps under a non-degeneracy condition (see Condition 1).
First, apply SVD on E[M2] to compute a whitening matrix W ∈ Rp×k such that W>E[M2]W =
Ip. Then we use W to transform E[M3] into an orthogonal tensor E[M3](W ,W ,W ), which is
further decomposed into eigenvalue/eigenvector pairs by robust tensor power method (Algorithm 2).
Lastly, {(ωj ,βj)} can be reconstructed by applying simple linear transformation upon the previously
discovered spectral components from E[M3](W ,W ,W ). With sufficient amount of samples, it is
reasonable to believe that M2 and M3 are close to their expectations such that the stability of
tensor decomposition will lead to good enough estimates. For the ease of analysis, we need to
ensure the independence between whitening matrix W and M3. Accordingly, we split the samples
used in initialization into two disjoint parts for computing {m0,M2} and {m1,M3} respectively.
We present the details in Algorithm 1.

Algorithm 1 Initialization via Tensor Factorization
INPUT: Samples {(yi,xi)}ni=1.
1: Randomly split samples into two disjoint parts {(yi,xi)}n1

i=1 and {(y′i,x′i)}
n2
i=1.

2: m0 ← 1
n1

∑n1
i=1 y

2
i , m1 ← 1

6n2

∑n2
i=1 y

′3
i x
′
i.

3: M2 ← 1
2n1

∑n1
i=1 y

2
i xi ⊗ xi − 1

2m0 · Ip, M3 ← 1
6n2

∑n2
i=1 y

′3
i x
′
i ⊗ x′i ⊗ x′i − T (m1).

4: Compute an SVD of the best rank k approximation of M2 as UΣU>, where U ∈ Rp×k.
Compute whitening matrix W ← UΣ−1/2.

5: M̃3 ←M3(W ,W ,W ).
6: Run robust tensor power method (Algorithm 2) on M̃3 to obtain k eigenvalue/eigenvector pairs
{(ω̃j , β̃j)}kj=1.

7: ω
(0)
j ← 1/ω̃2

j , β
(0)
j ← ω̃j(W

>)†β̃j , for all j ∈ [k]. 1

OUTPUT: {(ω(0)
j ,β

(0)
j )}kj=1.

1(W>)† denotes the Moore-Penrose pseudoinverse of W>, i.e., W (W>W )−1.
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Algorithm 2 Robust Tensor Power Method (Algorithm 1 in [2])

INPUT: Symmetric tensor T ∈ Rk×k×k. Parameters L,N .
1: for j = 1, . . . , k do
2: for l = 1, . . . , L do
3: Draw β(l)

0 uniformly at random from Sk−1.
4: for t = 0, . . . , N − 1 do

β
(l)
t+1 ← T (Ik,β

(l)
t ,β

(l)
t ), β

(l)
t+1 ← β

(l)
t+1/

∥∥∥β(l)
t+1

∥∥∥
2
. (9)

5: end for
6: end for
7: l∗ ← arg maxl∈[L] T (β

(l)
N ,β

(l)
N ,β

(l)
N ).

8: Do N power updates (9) starting from β
(l∗)
N to obtain β̃j . Let ω̃j ← T (β̃j , β̃j , β̃j).

9: T ← T − ω̃jβ̃⊗3
j .

10: end for
OUTPUT: {(ω̃j , β̃j)}kj=1.

2.2 Alternating Minimization

The motivation for using AltMin is to consider the least-square loss function below

Ln({βj}) := min
z1,...,zn∈[k]

n∑
i=1

k∑
j=1

(yi − 〈xi, βj〉)2 1(zi = j).

The minimization over discrete labels {zi} makes the above loss function non-convex and yields
hardness of solving mixed linear equations in general. A natural idea to minimize Ln is by minimizing
{zi} and {βj} alternatively and iteratively. Given initial estimates {β(0)

j }, each iteration t = 0, 1, . . .
consists of the following two steps:

• Label Assignment: Pick the model that has the smallest reconstruction error for each
sample

z
(t)
i = argmin

j∈[k]
|yi − 〈xi, β(t)

j 〉|. (10)

• Parameter Update:

β
(t+1)
j = arg min

β∈Rp

n∑
i=1

(yi − 〈xi, β〉)2 1(z
(t)
i = j). (11)

AltMin runs quickly and is thus favored in practice. However, as we discussed before, its convergence
to global optima is commonly intractable. In order to alleviate such issue, we already discussed how
to construct good initial estimates by method of moments. Here, we introduce another ingredient—
resampling—for making the analysis of AltMin tractable. The key idea is to split all samples
into multiple disjoint subsets and use a fresh piece of samples in each iteration. While slightly
inefficient regarding sample complexity, this trick decouples the probabilistic dependence between
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two successive estimates {β(t)
j } and {β(t+1)

j }, and thus makes our analysis hold. The details are
presented in Algorithm 3.

Algorithm 3 Alternating Minimization with Resampling

INPUT: Samples {(yi,xi)}ni=1, initial estimates {β(0)
j }, number of iterations T .

1: Split all samples into T disjoint subsets {(y(t)
i ,x

(t)
i )}n/Ti=1 , t = 0, 1, . . . , T − 1, with equal size.

2: for t = 0, 1, . . . , T − 1 do
3:

z
(t)
i ← argmin

j∈[k]
|y(t)
i − 〈x

(t)
i , β

(t)
j 〉|, for all i ∈ [n].

4:

β
(t+1)
j ← arg min

β∈Rp

n/T∑
i=1

(y
(t)
i − 〈x

(t)
i , β〉)

2 1(z
(t)
i = j), for all j ∈ [k].

5: end for
OUTPUT: {β(T )

j }kj=1.

3 Theoretical Results

In this section, we provide the theoretical guarantees of Algorithm 1 and 3. For simplicity, we
assume the `2 norm of βj is at most 1, i.e.,

max
j∈[k]
‖βj‖2 = 1.

Moreover, we impose the following non-degeneracy condition on {βj}.

Condition 1 (Non-degeneracy). Parameters β1, . . . ,βk are linearly independent and all weights ωj
are strictly greater than 0, namely

ω := min
j∈[k]

ωj > 0.

Under the above condition, M2 =
∑

j∈[k] ωjβj ⊗ βj has rank k, which leads to

σk := σk(M2) > 0.

We use ∆ to denote the minimum distance between any two parameters, namely

∆ := min
i,j∈[k],i 6=j

‖βi − βj‖2 .

The above three quantities (ω, σk,∆) represent the hardness of our problem, and will appear in the
results of our analysis. For estimates {β̂j}, we define the estimation error E({β̂j}) as

E({β̂j}) := inf
π

sup
j∈[k]

∥∥∥β̂j − βπ(j)

∥∥∥
2
, (12)

where the infimum is taken over all permutations π(·) on [k].
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3.1 Analysis of Tensor Decomposition

Our first result, proved in Section 5.4, provides a guarantee of Algorithm 1.

Theorem 1 (Tensor Decomposition). Consider Algorithm 1 for initial estimation of {βj}. Pick
any δ ∈ (0, 1). There exist constants Ci such that the following holds. Pick any ε ∈ (0, C1/k). If

n1 ≥ C2

(
p log(12k/δ) log2 n1

ωσ5
kε

2
∨ k

ωδ

)
and n2 ≥ C3

(
(k2 ∨ p) log(12k/δ) log3 n2

ωσ3
kε

2
∨ k

ωδ

)
, (13)

then with probability at least 1− δ, the output {β(0)
j } satisfy

E({β(0)
j }) ≤ ε.

Theorem 1 shows that n1, n2 have inverse dependencies on ω, σk. In the well balanced setting,
we have ω = Ω(1/k). In general, σk can be quite small, especially in the case where some parameter
β almost lies in the subspace spanned by the rest k− 1 parameters and has a very small magnitude
along the orthogonal direction. Below we provide a sufficient condition under which σk has a well
established lower bound.

Condition 2 (Nearly Orthonormal Condition(η, γ)). For all j ∈ [k], ‖βj‖2 ≥ 1 − η. Moreover,
|〈βi, βj〉| ≤ γ for all i, j ∈ [k], i 6= j.

Under the above condition, the next result provides a lower bound of σk. See Section 5.2 for the
proof.

Lemma 2. Suppose {βj} satisfy the nearly orthonormal condition with η, γ. Then we have

σk ≥ ω(1− η − kγ).

In the following discussion, we focus on balanced clusters, i.e., ω & 1/k. We also assume that
{βj} satisfy Condition 2 with η . 1 and γ . 1/k, which leads to σk = Ω(ω) according to Lemma
2. Now we provide two remarks for Theorem 1.
Remark 1 (Sample Complexity). We treat δ in Theorem 1 as a constant. Then (13) implies that
n = n1 + n2 = O(ε−2k6p log k log3(p/ε)) is sufficient to guarantee that the estimates produced by
Algorithm 1 have accuracy at most ε. Moreover, we have n1 = Õ(ε−2k6p), n2 = Õ(ε−2(k6 + k4p)),
which indicates that more samples are required to computeM2 thanM3. To provide some intuitions
why this conclusion makes sense, note that the estimation accuracy ofM2 determines the accuracy
of identifying the subspace spanned by {βj} in the original p-dimensional space. While M3 has
higher order, it is only required to concentrate well on a k-dimensional subspace computed from
M2 thanks to the whitening procedure. It turns out subspace accuracy has a more critical impact
on the final error and needs to sharpened with more samples.
Remark 2 (Time Complexity). Except the line 6 in Algorithm 1, the other steps have total complex-
ity O(n(p2 + k3)). Note that it’s not necessary to compute M3 directly since we can compute M̃3

from whitened covariate vectorsW>xi. Running time of robust tensor power method is O(k4NL).
According to Lemma 4, it is sufficient to set N = O(log k + log log(1/ε)) and L = O(poly(k)) for
some polynomial function poly(·). When k is large enough, L can be very close to be linear in k
(see Theorem 5.1 in [2] for details). Roughly, we take L = O(k2), which gives the running time of
Algorithm 2 as O(k6 log k) when ε & poly(1/k). Therefore, the overall complexity of Algorithm 1
is O(n(p2 + k3) + k6 log k).
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3.2 Analysis of Alternating Minimization

Now we turn to the analysis of Algorithm 3. Let ε0 := E({β(0)
j }).

Theorem 2 (Alternating Minimization). Consider Algorithm 3 for successively refining estimation
of {βj}. Pick any δ ∈ (0, 1). There exist constants Ci such that the following holds. Suppose

ε0 ≤ C1

(
1

k2
∧ ω
)

∆, p ≥ log(2k2T/δ),

and n satisfies

n/T ≥ C2

(
kp

ω
∨ log(8k2T/δ)

ω2

)
. (14)

With probability at least 1− δ, {β(t)
j } satisfies

E({β(t)
j }) ≤

(
1

2

)t
· ε0, for t = 1, . . . , T.

See Section 5.5 for the proof of the above result. Theorem 3 suggests that with good enough
initialization, iterates {β(t)

j } have at least linear convergence to the ground truth parameters. Due
to the fast convergence, it is sufficient to set T = O(log(1/ε)) to obtain estimation with accuracy ε.
In the case of well balanced clusters, i.e. ω & 1/k, ε0 is required to be O(∆/k2) in order to guarantee
the convergence to global optima. Next, we give two remarks for sample and time complexities. In
our discussion, we assume ω & 1/k and that δ is a small constant.

Remark 3 (Sample Complexity). For accuracy ε, it is sufficient to have n = O(k2p log(1/ε)) when
p satisfies p & log k + log log(1/ε). Compared to the sample complexity of tensor decomposition,
AltMin avoids the high-order polynomial factor of k. Moreover, it also changes the dependence
on ε from 1/ε2 to log(1/ε), which is a big save especially when we focus on exact recovery, which
can happen as we show in the next section, after one step of AltMin when ε . 1/p. Notably, the
statistical efficiency comes from a good initialization provided by tensor/spectral method. On one
hand, AltMin alleviates the statistical inefficiency of spectral method; on the other hand, spectral
method resolves the algorithmic intractability of AltMin.

Remark 4 (Time Complexity). Each iteration of AltMin has time complexity O(np2/T + kp3).
Hence, the overall running time is O(np2 +kp3 log(1/ε))2. Using the minimum requirement of n, we
obtain complexity Õ(k2p3). Recall that solving linear regression by most practical algorithms has
complexity O(p3). Therefore, even labels are available, solving k sets of linear equations requires
time O(kp3). AltMin almost has an extra factor k as the price for addressing latent variables.

3.3 Exact Recovery and Overall Guarantee

We now consider putting the previous analysis of tensor decomposition and AltMin together to
show exact recovery of {βj}.

2Factor p3 in the second term stands for the complexity of inverting a p-by-p matrix by Gauss-Jordan elimination.
It can be further reduced by more complicated algorithms such as Strassen algorithm that has O(p2.807).
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Lemma 3. Pick any δ ∈ (0, 1). For any fixed estimates {β̂j}kj=1 and some constant C, if

n ≥ C 1

ω
(p ∨ log(k/δ)) and E({β̂j}) ≤

δ

4nk
∆,

Running one step of alternating minimization according to (10) and (11) using n samples and initial
guess {β̂j} produces true parameters {βj} with probability at least 1− δ.

We provide the proof of the above result in Section 5.6. Putting all ingredients together, we
have the following overall guarantee:

Corollary 1 (Exact Recovery). Consider splitting n samples from (1) into two disjoint sets with
size ninit, nalt as inputs of Algorithm 1 and 3 for solving mixed linear equations as a two-stage
method. Pick any δ ∈ (0, 1). There exist constants Ci such that the following holds. If we choose
T = C1 log(knalt/δ) in Algorithm 3, and (ninit, nalt, p) satisfy

ninit ≥ C2

(
(k4 + 1/ω2)(p/σ2

k + k2 + p) log(k/δ)

ωσ3
k∆

2
log3(ninit) +

k

ωδ

)
,

nalt ≥ C3

(
kp

ω
+

p

ω2

)
log(knnalt/δ),

and
p ≥ C4

[
log

(
k

δ

)
+ log log

(
knalt

δ

)]
,

then with probability at least 1− δ, we have exact recovery, i.e. {β(T )
j }kj=1 = {βj}kj=1.

The proof is provided in Section 5.3. When ω & 1/k and Condition 2 holds with γ . 1 and
η . 1/k (∆ & 1 in the case), Corollary 1 implies that n = ninit+nalt = O(k10p log k log3 p) is enough
for exact recovery with high probability, say 99%. With this amount of samples, Remarks 2 and 4
give the overall time complexity as O(k10p(p2 + k3) log k log3 p). Note that solving k sets of linear
equations (labels are known) needs at least kp samples, and usually requires time O(kp3). Hence,
under the aforementioned setting, our two-stage algorithm is nearly optimal in p with respect to
sample and time complexities.

4 Numerical Results

In this section, we provide some numerical results to demonstrate the empirical performance of
the proposed method (combination of Algorithms 1 and 3) for solving mixed linear equations, and
also compare it with random initialized Alternating minimization (AltMin). All algorithms are
implemented in MATLAB. While sample-splitting is useful for our theoretical analysis, we find it
unnecessary in practice. Therefore, we remove the sample-splittings in Algorithms 1 and 3, and
use the whole sample set in the entire process. AltMin is implemented to terminate when the label
assignment no longer changes or the maximal number of iterations T is reached. In all experiments,
we set T = 200.
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Figure 1. Plot of estimation error (log scale) versus number of iterations in AltMin. Each panel
shows 50 trials for random and tensor initializations respectively. The circle markers indicate the ter-
minations of AltMin due to local minima, i.e., the label assignments do not change in two consecutive
iterations. Tensor decomposition is implemented with L = 200k2, N = 20 log(k).

Datasets. For given problem size (n, p, k), we generate synthetic datasets as follows. Covariate
vectors {xi}ni=1 are drawn independently from N (0, Ip). Model parameters {βj}kj=1 are a random
set of k vectors in Sp−1, where every two distinct βs have distance ∆ = 1.2. Therefore, these
parameters are not orthogonal. Suppose B ∈ Rp×k denotes the matrix with βj as the j-th column.
We let B = UΛ1/2V >, where U ∈ Rp×k represents the basis of a random k-dimensional subspace
in Rp. Matrices Λ,V ∈ Rk×k are from the eigen-decomposition of symmetric matrix C = V ΛV >,
where the diagonal terms of C are 1 and the rest entries are 1 − ∆2/2. We assign equal weights
ωj = 1/k for all clusters.

Results. Our first set of results, presented in Figure 1, show the convergence of estimation errors
of AltMin with random and tensor initializations. Recall that estimation error is defined in (12).
In random setting, AltMin starts with a set of uniformly random k vectors in Sp−1. We find that
AltMin with random starting points has quite slow convergence, and fails to produce true βs with
significant probability. In contrast, with the same amount of samples, tensor method provides more
accurate starting points, which leads to much faster convergence of AltMin to the global optima.
These results thus back up our convergence theory of AltMin (Theorem 2), and demonstrate the
power of using tensor decomposition initialization.

The second set of results, presented in Figure 2, explore the statistical efficiency of the proposed
algorithm—tensor initialized AltMin. For fixed k = 3, Figure (2a) reveals a linear dependence of
the necessary sample size on p, which matches our results in Corollary 1. With fixed p, Figure
(2b) indicates that O(k3) samples could be enough in practice, which is much better than our
theoretical guarantee O(k10). Sharpening the polynomial factor on k is an interesting direction of
future research.

5 Proofs

In this section, we provide proofs for Lemma 1 and the results presented in Section 3.
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Figure 2. Exact recovery probability of “Tensor + AltMin” with varied (n, p, k). The color of
every dot represents the recovery probability computed from 100 independent trials according to the
colorbar on the right side. Tensor decomposition is implemented with L = 200k2, N = 20 log(k).
The dashed line in (a) shows function n = 30p. The dashed line in (b) shows function n = 12k3.

5.1 Proof of Lemma 1

Recall that zi denotes the latent label associated with each sample. Suppose X ∼ N (0, Ip), and Z
has the distribution of each zi. We find that

E[m0] =
∑
j∈[k]

E[〈X, βj〉2] · P(Z = j) =
∑
j∈[k]

ωj ‖βj‖22 , (15)

E[m1] =
1

6

∑
j∈[k]

E[〈X, βj〉3X] · P(Z = j).

One can check that for any β, E[〈X, β〉3X] = 3 ‖β‖22 β. Therefore,

E[m1] =
1

2

∑
j∈[k]

ωj ‖βj‖22 βj . (16)

For M2, plugging (15) into (7) yields

E[M2] =
1

2

∑
j∈[k]

ωjE[〈X, βj〉2X ⊗X]− 1

2

∑
j∈[k]

ωj ‖βj‖22 · Ip.

One can check E[〈X, βj〉2X ⊗X] = 2βjβ
>
j + ‖βj‖22, which leads to E[M2] =

∑
j∈[k] ωjβjβ

>
j .

For M3, plugging (16) into (8) gives

E[M3] =
1

6

∑
j∈[k]

ωjE[〈X, βj〉3X⊗3]− 1

2

∑
j∈[k]

ωjT (‖βj‖22 βj).

Then it remains to show that for any β,

E[〈X, β〉3X⊗3] = 6β⊗3 + 3T (‖β‖22 β). (17)
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We directly verify the above inequality. Let X = (X1, . . . , Xp)
>, β = (β1, . . . , βp)

>. For (i, j, k) ∈
[p] × [p] × [p], let Lijk, Rijk be the (i, j, k)-th entries of E[〈X, β〉3X⊗3] and 6β⊗3 + 3T (‖β‖22 β)
respectively. Due to symmetry, it is sufficient to consider the following cases.

• i 6= j 6= k 6= i. We have Rijk = 6βiβjβk. Meanwhile,

Lijk = E[〈X, β〉3XiXjXk] = E[6βiβjβkX
2
iX

2
jX

2
k ] = 6βiβjβk.

• i = j 6= k. We have Rijk = 6β2
i βk + 3 ‖β‖22 βk, and

Lijk = E[〈X, β〉3X2
iXk]

= E[β3
kX

2
iX

4
k ] + E[3β2

i βkX
4
iX

2
k ] +

∑
t∈[p],t6=i,k

E[3βkβ
2
tX

2
iX

2
kX

2
t ]

= 3β3
k + 9β2

i βk + 3βk(‖β‖22 − β
2
i − β2

k) = 6β2
i βk + 3 ‖β‖22 βk.

• i = j = k. We have Rijk = 6β3
i + 9 ‖β‖22 βi, and

Lijk = E[〈X, β〉3X3
i ] = E[β3

iX
6
i ] +

∑
j∈[p],j 6=i

E[3βiβ
2
jX

4
iX

2
j ]

= 15β3
i + 9βi(‖β‖22 − β

2
i ) = 6β2

i βk + 3 ‖β‖22 βk.

In the above calculation, we frequently used the fact that odd-order moments of symmetric Gaussian
is 0. We finish proving (17), and thus conclude the proof.

5.2 Proof of Lemma 2

Recall that σk = σk(M2) = σk(
∑

j∈[k] ωkβkβ
>
k ). We always have

σk ≥ ωσk(
∑
j∈[k]

βkβ
>
k ).

Let B ∈ Rp×k be the matrix with columns βj . Then we have

σk(
∑
j∈[k]

βkβ
>
k ) = σmin(B>B).

Thanks to the nearly orthonormal condition, matrix D = B>B has diagonal terms greater than
1− η and the rest entries have magnitude smaller than γ. Therefore, for any u ∈ Sk−1, we have

u>Du ≥ (1− η) ‖u‖22 − γ‖u‖
2
1 ≥ 1− η − kγ,

which completes the proof.
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5.3 Proof of Corollary 1

Linear convergence of AltMin requires ε0 . (1/k2 ∧ ω)∆. Plugging it as accuracy into Theorem 1
shows that it suffices to let

ninit &
(k4 + 1/ω2)(p/σ2

k + k2 + p) log(k/δ)

ωσ3
k∆

2
log3(ninit) +

k

ωδ
.

The condition of n in Lemma 3 is implied by the condition of n/T in (14). Therefore, if {β(T−1)
j }kj=1

produced by AltMin satisfies E({β(T−1)
j }) ≤ δT

4knalt
∆, Lemma 3 implies that the T -th step of AltMin

(using nalt/T samples) produces {βj} with high probability. Thanks to linear convergence, we have
E({β(T−1)

j }) ≤ (1/2)T−1∆. So it suffices to have

(1/2)T−1∆ .
δT

knalt
∆.

Hence, choosing T = C log(knalt/δ) with sufficiently large constant C satisfies the above inequality.
Plugging this choice of T into (14) shows that it suffices to let

nalt &

(
kp

ω
+

log(k/δ) + log log(knalt/δ)

ω2

)
log(knnalt/δ).

Condition on p in Theorem 2 then becomes p & log(k/δ) + log log(knalt/δ), under which the above
requirement of nalt can be strengthened to

nalt &

(
kp

ω
+

p

ω2

)
log(knnalt/δ).

5.4 Proofs about Tensor Decomposition

In this section, we prove the guarantee of tensor decomposition. Let M2 := E[M2] and M3 :=
E[M3]. The proof idea of Theorem 1 is to show how approximate the empirical moments are
to their expectations, and then establish the dependence between errors of approximation and
estimation. Therefore, our proofs break down into the next two subsections. In Section 5.4.1, given
the approximation errors of moments

ε2 :=
∥∥M2 −M2

∥∥
op
, (18)

ε3 :=
∥∥M3(W ,W ,W )−M3(W ,W ,W )

∥∥
op
, (19)

we follow the processes shown in Algorithm 1 to obtain an upper bound of the estimation error
E({β(0)

j }) in terms of ε2 and ε3. In Section 5.4.2, the dependence between ε2, ε3 and sample size
is revealed by concentration analysis. We put these two parts together in Section 5.4.3 to prove
Theorem 1.

5.4.1 Error Transfer

We now turn to show the how error is transfered from approximation bound to initial estimation.
Recall that the robust tensor power method is run on tensor M3(W ,W ,W ). We let W be the
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whitening matrix of M2. Then tensor M3(W ,W ,W ) has orthogonal factorization

M3(W ,W ,W ) =
k∑
j=1

ω′jβ
′
j ⊗ β′j ⊗ β′j ,

where ω′j = 1/
√
ωj , β′j =

√
ωjW

>
βj and

∥∥∥β′j∥∥∥
2

= 1 for all j ∈ [k]. We will use the next theory of
robust tensor power method presented in [2].

Lemma 4 (Guarantee of Robust Tensor Power Method, Theorem 5.1 in [2]). Suppose T ∈ Rk×k×k
is a tensor with decomposition T =

∑k
j=1 λjβ

⊗3
j where every λj > 0 and {βj} are orthonormal. Put

λ := maxj∈[k]{λj}, λ := minj∈[k]{λj}. Let T̂ = T + E be the input of Algorithm 2, where E is a
symmetric tensor with ‖E‖op ≤ ε. There exist constants Ci such that the following holds. Suppose
ε ≤ C1λ/k. For any δ ∈ (0, 1), suppose (N,L) in Algorithm 2 satisfy

N ≥ C2 ·
(
log k + log log(λ/ε)

)
, L ≥ C3 · poly(k) log(1/δ),

for some polynomial function poly(·). With probability at least 1−δ, {(λ̂j , β̂j)} returned by Algorithm
2 satisfy the bound∥∥∥β̂j − βπ(j)

∥∥∥
2
≤ 8ε/λπ(j), |λ̂j − λπ(j)| ≤ 5ε, for all j ∈ [k],

where π(·) is some permutation function on [k].

Without loss of generality, we set the permutation π(·) in the above result to be identity. Lemma
4 implies that if

ε :=
∥∥M3(W ,W ,W )−M3(W ,W ,W )

∥∥
op

.
1

k
,

then with high probability, {(ω̃j , β̃j)}kj=1 produced in the line 6 of Algorithm 1 satisfy∥∥∥β̃j − β′j∥∥∥
2
≤ 8ε/ω′j = 8ε

√
ωj , |ω̃j − ω′j | ≤ 5ε.

Then we have∥∥∥β(0)
j − βj

∥∥∥
2

=
∥∥∥ω̃j(W>)†β̃j − ω′j(W

>
)†β′j

∥∥∥
2

≤
∥∥∥ω̃j(W>)†β̃j − ω̃j(W

>
)†β′j

∥∥∥
2

+
∥∥∥ω̃j(W>

)†β′j − ω′j(W
>

)†β′j

∥∥∥
2

≤
∥∥∥ω̃j(W>)†β̃j − ω̃j(W

>
)†β′j

∥∥∥
2

+ 5ε
∥∥∥W †

∥∥∥
op

≤
∥∥∥ω̃j(W>)†β̃j − ω̃j(W>)†β′j

∥∥∥
2

+
∥∥∥ω̃j(W>)†β′j − ω̃j(W

>
)†β′j

∥∥∥
2

+ 5ε
∥∥∥W †

∥∥∥
op

≤
∥∥∥ω̃j(W>)†β̃j − ω̃j(W>)†β′j

∥∥∥
2

+
∥∥∥W † −W †

∥∥∥
op

+ 5ε
∥∥∥W †

∥∥∥
op

≤
∥∥∥W †

∥∥∥
op
·
∥∥∥β̃j − β′j∥∥∥

2
+
∥∥∥W † −W †

∥∥∥
op

+ 5ε
∥∥∥W †

∥∥∥
op

≤ 8ε
√
ωj

∥∥∥W †
∥∥∥
op

+
∥∥∥W † −W †

∥∥∥
op

+ 5ε
∥∥∥W †

∥∥∥
op
.
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Recall that σk = σk(M2). Put σ1 = σ1(M2). LetM ′
2 be the best rank k approximation ofM2.

We have ∥∥M ′
2 −M2

∥∥
op
≤ ε2 + σk+1(M2) ≤ 2ε2,

where the last step follows from Weyl’s theorem. Using the properties of whitening in Lemma 9 by
replacing A, Â with M2,M

′
2, when ε2/σk ≤ 1/6, we have∥∥∥W †

∥∥∥
op
≤ 2

∥∥∥W †
∥∥∥
op

= 2
√
σ1,∥∥∥W † −W †

∥∥∥
op
≤ 4ε2

∥∥∥W †
∥∥∥
op
/σk = 4ε2

√
σ1/σk.

We thus obtain ∥∥∥β(0)
j − βj

∥∥∥
2
≤ 21

√
σ1ε+

4
√
σ1ε2
σk

. (20)

It remains to relate ε to ε2 and ε3. We apply a series of triangle inequalities as follows.

ε =
∥∥M3(W ,W ,W )−M3(W ,W ,W )

∥∥
op

=
∥∥M3(W ,W ,W )−M3(W ,W ,W ) +M3(W ,W ,W )−M3(W ,W ,W )

∥∥
op

≤
∥∥M3(W ,W ,W )−M3(W ,W ,W ) +M3(W ,W ,W )−M3(W ,W ,W )

∥∥
op

+
∥∥M3(W ,W ,W −W )

∥∥
op

≤
∥∥M3

∥∥
op

∥∥W∥∥2

op

∥∥W −W
∥∥
op

+
∥∥M3(W ,W ,W )−M3(W ,W ,W )

∥∥
op

+
∥∥M3(W ,W ,W )−M3(W ,W ,W )

∥∥
op

≤
∥∥M3

∥∥
op

∥∥W∥∥2

op

∥∥W −W
∥∥
op

+
∥∥M3

∥∥
op

∥∥W∥∥
op
‖W ‖op

∥∥W −W
∥∥
op

+
∥∥M3

∥∥
op
‖W ‖2op

∥∥W −W
∥∥
op

+ ε3. (21)

Applying Lemma 9 again, we have

‖W ‖op ≤ 2
∥∥W∥∥

op
= 2/

√
σk,

∥∥W −W
∥∥
op
≤ 4ε2/

√
σk

3. (22)

Plugging it back into the last line of (21) yields∥∥M3(W ,W ,W )−M3(W ,W ,W )
∥∥
op
≤ 28ε2√

σk
5

∥∥M3

∥∥
op

+ ε3. (23)

We thus obtain the following error bound by putting (20) and (23) together:∥∥∥β(0)
j − βj

∥∥∥
2
.
√
σ1ε2
σk

+
√
σ1ε3 +

√
σ1

∥∥M3

∥∥
op
ε2

√
σk

5 , for all j ∈ [k]. (24)

Recall that, in order to obtain (20), we have to make sure ε . 1/k as required in Lemma 4.
Then inequality (23) indicates that it’s sufficient to require

ε2 .
√
σk

5

k
∥∥M3

∥∥
op

and ε3 .
1

k
, (25)

which will be used in the concentration analysis.
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5.4.2 Concentration Analysis

Now we turn to the analysis of the concentration of empirical moments, and we derive upper bounds
on ε2 and ε3. Note that M3 involves Gaussian’s high-order moments (up to 6th moment). In order
to deal with the heavy tail, we will leverage a truncation argument, where we introduce truncated
response y′i as

y′i =

{
yi, if |yi| ≤M,

sign(yi) ·M, otherwise
, (26)

where M > 0 is some threshold chosen in our analysis. When M is sufficiently large, we have
yi = y′i for all i ∈ [n] with high probability, which means the tail bounds about {(y′i,xi)} still apply
to original samples {(yi,xi)}. The advance of analyzing concentration using (y′i,xi) is that y

′
i ·xi is

sub-Gaussian random vector thanks to the boundedness of y′i. One should note that truncating yi
might change the expectation of moments slightly. Therefore, a tedious but important part of our
analysis is to show that the expectation deviation from truncation is much smaller compared to the
desired tail bound. In detail, we have the next result proved using the truncation idea. See Section
6.1 for the complete proof.

Lemma 5 (Concentration of Empirical Moments of Single Model). Suppose n samples x1, . . . ,xn
are generated from N (0, Ip) and yi = 〈xi, β〉 for some fixed β ∈ Sp−1. Let

m1 =
1

n

∑
i∈[n]

y3
i xi, M2 =

1

n

∑
i∈[n]

y2
i x
⊗2
i , M3 =

1

n

∑
i∈[n]

y3
i x
⊗3
i .

Moreover, let m0 = E[m0],m1 = E[m1],M2 = E[M2],M3 = E[M3]. There exist constants Ci
such that the following holds. Pick any δ ∈ (0, 1) and any fixed matrix S ∈ Rp×s with s ≤ p.

1. If n ≥ C1/δ, with probability at least 1− δ, we have

∥∥∥S>(m1 −m1)
∥∥∥

2
≤ C2 ‖S‖op

log3/2 n√
n

max

{√
log

(
2

δ

)
,
√
s

}
. (27)

2. If n ≥ C3 max{1/δ, s}, with probability 1− δ, we have

∥∥∥S> (M2 −M2

)
S
∥∥∥
op
≤ C4 ‖S‖2op

log n√
n

max

{√
log

(
2

δ

)
,
√
s

}
. (28)

3. If n ≥ C5 max{s log
(

2
δ

)
, 1/δ}, with probability at least 1− δ, we have

∥∥(M3 −M3

)
(S,S,S)

∥∥
op
≤ C6 ‖S‖3op

s log3/2 n√
n

√
log

(
2

δ

)
. (29)

This result provides concentration bounds of the moments constructed from single linear model.
In the case of mixture samples {(yi,xi)}ni=1, we can split the set into k sets {(y(j)

i ,x
(j)
i )}nji=1, j =

17



1, . . . , k, where the j-th set corresponds to linear model βj . Therefore, for the moments given in
(4)-(6), we have

m0 =
∑
j∈[k]

ω̂jm
(j)
0 , m1 =

1

6

∑
j∈[k]

ω̂jm
(j)
1 ,

M2 =
1

2

∑
j∈[k]

ω̂jM
(j)
2 − 1

2
m0 · Ip, M3 =

1

6

∑
j∈[k]

ω̂jM
(j)
3 − T (m1),

where ω̂j denotes the empirical proportion of each model, and we let m(j)
0 := 1

nj

∑
i∈[nj ]

y
(j)2
i ,

m
(j)
1 := 1

nj

∑
i∈[nj ]

y
(j)2
i x

(j)
i , M (j)

2 := 1
nj

∑
i∈[nj ]

y
(j)2
i x

(j)⊗2
i , M (j)

3 := 1
nj

∑
j∈[nj ]

y
(j)3
i x

(j)⊗3
i .

Next, we will derive concentration bounds for m0,m1,M2,M3 respectively. To ease notation,
for every moment, we use n to denote the number of samples for computing it, while they might be
computed from different sets of samples in Algorithm 1.

Bound of |m0 −m0|. We find that

ε0 := |m0 −m0| ≤
∑
j∈[k]

ω̂j

∣∣∣m(j)
0 − E[m

(j)
0 ]
∣∣∣+

∑
j∈[k]

|ω̂j − ωj | · E[m
(j)
0 ]

≤ sup
j∈[k]
|m(j)

0 − E[m
(j)
0 ]|+

∑
j∈[k]

|ω̂j − ωj | · E[m
(j)
0 ]

≤ sup
j∈[k]
|m(j)

0 − E[m
(j)
0 ]|+

∑
j∈[k]

|ω̂j − ωj |︸ ︷︷ ︸
εω

, (30)

where the last step follows from the fact E[m
(j)
0 ] ≤ 1 due to the assumption maxj∈[k] ‖βj‖2 = 1. We

first bound εω. Note that nω̂j is a sum of n Bernoulli random variables with success probability ωj .
Lemma 8 gives that for any t ∈ (0, 1)

P (|ω̂j − ωj | ≥ tωj) ≤ 2e
− 3t2

2(t+3)
nωj ≤ 2e−3t2nω/8.

Using union bound and setting t =
√

8 log(2k/δ)/(3ωn), which can be less than 1 when n ≥
C log(k/δ)/ω for sufficiently large C, we obtain

P

(
εω ≥

√
8 log(2k/δ)

3ωn

)
≤ 2ke−3t2nω/8 = δ. (31)

Now we turn to the first term in (30). Note that y2
i = 〈xi, βj〉2 is sub-Gaussian with constant

Orlicz norm as ‖βj‖2 ≤ 1. Then by standard concentration of sub-Gaussian (e.g., (59) with p = 1),
we find that there exist constants C,C ′ such that if n ≥ C 1

ω log(k/δ), we have

P

(
sup
j∈[k]
|m(j)

0 − E[m
(j)
0 ]| ≥ C ′

√
1

ωn
log

(
k

δ

))
≤ δ.

for any δ ∈ (0, 1). Excluding the probability δ, we obtain

ε0 .
√

log(k/δ)/(ωn) + εω. (32)
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Bound of ‖m1 −m1‖2. Similar to (30), we have

ε1 := ‖m1 −m1‖2 . sup
j∈[k]

∥∥∥m(j)
1 − E[m

(j)
1 ]
∥∥∥

2
+ εω · sup

j∈[k]

∥∥∥E[m
(j)
1 ]
∥∥∥

2

. sup
j∈[k]

∥∥∥m(j)
1 − E[m

(j)
1 ]
∥∥∥

2
+ εω.

Using (27) in Lemma 5 by setting S = Ip and replacing δ with δ/k, we have that the condition
n & k/(ωδ) leads to

sup
j∈[k]

∥∥∥m(j)
1 − E[m

(j)
1 ]
∥∥∥

2
.

log3/2(ωn)
√
ωn

√
p log(2k/δ)

holds with probability at least 1− δ. Conditioning on this event leads to

ε1 . log3/2(ωn)
√
p log(2k/δ)/(ωn) + εω. (33)

Bound of
∥∥M2 −M2

∥∥
op

. We find that

ε2 .

∥∥∥∥∥∥
∑
j∈[k]

ω̂jM
(j)
2 −

∑
j∈[k]

ωjE[M
(j)
2 ]

∥∥∥∥∥∥
op

+ |m0 −m0|

. sup
j∈[k]

∥∥∥M (j)
2 − E[M

(j)
2 ]
∥∥∥
op

+ εω + ε0,

where the second step follows from similar calculation in (30) and the fact
∥∥∥E[M

(j)
2 ]
∥∥∥
op

. 1 for

all j ∈ [k]. Applying (28) by choosing S = Ip and setting δ to be δ/k, we have that when
n & ω−1 max{k/δ, p},

sup
j∈[k]

∥∥∥M (j)
2 − E[M

(j)
2 ]
∥∥∥
op

. log(ωn)
√
p log (2k/δ) /(ωn)

holds with probability at least 1− δ. Conditioning on the event, we conclude that

ε2 . log(ωn)
√
p log (2k/δ) /(ωn) + εω + ε0. (34)

Bound of
∥∥M3(W ,W ,W )−M3(W ,W ,W )

∥∥
op

. Now we condition on the event ε2/σk < 1/6,
which can lead to ‖W ‖op ≤ 2/

√
σk as shown in (22). Let εT := ‖T (m1 −m1)(W ,W ,W )‖op.

Recall that ε3 is defined in (19). We find that

ε3 .

∥∥∥∥∥∥
∑
j∈[k]

ω̂jM
(j)
3 (W ,W ,W )−

∑
j∈[k]

ωjE[M
(j)
3 (W ,W ,W )]

∥∥∥∥∥∥
op

+ εT

. sup
j∈[k]

∥∥∥M (j)
3 (W ,W ,W )− E[M

(j)
3 (W ,W ,W )]

∥∥∥
op

+ εω + εT .
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Again, the last step follows from similar steps in (30) and the fact that∥∥∥E[M
(j)
3 (W ,W ,W )]

∥∥∥
op

.
∥∥∥E[M

(j)
3 ]
∥∥∥
op
· ‖W ‖3op . ‖W ‖

3
op . 1/

√
σk

3.

Note thatW is computed fromM2. Due to the sample splitting in Algorithm 1,W is independent
of M3. Therefore, we can apply (29) by replacing S, δ with W , δ/k to obtain that

sup
j∈[k]

∥∥∥M (j)
3 (W ,W ,W )− E[M

(j)
3 (W ,W ,W )]

∥∥∥
op

.
1
√
σk

3k log3/2(ωn)
√

log(2k/δ)/(ωn) (35)

holds with probability at least 1 − δ under condition n & k/(ωδ). For T (·), we have that for any
u ∈ Rp,

‖T (u)‖op ≤ 3 ‖u‖2 , (36)

which is proved at the end of this section. We have

εT . ‖W ‖3op ε1 . ε1/
√
σk

3.

Conditioning on (35) leads to

ε3 .
1
√
σk

3k log3/2(ωn)
√

log(2k/δ)/(ωn) + εω + ε1/
√
σk

3. (37)

Proof of Inequality (36). For any v ∈ Sp−1, we have

T (u)(v,v,v) = 3
∑
i,j∈[p]

uiviv
2
j = 3

∑
i∈[p]

uivi ‖v‖22 = 3〈u, v〉 ≤ 3 ‖u‖2 .

5.4.3 Proof of Theorem 1

With the previous analysis, we are ready to prove Theorem 1. In the first place, we combine the
ingredients in Section 5.4.2. Recall that we split n samples into two parts with size n1 and n2 for
computing m0,M2 and m1,M3 respectively. Putting (31), (32), (34) together and using union
bound, we have

P

(
ε2 . log(ωn1)

√
p log (12k/δ)

ωn1

)
≥ δ/2 (38)

under condition n1 & 1
ω (kδ ∨ p). Putting (31), (33) and (37) together leads to

P

(
ε3 .

(k ∨√p) log3/2(ωn2)
√
σk

3

√
log(12k/δ)

ωn2

)
≥ δ/2 (39)

under conditions n2 & k/(ωδ) and ε2 < σk/6. In order to guarantee
∥∥∥β(0)

j − βj
∥∥∥

2
. ε for all j ∈ [k],

using the error transfer inequality (24) and noting that σ1 ≤ 1,
∥∥M3

∥∥
op
≤ 1 under assumption

maxj∈[k] ‖βj‖2 = 1, it is sufficient to require

ε2 .
√
σk

5ε, ε3 . ε. (40)
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The above condition on ε2 leads to ε2 < σk/6 for ε ≤ 1. In addition, in order to let (24) hold,
ε2, ε3 have to satisfy condition (25). This is implied by (40) when ε . 1/k. Using the relationship
between ε2, ε3 and n1, n2 in (38) and (39), it is sufficient to require

n1 &
p log(12k/δ) log2(n1)

ωσ5
kε

2
∨ k

ωδ
and n2 &

(k2 ∨ p) log(12k/δ) log3(n2)

ωσ3
kε

2
∨ k

ωδ
,

which concludes our proof.

5.5 Proof of Alternating Minimization (Theorem 2)

It is sufficient to show the linear error decay in one step. Then the error bound for each step t can
be obtained by induction. Without loss of generality, we focus on the first step t = 0. Also we
assume π(j) = j for simplicity. Let B = n/T be the sample size in the first step. Let Aj denote
the index set of samples that are clustered to model j in the label assignment step, namely

Aj :=
{
i ∈ [B]

∣∣ |yi − 〈xi, β(0)
j 〉| < |yi − 〈xi, β

(0)
t 〉| for all t 6= j

}
.

We use A∗j to denote the set of samples that are truly generated from model βj , namely

A∗j :=
{
i ∈ [B]

∣∣ yi = 〈xi, βj〉
}
.

Introduce ε0 as a shorthand for E({β(0)
j }). According to our assumption, ε0 . ∆/k2.

Let Σj :=
∑

i∈Aj xix
>
i be the empirical covariance of samples in Aj . The updated estimate

β
(1)
j has the form

β
(1)
j = Σ−1

j

∑
i∈Aj

yixi

 .

We thus obtain

β
(1)
j − βj = Σ−1

j

∑
i∈Aj

yixi

− βj = Σ−1
j

∑
i∈Aj

yixi − xix>i βj


= Σ−1

j

∑
t∈[k]

∑
i∈A∗t

⋂
Aj

xix
>
i (βt − βj

) .

By the Cauchy-Schwartz inequality, we obtain

∥∥∥β(1)
j − βj

∥∥∥
2
≤
∥∥∥Σ−1

j

∥∥∥
op
·

∥∥∥∥∥∥
∑
t∈[k]

∑
i∈A∗t

⋂
Aj

xix
>
i (βt − βj

)∥∥∥∥∥∥
2

≤
∥∥∥Σ−1

j

∥∥∥
op︸ ︷︷ ︸

U1

·

∑
t∈[k]

∥∥∥∥∥∥
∑

i∈A∗t
⋂
Aj

xix
>
i (βt − βj

)∥∥∥∥∥∥
2


︸ ︷︷ ︸

U2

Next we bound the two terms U1 and U2 respectively.
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Bound of U1. First note that
∥∥∥Σ−1

j

∥∥∥
op

= 1/σmin(Σj). We find that

σmin(Σj) = σmin

∑
i∈Aj

xix
>
i

 ≥ σmin
 ∑
i∈Aj∩A∗j

xix
>
i

 .

For X ∼ N (0, Ip), we define event Ej as

Ej :=
{
|〈X, β(0)

j − βj〉| ≤ |〈X, β
(0)
t − βj〉|, for all t 6= j

}
.

Accordingly, we have
E[xix

>
i |i ∈ Aj ∩ A∗j ] = E[XX>|Ej ]. (41)

To provide a lower bound of P(Ej), we have

P(Ej) = 1− P(Ecj ) ≥ 1−
∑
t6=j

P{〈X,β(0)
j − βj〉

2 ≥ 〈X,β(0)
t − βj〉2}

(a)

≥ 1−
∑
t6=j

∥∥∥β(0)
j − βj

∥∥∥
2∥∥∥β(0)

t − βj
∥∥∥

2

(b)

≥ 1− (k − 1)
4

7k2
≥ 1− 4

7k
. (42)

Step (b) holds because since for all t 6= j,∥∥∥β(0)
j − βj

∥∥∥
2∥∥∥β(0)

t − βj
∥∥∥

2

≤

∥∥∥β(0)
j − βj

∥∥∥
2

‖βt − βj‖2 −
∥∥∥β(0)

t − βt
∥∥∥

2

≤ ε0

∆− ε0
≤ 4

7k2
,

where the last step follows from condition ε0 ≤ ∆/(7k2). Step (a) in (42) is from the next result,
which is proved in Section 6.2.

Lemma 6. Let X ∼ N (0, Ip). For any two fixed vectors u,v ∈ Rp, we define

E := {|〈X,u〉| ≤ |〈X,v〉|} .

We have that when ‖u‖2 > ‖v‖2,

P(E) ≤
‖v‖2
‖u‖2

.

The next result, proved in Section 6.3, establishes the spectral structure of the covariance matrix
of X

∣∣ Ej .
Lemma 7 (Conditional Spectral Structure). Let X ∼ N (0, Ip). For any k fixed vectors u1, ...,uk ∈
Rp, we define event

E := {|〈X,u1〉| ≤ |〈X,uj〉|, for all j ∈ [k]} .

When P(E) > 0, we have
σmax

(
E[XX>

∣∣ E ]
)
≤ k.

and
σmin

(
E[XX>|E ]

)
≥ 1− k(1− P(E))

P(E)
. (43)
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The above result suggests that

σmin(E[XX>|Ej ]) ≥
1− k · [1− P(Ej)]

P(Ej)
≥ 3

7P(Ej)
≥ 3

7
. (44)

Next we will show σmin(
∑

i∈Aj∩A∗j
xix

>
i ) is close to its expected value |Aj∩A∗j |σmin(E[XX>|Ej ]).

First, we prove |Aj ∩ A∗j | is large enough. As P(Ej) ≥ 1 − 4/(7k2) ≥ 1/2, we have E[|Aj ∩ A∗j |] ≥
E[1

2 |A
∗
j |] = 1

2wjB. Therefore, |Aj ∩ A∗j | is summation of B independent Bernoulli random variable
with success probability at least ωj/2. Then we have

P
(
|Aj ∩ A∗j | ≤

1

4
ωjB

)
≤ P

(∣∣∣∣|Aj ∩ A∗j | − E[|Aj ∩ A∗j |]
∣∣∣∣ ≥ 1

4
ωjB

)
≤ 2e−CωjB ≤ 2e−CωB, (45)

where the second step follows from Lemma 8 and C is some constant. Conditioning on the event
|Aj ∩ A∗j | ≥ ωjB/4, we obtain |Aj ∩ A∗j | & p when B & p/ω.

Note that X is sub-Gaussian random vector. Part (a) of Lemma 15 shows that X is still sub-
Gaussian vector conditioning on Ej . Using the conclusion |Aj ∩ A∗j | & p, concentration result of
sub-Gaussian in (59) (setting t = 1/7 and K to be a constant) yields that, for some constant C,

P


∥∥∥∥∥∥ 1

|Aj ∩ A∗j |
∑

i∈Aj∩A∗j

xix
>
i − E[XX>|Ej ]

∥∥∥∥∥∥
op

≥ 1

7

 ≤ 2e−CωjB ≤ 2e−CωB. (46)

Putting (45) and (46) together and using Weyl’s theorem, we have that with probability at least
1− 4e−C

′ωB,

σmin

 ∑
i∈Aj∩A∗j

xix
>
i

 ≥ |Aj ∩ A∗j | · (σmin(E[XX>
∣∣ Ej ])− 1

7

)
≥ 1

4
ωjB ·

2

7
=

1

14
ωjB,

We thus obtain
P (U1 ≥ 14/(wjB)) ≤ 4e−C

′ωB. (47)

Bound of U2. Recall that

U2 =
∑
t6=j

∥∥∥∥∥∥
∑
A∗t∩Aj

xix
>
i (βt − βj)

∥∥∥∥∥∥
2

.

We will bound every term with different t separately. Note that for any vector x ∈ Rp and positive
semidefinite matrix A ∈ Rp×p, we have

‖Ax‖22 ≤ σmax(A)x>Ax.
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Introduce Qt =
∑
A∗t∩Aj

xix
>
i . We find∥∥∥∥∥∥

∑
A∗t∩Aj

xix
>
i (βt − βj)

∥∥∥∥∥∥
2

2

≤ σmax(Qt)
∑

i∈A∗t∩Aj

(βt − βj)>xix>i (βt − βj)

= σmax(Qt)
∑

i∈A∗t∩Aj

〈xi,βt − βj〉2

≤ 2σmax(Qt)
∑

i∈A∗t∩Aj

(
〈xi,βt − β(0)

j 〉
2 + 〈xi,β(0)

j − βj〉
2
)

(a)

≤ 2σmax(Qt)
∑

i∈A∗t∩Aj

(
〈xi,βt − β(0)

t 〉2 + 〈xi,β(0)
j − βj〉

2
)

≤ 4σ2
max(Qt) · ε2

0,

where step (a) follows from the fact that for each i ∈ A∗t ∩ Aj , 〈xi, βt − β
(0)
j 〉2 ≤ 〈xi, βt − β

(0)
t 〉2

due to the label assignment rule. Accordingly,

U2 ≤ 2
∑
t6=j

σmax(Qt)ε0. (48)

It remains to bound σmax(Qt). For each t, define

Atj :=
{
i ∈ A∗t

∣∣ |〈xi, βt − β(0)
j 〉| ≤ |〈xi, βt − β

(0)
t 〉|

}
as the set of samples that are generated from model t, but have smaller reconstruction error in β(0)

j

compared to β(0)
t . We have Aj ∩ A∗t ⊆ Atj , which leads to

σmax(Qt) ≤ σmax(
∑
i∈Atj

xix
>
i ). (49)

In parallel, for X ∼ N (0, Ip), define

E tj = {|〈X, βt − β(0)
j 〉| ≤ |〈X, βt − β

(0)
t 〉|}.

Let ε0 be an upper bound of ε0.

E[|Atj |] = E[|A∗t |] · P(E tj) = ωtB · P(E tj) ≤ ωtB

∥∥∥βt − β(0)
t

∥∥∥
2∥∥∥βt − β(0)

j

∥∥∥
2

≤ ωtB
ε0

∆− ε0
≤ 2ωtBε0

∆
,

where the first inequality follows from Lemma 6, and the last step holds when ε0 ≤ ∆/2. Note that
|Atj | is a summation of independent Bernoulli random variables with success probability at most
2ωtε0/∆. Then by Lemma 8, we have

P
(
|Atj | − E[|Atj |] ≥ 2ωtBε0/∆

)
≤ 2e−3ωtBε0/(4∆) ≤ 2e−3ωBε0/(4∆). (50)
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Following Lemma 7 (by setting k = 2), we have

σmax
(
E[XX>

∣∣ E tj ]) ≤ 2.

Part (b) in Lemma 15 suggests that X
∣∣ E tj is still sub-Gaussian random vector with constant Orlicz

norm. According to the concentration result in Remark 5.40 of [21], we have that with probability
at least 1− 2e−p,

σmax(
∑
i∈Atj

xix
>
i ) ≤ |Atj |(2 + (η ∨ η2)),

where η �
√
p/|Atj |. We thus have

σmax(
∑
i∈Atj

xix
>
i ) . p ∨ |Atj | . p+ |Atj |.

Putting the above result, (50) and (49) together, and taking the union bound over all t 6= j , we
have that with probability at least 1− ke−p − 2ke−3ωBε0/(4∆),∑

t6=j
σmax(Qt) .

∑
t6=j

p+ |Atj | . 2kp+
∑
t6=j

ωtBε0/∆ . kp+Bε0/∆.

Plugging the above result into (48) yields that for some constant C

P (U2 ≥ C(kp+Bε0/∆)ε0) ≤ ke−p + 2ke−3ωBε0/(4∆). (51)

Ensemble. Combining the bounds of U1 and U2, there exists a constant C such that when B &
p/ω,

P

∥∥∥β(1)
j − βj

∥∥∥
2
≥ C (kp+Bε0/∆)ε0

ωjB︸ ︷︷ ︸
U

 ≤ 4e−C
′ωB + 2ke−p + 2ke−3ωBε0/(4∆).

Now we set ε0 = ω∆/(4C). Then the condition B ≥ 4Ckp/ω leads to U ≤ 1
2ε0. Accordingly

P
(∥∥∥β(1)

j − βj
∥∥∥

2
≥ 1

2
ε0

)
≤ 4e−C

′ωB + ke−p + 2ke−3ω2B/(16C) ≤ 2ke−p + 4ke−C1ω2B ≤ δ

kT
,

where the last step follows from conditions B & ω−2 log(8k2T/δ) and p ≥ log(2k2T/δ). Taking
union bound over all j ∈ [k], we finish proving the error decay in the first iteration. Using the same
calculation for all T iterations and taking union bound concludes the proof.

5.6 Proof of Lemma 3

For X ∼ N (0, Ip), define event Ej , which indicates the case that sample from model j is correctly
assigned label j, as

Ej :=
{
|〈X, β̂j − βj〉| ≤ |〈X, β̂t − βj〉|, for all t 6= j

}
.
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According to (42) in the proof of Theorem 2, we have

P(Ej) ≥ 1−
∑
t6=j

∥∥∥β(0)
j − βj

∥∥∥
2∥∥∥β(0)

t − βj
∥∥∥

2

≥ 1− (k − 1)
ε̂

∆− ε̂
,

where ε̂ := E({β̂j}). Taking union bound over all n samples, we have that the probability of correct
assignment of all labels is at least

1− n(k − 1)
ε̂

∆− ε̂
≥ 1− δ/2,

where the last step holds when ε̂ ≤ δ
4nk∆. When n & p

ω ∨
1
ω log(k/δ), using Lemma 8 and union

bound, it is guaranteed that, with probability at least 1− δ/2, each cluster has at least p samples.
Therefore, correct label assignment will lead to exact recovery.

6 Proofs of Technical Lemmas

6.1 Proof of Lemma 5

Suppose S has an SVD S = UΣV >, where U ∈ Rp×s, V ∈ Rp×s have orthonormal columns
U>U = V >V = Is. We can always find α ∈ Rs, γ ∈ Rp such that β = Uα+ γ, where U>γ = 0
and ‖α‖22 + ‖γ‖22 = 1. We let X ∼ N (0, Ip), Y = 〈X, β〉.

Proof of Inequality (27). We find

∥∥∥S> (m1 −m1)
∥∥∥

2
=

∥∥∥∥∥V ΣU>

(
1

n

n∑
i=1

y3
i xi − E

[
Y 3X

])∥∥∥∥∥
2

=

∥∥∥∥∥Σ
(

1

n

n∑
i=1

y3
iU
>xi − E

[
Y 3U>X

])∥∥∥∥∥
2

≤ ‖S‖op ·

∥∥∥∥∥ 1

n

n∑
i=1

y3
iU
>xi − E

[
Y 3U>X

]∥∥∥∥∥
2

= ‖S‖op ·

∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃i〉+ zi)
3x̃i − E

[
(〈α, X̃〉+ Z)3X̃

]∥∥∥∥∥
2

, (52)

where we let X̃ := U>X, Z := 〈γ, X〉, and {(zi, x̃i)}ni=1 are n independent samples of (X̃, Z).
Thanks to the rotation invariance of Gaussian, we have X̃ ∼ N (0, Is) and Z ∼ N (0, ‖γ‖22). More-
over, X̃ and Z are independent since U>γ = 0.

For any τ1, τ2 > 1, define events

E :=
{
|〈α, X̃〉| ≤ τ1, |Z| ≤ τ2

}
, En := {|〈α, x̃i〉| ≤ τ1, |zi| ≤ τ2, for all i ∈ [n]} . (53)
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We have ∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃i〉+ zi)
3x̃i − E

[
(〈α, X̃〉+ Z)3X̃

]∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃i〉+ zi)
3x̃i − E

[
(〈α, X̃〉+ Z)3X̃

∣∣ E]∥∥∥∥∥
2︸ ︷︷ ︸

d1

+
∥∥∥E [(〈α, X̃〉+ Z)3X̃

∣∣ E]− E
[
(〈α, X̃〉+ Z)3X̃

]∥∥∥
2︸ ︷︷ ︸

d2

.

For term d2, using (62) in Lemma 13 by replacing (a, b, τ1, τ2) in the statement with

(‖α‖2 , ‖γ‖2 , τ1/ ‖α‖2 , τ2/ ‖γ‖2),

we obtain

d2 ≤ τ1

(
τ1

‖α‖2
e
− τ21

2‖α‖22 +
τ2

‖γ‖2
e
− τ22

2‖γ‖22

)
≤ τ1(τ1e

−τ21 /2 + τ2e
−τ22 /2),

where the last step follows from the fact that function xe−x2/2 is monotonically decreasing on x ≥ 1.
To ease notation, we let

X̃ ′ ∼ X | E , Z ′ ∼ Z | E . (54)

Suppose {(x̃′i, z′i)}ni=1 are independent samples of (X̃ ′, Z ′). We observe that

P(d1 ≥ t) ≤ P

(∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃′i〉+ z′i)
3x̃′i − E

[
(〈α, X̃ ′〉+ Z ′)3X̃ ′

]∥∥∥∥∥
2

≥ t

)
+ P(Ecn).

Since |〈α, X ′〉+ Z ′| ≤ τ1 + τ2, (〈α, X̃ ′〉+ Z ′)3X̃ ′ is sub-Gaussian random vector with Orlicz norm∥∥∥(〈α, X̃ ′〉+ Z ′)3X̃ ′
∥∥∥
ψ2

. (τ1 + τ2)3.

By concentration result (58) in Lemma 10, we have that for some constants C1, C2, condition
n ≥ C1s(τ1 + τ2)6/t2 leads to

P

(∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃′i〉+ z′i)
3x̃′i − E

[
(〈α, X̃ ′〉+ Z ′)3X̃ ′

]∥∥∥∥∥
2

≥ t

)
≤ e−C2nt2/(τ1+τ2)6 .

Meanwhile, the variance of 〈α, X̃〉 and Z are both at most 1. We thus obtain

P(Ecn) ≤ ne1−τ21 + ne1−τ22 (55)

by using Gaussian tail bound and union bound. Accordingly,

P(d1 ≥ t) ≤ e−c2nt
2/(τ1+τ2)6 + ne1−τ21 + ne1−τ22 .

Setting τ1 = τ2 = C
√

log n for sufficiently large constant C and t � (τ1+τ2)3
√

1/n
(√

log(2
δ ) ∨
√
s
)
,

we have d2 . 1/n and P(d1 ≥ t) ≤ δ/2 + 1/n. Requiring n & 2/δ gives our result.
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Proof of Inequality (28). We find

∥∥∥S> (M2 −M2

)
S
∥∥∥
op

=

∥∥∥∥∥∥V ΣU>

 1

n

∑
i∈[n]

y2
i xix

>
i − E

[
Y 2XX>

]UΣV >

∥∥∥∥∥∥
op

≤ ‖S‖2op ·

∥∥∥∥∥∥ 1

n

∑
i∈[n]

y2
i x̃ix̃

>
i − E

[
Y 2X̃X̃>

]∥∥∥∥∥∥
op

,

where x̃i and X̃ are defined according to (52). Using the E , En defined in (53), we have∥∥∥∥∥∥ 1

n

∑
i∈[n]

y2
i x̃ix̃

>
i − E

[
Y 2X̃X̃>

]∥∥∥∥∥∥
op

≤

∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃i〉+ zi)
2x̃ix̃

>
i − E

[
(〈α, X̃〉+ Z)2X̃X̃>

∣∣ E]∥∥∥∥∥
op︸ ︷︷ ︸

d1

+
∥∥∥E [(〈α, X̃〉+ Z)2X̃X̃>

∣∣ E]− E
[
(〈α, X̃〉+ Z)2X̃X̃>

]∥∥∥
op︸ ︷︷ ︸

d2

.

Applying (63) in Lemma 13 via setting (a, b, τ1, τ2) in the statement to be

(‖α‖2 , ‖γ‖2 , τ1/ ‖α‖2 , τ2/ ‖γ‖2)

provides that

d2 ≤
τ3

1

‖α‖32
e
− τ21

2‖α‖22 +
τ1

‖α‖2
τ2

‖γ‖2
e
− τ21

2‖α‖22
− τ22

2‖γ‖22 ≤ τ3
1 e
−τ21 /2 + τ1τ2e

−τ21 /2−τ22 /2,

where the last inequality follows from the fact that functions x3e−x
2/2, xe−x2/2 are monotonically

decreasing when x is sufficiently large.
We follow the same idea used before to bound d1. Introduce X̃ ′, Z ′ according to (54). Then we

obtain

P(d1 ≥ t) ≤ P

∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃′i〉+ z′i)
2x̃′ix̃

′>
i − E

[
(〈α, X̃ ′〉+ Z ′)2X̃ ′X̃ ′>

]∥∥∥∥∥
op

≥ t

+ P(Ecn). (56)

Since |〈α, X̃ ′〉+Z ′| ≤ τ1+τ2, (〈α, X̃ ′〉+Z ′)X̃ ′ is sub-Gaussian random vector with norm O(τ1+τ2).
Applying (58) in Lemma 10, we have that for t ∈ (0, (τ1 + τ2)2) and some constants C1, C2, the
condition n ≥ C1k(τ1 + τ2)4/t2 yields

P

∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃′i〉+ z′i)
2x̃′ix̃

′>
i − E

[
(〈α, X̃ ′〉+ Z ′)2X̃ ′X̃ ′>

]∥∥∥∥∥
op

≥ t

 ≤ e−C2nt2/(τ1+τ2)4 .
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Plugging it back into (56) and using the bound (55) of P(Ec), we obtain

P(d1 ≥ t) ≤ e−c2nt
2/(τ1+τ2)4 + ne1−τ21 + ne1−τ22 .

Choosing τ1 = τ2 = C
√

log n for sufficiently large constant C and letting t � logn√
n

(√
log
(

2
δ

)
∨
√
s
)
,

we have that when n ≥ C ′(1/δ ∨ s) for sufficiently large C ′, it is guaranteed that P(d1 ≥ t) ≤ δ and
d2 . 1/n, which concludes the proof.

Proof of Inequality (29). Using the Cauchy-Schwartz inequality and the definitions of x̃i and
X̃ in (52), we have that

∥∥(M3 −M3

)
(S,S,S)

∥∥
op
≤ ‖S‖3op ·

∥∥∥∥∥∥ 1

n

∑
i∈[n]

y3
i x̃i ⊗ x̃i ⊗ x̃i − E

[
Y 3X̃ ⊗ X̃ ⊗ X̃

]∥∥∥∥∥∥
op

.

Again, we use the event E , En in (53) to bound the operator norm. In detail, we have∥∥∥∥∥∥ 1

n

∑
i∈[n]

y3
i x̃i
⊗3 − E

[
Y 3X̃⊗3

]∥∥∥∥∥∥
op

≤

∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃i〉+ zi)
3x̃⊗3

i − E
[
(〈α, X̃〉+ Z)3X̃⊗3

∣∣ E]∥∥∥∥∥
op︸ ︷︷ ︸

d1

+
∥∥∥E [(〈α, X̃〉+ Z)3X̃⊗3

∣∣ E]− E
[
(〈α, X̃〉+ Z)3X̃⊗3

]∥∥∥
op︸ ︷︷ ︸

d2

.

Applying (64) in Lemma 13 by setting (a, b, τ1, τ2) in the statement to be (‖α‖2 , ‖γ‖2 , τ1/ ‖α‖2 , τ2/ ‖γ‖2),
we obtain

d2 ≤
τ5

1

‖α‖52
e
− τ21

2‖α‖22 +
τ3

1

‖α‖32

τ2

‖γ‖2
e
− τ21

2‖γ‖22
− τ22

2‖γ‖22 ≤ τ5
1 e
−τ21 /2 + τ3

1 τ2e
−τ21 /2−τ22 /2,

where the last inequality follows from the fact that functions x5e−x
2/2, x3e−x

2/2, xe−x2/2 are mono-
tonically decreasing when x is sufficiently large. For term d1, introducing the X̃ ′, Z ′ according to
(54), we have

P(d1 ≥ t) ≤ P

∥∥∥∥∥ 1

n

n∑
i=1

(〈α, x̃′i〉+ z′i)
3x̃′⊗3

i − E
[
(〈α, X̃ ′〉+ Z ′)3X̃ ′⊗3

]∥∥∥∥∥
op

≥ t

+ P(Ecn).

Note that (〈α, X̃ ′〉 + Z ′)X̃ ′ is sub-Gaussian random vector with norm O(τ1 + τ2). Applying (60)
in Lemma 10, we find that for any t ∈ (0, (τ1 + τ2)3√s) and constants C1, C2, condition n ≥
C1(τ1 + τ2)6s2/t2 yields

P(d1 ≥ t) ≤ e
−c2 nt2

k2(τ1+τ2)
6 + P(Ecn) ≤ e−c2

nt2

k2(τ1+τ2)
6 + ne1−τ21 + ne1−τ22 .

Setting τ1 = τ2 = C
√

log n for sufficiently large constant C, t � s
√

logn
3

√
n

√
log
(

2
δ

)
, and assuming

n & max{s log
(

2
δ

)
, 1/δ}, we obtain that P(d1 ≤ t) ≤ δ and d2 ≤ 1/n, which concludes the proof.
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6.2 Proof of Lemma 6

For two vector u,v, we define angle α(u,v) ∈ [0, π] as

α(u,v) := cos−1 (u− v)>(u+ v)

‖u+ v‖2 · ‖u− v‖2
.

Without loss of generality, we assume u,v live in the subspace spanned by e1, e2. We use x1, x2 to
denote the first two coordinates of X. We can let

x1 = A cos θ, x2 = A sin θ,

where A is Rayleigh random variable, and θ is uniformly distributed over [0, 2π). Conditioning on
E , the range of θ is truncated to be [θ0, θ0 + α(u,v)] ∪ [θ0 + π, θ0 + π + α(u,v)], where θ0 depends
on u,v. Therefore, we have

P(E) =
α(u,v)

π
.

If ‖u‖2 > ‖v‖2,

cos[α(u,v)] ≥
‖u‖22 − ‖v‖

2
2

‖u‖22 + ‖v‖22
> 0.

So we have α(u,v) ∈ [0, π/2]. Using the fact that α < π
2 sinα for any α ∈ [0, π/2], we have

P(E) ≤ 1

2
sin[α(u,v)] ≤

‖u‖2 ‖v‖2
‖u‖22 + ‖v‖22

≤
‖v‖2
‖u‖2

.

6.3 Proof of Lemma 7

Note that conditioning on E or Ec will not change the distribution of ‖X‖2. We thus have

E
[
‖X‖22

∣∣ E] = E
[
‖X‖22

∣∣ Ec] = E ‖X‖22 = p.

Hence,
Trace

(
E
[
XX>

∣∣ E]) = p. (57)

Also note that E
[
XX>

∣∣ E] and E
[
XX>

∣∣ Ec] have at least p − k eigenvalues that are 1 since
{u1, . . . ,uk} spans a subspace with dimension at most k. Therefore we have

σmax

(
E
[
XX>

∣∣ E]) ≤ Trace
(
E
[
XX>

∣∣ E])− (p− k) ≤ k.

The above inequality also holds for σmax
(
E
[
XX>

∣∣ Ec]). Note that

Ip = E[XX>] = E
[
XX>

∣∣ E]P(E) + E
[
XX>

∣∣ Ec] (1− P(E)).

Suppose v is the eigenvector that corresponds to the minimum eigenvalue of E
[
XX>

∣∣ E]. There-
fore, we have

1 = v>E
[
XX>

∣∣ E]vP(E) + v>E
[
XX>

∣∣ Ec]v(1− P(E))

≤ σmin
(
E
[
XX>

∣∣ E])P(E) + v>E
[
XX>

∣∣ Ec]v(1− P(E))

≤ σmin
(
E
[
XX>

∣∣ E])P(E) + k(1− P(E)).
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7 Auxiliary Results

Lemma 8 (Sum of Bernoulli Random Variables). Suppose X1, . . . , Xn are n independent Bernoulli
random variables with P[X1 = 0] = 1− p and P[X1 = 1] = p. Let

X =
1

n

∑
i∈[n]

Xi.

For every t > 0, we have

P
(
|X − E[X]| ≥ tp

)
≤ 2e

− 3t2

2(t+3)
np
.

Proof. We find that X1 − E[X1] has variance p(1 − p) and |X1 − E[X1]| ≤ 1. Using Bernstein’s
inequality, we have

P
(
|X − E[X]| ≥ tp

)
≤ 2e

− nt2p2/2
p(1−p)+tp/3 ≤ 2e

− 3t2

2(t+3)
np
.

Lemma 9 (Properties of Whitening Matrices, Lemma 6 in [6]). Suppose A and Â are both positive
semidefinite matrices in Rp×p with rank k. Let W , Ŵ ∈ Rp×k be whitening matrices such that
W>AW = Ik, Ŵ>ÂŴ = Ik. When α :=

∥∥∥A− Â∥∥∥
op
/σk(A) < 1/3, we have

∥∥∥Ŵ∥∥∥
op
≤ 2 ‖W ‖op ,

∥∥∥Ŵ †
∥∥∥
op
≤ 2

∥∥∥W †
∥∥∥
op
,∥∥∥W − Ŵ

∥∥∥
op
≤ 2α · ‖W ‖op ,

∥∥∥W † − Ŵ †
∥∥∥
op
≤ 2α ·

∥∥∥W †
∥∥∥
op
.

Lemma 10 (Concentration of Sub-Gaussian Vectors). Suppose x1,x2, . . . ,xn ∈ Rp are n i.i.d.
sub-Gaussian vectors with Orlicz norm ‖x1‖ψ2 ≤ K.

1. There exist constants Ci such that for every t > 0, when n ≥ C1(K/t)2p,

P

∥∥∥∥∥∥ 1

n

∑
i∈[n]

xi − E [x1]

∥∥∥∥∥∥
2

≥ t

 ≤ e−C2nt2/K2
. (58)

2. There exist constants Ci such that for every t ∈ (0,K2), when n ≥ C1(K2/t)2p,

P

∥∥∥∥∥∥ 1

n

∑
i∈[n]

xix
>
i − E

[
x1x

>
1

]∥∥∥∥∥∥
op

≥ t

 ≤ e−C2nt2/K4
. (59)

3. There exist constants Ci such that for every t ∈ (0,K3√p), when n ≥ C1(K3/t)2p2,

P

∥∥∥∥∥∥ 1

n

∑
i∈[n]

x⊗3
i − E

[
x⊗3

1

]∥∥∥∥∥∥
op

≥ t

 ≤ e−C2nt2/(p2K6). (60)
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Proof.

1. Note that ∥∥∥∥∥∥ 1

n

∑
i∈[n]

xi − E [x1]

∥∥∥∥∥∥
2

= sup
u∈Sp−1

∣∣∣∣∣ 1n
n∑
i=1

〈xi, u〉 − E [〈xi, u〉]

∣∣∣∣∣ .
Since xi is sub-Gaussian vector, then for any fixed u ∈ Sp−1, 〈xi, u〉 is sub-Gaussian random

variable with norm K. Therefore, 〈xi, u〉−E [〈xi, u〉] is also sub-Gaussian with norm at most 2K.
By standard concentration of sub-Gaussianity, for some constant C, we obtain

P

(∣∣∣∣∣ 1n
n∑
i=1

〈xi, u〉 − E [〈xi, u〉]

∣∣∣∣∣ ≥ t
)
≤ e1−Cnt2/K2

.

It is possible to construct an ε-net Sε of Sp−1 with size |Sε| ≤ (1 + 2/ε)p (Lemma 5.2 in [21]).
Applying probabilistic union bound leads to

P

(
sup
u∈Sε

∣∣∣∣∣ 1n
n∑
i=1

〈xi, u〉 − E [〈xi, u〉]

∣∣∣∣∣ ≥ t
)
≤ (1 + 2/ε)pe1−Cnt2/K2

.

For any z ∈ Sp−1, we can always find u ∈ Sε such that ‖z − u‖2 ≤ ε. Then∣∣∣∣∣ 1n
n∑
i=1

〈xi, z〉 − E [〈xi, z〉]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

〈xi, u〉 − E [〈xi, u〉]

∣∣∣∣∣+ ‖u− z‖2 ·

∥∥∥∥∥∥ 1

n

∑
i∈[n]

xi − E [x1]

∥∥∥∥∥∥
2

.

Therefore, we obtain

sup
z∈Sp−1

∣∣∣∣∣ 1n
n∑
i=1

〈xi, z〉 − E [〈xi, z〉]

∣∣∣∣∣ ≤ 1

1− ε
· sup
u∈Sε

∣∣∣∣∣ 1n
n∑
i=1

〈xi, u〉 − E [〈xi, u〉]

∣∣∣∣∣ . (61)

Setting ε = 1/4 and assuming n ≥ C ′(K/t)2p for sufficiently large constant C ′ completes the proof.

2. Refer to Theorem 5.39 in [21] for the proof.

3. Note that for any 3-way tensor T ∈ Rp×p×p and two vectors u,v ∈ Rp that satisfy ‖u− v‖2 ≤ ε,
we have

T (u,u,u)− T (v,v,v) = T (u− v,u,u) + T (v,u− v,u) + T (v,v,u− v)

≤ 3ε · sup
a,b,c∈Sp−1

|T (a, b, c)| ≤ 27ε ‖T ‖op ,

where the last inequality follows from Lemma 12. Constructing an ε-net Sε on Sp−1 and following
similar idea in showing (61), we obtain∥∥∥∥∥∥ 1

n

∑
i∈[n]

x⊗3
i − E

[
x⊗3

1

]∥∥∥∥∥∥
op

≤ 1

1− 27ε
sup
u∈Sε

∣∣∣∣∣∣ 1n
∑
i∈[n]

〈xi, u〉3 − E
[
〈x1, u〉3

]∣∣∣∣∣∣ .
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Now we set ε = 1/54, which leads to |Sε| ≤ 109p. For any fixed u ∈ Sp−1, 〈xi, u〉 is sub-Gaussian
random variable with norm K. Using the concentration of cubes of sub-Gaussians (Lemma 11) and
applying union bound, we obtain

P

 sup
u∈Sε

∣∣∣∣∣∣ 1n
∑
i∈[n]

〈xi, u〉3 − E
[
〈x1, u〉3

]∣∣∣∣∣∣ > CK3

√
p3 log3(109/δ) + 2p2 log2(109/δ)n

n

 ≤ δ
for any δ ∈ (0, 1) and some constant C > 0. Finally, for any t ∈ (0,K3√p), setting δ = e

−C′ nt
2

p2K6 ,
n ≥ C ′′(p/t)2K6 for some constants C ′, C ′′ completes the proof.

The next result shows a tail bound of a finite sum of sub-Gaussian random variables. A similar
result is proved in the case of Gaussian in [12]. Here, we present our proof that can cover general
sub-Gaussian distribution.

Lemma 11 (Sum of Cubes of Sub-Gaussians). Suppose X1, X2, . . . , Xn are n i.i.d. sub-Gaussian
random variables with Orlicz norm ‖X1‖ψ2 ≤ K. There exists an absolute constant C such that for
any δ ∈ (0, 1),

P

∣∣∣∣∣ 1n
n∑
i=1

X3
i − E

[
X3

1

]∣∣∣∣∣ > CK3

√
log3(1/δ) + 2 log2(1/δ)n

n

 ≤ δ.
Proof. For any positive even integer q and t ∈ R+, by Markov’s inequality, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

X3
i − E

[
X3

1

]∣∣∣∣∣ > t

)
= P

((
1

n

n∑
i=1

X3
i − E

[
X3

1

])q
> tq

)

≤ 1

tq
E

[(
1

n

n∑
i=1

X3
i − E

[
X3

1

])q]
.

Let X ′1, X ′2, . . . , X ′n be another set of n i.i.d. samples. We find

E

[(
1

n

n∑
i=1

X3
i − E

[
X3

1

])q]
= E

[(
1

n

n∑
i=1

X3
i −

1

n

n∑
i=1

E
[
X ′3i
])q]

(a)

≤ EXi,X′i

[(
1

n

n∑
i=1

(
X3
i −X ′3i

))q]
(b)

≤ EXi,X′i,σi

[(
1

n

n∑
i=1

σi
(
X3
i −X ′3i

))q]
(c)

≤ EXi,X′i,σi

[
2q−1

(
1

n

n∑
i=1

σiX
3
i

)q
+ 2q−1

(
1

n

n∑
i=1

σiX
′3
i

)q]

=

(
2

n

)q
EXi,σi

[(
n∑
i=1

σiX
3
i

)q]
,
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where (a) and (c) follow from Jensen’s inequality. In step (b), we introduce Rademacher sequence
σ1, σ2, . . . , σn, i.e., P(σi = 1) = P(σi = −1) = 0.5. To ease notation, we let Zi := σiXi. So
σiX

3
i = Z3

i and Zi is still sub-Gaussian with norm K. It thus remains to bound E
[(∑n

i=1 Z
3
i

)q].
Note that Zi has symmetric distribution around 0, so E[Zai ] = 0 for any odd integer a. Accordingly,
we have

E

[(
n∑
i=1

Z3
i

)q]
=

∑
q1+...+qn=q/2

n∏
i=1

E
[
Z6qi
i

]
≤

∑
q1+...+qn=q/2

n∏
i=1

(K
√

6qi)
6qi ,

where the last inequality follows from the basic property that if X is sub-Gaussian random variable
with norm K, then (E [|X|q])1/q ≤ K√q for all q > 1. Since all qi ≤ q/2, we have

E

[(
n∑
i=1

Z3
i

)q]
≤
(
q/2 + n− 1

q/2

)(
K
√

3q
)3q
≤
(

(q/2 + n− 1)e

q/2

)q/2 (
K
√

3q
)3q

.

Putting all pieces together, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

X3
i − E

[
X3

1

]∣∣∣∣∣ > t

)
≤
(

18K3q
√
q + 2n

nt

)q
.

Setting q = dlog(1/δ)e, t = 18eK3
√

log3(1/δ)+2 log2(1/δ)n
n completes the proof.

Lemma 12. For any symmetric 3-way tensor T ∈ Rp×p×p,

sup
u,v,w∈Sp−1

|T (u,v,w)| ≤ 9 ‖T ‖op .

Proof. For any u,v,w ∈ Sp−1, we have

2|T (u,v,w)| = |T (u,v,w) + T (v,u,w)| = |T (u+ v,u+ v,w)− T (u,u,w)− T (v,v,w)|
≤ |T (u+ v,u+ v,w)|+ |T (u,u,w)|+ |T (v,v,w)| ≤ 6 sup

a,b∈Sp−1

|T (a,a, b)|,

where the first step holds because T is symmetric. Moreover, for any u,v ∈ Sp−1, we have

6T (u,u,v) = |T (u+ v,u+ v,u+ v) + T (v − u,v − u,v − u)− 2T (v,v,v)| ≤ 18 ‖T ‖op .

Combining the above two inequalities leads to

sup
u,v,w∈Sp−1

|T (u,v,w)| ≤ 3 sup
u,v∈Sp−1

|T (u,u,v)| ≤ 9 ‖T ‖op .

Lemma 13 (Conditional Mean Deviation). Let X ∼ N (0, Ip), Z ∼ N (0, 1), and assume X and Z
are independent. For any τ1, τ2 ≥ 1,v ∈ Sp−1, we define event E := {|〈X, v〉| ≤ τ1, |Z| ≤ τ2}. For
any a, b > 0, let Y := a · 〈X, v〉+ b ·Z. There exists constant C such that the following inequalities
hold.

1. ∥∥E [Y 3X
∣∣ E]− E

[
Y 3X

]∥∥
2
≤ C(a3 + ab2)

(
τ3

1 e
−τ21 /2 + τ1τ2e

−τ21 /2−τ22 /2
)
. (62)
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2. ∥∥E [Y 2X ⊗X
∣∣ E]− E

[
Y 2X ⊗X

]∥∥
op
≤ C(a2 + b2)

(
τ3

1 e
−τ21 /2 + τ1τ2e

−τ21 /2−τ22 /2
)
. (63)

3. ∥∥E [Y 3X ⊗X ⊗X
∣∣ E]− E

[
Y 2X ⊗X ⊗X

]∥∥
op
≤ C(a3+ab2)

(
τ5

1 e
−τ21 /2 + τ3

1 τ2e
−τ21 /2−τ22 /2

)
.

(64)

Proof. 1. There exists u ∈ Sp−1 such that

δ1 :=
∥∥E [Y 3X

∣∣ E]− E
[
Y 3X

]∥∥
2

= E
[
Y 3〈X, u〉

∣∣ E]− E
[
Y 3〈X, u〉

]
Due to the rotation invariance of spherical Gaussian vector, without loss of generality, we can simply
assume v = e1 and u = ce1 + de2, where c2 + d2 = 1. Let X = (X1, X2, . . . , Xp)

>. Using the
symmetricity of X1, Z,X2 when conditioning on Ec, we have

E
[
Y 3〈X, u〉

∣∣ E] = E
[
(aX1 + bZ)3(cX1 + dX2)

∣∣ E] = E
[
a3cX4

1 + 3ab2cX2
1Z

2
∣∣ E] . a3|c|+ab2|c|.

Note that X1, Z,X2 are also symmetric when conditioning on Ec, we thus obtain

E
[
Y 3〈X, u〉

∣∣ Ec]P(Ec) = E
[
a3cX4

1 + 3ab2cX2
1Z

2
∣∣ Ec]P(Ec)

. a3|c|τ3
1 e
−τ21 /2 + ab2|c|τ1τ2e

−τ21 /2−τ22 /2,

where the last inequality follows from Lemma 14. Now we turn to δ1. We find

δ1 = E
[
Y 3〈X, u〉

∣∣ E]− E
[
Y 3〈X, u〉

∣∣ E]P(E)− E
[
Y 3〈X, u〉

∣∣ Ec]P(Ec)
≤
∣∣E [Y 3〈X, u〉

∣∣ E]∣∣P(Ec) +
∣∣E [Y 3〈X, u〉

∣∣ Ec]P(Ec)
∣∣ .

. (a3|c|+ 3ab2|c|)e−τ21 /2−τ22 /2 + a3|c|τ3
1 e
−τ21 /2 + ab2|c|τ1τ2e

−τ21 /2−τ22 /2

. (a3 + ab2)
(
τ3

1 e
−τ21 /2 + τ1τ2e

−τ21 /2−τ22 /2
)
.

2. There exists u ∈ Sp−1 such that

δ2 :=
∥∥E [Y 2X ⊗X

∣∣ E]− E
[
Y 2X ⊗X

]∥∥
op

= E
[
Y 2〈X, u〉2

∣∣ E]− E
[
Y 2〈X, u〉2

]
.

Using the same simplification argument in (a), we have

E
[
Y 2〈X, u〉2

∣∣ E] = E
[
(aX1 + bZ)2(cX1 + dX2)2

∣∣ E]
= E

[
a2c2X4

1 + b2c2X2
1Z

2 + a2d2X2
1X

2
2 + b2d2X2

2Z
2
∣∣ E] . a2 + b2.

Applying Lemma 14 again leads to

E
[
Y 2〈X, u〉2

∣∣ Ec]P(Ec) . a2c2τ3
1 e
−τ21 /2 + b2c2τ1τ2e

−τ21 /2−τ22 /2 + a2d2τ1e
−τ21 /2 + b2d2τ2e

−τ22 /2

. (a2 + b2)
(
τ3

1 e
−τ21 /2 + τ1τ2e

−τ21 /2−τ22 /2
)
.
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Overall, we have

δ2 = E
[
Y 2〈X, u〉2

∣∣ E]− E
[
Y 2〈X, u〉2

∣∣ E]P(E)− E
[
Y 2〈X, u〉2

∣∣ Ec]P(Ec)
≤
∣∣E [Y 2〈X, u〉2

∣∣ E]∣∣P(Ec) +
∣∣E [Y 2〈X, u〉2

∣∣ Ec]P(Ec)
∣∣ .

. (a2 + b2)
(
τ3

1 e
−τ21 /2 + τ1τ2e

−τ21 /2−τ22 /2
)
.

3. There exists u ∈ Sp−1 such that

δ3 :=
∥∥E [Y 3X ⊗X ⊗X

∣∣ E]− E
[
Y 3X ⊗X ⊗X

]∥∥
op

= E
[
Y 3〈X, u〉3

∣∣ E]− E
[
Y 3〈X, u〉3

]
.

Using the same simplification argument in (a), we have

E
[
Y 3〈X, u〉3

∣∣ E] = E
[
(aX1 + bZ)3(cX1 + dX2)3

∣∣ E]
= E

[
a3c3X6

1 + 3ab2c3X4
1Z

2 + 3a3cd2X4
1X

2
2 + 9ab2cd2X2

1X
2
2Z

2
∣∣ E] . a3 + ab2.

Applying Lemma 14 again leads to

E
[
Y 3〈X, u〉3

∣∣ Ec]P(Ec) . a3c3τ5
1 e
−τ21 /2 + ab2c2τ3

1 e
−τ21 /2 + a3cd2τ3

1 τ2e
−τ21 /2−τ22 /2 + ab2cd2τ1τ2e

−τ21 /2−τ22 /2

. (a3 + ab2)
(
τ5

1 e
−τ21 /2 + τ3

1 τ2e
−τ21 /2−τ22 /2

)
.

Finally, we have

δ3 = E
[
Y 3〈X, u〉3

∣∣ E]− E
[
Y 3〈X, u〉3

∣∣ E]P(E)− E
[
Y 3〈X, u〉3

∣∣ Ec]P(Ec)
≤
∣∣E [Y 3〈X, u〉3

∣∣ E]∣∣P(Ec) +
∣∣E [Y 3〈X, u〉3

∣∣ Ec]P(Ec)
∣∣ .

. (a3 + ab2)
(
τ5

1 e
−τ21 /2 + τ3

1 τ2e
−τ21 /2−τ22 /2

)
.

Lemma 14 (Conditional Moments of Gaussian). Suppose X ∼ N (0, 1). For any τ > 0 and positive
integer a, we define

ma(τ) := E
[
Xa

∣∣ |X| > τ
]
P(|X| > τ).

Then we have that for all a = 2, 4, 6, . . . , we have

ma(τ) = (a− 1)ma−2(τ) +

√
2

π
τa−1e−

τ2

2 .

Proof. The result follows from elementary calculation on Gaussian’s probability density function.
We omit the details.

Lemma 15 (Sub-Gaussianity). Let X ∼ N (0, Ip). For any k fixed vectors u1, ...,uk ∈ Rp, we
define event

E := {|〈X, u1〉〉| ≤ |〈X, uj〉|, for all j ∈ [k]} .
(a) Suppose P(E) ≥ τ > 0. There exists constant C that only depends on τ such that for any fixed
x ∈ Sp−1, we have that

P
(
|〈X, x〉| > t

∣∣ E) ≤ e1−Ct2 , for all t > 0.

(b) In general there exists constant C ′ such that for any fixed x ∈ Sp−1,

P
(
|〈X, x〉| > t

∣∣ E) ≤ e1− C′
4k log(k+1)

t2
, for all t > 0.
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Proof. Since X is sub-Gaussian random vector, equivalently there exists constant C such that for
any fixed x ∈ Sp−1,

P {|〈X, x〉| ≥ t} ≤ 1 ∧ e1−Ct2 , for all t > 0.

(a) Note that

P (|〈X, x〉| ≥ t) = P
(
|〈X, x〉| ≥ t

∣∣ E)P(E) + P
(
|〈X, x〉| ≥ t

∣∣ Ec)P(Ec)
≥ τ · P

(
|〈X, x〉| ≥ t

∣∣ E) .
Hence,

P
(
|〈X, x〉| ≥ t

∣∣ E) ≤ 1 ∧ τ−1e1−Ct2 ≤ 1 ∧ e1−C′(τ)t2 ,

where the last inequality holds for C ′(τ) = C(1− log τ)−1.

(b) Without loss of generality, we assume that u1, ...,uk live in the subspace spanned by e1, ..., ek.
For any vector u ∈ Rp, we let u[k] be its sub-vector that contains the first k coordinates, and u⊥
be its sub-vector that contains the rest coordinates. For any x ∈ Sp−1, we have

P
(
|〈X, x〉| > t

∣∣ E) ≤ P
(
|〈X[k], x[k]〉| > t/2

∣∣ E)+ P (|〈X⊥, x⊥〉| > t/2)

≤ P
(
|〈X[k], x[k]〉| > t/2

∣∣ E)+ e1−Ct2/4

≤ P
(∥∥X[k]

∥∥
2
> t/2

∣∣ E)+ e1−Ct2/4. (65)

Note that conditioning E does not change the distribution of
∥∥X[k]

∥∥
2
. We thus have

P
(∥∥X[k]

∥∥
2
> t/2

∣∣ E) = P
(∥∥X[k]

∥∥
2
> t/2

)
≤
∑
i∈[k]

P
(
|Xi| ≥

t

2
√
k

)
≤ k · e1−Ct2/(4k).

Combining (65) with the above inequality yields that

P
(
|〈X, x〉| > t

∣∣ E) ≤ 1 ∧ (k + 1)e1−Ct2/(4k) ≤ 1 ∧ e1−C2(k)t2 ,

where the last inequality holds by setting C2(k) = C
4k log(k+1) .
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