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Chapter 1.  Introduction 
Autonomous vehicles (AVs) admit new traffic behaviors with the potential to greatly improve 
traffic efficiency such as reservation-based intersection control (1, 2). Vehicles request a 
reservation from the computerized intersection manager for a specific turning movement starting 
at a specific time. The intersection manager simulates vehicle requests on a grid of space-time tiles 
representing the intersection, and accepts some subset of requests that do not conflict in any of the 
space-time tiles. Reservations offer more possibilities in intersection control than traffic signals 
because individual vehicle movements are directly controlled.  
  
We define a policy for reservations to be a function that determines which vehicle requests to 
accept. Despite the large number of possibilities for control policies, optimizing reservations is a  
little-studied question. Reservations have been mostly studied with the first-come-first-serve 
(FCFS) policy. Fajardo et al. (3) and Li et al. (4) found that FCFS reservations reduced delays 
beyond optimized signals. However, in some situations FCFS will perform worse than signals (5). 
Reservations can mimic traffic signal phases (6), so reservations can always perform as least as 
well as signals. Other studied control policies are prioritizing emergency vehicles (8) and 
intersection auctions (8, 9, 32) but those do not optimize for efficiency either.  
  
Traffic signal timings are often coordinated with signals at nearby intersections to reduce delays 
for through traffic. Although a coordinated policy for reservations to maximize throughput would 
likely result in substantial improvements in intersection capacity and delay compared with traffic 
signals, finding such an optimal policy is quite difficult. In fact, an optimal decentralized 
throughput policy has not yet been developed. A decentralized policy can be implemented at the 
level of individual intersections, and is therefore less complex and more computationally efficient 
than system policies that act on multiple intersections. This paper studies decentralized pressure-
based policies to improve throughput for individual intersections. A pressure-based policy is a 
policy that is responsive to congestion in the form of queue lengths or high intersection delay.  
  
We study two pressure-based policies for reservations. The backpressure policy for packet routing 
in communications networks of Tassiulas & Ephremides (11) and extensions (12, 13) have been 
proven to be throughput optimal for the entire network. Although communications networks are 
similar to traffic networks, there are significant differences that make applying backpressure to 
reservations difficult. One major difference is user equilibrium (UE) route choice, in which 
vehicles choose routes to minimize their own travel time. Backpressure policies assume system-
determined route choice in their proofs of optimality. To maximize capacity under UE route 
choice, Smith (16, 23) proposed the ܲ0 policy which responds to intersection delay. However, ܲ0 
was not designed for reservations or mesoscopic simulation-based models. Therefore, the purpose 
of this paper is to investigate the pressure-based policies of backpressure and ܲ0 for reservations 
in dynamic traffic assignment (DTA).  
  
The contributions of this paper are as follows: we show how the backpressure algorithm designed 
for telecommunications networks can be applied to traffic networks. However, we also show that 
UE route choice can prevent stabilizing the network. Therefore, we also adapt the ܲ0 policy 
because of UE route choice behavior. Then, we compare both backpressure and ܲ0 on city 
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networks using DTA. Results indicate that both improve significantly over FCFS, although the 
backpressure also had lower delays than ܲ0.  
  
The remainder of this paper is organized as follows: We review previous work on the backpressure 
and ܲ0 policies. Then, we define the traffic network model and queue dynamics, and present the 
DTA model of reservations. Afterwards, we adapt backpressure and ܲ0 to CTM, and study the 
stability. Finally, we present results on city networks and our conclusions.  

Chapter 2.  Literature Review  
This section first discusses the backpressure policy for communications networks. Then, we review 
the ܲ0 policy for maximizing intersection throughput with UE route choice.  

2.1 Backpressure policy  

The backpressure policy originates from studies of multihop communication networks. Such 
networks typically involve packets traveling from some origin node to some destination node with 
unspecified routing. The seminal paper of Tassiulas & Ephremides (11) is concerned with 
developing a policy that is stable for the largest possible region of demands. A stable policy is a 
policy in which customer queues at each node remain bounded. Using a queueing model, Tassiulas 
& Ephremides (11) proposed a maximum throughput policy based on queue pressure – the 
difference between upstream and downstream queues. They proved that choosing the combination 
of packets that maximized the relieved pressure at each intersection resulted in maximum stability. 
Route choice was determined by the system at each node based on downstream queue lengths.   
  
As the work of Tassiulas & Ephremides (11) is focused on communication routing, the 
assumptions and modeling are not standard to traffic literature. First, they modeled links as point 
queues without a free flow travel time. This is because in electronic communications, the 
transmission speed is typically fast (possibly the speed of light) relative to node processing speeds. 
Therefore, their packets are modeled as traversing a link in one time step. This may be applied to 
traffic by reversing the nodes and links: vehicles take relatively little time to traverse an 
intersection compared with the typical link travel time, and intersection controls determine 
intersection access. However, in traffic networks, queues require physical space. Later extensions 
to finite-buffer queues (12, 13) required a minimum buffer size, which cannot be guaranteed for 
arbitrary roads. As demonstrated by Daganzo (17), queue spillback with UE route choice can create 
significant congestion issues. Furthermore, traffic queues place first-in-first-out (FIFO) restrictions 
on vehicle movement, whereas in communication networks the order of service may be arbitrary. 
Finally, Tassiulas & Ephremides (11) adaptively determine route choice in response to queue 
lengths, whereas vehicles typically choose routes individually, resulting in UE behavior. Although 
tolling can encourage a system-optimal route choice, the route choices specified by backpressure 
could change every time step, and current tolling models have not considered changing route 
choice at such high frequencies.  
  
Nevertheless, several papers have applied the backpressure policy to traffic intersections. Zhang 
et al. (18) proposed a pressure-based algorithm for intersection control that determined the 
probability of a driver choosing a specific turning movement based on the difference in the 
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upstream and downstream link queue lengths. This is challenging to resolve with UE routing, but 
Zhang et al. (18) modeled adaptive route choice on a hyperpath, similar to some stochastic UE 
models. Gregoire et al. (19) applied the pressure idea more conventionally with respect to route 
choice by using the difference between upstream and downstream queue lengths to choose which 
signal phase to activate. Wongpiromsarn et al. (20) also included lack of route control in their 
adaptation of the pressure-based algorithm to signal control, and provided an analytical treatment 
similar to that of Tassiulas & Ephremides (11). Under the assumption of infinite queue capacities, 
they were able to show that their pressure-based policy maximized throughput. However, practical 
limitations such as link length require careful choice of the pressure function to avoid queue 
spillback. Therefore, Xiao et al. (21) proposed a pressure-releasing policy that accounts for finite 
queue capacities. Nonetheless, to more canonically apply the pressure-based routing they assumed 
that each turning movement has a separate queue, which is often not realistic.  
  
A major limitation on signal control is the clearance intervals necessary to separate phases for 
human drivers. Some demand scenarios could result in frequent phase switching as the pressure 
relieved by one phase makes another phase have relatively higher pressure, and it does not appear 
that previous work on using backpressure policies to activate signal phases included lost time 
penalties in their models. Frequent phase switching for signalized intersections would result in 
considerable time lost to clearance intervals. Therefore, we apply the backpressure policy to 
reservation-based control, which does not require clearance intervals and has much greater 
flexibility in vehicle movements.  

  ૙ traffic signal policyࡼ 2.2

In contrast to the communication network pressure-based approach, the ܲ0 signal control policy 
by Smith (16) is designed for traffic intersection control with UE route choice. Smith (22) 
demonstrated that Webster's signal policy could significantly reduce network capacity due to UE 
route choice, and Smith (23) further derived properties about signal policies that resulted in a 
consistent equilibrium. For instance, Webster's policy and a delay-minimizing policy induce route 
choice counter to the objectives of the signal policy. This motivated the ܲ0 policy of Smith (16), 
which was also derived from traffic assignment principles later discussed by Smith & Ghali (24). 
The problem ܲ0 addresses is how to allocate green time to each signal phase. ܲ0 uses the principle 
that low pressure phases receive no green time to avoid encouraging vehicles to switch to low 
capacity routes. As specified by Smith & Ghali (24), the pressure on a phase is the product of 
saturation flow and link travel delay. This favors links with two properties:  

1. Links with high saturation flow have a greater ability to service demand. Providing more 
green time to high saturation flow links will encourage drivers to choose links that can 
better handle the demand.  

2. Links with a high delay (due to unsatisfied flow) have a longer queue of demand waiting 
to be serviced by the intersection.  

 
Whereas ܲ0 is capacity maximizing, follow-up work by Smith & Van Vuren (25) studied policies 
that are gradient, monotone, and/or capacity maximizing with respect to the BPR cost function. 
Smith & Ghali (24) also provided a method of modeling ܲ0 signal timing as a static traffic 
assignment problem. Meneguzzer (26) provided a review of papers considering signal timing and 
UE together. Liu & Smith (27) extended this work to a day-to-day bottleneck model and 
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demonstrate that if the delay formula is non-decreasing and the ܲ0 policy is used for the signal 
control, then flow swapping among pairs will achieve equilibrium. Overall, in contrast to the work 
on backpressure, the work on the ܲ0 signal policy is much more inclusive of UE route 2 choice 
effects, and we therefore consider ܲ0 for reservations.  

Chapter 3.  Traffic Network  
This section describes the mesoscopic simulation model used to study the pressure-based policies. 
Although the model has been developed in previous work, a review is beneficial for framing the 
traffic network as a communications network for backpressure policy, and to provide context for 
some parts of the backpressure and ܲ0 policy algorithms. We model link flows through CTM (14, 
15), which is a Godunov approximation (28) of the kinematic wave theory of traffic flow (29, 30).   
 
Consider a traffic network ࣡ = (ࣨ, ࣛ, ࣰ) with nodes ࣨ, links ࣛ, and time-specific demand ࣰ. 
All demand enters and exits from a centroid; let ࣴ ⊆ ࣨdenote the set of centroids. We consider 
discrete flow, referred to as vehicles. Each vehicle ݒ ∈ ࣰ  has a specific origin ݎ ∈ ࣴ  and destination ݏ ∈ ࣴ and chooses a path from ݎ to ݏ before departing. Links are divided into two types: centroid 
connectors and ordinary links. Ordinary links connect two intersections (nodes in ࣨ/ࣴ with flows 
defined by CTM. Centroid connectors connect an intersection to a zone.  
  
Each link is divided into cells via CTM. Cells for link ܽ ∈ ࣛ have length ܽݑf Δݐ, where ܽݑf is the 
free flow speed of link ܽ and Δݐ is the simulation time step. Therefore, vehicles can traverse at 
most one cell per time step. Let  and Γ݅+ be the incoming and outgoing cells for ݅, respectively. 
Each cell is a first-in-first-out (FIFO) queue of vehicles. Although the hydrodynamic theory 
defines flow for continuous space and time, CTM approximates the hydrodynamic theory by 
constraining flow between cells. As Δ0 → ݐ, the solution to CTM approaches the solution to the 
hydrodynamic theory. CTM is commonly used for large-scale or practical applications when 
solving the hydrodynamic theory exactly is not tractable.  

3.1 Cell flow dynamics  

Our CTM formulation differs somewhat from that of Daganzo (14, 15) due to the need to track 
individual vehicles. Let (ݐ)݅ݔ be the set of specific vehicles, which will be necessary for defining 
which vehicles move at each time step. Let ܵ݅(ݐ) ⊆ (ݐ)݅ݔ be the sending flow – the set of vehicles 
in cell ݅ at time ݐ that would leave ݅ if there were no downstream constraints. Let ܴ݅(ݐ) ∈ ℝ+ be the 
receiving flow of cell ݅ at time ݐ – the number of vehicles that would enter if connected to a source 

of infinite demand. Let  indicate whether vehicle (ݐ)݅ݔ ∋ ݒ moves from cell ݅ to cell ݆ at time  moves from ݅ to ݆ at ݒ .ݐ will not move from ݅ to ݆ unless ݆ ∈ ݒ݌, which 
is important for intersection dynamics. Flow between ݅ and ݆ is further constrained: ݒ cannot leave ݅ at ݐ unless (ݐ)݅ܵ ∋ ݒ. Also, the total flow into ݆ cannot exceed ܴ݆(ݐ). Formally,   

 
 
for all cells ݆. Also,  
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  ݅ܳ ≥ |(ݐ)݅ܵ|
 
where ܳ݅ is the capacity of cell ݅, and  
   

  
    

where ݆ݑf is the free flow speed, ݆ݓ is the congested wave speed, and ݆ܭ is the maximum occupancy 
of cell ݆.  
  
Vehicle movement is also constrained by the FIFO behavior of cell queues. Vehicles cannot exit 
if blocked by a vehicle in front. Finally, flow between links may be constrained by intersection 
conflicts. Let (ݐ)݆݅ܡ denote a vector of vehicle movements for vehicles in ܵ ܻ Let .(ݐ)݅  denote ((ݐ)ܠ)݊
the set of feasible vehicle movements across node ݊ ∈ ࣨ at ݐ when cell occupancies are given by 
the vector ((ݐ)ܠ)ܻ݊ .(ݐ)ܠ is constrained by sending flow, receiving flow, path constraints, 
intersection conflicts, and FIFO behavior.  
   
Each (ݐ)ܻ݊ ∋ (ݐ)݆݅ܡ is an action that may be taken for moving flow. Let (ݐ)܁ be a vector of 
sending flows and ((ݐ)ܠ)܇ be a vector of feasible movements across all nodes at time ݐ. A policy ߨ determines which vehicles are moved when the sending flow is (ݐ)܁.  

 
The state of this system evolves according to conservation of flow:  
   

  
   
where ࣰ݆(ݐ) ⊆ ࣰ is the set of vehicles departing from cell ݆ at time ݐ.  

   
Flow between two cells on a link (as opposed to flow across an intersection) is clearly defined by 
the CTM (14, 15) in accordance with the kinematic wave theory. Recall that vehicles on each cell 
are stored in a FIFO queue. CTM defines the quantity of flow, and a corresponding number of 
vehicles from the FIFO queue are moved. Therefore, for cells ݅, ݆ on the same link, |ܻ݆݅(ݐ)| = 1. 
Flow between two cells across an intersection may have more possibilities due to the intersection 
conflicts.  

3.2 Reservation-based intersection control  

A major challenge in modeling and optimizing reservations is the high computational requirements 
of simulating the tile grid at each intersection. Previous microsimulation studies of multiple 
intersections were limited in size (31) or made major simplifications that reduced reservation 
efficiency (10, 32). Zhu & Ukkusuri (33) proposed simplifying the tiles into conflict points 
between turning movements for DTA modeling. However, the number of conflict points scales 
with the square of the number of turning movements. Therefore, Levin & Boyles (34) proposed 
aggregating tiles into capacity-constrained conflict regions to reduce the computational burden, 
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and demonstrated that it was tractable for DTA. Levin et al. (35) developed an integer program 
and polynomial-time heuristic for the conflict region model, which we use for our pressure-based 
policies.  

  
Levin et al. (35) developed the following integer program for determining which reservations 
requests to accept for a single intersection ݊  ∈ ࣨ  and time step ݐ. We use it in both the backpressure 
and ܲ0 algorithms. Let Γ݊− and  be the sets of incoming and outgoing cells to ݊, and let ݒߛ−,݊ 
and  be the incoming and outgoing cells for vehicle ݒ at ݊. To simplify the notation, let 

 denote whether ݒ moves through ݊ at ݐ. Also, let ࣝ݊ be the set of conflict 
regions for ݊, and let  indicate whether ݒ uses ܿ ∈ ࣝ݊. (ݐ)ܢ is the objective function, which is a 
vector of weights for moving individual vehicles. (ݐ)ܢ will be determined by the pressure-based 
policies. The integer program is  

  
     max  (ݐ)ܡ ⋅ (ݐ)ܢ                  

            ∀ܿ ∈ ࣝ݊    

    (ݐ)݊ܵ ∋ ݒ∀            

           
  (2)  (ݐ)݊ܵ ∋ ݒ∀            

      
where  
  

  
  

for any  is set of vehicles ahead of ݒ (based on FIFO order) on ݒߛ−,݊at time ݐ ℓ݅ 
is the number of lanes on cell ݅, and ܯ is a large positive constant.   
  
Because this integer program (1) is NP-hard, we use the greedy heuristic proposed by Levin et al.  
(35). Each vehicle is given an efficiency  defined as follows:  

  

                 (2)  
  

At each time step, the algorithm creates a list of vehicles able to enter the intersection ࣱ, 
consisting only of vehicles at the front of their lane. The algorithm iterates through ࣱ in order of 
greatest efficiency until it finds a vehicle ݒ that can feasibly move. ݒ's reservation is granted, 
resulting in , and the vehicle behind ݒ is added to ࣱ. The algorithm terminates when ࣱ 
is empty or no vehicles in ࣱ can move.  
  
The purpose of the greedy heuristic is to efficiently find a solution to the integer program (1). This 
integer program is used in the solution of both the backpressure and ܲ 0 policies, and therefore must 
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be solved every time step. Levin et al. (35) showed that the greedy heuristic can find effective 
solutions and is tractable for solving DTA on city networks.  

Chapter 4.  Backpressure Policy for Reservations  
In this section, we adapt the backpressure policy (11) for the traffic network. Due to bounded 
queues and FIFO behavior, we cannot prove that this is a maximum throughput behavior. In fact, 
we demonstrate that UE route choice behavior can result in unbounded queues for stable demand. 
Nevertheless, results on a city network show significant improvement over the FCFS policy.  

4.1 Traffic network as constrained queueing system  

A major difference between communications networks and traffic networks is that in traffic 
networks, congestion creates regions of high-density, slower-moving traffic. Communications 
networks are essentially point queues, and the size of the queue does not affect link travel times. 
After a review of the communications network of Tassiulas & Ephremides (11), we show that our 
CTM traffic network is similar to the constrained queueing systems that they studied. Each cell is 
a point queue, and shockwaves in traffic flow are modeled through cell transition flows. This 
model results in many queues – including multiple queues per link. Still, flows between cells 
within a link are simple to handle because the feasible region is determined exactly by cell 
transition flows. Of course, this relies on the CTM approximation to the kinematic wave theory; 
the kinematic wave theory itself is continuous and can be solved in continuous space (36). 
Nevertheless, CTM is commonly used in large-scale DTA models, so using CTM to adapt the 
backpressure policy is reasonable.  
  
Although this cell model is equivalent to a communications network, there are several issues that 
prevent proving that backpressure maximizes throughput. First, queue sizes are bounded due to 
network geometry, and previous work on communications networks has required large queue sizes 
to ensure stability (12, 13). While arbitrary queue sizes are possible in computer storage, road 
lengths are not so arbitrary. Second, communications networks do not have FIFO behavior. Due 
to different destinations, FIFO behavior at intersections limits the feasible region of the control 
policy. For instance, a left-turning vehicle could block a right-turning vehicle behind it, even 
though the right-turning vehicle could otherwise move through the intersection. Finally, 
communications network policies assume route choice is controlled by the system. However, in 
traffic networks, vehicles typically choose routes individually, and UE route choice can reduce 
efficiency. Levin et al. (5) created an example showing that route choice can result in arbitrarily 
long queues and prevent stability with any local pressure-based policy, which we review here.  

  

 
FIGURE 1 Network for unbounded queueing due to UE route choice.  

  
Figure 1 shows the network for the counterexample. Links 1, 2, and 4 have capacity of 2400vph, 
whereas link 3 has capacity of 1200vph. Demand from A to D is 1800vph. Clearly, if all vehicles 

A   B C D   1  4   3
2
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take path [1,2,4], then queue lengths will be 0 for all links. However, suppose that link 2 is slightly 
longer than link 1, so the free flow travel time of link 2 is 10s longer. If C is controlled by a traffic 
signal with fixed phase lengths, the signal can be timed so that the expected travel time on 3 is 
higher than the expected travel time on 2 due to signal delay. Then, all demand on path [1,2,4] is 
the UE.  
  
Suppose instead that C is controlled by a pressure-based policy. The controller allocates vehicle 
movement or green times in response to pressure (queue lengths) on links 2 and 3. Then, all 
demand taking path [1,3,4] is the UE. For vehicles reaching B, neither links 2 or 3 are uncongested 
due to the pressure-based policy at C, so all vehicles at B prefer link 3 because of its lower free 
flow travel time. However, link 3 has lower capacity than demand, so the queue on link 1 grows 
arbitrarily long.  
  
Based on the above counterexample, it is not possible to prove that any decentralized pressure-
based policy, including backpressure, is throughput optimal for a network under UE route choice. 
Any local pressure-based policy applied at C will allow movement by all vehicles on links 2 and 3, since they cannot become congested in this example. It is true that previous work on applying 
backpressure (18-21) were able to prove that backpressure was stable, if demand allowed it. 
However, they assumed that turning proportions remained fixed, which is not true under UE 
behavior (22). This counterexample uses UE route choice to create a situation in which the network 
can be stabilized, but will not be stabilized under a pressure-based policy.  

4.2 Maximum throughput heuristic  

We adapt the backpressure policy of Tassiulas & Ephremides (11) to the CTM network. We cannot 
prove that backpressure maximizes throughput, but the insights of backpressure control are used 
for this heuristic. Backpressure is an algorithm executed each time step that determines intersection 
vehicle movements. As with the algorithm of Tassiulas & Ephremides (11), backpressure consists 
of three stages. Stage 1 selects the weights on each vehicle based on cell queues. Stage 2 decides 
the combination of vehicles to move given the vehicle weights. Note that the decision of which 
vehicles to move can be separated by intersection: a system-wide controller is not necessary. 
However, computing the vehicle weights in Stage 1 requires communication of queue lengths 
between neighboring intersections.  
 
The key insight is in the calculation of the pressure terms  for each vehicle ݒ at node ݊ at 
time ݐ. For communications networks, this is simply the queue size because queues are unbounded. 
A key requirement of Tassiulas & Ephremides's proof (11) is that  can become arbitrarily 

large as the queue grows. However, cell queues have are bounded, so setting  
does not provide sufficient pressure. Instead, we define a congestion region of connected congested 
cells, and sum the occupancies of all cells in the congestion region.  

4.2.1 Stage 1 

This stage determines the vehicle weights (ݐ)ݒ݊ܦ for each vehicle ݒ. Since the queue at cell ݆ could 
be bounded, to achieve unbounded pressures we must consider cells behind ݆. Even link queue 
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lengths might be too small to provide sufficient pressure (12, 13). Define ݆ܥ to be the set of 
congested cells leading up to ݆. ݆ܥ is defined recursively as   
 

  
 

This can be explained intuitively as follows: ݆ܥ is the set of congested cells containing queued 
vehicles that might use cell ݆. We define cell ݆ to be congested if ݆݊(ݐ) > ݆ܳ, which means that not 
all vehicles in ݆ can exit in a single time step. The queue at ݆ is always considered, so ݆ ∈ ݆ܥ. If ݆ is 
not congested, ݆ܥ = {݆}. If ݆ is congested, then ݆ܥ is the set of contiguous congested cells leading 
up to and including ݆. If the network is sufficiently congested, then ݆ܥ will include one or more 
centroid cells, which have unbounded queues. The pressure from the queues from the centroid 
cell(s) will result in arbitrarily large pressure, which is one of the key features of the backpressure 
policy.  
 

Let  be the proportion of vehicles in cell ݅ that have cell ݆ in their path. Clearly, , 
and for any cell ݅ preceding ݆ on the same link, 1 = (ݐ)݆݅݌ also. When ݅ is on a different link than ݆, 1 > (ݐ)݆݅݌ is possible.  

 
Define the queue length for cell ݆ at time ݐ to be  
 ݆ܥ∋݅  (ݐ)݆݅݌|(ݐ)݅ݔ|∑ = (ݐ)݆ܮ 
 as (ݐ)ݒ݊ܦ waiting to use cell ݆. Now define ݆ܥ is the number of vehicles in the congested region ݆ܮ 
follows:  

  
 and the maximum ݊,+ݒߛ is the product of the difference in queue lengths for cells  and (ݐ)ݒ݊ܦ 
flow rate between  and . This product is taken directly from Tassiulas & Ephremides (11). 
Note that when is a sink cell, ܳݒߛ+,݊ = ∞ and 0 = (ݐ)݊,+ݒߛܮ by definition. The difference is used 
because moving vehicles onto a congested cell (if possible) is intuitively less efficient than moving 
vehicles onto uncongested cells.  does not depend on properties of ݒ besides the path of ݒ. 
The vehicle index is retained for vector notation; let ۲(ݐ) be the vector of vehicle specific weights.  

4.2.2 Stage 2  

Find a vehicle movement vector (ݐ)∗ܡ satisfying the following:  
 (ݐ)܇∋(ݐ)ܡ  {(ݐ)ܡ ⋅ (ݐ)۲} arg max ∋ (ݐ)∗ܡ 
 
Note that this can be solved for individual intersections because the choice of flows at a single 
intersection does not affect the feasible flows for other intersections at the same time step.  
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4.2.3 Stage 3  

If , then vehicle ݒ is moved from . Otherwise, ݒ remains in ݒߛ−,݊. This 
flow is feasible because (ݐ)܇ ∋ (ݐ)∗ܡ.  

4.2.4 Remarks  

Note that Stages 1 and 2 only need to be computed for incoming and outgoing cells at nodes. For 
flow between two cells on the same link, there is only one feasible solution as defined by the CTM 
transition flows (14, 15).   
  
Stage 2 requires the solution of an integer program, which is NP-hard. For reservation-based 
intersection control, vehicles may be allowed to move individually, which could result in a large 
feasible region. |ܻ݊(ݐ)| is ܱ(2|ܵ݊(ݐ)|). For tractability, we use the polynomial-time greedy heuristic 
of Levin et al. (35) to find a decent solution. In calculating the efficiency, we set  (ݐ)۲ = (ݐ)ܢ in equation (2).  

4.3 A note on practical implementation  

One potential concern is how to implement the backpressure policy in practice. CTM is itself an 
approximation to the hydrodynamic theory, and defining the policy in terms of cell queues may 
not seem completely realistic. However, as Δ0 → ݐ, the predictions of CTM approach those of the 
hydrodynamic theory. Therefore, the calculation of the intersection queue length from the queues 
in contiguous congested cells becomes the length of the queues on intersection approaches. The 
size of these queues may be determined through loop detectors.  
  
A second issue with implementation is calculating the total length of queues across queue 
spillback. In the backpressure, we assumed that we know vehicle routes, and whether they will use 
any given cell. In practice, vehicle routes may not be known, even for autonomous vehicles. 
Queues specific to a link could be estimated by turning fractions when queue spillback is present. 
However, these turning fractions may change over time due to UE route choice.  
  
Our traffic network model also assumes that centroid queues will grow arbitrarily large if demand 
is sufficiently high. Realistically, travelers will probably choose to depart later if queues are backed 
up to their origin. However, when demand is modeled as elastic, boundedness of queue length is 
not an effective measure of stability.  

Chapter 5.  ܲ0 Policy for Reservations  
The backpressure policy is from a model where routing is determined by the system (11) and the 
counterexample to stability shows that UE route choice could prevent stability. In the worst case, 
policies relying on local information could result in unbounded queues despite a stabilizable 
demand. Therefore, we also adapt the ܲ0 policy (16, 23) to reservations for comparison. ܲ0 was 
designed to maximize network capacity under UE route choice. However, proving that ܲ0 
maximizes capacity in the simulation-based CTM is difficult because link travel times are not 
continuous with respect to inflow or demand. ܲ0 also uses a congestion-increased pressure term, 
but the pressure is based on link travel times rather than queue lengths.  
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ܲ0 was designed for a model using link performance functions for delay. Specifically, ܲ0 assumes 
that the travel time ߬ܽ for link ܽ ∈ ࣛ is of the form  
  

  
 
where  is the free flow travel time, ݂ܽ(⋅) is the delay function, ߱ܽ is the demand for the link, ܳ̂ܽ  
is saturation flow, and ܽߤ is the proportion of red time. For phase ݇ at node ݊ ∈ ࣨ, let ࣛ݊݇ ⊆ ࣛ be 
the set of links given green time. For a link travel time of this form, the resulting 5 pressure  for 
phase ݇ is then  ݇݊ߩ = ∑ ܳ̂ܽ ܽ̂ܳܽߤ + ܽ߱)݂ܽ )  ݅∈ࣛ݊݇ 
 
Applying this to DTA requires evaluating the function ݂ܽ(⋅), which is determined through 
simulation in DTA. However, previous travel times are observable. Let ߬ܽ̅ (ݐ) be the expected 
travel time for link ܽ at time ݐ, based on estimates from vehicles that traversed ܽ. Then we create 
an estimate of ݂ܽ(⋅) at (ݐ) ݂̅ܽ ,ݐ, by taking  
  fܽ߬ − (ݐ) ̅ܽ߬ = (ݐ) ݂̅ܽ 
 
We also replace saturation flow  with capacity ܳܽ. In practice, these may not be equivalent since 
many static models assume that link flows can exceed the saturation flow at the cost of high delay. 
However, capacity is the flow constraint parameter for DTA.  
 
We also adapt this to reservation-based intersection control, meaning that pressure is specified for 
specific vehicles rather than phases. Since the pressure is based on the link travel time, let ܽݒ−,݊ ∈ ࣛ be the incoming link for vehicle ݒ at node ݊. (This differs from the incoming cell because the 
pressure for ܲ 0 is based on the link travel time, not the cell travel time). This results in the following 
pressure  for vehicle ݒ at node ݊ at time ݐ using the ܲ0 policy:  
 

  
 favors links with high capacity and/or with a high delay (travel time beyond the free flow (ݐ)ݒ݊ܲ 
time). Delay should greatly increase as the queue length increases.   
 
Define the vector of pressures to be (ݐ)۾ for all waiting vehicles. The objective is then to find  
 (ݐ)܇∋(ݐ)ܡ  {(ݐ)ܡ ⋅ (ݐ)۾} arg max ∋ (ݐ)∗ܡ  
  
As with the backpressure policy, this can be determined locally for individual intersections. We 
also approximately solve this integer program (1) using the greedy heuristic of Levin et al. (35). 
To calculate the efficiencies, we set (ݐ)۾ = (ݐ)ܢ in equation (2).  
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Chapter 6.  Experimental Results  
We compared four types of intersection controls – traffic signals and reservations with FCFS, 
backpressure, and ܲ0 – on the downtown Austin network, shown in Figure 2. The network has 171 
zones, 546 intersections, and 1247 links. Data was from the Capital Area Metropolitan Planning 
Organization. The dynamic network loading used the cell transmission model with a 6s time step, 
and the conflict region model for reservation-based intersection control (34, 35). Traffic signals 
were modeled by simulating phases and changing the capacity of turning movements proportional 
to green time at each time step. Flow was discretized and individual vehicles were tracked. We 
used the method of successive averages (37) to solve DTA to a 1% gap for all scenarios. To 
demonstrate robustness, we considered demand levels from 70% to 100% at 10% increments.   
  
Table 1 compares the travel times for all four intersection control policies at different demand 
levels. Reservations using all policies (including FCFS) consistently had much lower total system 
travel time (TSTT) than traffic signals. Although Levin et al. (5) found several situations in which 
FCFS reservations would increase delay compared with signals, there are also scenarios (such as 
symmetric intersections) in which FCFS is likely to reduce delay (3, 4). Both backpressure and ܲ0 
made significant improvements over FCFS as well. This is not surprising because FCFS does not 
prioritize links with higher demand, which could cause queues to build up and spillback on such 
links. Backpressure also consistently performed slightly better than ܲ0. This is probably because 
backpressure is more responsive to current traffic conditions than ܲ 0. ܲ 0 was developed for a model 
with link performance functions, in which travel times could be easily calculated. However, in 
simulation-based DTA, travel times are determined by simulation. Therefore, high travel times 
were only observed after vehicles had exited the link, which delayed the effect of queuing on the ܲ0 prioritization. In contrast, backpressure prioritized based on queue lengths at the current time. 
Therefore, backpressure responded faster and more dynamically to congestion and queueing.  
  

  
FIGURE 2 Downtown Austin network  
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TABLE 1 Intersection control results on downtown Austin network 
 Demand  Intersection policy  TSTT (hr)  Avg. TT per vehicle (min)  
 43965  Traffic signals  8552.2  11.67  
 (70%)  FCFS  4276.6  5.84  

 
Results for signals and FCFS differ slightly from previously reported numbers for the same network because the 
discrete vehicle trips were recreated from a dynamic trip table, resulting in some stochasticity in the demand.  

Chapter 7.  Conclusions  
This paper adapted two pressure-based policies for reservation-based intersection control in 
dynamic traffic assignment. The backpressure policy is based on the work of Tassiulas & 
Ephremides (11) in communications networks. There are several significant differences between 
communications networks and traffic networks, including congestion propagation, finite buffers 
(where the buffer size is determined by the physical length of the road), and user equilibrium route 
choice. We found that a cell transmission model of the traffic network is similar to a 
communications network, modeling each cell as a link. To allow pressure to grow arbitrarily, we 
summed the cell occupancies with a congested region of cells leading up to the intersection. 
However, we also found that user equilibrium route choice could prevent any local pressure-based 
policy from stabilizing the network. (Previous work on pressure-based signal timings assumed 
fixed turning proportions in their proofs of stability.) Therefore, the backpressure policy cannot be 
proven to stabilize a traffic network, and was used as a heuristic.  
  
The ܲ0 policy was developed by Smith (16, 23) for the user equilibrium route choice issue, and we 
therefore studied ܲ0 as well. However, ܲ0 was designed for signal timing with static traffic models 
with link performance functions, so the same counterexample to backpressure applies to ܲ0 for 
reservations. Nevertheless, results on the downtown Austin network showed that backpressure and ܲ0 performed significantly better than the first-come-first-served policy, which has been used in 
most previous work on reservations (e.g. 1-4). Therefore, although backpressure and ܲ0 are not 
throughput-optimal, they provide a better alternative to existing policies.  
  
As vehicle automation becomes increasingly available to consumers, optimizing autonomous 
vehicle technologies becomes more important. Future work on reservation-based intersection 

  Backpressure  3974.0  5.42  
  ܲ 0   4003.1  5.46  

50290   Traffic signals  10771.5  12.9  
(80%)   FCFS   5550.4  6.62  

  Backpressure  4819.7  5.74  
  ܲ 0   4897.6  5.84  

56592   Traffic signals  13776.0  14.61  
(90%)   FCFS   7116.0  7.55  

  Backpressure  6016.1  6.38  
  ܲ 0   6285.6  6.66  

62847   Traffic signals  16971.6  16.20  
(100%)   FCFS   9334.2  8.91  

  Backpressure  7815.5  7.46  
  ܲ 0   8397.1  8.01  
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control might investigate whether non-local policies can be proven to be throughput optimal under 
user equilibrium route choice. In addition, it is possible that backpressure might be throughput 
optimal under system optimal route choice, although the finite buffer is still an issue to overcome. 
It is clear from this paper and others (5) that reservation control policies require further study 
before they are ready to replace traffic signals. 
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