

INTEGRATING AUTONOMOUS CARS & TRUCKS INTO TXDOT'S STATEWIDE ANALYSIS MODEL

TxDOT Research Project 5-7081

Dr. Kara Kockelman, Maithreyi Vellimana, Priyanka Paithankar, & Kentaro Mori

Training Webinar: Nov 29, 2023

Motivation

- AVs will make driving easier & thus increase TX & US VMT –
 everything else constant.
- AVs may reduce crashes per VMT by 80%, double access for elderly & impaired, & perhaps help lower emissions.
- ATrucks lower operator burden, thereby extending trucks'
 operating hours & distances, making them more competitive.
- This work extends TxDOT's SAModel to include private AVs, shared AVs (SAVs), & ATrucks. Results include 6 distinct AV scenarios in Year 2040 model.

SAM Details

- SAM = multi-modal travel model maintained by TxDOT & developed by Alliance Transportation group.
- Latest version: SAM-V4, operating on **TransCAD 8.0** 64-bit platform.
- Analysis conducted on typical weekday using SAM's weekday module focusing on travel predictions & scenarios for the year 2040.
- Texas network has 228,562 links & 6,860 TAZs.

SAM Structure

- 4-step Passenger + Freight models for Trip Generation &p Distribution, Mode Choice, & Traffic Assignment
- Passenger "car" + Freight truck trips are combined in assignment step to load onto (& congest) Texas highway network.
- 4 Times of Day: 6-8 am
 (AM) 8 am-2 pm (MD), 2-6 pm (PM) & 6 pm-6 am (NT)

Source: Alliance Transportation Group, 2019

Passenger Model Trips

- Short-distance person-trips: < 50 miles (one way)
- Long-distance (LD): > 50 miles one-way & can occur over multiple days.
- Non-freight truck: Short-distance, local-serving delivery trips not captured in SAM's freight model. These vehicles deliver goods & services < 50 miles each way.

Freight Model

- SAM-V4's freight models were developed using 2015 TranSearch data.
- Incremental logit model pivots across 5
 Mode choices for each of 15
 commodities, based on variations in
 travel time, cost, new modes, etc.
- 348 Destination TAZs = 254 TX counties
 + 49 US states + DC + 32 Mexican states +
 13 Canadian provinces.
- 348 freight TAZs are disaggregated into 6860-passenger model TAZs for roadway assignment.

	Commodity Name
1	Agriculture
2	Metallic Ores & Coal Mining
3	Crude Petroleum/Natural Gas
4	Nonmetallic Minerals
5	Food
6	Consumer Manufacturing
7	Non-Durable Manufacturing
8	Lumber
9	Durable Manufacturing
10	Paper
11	Chemicals
12	Petroleum
13	Clay, Concrete, Glass
14	Primary Metal
15	Secondary & Misc. Mixed

Passenger LD Mode Choices

DA = drive alone, SR = shared ride (2 or 3+ persons), ICR = inter-city rail, HSR = high-speed rail (not used here)

Source: Alliance Transportation Group, 2019

2019 Validation Year = Base Case

- Year-2019 scenario with default SAM-V4 inputs & parameters run as Base Case.
- Congestion (v/c ratios over 1.25) observed mostly in major cities, like DFW, Houston, & San Antonio - followed by El Paso, Corpus Christi, & southern border (near McAllen & Harlingen).

Code Improvements for AVs

- SAM was updated to predict travel impacts of AVs,
 SAVs, & ATrucks in Texas.
- Solo & shared-ride options (SAM's mode choice model modified for passenger trips over 50 miles (1way) including AVs & SAVs nested under drive-alone DA, SR2, & SR3+ persons).
- Full feedback loops from Traffic Assignment back to Trip Distribution excluded due to lengthy run times (>24 hr per scenario).

Year 2040 Scenarios

- First is No AVs with default TxDOT SAM settings
- Second allows AV, SAV, & ATruck modes.
- Year 2040 No AV Scenario results are the benchmark for 6 AV/ATruck scenarios.

AV Integration in Passenger Model

- SAM's nested logit model adapted for trips > 50 miles, including HVs, AVs, & SAVs under DA & SR modes.
- DA, SR2, & SR3+ show convey travel-party size (1 to 3+ persons).
- New model parameters pivot off base parameters using estimates from Huang et al.'s (2020) Texas megaregion study.

Running Modified TransCAD Steps

- Step 1: Save the unzipped "SAM AV Module" in your local directory.
- Step 2: Navigate to Tools > GIS Developer's Kit > Setup
 Add-ins to display the Setup Add-ins dialog box.

AV Integration in Freight Model

- Nest for ATrucks vs HTruck added to Truck branch.
- Nesting coefficient of 0.7 assumed to reflect relative substitutability of both truck types.
- ATruck operating costs assumed to be 1.5 x HTruck (\$/mile).
- ATruck travel time skim set at 0.42 x HTruck, reflecting the continuous operation ability of automated trucks.

Running Modified TransCAD Steps (2)

- Step 3: Create a new add-in by selecting the Add button on the right-hand side.
- Step 4: Provide an appropriate name in the Description information box.

Note: For UI
Database, select the
"sam_av" interface
located within the
"SAM AV Module"
folder,

Running Modified TransCAD Steps (3)

- Step 5: Click the OK button to complete the add-in setup process.
- Step 6: Under Tools > GIS Developer's Kit > Add-ins, select the newly created add-in.
- Step 7: Selecting Model Interface under it will load the interface.

Running Modified TransCAD Steps (4)

Ensure to **copy the "2040 Base AV"** folder within the "SAM AV Module" folder to the **TxDOT>SAM-V4** folder. Once the interface is open:

 Click on "Setup" & duplicate (click Copy) one of the scenarios to create a new scenario. Provide appropriate name & update folder path by double-clicking on folder tab.

 To run the model, navigate outside the setup options, select the desired scenario (e.g., "2040 Base AV"), & initiate the model run.

Edited Scripts for AV Integration

• Edited input files & scripts: trip generation, skim creation, mode choice, traffic assignment, & report generation.

_0SAMV4.lst	2 TripGen 1 - Household SubModel	6 Assignment 1 - PrepareAutoTripTables
0 Interface 1 - Menu	2 TripGen 2 - Calculate Ps and As	6 Assignment 2 - CombineTripMatricesByTimePeriod
0 Interface 2 - Model	2 TripGen 3 - Freight	6 Assignment 3 - HighwayAssignment
0 Interface 3 - Interpolation	3 Skim 1 - HighwayPassengerSkim	6 Assignment 4 - PrepareTransitTripTables
0 Interface 4 - ExternalExtraction	3 Skim 2 - TransitSkim	6 Assignment 5 - TransitAssignment
0 Interface 5 - DHV	4 TripDist 1 - Destination Choice	6 Assignment 6 - FreightRailAssignment
0 Interface 6 - TransearchAssignment	4 TripDist 2 - Gravity Model	7 Feedback
1 Initialization 1 - CreateScenarioNetwork	4 TripDist 3 - Freight	8 Report 01 - DemoGenDistMode
1 Initialization 2 - CreateRouteSystem	5 ModeChoice 1 - TransitAccessMatrix	8 Report 02 - VMTCount
1 Initialization 3 - CreateScenarioTAZ	5 ModeChoice 2 - ShortDistanceTrips	8 Report 03 - Freight
1 Initialization 4 - UpdateNetAttributes	5 ModeChoice 3 - TransitSkimPostProcess	8 Report 04 - Transit
1 Initialization 5 - FreightRailCap	5 ModeChoice 4 - LongDistanceTrips	8 Report 05 - Performance
1 Initialization 6 - CheckNetAttributes	5 ModeChoice 5 - Freight	MacroUtility

TransCAD Module Update

Production rates for all person-trip purposes increased by 15%. Ex: New'ProdRate_HBW' column = (Old ProdRate_HBW x 1.15).

'ProdRates' bin file located under INPUT > PASSENGER > TRIP_GEN

		Jupinouschold	size Prodna	ite_HBW_ola Pla	oanate_HBW Prodi	tate_HBU_old Pr	odkate_HBU Prod	Hate_HBS_old Pr	oakate_HB5 Proa	Hate_NHB_old Pr	odRate_NHB Prodl	Rate_ILDB_old Pro	dRate_ILDB Prodi	-Rate_ILDU_old Pro	dKate_ILDU Prod	Rate_ILLB_old Pr
1	1	1	1	0.25800	0.29670	1.35300	1.55595	0.00000	0.00000	1.00300	1.15345	0.01000	0.01150	0.00800	0.00920	0.00025
1	1	1	2	0.87300	1.00395	3.15500	3.62825	0.08600	0.09890	1.60200	1.84230	0.01500	0.01725	0.02100	0.02415	0.00045
1	1	1	3	1.24600	1.43290	4.99300	5.74195	0.75100	0.86365	1.88000	2.16200	0.02300	0.02645	0.05200	0.05980	0.00078
1	1	1	4	1.34200	1.54330	7.13600	8.20640	1.80100	2.07115	3.01600	3.46840	0.02700	0.03105	0.43300	0.49795	0.00138
1	1	2	1	0.66500	0.76475	1.79500	2.06425	0.00000	0.00000	1.30800	1.50420	0.01400	0.01610	0.04200	0.04830	0.00160
1	1	2	2	1.19300	1.37195	3.47300	3.99395	0.08600	0.09890	2.01700	2.31955	0.01600	0.01840	0.05500	0.06325	0.00131
1	1	2	3	1.92400	2.21260	5.08400	5.84660	1.15800	1.33170	4.01000	4.61150	0.05300	0.06095	0.05500	0.06325	0.00131
1	1	2	4	2.16300	2.48745	7.73400	8.89410	3.54200	4.07330	4.12600	4.74490	0.10000	0.11500	0.12000	0.13800	0.00388
1	1	3	1	1.12400	1.29260	1.64100	1.88715	0.00000	0.00000	1.66200	1.91130	0.04900	0.05635	0.05100	0.05865	0.00270
1	1	3	2	1.48100	1.70315	2.95600	3.39940	0.05900	0.06785	4.01000	4.61150	0.08200	0.09430	0.16600	0.19090	0.00440
1	1	3	3	2.57500	2.96125	4.62100	5.31415	2.12400	2.44260	4.22700	4.86105	0.08700	0.10005	0.27300	0.31395	0.00554
1	1	3	4	2.64800	3.04520	7.64700	8.79405	2.90200	3.33730	5.61200	6.45380	0.20100	0.23115	0.29400	0.33810	0.00654
1	1	4	1	1.51200	1.73880	1.63500	1.88025	0.00000	0.00000	1.67000	1.92050	0.10500	0.12075	0.14900	0.17135	0.00463
1	1	4	2	1.79800	2.06770	2.99400	3.44310	0.05300	0.06095	3.21800	3.70070	0.12000	0.13800	0.27500	0.31625	0.00768
1	1	4	3	2.92700	3.36605	4.30700	4.95305	2.12400	2.44260	4.45000	5.11750	0.12600	0.14490	0.32100	0.36915	0.01123
1	1	4	4	2.94300	3.38445	9.41200	10.82380	2.90200	3.33730	7.55200	8.68480	0.29400	0.33810	0.39400	0.45310	0.01904
2	2	1	1	0.42700	0.49105	1.97800	2.27470	0.00000	0.00000	1.45300	1.67095	0.00200	0.00230	0.01300	0.01495	0.00025
2	2	1	2	0.87500	1.00625	4.34400	4.99560	0.23900	0.27485	1.60200	1.84230	0.00200	0.00230	0.01800	0.02070	0.00045
2	2	1	3	1.28300	1.47545	4.48600	5.15890	0.67900	0.78085	1.88000	2.16200	0.00400	0.00460	0.02700	0.03105	0.00078
2	2	1	4	2.08700	2.40005	6.41800	7.38070	3.51800	4.04570	3.62700	4.17105	0.00800	0.00920	0.02800	0.03220	0.00138
2	2	2	1	0.58200	0.66930	1.75900	2.02285	0.00000	0.00000	1.69800	1.95270	0.01300	0.01495	0.04200	0.04830	0.00160
2	2	2	2	1.27200	1.46280	3.90400	4.48960	0.08700	0.10005	2.01700	2.31955	0.01400	0.01610	0.04800	0.05520	0.00131
2	2	2	3	1.79200	2.06080	4.41400	5.07610	0.91300	1.04995	2.42400	2.78760	0.01200	0.01380	0.08700	0.10005	0.00131
2	2	2	4	2.54200	2.92330	8.37800	9.63470	2.93800	3.37870	4.34200	4.99330	0.01900	0.02185	0.15100	0.17365	0.00388
2	2	3	1	0.88300	1.01545	1.73300	1.99295	0.00000	0.00000	1.19000	1.36850	0.02600	0.02990	0.05100	0.05865	0.00270
2	2	3	2	1.32100	1.51915	3.07100	3.53165	0.03200	0.03680	2.48300	2.85545	0.03800	0.04370	0.06700	0.07705	0.00440
2	2	3	3	2.07800	2.38970	5.28900	6.08235	0.51800	0.59570	2.82200	3.24530	0.07200	0.08280	0.12100	0.13915	0.00554
2	2	3	4	2.30300	2.64845	7.44100	8.55715	2.72400	3.13260	4.71300	5.41995	0.11100	0.12765	0.22100	0.25415	0.00654
2	2	4	1	1.17000	1.34550	1.70900	1.96535	0.00000	0.00000	1.55000	1.78250	0.03200	0.03680	0.05100	0.05865	0.00463
2	2	4	2	1.79800	2.06770	3.19300	3.67195	0.03200	0.03680	2.42100	2.78415	0.06800	0.07820	0.10800	0.12420	0.00768
2	2	4	3	1.91500	2.20225	6.22300	7.15645	0.81200	0.93380	4.45000	5.11750	0.08200	0.09430	0.15800	0.18170	0.01123
2	2	4	4	2.76400	3.17860	7.55100	8.68365	3.19000	3.66850	5.46100	6.28015	0.17200	0.19780	0.19200	0.22080	0.01904
3	3	1	1	0.32000	0.36800	1.57400	1.81010	0.00000	0.00000	0.99900	1.14885	0.00200	0.00230	0.01300	0.01495	0.00025
3	3	1	2	0.84900	0.97635	2.76100	3.17515	0.29000	0.33350	1.59500	1.83425	0.01400	0.01610	0.01800	0.02070	0.00045
3	3	1	3	1.52200	1.75030	4.05700	4.66555	1.26400	1.45360	2.83600	3.26140	0.02300	0.02645	0.02700	0.03105	0.00078
3	3	1	4	1.77400	2.04010	6.17400	7.10010	2.95900	3.40285	3.23300	3.71795	0.03400	0.03910	0.05300	0.06095	0.00138
3		2	1	0.64400	0.74060	1.57600	1.81240	0.00000	0.00000	1.35900	1.56285	0.00700	0.00805	0.01500	0.01725	0.00160
3		2	2	1.21100	1.39265	3.08600	3.54890	0.16400	0.18860	2.01100	2.31265	0.02600	0.02990	0.05100	0.05865	0.00131
3	3	2	3	1.68700	1.94005	4.73400	5.44410	1.17000	1.34550	3.14700	3.61905	0.03300	0.03795	0.05500	0.06325	0.00131
3	=	2	4	1.91300	2.19995	6.30400	7.24960	3.11600	3.58340	3.89200	4.47580	0.04100	0.04715	0.08200	0.09430	0.00388
3	3	3	1	0.86300	0.99245	1.64800	1.89520	0.00000	0.00000	1.62600	1.86990	0.02400	0.02760	0.04000	0.04600	0.00270

Short-trip Mode Splits (<50 mi)

			N	o Trai	nsit A	vailab	le Are	a			
Income	Trip		DA			SR2+			SR3+		041
Level	Purpose	HV	AV	SAV	HV	AV	SAV	HV	AV	SAV	Other
	HBW	0.316	0.316	0.158	0.064	0.064	0.032	0.02	0.02	0.01	-
4	HBO	0.184	0.184	0.092	0.116	0.116	0.058	0.1	0.1	0.05	-
1	NHB	0.184	0.184	0.092	0.12	0.12	0.06	0.096	0.096	0.048	-
	HBS	0.048	0.048	0.024	0.092	0.092	0.046	0.144	0.144	0.072	0.29
	HBW	0.332	0.332	0.166	0.048	0.048	0.024	0.024	0.024	0.012	-
2	HBO	0.18	0.18	0.09	0.124	0.124	0.062	0.096	0.096	0.048	-
	NHB	0.196	0.196	0.098	0.112	0.112	0.056	0.092	0.092	0.046	-
	HBS	0.056	0.056	0.028	0.128	0.128	0.064	0.136	0.136	0.068	0.21
	HBW	0.344	0.344	0.172	0.044	0.044	0.022	0.012	0.012	0.006	-
3	HBO	0.192	0.192	0.096	0.128	0.128	0.064	0.084	0.084	0.042	-
3	NHB	0.216	0.216	0.108	0.108	0.108	0.054	0.076	0.076	0.038	-
	HBS	0.048	0.048	0.024	0.128	0.128	0.064	0.144	0.144	0.072	0.2
	HBW	0.356	0.356	0.178	0.036	0.036	0.018	0.004	0.004	0.002	-
4	HBO	0.176	0.176	0.088	0.12	0.12	0.06	0.104	0.104	0.052	-
4	NHB	0.212	0.212	0.106	0.104	0.104	0.052	0.084	0.084	0.042	-
	HBS	0.064	0.064	0.032	0.124	0.124	0.062	0.156	0.156	0.078	0.14
All	NHBV	0.14	0.14	0.07	0.116	0.116	0.058	0.144	0.144	0.072	-

Short-distance Mode Splits

- Mode shares are based on transit availability for different trip purposes & income groups.
 - **No Transit Available Areas: 40%** for HV, **40%** for AVs, & **20%** for SAVs for DA, SR2, & SR3+.
 - Transit Available Area (bus & urban rail): 40% for HVs, 40% for AVs, & 20% for SAVs for DA, SR2, & SR3+ plus 50% shift in mode shares from "Other" modes to SAVs.
- Edited file: "ModeShareSplit" bin file (in INPUT>PASSENGER>MODE)
 & "5 ModeChoice 2 ShortDistanceTrips" GISDK script.

Mode Choice for LD Pax Trips

Edited file: "AutoOperatCost", "MC_Parameters" bin files (in INPUT>PASSENGER>MODE) & '3 Skim 1 - HighwayPassengerSkim', "5 Mode Choice 4 – LongDistanceTrips" GISDK scripts.

Mod	le	Business (ILDB & ILLB)	Non-Business (ILDO & ILLO)
Operating	HV	0.346	0.17
Operating Cost (\$/mile)	AV	0.6	0.6
Cost (9/11me)	SAV	1	1

	_		VOT	(Dollar/H	lour)			
		ILDB		ILDO		LLB		ILLO
	HV	AV/SAV	HV	AV/SAV	HV	AV/SAV	HV	AV/SAV
Income I	7.2	5.76	5.4	4.32	7.2	5.76	5.4	4.32
Income II	21.6	17.28	16.2	12.96	21.6	17.28	16.2	12.96
Income III	43.3	34.64	32.4	25.92	43.3	34.64	32.4	25.92
Income IV	72.3	57.84	54.1	43.28	72.3	57.84	54	43.2

	М	ode	ILDB	ILDO	ILLB	ILLO
	DA (drive alone)	Human-Driven Vehicles (HVs) = Base				
	SR2 (shared car ride, 2 persons)	Privately owned AVs			-0.05	-0.05
	SR3+ (3+ persons in car)	Shared AVs (SAVs)			-0.2	-0.2
ا ب		HV	-1.5	-0.1	-3	-0.8
ASC		AV	-1.55	-0.15	-3.05	-0.85
	S	AV	-1.7	-0.3	-3.2	-1
		HV	-2	-0.2	-4.2	-2
		AV	-2.05	-0.25	-4.25	-2.05
	S	AV	-2.2	-0.4	-4.4	-2.2
	High-Spee	d Rail (HSR)	-1.1	-2.5	2.5	-0.4
	Intercity	Rail (ICR)	-5	-3.8	-5	-2.5
		Air	-1.1	-2.5	2.5	-0.4
	In-vehi	cle Time	-0.02	-0.01	-0.02	-0.01
e nt	Out-of-ve	ehicle Time	-0.02	-0.01	-0.02	-0.01
abl		Income I	-0.1664	-0.1109	-0.1664	-0.1109
Variable Coefficient	Travel Cost	Income II	-0.0555	-0.037	-0.0555	-0.037
_ 2	i i avei cost	Income III	-0.0277	-0.0185	-0.0277	-0.0185
		Income IV	-0.0166	-0.0111	-0.0166	-0.0111

Freight Mode Choice

 Edited files: "5 ModeChoice 5 - Freight" (modified incremental logit) & "BaseShare" bin file (Modified matrix cores for ATrucks)

under INPUT > FREIGHT > MODE

Matrix cores with base share (15 commodity groups) for ATrucks were duplicated from Truck matrix cores to maintain consistency in code after inclusion of new ATruck mode.

Freight Mode Choice (2)

- Utilities of HTrucks & ATrucks for every commodity group & zone pair were computed using explanatory variables & modal constant terms (same as base model).
- Utility of truck mode was determined by calculating logsum of utilities of HTrucks & ATrucks.
- New truck share were calculated (same as base model) using base mode shares.
- For truck mode, change in utility was determined by comparing newly
 calculated utility of truck mode (logsum of HTrucks & ATrucks) with previous
 utility of truck mode, before introduction of new mode (& nest).
- The shares of ATrucks & HTrucks (for every zone pair) were then derived from the total number of truck trips.

Traffic Assignment

- Scripts associated to trip assignment ('6 Assignment 1 –
 PrepareAutoTripTables', '6 Assignment 2 –
 CombineTripMatricesByTimePeriod', '6 Assignment 4 –
 PrepareTransitTripTables') & report generation ('8 Report 01 –
 DemoGenDistMode', '8 Report 03 Freight').
- 'AutoOccupancy_SAV' bin file similar to 'AutoOccupany' file in the INPUT > ASSIGNMENT folder was created where rates were reduced by 20% to account for empty VMT due to SAVs.

1 TripPurpose	inc1	inc2	inc3	inc4	■ TripPurpose	inc1	inc2	inc3	inc4
HBW	3.10	3.35	3.61	3.50	HBW	2.48	2.68	2.89	2.80
HBO	3.57	3.41	3.40	3.44	HBO	2.86	2.73	2.72	2.75
HBS	3.39	3.48	3.41	3.38	HBS	2.71	2.78	2.73	2.70
NHB	3.52	3.39	3.50	3.48	NHB	2.82	2.71	2.80	2.78
NHBV	3.47	3.47	3.47	3.47	NHBV	2.78	2.78	2.78	2.78
ILDB	3.77	3.16	4.79	3.03	ILDB	3.02	2.53	3.83	2.42
ILDO	3.28	3.92	4.58	4.12	ILDO	2.62	3.14	3.66	3.30
ILLB	3.77	3.16	4.79	3.03	ILLB	3.02	2.53	3.83	2.42
ILLO	3.28	3.92	4.58	4.12	ILLO	2.62	3.14	3.66	3.30

Study Texas

Comparing Base & AV Scenarios

- In year 2040, SAM assumes Texas has 40.2M persons living in 13.5M households & working in 19.1M jobs.
- We assume trip production rises 15% when AVs are readily available for all trip types (Huang et al. 2020).
- We assume \$0.6/mile for personal AVs, \$1/mi for SAVs,
 & ATrucks are 50% more expensive than HTruck.

AV Scenario Effects

% Change in person-trips after AVs added

HTruck vs
ATruck Splits
by
Commodity
Type

AVs Add VMT & Delay

%Rise in VMT across Region Types for the 4 Times of Day

% Rise in Network Delays by Region Type across 4
Times of Day

AV Scenarios

We pivot off Initial AV scenario to simulate 6 more AV scenarios.

- New Scenario 1 = Lower Cost AVs: SAVs cost 40% less than initial scenario, & ATrucks cost 20% more than HTrucks.
- 2 = Higher Cost AVs: AV oper costs rise 33% (to \$0.80/mi) & SAV costs unchanged at \$1/mi.
- 3 = Lower Value of Travel Time: AV VOTTs fall 50% across all income groups.
- 4 = No HVs Allowed: no HV or HTruck options in passenger & freight mode choice models.
- 5 = Private AVs Too Pricey: Only SAVs & HVs available.
- 6 = Empty AV Driving: To better reflect empty AV travel, we use 25% higher pax-car equivalence for AVs. (Same as assuming 20% lower AV occupancies.)

Results

- Adding SAVs & AVs => 10% increase in "drive alone"
 & many shared SAVs for business purposes (50-400 miles).
- ATrucks win 68% of goods transport in the AV scenario while, Htrucks lost 38% of their share.
- First AV scenario: 40% less expensive SAV operating costs resulted in 11% overall AV use, & 41% increase in freeway VMT during afternoon in medium urban areas.
- Scenario 2: Expensive ATrucks (twice as costly as HTrucks)
 lowered their use (by tons moved) by 37% & 32% for
 paper & lumber freight movement.

More Results

-30%

-25%

-22%

-22%

-18%

-15%

Percentage Decrease

-20%

- Scenario 3: 50% reduction in VOTT for AVs increased AV usage for drive-alone business trips by 50%.
- Air travel remained dominant for long-long trips (>400 mi), at 4% of business trips & 52% of non-business trips.
- But major declines in airport
 boardings across Texas: -18% at
 DFW Airport, -17% at Houston's
 IAH, & -15% at Austin's ABIA.

-10%

Dallas/Fort Worth Intl

-5%

Results (3)

- Scenario 4: Absence of HVs => +300% jump in daily delay hours & 150% increase in VHT in large urban regions, +100% & 75% increases in freeway VMT in non-urban areas during AM & PM periods.
- Delay hours rose
 300% in large urban
 regions, 148% in
 medium & 126% in
 small urban areas.

Results (4)

- Personal AVs no longer available: led to 6% increase in SAV usage for business trips & 3% for non-business trips within 50–400-mile
- Shift back towards HVs was seen with 64% rise in solo
 driving, 27% in shared rides with 2 passengers & 30% in
 shared ride with more than 2 riders.
- Decreasing AV AVO by 20% resulted in a tenfold increase in delay hours across various road types.

SAM V4's Limitations

- Fixed Splits for Short-Distance Trips ignore half of TX traffic: 64% of Texas PMT is < 50 mi each way => unrealistic predictions across scenarios
- Missing Bus Mode in LD Model limits predictions & and realism across scenarios.
- Documentation Needed to allow SAM users to customize results for basic info. (Ex: we all need VMT & VHT by mode & commodity).
- Major Memory for many modes + times of day + traveler classes in Network Assignment (approx. 100-200 GB per scenario) => Need powerful computers + abundant storage. (Note: TransCAD limits concurrent execution to two models.)
- Extremely Long Runtimes exceeding 20 hours in all scenarios =>
 Unable to run outer feedback loops across multiple scenarios due to time constraints affects equilibrium & thus predictions.

TxDOT STATEWIDE TDM PREDICTIONS vs OBSERVED TRAVEL DATA

- How well do SAM's predictions compare to observable data?
- Can we use observed data to introduce demand variations in SAM equations?

- RITIS' Nextgen Trip Analytics offers trip tables from vehicle geolocation (INRIX) data.
- Analyzed heavy and light-duty vehicle data spring + fall months in 2021 (Feb-April & Sept-Nov).

RITIS' Nextgen Trip Analytics

- Nextgen Trip Analytics V4 delivers "probe vehicle" trip tables from 2 INRIX data sets:
 - Location-based services (LBS) data from cell-phone apps
 - Trips end when vehicle doesn't move 200+ m in 10 minutes.
 - Connected vehicles (CV) data from in-vehicle GPS systems
 - Trip starts/ends are determined by engine on/off.
- Heavy-duty vehicles (HDVs) are mostly LBS & medium- & light-duty (MDVs & LDVs) are mostly CV.

RITIS HDV Trip Counts & VMT

- Obtained 35 weekdays & 15 weekend days.
- Weekend data average just 56.1% & 70.6% of weekday trip counts & VMT.
- More trips at start of weekdays, but higher VMT (longer trips) mid-week.
- Counts & VMT fall slightly over 6 months.
- Unbelievable spikes in mid-October & November (so removed from later analyses).

RITIS vs SAM Estimates for HDVs

- RITIS has more intrazonal trips than SAM (20% vs 9.5%).
 - Removed from analysis
- RITIS trip tables have more < 20-mile trips on weekdays.
- RITIS weekday trips & VMT are 16.6%b & 14.8% of SAM values.

RITIS' average trip distance is shorter on weekdays but longer on

weekends.

50						RITIS (Week SAM (Weekd RITIS (Week SAM (Weeke	lay) end)
	П						
Percent of total trips & &	ш	ı					
Per 20	Ь						
10	1	Ma	data				
0	0	50 OD shor	100 rtest-path distar	150 nce (miles) (bi	200 n width = 20 mile	250 es)	300

HDV Trips	HDV Trips per Day	HDV VMT per day	Avg HDV Trip Distance
RITIS weekday avg	57,254 trips/d	2.45 M mi/d	42.7 mi
SAM weekday	344,350	16.9 M	49.0
RITIS weekend avg	29,930	1.56 M	52.1
SAM weekend	309,994	12.0 M	38.8

RITIS vs SAM Trip Production + Attraction for HDVs

- Average weekday HDV trip production + attraction (>97% corr. between prod. & attac. in both RITS and SAM) for each county.
- RITIS missing trips starting/ending in western TX.

Average RITIS Weekday HDV Production + Attraction VS

SAM Predictions

RITIS vs SAM HDV Flows

- Weekday HDV flows mapped between TxDOT's 25 districts (approx 10 counties each).
- RITIS captures SAM's high freight flows from Laredo to Dallas & Fort Worth districts, through San Antonio, Austin, & Waco districts, but missing flows to & from Houston district.

Average RITIS Weekday HDV Flows

VS

SAM Predictions

RITIS vs SAM Trip Count Comparison

- Bivariate OLS for Y = SAM prediction vs X = avg RITIS counts at both TAZ & county levels, after excluding all OD pairs (points) with 0,0 HDV flows.
- Very poor fit for 44M TAZ pairs (R2 = 0.001) vs. R2 = 0.639 at 254-County level (n=63k), but too affected by 14 high-flow outliers (see below).
- R2 = 0.302 with slope of 4.59 (closer to expected 6) after removing the 8.

RITIS Average Weekday HDV Counts vs SAM between all 254 Counties before & after removing 14 high-count (>500 HDV trips/d) outliers (n = 63,440 -> 63,426)

RITIS LDV Trip Counts & VMT

- Obtained 35 weekdays &
 15 weekend days.
- Fridays have the most trips, but Saturdays have the highest avg VMT.
- Counts & VMT rise slightly over 6 months.
- Same spikes in mid-October & November as HDVs.

RITIS vs SAM Estimates for LDVs

- RITIS has more intrazonal trips than SAM (26% vs 15%).
 - Removed from analysis
- RITIS trip tables have more < 5-mile trips.
- RITIS weekday trips & VMT are 14.8% of SAM values.
- RITIS' average weekend trip distance is 2 mi shorter.

LDV Trips	LDV Trips per Day	LDV VMT per day	Avg LDV Trip Distance
RITIS weekday avg	8.1 M trips/d	73.4 M mi/d	9.1 mi
SAM weekday	54.7 M	496 M	9.1
RITIS weekend avg	7.6 M	79.7 M	10.4
SAM weekend	41.5 M	522 M	12.6

RITIS vs SAM Trip Count Comparison

- Bivariate **OLS for Y = SAM prediction vs X = avg RITIS** counts at both TAZ & county levels, after excluding all OD pairs (points) with 0,0 HDV flows.
- Good fit for 44M TAZ pairs (R2 = 0.614), unlike HDVs, but too slope is too shallow.
- At the county level, R2 = 0.948 with slope of 8.66 (closer to expected 7).

RITIS Average Weekday LDV Counts vs SAM between 6860 TAZs and 254 Counties

Permanent Traffic Recorders (PTR)

From 2013 thru 2022, TxDOT maintained 398 PTR stations (100 to 300 active at one time, depending on year), which records traffic counts using loop detectors.

Permanent Traffic Recorders (PTR)

The number of active stations varies depending on day and year.

Number of stations with data per day

Permanent Traffic Recorders (PTR)

- Plotted the total daily counts for the 178 stations more than 90% active during 2019-2022, imputing missing values.
 - Years after 2019 are offset to align the day of the week.
- Counts align very closely from year to year with Fridays & Sundays being the peaks & valleys of the weekly fluctuations.
- Winter traffic counts were highly affected by severe weather.

PTR Regression Results (Day of Week Variables)

- Daily total traffic counts at each station were standardized to z-scores using the mean & std dev at the station. (n=885,274)
- Explanatory variables include days of the week, month, year, & holiday peaks. (R²=0.362)

 On average, traffic volumes fluctuate by 1.63 std dev over the course of a week, with Sundays having the least counts & Fridays

having the most.

Variable	Estimate
Intercept	-0.945
Monday/Tuesday	0
Wednesday	0.088
Thursday	0.281
Friday	0.852
Saturday	-0.202
Sunday	-0.778

PTR Regression Result (Month Variables)

- January has the least counts, while June & July has the most.
- The largest one-month increase (0.344 std. dev.) occurs from February to March.
- The largest one month decrease (0.438 std. dev.) occurs from December to January.

Variable	Estimate
January	0
February	0.149
March	0.494
April	0.314
May	0.450
June	0.570

Variable	Estimate
July	0.529
August	0.465
September	0.402
October	0.498
November	0.484
December	0.438

PTR Regression Result (Year Variables)

- Traffic volumes have been steadily rising since 2013, with the 2022 counts being 0.89 std. dev. above 2013 counts on avg.
- Even the pandemic counts of 2020 where higher than that of 2014.
- Traffic volumes fully recovered and surpassed 2019 levels in 2022.

Variable	Estimate
Year 2013	0
Year 2014	0.142
Year 2015	0.339
Year 2016	0.506
Year 2017	0.612

Variable	Estimate
Year 2018	0.737
Year 2019	0.850
Year 2020	0.210
Year 2021	0.801
Year 2022	0.891

PTR Regression Result (Holiday Variables)

- Total decrease of >1 std. dev. for Fourth of July, Thanksgiving Day,
 Friday after Thanksgiving, & Christmas.
- Total increase of >1 std. dev. for Wednesday before Thanksgiving.

Variable	Estimate
Federal holiday	-0.307
Friday before Memorial Day	0.445
Memorial Day	-0.301
July 3	0.307
Fourth of July	-0.736
Friday before Labor Day	0.518
Labor Day	-0.099
Tuesday before Thanksgiving	0.669
Wednesday before Thanksgiving	1.275

Variable	Estimate
Thanksgiving Day	-1.121
Friday after Thanksgiving	-1.199
Saturday after Thanksgiving	-0.102
Sunday after Thanksgiving	0.890
December 23	0.364
Christmas Eve	-0.720
Christmas	-1.691
December 26	-0.216

Thank you for your support!

Questions, Comments, & Suggestions?

kkockelm@mail.utexas.edu

512-471-0210