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are coming to the US and Texas. This project updated TxDOT’s Statewide Analysis Model (SAM) to 
integrate AVs, SAVs, and ATrucks as added transportation modes. For passenger trips over 50 
miles (one way), the nested logit model was modified to include household-owned AVs and fleet-
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business travel (from 121 miles to 142 miles) and 13% for non-business travel purposes (135 miles to 
151 miles). AVs + SAVs will have a combined mode share of 14% for "drive alone" LD trips, leading 
to a 17 percentage-point decline in the human-driven mode share for trips over 50 miles. AVs + SAVs 
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was then modified to develop 6 more AV scenarios, each examining the effects of different factors on 
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SAVs, and ATrucks, then more affordable SAVs, a reduced VOTT for AV use, unavailability of 
human-driven vehicles, pricey personal AVs, and increased empty AV driving. This study also 
provides a thorough evaluation of different “probe vehicle” (RITIS/INRIX) and loop-detector (PTR) 
datasets to compare to SAM’s 2019 base-case flow predictions, to illuminate how demand for travel 
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“typical day” prediction. However, heavy-duty vehicle (HDV) tables were not as consistent, and 
medium-duty vehicle (MDV) trip tables were not comparable at all. Furthermore, INRIX/RITIS data 
offer unexplained spikes in demand across all vehicle types and times of day for certain days of the 
2021 year, so one must use those with care. The permanent traffic recorder (PTR) dataset demonstrated 
a regular demand pattern over multiple years, presenting a valuable opportunity to introduce demand 
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Executive Summary 

The emergence of privately owned and shared autonomous vehicles (AVs and SAVs), and 
automated trucks (ATrucks) is expected to reduce crashes, increase access for the elderly and 
impaired, and reduce emissions. AVs and ATrucks are expected to increase vehicle-miles traveled 
(VMT) by making driving “easier” and improving travel access, while also lowering private 
vehicle ownership (Gurumurthy and Kockelman, 2018). ATrucks extend operating hours and 
distances per day by reducing operator burden and enabling rest en route. This project work makes 
significant additions to TxDOT’s Statewide Analysis Model (SAM) via its mode choice options 
in order to predict the travel and traffic impacts of AVs, SAVs, and ATrucks on passenger and 
freight flows across Texas and beyond. Total statewide trip production in 2040 is predicted to 
rise 15% if AVs, SAVs, and ATrucks are available for all trip type, particularly among those with 
mobility constraints (Huang et al. 2020). For passenger trips over 50 miles (one way), SAM’s logit 
model was modified to include AV, and SAV. The modes are nested under the drive-alone and 
shared-ride options (i.e., DA, SR2, and SR3+ persons).  

Two distinct SAM-V4 model specifications were used to compare travel predictions in the year 
2040. The first specification, referred to as “No AV/ATruck Scenario”, has TxDOT’s default SAM 
settings without any modifications. The second model allows for AV, SAV, and ATruck 
modes. The “No AV/ATruck Scenario” model serves as a benchmark against which six 
different AV/ATruck scenarios are evaluated, allowing for a comprehensive analysis of the 
changes and benefits associated with the introduction of these advanced transportation 
technologies. For both models, a typical weekday was selected as the basis for the analysis, using 
SAM's weekday module. Feedback loops iterating from Traffic Assignment’s equilibrium travel 
times back to Trip Distribution’s destination choices were not included in these model runs due 
to extremely long (24+ hours per scenario) run times.  

The value of travel time (VOTT) for AVs and SAVs was assumed to be 20% less than traditional 
human-driven vehicles (HVs), with operating costs of $0.60 and $1.00 per mile, respectively. The 
operating costs for ATrucks were assumed to be 1.5 times those of HTrucks to account for 
automation equipment cost and additional training expenses for humans supervising the truck) 
with a 25% reduction in VOTT for all AV scenarios (except for scenario 3 which assumes 50% 
reduction in VOTT). No rest time is assumed for ATrucks (as opposed to the 13 hours of rest 
accounted for HTrucks after every 11 hours of driving). The ATruck travel time skim was assumed 
to be 0.42 times that of HTruck to reflect HTruckility of automated trucks to drive 24 hours a day. 
Previously, the time coefficient for 11 out of 15 commodities in SAM-V4 was 0. Therefore, time 
and cost coefficients were re-estimated for these commodities by adjusting betas of cost & time. 
For trips that are less than 50 miles, the mode split stays the same. However, for trips that are 
longer than 50 miles, the nested logit model was modified to include AVs, SAVs and ATrucks. 

Results show that, for trips that are longer than 50 miles, AVs + SAVs (personal) captured a 14% 
of market share, accompanied by a 17 percentage-point decline in human-driven "drive alone" 
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mode. This shift can be attributed to a 25% reduction in Vehicle VOTT, allowing individuals to 
use their time more effectively. Personal AV driving with two or more occupants had share of 7% 
and 11%, respectively. SAV driving captured mode share of 3% and 4% when used with three or 
more occupants, while human-driven shared rides saw fall of 5% and 10% points with same party 
size. The ability to use time effectively in AVs has encouraged travelers to opt for more distant 
locations, resulting in an 18% rise in average trip length (from 121 miles to 142 miles) for 
infrequent long-distance business trips and a 13% rise (135 miles to 151 miles) for non-business 
trips exceeding 50 miles but less than 400 miles.  

Average trip length rose across all vehicle categories, with light, medium, and heavy-duty trucks 
experienced rise of 35%, 32%, and 28%, in their mean trip distance travelled. This trend indicates 
an inclination for covering greater distances, likely due to the removal of driving burdens in AV 
modes. Without travel demand management (like credit-based congestion pricing), congestion 
issues will grow, thanks to an average VMT rise of 25.6% (from 1.09 to 1.37 billion miles per 
day). Of course, about 14% of this VMT rise is due to our starting assumption that AVs enable 
15% more trip generation by passengers (for all trip purposes by all household types). The other 
11% comes from more driving, longer trips, less flying, and a shift to ATrucks.  Due to much 
higher VMT loads on the Texas network (as encoded in SAM, which is about 80% of centerline 
miles in the State of Texas), travel speeds are estimated to fall by about 35% on average (for the 
coded network). The VHT jumped by about 304%, largely thanks to passenger travel favoring the 
AM and PM peaks and mid-day, where travel speeds fell by 68%, 67%, and 40%. Speeds during 
night-time remained steady. Scenario analyses reveal that predicted mode shares of AVs, SAVs, 
and ATrucks are sensitive to cost variations.   

The integration of ATrucks into the transportation system shifts the distribution of consumer 
manufacturing goods, with ATrucks emerging as the dominant choice, occupying approximately 
43% of tons moved, while tonnage moved with HTruck fell by 39 percentage point across all 
commodities. This shift was found particularly in trips involving metallic and nonmetallic 
materials, consumer manufacturing, paper, petroleum, and food, which witness a decline of over 
40 percentage-point in trips made by Htrucks, consequently leading to a rise in the share of trips 
made by ATrucks. The study presents six distinct scenarios, each examining the effects of different 
factors on transportation choices and network characteristics. In the first scenario,  SAVs are made 
40% less expensive, ATrucks costing 20% more than HTrucks, and personal AVs remaining cost-
neutral. These changes triggered a shift towards ground travel, particularly in the drive-alone 
mode.  

Business long-distance person trips ranging from 50 to 400 miles saw a 10% rise, while non-
business trips within the same distance range have experienced a 15% rise. Conversely, air travel 
has saw a decline of 20% in business trips and 15% in non-business person trips within this 
distance bracket. On the other hand, inter-city rail’ market share fell by 15% and 13% for business 
and non-business long-distance trips, respectively.  
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The second scenario, the operational costs of personal AVs was increased by 33%, while SAV 
costs were kept unchanged. The findings suggest a that as the cost of AVs rises, whether for 
personal or shared use, there is a notable reluctance to adopt them. While the market shares of 
"drive alone" long-distance trips remain relatively stable across all trip purposes, there is a 
significant 41 percentage point decline in drive-alone trips exceeding 400 miles. This shift shows 
a preference for more cost-effective ground travel options while still meeting travel needs. 

The third scenario deals effects of further reduction in perception of travel time for AV passengers 
and their inclination towards undertaking LD trips by reducing their VOTT by 50%. These changes 
led to rise in VMT across all types of roads. Specifically, expressways, arterials, interstates, and 
other freeways experienced 23% surge in their VMT. This shift in travel behavior is mirrored in 
reduced airport boarding across various airports in Texas, driven by individuals' preference for 
AVs, primarily due to cost-savings and the more productive use of travel time. The major state 
airports such as Dallas/Fort Worth International Airport, George Bush International Airport, and 
San Antonio Airport saw declines in passenger volumes (over 5%), showing the growing 
preference for AVs. Similarly, while the decline was less pronounced (3%) at Austin-Bergstrom 
Airport, it still reflected a negative trend in passenger boarding.  

The fourth scenario introduces parameters that incentivize choosing AVs over HVs. The findings 
show that in large urban areas, where despite the availability of AVs, a considerable portion of LD 
trips (38%) still involve traditional HVs. However, the removal of HVs caused a 10% rise in 
“drive-alone” AV trips. Additionally, SAVs trips saw a rise of 10% for two occupants and a 21% 
rise for three or more occupants. The fifth scenario explores the impact of high costs associated 
with personal ownership of AVs, leading individuals to favor SAVs and shifting back to HVs. As 
a result, a preference for SAVs led to an 11% mode share for “drive alone” SAVs in case of 
business trips, and a rise from 3% to 5% for non-business trips within the 50 to 400-mile range 
compared to the base-AV scenario. Mode share of SAVs with two occupants for business trips 
covering distances between 50 and 400 miles Saw rise from 2% to 12% and a 10% in SAVs with 
three or more occupants for non-business trips covering the same distance range.  

Final scenario considers empty SAVs driving within the transportation network, included by a 
20% fall in average passenger occupancy. The findings show rise in average VMT across all road 
types: 10% during morning peak hours, 9% during evening peak hours, and 8% during afternoon 
peak hours. Local streets saw the spike of 53% in VMT during morning peak hours and 37% rise 
during evening peak hours, closely followed by collector and local street roads. As the 
consideration of empty driving is considered into the network, congestion levels rose across all 
segments, as shown by the average speed reduction observed.. The results show an average 25% 
reduction in speed on expressways, interstates, and other freeways. This research project provides 
a thorough evaluation of different datasets that the TxDOT has access to. The main focus is on 
determining the most appropriate source for verifying the results of the Statewide Analysis Model 
(SAM) travel demand model. The study assesses the effectiveness of INRIX's Traffic Message 
Channel (TMC) segments, which cover a large part of the on-system network. This evaluation 
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takes into account the extensive duties of TxDOT in managing and fixing more than 80,000 
centerline-miles of highways, which facilitate over 70% of the State's yearly vehicle-miles 
traveled.   TxDOT, which serves a population of 29 million and many visitors, can gain advantages 
from the research team's comprehensive datasets that are specifically focused on Texas. These 
datasets have been collected over many years of expertise in transportation design, planning, and 
operations.  

These datasets include multiple probe data sources, including RITIS' National Performance 
Management Research Data Set (NPMRDS), INRIX's historical and real-time speed data, and 
Replica's simulated datasets.   The vendor-neutral nature of RITIS NPMRDS allows for the 
indexing of roadway segments using Traveler Information Services Association (TISA) traffic 
message channel identification.   The study also shows the use of INRIX data to analyze speed 
distributions, revealing significant variations in real-time speeds across the major metropolitan 
regions of Texas.   In addition, it provides a visual comparison between INRIX segments and the 
routes managed by TxDOT, as well as public roadways in the Austin area, showing broad coverage 
in the region. The base 2019 SAM results were compared against several alternative data sources. 
The RITIS Nextgen Trip Analytics V4 can generate sample statewide origin-destination (OD) 
matrices using vehicle GPS data provided by INRIX. Analyses so far has focused on heavy-duty 
vehicle (HDV) data from 2021, revealing several key differences between the RITIS data and 
SAM estimates. First, although the RITIS data reveals some patterns for HDV travel over the 
course of a week, there are some unexplained variations in the total number of trips and VMT in 
the data, such as a decreasing trend over the available months and some sudden spikes (over 2x 
the normal levels).  

Additionally, the average weekday HDV trip distance in RITIS is 10 miles shorter than that in the 
SAM forecast, suggesting that RITIS is breaking up trips for driver breaks. There are also spatial 
sampling biases in RITIS with trips distributed more unevenly compared to SAM. Chiefly, it is 
missing flows to and from west Texas and the Houston area. Furthermore, ordinary least squares 
regression was used to compare the OD trip counts between RITIS and SAM. Regression at the 
TAZ level provided an extremely poor fit, and while aggregating to the county level improved the 
fit, the slope was heavily controlled by a few outliers with very high flows. In addition, regression 
was performed on permanent traffic recorder (PTR) data from 2023 through 2022 to reveal demand 
variations. The daily total traffic counts at each station were standardized to z-scores. Results 
reveal that on average, traffic volumes fluctuate by 1.63 std dev over the course of a week, with 
Sundays being the least busy and Fridays being the busiest. Results also show that January is the 
quietest month, while June and July are the busiest. Furthermore, demand variations around a few 
select holidays were studied in detail in the regression, revealing that Wednesday before 
Thanksgiving and Christmas see the largest increase and decrease, respectively, from a regular 
comparable day in the same month. 

The study also includes an algorithm developed to detect intermediary "trips" that function as quick 
breaks within longer travel chains using the National Household Travel Survey (NHTS) and its 
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TRIP data file (trippub.csv). The TRIP data file treats each trip segment as a separate journey, even 
includes brief breaks made on the way to a main destination. The algorithm uses travel coordinates, 
dwell times at destinations, and trip purposes to differentiate between intentional and accidental 
stops. Upon implementing the method on the NHTS 2016/17 sample, the number of LD trips 
undergoes a little reduction of 3.4%.  The algorithm initially relies on the coordinates and goals of 
journeys, and then takes into account the successive segments of the trips to detect changes in 
direction. It also identifies return trips and distinguishes between shifts in transportation mode and 
actual destinations. 

This 5-7081-01 Research Report (R1B) 5-7081-01 provides analysis of the integration of AVs into 
the SAM model, considering seven different AV scenarios, focusing on the Year 2040.  The study 
also investigates the process of aggregating data to compare the movement of journeys between 
origins and destinations (OD) utilizing datasets such as INRIX and RITIS. Additionally, it presents 
an analysis of long-distance trip chaining using the NHTS-2017 dataset. It includes a 
comprehensive evaluation of various datasets available to the TxDOT.  
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Chapter 1. Prediction Of AV’s Impacts on Texas 
Transportation 

SAM is a multi-modal travel model maintained by the TxDOT and developed by the Alliance 
Transportation group. The latest version is SAM-V4, which is designed to operate on TransCAD 
8.0 Build 22180 64-bit platform. It covers North America, focusing on regions in and around 
Texas. Figure 11b represents the vast network of highway, railway, and airline routes in the state, 
comprising 228,562 links and 166,039 nodes. In SAM-V4, there are 6,860 traffic analysis zones 
(TAZs) within Texas, as seen in Figure 1a. 

Figure 1. SAM-V4 TAZ and Network File 

                    a. Texas TAZs (n=6860)  b. Network of highway, railway, and airline             routes 
(n=228,562) 

1.1. Travel Demand Model Methods  
SAM-V4 comprises two components: a passenger model and a freight model, both of which 
follow a four-step model structure. The vehicle trips estimated from the passenger model and the 
freight trucks estimated from the freight model are combined in the highway assignment step and 
loaded onto the highway network. A four-step travel demand modeling process is used to model 
traffic patterns across the entire state of Texas. This includes trip generation, trip distribution, 
mode choice, and traffic assignment, as shown in Figure 2. The passenger model in SAM-V4 
uses destination choice models for distributing most short-distance trips (less than 50 miles) and 
all long-distance trips (50 miles or greater). Gravity models are applied for other short-distance 
trips such as home-based K-12 school trips and non-home-based visitor trips, as well as non-
freight truck trips. The model time-of-day step categorizes highway passenger trips and freight 



 

17 
 

truck trips into four time periods: morning (AM) peak period, midday (MD) period, afternoon 
(PM) peak period, and night (NT) period, for final assignment according to these periods. Mode 
share factors, which vary based on the transit accessibility of a TAZ, are applied for short-
distance trips. For long-distance trips, SAM-V4 uses a four-level nesting logit mode choice 
model that includes options such as auto, intercity rail, high-speed rail, and air travel. 

Figure 2. SAM-V4 Model Structure (Source: Alliance Transportation Group, 2019) 

1.1.1. Passenger Model 
The SAM-V4 passenger model comprises three types of trips, namely short-distance trips, long-
distance trips, and non-freight truck trips. Short-distance trips are trips within 50 miles; these 
include home-based work trips (HBW), home-based other trips (HBO), home-based K-12 school 
trips (HBS), non-home-based other trips (NHBO), and non-home-based visitor trips (NHBV) 
trips. Long-distance trips are trips over 50 miles one-way and can occur within Texas or between 
Texas and the Continental United States over multiple days. SAM-V4 distinguishes long-
distance trips into four types according to their purpose and distance: one, infrequent long-
distance business trips (ILDB); two, infrequent long-distance other trips (ILDO) for trips that are 
50 miles or greater and less than 400 miles; three, infrequent long long-distance business trips 
(ILLB); and four, infrequent long long-distance other trips (ILLO) for trips that are 400 miles or 
greater and are work or work-related. Non-freight truck trips are short-distance truck trips that 
are not captured by the freight model, serving local areas with purposes such as delivering goods 
and services. The SAM-V4 has a separate weekday and weekend module that analyzes and 
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predicts weekday traffic conditions (typical day of Monday through Friday during non-summer 
months) and weekend traffic conditions (Saturday during the summer months of July through 
August), respectively, for the entire state of Texas. SAM-V4 passenger model applies different 
approaches to estimate the mode split for short-distance trips and long-distance trips based on 
their distinct trip characteristics and mode alternatives. For short-distance trips, mode-share 
factors are applied. On the other hand, the SAM-V4 long-distance mode choice module adopts a 
nested logit model structure. Figure 3 shows the nested logit structure for the passenger long-
distance mode choice model. This model has four levels of nesting logit structure, with the 
highest level representing a choice between highway and transit travel. The second level includes 
a choice between drive-alone (DA) and shared-ride conditional on highway travel, and a choice 
between walk and drive access conditional on transit travel. The third level consists of a choice 
between shared-ride 2 (SR2) and shared-ride 3 or more (SR3) conditional on the choice of shared 
ride, a choice between walk egress and drive egress conditional on the choice of walk access, and 
conditional on the choice of drive access. The lowest level nest in the long-distance transit nest 
includes three transit modes: intercity rail (ICR), high-speed rail (HSR), and air.  

Figure 3. SAM-V4 Passenger Long-Distance Mode Choice Nested-Logit Structure and Nesting 
Coefficients (Source: Alliance Transportation Group, 2019) 

*DA – Drive Alone, SR – Share Ride, ICR – Intercity Rail, HSR – High Speed Rail 

Table 1 shows SAM-V4’s alternative-specific constants (ASCs) and parameters for passenger 
long-distance mode choice. These were estimated for each of the two long-distance trip purpose 
groups and for four different household income groups (dollar price in 2015): Category 1 is for 
household with incomes under $25,000 per year (dollar price in 2015, Category 2 is $25,000 to 
$49,999, Category 3 is $50,000 and $99,999, cand Category 4 is those having household 
incomes over $100,000 (SAMV4 Passenger Model, 2019). 
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Table 1. SAM-V4 Passenger Long-Distance Mode Choice Model Nesting Coefficients 

Nest Nesting Parameter 
(IV Coef) 

Highway 0.70 
Share Ride 0.50 

Transit 0.70 
Drive Access 0.65 
Walk Access 0.65 

Drive Access - Walk Access 0.60 
Drive Access - Drive Access 0.60 
Walk Access - Walk Access 0.60 
Walk Access - Drive Access 0.60 

(Source – SAM-V4 Passenger Model, 2019) 

Table 2. SAM V4 Passenger Long-Distance Mode Choice Model Parameters: ASCs + Time & Cost 
Coefficients 

 ILDB ILDO ILLB ILLO 
Drive Alone = Base Mode N/A N/A N/A N/A 

Share Ride 2 ASCs -1.5 utils -0.1 -3.0 -0.8 
Shared Ride 3+ ASCs -2.0 -0.2 -4.2 -2.0 
High Speed Rail ASCs -1.1 -2.5 2.5 -0.4 

Intercity Rail ASCs -5.0 -3.8 -5.0 -2.5 
Air ASCs -1.1 -2.5 2.5 -0.4 

IVTT Coefficient -0.02 
utils/hour -0.01 -0.02 -0.01 

OVTT Coefficient -0.02 -0.01 -0.02 -0.01 

Income 1 
VOTT ($/hr) $7.2/hr 5.4 7.2 5.4 

Travel Cost Coef. -0.1664 
utils/dollar -0.1109 -0.1664 -0.1109 

Income 2 VOTT ($/hr) $21.6/hr 16.2 21.6 16.2 
Travel Cost Coef. -0.0555 -0.0370 -0.0555 -0.0370 

Income 3 VOTT ($/hr) $43.3/hr 32.4 43.3 32.4 
Travel Cost Coef. -0.0277 -0.0185 -0.0277 -0.0185 

Income 4 VOTT ($/hr) $72.3/hr 54.1 72.3 54.1 
Travel Cost Coef. -0.0166 -0.0111 -0.0166 -0.0111 

Note: ASC: alternative specific constants, OVTT out of vehicle travel time, IVTT in vehicle travel time, 
VOTT: value of travel time 

(Source – SAM-V4 Passenger Model, 2019) 

1.1.2. Freight Model 
SAM-V4’s freight module also follows a four-step framework consisting of trip generation, trip 
distribution, mode choice, and traffic assignment. In the final stage of traffic assignment, freight 
truck trips are merged with passenger trips. SAM-V4’s freight models were developed based on 
2015 TranSearch data. SAM-V4 commodity groups were grouped into 15 different categories 
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based on 2015 TranSearch data. Table 3 shows the 15 commodity groups. The mode choice 
model for freight includes various modes like truck, carload rail, intermodal rail, water, and air, 
and it uses an incremental logit choice approach. Figure 4 shows the multi-logit structure for the 
freight mode choice model. The initial step in the incremental logit formulation involves the 
existing mode shares as a baseline and then makes adjustments to these values based on the 
variations in the explanatory variables’ characteristics. Texas 2015 TranSearch commodity flow 
data is used to estimate the coefficients for the freight mode choice model. The mode choice 
coefficients used by SAM-V4 are presented in Table 2. After the mode choice step, the annual 
freight truck tonnage is used to estimate the number of daily freight truck trips, which are then 
input into the highway assignment process. The freight model uses a different zonal structure 
than the passenger model. It contains 348 TAZs, 254 Texas counties, 49 US states and the 
District of Columbia, 32 Mexican states, and 13 Canadian provinces. These are disaggregated to 
the 6860-passenger model TAZs before assignment. 

Figure 4. SAM-V4 Freight Mode Choice Structure (Source – Alliance Transportation Group, 2019) 

Table 3. SAM-V4 Freight Mode Choice Coefficients (Source – Alliance Transportation Group, 2019) 
 

# 
 

Commodity Name 
Carload 
Constant 

IMX 
Constant 

Cost 
Coef. 

Time 
Coef. 

# of IMX 
Coef. 

1 Agriculture 5.481 -4.277 -0.0063 0 0.0469 
2 Metallic Ore & Coal Mining 4.124 -3.1 -0.0032 -0.0584 0 
3 Crude Petroleum or Nat. Gas 3.549 0 0 -0.0162 0 
4 Nonmetallic Minerals -0.679 -8.4338 -0.0061 0 0.0998 
5 Food -3.279 -2.7486 -0.0058 0 0.0406 
6 Consumer Manufacturing 0 0 -0.0019 -0.042 0.0409 
7 Non-Durable Manufacturing -3.757 -6.5606 -0.0059 0 0.0279 
8 Lumber -4.016 -8.0001 -0.0011 -0.0131 0.0461 
9 Durable Manufacturing -2.860 -6.4946 -0.0017 0 0.0317 
10 Paper -0.619 -3.0581 -0.009 0 0.0414 
11 Chemicals -2.341 -6.0239 -0.0045 0 0 
12 Petroleum -3.092 -8.4885 -0.0056 0 0.0854 
13 Clay, Concrete, Glass -3.336 -7.1387 -0.0064 0 0.0368 
14 Primary Metal -1.887 -4.321 -0.006 0 0 
15 Secondary & Misc. Mixed -3.176 4.5037 -0.0077 0 0.0529 

1.2. SAM Base Validation Scenario 2019 
TransCAD Version 8.0, Build 22180 64-bit was used to operate SAM-V4. A 2019 scenario with 
default SAM-V4 inputs and parameters was run as the base model. It should be noted that SAM-
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V4 is not compatible with a different version or build. The default scenarios included in the SAM-
V4 package are 2015, 2025, 2035, and 2045. The 2019 scenario was created by using the Scenario 
Year Interpolation function. This uses the closest subsequent default year scenario (2025 in this 
case) inputs to estimate the non-default year parameters. The following discussion looks at model 
results such as network congestion, passenger LD trip travel time and distance, freight trip lengths 
and freight mode splits. The network congestion for AM (6-8 AM), MD (8 AM - 2 PM), PM (2-6 
PM), and NT (6 PM - 6 PM) time periods is presented below. Figure 5 shows the volume-to-
capacity ratio across the Texas region for the four times of days analyzed. Congestion (v/c > 1.25) 
in all periods occurs mostly among the major cities across Texas, especially Dallas-Fort Worth, 
Houston, and San Antonio. Congestion is also observed in a few other cities - like El Paso and 
Corpus Christi, and in southern Texas near McAllen and Harlingen. 

 
     a. AM                  b. Midday (MD) 
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Figure 5. V/C Ratios predicted by SAM in 2019 across four Times of Day  

 
      c. PM             d. Nighttime (NT) 
Note: These results are for an average weekday when school is in session. (SAM also allows weekend-

day simulation, but not specific days of the year.)  

Table 4 shows the average trip and travel time and distances for long-distance trips based on the 
four trip purposes. The average travel time and distance for trips below 400 miles (ILDB and 
ILDO) are approximately 12% lower for business trips than for other trips. However, for 
business trips over 400 miles, the average travel time and distance are about 7% higher relative 
to others. 

Table 4. LD Trip Length by Purpose 

Trip Purpose Average travel 
time (minutes) 

Average travel 
distance (miles) 

ILDB 113.2 min 113.3 miles 
ILDO 128.1 128.5 
ILLB 942.0 1011.0 
ILLO 879.6 943.2 

Table 5 outlines the average length of freight trips based on commodity groups. The results 
reveals that the Oil and Gas and Consumer Manufacturing sectors have longer average trip 
lengths than others. Table 6 shows the mode share of freight transportation for different industry 
sectors, as determined by SAM4’s mode choice specification. According to the table, trucks are 
the primary mode of transportation for goods, accounting for 65.4% of the total goods 
transported. Carload rail follows at 20.7%; water, intermodal rail, and air make up the remaining 
8.4%, 5.3%, and 0.2%, respectively. 
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Table 5. Freight Trip Length by Commodity Group 

Commodity 
Group # Commodity Group Name Average Trip 

Length (Miles) 
1 Agriculture 587.83 mi 
2 Other Mining 959.06 
3 Oil and Gas 1,018.91 
4 Nonmetallic Minerals 240.54 
5 Food 767.49 
6 Consumer Manufacturing 1,130.02 
7 Non-Durable Manufacturing 799.06 
8 Lumber 841.93 
9 Durable Manufacturing 771.45 
10 Paper 819.38 
11 Chemicals 704.04 
12 Petroleum 323.35 
13 Clay, Concrete, Glass 265.97 
14 Primary Metal 804.54 
15 Secondary & Misc. Mixed 495.85 
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Table 6. Freight Mode Split by Commodity Groups 

Commodity Group Commod. 
Group # 

Truck 
Share (%) 

Carload Rail 
Share (%) 

Intermodal 
Rail Share 

(%) 

Air Share 
(%) 

Water 
Share (%) 

Agriculture 1 64.97% 30.47% 3.7% 0.08% 0.77% 
Other Mining 2 18.54% 80.77% 0.51% 0.04% 0.14% 
Oil and Gas 3 0.56% 11.54% 0.46% 0% 87.44% 

Nonmetallic Minerals 4 86.47% 11.93% 0.03% 0.21% 1.36% 
Food 5 68.49% 27.06% 4.21% 0.02% 0.22% 

Consumer 
Manufacturing 6 69.4% 1.24% 28.51% 0.83% 0.03% 

Non-Durable 
Manufacturing 7 90.48% 3.17% 6.09% 0.25% 0.01% 

Lumber 8 80.85% 18.22% 0.74% 0.03% 0.16% 
Durable 

Manufacturing 9 72.28% 21.67% 5.25% 0.65% 0.16% 

Paper 10 57.73% 34.59% 7.63% 0.03% 0.01% 
Chemicals 11 64.51% 28.4% 1.13% 0.2% 5.76% 
Petroleum 12 64.32% 7.32% 0.1% 0.1% 28.16% 

Clay, Concrete, Glass 13 94.61% 4.96% 0.23% 0.02% 0.18% 
Primary Metal 14 69.55% 27.42% 0.97% 0.14% 1.93% 

Secondary & Misc. 
Mixed 15 77.76% 1.32% 20.31% 0.34% 0.27% 
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Chapter 2. Integration of AVS, SAVS, AND A-TRUCKS 
in SAMV4 (AV Base Scenario) 

 
To integrate AVs, SAVs, and ATrucks as additional transportation modes within SAM, 
significant modifications were made to the mode choice component of the model. Specifically, 
the AV/ATruck scenario underwent substantial adjustments using the GISDK within the 
TransCAD software. Within SAM, a comprehensive set of 38 scripts guides the four-step 
process. For this particular scenario, the scripts pertaining to trip generation, skim creation, mode 
choice (includes passenger short-distance and long-distance mode choice, as well as freight 
mode choice), traffic assignment, and report generation were carefully edited. These 
modifications are discussed in further detail in the subsequent sections. 

2.1. Passenger Model 
To accommodate the anticipated rise in VMT resulting from the introduction of AVs and SAVs, 
a 15% increase in trip production rates has been incorporated. This augmentation acknowledges 
the potential growth in travel demand facilitated by AVs, which will grant access to elderly 
individuals, those without driver's licenses, and people with mobility impairments. This 
adjustment pertains specifically to trip generation rates in the year 2040, encompassing both trip 
productions and attractions, as enabled by AV technologies. This assumption aligns with 
findings from Harper et al. (2016), which estimated a 14% surge in U.S. VMT attributable to 
non-driving Americans, elderly citizens, and individuals with medical conditions that impede 
conventional travel. As previously discussed, our passenger model in the SAM employs distinct 
approaches for short-distance and long-distance trips. The following sections elucidate the 
modifications made to accommodate this scenario. 

2.1.1. Short-Distance Mode Choice 
For short-distance trips, SAM applies mode shares based on transit availability for different trip 
purposes and income groups. Within SAM-V4, four distinct modes are considered for short 
distance trips: Drive-alone (DA), Shared-Ride 2 (SR2) and Shared-Ride 3 or more people 
(SR3+) and “Other” modes. The “Other” category includes modes such as bus, urban rail, ferries, 
and any other transportation modes not captured by the survey questionnaire. SAM-V4 applies 
different factors based on three area types: "No Transit Available area", "Bus Available Area", 
and "Urban Rail Available Area". Figure 6 highlights TAZs according to their transit 
availability. Zone pairs where one of the zones has no transit access is considered a “No Transit 
Available Area”. When both zones have urban rail access, it is classified as “Urban Rail 
Available Area”. Similarly, for zone pairs where both have transit access but at least one zone 
has only bus access, it is considered “Bus Available Area”. 
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Figure 6. 2040 SAM-V4 Transit Availability by TAZ 

In areas where no transit is available, a distribution of 40% for human-driven vehicles (HV), 
40% for AVs, and 20% for SAVs was assumed for DA, SR2, and SR3+. Similarly, in areas with 
transit availability (bus and urban rail available areas), the distribution of 40% for HVs, 40% for 
AVs, and 20% for SAVs was assumed for DA, SR2, and SR3+, mirroring the previous case. 
Additionally, a 50% reduction in the mode shares of “Other” modes was considered in these 
areas. Zhao et al. (2018) forecasted two-thirds of all auto users opting for AV or SAV. Litman 
(2020) forecasts predicted 30% U.S. fleet in 2040 to be AVs, while other research predicts AVs 
comprising anywhere from 25% to 87% (based on different assumptions) of U.S fleet in 2045 
(Bansal and Kockelman, 2016). Huang et al. (2021) survey results for trips between 75 and 500 
miles indicate approximately a 23%, 28%, and 17% split for HV, AV, and SAV for business 
trips, and a 37%, 15% and 34% split for HV, AV, and SAV for non-business trips. These studies 
were used as reference for developing the assumptions outlined above. For further details and the 
comprehensive set of applied mode shares, please refer to the Appendix, which includes the 
corresponding table. 
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2.1.2. Long-Distance Mode Choice  
For trips greater than 50 miles, SAM’s nested logit model was modified to include HV, AV, and 
SAV. These modes were nested under DA, SR2 and SR3+. The nesting order was determined so 
because individuals are more inclined to determine the mode of transportation based on the size of 
their party, rather than selecting a mode first and then considering the number of people traveling 
with them. Figure 7 presents the updated nesting structure with the assumed nesting coefficients. 
The specific mode choice constants (ASCs) and explanatory variable coefficients assumed for the 
model, along with those set by default in the base model, are presented in Table 7.  

These parameters were selected based on the SAM-V4 base model and a similar model calibrated 
in the Huang et al. (2020) Texas megaregion study. Person-trips produced in the mode choice step 
are converted to vehicle trips before traffic assignment. Auto occupancy factors are fixed for 
different modes for this step. DA and SR2 have occupancy of 1 and 2, respectively. Auto 
occupancy rates for SR3+ trips are applied in SAM based on trip purpose and income group, based 
on the National Household Travel Survey (NHTS). These rates range from 3 to 4.79, with an 
exception of 7.57 for ILLO trips of income group 3. This 7.57 seems quite high, especially since 
long-distance mode choice model does not include bus modes. This could potentially be an error 
in SAM, where a small sample of bus modes in the NHTS were accidently considered while 
estimating these rates.  

Figure 7. AV/ATruck Scenario Long-Distance Mode Choice Nested-Logit Structure and Nesting 
Coefficients 

*DA – Drive Alone, SR – Share Ride, ICR – Intercity Rail, HSR – High Speed Rail 

Table 7. Passenger Model Parameters 
No AV/ATRUCK SCENARIO 

Mode ILDB ILDO ILLB ILLO 
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Drive Alone (DA) N/A N/A N/A N/A 
Shared-Ride 2 (SR2) -1.5 -0.1 -3 -0.8 

SR 3+ (SR3+) -2 -0.2 -4.2 -2 
High-Speed Rail (HSR) -1.1 -2.5 2.5 -0.4 

Intercity Rail (ICR) -5 -3.8 -5 -2.5 
Air -1.1 -2.5 2.5 0 

Auto Operating Cost ($/mile) 0.346 0.17 0.346 0.17 
In-Vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Out-of-Vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Travel 
Cost 

Coefficient 

Income I -0.1664 -0.1109 -0.1664 -0.1109 
Income II -0.0555 -0.037 -0.0555 -0.037 
Income III -0.0277 -0.0185 -0.0277 -0.0185 
Income IV -0.0166 -0.0111 -0.0166 -0.0111 

AV/ATRUCK SCENARIO 
Mode ILDB ILDO ILLB ILLO 

DA 

Human-Driven Vehicles (HV) N/A N/A N/A N/A 
Autonomous Vehicles (AV) -0.05 -0.05 -0.05 -0.05 

Shared Autonomous Vehicles 
(SAV) -0.2 -0.2 -0.2 -0.2 

SR2 
HV -1.5 -0.1 -3 -0.8 
AV -1.55 -0.15 -3.05 -0.85 

SAV -1.7 -0.3 -3.2 -1 

SR3+ 
HV -2 -0.2 -4.2 -2 
AV -2.05 -0.25 -4.25 -2.05 

SAV -2.2 -0.4 -4.4 -2.2 
High-Speed Rail (HSR) -1.10 -2.50 2.50 -0.40 

Intercity Rail (ICR) -5 -3.8 -5 -2.5 
Air -1.1 -2.5 2.5 -0.4 

HV Operating Cost ($/mile) 0.346 0.17 0.346 0.17 
AV Operating Cost ($/mile) 0.6 0.6 0.6 0.6 

SAV Operating Cost ($/mile) 1 1 1 1 
In-vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Out-of-vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Travel 
Cost 

Coefficient 

Income I -0.1664 -0.1109 -0.1664 -0.1109 

Income II -0.0555 -0.037 -0.0555 -0.037 
Income III -0.0277 -0.0185 -0.0277 -0.0185 
Income IV -0.0166 -0.0111 -0.0166 -0.0111 

Note: ILD = infrequent, long-distance (>50 mile) passenger trips. under 400 miles. ILL = extra-long trips (> 
400 miles each way). B = business trips, and O = non-business or “other” trips. 

2.1.3. Freight Mode Choice 
The freight mode choice was updated to include ATrucks as a new category. These ATrucks are 
nested under the broader truck mode, separating ATrucks from HTruck. The Texas megaregion 
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study conducted by Huang et al. (2020) is again used as a starting point for the model 
parameters, assuming a nesting coefficient of 0.7 for HTruck to reflect the relative 
substitutability between the two modes. The operating costs for ATrucks were assumed to be 1.5 
times those of HTrucks to account for automation equipment cost and additional training 
expenses for humans supervising the truck). The ATruck travel time skim was assumed to be 
0.42 times that of HTruck to reflect HTruckility of automated trucks to drive 24 hours a day. As 
shown in Table 3, the time coefficient for 11 out of 15 commodities in SAM-V4 are 0. 
Therefore, for these groups, only the operating cost is increased. The updated mode choice 
structure for this scenario, along with the nesting coefficient, is shown in Figure 8. As previously 
mentioned, SAM-V4 freight mode choice model uses an incremental logit structure that builds 
upon existing base share. However, with the introduction of ATruck and the associated changes 
in the model structure, the calculations for mode shares needed to be updated. 

Figure 8. AV/ATruck Scenario Mode Choice Structure and Nesting Coefficient 

To begin, the utilities of HTruck and ATruck for every commodity group and zone pair were 
computed using the explanatory variables and modal constant terms, similar to the approach 
followed in the base model. The utility calculation for ATruck is shown as an example below: 

𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘 + 𝛽𝛽𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑖𝑖𝑖𝑖) 
where 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘 is the alternate specific constant, 𝛽𝛽𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the time coefficient and 𝛽𝛽𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
is the cost coefficient for ATrucks, for commodity k from zone i to j. Next, the utility of the truck 
mode was determined by calculating the logsum of the utilities of HTruck and ATruck, taking 
the nesting coefficient into consideration. The formula for this calculation is expressed below: 

𝑈𝑈𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑘𝑘 = 𝜃𝜃 ∗𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑒𝑒(

𝑈𝑈𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑘𝑘

𝜃𝜃 ) + 𝑒𝑒(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘

𝜃𝜃 )�  

where 𝜃𝜃   = Nesting Coefficient and 𝑈𝑈𝑖𝑖𝑖𝑖  = Utility for specified mode for commodity k from zone 
i to j. Following this, the new truck share or probability was calculated using the same 
methodology as before, using the base mode shares. The incremental logit model form as 
followed in the AV base or no AV scenario model is shown below: 
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For every mode m, in commodity group k, from zone i to j:  

𝑁𝑁𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖
𝑚𝑚,𝑘𝑘 =

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖
𝑚𝑚,𝑘𝑘 ∗ 𝑒𝑒∆𝑈𝑈𝑖𝑖𝑖𝑖

𝑚𝑚,𝑘𝑘

∑ �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖
𝑚𝑚,𝑘𝑘 ∗ 𝑒𝑒∆𝑈𝑈𝑖𝑖𝑖𝑖

𝑚𝑚,𝑘𝑘
� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 𝑖𝑖𝑖𝑖 𝑘𝑘

 

where ∆𝑈𝑈𝑖𝑖𝑖𝑖
𝑚𝑚,𝑘𝑘 = Change in Utility  

For Truck mode, the change in utility is determined by comparing the newly calculated utility of 
the truck mode, which involves taking the logsum of HTruck and ATruck, with the previous 
utility of the truck mode, before introduction of new mode (and nest). The shares of ATruck and 
HTruck every zone pair) were then derived from the total number of truck trips (which is 
calculated by multiplying the new truck share with the total number of trips from each zone i to 
zone j) as shown below: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∗
𝑒𝑒(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘

𝜃𝜃 )

𝑒𝑒(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑘𝑘

𝜃𝜃 ) + 𝑒𝑒(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘

𝜃𝜃 )

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∗
𝑒𝑒(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑘𝑘

𝜃𝜃 )

𝑒𝑒(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑘𝑘

𝜃𝜃 ) + 𝑒𝑒(
𝑈𝑈𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑘𝑘

𝜃𝜃 )

 

where 𝜃𝜃   = Nesting Coefficient and 𝑈𝑈𝑖𝑖𝑖𝑖  = Utility for specified mode for commodity k from zone 

i to j.  

2.2. Comparative Analysis Between Base Scenarios and AV 
Scenario 
This study examines and compares two distinct SAM-V4 models to analyze travel patterns in the 
year 2040. The first model, referred to as “No AV/ATruck Scenario”, has the default SAM settings 
without any modifications. The second model, “AV/ATruck Scenario”, includes AV, SAV and 
ATruck modes. By developing these two models, the study aims to assess the potential impacts 
and differences brought about by the integration of AVs, SAVs, and ATrucks into the 
transportation system. The “No AV/ATruck Scenario” model serves as the benchmark against 
which the AV/ATruck scenario is evaluated, allowing for a comprehensive analysis of the changes 
and benefits associated with the introduction of these advanced transportation technologies. For 
both models, a typical weekday was selected as the basis for the analysis, using SAM’s weekday 
module. Feedback loops involving iteration from Traffic Assignment to Trip Distribution were not 
included in these model runs due to the very long model run times. Further modifications in the 
scenarios involving AVs that were not previously specified encompass changes to the occupancy 
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of SAVs. The occupancy of SAV was reduced by 20% after the mode choice stage to ensure the 
appropriate inclusion of empty VMT (eVMT).  

The simulation model used in this study provides a comprehensive analysis of travel patterns 
involving a substantial population of 40,217,918 individuals who are distributed across 13,509,343 
households within the state of Texas. These households have an average size of 2.98 individuals, 
which is an essential demographic factor that significantly influences transportation behavior and 
infrastructure demands. Furthermore, the population-to-employment ratio stands at 2.1, 
highlighting the critical relationship between workforce distribution and transportation 
requirements. In order to develop a more detailed understanding of the economic environment and 
its impact on travel patterns, it is crucial to examine the distributions of different job prospects. 
The distributions, depicted in Figure 9 below, offer useful insights into the sector-based spread of 
employment within the region. This is especially important in the domain of transportation 
planning and policy structure, as it influences the patterns of everyday travel, urban movement, 
and the need for different modes of transportation. 

Figure 9. Employment Distributions by Sector (Total: 19,170,201) 

The mode splits for short-distance trips remain consistent even with the introduction of AVs, as 
they stick to a fixed distribution unaffected by changes in mode choice model parameters. 
However, subsequent analysis focuses on the shifts in mode split patterns following the integration 
of AVs in passenger and freight transportation for long-distance trips exceeding 50 miles. 
Integrating AVs into the mode choice model for long-distance passenger travel, for those 
exceeding 50 miles, revealed that personal AVs captured a 14% market share, while the human-
driven "drive alone" mode experienced a 17% fall as individuals shifted to AVs. This shift may be 
attributed to a 25% reduction in VOTT, allowing individuals to use their time more effectively 
with AVs. Additionally, mode shares showed a 7% rise in AV driving with two occupants and an 
11% in AV driving with three or more occupants as shown in figure 11. In Figure 12, it's evident 
that the introduction of AVs has led to rise in business trips with SAVs spanning 50-400 miles and 
non-business trips exceeding 400 miles by 44% and 47%, respectively. At the same time, air mode 
lost 20% of business trips and 15% of non-business trips within 400 miles. The surge in air travel 
within the 400-mile range can be attributed to the assumption of a 15% rise in trip frequency 



 

32 
 

following the introduction of AVs. Inter-city rail too witnessed a decline in market share by 15% 
and 13% for business and non-business long-distance trips, respectively.  

Figure 10. Percentage Change in Mode Shares of Ground Travel vs Air vs Transit for No-AV Vs AV Base 
Scenario  

Figure 11. Percentage Change in Mode Shares for Ground Travel: No-AV Vs AV Base Scenario (HV = 
human-driven vehicle, DA = drive alone, SR2/3 = shared ride with 2/3 persons) 

In the case of SAV driving, there was a modest 3% rise in AV driving with two occupants and a 
4% rise with three or more occupants. On the other hand, there was a 5% and 10% decrease in 
human-driven shared rides with two occupants and shared human driving with three or more 
occupants, respectively. As shown in Figure 12, the AV inclusion into the transportation system 
has led travelers to opt for more distant locations as compared to their previous choices. 
Additionally, the ability to use time while inside AVs has increased the possibility of making trips, 
particularly for work-related trips that were previously deemed too far. And hence, we observed 
an 18% rise in average trip length for infrequent long-distance business trips and a 13% rise for 
non-business trips exceeding 50 miles but less than 400 miles.  

As shown in Figure 13, there was a substantial rise in average trip length across various vehicle 
categories, with light duty, medium duty, and heavy-duty trucks witnessing rises of 35%, 32%, 
and 28%, respectively. This trend suggests a tendency for covering greater distances, likely due to 
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the removal of driving burdens in AV modes. Furthermore, the increase in the number of hours 
vehicles spent on the road on all types of roads also indicate fall in average speeds. Arterial roads, 
collector roads, and interstate highways were significantly impacted, with average speeds falling 
by more than 60%. The results suggest that there is increased traffic congestion in AV scenarios. 
The most significant reductions in speed are observed during morning and evening hours, followed 
by afternoons and then nights as shown in Figure 14. 

Figure 12 Percentage Change in Average Trip Length: No-AV vs AV Base Scenario  
(ILDB: infrequent long-distance business trips; ILDO: infrequent long-distance other trips for trips that are 50 miles or greater and 
less than 400 miles; ILLB: infrequent long long-distance business trips; ILLO: infrequent long long-distance other trips for trips that 

are 400 miles or greater and are work or work-related) 

Figure 13 Percentage Change in Average Trip Length of Trips Exceeding 50 Miles: No-AV vs AV Base 
Scenario  

(HT: heavy-duty trucks; MT: medium-duty trucks; LT: passenger vehicles, light-duty trucks (non-freight)) 

VMT experienced a notable increase across all time periods, as shown in Figure 14. During the 
AM and PM periods, VMT rose by more than 28%, followed by a 22% rise during the afternoon 
periods. Passenger VMT saw a 26% rise, while truck VMT rose by 7%. This upward trend in VMT 
due to ATrucks is expected to further increase as they become more cost-effective compared to 
human-driven trucks. Expressways and freeways witnessed a significant rise of over 20% in 
passenger VMT, as shown in Figure 15. Furthermore, the increase in the number of hours vehicles 
spent on the road on all types of roads (Figure 16) also indicate decreases in average speeds. 
Arterial roads, collector roads, and interstate highways were significantly impacted, with average 
speeds decreasing by more than 60% as shown in Figure 17. The results suggest that there is 
increased traffic congestion in AV scenarios. The most significant reductions in speed are observed 
during morning and evening hours, followed by afternoons and then nights. 
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Figure 14 Percentage Change in VMT in Trips Exceeding 50 Miles: No-AV vs AV Base Scenario 

Figure 15 Percentage Change in Passenger VMT across Road Types: No-AV vs AV Base Scenario 

Figure 16 Percentage Change in VHT in Trips Exceeding 50 Miles: No-AV vs AV Base Scenario 

As shown in Figure 18, the integration of ATrucks into the transportation system brings about 
significant changes in the distribution of consumer manufacturing goods. ATrucks emerged  
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as the prevailing preference, accounting for around 43% of the transportation of goods, while 
trucks operated by human drivers have witnessed a significant decline of 39% in their market share 
across all the commodities. Trips involving the transportation of metallic and nonmetallic 
materials, consumer manufacturing, paper, petroleum and food experience a decline of over 40% 
in the proportion of trips made by Htrucks. This decline subsequently leads to an rise in the 
proportion of trips made by ATrucks. 

Figure 17 Percentage Change in Average Speed Across Road Types: No-AV vs AV Base Scenario 

Figure 18 Percentage Mode Shares of HTrucks vs ATrucks across Commodities 
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Chapter 3. Developed Scenarios 

The initial AV model under the SAM framework was subsequently subjected to six distinct 
scenarios, wherein the parameters of AVs, SAVs, and ATrucks were modified. The present study 
conducted an analysis of several situations in order to examine the potential changes in long-
distance travel, namely trips beyond a distance of 50 miles. Scenario 1 investigates the effects on 
network features that arise from the decrease in the cost of AVs in comparison to vehicles operated 
by humans. The operating costs of personal AVs have remained constant, but SAVs have been 
found to be 40% less expensive than previously estimated in the basic scenario and The operating 
costs for ATrucks were assumed to be 1.5 times those of HTrucks to account for automation 
equipment cost and additional training expenses for humans supervising the truck with a 25% 
reduction in VOTT for all AV scenarios (except for scenario 3 which assumes 50% reduction in 
VOTT) as shown in Table 7.  

Scenario 2 centers on the examination of the effects resulting from the escalation of expenses 
associated with AVs in comparison to those of human-driven vehicles, specifically in relation to 
network characteristics. In this particular scenario, the operational expenses for personal AVs 
experienced a 33% rise but the costs associated with SAVs remained unchanged. Consequently, 
the operating costs for AVs and SAVs have been adjusted to 0.8 dollars per mile and 1 dollar per 
mile, respectively. No rest time is assumed for ATrucks (as opposed to the 13 hours of rest 
accounted for Htrucks after every 11 hours of driving). The ATruck travel time skim was assumed 
to be 0.42 times that of HTruck to reflect HTruckility of automated trucks to drive 24 hours a day.  

As shown in Table 3, the time coefficient for 11 out of 15 commodities in SAM-V4 are 0. 
Therefore, time and cost coefficients were re-estimated for the 11 commodities by lowering (by 
half) beta of cost & choosing the beta time coefficients carefully so that those newly added 
multiples will make up for the reducing in the beta cost*cost terms. This was done by taking the 
half of the cost coefficients & selecting 11-time coefficients to minimize errors in hitting current 
rail/truck splits (no AV scenario) for the top 50+ OD pairs for each commodity. This process was 
repeated for 11 commodities. The updated coefficients are shown in Table 8.  

The impacts of these adjustments are subsequently analyzed in relation to travels exceeding 50 
miles. In accordance with microeconomic theory, individuals are expected to make decisions 
regarding transportation while operating under the assumption that their daily time budget is 
limited. Hence, individuals make decisions on the allocation of their time between different 
activities, as well as by the valuation they place on reducing the time spent on a specific activity. 
The subjective VOTT savings can be defined as the willingness to pay (WTP) in order to decrease 
the amount of time spent on travel. The variability of Vehicle Travel Time Savings is typically 
contingent upon the purpose and duration of a trip. It also exhibits variation across different modes 
of transportation.  
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Thus, Scenario 3 analyzes the effect of a reduction in the perceived VOTT as they will be able to 
use the time for other purposes they like. In this case, we have assumed that VOTT for AVs will 
decrease by 50% across all the income groups. The scenario aims to examine the link between 
lower values of trip time for AV passengers and their tendency to engage in longer distance travel 
while reducing their reliance on public transit systems. Table 9 presents the revised cost 
coefficients corresponding to specific income groups. 

Table 8 Freight Mode Choice Coefficients 

Commodity 
Group No. 

Original Modified Original 
Time 

Coefficient 
Cost 

Coefficient 
Time 

Coefficient 
Cost 

Coefficient 
Carload 
Constant 

IMX 
Constant 

No. of IMX 
Coefficient 

1 0 -0.0063 -0.01843 -0.00315 5.4809 -0.4277 0.0469 

2 -0.0584 -0.0032 -0.0584 -0.0032 4.1237 -3.1 0 

3 -0.0162 0 -0.0162 0 3.549 0 0 
4 0 -0.0061 -0.18701 -0.00305 -0.6799 -8.4338 0.0998 
5 0 -0.0058 -0.01368 -0.0029 -3.2788 -2.7486 0.0406 
6 -0.042 -0.0019 -0.042 -0.0019 0 0 0.0409 
7 0 -0.0059 -0.05899 -0.00295 -3.7565 -6.5606 0.0279 
8 -0.0131 -0.0011 -0.0131 -0.0011 -4.0162 -8.0001 0.0461 
9 0 -0.0017 -0.00595 -0.00085 -2.8602 -6.4946 0.0317 

10 0 -0.009 -0.0365 -0.0045 -0.6198 -3.0581 0.0414 
11 0 -0.0045 -0.04677 -0.00225 -2.3405 -6.0239 0 
12 0 -0.0056 -0.36019 -0.0028 -3.0916 -8.4885 0.0854 
13 0 -0.0064 -0.41205 -0.0032 -3.3361 -7.1387 0.0368 
14 0 -0.006 -0.0098 -0.003 -1.8875 -4.321 0 
15 0 -0.0077 -0.02697 -0.00385 -3.1761 4.5037 0.0529 

Table 9. SAM-V4 Long Distance Model VOTT (Dollar/Hour) 
  ILDB ILDO ILLB ILLO 

Income 1 7.2 5.4 7.2 5.4 
Income 2 21.6 16.2 21.6 16.2 
Income 3 43.3 32.4 43.3 32.4 
Income 4 72.3 54.1 72.3 54 

 
Scenario 4 explores the implications that follow from the complete absence of human-operated 
vehicles in passenger and freight transportation. The parameters of the nested logit model used in 
the base scenario were modified to simulate the alternatives. Scenario 5, on the other hand, 
addresses the situation in which individuals may find owning a personal AV costly, leading them 
to consider SAVs and human-driven vehicles as more favorable options. Similar to Scenario 4, the 
nested logit model for mode choice was adapted to replicate these particular choices. Scenario 6 
investigates the impact of empty SAVs in the network through a reduction of 20% in average 
passenger occupancy. The study assumes that if occupancy is decreased, there is a likelihood of a 
substantial 25% rise in the distance covered by unoccupied SAVs. 
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3.1. Scenario 1 (Less Expensive AVs) 
Scenario 1 examines the implications for network characteristics that result from AVs becoming 
less expensive than human-driven cars. Personal AVs’ operational costs have not changed; 
however, SAVs expenses have been discovered to be 40% lower than those of the baseline 
scenario. and ATrucks will be 20% more expensive than HTrucks with 25% reduction in VOTT 
as shown in Table 9. The assumptions include a cost of $0.60 per mile for both personal and SAVs. 

Table 10. Scenario 1 Model Parameters 
Mode ILDB ILDO ILLB ILLO 

DA 

Human-Driven Vehicles (HV) N/A N/A N/A N/A 
Autonomous Vehicles (AV) -0.05 -0.05 -0.05 -0.05 

Shared Autonomous Vehicles 
(SAV) -0.2 -0.2 -0.2 -0.2 

SR2 
HV -1.5 -0.1 -3 -0.8 
AV -1.55 -0.15 -3.05 -0.85 

SAV -1.7 -0.3 -3.2 -1 

SR3+ 
HV -2 -0.2 -4.2 -2 
AV -2.05 -0.25 -4.25 -2.05 

SAV -2.2 -0.4 -4.4 -2.2 
High Speed Rail (HSR) -1.10 -2.50 2.50 -0.40 

Intercity Rail (ICR) -5 -3.8 -5 -2.5 
Air -1.1 -2.5 2.5 -0.4 

HV Operating Cost ($/mile) 0.346 0.17 0.346 0.17 
AV Operating Cost ($/mile) 0.6 0.6 0.6 0.6 

SAV Operating Cost ($/mile) 0.6 0.6 0.6 0.6 
ATruck Operating Cost ($/mile) 1.2*HTruck (for all commodities) 

In-vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 
Out-of-vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Travel Cost 
Coefficient 

Income I -
0.1664 -0.1109 -0.1664 -0.1109 

Income II -
0.0555 -0.037 -0.0555 -0.037 

Income III -
0.0277 -0.0185 -0.0277 -0.0185 

Income IV -
0.0166 -0.0111 -0.0166 -0.0111 

In Figure 19, it is evident that further reducing the cost of SAVs did not significantly alter their 
mode shares compared to the Base AV scenario. However, there was a substantial shift from 
HTrucks to ATrucks across all commodity transportation sectors. HTrucks experienced a loss of 
41.6% in mode shares across all commody transportation, while ATrucks gained 46% in shares 
after their integration into the mode choice model for freight. As depicted in Figure 20, consumer 
manufacturing and non-durable manufacturing, saw over 70% of goods transported via ATrucks, 
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and for paper, chemicals, petroleum, and non-metallic minerals, more than half of their 
transportation will be facilitated by ATrucks. 

Figure 19. Mode Distribution as per Trip Purpose: No-AV vs AV Base Scenario 

Figure 20. Mode Shift to ATrucks: AV Base Scenario 

3.2. Scenario 2 (Increased AV Costs) 
This scenario explores the consequences that arise in transportation networks when AVs become 
more expensive than HVs. The objective of this scenario is to highlight the challenges of this 
transition, specifically with regard to the economic dynamics of AVs and their influence on 
different vehicle classifications. During the simulation, operational expenses of individual AVs 
were rose by 67% compared to the standard AV scenario. In addition, the operational costs of 
SAVs increased by a substantial 50% compared to the baseline scenario of AVs. Furthermore, the 
study assumes that ATrucks are twice as high as that of HTrucks with 25% reduction in VOTT. 
This difference is crucial in evaluating the cost-effectiveness and practicality of self-driving trucks 
for different freight transportation purposes. The assumptions include that the cost for individual 
AVs is $1.00 per mile, while SAVs have a slightly higher cost of $1.50 per mile, as shown in Table 
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11. The results show a clear trend: as the cost of AVs, whether for personal or shared use, rises, 
there's a noticeable hesitancy to adopt them, as shown in Figure 22. While the market shares of 
"drive alone" long-distance trips (ranging from 40 miles to 500 miles) remain relatively stable 
across all trip purposes, there's a significant 41% fall in drive-alone trips exceeding 400 miles. This 
decline shows a rise in shared rides with two or more occupants, witnessing a significant rise of 
over 200% in both business and non-business trips. This shift reflects a preference for more 
economical ground travel options while still meeting travel needs. There was not change in shares 
of air, intercity rail, however, people shifted to shared rides to save money.  

Table 11. Scenario 2 Nested Logit Model Parameters 
Mode ILDB ILDO ILLB ILLO 

DA 

Human-Driven Vehicles (HVs) N/A N/A N/A N/A 
Autonomous Vehicles (AVs) -0.05 -0.05 -0.05 -0.05 
Shared Autonomous Vehicles 

(SAVs) -0.2 -0.2 -0.2 -0.2 

SR2 
HV -1.5 -0.1 -3 -0.8 
AV -1.55 -0.15 -3.05 -0.85 

SAV -1.7 -0.3 -3.2 -1 

SR3+ 
HV -2 -0.2 -4.2 -2 
AV -2.05 -0.25 -4.25 -2.05 

SAV -2.2 -0.4 -4.4 -2.2 
High-Speed Rail (HSR) -1.10 -2.50 2.50 -0.40 

Intercity Rail (ICR) -5 -3.8 -5 -2.5 
Air -1.1 -2.5 2.5 -0.4 

HV Operating Cost ($/mile) 0.346 0.17 0.346 0.17 
AV Operating Cost ($/mile) 1 1 1 1 

SAV Operating Cost ($/mile) 1.5 1.5 1.5 1.5 
In-vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 

Out-of-vehicle Time Coefficient -0.02 -0.01 -0.02 -0.01 
ATruck Operating Cost ($/mile) 2*HTruck (for all commodities) 

Travel Cost 
Coefficient 

Income I -0.1664 -0.1109 -0.1664 -0.1109 
Income II -0.0555 -0.037 -0.0555 -0.037 
Income III -0.0277 -0.0185 -0.0277 -0.0185 
Income IV -0.0166 -0.0111 -0.0166 -0.0111 
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Figure 21. Mode Distribution as per Trip Purpose: No-AV vs AV Base Scenario 

3.3. Scenario 3 (Reduced Value of Travel Time) 
This scenario examines the consequences resulting from a decrease in the perceived cost of 
travel time. In this case, we assume that the VOTT for AVs decreases significantly by 50% across 
various income classes. This scenario aims to analyze the complex relationship between the 
reduced perception of travel time for AV passengers and their tendency to undertake long-distance 
trips, potentially reducing their dependence on personal human-driven vehicles. This scenario 
examines the consequences resulting from a decrease in the perceived cost of travel time. In this 
case, we assume that the VOTT for AVs decreases significantly by 50% across various income 
classes. It analyzes the complex relationship between the reduced perception of travel time for AV 
passengers and their tendency to undertake long-distance trips, potentially reducing their 
dependence on personal human-driven vehicles.  

The results show that people are more likely to choose longer trips, leading to an increase VMT 
on all types of roads. Specifically, roads like expressways, arterials, interstates, and other freeways 
see a 23% rise in travel as shown in Figure 23. Expressways and freeways make up 7% of the lane-
miles, while arterials and collector roads make up 45% of the lane-miles. The reduced in VOTT 
in case of AVs also impacts airport boarding patterns across various airports. This shift is driven 
by individuals' inclination towards AVs, primarily motivated by cost-saving opportunities and the 
ability to use travel time more productively for other activities.  

With the elimination of the need for manual driving, travelers can allocate their time on the road 
more efficiently, engaging in a diverse range of tasks, thereby reducing the perceived value of their 
time. The consequences of this shift are seen through an analysis of airport boarding trends in the 
state of Texas. Results presented in Figure 24, showing the percentage change in passenger 
boarding at Texas Airports, reveals a slight decline in the number of passengers initiating their 
journeys from major state airports. Dallas/Fort Worth International Airport and George Bush 
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International Airport both witnessed a decrease of over 5% in passenger volumes, highlighting the 
growing preference for AVs. Similarly, San Antonio Airport displayed a comparable pattern, with 
a 5% decline in boarding numbers, as shown in the figure below. While the magnitude of change 
was somewhat less pronounced at Austin-Bergstrom Airport, it nonetheless showed a negative 
trend, with a -3% decline in passenger boarding. 

Figure 22. Change in Percentage VMT Change across Road Types: No-AV vs AV Base Scenario 

Figure 23. Percentage Changes in Passenger Boarding Counts at Major Texas Airports as Compared to 
Base No AV Scenario 

Scenario 4 (AV Mode Preference Over Humans) 
This scenario investigates the effects of eliminating human-operated vehicles from both passenger 
and freight transportation. We adjusted the parameters of a nested logit model to force people to 
choose AVs over traditional vehicles. The findings show significant changes, especially in large 
urban areas. Despite AVs being available, a significant portion of long-distance trips (38%) still 
involve traditional human-driven vehicles. However, when human-operated vehicles are removed, 
there's a 10% rise in people choosing drive-alone AV trips. SAV trips with two occupants also 
rose by 10%, and those with three or more occupants see a significant 21% rise.  

These results highlight the potential of AVs to reshape urban transportation and alleviate 
congestion. As individuals increasingly opt for Avs specifically SAVs for their transportation 
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needs, a notable impact is observed in the airport boardings across major airports in the state of 
Texas. Figure 26 shows the trends, revealing a marked fall in airport boardings following the surge 
in AV use. The significant airports including Dallas/Fort Worth International, George Bush 
Intercontinental, Dallas Love Field, William P Hobby, Austin-Bergstrom International, and San 
Antonio International, collectively representing a substantial portion, accounting for 53% of total 
airport boardings in the region. Each of these airports has experienced an average fall of 22% in 
their boarding numbers. This decline shows the profound impact of AV adoption on traditional 
travel patterns, with individuals increasingly favoring AVs over conventional transportation 
options.  

Moreover, this shift in travel behavior reflects broader preferences, showing the evolving 
consumer choices. These results also offer valuable insights for policymakers, urban planners, and 
industry stakeholders navigating the transition towards AV technologies. 

Figure 24. Percentage Change in Airport Boardings at Major Texas Airports: No-AV vs AV Base Scenario 

Figure 25. Percentage Change in Airport Boardings at Major Texas Airports: No-AV vs AV Base Scenario 
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Scenario 5 (Personal AVs Are No Longer Available)  
This scenario examines a scenario where individuals perceive personal ownership of AVs as 
costly, leading them to find SAVs and human-driven vehicles more appealing. The nested logit 
model for mode choice was adjusted to mirror these preferences, just like it was done in Scenario 
4. Consequently, people opted for HVs over AVs for long-distance trips. Additionally, they 
showed a preference for SAVs. This resulted in an 11% rise in the use of SAVs (drive alone mode) 
for business trips, and for non-business trips within the 50 to 400-mile range, it rose from 3% to 
5% compared to the base-AV scenario.  

For SAVs where two or more individuals travel together, there was no change in mode share across 
all trip purposes, as shown in Figure 27 and Figure 28. However, there was a significant increase 
from 2% to 12% in the mode share of SAVs with three or more occupants for business trips 
covering distances between 50 and 400 miles, and a 12% rise in the mode share of SAVs with 
three or more occupants for non-business trips covering the same distance range, as illustrated in 
Figure 28. However, these altercations did not bring any change in trips by air, ICR, HSR.  

Figure 26. Percentage Change in Mode Share (ILDB): No-AV vs AV Base Scenario 

Figure 27. Percentage Change in Mode Share (ILDO): No-AV vs AV Base Scenario 
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Scenario 6 (Increased VMT due to Empty SAVs) 
Scenario 6 looks into the effects of considering empty SAVs within the transportation network, 
achieved through a 20% decrease in average passenger occupancy. The study assumes that this 
reduction in occupancy could result in a rise of approximately 25% in the distance traveled by 
empty SAVs. These changes brought a significant rise in average VMT and VHT within the 
transportation system. In the coded SAM network, expressways and freeways collectively 
constitute 7% of lane-miles, while arterials and collector roads comprise a more substantial 45% 
of lane-miles. As shown in figure 23, the average VMT experienced a notable rise: 10% during 
morning peak hours, 9% during evening peak hours, and 8% during afternoon peak hours across 
all road types. Additionally, there was an average 11% rise in VMT across all road types. 

Local streets experienced the most significant surge in VMT, with a rise of 53% rise during 
morning peak hours and a substantial 37% rise during evening peak hours, closely followed by 
collector and local street roads. As empty driving is taken into account within the network, it 
inevitably impacts congestion levels across all segments, as shown by the average speed reduction 
observed on these roads, shown in Figure 24. The findings indicate an average 25% reduction in 
speed on expressways, interstates, and other freeways. Evening peak hours exhibited the highest 
congestion levels, as illustrated in the figure. Interestingly, nighttime congestion levels remained 
relatively unchanged, with minimal fluctuations in speeds observed across all road types during 
nighttime hours.  

Figure 28. Percentage Change in VMT across all Road Types: No-AV vs AV Base Scenario 
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Figure 29. Percentage Change in Avg Speeds across all Road Types: No-AV vs AV Base Scenario 

Chapter 4. Long-distance Trip Chaining 

The NHTS contains four files: HOUSEHOLD, PERSON, VEHICLE and TRIP data files. We 
use the TRIP data file for this study (trippub.csv). It considers every trip segment as an 
individual trip: even those segments that are quick stops en route to one’s main destination. For 
example, a 150-mile trip from Austin to Houston that involves a refueling stop shows as two 
separate trips (one for “shopping” midway, and one for the true purpose of the trip at the final 
destination). Long-distance (LD) trips are defined as those with the real destination (not an en-
route “pit stop” for gas or food) more than 75-miles away (on the travel network). To address the 
limitation in segments vs true trips, we developed an algorithm to identify intermediate “trips” 
that are really just pit stops in a longer-distance trip chain en route to a final destination 
(resulting in fewer true LD trips). The algorithm is also designed to fuse “short” (less than 75-
mile one-way) trip segments into long-distance (LD) trips (more than 75 miles one-way) as well 
as “long” (>75 miles) and “short” (<75 miles) trip segments with each other when they can be 
considered part of chain to the final destination. Thus, the number of LD trips may rise or fall, 
relative to a simple counting of segments that are 75-miles or longer (which is the technique that 
most analysts use). The algorithm reflects trip coordinates (to appreciate trip direction, thereby 
avoiding back-and-forth trips or tours to many true destinations [like delivery chains]), dwell 
times at “destinations” (at the end of every trip segment, to avoid counting relatively short 
“pitstops”), and trip purpose (to distinguish refueling and meals en route, for example, from a 
longer-duration final-destination activity). 

After applying the algorithm’s many rules, the NHTS 2016/17 sample’s LD trips (i.e., those 
more than 75 miles one-way) fell by just 3.4% (from 1.84 one-way LD trips per American per 
month to 1.78). This brings the total number of NHTS person-trips down by 0.88%, with the 
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average American making 3.47 trips per day instead of the previously estimated 3.50 trips. 
Notably, the algorithm was only applied to trips or chains of trips that met the criteria for long-
distance travel (those segments more than 75 miles each or a series of related segments adding to 
more than 75 miles one-way), ensuring that it did not impact shorter trips. The best predictor in 
distinguishing pit stops are the coordinates (latitude and longitude) of stopping points. Followed 
by the purpose of the trip. Successive trip segments by each NHTS respondent were used to 
discern whether distance from the origin kept rising in a directed way, or started pivoting (or 
even falling), indicating changes in direction. If the Euclidean distance from the chain origin 
started falling (after rising after earlier stops), it indicated a return trip. Combined with other 
factors (including mode changes, site activity/trip-end purpose, and short-activity durations), 
these falling distances or changes in direction helped distinguish trip chains. Mode shifts (like 
driving to or taking a bus to an airport and changing planes at a hub airport) are not real 
destinations. Additionally, stopping away from the origin during a long-distance trip, to purchase 
food or gasoline, is often not a true destination - especially when the stop is short and trip 
direction unchanged. NHTS trip purposes are as follows in Table 12.  

Table 12. NHTS Trip Purposes (WHYTO variable) 
WHY TO 

variable ID NHTS Trip Purposes 

1 Regular home activities (chores, sleep) 
2 Work from home (paid), 3 Work, & 4 Work-related meeting / trip 
5 Volunteer activities (not paid) 
6 Drop off /pick up someone 
7 Change type (mode) of transportation 
8 Attend school as a student, 9 Attend childcare, 10 Attend adult care 

11 Buy goods (groceries, clothes, appliances, gas) 
12 Buy services (dry cleaners, banking, service a car, pet care) 
13 Buy meals (go out for a meal, snack, carry-out) 
14 Other general errands (like post office and library) 
15 Recreational activities (e.g., visit parks, movies, bars, & museums) 
16 Exercise (e.g., go for a jog, walk, walk the dog, go to the gym) 
17 Visit friends or relatives 
18 Health care visit (including medical, dental, & physical therapy) 
19 Religious or other community activities 
97 Something else, -9 Not ascertained, -8 I don't know, & -7 I prefer not to answer 

 
Meal and carry-out stops shorter than 90 minutes and general errand stop (like to a post office) 
shorter than 15 minutes are assumed to be part of a longer trip. While the algorithm is designed 
to identify and classify long-distance trips more accurately, there are limitations to pitstop 
inference. For example, it is challenging to determine whether a person stopped to purchase gas 
or a breakfast coffee when setting out on a long-distance trip.  The NHTS “WHYTO” purpose 
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categories (shown above) do not distinguish fuel stops from grocery or clothing-shop stops, and 
do not distinguish errand types (like a visit to the post office versus a library), making it difficult 
to categorize these as true destinations or pit stops along the way. To address this challenge, a 
destination dwell time threshold of 30 minutes (for fuel/shopping) and 15 minutes (for errands) is 
assumed to help identify longer stops that may indicate a true purpose. Some of these stops 
should be considered as necessary, separate, or true destinations that would have been made 
regardless of the longer trip that day. Similarly, stops near the end of a long-distance trip may be 
trips that would have been made anyway upon arrival at the destination. Travelers have many 
options in how they chain trips, and some important destinations may be along one’s long-
distance trip route. 

When “pit stops'' (short stops, typically to eat, refuel, change modes, etc.) on long-distance trips 
are no longer counted as destinations (thanks to the algorithm’s application), only the attributes 
of the final leg of a trip chain (variables of travel day trip purpose [WHYTRP90] and trip 
purpose summary [WHYTRP1S]) are used to determine the LD trip purpose. This approach 
reduces the shares of LD trips taken for commutes plus work trips, shopping, meals/food, and 
other volunteer activities/change in mode (indicated by the “97= Something else” purpose) by 
12.5, 35.5, 74.2, and 54.9 percentage points, respectively. Removing such pit stops raises the 
shares of (1) school plus religious trips, (2) medical trips, (3) transporting someone, and (4) 
social trips (visiting friends and relatives) plus recreational trips, by 14.8, 16.7, 20.8 and 21.0 
percentage points, respectively. Average and median LD person-trip lengths also rise (after 
applying the algorithm), by about 10 percent: from 268.5 to 289.9 (average LD trip) miles and 
from 129.2 to 138.5 (median) miles, respectively. See Table 13.  

Table 13. Trip Purposes Before and After Applying the Trip Chaining Algorithm 

  
Without Trip 

Chaining 
(Previous Method) 

With Trip Chaining % 
Change 

  # of trips 
% of 
Total 

# of 
trips 

% of 
Total 

# of LD Trips (> 75 miles one-way) in 
NHTS Sample 

15,972 
1.73% 

15,434 
1.69% 

-3.37% 

# of Person-Trips in NHTS Sample 923,573 915,457 
-0.88% 

# Trips per Day per American 3.495 3.465 

WHYTRP90 
(Travel Day 

trip purpose) 

01=To/From Work 1146 7.2% 1342 8.7% 17.1% 
02=Work-Related 

Business 
809 5.1% 941 6.1% 16.3% 

03=Shopping 2350 14.7% 1562 10.1% -33.5% 
04=Other 

Family/Personal Business 
1368 8.6% 1609 10.4% 17.6% 

05=School/Church 421 2.6% 506 3.3% 20.2% 
06=Medical/Dental 351 2.2% 421 2.7% 19.9% 
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08=Visit 
Friends/Relatives 

2534 15.9% 3025 19.6% 19.4% 

10=Other 
Social/Recreational 

3900 24.4% 3594 23.3% -7.8% 

11=Other (such as change 
of mode) 

3083 19.3% 2423 15.7% -21.4% 

99=Refused / Don't Know 10 0.1% 11 0.1% 10.0% 

WHYTRP1S 
(Trip purpose 

summary) 

01=Home 4537 28.4% 6010 38.9% 32.5% 
10=Work (and work-

related business) 
2138 13.4% 1870 12.1% -12.5% 

20=School/Daycare/Religi
ous activity 

271 1.7% 311 2.0% 14.8% 

30=Medical/Dental 
Services 

228 1.4% 266 1.7% 16.7% 

40=Shopping/Errands 1854 11.6% 1196 7.7% -35.5% 
50=Social/Recreational 3316 20.8% 4013 26.0% 21.0% 
70=Transport Someone 607 3.8% 733 4.7% 20.8% 

80=Meals 1693 10.6% 436 2.8% -74.2% 
97=Something Else (like 

unpaid volunteer 
activities & change of 

mode) 

1328 8.3% 599 3.9% -54.9% 

Note: NHTS samples exclude Americans under 5 years of age.  

This algorithm considers the location, timing, and sequence features of sample “trips” to infer the 
real reasons behind long-distance travels (where many “long” [> 75-mile] and/or “short” [< 75-
mile] segments may be describing a single long-distance trip). Figure 30 illustrates how 8-
segment and 3-segment trip chains have just three and two true destinations away from home 
(for business/work or visiting friends). The second example in this image highlights one of the 
limitations of the algorithm that was pointed out in the earlier sections. Here it is difficult to 
determine if the second stop is a true destination or an intermediate pit stop. Since the stop 
occurs at the beginning of a long trip, it is possible that it could be considered a true destination 
and would have warranted a separate trip regardless of whether or not a long-distance trip was 
planned that day. As elaborated in the earlier sections, looking at sequences of trip segments by 
the same person (over the 24-hour sample day), trip chains were determined based on 
coordinates, dwell time at destination (time at destination) and trip purpose. The logic used to 
determine this is as follows: 

If Trip destination purpose = "Change type of transportation" 
then part of chain 

else if Trip destination purpose = "Buy goods (groceries, clothes, appliances, gas)" & 
Dwell time < 30 min & Next trip distances from origin of increases 

then part of chain 
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else if Trip destination purpose = "Buy meals (go out for a meal, snack, carry-out)" & < 
90 min & Next trip distance from origin of increases 

then part of chain 
else if Trip destination purpose = "Other general errands (post office, library)" & Dwell 
time < 15 min & Next trip distances from origin of increases 

then part of chain 
else if Trip destination purpose = "Something else" & Dwell time < 30 min & Next trip 
distances from origin of increases 

then part of chain 



 

51 
 

Figure 30. Examples of Long-distance Trip Chaining (from Home, on Single day) 

Figure 31 displays maps with a LD trip origins and paths, distinguishing for origins and paths 
that have been considered part of a longer-distance trip. These maps offer a visual representation 
of the algorithm's impact on the classification of trips and stops. Overall, this algorithm provides 
a more accurate and comprehensive understanding of true long-distance travel patterns, 
accounting for the complex nature of multi-stop trips and ensuring that the resulting data is 
meaningful for transportation planning and policy.  
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Figure 31. Map of a Long-Distance Trip and Intermediate Segment Origins in Texas 
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Chapter 5. Comparisons of Different Origin-
Destination (OD) Travel Study Source 

This section compares the various datasets available to TxDOT, with a particular focus on 
identifying the most suitable source for validating the outputs of the Statewide Analysis Model 
(SAM) travel demand model. By exploring and comparing the different options, we hope to 
determine which dataset will provide the most accurate and reliable information for this purpose. 

Serving the nation’s second largest state (in population and area), TxDOT is responsible for 
maintenance and repair of over 80,000 centerline-miles of highways, which carry over 70% of 
the State’s annual 712 million vehicle-miles traveled (TxDOT 2022). INRIX’s TMC (traffic 
message channel) segments currently cover 101,353 of those centerline-miles, containing 
roughly 25% of the on-system network’s centerline-miles (and much higher coverage within 
metro areas), and 14.8% of the State’s 686,658 total (reflecting all local streets [TxDOT 2021]). 
Serving a population of 29 million, plus millions of visitors every month and year, TxDOT can 
make excellent use of the research team’s extensive Texas-focused data sets, developed over 
decades of transportation design, planning, and operations experience. 

Several of Table 14’s probe data are being leveraged, including those already accessible to the 
research team. They are RITIS’ National Performance Management Research Data Set 
(NPMRDS) – containing flows and speed (by road segment), and now trip-count data (by zone 
pair), INRIX’s historic and current/“live” speed data, and Replica’s simulated datasets which 
produces disaggregate trip and population tables, hourly origin-destination (OD) and mode split 
tables (can be as recent as the prior week). RITIS NPMRDS is provided via pooled funds (from 
participating agencies [including TxDOT] that also sign a data-sharing agreement with INRIX). 
One advantage of RITIS NPMRDS is that it is vendor-neutral (i.e., not specific to INRIX) 
allowing for indexing of roadway segments by Traveler Information Services Association 
(TISA) traffic message channel (TMC) identifiers. 

Table 14 Probe Data Sets 
Product Description 

INRIX 
Aggregates subsample of vehicles tracked by road network sensors, fleet vehicle 
devices, and mobile app users to estimate live and historic segment speeds. 
Provides origin-destinations analysis at regional level. 

RITIS’s 
NPMRDS 

Tool 

Provides vendor-neutral historic segment speeds and traffic origin-destination 
analyses among others on a pooled-funded platform. Currently leverages INRIX 
speed data. 

StreetLight 
 

Analytics process trajectories of vehicles tracked by vehicle navigation devices 
and smartphones to deliver traffic count estimations and origin-destination 
analyses, among others. May be useful for congestion studies. 

Replica Uses various sources such as mobile location data, consumer/resident data, built 
environment data, economic activity data and ground truth data to produce 
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simulations that mirror the movements and activities of residents, visitors, and 
commercial vehicle fleets in a given region and season on a typical day. 
Additionally, it can also generate mobility data including hourly nationwide OD 
table, mode splits and residential VMT. 

Wejo 
Connected-vehicle data (mostly GM vehicles, with OnStar-type connection) to 
provide high-frequency vehicle movement and driving event (e.g., hard 
braking) data. Can be used for speed and congestion studies. 

Geotab 
Collects connected-vehicle data to provide trip data, vehicle exception 
occurrences, hourly and daily traffic data, along with weather, urban 
infrastructure, and vehicle locations. 

HERE 
Offers third-party data services that include vehicle sensor info, weather, and 
consumer behavior data, mobility and smartphone data, and road + 
infrastructure data. 

One example of INRIX data use is for speed distributions by link and time of day and day of 
year. A total of 90,883 TMC segments were successfully matched to TxDOT’s speed limit 
inventory (which has 512,779 segments). Using INRIX’s TMC segments at 2 pm on Tuesday, 
November 16, 2021 (as extracted through the RITIS platform), Figure 32 shows the ratios of 
real-time speeds to posted speed limits across Texas’ four largest metro areas. Green-colored 
segments have ratios above 1.0, showing real-time (average) speeds that exceed the posted speed 
limit (across all TMC segments, state-wide). Figure 33’s histogram of these ratios shows how 
8.4% of the road segments have average speeds (at 2 pm on Nov. 16, 2021) that exceed the 
posted speed limits by at least 10 percent (i.e., 8.4% comes from summing the blue bars for x-
axis values of 1.1 and up). 

                               Austin                                                                 Houston 
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Figure 32. Spatial Pattern of INRIX’s Real-Time Speeds to Speed Limit Ratio Across Texas’ 4 Largest 
Regions (at 2 pm on Tuesday, Nov 16, 2021) 

                       San Antonio                                                          Dallas-Fort Worth 

Figure 33. Histogram of INRIX’s Real-Time (Average) Speeds Divided by Posted Speed Limits (Using 
Data at 2 pm on Tuesday, Nov 16, 2021) 

Figure 34 illustrates the comparison between INRIX segments, TxDOT-maintained roadways, 
and all public roadways in Austin area. It is worth noting that INRIX has a relatively 
comprehensive coverage of TxDOT-maintained roadways in this region, as evidenced by the 
blue segments in Fig 29’s map. Table 15 provides a sample (10 zones pairs) of RITIS trip tables 
(derived using the INRIX data) for passenger cars in the PM peak (3-6:30 PM) during a typical 
Monday in April. The OD columns follow the GEOID code convention provided by the US 
Census Bureau. 
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Figure 34. INRIX Segments (in blue) vs. TxDOT-maintained Roadways (in blue + red) and All Public 
Roadways (in grey/black). 

Note that INRIX TMCs are not GIS-encoded, so their positions are approximate. 

Table 15. Partial View of RITIS Trip Table Data for Dallas for the PM Peak 

Origin Destination Trips 
5021 5016 25 
5021 5017 12 
5021 5018 7 
5021 5019 182 
5021 5020 43 
5021 5021 622 
5021 5022 9 
5021 5023 20 
5021 5024 3 
5021 5025 3 
5021 5026 105 
5021 5027 146 
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5.1. Probe Data for Transportation System Planning and 
Operations 
Probe data, or data derived from measurements pervasively obtained from instrumented vehicles 
or travelers, is a wonderful, relatively low-cost source of traffic, trip-making, speed, and other 
data (Rahman 2019). Eshragh et al. (2017) validated US probe-data accuracy using Bluetooth 
traffic technology. Overall, probe data sources reflect the operating conditions of different 
roadway sections while reflecting site to site specifics. They reflect variation in traffic, trip-
making, speeds, mode choices, and other behaviors across times of day, roadway links, weather 
conditions, and traffic settings. The following sections review national and state guidance, key 
variables, traffic safety impacts, and distinct datasets. Collecting reliable data is key to any 
transportation system’s policy and planning, design and operations, management, and 
improvement. In an example of speed inference, direct traffic observation, by humans with 
cameras, stopwatches, radar, and laser guns are often used, reflecting labor-intensive, high-cost, 
low-accuracy exercises. On-road devices, like pneumatic road tubes and radar recorders, are also 
used for speed estimation across roadway networks, and most equipment requires frequent 
maintenance and calibration (WisDOT 2009). Moreover, vehicles cannot be filtered in the data 
set, vehicle direction may not be evident, on-road devices do not work properly under snow, and 
they are visible to travelers (as noted above). TxDOT (2015) has found that radar devices tend to 
underestimate 85th percentile speeds by about 3 mph.  Truck, car, bus, and traveler speeds, 
locations, and behaviors can be tracked much better with on-board/on-person devices, like cell 
phones and GPS. 

Probe vehicle data provide speed information from GPS devices installed on vehicles, cell 
phones, or vehicle telematics (Remias et al. 2015). Unlike other data sources, probe vehicles 
cover a wide area with a lower cost and with minimum maintenance and calibration. These data 
offer statewide and national coverage, at relatively low cost. Figure 35 illustrates the RITIS TMC 
segment coverage. The National Performance Management Research Data Set (NPMRDS), on 
the RITIS platform, is available to the Receiving Agency, includes past HERE Technologies, 
INRIX, and TomTom (2022) datasets. These are among the most common third-party suppliers 
of probe vehicle-derived speed data in the world. They are provided at 5-minute increments for 
the National Highway System, coded in a vendor-neutral format according to the Traffic 
Message Channel (TMC) network of segments. INRIX and RITIS also provide more detailed 
eXtreme Definition Segments (XDS) for each specific geographic area or route. Both HERE and 
TomTom also provide speed data for many interconnecting municipal roads (Roelofs & Preisen 
2021).   
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Figure 35. Texas TMC Segments from RITIS’ probe data 

MDOT (2019) uses probe data to calculate reliability and mobility performance measures across 
Michigan freeways. They previously used HERE data for freeway performance measurement 
and recently switched to INRIX. In addition to numerous studies that use probe data for corridor-
level performance studies (like Espada and Bennett 2015, Hellinga et al. 2008, Mathew et al. 
2017, and Vander Laan and Sharifi 2019, Vautin and Walker 2011), a few used probe data for 
speed-limit setting. Assuming all motorists are visible/instrumented, Kattan et al. (2014) provide 
an algorithm for variable speed limit setting using probe data (based on changing traffic density). 
And the Ohio DOT (2014) revised its speed limit tool to use INRIX data for 85th percentile speed 
calculations, to help flag sites where limits should probably be modified, as illustrated in Figure 
36. 

 
Figure 36. Ohio DOT’s (2014) Spreadsheet for 85th Percentile Speed Calculation 

INRIX Data 

The Ohio DOT’s (2014) Spreadsheet for 85th Percentile Speed Calculation using Remias et al. 
(2015) used probe data to optimize the speed limit change sites along 265 miles of I-65 in 
Indiana. INRIX average speed data were posted every minute for segments of length 0.2 to 2 mi. 
They showed how optimal limit-reduction locations are upstream of congested sites, like work 
zone locations. They assumed that (static and variable) speed limits were visible to motorists, but 
overlooked weather and time of day effects. Jha (2017) used INRIX probe data to conclude that 
the free-flow speed occurs during nighttime hours (9 PM-6 AM) on well-lighted highways, but 
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were unable to use sites with sparse traffic data, including minor arterials. For those roadways, 
they recommend using midday data (11 AM-3 PM). However, no probe data-based studies have 
yet considered the impacts of time of day, weather, traffic levels, or crash histories to 
recommend safe and reliable/robust speed limits on different road types, as this research project 
can do, for both static and variable speed limit settings, as TxDOT wishes. 

Figures 37. Ratios of INRIX/RITIS Average Speeds to Posted Limits Across Texas and Austin Networks 

a. Texas                                                                        b. Austin 

Figure 37a shows the spatial distribution of what INRIX calls “real-time speed” (averaged over 5 
minutes) to speed limit ratio for all RITIS TMC Road segments at 2 pm on Tuesday, November 
16, 2021. A total of 90,883 TMC segments were successfully matched to Texas speed limit 
inventory data, which has 512,779 road segments. Red segments are those who ratio exceeds 1, 
suggesting that drivers’ speeds regularly exceed the posted speed limit. And Figure 37b shows 
how 8.4% of Texas’ data segments may have an average (below the 85th percentile) free-flow 
speed that is 10% higher than the posted speed limit. This means that the 85th percentile speed 
(at 2 pm on a November Tuesday) may be 20+% higher than the posted speed. 



 

60 
 

Chapter 6. INRIX and RITIS 

The Texas Statewide Analysis Model (SAM) is a large model that covers the entire state of 
Texas. Due to its large geographic scale, high computation time owing to multiclass traffic 
assignment with six vehicles classes and four time periods, and an emphasis on infrequent and 
data-scarce trip types (long-distance and freight), it is costly and difficult to validate and 
calibrate the model using only traditional data collection methods. To address this issue, we 
explore the potential of using emerging alternative datasets to validate SAM. Furthermore, we 
aim to extract the day-to-day demand variation patterns that are currently not modeled in SAM’s 
“typical day" forecasts from these datasets. Analysis so far has focused on RITIS’s (Regional 
Integrated Transportation Information System) Nextgen Trip Analytics V4 dataset. RITIS is a 
transportation big data aggregation and dissemination platform offering a variety of services, 
such as real-time monitoring of transportation systems, data archives including probe vehicle trip 
data, and personal traffic alerts. RITIS’s Nextgen Trip Analytics V4 allows for the querying and 
aggregation of the probe vehicle trip data database provided by INRIX to obtain the Origin-
Destination (OD) matrix for a given day and time period. Currently, the Texas dataset is 
available for the date ranges of March through May and September and November for 2019 and 
February through April and September through November for 2020 and 2021. The analyses in 
this memorandum were conducted using the 2021 dataset. The weight class of interest can be 
specified when submitting a query on Nextgen Trip Analytics V4, allowing for light, medium, 
and heavy-duty vehicles to be analyzed separately. There are two probe source types: “connected 
vehicles” (CV) and “location-based services” (LBS). CV trips are recorded through in-vehicle 
GPS systems. This type of probe data is most common for light and medium-duty vehicles. LBS 
trips are recorded through cell-phone apps and makes up nearly all of the heavy-duty vehicle trip 
dataset. Findings for each weight class are presented below. 

6.1. Light-duty vehicles (LDVs) 
OD trip counts for LDV trips were downloaded from RITIS and processed for 35 weekdays and 
15 weekend days in 2021. The total daily trip counts and VMT approximated using shortest-path 
distances between TAZ centroids are shown in Figure 38. The data of September 18-19, October 
16-18, and November 16-18 were identified as outliers and removed from analysis. The cause of 
these spikes in trip counts are currently being investigated by INRIX. The averages and standard 
deviations of total trips/day and VMT/day, before and after removing the outliers, are shown in 
Table 16. The averages and standard deviations of total trips/day and VMT/day by the day-of-
the-week and month (with outliers removed) are shown in Table 17 and Table 18, respectively. 
Trip counts and VMT rise steadily from Monday to Thursday before increasing substantially on 
Friday. Saturdays also have high trip counts and VMT. Sundays have the lowest trip counts but 
higher average VMT than Monday, Tuesday, and Wednesday, implying longer trips. Regarding 



 

61 
 

changes from month to month, an increasing trend is observed as the year progresses. Whether 
this represents a seasonal trend or if it is due to an increase in sample size should be investigated.  

Figure 38. Total LDV Trips and VMT for Each Day in 2021 Downloaded from RITIS 

Table 16. Averages and Standard Deviations of Daily LDV Total Trips and VMT in RITIS in 2021 
(February through April and September through November) 

With 
Outliers? Day 

#Days 
in 

Sample 

Average 
(trips/day) 

Std Dev 
(trips/day) 

Average 
(VMT/day) 

Std Dev 
(VMT/day) 

Yes Weekday 35 days 12.3 M trips/d 4.4 M trips/d 81.7 M mi/d 28.0 M mi/d 
Weekend  15 12.7 M 5.2 M 100.8 M 42.7 M 

No Weekday 31 10.9 M 1.3 M 73.4 M 10.9 M 
Weekend  11 10.1 M 1.4 M 79.7 M 11.0 M 

Table 17. Averages and Standard Deviations of Daily LDV Total Trips and VMT in RITIS in 2021 by 
Day of the Week (February through April and September through November) 

Day 
#Days in 
Sample 

Average 
(trips/day) 

Std Dev 
(trips/day) 

Average 
(VMT/day) 

Std Dev 
(VMT/day) 

Monday 6 days 10.2 M trips/d 1.0 M trips/d 66.2 M mi/d 5.3 M mi/d 
Tuesday 6 10.3 M 0.9 M 66.9 M 5.2 M 

Wednesday 6 10.7 M 0.9 M 69.0 M 4.6 M 
Thursday 6 10.9 M 1.1 M 73.7 M 6.5 M 

Friday 7 12. 3M 1.3 M 88.6 M 10.0 M 
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Saturday 6 11.2 M 0.9 M 87.3 M 7.5 M 
Sunday 5 8.8 M 0.8 M 70.6 M 6.8 M 

Table 18. Averages and Standard Deviations of Weekday LDV Total Trips and VMT in RITIS in 2021 
by Month 

Day 
#Days in 
Sample 

Average 
(trips/day) 

Std Dev 
(trips/day) 

Average 
(VMT/day) 

Std Dev 
(VMT/day) 

February 5 days 9.6 M trips/d 0.5 M trips/d 65.2 M mi/d 5.3 M mi/d 
March 5 10.1 M 0.8 M 68.8 M 7.4 M 
April 5 10.0 M 0.3 M 67.8 M 4.0 M 

September 5 11.2 M 1.2 M 73.4 M 11.1 M 
October 4 12.1 M 0.8 M 80.5 M 9.0 M 

November 7 12.2 M 0.9 M 82.5 M 11.3 M 

The average trip counts of the observed OD pairs in the 2021 RITIS LDV dataset were compared 
against SAM outputs for the 2019 base scenario. Since RITIS contains substantially more intra-
zonal trips compared to SAM (26% vs 15% for weekday), all comparisons between RITIS and 
SAM are limited to inter-zonal trips. Figure 34 shows the distribution of the shortest-path 
distances (between zone centroids) for RITIS and SAM for inter-zonal trips. For both weekends 
and weekdays, the RITIS dataset contains more trips that are less than 5 miles compared to 
SAM. Table 19 shows the comparison of the RITIS average trip table and the SAM trip table for 
LDVs in terms of trips/day, VMT/day, and average trip distance. The ratio of RITIS to SAM 
values is the nearly identical for both trip counts and VMT for the average weekday, both being 
14.8%. Consequently, the average weekday trip distances are also equal, despite the difference in 
the distribution of approximate trip distances shown in Figure 39. This suggests that RITIS 
contains more long-distance trips compared to SAM, in addition to containing more short-
distance trips. These patterns are not repeated for the average weekend. The average weekday 
daily trips and VMT in RITIS are 18.4% and 15.3%, respectively, of those of SAM. The ratio of 
trip counts of RITIS to that of SAM is high compared to the other ratios, resulting in an average 
weekend trip distance that is 2 miles shorter for RITIS. This suggest that RITIS may be breaking 
up long trips on weekends for driver breaks. 
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Figure 39. Distribution of shortest-path distances for RITIS and SAM for LDVs (bin width = 5 miles) 

Table 19. Trips/day, VMT/day, and Average Trip Distance for Average RITIS LDV Trip Tables and 
SAM LDV Trip Tables (inter-zonal trips only) 

 Trips/day VMT/day Average trip 
distance (miles) 

RITIS weekday avg 8.1 M trips/d 73.4 M mi/d 9.1 mi 
SAM weekday 54.7 M 496 M 9.1 

RITIS weekend avg 7.6 M 79.7 M 10.4 
SAM weekend 41.5 M 522 M 12.6 

The average weekday LDV trip productions and attractions for inter-zonal trips in RITIS were 
compared against SAM estimates. Because the correlation between TAZ trip production and 
attraction were 0.99 and 0.97 in RITIS and SAM, respectively, the productions and attractions 
were summed. Figure 41 shows the cumulative distribution function of the trip production + 
attraction across TAZs, ordered with respect to the SAM values. It reveals that trips are more 
evenly distributed across TAZs in RITIS compared to SAM, with the top 1,000 TAZs in SAM 
accounting for 64% of origins and destinations in trips, while the same TAZs constituting just 
52% in RITIS. Furthermore, Figure 42 shows the production + attraction at each county. The 
bins of SAM are scaled up by 6.75 to reflect the difference in the total number of trips. The 
county-level productions + attractions are very similar between RITIS and SAM. However, there 
are more counties, especially in the southeast, that have higher shares in RITIS compared to 
SAM. Moreover, weekday HDV flows in RITIS and SAM were mapped at the level of 25 
TxDOT districts (Figure 42). The line width between an OD pair is proportional to its share of 
inter-district trips (i.e., the weights of the lines in each figure sum to 1). Overall, flows between 
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districts are similar between RITIS and SAM, with the highest flows by far between the Dallas 
and Fort Worth Districts (31% and 42% of inter-district trips in RITIS and SAM, respectively).  

Figure 40. Cumulative Distribution Function of Weekday LDV Trip Production + Attraction at the 6860 
TAZs 

Figure 41. Weekday LDV Trip Production + Attraction at Each County in RITIS (Avg) and SAM 
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Figure 42. Average RITIS Weekday HDV Flows vs SAM Predicted Flows 

Finally, ordinary least squares regression was performed to further evaluate the differences 
between the RITIS dataset and the SAM counts (at both the TAZ and then the county level of 
spatial aggregation). OD pairs where the count was 0 in both SAM and RITIS were removed 
from the analyses. Regression at the level of 6860 SAM zones provided a slope of 4.18 and R-
squared of 0.614 (correlation coefficient of 0.784) (Figure 44). The slope is lower than the 
expected 6.75. The fit is improved at the level of 254 counties with an R-squared of 0.948 
(correlation coefficient of 0.974) (Figure 44). The slope of 8.66 is higher than the expected 6.75. 
However, the slope is highly influenced by the top 8 points with the highest flows. The origin 
county equals the destination county for these points. After these 8 are removed, the R-squared 
falls to 0.920 (correlation coefficient of 0.959) and the slope of 5.50 is closer to the expected 
(Figure 46). 
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Figure 43. RITIS Average Weekday LDV Counts vs SAM between TAZs (n = 46.5 M) 

y = 0.45 + 4.18x
R2 = 0.614

Figure 44. RITIS Average Weekday LDV Counts vs SAM between Counties before Removing 8 High-
Count (>1 M LDV Trips/day in SAM) Points (n = 64,509) 

y = -236 + 8.66x
R2 = 0.948
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Figure 45. RITIS Average Weekday LDV Counts vs SAM between Counties before Removing 8 High-
Count (>1 M LDV Trips/day in SAM) Points (n = 64,501) 

y = -3.87 + 5.50x
R2 = 0.920

6.2. Medium-duty vehicles (MDVs) 
OD trip counts for MDV trips were downloaded from RITIS and processed for the same 35 
weekdays and 15 weekend days in 2021 as LDVs. The total daily trip counts and VMT 
approximated using shortest-path distances between TAZ centroids are shown in Figure 47. 
Interestingly, unusually high counts are observed for the same days as LDVs (September 18-19, 
October 16-18, and November 16-18), although high counts on weekdays are not as obvious due 
to the lower trip counts on weekends for MDVs. The averages and standard deviations of total 
trips/day and VMT/day, before and after removing these outliers, are shown in Table 20. The 
averages and standard deviations of total trips/day and VMT/day by the day-of-the-week and 
month (with outliers removed) are shown in Table 21 and Table 22, respectively. Tuesdays have 
the highest trip counts and VMT on average. Fridays have lower trip counts and VMT compared 
to other weekdays on average, contrasting LDVs, which have the highest trip counts and VMT 
on Fridays. Additionally, weekends data average just 32% and 36% of weekday trip counts and 
VMT, respectively. Regarding changes from month to month, a slight decrease is observed as the 
year progresses, which is the opposite of what was observed for LDVs. Whether this represents a 
seasonal trend or if it is due to changes in sampling methods should be investigated. 
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Figure 46. Total MDV Trips and VMT for Each Day in 2021 Downloaded from RITIS 

Table 20. Averages and Standard Deviations of Daily MDV Total Trips and VMT in RITIS in 2021 
(February through April and September through November) 

With 
Outliers? Day 

#Days 
in 

Sample 

Average 
(trips/day) 

Std Dev 
(trips/day) 

Average 
(VMT/day) 

Std Dev 
(VMT/day) 

Yes Weekday 35 days 555,001 
trips/d 

168,029 
trips/d 

5.84 M mi/d 1.67 M mi/d 

Weekend  15 182,863 52,041 2.23 M 0.66 M 

No Weekday 31 504,829 41,231 5.33 M 0.46 M 
Weekend  11 161,255 34,305 1.93 M 0.26 M 

Table 21. Averages and Standard Deviations of Daily MDV Total Trips and VMT in RITIS in 2021 by 
Day of the Week (February through April and September through November) 

Day 
#Days in 
Sample 

Average 
(trips/day) 

Std Dev 
(trips/day) 

Average 
(VMT/day) 

Std Dev 
(VMT/day) 

Monday 6 days 507,862 
trips/d 

34,490 
trips/d 

5.36 M mi/d 0.40 M mi/d 

Tuesday 6 523,610 47,301 5.50 M 0.52 M 
Wednesday 6 517,746 38,210 5.46 M 0.44 M 
Thursday 6 513,733 32,193 5.46 M 0.35 M 

Friday 7 467,429 23,055 4.93 M 0.27 M 
Saturday 6 188,875 19,199 2.11 M 0.20 M 
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Sunday 5 128,110 11,519 1.71 M 0.11 M 

Table 22. Averages and Standard Deviations of Weekday MDV Total Trips and VMT in RITIS in 
2021 by Month 

Day 
#Days in 
Sample 

Average 
(trips/day) 

Std Dev 
(trips/day) 

Average 
(VMT/day) 

Std Dev 
(VMT/day) 

February 5 days 558,700 
trips/d 

26,465 
trips/d 

5.88 M mi/d 0.28 M mi/d 

March 5 516,120 32,203 5.50 M 0.35 M 
April 5 529,498 32,498 5.69 M 0.32 M 

September 5 480,608 24,722 5.02 M 0.25 M 
October 4 470,643 15,676 4.89 M 0.17 M 

November 7 477,501 22,889 5.02 M 0.22 M 

The average trip counts of the observed OD pairs in the 2021 RITIS MDV dataset were 
compared against SAM outputs for the 2019 base scenario. Since RITIS contains more intra-
zonal trips compared to SAM (28% vs 22% for weekday) as it was for LDVs, all comparisons 
between RITIS and SAM are again limited to inter-zonal trips. Table 23 shows the comparison 
of the RITIS average trip table and the SAM trip table for LDVs in terms of trips/day, VMT/day, 
and average trip distance. For weekdays, the average MDV trip total daily trip count of RITIS is 
125% of that of SAM, while the VMTs are nearly equal. For weekends, the average MDV trip 
total daily trip count and VMT of RITIS are 39% and 36% of those of SAM, respectively, as 
there is virtually no change in SAM from weekday to weekend. These discrepancies suggest that 
the MDV class in RITIS does not refer to the same group of vehicles as SAM. As further 
comparison is not meaningful, this concludes the analysis of the MDV data from RITIS. 

Table 23. Trips/day, VMT/day, and Average Trip Distance for Average RITIS MDV Trip Tables and 
SAM MDV Trip Tables (inter-zonal trips only) 

 Trips/day VMT/day Average trip 
distance (miles) 

RITIS weekday avg 364,225 trips/d 5.33 M mi/d 14.6 mi 
SAM weekday 290,549 5.35 M 18.4 

RITIS weekend avg 114,486 1.93 M 16.9 
SAM weekend 290,573 5.35 M 18.4 

6.3. Heavy-duty vehicles (HDVs) 
OD trip counts for LDV trips were downloaded from RITIS and processed for the same 35 
weekdays and 15 weekend days in 2021 as LDVs and MDVs. The total daily trip counts and 
VMT approximated using shortest-path distances between TAZ centroids are shown in Figure 
48. Unusually high counts are observed for the same days as LDVs and MDVs (September 18-
19, October 16-18, and November 16-18). The averages and standard deviations of total trips/day 
and VMT/day, before and after removing the outliers, are shown in Table 24. The averages and 
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standard deviations of total trips/day and VMT/day by the day-of-the-week and month (with 
outliers removed) are shown in Table 25 and Table 26, respectively. In general, there are more 
trips at the beginning of the workweek (starting with Monday), but higher VMT mid-week. 
Fridays have lower trip counts and VMT compared to other weekdays on average. Additionally, 
weekends data average just 51% and 64% of weekday trip counts and VMT, respectively. Like 
MDVs but unlike LDVs, a decreasing trend is observed as the year progresses, with the weekday 
average of November being ~20,000 trips or 24% less than that of February.  

Figure 47. Total HDV Trips and VMT for Each Day in 2021 Downloaded from RITIS 

Table 24. Averages and Standard Deviations of Daily HDV Total Trips and VMT in RITIS in 2021 
(February through April and September through November) 

With 
Outliers? Day 

#Days 
in 

Sample 

Average 
(trips/day) 

Std Dev 
(trips/day) 

Average 
(VMT/day) 

Std Dev 
(VMT/day) 

Yes Weekday 35 days 77,605 
trips/d 

21,013 trips/d 2.64 M 
mi/d 

0.65 M mi/d 

Weekend  15 43,548 15,583 1.87 M 0.66 M 

No Weekday 31 71,653 7,282 2.45 M 0.27 M 
Weekend  11 36,442 4,646 1.56 M 0.17 M 



 

71 
 

Table 25. Averages and Standard Deviations of Daily HDV Total Trips and VMT in RITIS in 2021 by 
Day of the Week (February through April and September through November) 

Day #Days in 
Sample 

Average 
(trips/day) 

Std Dev 
(trips/day) 

Average 
(VMT/day) 

Std Dev 
(VMT/day) 

Monday 6 days 72,483 
trips/d 

8,076 trips/d 2.33 M mi/d 0.25 M mi/d 

Tuesday 6 72,371 7,361 2.54 M 0.26 M 
Wednesday 6 74,070 6,611 2.60 M 0.26 M 

Thursday 6 72,415 6,349 2.51 M 0.22 M 
Friday 7 67,601 6,125 2.27 M 0.20 M 

Saturday 6 37,598 4,697 1.60 M 0.17 M 
Sunday 5 35,054 4,182 1.51 M 0.16 M 

Table 26. Averages and Standard Deviations of Weekday HDV Total Trips and VMT in RITIS in 2021 
by Month 

Day 
#Days in 
Sample 

Average 
(trips/day) 

Std Dev 
(trips/day) 

Average 
(VMT/day) 

Std Dev 
(VMT/day) 

February 5 days 83,216 
trips/d 

2,726 trips/d 2.86 M mi/d 0.15 M mi/d 

March 5 76,994 1,897 2.63 M 0.12 M 
April 5 74,101 2,201 2.52 M 0.13 M 

September 5 67,593 1,931 2.24 M 0.11 M 
October 4 67,614 1,982 2.28 M 0.10 M 

November 7 63,038 1,770 2.20 M 0.12 M 

The average trip counts of the observed OD pairs in the 2021 RITIS HDV dataset were 
compared against SAM outputs for the 2019 base scenario. SAM has two trip tables for HDVs: 
freight and non-freight. Non-freight HDVs serve the local area whereas freight accounts for more 
long-distance trips. These two trip tables were combined into one HDV trip table for SAM. Since 
RITIS contains substantially more intra-zonal trips compared to SAM (20% vs 9.5% for 
weekday), as it was for LDVs and MDVs, all comparisons between RITIS and SAM are again 
limited to inter-zonal trips. Figure 49shows the distribution of the shortest-path distances 
(between zone centroids) for RITIS and SAM for inter-zonal trips. Interestingly, the distance 
distributions of RITIS do not compare the same way to those of SAM between weekends and 
weekdays. For the average weekday, the RITIS contains more trips shorter than 20 miles 
compared to SAM, accounting for 50% of trips in RITIS but only 40% in SAM. For the average 
weekday, however, the RITIS contains a similar share of trips shorter than 20 miles as SAM but 
more trips over 80 miles. Table 27 shows the comparison of the RITIS average trip table and the 
SAM trip table for LDVs in terms of trips/day, VMT/day, and average trip distance. The average 
weekday daily trips and VMT in RITIS are 16.6% and 14.5% of those in SAM, respectively. The 
average trip distance in RITIS is 6.3 miles shorter than that of SAM. This suggests that RITIS is 
breaking up trip for driver breaks. On the other hand, the average weekend daily trips and VMT 
in RITIS are 9.7% and 13.0% of those in SAM, respectively, as the decrease in HDV trips from 
weekdays to weekends is 47.3% in RITIS but only 10.0% in SAM. Furthermore, the average 
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weekend distance is 9.4 miles longer than the average weekday distance in RITIS but 10.2 miles 
shorter in SAM. These inconsistencies between weekdays and weekends cannot be explained by 
sampling or trip definition differences between RITIS and SAM and suggests that SAM’s 
weekend model should be reviewed for how it models HDVs and freight. 

Figure 48. Distribution of shortest-path distances for RITIS and SAM for HDVs (bin width = 20 miles) 

Table 27. Trips/day, VMT/day, and Average Trip Distance for Average RITIS HDV Trip Tables and 
SAM HDV Trip Tables (inter-zonal trips only) 

 Trips/day VMT/day Average trip 
distance (miles) 

RITIS weekday avg 57,254 trips/d 2.45 M mi/d 42.7 mi 
SAM weekday 344,350 16.9 M 49.0 

RITIS weekend avg 29,930 1.56 M 52.1 
SAM weekend 309,994 12.0 M 38.8 

The average weekday HDV trip productions and attractions for inter-zonal trips in RITIS were 
compared against SAM estimates. Because the correlation between TAZ trip production and 
attraction were 0.99 and 0.96 in RITIS and SAM, respectively, the productions and attractions 
were summed. Figure 50 shows the cumulative distribution function of the trip production + 
attraction across TAZs, ordered with respect to the SAM values. It reveals that trips are more 
evenly distributed across TAZs in RITIS compared to SAM, with the top 1,000 TAZs in SAM 
accounting for 68% of origins and destinations in trips, while the same TAZs constituting just 
48% in RITIS. This was also observed for LDVs. However, there seems less of an agreement in 
the ranking of the TAZs by production + attraction, as portrayed by the roughness of the curve 
for RITIS. Furthermore, Figure 51 shows the production + attraction at each county. The bins of 
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SAM are scaled up by 6.01 to reflect the difference in the total number of trips. Although Figure 
43 shows that RITIS has trips spread more evenly spatially distributed, Figure 50 reveals that 
there are some areas missing trips in RITIS, namely western Texas. Moreover, weekday HDV 
flows in RITIS and SAM were mapped at the level of 25 TxDOT districts (Figure 43). The line 
width between an OD pair is proportional to its share of inter-district trips (i.e., the weights of the 
lines in each figure sum to 1). RITIS and SAM are similar in terms of high freight flows from 
Laredo to the Dallas and Fort Worth districts, through San Antonio, Austin, and Waco districts. 
However, SAM has more flows to and from the Houston district compared to RITIS. 

Figure 49. Cumulative Distribution Function of Weekday HDV Trip Production + Attraction at the 6860 
TAZs 
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Figure 50. Weekday HDV Trip Production + Attraction at Each County in RITIS (Avg) and SAM 

Figure 51. Average RITIS Weekday HDV Flows vs SAM Predicted Flows 

Finally, ordinary least squares regression was performed to further evaluate the differences 
between the RITIS dataset and the SAM counts (at both the TAZ and then the county level of 
spatial aggregation) OD pairs where the count was 0 in both SAM and RITIS were removed 
from the analyses. Although the fit at the level of 6680 SAM zones was extremely poor with no 
discernable relationship (Figure 52), regression at the level of 254 counties provided a much-
improved fit with R-squared = 0.639 (correlation coefficient of 0.80), suggesting reasonable fit 
(Figure 53). However, the 14 outlier points at high flows (with origin zone equaling destination 
zone mostly) are controlling the slope (which is less than half what it should be) and the fit 
statistic. When those 14 are removed, the R2 falls to 0.302 (correlation coefficient of 0.55), and 
the slope of 4.59 is closer to the expected (Figure 54). 
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Figure 52. RITIS Average Weekday HDV Counts vs SAM between TAZs (n = 38.5 M) 

y = 0.01 + 0.10x
R2 = 0.001

Figure 53. RITIS Average Weekday HDV Counts vs SAM between Counties before Removing 14 High-
Count (>500 HDV Trips/day in RITIS) Points (n = 63,440) 

y = 3.23 + 2.44x
R2 = 0.639
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Figure 54. Weekday HDV Counts vs SAM between Counties before Removing 14 High-Count (>500 HDV 
Trips/day in RITIS) Points (n = 63,426) 

y = 1.92 + 4.59x
R2 = 0.302

6.4. Permanent Traffic Recorders (PTRs) 
From 2013 through 2022, TxDOT maintained 398 PTR stations, which records traffic counts 
using loop detectors. The locations of these PTR stations are shown in Figure 56 (left). The 
number of stations in the dataset varies by year and fluctuates throughout each year as shown in 
Figure 57. This makes it difficult to directly observe variations in total traffic volumes across the 
state. Of the 398 stations in the data set, 178 that have data for more than 90% of days from 2019 
through 2022 were identified (Figure 56 right). There does not seem to be an obvious spatial bias 
for the location of the qualifying stations. Missing values and values over 5 standard deviations 
away from the mean in 2019, 2021, and 2022 were imputed as the average for the day of the 
week for the same month over the 3 years. Counts from February 13-17, 2021, and February 3, 
2022, were kept because the cause can be identified as winter storms. For 2020, missing values 
were imputed using the same method but averaged using data from just 2020. The resulting total 
daily traffic counts over the four years are plotted in Figure 57. The start of 2020, 2021, and 
2022 are offset by 1, 3, and 4 days respectively to align the days of the week. The demand 
patterns align well over the four years, setting aside extraordinary events such as the COVID-19 
pandemic and the winter storms in 2021 and 2022. The peaks and valleys of the oscillations are 
Fridays and Sundays, respectively, with their ratio ranging between 4:3 and 3:2. January clearly 
has the least traffic volume, but the differences between the other months are not as visible. 
Holiday rush days, such as the day before Fourth of July or Thanksgiving, seem to have similar 
traffic volumes as typical Fridays at the PTR stations, as congestion feedback is causing the caps 
to stay fairly flat. 
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Figure 55. All 398 PTR Station Locations and 178 Stations Used in Figure 52 

Figure 56. Number of Distinct PTR Stations in the Dataset for Each Day 
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Figure 57. Total Daily Traffic Counts Across 178 PTR Stations from 2019 through 2022 

Regression was used to study the demand variations through the year for all PTR stations. The 
daily total traffic counts at each station were standardized to z-scores using the mean and 
standard deviation at the station over the 10 years. The explanatory variables include days of the 
week, month, year, and holiday. In addition, variables for certain holidays and surrounding days 
that are widely reported to have large changes in traffic patterns were added. These holidays are 
Memorial Day, Fourth of July, Labor Day, Thanksgiving, and Christmas. The regression result is 
shown in Table 28. The R-squared was 0.362 (n = 885.274). On average, traffic volumes 
fluctuate by 1.63 standard deviations over the course of a week, with Sundays being the least 
busy and Fridays being the busiest. The difference between Mondays and Tuesdays was 
statistically insignificant. January is the least busy month, while June and July are the busiest. 
The largest increase (0.344 standard deviations) occurs from February to March. The largest 
decrease (0.438 standard deviations) occurs from December to January. Traffic volumes have 
been steadily increasing since 2013, with the 2022 counts being 0.89 standard deviations above 
2013 counts on average. Even the pandemic-affected counts of 2020 were higher than that of 
2014. Traffic volumes fully recovered and surpassed 2019 levels in 2022. Looking at specific 
holidays, increased traffic was widely reported on certain days surrounding these holidays, such 
as Fridays before Memorial Day and Labor Day weekends, on Tuesday and Wednesday before 
Thanksgiving and on the Sunday after Thanksgiving Day, and on the day before Christmas Eve, 
were confirmed, except for the day after Christmas. Furthermore, compared to other holidays, 
these five holidays saw greater reduction in traffic volumes. The total decrease was greater than 
1 standard deviation for Fourth of July, Thanksgiving Day, Friday after Thanksgiving Day, and 
Christmas Day. The total increase was greater than 1 standard deviation for the Wednesday 
before Thanksgiving Day. 

Table 28. PTR Daily Traffic Count Z-Score Regression Result 
Variable Estimate (t) 
Constant -0.945 (-233) 

Monday/Tuesday (base day) 0 
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Wednesday 0.088 (31.5) 
Thursday 0.281 (101) 

Friday 0.852 (302) 
Saturday -0.202 (-72.5) 
Sunday -0.778 (-277) 

January (base month) 0 
February 0.149 (35.3) 
March 0.493 (119) 
April 0.314 (75.7) 
May 0.450 (107) 
June 0.570 (137) 
July 0.5294 (126) 

August 0.465 (112) 
September 0.402 (95.3) 

October 0.498 (121) 
November 0.484 (110) 
December 0.438 (102) 

Year 2013 (base year) 0 
Year 2014 0.142 (37.5) 
Year 2015 0.339 (86.3) 
Year 2016 0.506 (111) 
Year 2017 0.612 (172) 
Year 2018 0.737 (191) 
Year 2019 0.850 (239) 
Year 2020 0.210 (58.5) 
Year 2021 0.801 (224) 
Year 2022 0.891 (250) 

Federal holiday -0.307 (-46.3) 
Friday before Memorial Day 0.445 (26.5) 

Memorial Day -0.301 (-16.6) 
July 3 0.307 (16.7) 

Fourth of July -0.736 (-41.1) 
Friday before Labor Day 0.518 (31.4) 

Labor Day -0.099 (-5.58) 
Tuesday before Thanksgiving 0.669 (40.2) 

Wed before Thanksgiving 1.275 (75.8) 
Thanksgiving Day -1.121 (-62.2) 

Friday after Thanksgiving -1.199 (-70.9) 
Saturday after Thanksgiving -0.102 (-6.00) 
Sunday after Thanksgiving 0.890 (52.9) 

December 23 0.364 (21.6) 
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Christmas Eve -0.720 (-40.7) 
Christmas -1.691 (-95.0) 

December 26 -0.216 (-11.9) 
*Federal holidays include New Year’s Day, Martin Luther King, Jr. Day, Presidents’ Day, Memorial Day, 
Independence Day, Labor Day, Veterans Day, Thanksgiving, and Christmas. 

Overall, the RITIS Nextgen Trip Analytics V4 and PTR datasets show some potential in 
capturing variations in demand. However, special care and more analysis must be taken in order 
to use them to validate SAM or introduce demand variations in SAM equations. Specifically, 
analysis of trip tables in RITIS showed unexplained spikes in demand, possible differences in the 
definition of a trip and vehicle types, and spatial biases. PTR data, while demonstrating 
consistent demand variation patterns, have some inherent issues. Because the PTR stations are 
located only along major roadways, it has a tendency to underestimate demand variations in both 
directions, as it does not capture differences in route choice at various levels of demand. 
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Conclusions 

This TxDOT research project and report focus on the integration of AVs, SAVs, and ATrucks into 
the transportation network, necessitating substantial modifications to the mode choice component 
of the model. This involves script adjustments in skim creation, mode choice, traffic assignment, 
and report generation, as discussed in detail. An anticipated 15% rise in trip production rates in 
2040 accommodates the expected growth in travel demand driven by AVs, especially for those 
without cars, those with mobility limitations, and elderly persons. For short-distance trips, mode 
splits are fixed by the modeler’s own design (since SAM allows mode shifts only in the LD trips), 
The VOTT for AVs and SAVs was assumed to be 20% less than traditional human-driven vehicles 
(HVs), with operating costs of $0.60 and $1.00 per mile, respectively. The operating costs for 
ATrucks were assumed to be 1.5 times those of HTrucks to account for automation equipment cost 
and additional training expenses for humans supervising the truck) with a 25% reduction in VOTT 
for all AV scenarios (except for scenario 3 which assumes 50% reduction in VOTT). For trips that 
are less than 50 miles, the mode split stays the same. However, for trips that are longer than 50 
miles, the nested logit model was modified to include AVs, SAVs and ATrucks. 

Results show that, for trips that are longer than 50 miles, AVs + SAVs (personal) captured a 14% 
of market share, accompanied by a 17 percentage-point decline in human-driven "drive alone" 
mode. This shift can be attributed to a 25% reduction in Vehicle VOTT, allowing individuals to 
use their time more effectively. Personal AV driving with two or more occupants had share of 7% 
and 11%, respectively. SAV driving captured mode share of 3% and 4% when used with three or 
more occupants, while human-driven shared rides saw fall of 5% and 10% points with same party 
size. The ability to use time effectively in AVs has encouraged travelers to opt for more distant 
locations, resulting in an 18% rise in average trip length (from 121 miles to 142 miles) for 
infrequent long-distance business trips and a 13% rise (135 miles to 151 miles) for non-business 
trips exceeding 50 miles but less than 400 miles.  

Average trip length rose across all vehicle categories, with light, medium, and heavy-duty trucks 
experienced rise of 35%, 32%, and 28%, in their mean trip distance travelled. This trend indicates 
an inclination for covering greater distances, likely due to the removal of driving burdens in AV 
modes. Without travel demand management (like credit-based congestion pricing), congestion 
issues will grow, thanks to an average VMT rise of 25.6% (from 1.09 to 1.37 billion miles per 
day). Of course, about 14% of this VMT rise is due to our starting assumption that AVs enable 
15% more trip generation by passengers (for all trip purposes by all household types). The other 
11% comes from more driving, longer trips, less flying, and a shift to ATrucks.  Due to much 
higher VMT loads on the Texas network (as encoded in SAM, which is about 80% of centerline 
miles in the State of Texas), travel speeds are estimated to fall by about 35% on average (for the 
coded network). The VHT jumped by about 304%, largely thanks to passenger travel favoring the 
AM and PM peaks and mid-day, where travel speeds fell by 68%, 67%, and 40%. Speeds during 
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night-time remained steady. Scenario analyses reveal that predicted mode shares of AVs, SAVs, 
and ATrucks are sensitive to cost variations.   

The integration of ATrucks into the transportation system shifts the distribution of consumer 
manufacturing goods, with ATrucks emerging as the dominant choice, occupying approximately 
43% of tons moved, while tonnage moved with HTruck fell by 39 percentage point across all 
commodities. This shift was found particularly in trips involving metallic and nonmetallic 
materials, consumer manufacturing, paper, petroleum, and food, which witness a decline of over 
40 percentage-point in trips made by Htrucks, consequently leading to a rise in the share of trips 
made by ATrucks. The study presents six distinct scenarios, each examining the effects of different 
factors on transportation choices and network characteristics. In the first scenario, SAVs are made 
40% less expensive, ATrucks costing 20% more than HTrucks, and personal AVs remaining cost-
neutral. These changes triggered a shift towards ground travel, particularly in the drive-alone 
mode. Business long-distance person trips ranging from 50 to 400 miles saw a 10% rise, while 
non-business trips within the same distance range have experienced a 15% rise. Conversely, air 
travel has saw a decline of 20% in business trips and 15% in non-business person trips within this 
distance bracket. On the other hand, inter-city rail’ market share fell by 15% and 13% for business 
and non-business long-distance trips, respectively.  

The second scenario, the operational costs of personal AVs was increased by 33%, while SAV 
costs were kept unchanged. The findings show 41 percentage point decline in “drive-alone” trips 
exceeding 400 miles. The third scenario deals effects of further 50% reduction in VOTT for AV 
passengers. These changes led to over 23% rise in VMT across expressways, arterials, interstates, 
and other freeways. This shift in travel behavior is mirrored in reduced airport boarding (by 5%) 
specifically at Dallas/Fort Worth International Airport, George Bush International Airport, and 
San Antonio Airport. The fourth scenario introduces parameters that promotes AVs over HVs. The 
findings show that in large urban areas, where despite the availability of AVs, a considerable 
portion of LD trips (38%) still involve traditional HVs. However, the removal of HVs caused a 
10% rise in “drive-alone” AV trips. Additionally, SAVs trips saw a rise of 10% for two occupants 
and a 21% rise for three or more occupants. The fifth scenario explores the impact of high costs 
associated with personal ownership of AVs, leading individuals to favor SAVs and shifting back 
to HVs. As a result, a preference for SAVs led to an 11% mode share for “drive alone” SAVs in 
case of business trips. Final scenario considers empty SAVs driving within the transportation 
network, included by a 20% fall in average passenger occupancy. The findings show rise in 
average VMT across all road types. Local streets saw the spike of 53% in VMT during morning 
peak hours and 37% rise during evening peak hours, closely followed by collector and local street 
roads.  

This research project provides a thorough evaluation of different datasets that the TxDOT has 
access to. The main focus is on determining the most appropriate source for verifying the results 
of the Statewide Analysis Model (SAM) travel demand model. The study assesses the 
effectiveness of INRIX's Traffic Message Channel (TMC) segments, which cover a large part of 
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the on-system network. This evaluation takes into account the extensive duties of TxDOT in 
managing and fixing more than 80,000 centerline-miles of highways, which facilitate over 70% of 
the State's yearly vehicle-miles traveled.   TxDOT, which serves a population of 29 million and 
many visitors, can gain advantages from the research team's comprehensive datasets that are 
specifically focused on Texas. These datasets have been collected over many years of expertise in 
transportation design, planning, and operations.  

The study also shows the use of INRIX data to analyze speed distributions, revealing significant 
variations in real-time speeds across the major metropolitan regions of Texas.   In addition, it 
provides a visual comparison between INRIX segments and the routes managed by TxDOT, as 
well as public roadways in the Austin area, showing broad coverage in the region. The base 2019 
SAM results were compared against several alternative data sources. Results show that the RITIS 
data reveals some patterns for HDV travel over the course of a week, however, there are some 
unexplained variations in the total number of trips and VMT in the data, such as a decreasing trend 
over the available months and some sudden spikes (over 2x the normal levels).  

Additionally, the average weekday HDV trip distance in RITIS is 10 miles shorter than that in the 
SAM forecast, suggesting that RITIS is breaking up trips for driver breaks. There are also spatial 
sampling biases in RITIS with trips distributed more unevenly compared to SAM. Chiefly, it is 
missing flows to and from west Texas and the Houston area. Furthermore, ordinary least squares 
regression was used to compare the OD trip counts between RITIS and SAM. Regression at the 
TAZ level provided an extremely poor fit, and while aggregating to the county level improved the 
fit, the slope was heavily controlled by a few outliers with very high flows. In addition, regression 
was performed on permanent traffic recorder (PTR) data from 2023 through 2022 to reveal demand 
variations. The daily total traffic counts at each station were standardized to z-scores. Results 
reveal that on average, traffic volumes fluctuate by 1.63 std dev over the course of a week, with 
Sundays being the least busy and Fridays being the busiest. Results also show that January is the 
quietest month, while June and July are the busiest. Furthermore, demand variations around a few 
select holidays were studied in detail in the regression, revealing that Wednesday before 
Thanksgiving and Christmas see the largest increase and decrease, respectively, from a regular 
comparable day in the same month. 

The study also includes an algorithm developed to detect intermediary "trips" that function as quick 
breaks within longer travel chains using the National Household Travel Survey (NHTS) and its 
TRIP data file (trippub.csv). The TRIP data file treats each trip segment as a separate journey, even 
includes brief breaks made on the way to a main destination. The algorithm uses travel coordinates, 
dwell times at destinations, and trip purposes to differentiate between intentional and accidental 
stops. Upon implementing the method on the NHTS 2016/17 sample, the number of LD trips 
undergoes a little reduction of 3.4%.  The algorithm initially relies on the coordinates and goals of 
journeys, and then takes into account the successive segments of the trips to detect changes in 
direction. It also identifies return trips and distinguishes between shifts in transportation mode and 
actual destinations. 
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A limitation of this study is in the scope of the modifications made for the new scenario. The 
updates in the SAM-V4 “AV/ATruck Scenario” to reflect integration of AVs, SAVs and ATrucks 
were restricted to the mode choice step. While these updates can allow for forecast of shifts in trip 
distribution (when feedback loops are included), mode splits and assignment due to these new 
modes, they cannot predict the change number of trips (or trips produced). For a more realistic 
model, the enhancement of the trip generation step is required and will the next step in the future 
work planned. Huang et al. (2020) assumed a 15% rise in the trip generation rates, for their Texas 
megaregion travel demand model, following the study conducted by Harper et al. (2016) to account 
for new trip-making that will be enabled by AVs. The Harper et al. (2020) study estimated a 14% 
rise in VMT as AVs offer a convenient transportation option for individuals who are unable to 
drive due various reasons (such as age, lack of license, or medical condition). Another limitation 
of this study as mentioned in the earlier section is the exclusion of full feedback loops from traffic 
assignment to trip distribution in the models. Feedback loops were excluded due to the long run-
times and this omission limits the ability to produce realistic travel times, which may impact the 
accuracy of the results. Incorporating these feedback loops is recommended for future work, as it 
would enhance the model’s ability to capture the dynamic interactions between traffic assignment 
and trip distribution. 

Another limitation stems from SAM itself. Since short-distance trips constitute a significant 
portion of overall travel, their allocation based on fixed splits introduces a lack of realism. While 
SAM is primarily designed for large-scale studies and is not intended to replace urban models for 
city-level analyses, the reliance on fixed shares hampers the ability to fully assess the impacts of 
AVs. Further research should explore alternative methods to incorporate more dynamic splits for 
short-distance trip allocation within SAM. Another significant drawback of SAM is the absence 
of bus as a mode in the long-distance mode choice model. This was because of the challenges in 
obtaining data, particularly because most inter-city bus operations in Texas are managed by private 
companies. The absence of a bus as a mode is a significant limitation as it neglects an important 
transportation option for long-distance trips. Future efforts should aim to address this limitation by 
obtaining relevant bus data or exploring alternative methodologies to incorporate bus travel in 
SAM. Lastly, another potential SAM issue of concern is SAM’s auto occupancy factor assumption 
used after the mode choice step, where person-trips are converted to vehicle trips. Specifically for 
trips over 400 miles within income group 3, which is unusually high at 7.57. This could likely be 
an error due to inadvertent consideration of bus modes (which is not of the modes available in 
SAM’s long-distance trips option) from NHTS during rate estimation. 

Limitations of the SAM-V4 Model 

Several TxDOT SAM-V4 model limitations are as follows: 

• Fixed Splits for Short-Distance Trips (<50 miles): The use of fixed splits for short-
distance trips, particularly those under 50 miles, is one the limitations of the model. 
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Given that the majority of trips fall within this category, the model’s depiction of travel 
patterns and comparative scenarios may not accurately represent real-world conditions. 

• Exclusion of Bus Mode in Long-Distance (LD) Model: The absence of the bus mode in 
the Long-Distance (LD) model is another limitation, especially considering the 
significance of buses for long-distance trips in Texas. This exclusion hinders the model’s 
ability to capture a comprehensive view of transportation modes. 

• Lack of documentation: The SAM’s documentation requires additional refinement, 
specifically improving the instructions for customizing result queries for an updated 
network. Presently, the existing report files exclusively provide information on VMT 
changes categorized by road type. However, these files do not encompass details 
regarding changes in VMT and Vehicle Hours Traveled (VHT) associated with newly 
introduced transportation modes. 

• Extended Runtime Challenges: The prolonged runtime of the model presents 
challenges for calibration and scenario testing. The omission of outer feedback loops (due 
to very long runtime), particularly in traffic assignment to trip distribution, results in a 
runtime exceeding 20 hours. Incorporating feedback loops is crucial for achieving more 
realistic results. However, long runtimes and occasional random model failures makes it 
difficult to execute this enhancement smoothly. 

• Resource Intensive Assignment Model: The model demands substantial data resources, 
approximately 100 GB without incorporating outer feedback loops. During runtime, this 
requirement is potentially up to 200 GB per model. Thus, executing this model requires a 
powerful computer with abundant storage space. Compounding the challenge, TransCAD 
limits the concurrent execution to a maximum of two models at any given time. 

Addressing these limitations would enhance the overall robustness and applicability of the SAM-
V4 model. 

Value of Research (VOR): LD-AV Implementation 

The use of autonomous vehicles (AVs, SAVs and ATrucks) across Texas’ transportation network 
will have wide-ranging impacts, totaling billions of dollars a year. This implementation project 
updated TxDOT’s Statewide Analysis Model (SAM) code to enable these new mode options, 
simulated the results in a far-future year (2040) and summarized those results for transportation 
planners, policymakers, businesses, network designers, and the public at large.  

Such advance work is crucial for decision-makers to anticipate AVs’, SAVs’, and ATrucks’ 
impacts for more informed investments, policies, and practices, by allowing for more proactive 
planning and responsive actions to address expected increases in highway demand, pavement 
wear, emissions, and congestion, alongside expected reductions in travel costs and crashes.  
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Travel Time Benefits 

Without AVs, US passenger-vehicles’ VOTT are roughly $20 per vehicle-hour (Schrank, 2021). 
Since AV occupants can all pursue productive activities, rather than one person always driving, 
Zhong et al. (2020) anticipates about 25% to 30% lower VOTTs and therefore 25 to 30% lower 
travel time cost burdens. (Rashidi et al. 2020, Kolarova et al. 2019) In this project’s base-case 
simulations, VOTTs for AV and SAV users were assumed to fall 20% (in each of 4 household 
income classes). SAVs and AVs are also expected to notably increase access for the elderly and 
impaired, while lowering ownership levels of private vehicles (thanks to SAV fleets, where trips 
are purchased one at a time).  

ATrucks do not require an operator to rest every 11 hours of “driving”, so a commercial vehicle 
fleet’s daily operating hours, distances, and deliveries or pickups may double, while bringing costs 
and fees down (per ton-mile moved, for example). Texas’ transportation planners, investors, and 
policymakers need to anticipate what these massive transportation changes can and will do to 
traffic, the economy, and the environment.  This project work allows TxDOT and its consultants 
to start addressing these billion-dollar questions.  For example, with 25M vehicle-hours of Texas 
network use a day, on average, is worth roughly $500M in travel time costs. So, a 20% perceived 
savings is worth about $100M per day, or $36 billion a year. Texas also has about $30 billion in 
(economic-only) crash costs per year (USDOT, 2020), and AVs are expected to lower crash 
frequencies by about 85% (Li and Kockelman 2018). Thus, AVs’ safety benefits may be over $20 
billion a year (Clements and Kockelman 2017). Of course, lowered costs generally mean added 
demand, and possible gridlock (Huang et al. 2020).  Helping smooth such transition is key for all 
communities across Texas.  

Benefit-Cost Ratio 

If this project influences just one-hundredth of just one percent of the future improvement in time-
cost and safety savings readily attributed to AVs, this one-year project’s economic benefit would 
be $5.6 million from just one year of impacts. If one discounts that annual benefit over just 10 
years of future benefits, using a conservatively high discount rate of 10%, the net present value is 
nearly $35 million in benefits. These emerge from this $159,916 TxDOT implementation project 
alone, suggesting (very conservatively) a benefit-cost ratio or “value of research” (VOR) of 215. 
To summarize:  

Project cost: $159,917 
Benefits estimated conservatively: $35M 
Initial benefit-cost ratio: 215:1 
In summary, the rough quantitative analysis conservatively suggests more than a 200-fold benefit 
that exists in addition to TxDOT’s ongoing efforts in preparing for a future where AVs are readily 
available in the marketplace. 
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Appendix 

Figure A1. Total HDV Trips and VMT for Each Day in 2021 Downloaded from RITIS (6-8 am) 

Figure A2. Total HDV Trips and VMT for Each Day in 2021 Downloaded from RITIS (8 am - 2 pm) 
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Figure A3. Total HDV Trips and VMT for Each Day in 2021 Downloaded from RITIS (2-6 pm) 

Figure A4. Total HDV Trips and VMT for Each Day in 2021 Downloaded from RITIS (6 pm - 6 am) 
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