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EXECUTIVE SUMMARY 
 

The principal objective of this study is to perform a systematic comparative 
evaluation of the performance of Automatic Vehicle Identification (AVI) as a basis for 
incident detection and traffic state estimation for public information dissemination (through 
Internet, Advanced Traveler Information System (ATIS) and/or variable message signs).  

The study accomplished its objectives primarily through analysis of extensive field 
data, made possible through the unique setup in San Antonio. Frequent site visits to the San 
Antonio Traffic Management Center (TMC) were initiated to gather data and exchange 
knowledge with the TMC personnel to resolve some technical difficulties that affected the 
integrity and interpretation of the AVI data.  Through evaluation of the on-line AVI system 
such difficulties should be avoided in any future AVI implementations.  The confidence, 
delay, and availability of the AVI data for ATIS applications is evaluated in this report based 
on results from the study period analysis.  The breadth and depth of coverage by AVI in San 
Antonio is discussed and adequacy of the data under current low market penetration of toll 
tags is established.  Cost-benefit analysis of the AVI system is provided. 

Considerable effort is devoted to developing, calibrating, and testing incident 
detection algorithms using the input from the inductive loop detectors and AVI. Performance 
comparison between these algorithms is conducted and recommendations in this regard are 
provided.  

Several important practical insights and recommendations are provided as a result of 
the study, along with some potential areas of further research that enables best utilization of 
AVI, especially in light of rapidly increasing computation capabilities.   Overall, AVI data, 
even under low penetration levels, is a valuable and generally reliable source of traffic state 
estimates.  Coupled with additional sources, it can greatly enhance the performance of 
incident detection procedures.  
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CHAPTER 1 INTRODUCTION 

As travel demands continue to grow throughout the world, it is no longer feasible to 
continue building new roads. The focus has therefore shifted from increasing the size of 
networks to improving their overall efficiency. Implementation of Intelligent Transportation 
Systems (ITS) carries high promise of more efficient use of existing transportation networks 
through the use of advanced information processing and communication technologies to 
manage transportation systems and control the flow of vehicles. 

 The main elements of ITS are Advanced Transportation Management Systems 
(ATMS) and Advanced Traveler Information Systems (ATIS). While ATMS’s are aimed at 
assisting control center operators in managing traffic networks, ATIS’s provide assistance to 
travelers in order to reach a particular destination via a private vehicle, public transportation 
or a combination of the two. ATMS’s provide tools for managing data coming into the 
control center, processing this data and generating roadway information for dissemination via 
ATIS, detecting and resolving incidents, and, finally, controlling the traffic network. 
ATMS’s rely mainly on real-time traffic data collection for incident detection, traffic flow 
monitoring, and information dissemination to the public.  

Incident-related congestion results in billions of dollars a year in lost productivity, 
property damage, and personal injuries. According to the Federal Highway Administration 
(FHWA), in 1986 incidents accounted for 60 percent of the vehicle-hours lost to freeway 
congestion (Lindley 1986). In addition, the FHWA predicts that by 2005, incidents will 
account for 70 percent of all delay caused by urban freeway congestion associated with a 
users’ cost of $35 billion (Gordon 1996). In addition to the material losses incurred as a 
result of incidents, they have extensive detrimental effects on safety and air pollution. An 
important part of any Traffic Management System (TMS) is its ability to detect incidents 
quickly and react accordingly. By definition, an incident is an unexpected event that 
temporarily disrupts the flow of traffic on a segment of roadway (Solomon 1991). A stalled 
vehicle, spilled debris on the roadway, bad weather, and a four-car accident are all examples 
of incidents of different magnitudes. To detect accidents at the earliest time and reduce the 
delay in the implementation of emergency response, many TMS’s have been implemented 
along corridors where traffic volumes are high and the risk of accidents is significant. Fast 
and accurate detection of road accidents can assist in the implementation of efficient 
emergency response measures thus resulting in reduced severity of personal injury and 
reduced traffic disruption costs. Also, to speed up the time required to get back to normal 
operating conditions after an incident occurs on a facility, dynamic route guidance systems 
are being designed in such a way to provide motorists with in-vehicle information about 
incidents and how to avoid incident links (Catling 1994). 

Early incident detection and clearance are based on patrol vehicles and passing 
motorists in addition to various automatic incident detection (AID) methods. AID is possible 
due to the very nature of incidents that result in changes in the flow of traffic. Typically, an 
incident results in a sudden, short-term decrease in road capacity leading to a speed 
reduction, and possibly queues, in addition to an increase in travel times. Many public, 
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private, and academic agencies throughout the world and particularly the U.S. are investing 
considerable amounts of effort and resources into developing efficient traffic management 
systems that exploits the capabilities of recent developments in traffic conditions’ sources of 
information. Traditionally, inductive loop detectors (ILDs) have been the most common 
source of data for automated incident detection. A recent development is the application of 
Automatic Vehicle Identification (AVI) techniques, commonly referred to as vehicle probes, 
for incident detection purposes.  

ATIS’s constitute a primary component of fully deployed ITS’s.  An ATIS can be 
defined as a system that can provide useful travel information to users before or during a trip, 
often to aid in route, departure time, and/or other trip-related choices.  In other words, it is 
defined as “groups and systems of technologies that aid in the collection, collation and 
dissemination of traveler information before and during trips” (Gilroy, Puentes, and Schuman 
1998).  The Metropolitan Model Deployment Initiative of the FHWA, defines the ATIS 
component as providing “the ability to collect and disseminate information about various 
modes of travel over the regional transportation network” (FHWA 1998).  

Three main components of an ATIS are data acquisition, data fusion, and 
communication of value-added information (ITS America 1998).  Examples of ATIS 
dissemination devices include, but are not limited to, variable message signs, traveler 
information kiosks, the Internet for transmission and display of traffic conditions on 
desktop/portable monitors, and a growing array of wireless devices.  Information is collected 
and provided to users in many forms including, but not limited, to: traffic conditions, incident 
information, weather and roadway conditions, as well as local event information.  The overall 
scope of ATIS is broader than just traffic data; however, the focus here is on traffic 
information available from AVI systems.  A full ATIS involves the successful fusion and 
dissemination of data and information.   

ATIS’s require a different level of data resolution than other ITS’s, and transportation 
applications.  For example, a transportation-planning study would require travel times and 
demand patterns on an hourly or perhaps daily aggregation level.  A real-time traveler 
information system may require a 5 or 10 minute aggregation level.  An advanced traffic 
management system employing dynamic traffic assignment may require updated data every 
30 seconds.  The data refresh rate is only limited by the frequency of data provided from the 
field.  The transportation management system, or detection technology, defines the refresh 
level and often computes the averages from raw field data.  A working knowledge of the data 
requirements is essential for effective evaluation of AVI for ATIS applications.   

 

1.1 MOTIVATION AND OBJECTIVES 

Automated incident detection consists of two main requirements, data collection and, 
naturally, an incident detection algorithm. The data required for the calibration of incident 
detection algorithms consists of traffic stream measurements as well as incident logs. Until 
recently, most surveillance systems have been location-based where traffic occupancy, flow 
rate, or point speeds pertaining to a point location of the roadway were collected (FHWA 
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1985). These stream measurements are best collected using ILD’s or video image processors 
(VIP).  

AVI technology was first introduced in the United States during the early 1960s in the 
railroad industry. It was not until recently that new options for AVI use started to be 
considered seriously mainly due to recent technological advances and because of the 
important role AVI plays in integrated Intelligent Vehicle Highway Systems (IVHS) 
(Bernstein and Kanaan 1993). The potential advantage of AVI technology over fixed location 
detectors resides in its ability to collect both point data as well as point-to-point data, which 
are expected to provide a better representation of traffic conditions. While the development 
of algorithms to be applied on data collected using fixed-location detectors has been 
extensively researched, incident detection algorithms making use of data collected using 
probe vehicles are still in the early stages of development. Also, the reviewed literature 
showed that very little work has been done to assess the incremental benefit obtained from 
fusing data from multiple sources.  

While the development of algorithms has been a dynamic area of research, the data 
used for testing and calibrating the algorithms has been for the most part inadequate. This 
inadequacy is due to the fact that the data used to compare the different sources is most often 
generated through some simulation software rather than being collected at a traffic 
management center. Therefore, the results might not be representative of a real traffic 
network. Lacking in the current literature is an experiment where real data from the different 
types of detectors is collected from a traffic management center and used to evaluate the 
relative benefits of each detector source. TransGuide, San Antonio’s Traffic Management 
Center (TMC), has made such an undertaking possible due to its state-of-the-art installations 
along Interstate 35. These installations include ILDs and surveillance cameras, as well as 
AVI along the same network.  

AVI systems continue to evolve with new technologies and demands from the 
transportation industry.  The quality of obtainable data in light of the requirements for ATIS 
applications must be investigated to ensure efficient advances for both technologies.  The 
opportunity presently exists to analyze and investigate on-line AVI systems for assessing the 
application of such data to ATIS applications.  The analysis will be of interest to departments 
of transportation at the local and national level that are considering AVI systems for 
emerging ATIS applications.  Accurate link travel time data from potentially large samples of 
vehicles is a new data source for transportation applications.  Assessing the quality of link 
travel time data in response to the demands of ATIS is important for the overall ITS 
initiative.   

The goals of this research are to exploit the unique TransGuide installations to 
evaluate the potential of AVI as a source of data for incident detection and ATIS applications 
and to investigate the incremental benefits AVI provides when used in addition to ILDs. 
Hence, the objectives of this study are to: 

 
 

• Review existing traffic detectors while focusing on AVI and its different uses, 
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• Review existing incident detection algorithms currently used with ILD data and 

select the ones suitable for testing in this research, 

• Review some of the proposed AVI algorithms that have been tested using 

simulated data and select the ones suitable for testing using real data in this 

research, 

• Collect appropriate quantities of both real-time traffic detector data and 

corresponding incident reports to be used for both testing and evaluating the 

incident detection algorithms, 

• Analyze and compare the performance of the detector and algorithm combinations 

selected for testing, and 

• Identify the quality and applicability of data from an AVI system, for ATIS 

purposes. 

 

1.2 REPORT ORGANIZATION 

This chapter introduces the study.  Chapter 2 describes the TransGuide installation 
that is used as a test bed for this research. Also, included are descriptions of the components 
of incident management, sensor technology, algorithms, and, finally, detection and response. 
Chapter 3 describes the logic behind several incident detection algorithms used with data 
collected from ILDs. Promising AVI incident detection algorithms are also described. 
Chapter 4 describes the traffic and incident data used in the evaluation of the presented 
algorithms. Also, the chapter summarizes the main limitations of the data used. Chapter 5 
details the calibration process of the algorithms chosen for evaluation. Chapter 6 presents the 
performance results of the different fixed detector algorithms and probe vehicle algorithms 
implemented. Finally, conclusions are drawn and recommendations are made in the final 
chapter of this document.  
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CHAPTER 2 INCIDENT MANAGEMENT COMPONENTS 

Incident management includes detecting and verifying the incident, responding with 
emergency vehicles and information for other motorists, clearing the incident, and 
monitoring traffic movements until normal traffic conditions return (Cullip et al. 1995). 
Typical traffic management programs consist of conventional and Automatic Incident 
Detection (AID) methods. Conventional incident detection systems consist of police patrols, 
motorist reports using cellular phones or call boxes and surveillance cameras.  

A Police Patrol (PP) or Motorist Assistance Program (MAP) is the most commonly 
used traffic management approach. Unlike AID systems, when an incident is detected by a 
PP it does not need to be verified. Well-trained police officers can provide concise and 
accurate incident information. Generally, the first officer to arrive on-site can often start 
direct response actions following predefined procedures. The detection time using a PP 
depends on the staffing level. However, one of the shortcomings of this approach is its 
inability to detect all incidents with a reasonable staffing level. 

The cellular phone is quickly becoming a major source of information about incidents 
as its market penetration level is witnessing an unprecedented growth. In the 1-880 field 
experiment conducted using the California Highway Patrol (CHP) Computer Aided Dispatch 
(CAD) incident database, it was concluded that 44 percent of accidents were reported by 
cellular phone while only 34 percent were reported by PP. The reported false alarm rate using 
cellular phones approached 8 percent and could be greatly reduced by the use of advanced 
cellular phone locating technologies in the near future (Skabardonis 1998). Cellular phones 
perform reasonably well in terms of correct reporting of incident locations, availability of 
information about the incident type, and the number of vehicles involved. Some of the 
weaknesses of cellular phones include a very low rate of detecting other events, higher false 
alarm rates, and limited information on the incident severity. Also, incidents detected using 
cellular phones need verification and the reports fail to show when the incident is cleared. 
When an incident is reported, an officer is dispatched to the scene to verify the existence of 
that incident before taking response actions, hence making the detection time longer. The 
verification and response time are greatly affected by the type of incident and the detection 
source. In conclusion, cellular phones are an important source of information for incident 
detection. However, at the current level of development in the technology, cellular phone 
reports are best used in conjunction with other sources and may be used to verify incidents 
reported by other AID methods.  

Surveillance cameras are relied on heavily in many traffic management centers 
(TMCs) for maintaining surveillance of the roadway system. Similar to PP reports, an 
incident reported in the field of view of surveillance cameras can be visually detected and 
verified immediately. Moreover, properly trained TMC operators can adequately assess the 
severity of the incident as well as its impact on the current traffic conditions. However, high 
levels of misdetection and long detection mean times hinder the reliability of surveillance 
cameras. Also, the more complex the network to be monitored, the more inefficient and labor 
intensive is visual detection using surveillance cameras. Here again, the most efficient use of 
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this method of detection would be to complement other approaches where the cameras would 
automatically tilt/zoom/pan to the location of a reported incident to allow efficient incident 
management on the part of TMC operators. 

Automatic incident detection has existed since the early 1970s and its importance is 
widely recognized among traffic agencies. The purpose of AID is to minimize the human 
requirements in the efficient and effective detection of incident events. 

 Since this study is based on data acquired from TransGuide, San Antonio’s TMC, 
this chapter includes a description of the facility. It also summarizes the basic components of 
incident management:  

• Data sensors, 

• Detection algorithms, and  

• Incident verification and response.  

2.1 TRANSGUIDE 

TransGuide can be described as one of the nation’s most sophisticated Advanced 
Transportation Management Systems (ATMS). It is one of the four TMCs selected as part of 
the ITS Model Deployment Initiative aimed at showcasing various Intelligent Transportation 
(ITS) technologies for the Federal Highway Administration (FHWA). The goals of 
TransGuide are to provide: 

 
• Incident detection within minutes, 

• Traffic control changes within seconds, 

• Police, fire, and paramedic dispatch, 

• System reliability and expandability, and 

• Support for transit dispatch operations (Southwest Research Institute 1995). 

Designers made use of state of the art technology in an attempt to achieve real-time 
detection, assessment of and response to traffic incidents, as well as to deliver accurate traffic 
management information to reduce the resulting congestion and delays and deal with 
dangerous situations in a timely manner. The desirable time-to-detect (TTD) freeway 
incidents was set to 2 minutes after occurrence along with a 15-second requirement to initiate 
a preplanned response. To speed up the process, local police, emergency, and transportation 
agency representatives are all present in the TransGuide operation center.  

The system is built on a complete digital communications network using the 
communication standard “SONET,” a fully redundant fiber optic network, a fault tolerant 
computer system, software developed to “POSIX” standards, and field equipment consisting 
of changeable message signs, lane control signals, loop detectors, and surveillance cameras 
(ITS Joint Program Office 1998). The first phase of the project started in February of 1993 
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and consisted of monitoring 26 miles of highway concentrated in the downtown area for a 
total cost of $32 million. The next two phases are intended to cover the rest of the 191 miles 
originally planned for instrumentation. Of the originally planned 78,000 vehicle tags, 58,500 
have been distributed at no cost to the users until this date (Rodrigues 2000).  

Currently, TransGuide makes use of a simple speed threshold algorithm as a basis for 
incident alarms. TransGuide also operates a number of courtesy patrol vehicles that help in 
detecting and verifying incidents as well as in helping stranded motorists.  

The AVI system deployed in San Antonio serves as an important source of real-time 
traffic information to TransGuide’s ATMS and Advanced Traveler Information System 
(ATIS) applications. Currently, AVI is used for the “Travel Tag Program” aimed at 
collecting travel times all around the city. The collected data is used to update a dynamic 
map posted on the TransGuide Web site showing travel times along major links. The use of 
the data generated by AVI for the purpose of incident detection is currently being 
investigated by a team of researchers at The University of Texas at Austin.  

2.2 INCIDENT DETECTION 

To differentiate it from recurrent congestion, incident-induced congestion is referred 
to as nonrecurrent congestion. Recurrent congestion occurs regularly when the demand on 
the road network exceeds its capacity. On the other hand, nonrecurrent congestion due to 
incidents is unpredictable and often causes similar effects on travel patterns. The extent to 
which an accident causes a decrease in capacity of a network and the incident’s total duration 
directly affect the magnitude of incident-induced delays experienced by motorists (Gordon 
1996). By definition, the duration of an incident is the elapsed time from when the incident 
occurs to when it is ultimately cleared. Incident duration can be subdivided into detection, 
response and clearance times. The primary goal of AID is to reduce the detection time of an 
incident i.e., the time elapsed between its occurrence and the moment it is brought to the 
attention of the TMC personnel. By focusing on the detection time, AID indirectly reduces 
the response and clearance times, thus further contributing to a quick return to normal 
conditions.  

Throughout the United States, different TMCs have adopted diverse incident 
detection techniques or a combination of techniques. Table 2.1 details the type of incident 
detection techniques applied in major metropolitan areas (Picado et al. 1997). 

As stated earlier, although continuous visual observation of a network using live 
video images leads to the shortest detection time, it is not usually feasible. As the network 
gets larger and more complex, continuous visual observation is nearly impossible. Therefore, 
to ensure that incidents are found as early as possible, most TMCs use various AID methods. 
An incident causes changes in the traffic flow that can be detected by monitoring continuous 
streams of traffic measurements, such as vehicle volume and speed, taken at various points 
along the roadway. As might be expected, serious incidents are likely to cause greater 
disruptions in traffic and therefore are easier to detect. At the heart of AID are the sensors 
used to continuously monitor traffic characteristics and the detection algorithms used to 
process the generated data and signal incidents. The following is a description of various 
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sensor technologies currently being used along with a discussion of incident detection 
algorithms. 

Table 2.1 Metropolitan Incident Management Programs 1997 (Picado et al., 1997) 

Location 
Police 
Patrols 

Other 
Patrol

s 

Call 
Boxes 

Cellular 
Phones 

Commercial 
Traffic 
Reports 

Automatic 
Detectors 

AVI CCTV 
Video 

Imaging 
Rada

r 

Aerial 
Surveillanc

e 

Atlanta  √  √ √          

Boston √ √ √ √ √ √    √    √  

Buffalo √   √           √ 

Charlotte, NC √ √  √ √          √ 

Chicago √ √  √ √ √    √     

Columbia, SC √  √ √           

Dallas √ √ √ √ √ √     √    √  √ 

Denver √ √  √ √ √    √      √ 

Des Moines, IA √   √ √          √ 

Detroit √ √  √ √ √    √      √ 

Fort Worth √ √ √ √ √ √     √    √  √ 

Houston √ √  √ √ √   √   √  √   

Las Vegas    √ √         √ 

Kansas City √ √  √ √       

Los Angeles √ √ √ √ √ √    √     

Lower Hudson 
Valley, NY √ √  √ √ √        

Milwaukee √   √  √    √   √   √ 

Minneapolis/ 
St.Paul √ √ √ √ √ √    √     √ 

New Orleans √  √ √       √    

NY City √ √ √ √ √      √     

Portland √   √ √   √        

Sacramento √ √ √ √ √ √    √     √ 

Salt Lake City √ √  √ √          √ 

San Francisco / 
Oakland √ √ √ √ √ √    √     √ 

Seattle √ √ √ √ √ √    √     √ 

St. Louis √ √  √ √         √  

Washington, 
D.C. √ √  √ √ √   √  √   √ 

2.2.1 Sensor Technologies 

The effectiveness of an AID system depends largely on the quality, quantity, and type 
of traffic data that is available (Solomon, 1991). Although a large number of traffic 
measurements exist, research has shown that certain types of measurements are better 
indicator variables for determining road traffic conditions. These traffic measurements can be 
classified as either macroscopic or microscopic. Macroscopic measurements are easier to 
acquire and relate to a group of vehicles. Microscopic measurements relate to individual 
vehicles. The most significant macroscopic measurements for AID are density, occupancy, 
and volume, while the most significant microscopic measurements are vehicle speed and 
intervehicular headway. The type of detectors used will largely determine the kind and 
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accuracy of the data that can be obtained. Klein et al. (1994, 1996) conducted a 
comprehensive field test on the accuracy of emerging traffic detection methodologies in 
different locations between 1993 and 1994. Table 2.2, adopted from Klein, summarizes the 
qualitative advantages and disadvantages of these technologies. This section presents a 
discussion about currently used and promising types of detectors. 

Table 2.2 Performance Comparison Among Existing Automatic Detection Technologies 
(Klein et al. 1996) 

Type Advantages Disadvantages 

Inductive 
loop 
detector 

* Low per unit cost 
* Large experience base 
* Relative good performance 

* Difficulty compatible w/use of bridge, overpass, 
viaducts, poor roadbeds 

* Traffic interrupted for repair and installation 
* Experiences significant downtime 
* Susceptible to damages by heavy vehicles, road 

repairs, and utilities 

Micro-wave 
(Radar) 

* Installation and repair do not 
require  traffic disruption 

* Direct measurement of speed 
* Multilane operation 
* Compact size 

* May have vehicle masking in multilane 
application 

* Resolution impacted by FCC-approved transmit 
frequency 

Laser 

* Can provide presence, speed, and 
length  data 

* May be used along the road or in 
an across-the-road orientation w/a 
twin detector unit 

* Affected by poor visibility and heavy precipitation 
where applicable 

* Relatively high cost 

Infra-red 

* Day/night operation 
* Does not cause traffic disruption 
* Better than visible wavelength 

sensors in      fog 
* Compact size 

* Sensors had unstable detection zone 
* May require cooled IR detector for high 

sensitivity 
* Susceptible to atmospheric obscurants and 

weather 
* One per lane required 

Ultrasonic 
* Can measure volume, speed, 

occupancy, presence, and queue 
length 

* Subject to attenuation and distortion from a 
number of environmental factors  

* Difficult to detect snow covered vehicles 

Magneto-
meter 

* Usually used instead of inductive 
loops in bridge decks and heavily 
reinforced concrete  

* Limited application 
* Medium cost 

AVI 
* Provide section speed data 
* Does not cause traffic disruption 
* Direct travel time computations  

* Performance depends on level of tagged vehicle 
market penetration 

* Lack of industry standards 
* Public privacy concerns 

Video 
imaging 
(VIP) 

* Imagery for rapid incident 
management 
* Multiple lanes observed 
* No traffic interruption for 

installation and repair 
* Vehicle tracking 

* Different algorithms usually required for day and 
night use 

* Possible errors in traffic data transition period 
* Susceptible to atmospheric obscurants and adverse 

weather 

 

2.2.1.1 Loop Detectors  Inductive Loop Detectors (ILDs) are by far the most widely 
used sensors in the United States and the rest of the world. Typical ILDs consist of several 
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turns of wire forming a rectangular area of approximately 6'x6' buried under the road and 
connected to a detector unit. Whenever a vehicle moves over an inductive loop in the road 
the current of the loop jumps, causing a change in the inductance of the loop. This phase shift 
can be measured as an analog signal that is used to generate simple binary data describing the 
presence or the absence of a vehicle. Therefore, ILDs can provide traffic volumes, measure 
time headways, and determine occupancy. Also, vehicle length and speed can be estimated 
fairly accurately by configuring two closely spaced ILDs into what is commonly known as a 
trap. It is also possible to get an estimate of a link’s travel time from its length and the 
estimated speed, as well as to identify the vehicle’s type from observing the generated 
analogue signal since it is the shape of the vehicle undercarriage that determines the shape of 
the waveform. The levels of accuracy in the measurements obtained from using ILD are 
generally very good. The major problem associated with the use of these types of detectors 
results from the fact that they have to be buried under the pavement, causing installation, 
operational, and maintenance problems. As an example of the frequency of breakdown of 
loop detectors, a study showed that 25 percent of New York State’s 15,000 ILDs were not 
functioning properly at any given time (Bikowitz and Ross 1980). Also, an initial statistical 
analysis performed on loop data obtained from TransGuide operators showed that on 
average, loop detectors in the network are properly operating 85 percent of the time. 
Moreover, although ILD technology has matured, there are still a number of limitations 
associated with its use. ILDs provide “point” estimates of traffic speed, meaning that the 
measurement is representative of a specific site rather than a section of a roadway and since 
traffic performance can be different elsewhere in the section than at the detector’s location, 
the resulting view of traffic performance might be skewed. The performance of ILD in 
representing actual traffic performance is largely dependent on the number of detectors 
installed and their spacing; the more detectors and the closer they are spaced, the better the 
results. However, installing and maintaining loops at high densities in a network is 
economically infeasible, thus reducing their ability to detect changes in roadway performance 
on sections where they are widely spaced.  Also, loop detector estimates are less accurate in 
congestion detection since spot speed estimates are not necessarily reliable for describing 
conditions upstream or downstream of the loop itself. A road section might be experiencing 
significant congestion without significantly affecting the speeds over the loop detectors, 
especially if they are spaced more than half a mile apart. All these limitations along with 
requirements for new motorist information systems and vehicle guidance/routing systems are 
making TMCs look for more accurate data sources, especially to better represent sectional 
travel times.  

2.2.1.2 Magnetic Detectors  Magnetic detectors sense changes in a magnetic field and 
are contained in nonmetallic conduits tunneled beneath the road. This type of detector is 
relatively inexpensive and very rugged but is limited in use because it can only provide 
passage data as opposed to occupancy or presence data.   

2.2.1.3 Magnetometer  Magnetometers take the shape of a small probe and also sense 
changes in a magnetic field. They can provide very accurate vehicle counts and are 



 11 

sometimes used when the pavement cannot be torn apart to install ILDs on places such as 
bridges. 

2.2.1.4 Ultrasonic Sensors  Ultrasonic sensors operate by emitting an ultrasonic beam 
and measuring the frequency of its reflection. The Doppler effect principle is used to 
determine the presence/movement of objects through the detection zone. They are installed 
above the roadway, thus eliminating problems associated with cutting the pavement. Recent 
ultrasonic sensors provide poor estimates of speed but excellent volume measurements. 

2.2.1.5 Microwave Sensors  When compared to inductive loops, it was found that the 
microwave-based monitors missed about 3 percent of the vehicles counted by inductive loops 
when fired sideways and the error margin was less than 1 percent when fired in the direction 
of traffic (Klein et al. 1994). Moreover, these detectors are cost effective and have vehicle 
classification capability. In 1994, the New York City Department of Transportation 
(NYCDOT) tested a microwave-based detector to perform the task assigned to the already 
existing loops in collecting traffic data (Saito and Patel 1994). Results showed that a vehicle 
count difference of 1 percent ± 6 percent existed between the two technologies. This shows 
that the accuracy of microwave sensors in collecting traffic data is comparable to that of 
ILDs. Other benefits of these detectors include their ability to be mounted on existing poles, 
to operate both day and night, and the fact that they permit direct measurement of speed if 
programmed to do so. 

2.2.1.6 Infrared Sensors  Infrared sensors can be classified into two categories: 
passive and active. While passive sensors are capable of detecting only the passage of a 
moving vehicle, active sensors also have the ability to detect the presence of vehicles. This 
allows these sensors to perform the same tasks as ILDs with the advantages associated with 
being mounted above the roadway. 

2.2.1.7 Video Cameras  Typically video cameras have been employed at TMCs for 
surveillance purposes. The cameras can pan, tilt, and zoom (PTZ) as needed to provide TMC 
operators with real-time traffic views. The use of video image processing (VIP) for traffic 
surveillance and control started in the mid-1970s in the United States and abroad, most 
notably in Japan, Australia, England, and Belgium (Michalopoulos et al. 1990). The past 
decade has seen much research done to prove the feasibility and effectiveness of extracting 
traffic measurements, such as volume occupancy and speed, from video images. VIP has the 
ability to provide measurements that could not be collected using conventional ILDs such as 
queue length. A typical system consists of video cameras and a central computer. The 
cameras are mounted above the road and send video signals back to the central computer 
where the image processing is done. VIP does not require color cameras but does require 
camera stability. Therefore, cameras with PTZ control are usually used. Vehicles are detected 
by creating sum images and difference images. A sum image is obtained after averaging a 
series of frames. This results in an image of the road without vehicles because any given 
point is typically characterized by the absence, rather then the presence, of a vehicle. A 
difference image is obtained by spotting the differences between a series of consecutive 
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frames, resulting in an image that shows the paths followed by vehicles (Solomon 1991).  
The operators use software to draw “virtual detectors” on the roadway and the system will 
detect the passage of vehicles past this line. Since a single camera has the ability to detect 
traffic in multiple lanes, it can effectively serve the function of several ILDs. The accuracy of 
video detectors tends to be inferior to that of loop detectors. Some of the typical problems 
that affect the performance of VIP are congestion, shadows, and changes in lighting. These 
conditions cause the image processor difficulties in distinguishing cars from each other, from 
their shadows, and from the road. Michalopoulos developed one of the most advanced 
systems using image processing under the AUTOSCOPE project at the University of 
Minnesota. The accuracy of the system in measuring both volume and speed is close to 95 
percent. It was also estimated that on an intersection basis, the installation and maintenance 
costs would be 30 and 35 percent lower respectively than for ILDs (Michalopoulos et al. 
1990).  In summary, video detection systems still need to be further developed before they 
can efficiently replace loop detectors in collecting traffic data.  

2.2.1.8 AVI  Automatic vehicle identification (AVI) was introduced in the United 
States during the 1960s for railroad car applications and found its way during the 1970s to 
applications involving road vehicles. Since then interest grew significantly in this new 
domain due to the important role AVI plays in Intelligent Transportation Systems (ITS) and 
recent technological advances. Real-time data acquisition using vehicle probes traveling the 
street networks is an important part of many current ITS deployments throughout the United 
States (San Antonio, Houston, Bay Area, Orlando, etc.) and the world (e.g., ALI-SCOUT and 
EURO-SCOUT systems). AVI systems are designed to uniquely identify vehicles located at  
specified locations and during particular times. Such systems have diverse functional 
capabilities ranging from toll/revenue collection to access control, surveillance, and fleet 
control. Several transportation agencies such as the Oregon Department of Transportation are 
making use of AVI technology in commercial vehicle operations (CVO) to provide mainline 
preclearance for commercial vehicles. The “Oregon Green Light” project makes use of 
different technologies to electronically verify safety and weight information of commercial 
motor vehicles and carriers from fixed and mobile roadside sites at highway speeds (ITS 
1999).  Defined as such, AVI systems are an important source of real-time traffic data to be 
used mainly in ATMS and ATIS applications. This diversity in the possible applications of 
the technology allows its cost to be shared by the different users of the data, thus offsetting 
the high initial cost associated with the system.  

The initial cost of an AVI site depends largely on the amount of infrastructure that 
needs to be installed. The total cost of the AVI reader sites installed in the San Antonio 
network amounts to $2.17 million with a minimum of $26,897/site, a maximum of 
$64,460/site, and an average value of $40,935/site.   Mouskos, Niver, Lee, Batz, and Dwyer 
(1999) compared the annual total cost of AVI to that of ILDs, Video Image Detection 
Systems (VIDS), and Microwave Radar Detection Systems(MRDS). The costs are based on a 
typical site on a six-lane highway and are reported in Table 2.3. The hardware cost was 
defined to include field components of a typical detection site in addition to the ancillary 
equipment. The system installation cost was defined to include the field installation of 
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hardware, cabinet and foundation, cables, etc. The maintenance costs include on-site 
hardware and software support and personnel overhead. Finally, operations costs represent 
the costs associated with leasing telephone lines and utilities expenses. 

The results show that the annual cost of a typical AVI site is 56 percent lower than an 
ILD site, 81 percent lower than VIDS, and 37 percent lower than MRDS's (Mouskos et al. 
1999). 

Table 2.3 Comparative Costs per Detection Site for a Six Lane Highway (Mouskos et 
al., 1999) 

Description AVI ILDS VIDS MRDS 

Capital Cost: 
• Hardware 
• Installation 

 
$14,700 
$21,700 

 
$4,100 
$50,560 

 
$24,500 
$45,100 

 
$26,500 
$25,200 

Total Capital costs $36,400 $54,660 $69,600 $51,700 

Maintenance Costs/Year $2,900 $7,950 $3,300 $2,900 

Operation Costs/Year $2,040 $2,040 $2,040 $2,040 

Total Annual Cost $4,940 $9,990 $5,340 $4,940 

Total Cost for One Year $41,340 $64,650 $74,940 $56,640 

% Cost based on AVI 100% 156% 181% 137% 

 
From a hardware point of view, AVI systems consist of two major elements, the in-

vehicle unit (tag or transponder) and the roadside unit (reader or interrogator). Most systems 
require a communications link between these two elements, a host computer, and another 
communications link connecting the reader and the host. Information transmission in most of 
the existing systems is done in the form of visible light, infrared radiation, microwaves, or 
radio waves. The tags can be either internally powered (battery or the vehicle’s electrical 
system) or they can be powered by the interrogation beam. The reader or antenna can be 
placed either along the side of the roadway or overhead. Most installed AVI systems are 
designed to deal with single lanes, however a single reader and antenna can be used for 
multiple lanes. AVI systems can be used to monitor point-to-point travel times providing the 
user with traffic delays that occur between two points. The importance of point-to-point data 
resides in the fact that it improves traffic predictions and, therefore, the performance of 
ATMS's and ATIS's. In addition, travel times can be used directly in incident detection 
algorithms and provide an estimate of space mean speeds.  

Parkany and Bernstein (1995) conducted an investigation pertaining to the application 
of AVI for incident detection. The researchers assumed that 50 percent of the vehicles 
traveling the network are equipped with AVI transponders, with detectors 0.75 miles apart 
and medium traffic flow (1000 to 1400 veh/lane). The main conclusion was that AVI has 
great potential as a stand-alone sensor for incident detection. In another study performed by 
the Texas Transportation Institute (TTI) on AVI data obtained from Houston, detection rates 
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were lower and false alarm rates were higher than those reported from other fixed detectors' 
incident detection algorithms (Balke et al. 1996). The lack of agreement between the results 
of the two previously cited studies suggests that one of the potential uses of the data collected 
from AVI systems is to integrate it with data obtained from other detector types mounted on 
the same sections of roadway. This will also produce more data to be used in incident 
detection algorithms.  

One of the major drawbacks of AVI-collected data is its incompleteness, as not all 
vehicles or all types of vehicles are equipped with transponders. This will be particularly 
crucial in light traffic conditions and results in unreliable data. Using vehicle probes as a 
source of real-time data requires a certain market penetration level so that there are at all 
times enough equipped vehicles traveling in the network to provide reliable traffic data 
measurements. AVI systems are more expensive to install than traditional detectors. In 
addition, the public is concerned with privacy issues due to the fact that each tag can be 
uniquely identified. 

The AVI system deployed in San Antonio could serve as an important source of real-
time traffic information to TransGuide’s ATMS and ATIS applications. The systems 
'objectives and goals were defined as follows (Southwest Research Institute 1997): 

• Provide real-time traffic condition information, 

• Provide data that can be used by traffic management personnel to manage traffic, 

• Provide data that can be used by the traveling public, 

• Be flexible in order to allow additional sensors in the future, 

• Provide easy system diagnosis and configuration, and 

• Process data in a timely manner to make the data available in a real-time fashion. 

These requirements were set in an attempt to achieve TransGuide’s targeted 2 minute 
mean TTD incidents. The system was designed by Southwest Research Institute and consists 
of three major components: the AVI Data Processing System, the AVI Reader Field Site 
System and the AVI tags. The hardware system components were chosen off the shelf in an 
attempt to minimize costs, whereas the software was custom made to fit TransGuide’s 
requirements.  The tags are passive read-only tags supplied along with the antennas by 
Amtech Systems Corporation. Originally, 78,000 tags were planned to be distributed at no 
cost to the user, but by December 2000 only 48,000 had been distributed. There are currently 
fifty-one operational AVI sites in the San Antonio network. Two plain old telephone system 
lines (POTS) connect the AVI Reader Field Site to the AVI master computer providing for 
two-way communications. AVI Reader Field Sites establish and maintain communication 
with the AVI Data Processing System. As the tagged vehicles pass by an AVI reader, the 
radio frequency (RF) signal emitted by the AVI Reader Field Site excites the tag’s 
transponder. The excited transponder then emits a RF signal containing the unique AVI tag 
identifier that is in turn captured by the AVI Reader Field Site. The AVI antennas having 
read the signal, the system then sends the tag reads to the AVI Data Processing System 
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located at TransGuide’s headquarters. Each site has a buffer that stores the tag reads. Once 
there is a predetermined number of reads or a specified period of time elapses without 
achieving this predetermined number, the site contacts the TMC and sends the reads to the 
AVI data processing system. If the system determines that another reader in the network 
reported the same tag, it processes the data and produces travel times, travel speeds, and 
equipment status reports that are made available to other systems within TransGuide. The 
AVI system architecture and the context diagram for the AVI Master Computer Software are 
presented in Figures 2.1 and 2.2, respectively (Southwest Research Institute 1997). 

The primary objectives of a traffic management center consist of reducing congestion 
and delays, and dealing with dangerous situations in a timely manner. In order to achieve 
these objectives, real-time detection, assessment, and response to traffic incidents, as well as 
the delivery of accurate traffic management information, become of immeasurable 
importance. The limits on the TTD set by current TMCs impose tighter functional 
specifications on the system (2 minutes for TransGuide). Based on the available literature 
and on the observation of existing systems, some functional specifications for an efficient 
system will be developed and defined in terms of: 

• Number of readers versus number of lanes for each site, 

• Percentage penetration of tagged vehicles, 

• Spacing of readers, 

• Efficiency of site communications, and 

• AVI tag reliability, and maintenance. 
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Figure 2.1 AVI System Architecture (Southwest Research Institute 1997) 
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Due to the high installation cost as well as operation and maintenance costs of AVI 

readers, some TMCs have decided to monitor only the innermost lanes of the freeway under 
consideration, rather than bearing the additional cost of covering all lanes. For the system 
installed on I-35 in San Antonio, different sites are equipped with different numbers of 
readers. At some locations, the two innermost lanes are monitored whereas at other locations 
all four lanes are monitored. Generally, every antenna is mounted above the centerline of the 
lane and tagged vehicles traveling in adjacent nonmonitored lanes are not picked up. In 
Houston, all lanes of the freeways are monitored with AVI readers. It is believed that the 
decision of whether to monitor the innermost or all lanes of a freeway depends to a great 
extent on the intended use of the data generated from the system and on the percentage of 
tagged vehicles traveling the network. If the collected data is intended to be used solely for 
link travel time determination for the purpose of public information, and if the market 
penetration of tagged vehicles is appreciable, monitoring only the innermost two lanes is 
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adequate. However, if the data is intended to be used as input to an incident detection 
algorithm, monitoring all lanes will lead to better results and shorter TTD especially when 
incidents occur on the nonmonitored lanes.  

Using vehicle probes as a consistent information source requires equipping a 
sufficient number of vehicles with tags so that at all times, there are enough probe vehicles 
actually traveling the network. Van Aerde et al. (1993) conducted research in an attempt to 
determine the level of market penetration of tagged vehicles that is necessary to provide 
adequate samples of travel times. The research was conducted on a small simulated network 
comprised of a single arterial street, a freeway and ramps connecting them. Van Aerde 
concluded that at a market penetration of 20 percent the actual link travel time experienced 
by the simulated vehicles fell within the 95 percent prediction intervals for each link 
determined by the travel time sample. Parkany and Bernstein (1995) conducted an 
investigation pertaining to the application of AVI for incident detection. The research group 
assumed that 50 percent of the vehicles traveling the network were equipped with AVI 
transponders, the detectors were 0.75 miles apart and there was medium traffic flow (1000 to 
1400 veh/lane). The main conclusion was that AVI has great potential as a stand-alone sensor 
for incident detection. Hellinga and Knapp (1999) researched the performance of three AVI-
based automatic incident detection algorithms using a network simulation of eight 
interchanges along a 12 km freeway section of Highway 401 in Toronto, Canada. The fact 
that a simulation model was used allowed for testing of the algorithms’ performance for a 
range of market penetrations of AVI equipped vehicles. The most important trends observed 
are summarized as follows: the detection rate improves significantly as the level of market 
penetration increases from 1 percent to 5 percent, and there is an incremental small 
improvement when the level of market penetration goes up to 10 percent and it remains 
almost constant after that. It was also noted that as the level of market penetration increases, 
the false alarm rate also increases. Most importantly, the mean TTD decreases continuously 
with the increasing level of market penetration. The mean TTD decreases by about 35 
percent with an increase in level of market penetration from 1 percent to 25 percent. 

With these varying results, it is important to understand that all of the above-
discussed experiments made use of simulated data due to the lack of real-time AVI data and 
due to the advantages that a simulator offers in terms of varying factors in the analysis. The 
level of market penetration that would be adequate should be evaluated in conjunction with 
whether AVI is going to be used as a stand-alone traffic conditions detector system or 
coupled with some other detector data such as inductive loops. Better incident detection can 
be achieved with increasing market penetration levels. Since the TTD varies inversely 
proportionally to the level of market penetration, an increasing level of market penetration is 
especially important in achieving the detection time goals set by TMCs. Attaining a market 
penetration of 20 percent or more should be adequate to achieve a reasonable TTD. For some 
markets such as Houston, such market penetration levels should not be difficult to achieve in 
the future, especially with the variety of AVI applications available, ranging from toll 
collection to access control. Additionally, tags from different cities can still be detected and 
act as a probe in the network. 



 19 

No formal study was conducted to assess the effect of readers’ spacing on the 
performance of AVI as a source of information for incident detection. In the studies 
performed on simulated networks, AVI readers were set at some constant intervals. To 
minimize cost, the location of the readers in existing AVI installations is determined to a 
large extent by the availability of supporting structures. When the San Antonio or the 
Houston networks are observed, it is obvious that readers were installed wherever bridges or 
message signs structures were already existent. It is believed that the spacing of the readers 
influences the performance of the system by the number of off-ramps between successive 
readers. The greater the number of off-ramps and on-ramps, the greater the chance of 
matching tagged vehicles traveling this particular segment of the network. This implies that 
the readers should be placed in such a way to reduce as much off-ramp interference as 
possible.  

To ensure the shortest TTD, it is of primary importance that the communication 
means between every site and the control center be as consistent and timely as possible. 
Usually the AVI reader field sites are connected to the AVI master computer using POTS 
lines that provide for two-way communications. Radio-type connections were tested and 
found to perform much poorer than telephone communications (Mouskos et al. 1996). Cell 
phone lines may not be the most desirable, but the author is not aware if a thorough 
evaluation has been made of this option. The system installed in Houston differs from that of 
San Antonio in that as soon as a tag is read, the field site initiates a call in an attempt to 
transfer the tag read to the host rather than waiting for a prespecified time to elapse or for a 
prespecified number of tag reads. If during this time another tag is read, the system maintains 
communication and continues transferring data for up to a minute. After that, even if there 
are more tags detected, the system disconnects and tries to connect again to allow other sites 
to dial in. The modems used require an average of 15 seconds handshake duration. There are 
actually 160 operational sites in Houston along with 106 (POTS) lines to serve them. To 
ensure timely arrival of data at the TMC, continuous connection between the sites should be 
maintained along with an adequate number of phone lines to serve all the AVI sites of the 
network. 

From a hardware point of view, AVI systems consist of two major elements, the in-
vehicle unit (tag or transponder) and the roadside unit (reader or interrogator). Most systems 
require a communications link between these two elements, a host computer and another 
communications link connecting the reader and the host. Information transmission in most of 
the existing systems is done in the form of visible light, infrared radiation, microwaves, or 
radio waves. The tags can be either internally powered (battery or a vehicle’s electrical 
system) or powered by the interrogation beam.  

Although internally powered tags are more expensive and the battery has to be 
changed whenever dead (new tags have lithium batteries that can last up to 10 years), they 
are much less sensitive to the orientation of the antennas and require much lower powered 
transmissions than nonpowered tags. Therefore, they are the preferred choice from a 
reliability perspective. An economic analysis might yield a different preference.  

Proper maintenance is as important as system design and installation. The system’s 
operating agency should regularly check the sites to determine the ones with which 
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communication cannot be established. The TMC should have a specialized maintenance crew 
with the required skills to perform regular maintenance and to fix problems without 
inordinate delays. Furthermore, it is recommended that the direction of the antennas be 
checked regularly and be properly realigned, if needed, especially for the systems using 
nonpowered tags. It is also recommended that an agreement be reached with the local phone 
and power companies to ensure timely repairs of communication and power links.  

The efficiency and timeliness of a TMC emergency response to highway incidents are 
largely dependent on the quality of the data available. Adequate performance is obtained 
whenever the location, type, severity, and scale of an incident are accurately and consistently 
reported. Each type of sensor has its associated strengths and weaknesses. It is expected that 
combining data from several sources might offset the weaknesses of a single source, thus 
leading to more accurate and complete information. The data obtained after sensor fusion has 
the potential to reduce delays and improve the overall incident detection performance of the 
system. Figure 2.3 represents the generic design for an incident detection system that makes 
use of fusion concepts. 

AID systems using conventional sensors are useful tools for TMCs. However, the use 
of surveillance cameras and PP in providing visual confirmation is important. Finally, 
cellular phones are becoming an increasingly reliable source of information with their ever-
increasing level of market penetration. 
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Figure 2.3 Generic Design of an Incident Detection System with Multiple Sources of 
Input 

2.2.2 Algorithms  

Incident detection algorithms are a key component of automated incident detection 
systems. The TTD an incident varies with the effectiveness of the detection algorithm 
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employed. The less effective the algorithm, the more substantial the delays that are incurred 
in responding to the incident and the less useful the AID system. Since the early 1970s, a 
variety of incident detection algorithms have been developed, catalyzed by a substantial 
national investment in ITS. At the heart of all incident detection algorithms is their reliance 
on disturbances or sudden changes in traffic conditions. It is the prevailing conditions i.e., 
traffic flow and speed, as well as the severity and location of the incident that determine the 
magnitude of these disturbances. Algorithms tend to perform differently depending on the 
traffic conditions they were intended to deal with. The performance of the different 
algorithms is affected also by the spacing of the detectors and by the resolution and 
aggregation of the data. Algorithms are most often based on either pattern recognition or 
forecasting principles (Solomon 1991).  

Pattern recognition algorithms detect incidents by examining the collected data and 
finding values or combinations of values that are historically characteristic of incident 
conditions. Algorithms are developed to detect these conditions while dismissing patterns 
that do not correspond to incidents, such as recurrent congestion. The data collected at all 
detector stations is run through a decision tree logic which compares at each node a data 
measurement to a prespecified threshold value. The decision trees vary in complexity 
depending on the particular algorithm. Some are extremely simple, relying on just one 
measurement to determine whether or not an incident took place, while others use a much 
more complicated logic. Typically, algorithms using simple decision trees compare 
occupancy values to a threshold value.   

Forecasting algorithms compare the collected measurements to forecasts obtained 
based on the most recent history of measurements. The difference among the different 
forecasting algorithms resides in the measurements employed and the forecasting techniques 
implemented. Unlike pattern recognition algorithms, forecasting algorithms monitor the rate 
at which traffic measurements change rather than the change in their absolute value.  

It is important to note that most of the algorithms developed to date are meant to deal 
with freeway incident detection and are not adequate to be used with other more complicated 
types of roadways such as arterial streets. With the advent of cell phones, using AID for city 
streets is probably never going to be feasible. Also, algorithms are designed to operate at an 
optimal level when traffic volumes are between certain limits, thus a certain algorithm that 
works well under high volumes might perform poorly when low traffic flows are 
experienced. All algorithms require a steady stream of data and result in a binary output of 
incident or no incident with the exception of fuzzy algorithms. In the latter case, neural 
networks train themselves to look for and recognize incident patterns in traffic data and 
algorithms based on fuzzy logic give a “possibility” of incident occurrence.  

It seems reasonable that combining the output of several algorithms, i.e., algorithm 
fusion, would lead to better results when compared to the use of a single algorithm. 
Algorithm fusion was explored in detail in a study conducted at The University of Texas at 
Austin (Zhou 2000). Fusing the outcome of several algorithms possessing complementary 
strengths combines the advantages that each algorithm possesses under different conditions. 
The associated incremental cost is minimal, especially since individual algorithms generally 
use similar data input. 
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2.2.3 Verification and Response 

It is critical to stress the importance of incident verification and response compared to 
other objectives of incident management. Incident verification and response are as important 
as incident detection in ensuring an efficient incident management program. The program 
should also incorporate ways to inform motorists, so that they alter their travel plans in order 
to contribute to the reduction of the incident-induced congestion.  

Verification is the first step that has to be undertaken once an incident pattern is 
detected by an algorithm. Once an alarm has been generated, surveillance cameras or mobile 
sources (cellular callers, highway patrol, etc.) are used to verify and characterize the incident 
and to drive the dispatch of any necessary emergency services. Surveillance cameras can be 
operated manually to observe the problematic area or this process can be speeded up by the 
use of software that activates the camera closest to the incident. At TransGuide, the software 
is designed to automatically zoom, pan, and tilt to the closest camera. Several operators, such 
as police and VIA Metropolitan Transit Authority dispatchers, as well as TxDOT operators, 
can access a view of the scene at the same time. 

Once the incident is verified, the operator in charge decides on an appropriate 
response. The response is aimed at notifying emergency response agencies and motorists, as 
well as at implementing control measures. At TransGuide, the operator can choose from 
preprogrammed “scenarios” that act on lane control signals, dynamic message signs and 
traveler information systems. Although this research is focused on the incident detection 
phase of incident management, all other phases are of equal importance to a program aimed 
at optimizing safety. 

Chapter 2 presented the technology deployed at TransGuide. Also, the chapter 
included a description of the components of incident management, i.e., sensor technology, 
algorithms, and, finally, detection and response.  

The following chapter illustrates the logic behind several incident detection 
algorithms used with data collected from ILDs. Promising incident detection algorithms that 
make use of AVI-generated data are also described. 
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CHAPTER 3 AUTOMATIC INCIDENT DETECTION ALGORITHMS 

Automatic Incident Detection (AID) relieves part of the stress incurred by Traffic 
Management Center (TMC) operators in managing complex networks, thus allowing for 
better incident management.  Central to AID are the incident detection algorithms. The 
importance of AID algorithms has been increasing ever since TMCs started moving toward 
higher levels of automation. While algorithms making use of fixed detector data were subject 
to extensive research, the literature reviewed showed that there is still a lot to be done in the 
development of algorithms using probe vehicle data. This chapter starts by presenting 
measures of effectiveness to be used in evaluating the performance of the different 
algorithms, followed by an introduction to some of the most widely used fixed detector 
algorithms in TMCs. Also, promising probe vehicle algorithms are presented. It is to be 
noted, however, that the chapter is not intended to be an exhaustive review of all existing 
algorithms.  

3.1 MEASURES OF EFFECTIVENESS 

Whenever an incident detection algorithm tests for the occurrence of an incident, four 
outcomes are possible. The first type of outcome, characterized as a “correct non-incident 
classification,” is one where no incident has actually occurred and where the algorithm has 
detected no incident. The second type of outcome, characterized as an “incorrect incident 
classification,” is one where no incident has actually occurred and the algorithm has signaled 
the occurrence of an incident. This type of outcome is commonly referred to as a “false 
alarm.” The third possible type of outcome, characterized as a “correct incident 
classification,” is one where an incident has actually occurred and the algorithm has correctly 
detected its occurrence. The final possible type of outcome, characterized as an “incorrect 
non-incident classification,” is one where an incident has actually occurred and the algorithm 
has detected no incident. This type of outcome is commonly referred to as a “missed 
incident.” The implication of the different types of outcomes on the effectiveness of incident 
management differs with the worth being attributed to missed incidents. The most common 
measures of effectiveness for automatic incident detection algorithms are the False Alarm 
Rate (FAR), the Detection Rate (DR), and the Time-To-Detection (TTD). These 
measurements provide a consistent benchmark to compare the performance of the different 
algorithms considered in this research. 

FAR is defined as the fraction of incorrect detections to the total number of algorithm 
applications. It is the probability that a type two outcome occurs, i.e., the algorithm detects an 
incident that did not occur. Most often FAR is expressed as a percentage, but may also be 
given as the number of false alarms per time period. FAR is largely influenced by the 
prevailing traffic conditions. If the algorithm is calibrated to detect only major accidents, 
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FAR should be relatively low. The more varied the traffic conditions experienced, the higher 
the FAR.  

DR is defined as the ratio of number of detected incidents to the actual number of 
incidents that occur during a specified time period and is given as a percentage. It is the 
probability that a type three outcome occurs. The probability of a missed incident can be 
calculated by subtracting the DR expressed as a ratio from 1. Furthermore, an incident must 
be correctly detected in order to contribute to the DR. A correctly detected incident is one for 
which the algorithm outputs the correct date, time, and location.  

The average TTD is defined as the average time needed by an algorithm to detect an 
incident. The TTD is measured as the time elapsed between the apparent time of occurrence 
of an incident and its detection by the algorithm. The average TTD is obtained by averaging 
the TTD values for all incidents detected over a certain time period. There is a distinction 
between apparent time of occurrence and actual time of occurrence of an incident. The latter 
is the exact time of occurrence of an incident and can be obtained only if that particular 
location is under constant surveillance, i.e., the location is being videotaped or observed 
manually. The more complex the network, the more labor intensive the task becomes. The 
apparent time of detection of an incident reflects the time reported in the incident log either 
by an operator or by the algorithm used at the TMC. 

Based on these measures of effectiveness, three objectives are sought in the 
performance of an incident detection algorithm: 

• Maximize the number of actual incidents detected by the algorithm, 

• Minimize the number of times the algorithm reports an incident that has not 

occurred, and 

• Minimize the time it takes the algorithm to detect an incident. 

These objectives can be represented as an objective function in terms of the measures 
of effectiveness previously defined: 

 
Maximize Z (DR, FAR, TTD) = α1(DR) - α2(FAR) - α3(TTD) 
 
The performance efficiency of an algorithm depends on the α factors of the objective 

function. In general, an algorithm that achieves the highest DR is not likely to achieve the 
lowest FAR and TTD. These measures of effectiveness are not independent and tend to be in 
conflict with one another, requiring trade-offs in algorithm performance. Algorithms tuned to 
detect a high percentage of incidents tend to result in a large number of false alarms. Along 
the same lines, an algorithm tuned to detect severe incidents produces fewer alarms at the 
expense of the number of incidents detected. Similarly, while a longer TTD allows an 
algorithm to analyze more data, thus increasing the DR and reducing FAR, it also has a 
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greater impact on traffic (Black 1997). These interrelationships suggest that each algorithm 
should be tuned for the specific application at hand.  

Typically, an algorithm depends in its operation on a set of thresholds. Each set of 
thresholds corresponds to a different response in terms of DR, FAR, and TTD. Therefore, it 
can be said that there is not necessarily an optimal choice; rather, the chosen set of thresholds 
for a particular application should balance the DR, FAR, and TTD. Testing an algorithm with 
various sets of thresholds will typically result in performance curves as illustrated in Figure 
3.1, when the DR and TTD are respectively plotted against FAR (Peterman 1999). 

 
 

DR

TTD

 

Figure 3.1 Typical Performance Curves for Incident Detection Algorithms 

A set of thresholds is said to be “pareto-optimal” if there is no set of thresholds that 
will improve one attribute (DR, FAR, or TTD) without degrading at least one other attribute. 
The DR and TTD plotted against FAR represent the “efficient frontiers” of the algorithm or 
the set of thresholds that is “pareto-optimal.” Since it is practically impossible to get the best 
performance from a single set of thresholds with respect to all three attributes, it is up to the 
system manager to decide on the relative importance of DR, FAR, and TTD to a particular 
application.  Then the designer should choose the set of thresholds that maximizes the 
objective function by optimizing the attribute associated with the highest weight. With the 
basis for comparison defined, the algorithms are presented next. 
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3.2 FIXED DECTECTOR ALGORITHMS 

Extensive research has gone into developing algorithms to be used with data collected 
from fixed detectors, namely Inductive Loop Detectors (ILD). Existing detection algorithms 
are organized in this study into five categories: comparative, statistical, time series, traffic 
model and theoretical, and finally, advanced incident detection techniques (Picado 1997). 
While comparative algorithms are based on pattern recognition principles, statistical, time 
series, and traffic model and theoretical are all based on forecasting principles. 

3.2.1 Comparative Algorithms 

Comparative or pattern recognition algorithms compare the current traffic flow 
conditions with those prevailing under normal conditions. The values of traffic parameters  
(volume, occupancy, or speed) are directly compared to predetermined thresholds. If the 
algorithm detects a substantial difference, an incident is flagged out and brought to the 
attention of the operator.  

3.2.1.1 California Algorithms  The California algorithms began in the late 1960s for 
use in the Los Angeles freeway surveillance control center (Black 1997). Although the logic 
is one of the first to be developed, these algorithms remain a benchmark against which new 
algorithms are compared. The logic assumes that an incident is likely to create congestion 
upstream and a relative absence of congestion downstream. The California algorithms 
compare occupancy data between adjacent detector stations. The occupancy data are 
manipulated in order to generate three additional traffic measurements as described in Table 
3.1. The OCCDF and the OCCDRF variables are intended to capture the eventual significant 
change in occupancy upstream and downstream of an incident location. The DOCCTD is 
intended to differentiate incidents from recurring congestion by looking for short-term 
intense changes in occupancy values at the downstream section. 

Table 3.1 “Features” of the California Algorithms (Payne 1976) 

Measure Description Definition 
OCC (i, t) Occupancy at detector station i at time t  
DOCC (i, t) Downstream occupancy OCC (i+1,t) 
OCCDF (i, t) Spatial occupancy difference OCC (i, t) - DOCC (i, t) 

OCCRDF (i, t) Relative spatial occupancy difference 
OCCDF (i, t) 
OCC (i, t) 

DOCCTD (i, t) 
Relative temporal downstream occupancy 
difference 

DOCC(i,t-2) - DOCC(I,t) 
DOCC (i, t-2) 
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The outcome of the algorithm is an ultimate state reached after running in sequence 
through a series of decision nodes. Algorithm #1, which was the original algorithm, 
differentiated between only two states characterizing incident conditions and non-incident 
conditions. The second version of the algorithm, i.e., algorithm #2, had the additional 
capability to determine the beginning and termination of an incident. These first versions of 
the algorithm were sensitive to compression waves and anomalous disturbances in traffic 
data. In 1973, Payne started developing modified versions of the California algorithms as 
part of a Federal Highway Administration (FHWA) sponsored study aimed at developing 
improved detection algorithms. Payne’s research resulted in the development and testing of 
ten different algorithms. Of those ten, the California #7 and California #8 gave the best 
overall results. The current downstream occupancy replaced the spatial occupancy difference 
in California  #7 to alleviate the high FAR experienced as a result of compression waves. 
Also, a persistence check was added to the later version of the algorithm. The persistence 
check required that the incident conditions remain for at least two iterations of the algorithm 
before signaling an incident. The California #8 differs from the rest of the series by delaying 
all incident detection for 5 minutes after a compression wave has been detected (Black 1997). 
The decision trees and state for the California algorithms #7 and #8 are presented in Figures 
3.2 and 3.3, respectively. 
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Figure 3.2 Decision Tree for California Algorithm #7 (Payne et al. 1976) 
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Figure 3.3 Decision Tree for California Algorithm #8 (Payne et al. 1976) 

 

3.2.1.2 Texas Algorithm  Developed by Texas Department of Transportation 
(TxDOT), the Texas algorithm is a simple comparative algorithm that weighs the speed at 
detector stations against a preset threshold using a 2-min. average (Peterman, 1999). The 
speed measurement is substituted for occupancy measurements on on-ramps and off-ramps. 
An alarm is triggered if the speed or occupancy value exceeds the threshold. To achieve 
better results, the algorithm could be calibrated at each detector station. The Texas algorithm 
is used in TMCs throughout the state of Texas, namely TransGuide in San Antonio, TranStar 
in Houston, and TransVision in Fort Worth.  

3.2.1.3 High Occupancy Algorithm (HIOCC)  Developed by the Transport and Road 
Research Laboratory in England (1979), the HIOCC inspects occupancy data from individual 
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loop detectors for the presence of stopped or slow-moving vehicles. The algorithm parses 
through the data looking for very high values of occupancy and compares them to the 
threshold value. Although the HIOCC resembles the TxDOT algorithm, the occupancy 
threshold is usually set at a much higher value. 

3.2.1.4 All-Purpose Incident Detection (APID) Algorithm  The APID algorithm was 
originally developed for use in the Toronto COMPASS advanced traffic management system 
(ATMS) and is designated as “all-purpose” since it was designed to perform under all traffic 
conditions. The logic behind the APID algorithm is similar to that of the California #8 with 
the addition of a speed measurement. The algorithm parameters, i.e., the set of thresholds, are 
automatically modified according to the prevailing volume conditions. The algorithm 
differentiates between “low,” “medium,” or “high” volumes and includes an incident 
termination routine, a test for compression waves, and a persistence check.  

3.2.2 Statistical Algorithms 

Statistical algorithms rely on detecting large differences between the actual value of a 
traffic variable and the corresponding statistically predicted or estimated value. 

3.2.2.1 Standard Normal Deviate (SND)  The Texas Transportation Institute (TTI) 
developed the Standard Normal Deviate (SND) algorithm to be used on Houston’s Gulf 
Freeway (I-45). The algorithm examines the SND also known as Z-transform of a traffic 
variable (usually occupancy). The SND can be obtained as shown in Equation 3.1: 

s
xxSND −=                              (Eq. 3.1) 

Where x = traffic variable being considered, 
            x = mean of traffic variable over previous sampling periods, and 
             s  = standard deviation of the traffic variable over previous sampling periods. 
  
The logic is based on the assumption that a significant change in the traffic variable 

would be observed in case an incident happens leading to a high value of SND. The 
algorithm can be set to perform a persistence check before reporting an incident, i.e., two 
consecutive values of SND have to be critical to trigger an alarm. In 1974, Dudek studied the 
performance of an algorithm using occupancy values as input and computing moving 
averages over the previous 5 minutes. His algorithm required two consecutive critical SND 
values to trigger an alarm. The detection rate of Dudek’s algorithm was close to 92 percent 
and FAR approached 1.3 percent (Dudek 1974). 

3.2.2.2 Bayesian Algorithm  Levin and Krause (1978) applied Baye statistical 
techniques to determine the probability of occurrence of an incident caused by downstream 
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lane blockage. Historical data on the occurrence of capacity-reducing events along the 
section of freeway under consideration is used to generate relative spatial occupancy 
differences. The latter value is used as the basis for determining incident probabilities. The 
spatial occupancy difference calculated is similar to the OCCRDF value described under the 
California algorithm, with the exception that the Bayesian algorithm computes conditional 
probabilities that the relative difference is caused by an incident. The algorithm requires large 
databases of traffic volume and occupancy during incident conditions, traffic volume and 
occupancy during incident-free conditions, and finally information about incidents such as 
their type and location. Furthermore, this approach requires complicated calibration at each 
station and usually results in high detection times. 

3.2.3 Time Series Algorithms 

Time series algorithms make use of statistical modeling of traffic behavior in 
determining short-term traffic forecasts based on recent values of a traffic variable. These 
algorithms employ large time windows to reduce short duration traffic disturbances.  

3.2.3.1 ARIMA Algorithm  The logic behind the ARIMA algorithm was developed by 
Box and Jenkins (1976) to recognize patterns in data and generate forecasts. The logic was 
applied later by Ahmed and Cook (1980) to incident detection. The researchers observed that 
an Auto-regressive Integrated Moving Average (ARIMA) time series model could represent 
traffic flow on a freeway. Used to develop short-term forecasts and confidence intervals, the 
ARIMA algorithm tries to predict the difference in the values of a traffic variable between 
the current time period and the preceding one. The prediction is based on averaging the errors 
between the predicted and the observed traffic variable from the previous three time periods. 
An incident is detected whenever the observed value of the traffic variable falls outside the 
confidence limit of the forecast.  

3.2.3.2 Exponential Smoothing Algorithm  Exponential smoothing algorithms predict 
future traffic conditions by assigning weights to past and current traffic variable values. 
These algorithms can be mathematically modeled by a single or double smoothing function 
associated with a smoothing constant that weighs past observations. Cook and Cleveland 
(1974) developed a double-exponential smoothing algorithm described by Equations 3.2 and 
3.3. 

 
)1()1())(()( 11 −−+= tStXtS αα      (Eq.3.2) 
)1()1())(()( 212 −−+= tStStS αα      (Eq.3.3) 

 
 Where )(1 tS = single exponentially smoothed variable at time t, 
  )(2 tS = double exponentially smoothed variable at time t, 
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  )(tX = state variable measured at time t, and 
                α  = smoothing constant. 
 
Cook and Cleveland examined speed, volume, occupancy, and ten other traffic 

variables. The algorithm relies on a tracking signal to detect incidents. The tracking signal is 
defined as the sum of all previous errors, i.e., the difference between the predicted and actual 
value of the traffic variable considered. During normal conditions, the predicted and actual 
values of the variable should be close, leading to an insignificant value of the tracking signal. 
During incident conditions, the predicted and actual values of the traffic variable are 
expected to vary significantly leading to higher values of the tracking signal. The best 
performing indicator variables examined were occupancy and volume. 

3.2.3.3 Detector Logic with Smoothing Algorithms (DELOS)  Stephanedes and 
Chassiokos (1993) extensively investigated the effects of temporal smoothing and 
exponential smoothing. Exponential smoothing resulted in better results than temporal 
smoothing using either the mean or median of a data window. The researchers put together 
the logic behind what is known as the DELOS algorithm or the Minnesota algorithm. The 
DELOS algorithm produces a smoothed moving average in an attempt to level the data. The 
algorithm eliminates peaks while allowing low frequency fluctuations to pass.  

3.2.4 Traffic Model and Theoretical Algorithms 

Traffic model and theoretical algorithms make use of complex traffic flow theories to 
describe and predict traffic behavior for the duration of an incident. The Dynamic algorithm 
and the McMaster algorithm are introduced next. 

3.2.4.1 Dynamic Algorithm  In 1955, Lighthill, Witham, and Richards introduced the 
first order continuum theory which was the base for the development of several traffic flow 
models using higher-order continuum formulations such as those proposed by Payne (1971). 
Willsky et al. (1980) investigated the application of Payne’s macroscopic traffic model to 
describe the change in spatial-average traffic variables in order to capture the dynamic aspect 
of the traffic phenomena. The likelihood of occurrence of an incident is calculated using a 
Kalman filter that processes measured data to generate estimates for the underlying system 
variables. Two statistical hypothesis-testing procedures are used to study flow-density 
relationships in the traffic data: the Multiple Model (MM) and the Generalized Likelihood 
Ratio (GLR). The MM method is used to generate conditional probabilities serving as control 
measures for the detection of incidents. The GLR evaluates the likelihood that the observed 
flow-density pattern is typical of incident conditions.  

Cremer (1981) investigated Kalman filtering for AID purposes on congested cross-
country freeways in Europe. He concluded that with an appropriate traffic flow model, speed 
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and density measurements provide the input needed to calculate a “disturbance volume.” The 
“disturbance volume” is defined as being a hypothetical follow intended to explain and 
measure reductions of roadway capacity. An incident is triggered in case the “disturbance 
volume” goes past a certain critical value. 

Both the Willsky and Cremer approaches were not picked up extensively by 
practitioners because they require the calibration of traffic flow model and the fine-tuning of 
filter matrices. This limited the application and the testing of these approaches to a small 
number of simulated incident patterns. 

 
3.2.4.2 McMaster Algorithm  Researchers at McMaster University in Ontario, 

Canada, developed the McMaster algorithm. To detect incidents, the algorithm relies on the 
hypothesis that unlike speed, which changes sharply when traffic moves from a congested to 
an uncongested state, flow and occupancy change smoothly. The algorithm starts by 
identifying congested areas and then attempts to determine if a permanent bottleneck or an 
incident is responsible for the detected congestion. The algorithm develops a volume-
occupancy template using historical flow-occupancy relationships during changes from 
congested to uncongested conditions. The traffic conditions at each detector station are 
classified into one of four areas corresponding to different states of traffic. These traffic 
states are shown in Figure 3.4 (Hall et al. 1989). In the case where congestion of type 2 or 3 
is encountered, the algorithm examines the traffic state at the downstream section. The 
premise behind looking at the downstream station in this case is the hypothesis that recurring 
and incident congestion result in different downstream traffic patterns. An alarm is triggered 
if the downstream detector is in state 1 or 2. If a state 4 is detected at the downstream 
detector, the congestion is classified as recurring. If a state 3 is detected at the downstream 
detector, then the algorithm examines the next downstream detector using the same logic. 
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State descriptions:
1 Uncongested
2 Congestion
3 Congestion
4 Permanent bottleneck congestion

Critical volume

Occupancy

V
ol

um
e

Approx. 25%

1

2 3

4

Approx.

32 veh/min

 

Figure 3.4 Original McMaster Template (Hall et al. 1989) 

Later, the McMaster algorithm logic was refined to reduce the susceptibility of the 
algorithm to incident-related traffic patterns emanating from nonincident conditions, such as 
the disturbances in the traffic stream experienced at merge and diverge areas on freeways. 
The updated logic modified the original logic by adding states and by creating two separate 
templates to differentiate between detector stations, depending on their location with respect 
to recurring bottlenecks (Hall et al. 1993). Figures 3.5 and 3.6 respectively illustrate the 
template intended for normal stations and for stations under recurrent congestion. 

Since volume-occupancy characteristics vary across stations, the McMaster algorithm 
requires calibration of the boundaries separating the four traffic conditions individually at 
each detector station. 

Furthermore, it is important to note the similarity between the logic of the California 
algorithm and that of the McMaster algorithm. Both algorithms compare traffic state 
variables to predetermined thresholds at decision nodes and result in a final state based on the 
results of the decision nodes. 
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Figure 3.5 Template Showing Typical Parameters for a Normal Station                      
(Hall et al. 1993) 

 

Figure 3.6 Template for a Typical Station Affected by Recurrent Congestion            
(Hall et al. 1993) 

 
 

3.2.5 Advanced Incident Detection Techniques 

3.2.5.1 Fuzzy Set Algorithms  Fuzzy logic is appropriate to combine uncertain and 
incomplete measurements such as those provided by sensors. The possibility of an incident is 
determined using membership functions instead of sharp decision thresholds. Chang and 
Wang (1994) researched the application of fuzzy logic to the California #8 algorithm under 
high-volume conditions. Fuzzy theory has also been applied along with image processing 
techniques to try and detect incidents based on the abnormal behavior of a vehicle. 
Furthermore, fuzzy logic and adaptive resonance have been integrated to produce 
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FuzzyART, capable of charting a set of input patterns to a set of categories much like a 
neural network (Ishak and Al-Deek, 1998).  

3.2.5.2 Neural Network Algorithms  Much like the human brain, neural networks can 
be designed and trained to learn certain patterns. Neural networks have to be trained to 
recognize recurring/nonrecurring uncongested/congested conditions. A neural network is 
constituted by a multitude of simple processing elements each of which can receive inputs 
from many other processing elements. The input is weighted according to connection values 
and a processing element has the ability to rapidly communicate its outputs to many other 
processing elements. Typically, the processing elements are arranged in a multilayer, feed 
forward (MLF) structure as that shown in Figure 3.7 (Black, 1997). 

Three layers characterize a multilayer feed forward neural network, the input layer, 
the intermediate layer, and the output layer. Also, varying numbers of processing elements 
can be contained in each layer. Typical input to an MLF include velocity and time-averaged 
volumes and occupancies at both upstream and downstream detectors. The network must be 
appropriately trained in order to determine suitable weights on the links between processing 
elements. 

Recent developments in the application of neural networks to incident detection 
include Probabilistic Neural Networks (PNN) that integrate prior probabilities of occurrence, 
road conditions and the cost associated with misclassifying a serious incident (Abdulhai et al. 
1997). The main difficulties associated with the use of neural networks are their extensive 
data requirements and training time. 
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Figure 3.7 Part of a Multilayer Feed Forward (MLF) Neural Network (Black 1997) 
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3.2.6 Reported Performance 

Black (1997) reviewed and summarized some of the available test results performed 
on the above-described algorithm. These results are presented in Table 3.2.  

One must be careful interpreting these results due to the fact that each test is 
associated with a certain set of conditions. Some of the tests were performed using simulated 
data sets, while others were done either online or offline. It is to be expected that testing done 
online or offline should be a better indicator of the actual performance of an algorithm when 
compared to testing done on simulated data sets. Also, the geographic region, road geometry, 
and traffic incident database (i.e., the number, type and severity of reported incidents) are 
characteristic of each test. These heterogeneous conditions associated with the presented test 
results indicate that the actual performance of the algorithms may vary from the ones 
reported in Table 3.2.  

Table 3.2 Summary of Algorithm Performance (Black 1997) 

Algorithm Detection 
Rate [%] 

False Alarm 
Rate [%] 

Average Detection 
Time [minutes] 

Basic 82 1.73 0.85 
California #7 67 0.134 2.91 
California #8 68 0.177 3.04 California 

APID 86 0.05 2.5 
Standard Normal 
Deviate 92 1.3 1.1 

Bayesian 100 0 3.9 
Time Series ARIMA 100 1.5 0.4 

Exponential 
Smoothing 92 1.87 0.7 

Low-Pass Filter 80 0.3 4.0 
Modified McMaster 68 0.0018 2.2 

MLF 89 0.01 0.96 Neural 
Networks PNN 89 0.012 0.9 

Fuzzy Set Good Good 
Up to 3 minutes quicker  
than conventional 
algorithms 

3.3 PROBE VEHICLE ALGORITHMS                                       

Automatic Vehicle Identification (AVI) holds the potential to be an important 
component of an integrated highway surveillance system. The majority of the reviewed types 
of sensors can only be used to count vehicles at a particular point and determine their 
instantaneous velocity at that point. The importance of AVI technology in the area of 
incident detection lies primarily in its ability to monitor point-to-point travel times. Point-to-
point data can improve traffic predictions and hence improve the performance of Advanced 
Traveler Information System (ATIS) and ATMS. The literature reviewed showed very few 
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applications of AVI-generated data to freeway incident detection. Furthermore, most of the 
studies performed made use of simulated data (Hellinga et al. 1999). There are advantages 
associated with testing an algorithm using simulation-generated data, which provide the kind 
of controlled experimental conditions needed to evaluate the effect of different experimental 
factors, such as the level of market penetration of tagged vehicles traveling the network, the 
spacing of readers, incident start and end times, or simulating varying numbers of incidents 
of different types and magnitudes. However, the observed performance of the algorithm 
might not be readily transferable to actual conditions. The installations available at 
TransGuide made possible the evaluation of AVI algorithms using actual data collected from 
the network. The rest of the chapter will introduce the underlying logic of different AVI 
algorithms. 

 3.3.1 Hellinga and Knapp Algorithms 

Hellinga and Knapp (1999) examined the performance of three AVI-based algorithms 
using data obtained by simulating a 12 km section of the collector facility of Highway 401 in 
Toronto, Canada. The network was divided into 1.2 km segments with AVI roadside 
antennas at both ends of the segments. The researchers simulated the network using the 
integration traffic simulation model (Van Aerde 1998). The simulation targeted the AM peak 
from 5:30 a.m. to 10:30 a.m. and resulted in a total of 101,142 vehicle trips. The simulation 
model provided link travel times for individual vehicles and a post processor was developed 
to combine individual link travel times for each vehicle and to produce travel times 
associated with each AVI-equipped segment. Furthermore, data was aggregated over 20-
second intervals. Only matching tags, i.e., vehicles that have passed the upstream detector on 
a segment, were used in the analysis. A total of 120 incidents with varying locations, 
durations, times of day, and severity were simulated.  

The three algorithms considered can be classified as statistical time-series models. 
The foundation for the logic of all three algorithms is that the travel time experienced by 
vehicles over a section of roadways increases more rapidly as a result of a change in capacity 
such as that resulting from an incident than it does as a result of a change in demand. Travel 
times collected before the occurrence of an incident can be thought of as belonging to one 
population while those prevailing after the occurrence of an incident as belonging to another 
population. The algorithms start by determining the mean and variance of the travel times 
experienced under normal conditions and attempt to assess if the currently reported travel 
times lie outside the confidence limits associated with the normal conditions.  

3.3.1.1 Confidence Limit Algorithm  The confidence limit algorithm computes the 
mean and variance of recently acquired travel times from the previous N intervals 
constituting the comparison window. The mathematical equations for calculating the mean 
AVI interval travel time, the mean travel time for the comparison window, and the interval 
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travel time variance for the comparison window are illustrated in Equations 3.4, 3.5, and 3.6 
respectively (Hellinga et al. 1999). 
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Where i = aggregation interval, 
 j = segment reference, 
 t = time of the day, 
τ ti

 = segment travel time reported by an AVI-equipped vehicle at time t during 
interval i 

in  = number of AVI-equipped vehicle reports received during interval i, 
δ = duration of the comparison window,  

δn = number of intervals within comparison window of duration δ,  

iτ  = mean interval travel time for all AVI-equipped vehicles in interval I,  

δτ = mean of all mean interval travel times iτ  in comparison window, and 

δvar = variance of all mean interval travel times iτ  in comparison window.  
 
The algorithm makes the assumption that the individual mean interval travel times are 

log-normally distributed. An upper confidence limit for the mean segment travel time of the 
interval following the comparison window is obtained by computing the lognormal mean and 
the lognormal variance of the mean interval travel times contained within the comparison 
window.  The mathematical equations for calculating the lognormal mean of the mean 
interval travel times contained in the comparison window, the lognormal variance of the 
mean interval travel times contained in the comparison window, and the upper confidence 
limit for the mean segment travel time of the interval following the comparison window are 
illustrated in Equations 3.7, 3.8, and 3.9, respectively (Hellinga et al. 1999). 
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      Where δσ = lognormal variance of iτ  in comparison window, 
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     δµ  = lognormal mean of iτ  in comparison window, 
     z = value associated with the level of confidence, and 
    iUL  = upper confidence limit for the mean travel time for interval i. 
 
The algorithm logic assumes that the underlying mean of the mean interval travel 

time distribution remains unchanged during the comparison window and the interval for 
which the confidence limit is being estimated. The probability that this assumption does not 
hold is proportional to the duration of the comparison window. It is assumed with a level of 
confidence with associated z that an incident has occurred if the mean interval travel time is 
greater than its corresponding upper limit. If added, a persistence check can help reducing the 
FAR by delaying an incident from being declared before a predefined number of consecutive 
intervals have a mean interval travel time greater than the corresponding upper confidence 
limit. 

3.3.1.2 Speed and Confidence Limit Algorithm  The Speed and Confidence Limit 
algorithm adds a speed check to the Confidence Limit algorithm. The algorithm calculates 
the mean speed of the AVI-equipped vehicles for each interval as well, as for the comparison 
window. The mathematical equations for calculating the mean AVI interval speed and the 
interval mean speed for the comparison window are illustrated in Equations 3.10 and 3.11. 
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     Where iu  = mean interval speed for all AVI-equipped vehicles in interval i,  
 uti

= speed reported by an AVI-equipped vehicle at time t during interval i, and 

δu = mean of all mean interval travel times iτ  in comparison window. 
 
 The decreased capacity observed when an incident occurs is expected to create 

congestion upstream of an incident and reduce the flow downstream of the incident. This 
reduction in the downstream flow causes an increase in the speed of the vehicles exiting the 
segment at the downstream detector station.  

If the mean interval travel time is greater than the associated confidence limit and if 
the mean speed of the vehicles exiting the segment during the interval is greater than the 
mean vehicle speed for the comparison window, the Speed and Confidence Limit algorithm 
flags out an incident. 

3.3.1.3 Dual Confidence Limit Algorithm  Unlike the Confidence Limit algorithm, the 
Dual Confidence Limit algorithm seeks to compare mean interval travel times to a 
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confidence limit threshold and attempt to remove the values exceeding the confidence limit. 
The Confidence Limit algorithm always includes the last N intervals even if the mean 
interval travel time for the current interval is not statistically part of the comparison window 
population. Based on the data enclosed in the comparison window, the Dual Confidence 
Limit algorithm defines two confidence limits, the Window Limit and Alarm Limit. The 
algorithm starts by comparing mean interval travel times to the Window Limit. If a mean 
interval travel time is greater than the Window Limit, the value is considered part of another 
population. This results in the comparison window not being moved forward by one interval 
when testing for the next interval. If a mean travel time value is greater than the Window 
Limit, but smaller than the Alarm Limit, no incident is declared but the comparison window 
does not advance when evaluating the next interval. Hellinga and Knapp (1999) implemented 
the algorithm with a maximum stationary time of 8 intervals. 

3.3.1.4 Reported Performance  Different combinations of durations of the comparison 
windows, confidence levels, and number of persistence checks were investigated for varying 
levels of market penetrations. Six different levels of market penetration were investigated: 1 
percent, 5 percent, 10 percent, 25 percent, 50 percent, and 100 percent. The researchers based 
the evaluation of the algorithms based on a maximum allowable FAR of 0.2 percent. The 
McMaster algorithm was evaluated using simulated loop data from the same network. The 
performance was used to provide a basis for comparison with the performance of the three 
AVI algorithms described.  

Results of the simulation showed that the Speed and Confidence Limit algorithm 
performed best in terms of DR for all levels of market penetration investigated. Moreover, 
the DR and FAR obtained from the Speed and Confidence Limit algorithm are comparable to 
those obtained from the McMaster loop detector–based algorithm. It was also observed that 
the maximum DR was obtained for a level of market penetration of 10 percent while the TTD 
continued to decrease as the level of market penetration increased. Table 3.3 summarizes the 
detection rates, false alarm rates, and mean TTD as a function of the level of market 
penetration for all three algorithms (Hellinga et al. 1999).  

3.3.2 TRANSMIT 

The Transportation Operations Coordinating Committee’s System for Managing 
Incidents and Traffic (TRANSMIT) makes use of Electronic Toll and Traffic Management 
equipment (ETTM) for traffic surveillance and incident detection in the New York City area. 
The equipment used is compatible with that of the EZ-Pass electronic toll collection system 
installed along the New York State Thruway (NYST) in addition to several other facilities in 
the New York City metropolitan area, New Jersey, and Connecticut. The AVI equipment was 
installed during the fall of 1995 and became fully operational in January 1996 with more than 
1.5 million vehicles equipped with AVI tags.  
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Table 3.3 AID Results as a Result of the Level of Market Penetration (Hellinga et al. 
1999) 

 Off-line FAR 
 

LMP 
(%) 

DR 
(%) 

MTTD 
(minutes) (%) (FA/Km/h)a 

Confidence 
Limit 
 

1 
5 

10 
25 
50 
100 

16 
28 
30 
25 
28 
29 

9.30 
4.94 
3.37 
2.99 
2.27 
2.44 

0.08 
0.13 
0.13 
0.19 
0.17 
0.19 

0.12 
0.20 
0.20 
0.29 
0.26 
0.29 

Speed and 
Confidence 
Limit 
 

1 
5 

10 
25 
50 
100 

43 
43 
51 
51 
48 
39 

7.12 
5.89 
4.82 
4.01 
4.07 
2.94 

0.18 
0.15 
0.18 
0.19 
0.20 
0.13 

0.27 
0.23 
0.27 
0.29 
0.30 
0.20 

Dual 
Confidence 
Limit 

1 
5 

10 
25 
50 
100 

24 
28 
32 
27 
30 
32 

8.70 
4.48 
4.14 
3.08 
2.93 
3.25 

0.19 
0.16 
0.17 
0.15 
0.20 
0.15 

0.29 
0.24 
0.26 
0.23 
0.30 
0.23 

McMaster N/A 37.3b ---d 0.02b 0.20c 
a FAR presented as false alarm per km of highway per hour 
b as reported by Rakha and Van Aerde, 1996 
c  calculated based on data from Rakha and Van Aerde, 1996 
d  Rakha and Van Aerde, 1996, do not report MTTD 
 
  
In 1995, the FHWA appointed a team to evaluate TRANSMIT’s capability to detect 

incidents reliably and accurately (Mouskos et al., 1999). Also, the evaluation team was 
assigned the task of evaluating the performance of the communication system in term of its 
transmission and detection rates. The lengths of the links between AVI readers in the 
network varied from 0.8 to 3.38 km (0.5 to 2 miles).  The incident detection algorithm used 
by TRANSMIT is presented next along with the reported performance results. 

3.3.2.1 The TRANSMIT Algorithm  PB Farradyne, Inc. developed the incident 
detection algorithm used to process the data collected from the Operations Information 
Center (OIC) at Jersey City, N.J, in real-time. The  link travel times of the expected tagged 
vehicles are estimated using the probability distribution for specific time intervals. The 
algorithm’s logic assumes that under free flow conditions, vehicle link travel times can be 
represented by a normal distribution. The probability that an incident occurred on a particular 
link is directly proportional to the link travel time, i.e., the probability of occurrence of an 
incident increases when a number of vehicles fail to arrive at the downstream detector at the 
estimated travel time. Furthermore, the probability of a false alarm decreases as vehicles 
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passing the upstream detector fail to pass the downstream detector. As the frequency of late 
arrivals at the downstream detector increases, the confidence level of the possible occurrence 
of an incident increases up to a point when it goes beyond the threshold value set by the user. 
Once the confidence limit exceeds the threshold, an alarm is triggered. The probabilities of 
an incident and that of a false alarm in a specific time interval are determined using 
Equations 3.12 and 3.13, respectively (Mouskos et al. 1999). 

 
)(...)()()()( 321 nFAPFAPFAPFAPIncP ×××=            (Eq. 3.12)  

 Where P(Inc) = probability that an incident has occurred on the link, 
P(FA1) = probability of a false alarm determined for each vehicle i that arrives late, 

and 
P(Inc) = 0 if there are no late vehicles arriving at the downstream roadside reader. 
 

)()()()( 1 LTPNEPEPFAP ××=                       (Eq. 3.13) 
 
Where P(E) = probability that a vehicle exits the link before reaching the 

downstream roadside reader and this is not detected; this probability is 
calculated for each 15 min. time interval of the day for four different 
day types (weekday, Saturday, Sunday, or holiday), 

P(NE) = probability that a vehicle does not exit, P(NE) = 1 – P(E), and 
P(LT) = probability that a vehicle arriving late at an RST is not delayed by an incident 

(decremented from 1 toward 0). 
 
The system computes a travel time threshold for each link in the system by 

maintaining a 15 min. historical value of the link’s mean travel times and the link travel time 
standard deviations. The link travel time threshold is determined using Equation 3.14 
(Mouskos et al. 1999). The algorithm categorizes a probe vehicle as a late arrival if its travel 
time on link k is greater than the 15 min. link travel time threshold of a particular period of 
the day. The probability that a late vehicle was not involved in an incident is decreased from 
1 to 0 over a number of standard deviations (steps) specified by the user. 

 
151515 HSDMSDHTT ×+=              (Eq. 3.14) 

 
Where 15T  = 15 min. link travel time threshold for period i, 
 15HT  = historical link travel time for link j,  
MSD  = multiplier that is currently set to three standard deviations, and 

15HSD  = historical link travel time standard deviation for link j.  

3.3.2.2 Reported Performance  The incident detection algorithm proposed by PB 
Farradyne, Inc. was tested using data collected from the New York State Thruway (NYST) 
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and the Garden State Parkway (GSP). The difference between the two facilities is the level of 
market penetration of tagged vehicles. GSP experiences lower volumes of tagged vehicles 
since the EZ-Pass system has not yet been implemented on this facility. Due to its higher 
level of market penetration, the algorithm performed better on the NYST where detection 
rates of up to 95 percent were obtained. Table 3.4 details the performance of the TRANSMIT 
algorithm as compared to fixed detector algorithms for both NYST and GSP. 

Table 3.4 Comparison of the TRANSMIT Algorithm with Various AID Algorithms    
(Mouskos et al. 1999) 

ALGORITHM DR FAR Mean TTD 
Pattern Recognition Type    
 California Algorithm 67% 0.134% 2.91min 
All Purposes Incident Detection (APID) 66% 0.05% per stn. 2.55min 
Statistical Type    
Standard Normal Deviate 92% 13% 1.1min 
Bayesian Algorithm 100% 100% - 0% 3.9min 
Time Series Type    
Box Jenkins 
ARIMA Model 

100% 
 

1.4% 
2.6% 

 
0.39min 

Smoothing Model 92% 1.87% 0.74min 
Double Exponential Smoothing Model 82% 0.28% 5.05min 
High Occupancy (HIOCC) Algorithm 96%   
Filtering Model 95% 1.5% 40sec 
Dynamic Model  Prob. < 0.0002 Small 
Catastrophe Theory Type 100% 0.043% 1.5min 
Neural Network 97% 0.213% 170sec 
Video Image Processing    
INVAID – TRISTAR System >90% 1 every 3h (avg.) 20sec 
TRANSMIT - NYST 72 – 95 % 

 
(0.0022%: 1 in 124 h) 
(0.0127%: 1 in 22 h) N/A 

TRANSMIT - GSP 67 – 79% (0.0%: ∞) 
(0.0034%:1 in 83 h) N/A 

 
The reported results show that at an appropriate level of market penetration, the 

TRANSMIT algorithm holds the promise of performing comparably to fixed detector 
algorithms. Also, the TRANSMIT algorithm outperformed the rest of the algorithms in terms 
of FAR.  

The researchers omitted TTD estimates for lack of reliable data. Moreover, the initial 
assumption regarding the normality of the distribution of vehicles’ link travel times was not 
verified. 

3.3.3 Boyle and Ring Algorithms 

Boyle and Ring studied the potential benefits of AVI systems for traffic monitoring 
and incident detection (Hallenbeck et al. 1992). Also, since major trucking companies are 
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using AVI technology for weigh in motion purposes, the project attempted to assess the 
extent to which the truck fleet tagged as part of the Heavy Vehicle Electronic License Plate 
(HELP) project, or even the entire truck population, is representative of actual traffic 
performance. Limited by the availability of field data, the researchers hypothesized that it is 
very unlikely for an AVI algorithm to be able to differentiate between recurrent congestion 
and incidents with the exception of major incidents. This hypothesis led to the conclusion 
that an AVI system would be better described as a congestion detection system rather than an 
incident detection system. The congestion patterns experienced as a result of an incident 
depend on the capacity reduction of the incident. Three cases are identified: 

• Complete facility blockage, 
• Significant blockage, and 
• Minor blockage. 
Since each one of these situations results in a different flow pattern, three different 

algorithm logics were developed. 

3.3.3.1 Complete Lane Blockage Algorithm  The complete lane blockage algorithm is 
intended for use with incidents causing the blocking of all lanes of traffic. The AVI system 
would be able to detect such an incident at either one of the downstream or upstream 
detectors. If the incident occurs close to the upstream detector station, congestion backs up 
quickly and no new-tagged vehicles would pass the upstream reader. The TTD stopped 
traffic at the upstream detector can be evaluated using Equation 3.15 (Hallenbeck et al. 
1992). 
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 Where DT = detection time, 
  T = mean headway of tagged vehicles, 
  LevCon = level of confidence desired by the user that this 
  detection time will not be exceeded, 
L = number of lanes (one direction), 
DB = distance from the reader to the lane blockage, 
Vol = total directional volume (all vehicles) at that time, and 
VehLen = average length per vehicle in a queue when all vehicles are stopped due to 

a lane blockage. 
 
The first term in Equation 3.15 represents the maximum expected time for a tagged 

vehicle to pass the upstream detector and the second term represents the time needed for the 
queue to grow to a length that would prevent more vehicles to pass the upstream detector. 
Estimates of the time headway of tagged vehicles control to a large extent the first term in the 
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equation and can be obtained from historical values, headway values recorded at upstream 
stations, or from values experienced by that particular station during some previous period of 
operation. The second term in Equation 3.15 depends on the volume of traffic, the number of 
lanes of the facility, and the distance between the incident and the reader. The second term in 
most cases will be much greater than the first term of the equation and also from the 
acceptable time limits for congestion or incident detection. 

A faster way to detect incidents blocking all lanes would be to look at the 
downstream detector station. A lack of tagged vehicles crossing at the downstream detector 
station is indicative of congestion on the link. The TTD a total lane blockage by looking at 
the upstream detector can be evaluated using Equation 3.16 (Hallenbeck et al. 1992). 
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Where DR = distance from the blockage to the downstream reader, and 
Vehspd = speed of the last tagged vehicle traveling between the blockage and the 
downstream reader. 

 
The first term in Equation 3.17 is similar to the one in Equation 3.16. The second 

term represents the travel time required by the last tagged vehicle to reach the end of the link 
from the accident location assuming worst-case scenario, i.e., the last vehicle is just in front 
of the tagged vehicle involved in the accident.  

The weakness of the described approach resides in the fact that detection time is 
based on the distance between the incident location and the detector sites rather than on the 
distance between the readers. The distance between the blockage and the readers can be 
conservatively set to half the link length, but this would result in marginally high detection 
times especially for low levels of tagged vehicles’ market penetration.  

3.3.3.2 Significant Lane Blockage  An incident resulting in a significant lane blockage 
would still allow the flow of vehicles between the upstream and the downstream detectors. If 
tagged vehicles are filtering through the incident area, the fastest way to detect the reduction 
in the capacity of the facility would be to investigate the change in the link travel times rather 
than the change in tagged vehicle headway. An algorithm that relies on the travel times of 
individual vehicles is proposed for use when the experienced level of tagged vehicles’ market 
penetration is low. Equation 3.17 describes the logic behind the proposed algorithm 
(Hallenbeck et al. 1992). 

 
)( TTie zTTTTAlarm σ×−−=              (Eq. 3.17) 

 
Where Alarm = alarm variable. If this value is positive, the tested travel  
time is great enough to warrant the incident or congestion alarm. 
TTi = travel time obtained from the AVI reader, 
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 TTe = mean of the distribution of expected travel time, 
 σTT = standard deviation of the expected travel times, and 
 z = the statistical level of confidence associated with the alarm. 
Equation 3.17 is based on the assumption that the travel times experienced by tagged 

vehicles on the link considered are normally distributed. 
If the level of market penetration of tagged vehicles traveling the network is 

appreciable, the mean travel time of tagged vehicles is considered for use, thus reducing the 
sensitivity of the algorithm to false alarms. Equation 3.18 describes the logic behind the 
refined algorithm (Hallenbeck et al. 1992). 
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 Where t = student’s t-statistic, 
 iTT = mean section travel time for the tested time period, 
 TTe = expected travel time 
 s = standard deviation of TTi, and 
 n = number of samples used to compute iTT . 
In order to determine if an alarm should be sounded or not, the t value is weighted 

against values defined at different levels of statistical confidence.  
A different algorithm has been proposed to keep track of traffic performance changes 

over time offsetting the problems associated with the use of an arbitrary static value for a 
particular link travel time.  The current mean travel time is compared to historical values 
obtained from groups of vehicles traveling the network in a previous time period. Equation 
3.19 mathematically describes this algorithm (Hallenbeck et al., 1992).  
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  Where s  = pooled estimate of the standard deviation for the two samples, 
 t  = the student’s t-statistic, 
 1TT = travel time mean for the current interval, 
 2TT = travel time mean for the previous period, 

DT0 = difference necessary to indicate a change large enough to require an 
alteration in control strategies, and 
n1, n2 = number of travel times in the two samples. 

If the value of t is used to assess whether the measured travel time differences are 
statistically significant at a predetermined level of confidence. The sensitivity of the 
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algorithm can be controlled by tuning either the required difference between the current and 
previous mean travel times or the statistical level of confidence required for that detection. 
The detection times possible with the described algorithm depend on the headway between 
tagged vehicles, the distance between stations, the speed of the vehicles, and the number of 
vehicles needed to measure changes with a given level of confidence. 

3.3.3.3 Minor Lane Blockage  Incidents causing minor lane blockages are harder to 
detect due to the similarity between their effect on traffic flow and that of recurrent 
congestion. The same algorithm used for significant lane blockages is proposed for use with 
minor lane blockages. However, more vehicles have to be detected in order to state with the 
desired level of statistical confidence that a change has actually occurred. The use of shorter 
detector spacing and market penetrations for higher tagged vehicles can help in solving the 
problem, but most are not economically feasible. 

3.3.4 Promising Algorithms 

The link travel times that can be inferred from AVI data constitute the advantage that 
this technology has over other sources of data for incident detection and, therefore, are at the 
core of the previously described approach.  In addition to the above-described attempts at 
developing efficient probe vehicle algorithms;,several other ideas are worth looking at.  

If extensive historical data is available from an implemented AVI system, one 
possible detection logic would be to compare currently observed link travel times to 
corresponding historical values.  The travel time comparison should be based on day of the 
week and time of day.  An incident would be reported if the current travel time for a 
particular link were greater than a threshold determined based on the historical mean. A 
similar logic could be applied to vehicle speeds or vehicle speeds could be used as a second 
check after the travel time comparisons. 

In addition, flow values of tagged vehicles past a detector could be used as input to a 
comparative algorithm.  Either historical flow values obtained from similar days of the week 
and times of the day or a window of past intervals can be used to determine threshold values 
above which an incident is reported.  If the direction and the lane of travel are being reported 
and archived, the AVI data can be used with the same logic applied by lane of traffic. 

In the case where extensive AVI data is available, travel times for each link could be 
expressed as a percentage of the travel times experienced on the following link.  The 
computed percentages can be used to determine threshold values above which it could be 
stated with a certain level of confidence that an incident has occurred.  The algorithm would 
proceed by computing for each link the current travel time as a percentage of the travel time 
at the downstream link and then comparing it to the threshold value. 

Also, there is value in revisiting some of the logic intended for use with fixed detector 
data such as the Texas algorithm described earlier.  Speed values obtained from AVI reads 
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can be compared to a predetermined threshold set by the TMC (30 mph in the case of 
TransGuide).  

All of the above-described logics hold the promise of superior incident detection 
performance depending on the availability and the quality of the AVI data.  Adding a 
persistence check can also complement the described logics.  Checking travel times or speeds 
at downstream detectors can be employed to differentiate incidents from recurrent 
congestion.  If the downstream detector is experiencing an appreciable increase in travel time 
as well, the increase in the link travel time is attributed to recurrent congestion and the 
algorithm would hold on reporting an incident.  

Chapter 3 started with an introduction to the common measures of performance used 
to evaluate incident detection algorithms, i.e., DR, FAR, and TTD. The performance 
measures were followed by a description of the logic behind the best performing and most 
commonly used fixed detector algorithms. Finally, proposed and promising AVI incident 
detection algorithms were introduced.  

The next chapter describes the loop, AVI, and incident data used in the study. 
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CHAPTER 4  AUTOMATIC VEHICLE IDENTIFICATION FOR INTELLIGENT 
TRANSPORTATION SYSTEM APPLICATIONS AND ADVANCED TRAVELER 

INFORMATION SYSTEM DATA REQUIREMENTS 

Probe vehicle use for Intelligent Transportation System (ITS) applications is 
addressed in several previous studies as well as in ongoing research.  Several studies 
highlight new uses for Automatic Vehicle Identification (AVI) as noted in Chapter 1.  The 
intent of this study is to evaluate an on-line AVI system for Advanced Traveler Information 
System (ATIS) purposes.  The work reviewed in this chapter seeks to identify current work 
related to probe vehicle implementation for traffic-monitoring purposes.  The intent is to 
position the evaluation presented in Chapter 8 relative to existing research.   

The following review of current literature is presented in four parts.  The first outlines 
current probe vehicle techniques for ITS travel time data collection, and presents additional 
uses of probe vehicle data.  The second section presents sample size criteria and efforts for 
determining the required number of probes for ITS applications.  The third section discusses 
travel time estimation from AVI probe vehicles, in contrast to estimation from loop detector 
data.  The strengths and weaknesses of the current body of work are addressed to highlight 
the contributions of the assessment of AVI for ATIS presented in Chapter 8.  The final 
section presents ATIS data quality requirements.    

4.1 PROBE VEHICLE BACKGROUND 

An early effort at using probe vehicles for measuring traffic performance is presented 
by Hallenbeck, Boyle, and Ring (1992) for the Washington State Transportation Center 
(TRAC).  The study assesses the possible benefits of using AVI systems for monitoring the 
performance of traffic and detecting incidents.  The findings are based on part of the Heavy 
Vehicle Electronic License Plate (HELP) project.   

The TRAC study identifies several advantages to using AVI-based vehicle detection.  
Provision of section speed data as opposed to point-based speed data is noted; however, the 
correct application of more accurate traffic flow theory principles to these data are not 
performed.  The direct computation of travel time and delay information is identified as an 
advantage over other systems.  Disadvantages identified include significant infrastructure 
modification, expense, standardization issues, and public resistance to a perceived invasion 
of privacy.  The recommendations identify an urban toll facility using AVI tags for revenue 
collection as an ideal AVI-based performance-monitoring system.  The data collected is best 
used for facility operation, motorist information, and planning analyses.    

Hallenbeck, Boyle, and Ring (1992) find that the average speed obtained from an 
AVI system yields an excellent measure of the true performance of the roadway.  The travel 
times and speed measures provide important input to motorist information systems and traffic 
control algorithms.  The study did not suggest a distance among AVI readers, but noted that 
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the travel time estimate is better than estimates from conventional loop detector speed 
measurements at similar reader spacing.   

The Travel Time Data Collection Handbook from the Federal Highway 
Administration (FHWA) (1998) presents several travel time data collection efforts.  The 
handbook focuses on test vehicle techniques, license plate matching, probe vehicles, and 
other nontraditional techniques for travel time estimation.  The goal of the study is to provide 
guidance in the collection, reduction and reporting of travel time data.  The focus discussed 
here is on the probe vehicle section (Turner, Eisele, Benz, and Holdener 1998). 

   

Table 4.1 Comparison of ITS Probe Vehicle Systems/Techniques (Turner et al. 1998) 

 
 
 
The handbook identifies “passive” probe vehicles as vehicles that are already in the 

traffic stream and are equipped to gather travel time information.  The contrasting “active” 
vehicle probes are test vehicles driven by researchers, typically referred to as a “floating” car 
data collection method.  An AVI-equipped vehicle is a vehicle that is already in the traffic 
stream and is most often equipped voluntarily for toll collection or other purposes.  License 
plate matching techniques for travel time estimation are often not automatic or are not 
applicable to a real-time system.  The handbook study on probe vehicle techniques is directly 
related to the work presented here.   

Several advantages of ITS probe vehicles systems for travel time data collection are 
identified in the Travel Time Data Collection Handbook (1998), with several probe vehicle 
systems presented.  Low cost per unit of data and continuous automatic electronic data 
collection are identified as major strengths.  The disadvantages to probe vehicle 
measurements are a high implementation cost, fixed infrastructure (not for cellular phone 
probes), and privacy issues.  Table 4.1 compares the five ITS probe vehicle systems 
presented in the handbook.   
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The low rating for data accuracy for cellular geolocation was most likely identified 
prior to recent cellular E-911 mandates.  An Automatic Vehicle Location (AVL) system 
lacks accuracy because the results are biased to transit vehicles, which typically do not travel 
on major highways or at the same speeds as passenger vehicles.   

The Automatic Vehicle Identification (AVI) system discussed in the handbook is 
shown in Figure 4.1.  The installation depicts the typical components of an AVI.  Additional 
advantages such as the ability to collect vast amounts of data, the accuracy of data collection, 
and ability to gather lane-specific information are noted for AVI.  The handbook also 
identifies the “clock drift problem” where loss of clock synchronization is identified as a 
disadvantage.  Another disadvantage of an AVI system is that the number of probes is limited 
to the number of tags within the study area.  The recommended number of tags or sensitivity 
of the data to clock synchronization is not presented in the handbook.  
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Figure 4.1 AVI Basic Components (Turner et al. 1998) 

Rakha and Van Aerde (1995) investigated the accuracy of probe vehicle estimates of 
link travel times and instantaneous speed.  The instantaneous speed measurements were 
obtained from standard loop detectors.  Details about the route guidance system employed in 
the “probed” vehicle are not provided; however, a global positioning system (GPS) was 
utilized.  The effort was an early attempt at estimating the usefulness of probe vehicle data 
for travel time data collection.  The tests performed were limited in both scope and data 
availability.  However, link travel time estimates based on speed estimates from loop 
detectors are compared to probe vehicle travel times and are found to statistically correlate.  
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Yermack, Gallagher, and Marshall (1995) apply electronic toll and traffic 
management strategies (ETTM) to incident detection, another ITS application.  For a 
thorough investigation of AVI for incident detection, refer to Khoury (2000).  Table 4.2 from 
Yermack et al. presents a comparison of the loop detectors to vehicle probe technology.   

Table 4.2 Comparison of Traffic Monitoring Techniques (Yermack et al. 1995) 

Technique Advantages Disadvantages 

Conventional –  
Loop detector or Video 

Monitoring  
(Spot mean detection)  

• Mature Technology 
• Samples near 100% of 
vehicle population 

• Data is localized  
• Inferences required for 
incident detection 

Vehicle Probes –  
ETTM or other vehicle- 
monitoring technique 

(Space mean detection) 

• Provides data for 
roadway section 
• Travel time more 
relevant to the information 
needs of motorists 

• Small sample 
• Inference required of 
traffic volume 

 
The distinction between spot mean and space mean detection is made in Chapter 5.   

The current work in travel time estimation from probe vehicle data lacks in the quantity of 
data available from a full on-line AVI system.  Current research also does not assess the 
quality of data for use with ATIS applications.  The work presented in this study uses the 
extensive on-line system installed in San Antonio to evaluate the effectiveness of AVI data 
for ATIS.  Attempts are made in Chapter 6 to quantify the effects of the clock 
synchronization problem identified in both the TRAC study and the handbook. 

4.2 SAMPLE SIZE CRITERIA 

Another major area of research related to AVI is determining the number of probe 
vehicle measurements required for a sufficiently reliable estimation of parameters for ITS 
applications.  The probe vehicle sample size is determined by the availability of instrumented 
probe vehicles in the traffic stream.  The fraction of equipped vehicles or penetration rate is 
desired when designing (e.g., how many tags should be distributed), evaluating, and 
analyzing data obtained from a probe vehicle system.  The number of probe vehicles required 
will depend on the accuracy desired from the system.  Several studies discussed in this 
section attempt to quantify the number of equipped vehicles required for a given application.   

The TRAC study by Hallenbeck, Boyle, and Ring (1992) attempted to determine if 
the HELP fleet or even an entire population of trucks would provide an unbiased estimator of 
traffic performance.  Incident detection or congestion detection was a primary consideration 
in the TRAC study.  The results noted that in Tacoma, Washington, only 3 percent of the 
vehicles that use the highway during the peak period are trucks.  If all of these trucks were 
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equipped, a 20-second headway between tagged vehicles would be realized, producing about 
175 trucks per hour.  A 20-second headway for readers spaced 1 mile apart will detect five 
vehicles reducing speeds from 60 miles per hour to 50 miles per hour in 2.3 minutes, 
according to the study.   

Boyce, Krikson, and Schofer (1991) estimated sample size requirements for a 
dynamic route guidance model for the subsequently aborted ADVANCE project in suburban 
Chicago.  The model was based on a static, user-optimal route choice traffic assignment 
analysis.  The findings indicated that about 4,000 probe vehicles would be required for a 200-
square-mile suburban road network.  These findings are intended for a full-scale network, 
whereas the San Antonio analysis presented corresponds only to a corridor (as noted in 
Chapter 1).  The findings by Boyce et al. assume that if a link is traversed by at least one 
vehicle, that vehicle reliably represents the travel time of all vehicles traversing the link.  The 
study is applicable to the planning and development of an AVI system and is not effective for 
the purpose of comparative evaluation relative to other implemented systems.    

Srinivasan and Jovanis (1996) present an algorithm for estimating the number of 
probe vehicles required for travel time estimation under various conditions.  The results are 
based on simulation results of the Sacramento, California, network.  The objective of the 
study was to determine the number of probe vehicles required in the given network so that a 
desired proportion of links are covered for a given measurement period and peak period 
length.  The resulting implication of the study is that less than 5 percent of the vehicles 
during a 2-hour peak period are required to be probes for a 10-minute measurement interval 
with 80 percent of the links being reliably monitored.  These results are directly applicable to 
the penetration rates estimated in San Antonio outlined in Chapter 5.  A main goal of the 
Srinivasan and Jovanis study was to determine if the percentage of drivers on freeways or 
arterial streets that should be provided with information would also provide adequate probe 
coverage.   

The work presented in Chapter 5 attempts to investigate the market penetration of the 
existing San Antonio on-line system.  Previous work is designed to estimate the number of 
probes that are needed to achieve a desired level of confidence.  These studies are easily 
tested in a simulator where a subset of vehicles is assigned as probes.  Two factors not noted 
in existing literature include variation in tag penetration across different links and the 
positive effect additionally equipped vehicles (from other cities for example) could have on 
the local penetration rate.    

4.3 TRAVEL TIME ESTIMATION 

Accurate travel time estimation is an important input to the advanced traveler 
information system as users can directly relate to time measurements.  The inductive loop 
detector (ILD) is the most pervasive traffic-monitoring device, however it is not necessarily 
able to directly provide travel time data as an AVI system can.    
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Coifman (2000) presents a method for estimating the travel time on a link from 
modified traditional loop detectors.  The method relies on closely spaced dual loop detectors 
and the propagation of a signal through the array of detectors, which extrapolates the local 
information to a link.  The limitation of the study is in the transition from congested to 
uncongested conditions.  No information about the number or the spacing of the detectors is 
provided.  The procedure relies on simple traffic flow theory; however, the interpretation and 
implementation may be beyond the current capability of traffic management centers (TMCs).   

AVI systems provide an excellent method for estimating travel time and directly 
measuring space mean speeds.  Most loop detection methods rely on properly calibrated dual 
loops or single loop detectors with a calibrated average vehicle length to derive spot mean 
speeds.  Recent developments to estimate travel times from loop detectors are promising, 
however, they require upgrading existing technology and are not easy to understand.   

4.4 AVI DATA QUALITY GUIDELINES 

A major goal of this research is to evaluate AVI systems for use in ATIS’s, therefore 
the data requirements for ATIS need to be defined.  Recent documents by the Intelligent 
Transportation Society of America ATIS Committee, in collaboration with the United States 
Department of Transportation (USDOT), forms the basis of the discussion presented.  
Chapter 6 will apply these data guidelines to the investigated automatic vehicle identification 
data from San Antonio.   

The Advanced Traveler Information Systems Data Collection Guidelines Workshop, 
held in Arizona in February 2000, provided a forum for discussion of ATIS data 
requirements.  A document titled “Closing the Data Gap: Guidelines for Quality Advanced 
Traveler Information System (ATIS) Data” was released in September 2000 highlighting the 
findings.   

Several challenges to the ATIS initiative include the collection of complete and 
timely data; transforming data into useful information; and, finally, packaging, marketing, 
and communicating the information to the traveling public.  The growing complexity of the 
“commercial architecture” of ATIS makes this one of the more difficult areas of ITS to 
deploy.  The wireless market is expanding and users are demanding more information from 
advanced telematics services.  However, raw data required to support useful telematics 
services are not yet fully realized.  Information service providers (ISPs) are interested in any 
and all data from transportation agencies.  Often they are unsure of how delayed data affects 
their users, and the volume of data collection coverage necessary to support market activities.  
The focus of the ITS America Steering Committee was to establish guidelines for real-time 
or dynamic traffic information systems limited to highways and principal arterials. 

This section focuses on the guidelines for ATIS data quality, including the market for 
ATIS data, the quality guidelines themselves, and opportunities to share data among different 
ITS’s.  The ITS America Steering Committee on data quality stresses that these are 
guidelines and are subject to review and modification.  Other ATIS design findings from 
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other sources in the literature are noted to support the guidelines.  The next section presents 
the market opportunities for ATIS data, followed by a section defining the guidelines.  The 
last section outlines opportunities for data sharing among ITS component systems.    

4.4.1 Market 

The market opportunities for ATIS’s largely define the levels of data quality required 
to support such systems.  The customers of ATIS include both commercial vehicle operators 
and the traveling public; however, there are important characteristics that define different 
types of ATIS users within these broad categories.  It is important to identify the issues of 
data quality around the different types of users.  First, a definition of the ATIS user market is 
presented followed by an investigation of what these users demand.  The discussion 
presented focuses primarily on commuters who demand traffic information, recognizing that 
there is a much larger ATIS market potential.   

The ideal ATIS market is a major metropolitan area that is highly congested with 
frequent unpredictable traffic events and that has alternatives available to travelers.  Traffic 
congestion at peak or other times should be excessive enough to induce demand for 
information, provided there are other options available that are in fact preferable.  The 
information provided by an ATIS is not limited to traffic congestion levels; information can 
also include the status of other modes of transportation.  Users will only find traveler 
information of use if there are viable alternatives that will make their trip more enjoyable.   

The term “enjoyable” does not necessarily imply getting to the destination by the 
fastest route.  As a personal example, when congestion builds enroute to a university with 
known limited parking facilities, provision of timely transit alternatives would be of value to 
traveling students.  Students could then park just in time to catch a bus to complete their trip.  
A traveler may not be willing to change their plans until congestion builds up, at which time 
they will be more willing to consider alternative suggestions.  Such suggestions could be 
alternative routes, alternative modes, or information about the location of commercial 
facilities that may be of interest to the traveler.  Provision of information is more successful 
if alternatives to the current situation are available.     

The quality of ATIS services defines the market from the standpoint of how 
frequently users will make an effort to consult such information, if at all.  The current quality 
of ATIS data will continue to be expected of provisioning agencies and improvements in 
quality and scope of information are necessary for retaining ATIS users.  The purpose of the 
trip and its characteristics also influence the demand for ATIS services.  Factors such as 
travel time flexibility, modal choices, and route selection can affect demand for traveler 
information services.  It is no surprise that commute trips are most likely to generate demand 
for ATIS, particularly for the return trip, when alternatives are typically greater.  The most 
important factors are the values and attitudes of the traveler, including preference for 
timeliness, personal connectivity, and likelihood to request information.   
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4.4.1.1 Who are the ATIS users?  Lappin (2000a) identifies the attitudinal market 
segmentations for the ATIS market in a report titled “Who are ATIS Customers?”  Much of 
the work is linked to the 1997 Puget Sound Regional Council (PSRC) Household Travel 
survey of approximately 2,000 individuals.  The main segments identified include control 
seekers, Web heads, low-tech pre-trip information seekers, and “mellow techies.”  A user is 
defined as an individual who reported using ATIS services installed as part of the Seattle 
Metropolitan Model Deployment Initiative (MMDI).   

Technologically equipped “control seekers” play a major role in the demand of ATIS 
products and services.  Typically, these users come to expect always-on real-time access to 
the most accurate traffic data available.  Control seekers are most enamored with the 
technological device and with the control it allows them in planning their time.  A second 
group, termed “Web heads,” consists of Internet-savvy users who demand accurate real-time 
traffic information to aid in pre-trip decision making.  These users do not demand the level of 
accuracy required by the control seekers.  Pre-trip users express dissatisfaction with radio 
reporting, and expect a higher level of service from Internet traffic sources and demand up-
to-date information.   

In contrast to the technologically equipped users, low-tech users are split into 
travelers who demand pre-trip information from conventional sources and others who may 
use technology but do not care about traveler information.  Users in the lower technology 
category are more likely to use radio and television to make their own decisions.  Interactive 
maps and specific speed or travel time data does not appeal to them; they prefer to see live 
video or hear about conditions and make their own judgments.  The low-tech users represent 
a large and sustained base of ATIS users. Their needs should continue to be met, 
supplemented by new information sources.   

Another major segment to consider are individuals who feel that their own 
experiences are the most reliable source of traffic information.  Many feel that radio 
information is unreliable and that there is no alternative to traffic congestion and little value 
to ATIS.  However, expectations for traffic information are generally high due in large part 
to a conditioning from an Internet culture for faster, cheaper, and more reliable information 
services (Lappin 2000a). 

 
4.4.1.2 What do ATIS users want?  Lappin identifies the current context for ATIS 

services in a January 2000 report titled “What Do ATIS Customers Want?”  (Lappin 2000b).  
As with the previous report concerning who ATIS customers are, the report builds on the 
evaluations for the MMDI study of Seattle, as well as other MMDI studies including San 
Antonio.  The study presents findings from a Web-based survey from the Washington State 
Department of Transportation (WSDOT) traffic Web site.  The findings are broken down into 
two groups based on their expectation of ATIS data quality, a low expectation group and an 
advanced group already familiar with ATIS data services.   
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A significant limitation to both the Lappin study and current literature is that the 
findings are only for ATIS traffic needs.  It is noted that there are few ATIS deployed for 
transit travelers.  The results and guidelines are biased toward the information currently 
available as travelers can relate to the information they are already able to receive, 
particularly in the Puget Sound region.   

Of significant benefit to travelers is reducing the uncertainty of their travel time.  It is 
well understood that drivers prefer a route where they can rely on a consistent travel time, to 
a route that has a higher potential to vary.  The most important aspects of traveler 
information are accuracy, timeliness, and reliability.  Secondary factors include cost, 
personalization, and convenience of access, as well as speed and safety of operation of 
enroute systems (Lappin 2000b).       

Customers want information about incident locations, time, and type.  Direct 
measures of speed for each highway segment and travel times between selected origin and 
destination pairs are very important.  Ideally a service would provide both speed and travel 
time data–users place a high value on speed and graphical representation of speed and 
volume on Web maps or television maps.  The coverage requested is all major freeways and 
arterials in the region.  Some markets require better coverage of local streets and analysis of 
local driving patterns is necessary for prioritizing the coverage by market demand.  As was 
noted earlier, these results are biased to what is currently available.  Users cannot prefer 
something that they do not yet have available to them.   

One of the greater demands of ATIS is for enroute information, as pre-trip 
information is often outdated by the time a driver reaches a potential route decision.  Driver 
safety while accessing information is a concern to the traveling public.  The division between 
users who have access and users who cannot access data can segregate the traveling public.  
Providing as much information as possible to society at large is important for fair access to 
data collected from public funds.  TransGuide in San Antonio, Texas, is able to provide 
travel time information via a large array of dynamic message signs.   

Lappin (2000b) identifies ATIS requirements for so-called “advanced” users of ATIS 
for insight into what customers may demand in the near future or be willing to pay more for.  
Experienced ATIS users focus on predictive or trend data.  Travelers will check conditions 
over a period of 15 to 30 minutes suggesting that a measure of the evolution of conditions 
over time would be beneficial.  For example, a Web-based map could allow cycling through 
the last few maps to make a decision about congestion buildup.  Advanced users also 
recommended that ATIS employ historical data in conjunction with real-time data to make 
near-term predictions for route conditions.  Such fusion would allow users to make more 
effective pre-trip choices.  Lappin (2000b) notes that “advanced” ATIS users identify some 
periods where relatively open travel exists, even within the peak hour.  These users would 
like to see these “windows” identified, although the likelihood of consistently identifying 
such short and transient events is low.  The travelers note that often various entrances to 
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highways have lower queues at different times.  Identification of these gaps in the congestion 
and location of better-flowing ramps would be beneficial to travelers.     

Several studies address the ATIS design vision and present findings on the data needs 
of ATIS users.  A COMSIS Corporation report (1995) presents extensive background on the 
driving task, decision-making, and information display methods.  Pagan, Mahmassani, and 
Kraan (2000) present trip-planning behavior of tourists in San Antonio to attempt to 
determine how advanced technology can help unfamiliar travelers plan and execute trips.  
The findings of the study are limited to tourist travel, which often varies considerably from 
traditional traffic information services.  The final implementation of an ATIS system should 
address the needs of all potential users.   
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Figure 4.2 ATIS Information Process 

 
Categories of user information are identified in a COMSIS Corporation report (1995) 

to understand driver behavior in response to information.  The categories identified include 
descriptive or normative information; pre-trip versus en route; and historical, real-time, or 
predicted information.  Descriptive information provides current conditions and allows users 
to make their own decisions, while normative information provides route guidance 
instructions to achieve systemwide objectives.  Figure 4.3 outlines the ATIS process and 
categories of information dissemination.   

Data from the field or other ITS sources is processed and prepared for information 
dissemination.  The information is either presented to the user as descriptive or normative, 
and then is accessed either pre-trip or enroute.  In all cases, the data is either based on 
historical, real-time, or predicted data, or a combination of the three.   

The guidelines presented in Section 4.4.2 focus on the data quality of detector data 
(such as an AVI system) to support the fusion and information dissemination component of 
ATIS (noted by a thick line in Figure 4.3).  For more information on ATIS design to support 
traveler decision making, refer to Kaysi (1997) for an organization of traveler information 
needs and considerations.   
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4.4.2 Data Quality Guidelines 

The ITS America ATIS-Data Collection Steering Committee outlines several quality 
guidelines and attributes for collection of data necessary to support ATIS applications.  This 
section addresses specific guidelines that relate to AVI data collection.  Chapter 8 applies the 
guidelines to evaluate current practices with the San Antonio AVI and provides suggestions 
for effective use in ATIS applications.   

To understand ATIS data quality guidelines, a few definitions are needed.  In this 
context, data refers to “real-time/dynamic road-related information to support traveler 
information services within the next five years.”  Quality consists of the metrics and 
attributes that evaluate the data.  Finally, guidelines are meant to serve as  tools to assist in 
the consistent deployment of data collection for ATIS-related applications.   

For highway ATIS applications, four primary types of data are available to a TMC 
including, traffic sensor data, incident reports, road and environmental data, and images.  
Each of these types has a specific set of attributes associated with defining the quality of such 
data.  Table 4.4 outlines these attributes and the next sections identify the metrics for levels 
of quality. 

Table 4.3 Data Attributes for Quality Analysis  (ITS America 2000) 

Data Type Data Attributes 
Traffic Sensor Data Nature 

Accuracy 
Confidence 

Delay 
Availability 

Breadth of Coverage 
Depth of Coverage 

Incident and Event Reports Nature 
Detail 

Timeliness 
Accuracy 

Confidence 
Breadth of Coverage 

 
The following guidelines from the ITS America Data Quality Steering Committee 

(2000) operate on a simple hierarchy of quality levels.  The hierarchy was developed to 
identify “good,” “better,” and “best” properties of each attribute.  A “good” quality rating is 
necessary for the minimum level of quality for each attribute.  As consumer expectations 
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increase, the “better” and “best” levels will be demanded.  The steering committee is 
deficient in quantifiable data to support category distinctions.  As ATIS systems are 
implemented and on-line assessments of data quality are made, the quality levels can be 
better quantified.   

4.4.2.1 Nature  The nature of ATIS input data refers to the type of data collected.  As 
noted earlier, the four primary traffic parameters of use to ATIS applications are travel time, 
speed, volume, and percent occupancy.  The nature of data also refers to the classification of 
point-based or segment-based data.  For example, travel times can be computed based on 
spot-measured speeds or measured across a segment of a facility depending on the nature of 
the system.  Table 4.5 outlines the data quality levels for limited access highways.   

Table 4.4 Nature of Data Quality Guidelines (ITS America 2000) 

Good Aggregated Point Data – Data collected at a point.  Data 
from individual sensors can be aggregated (across time or lanes), but 
data from general purpose lanes should not be mixed with High 
Occupancy Vehicle (HOV) lane data 

 
Better Discrete Point Data – Data collected at a point. Data from 

individual lanes are provided without aggregation. 
or 

            Aggregated Section Data – Data collected over a section or 
segment of roadway.  Data from discrete link measures can be 
aggregated, but data from general purpose lanes should not be mixed 
with HOV lane data. 
 

Best Discrete Section Data – Data collected over a section or 
segment of roadway.  Discrete link measures, such as the travel 
times for all vehicles detected, are provided.  Note that discrete data 
should not be associated with a vehicle or person to preserve privacy. 

 

4.4.2.2 Accuracy  The accuracy of traffic sensor data refers to how closely collected 
data matches the actual conditions.  Accuracy refers to the physical ability to determine the 
traffic state parameters.  Some technologies such as video, radar and acoustics are subject to 
interference, weather conditions, and occlusion (where one vehicle shadows another and 
“hides” it from the sensor).  Some systems cannot count vehicles in the process of changing 
lanes resulting in either a missed count or double count.  Table 4.6 provides the benchmarks 
for the assessment of the accuracy of a technology.  The percentages provided are not defined 
adequately in the ITS America documentation, though they are most likely intended as 
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average quantities taken over a meaningful operating period.  The accuracy benchmarks for a 
system will vary based on the measurement attributes of the system.  More research is 
necessary to quantify levels of accuracy for other systems.   

Table 4.5 Accuracy of Data Quality Guidelines (ITS America 2000) 

Good 10-15% error 

Better 5-10% error 

Best <5% error 

4.4.2.3 Confidence  The confidence, or trustworthiness, of the data collected relates to 
the ability of the system to determine anomalous data before processing it further.  An 
example related to AVI data collection consists of a vehicle that may report an extremely 
long travel time because it left the highway for fuel and subsequently reentered the facility 
between the sensors (tag readers) defining the measurement segment.  The vehicle would 
result in a very high, and meaningless, travel time.  Table 4.7 displays the guidelines for 
ATIS data quality as it relates to sensor confidence.  Only two categories are presented: 
“good” relates to a qualitative description, while a quantitative description of the confidence 
of data is noted as “better.”   

Table 4.6 Confidence Data Quality Guidelines (ITS America 2000) 

Good Qualitative Description – Tiered Confidence Description – e.g., 
"good,” "suspicious," "bad" 

Better Quantitative Description – % Confidence Factor  
–e.g., 95% confident 

Best N/A 

4.4.2.4 Delay  Traffic sensor delay is the amount of time that elapses before the data 
collected is made available for use in ATIS applications.  The total delay accounts for the 
time the technology takes to read raw data, package the data for transmission to the TMC, 
transmit the data, and finally the time required to process and interpret the data.  Table 4.8 
outlines the guideline recommendations of the ITS America Steering Committee for delay.  
The guidelines provided are subjective, reflecting the professional judgment of the ITS 
America Steering Committee participants, and not based on comprehensive performance 
versus cost tradeoff analysis.  Further investigation is required to quantify the benefits of 
more timely data. 
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Table 4.7 Delay Data Quality Guidelines (ITS America 2000) 

Good 2-5 minutes 

Better 1-2 minutes 

Best <1 minute 

4.4.2.5 Availability  The availability of traffic sensor data refers to the periods during 
which the sensor system is able to provide data to users.  Most systems are designed to 
operate continuously.  However, access to data will inevitably be lost due to system outages.  
For example, if a system reports average conditions every 15 minutes, four data points are 
generated each hour.  The system should produce 35,040 data points in a year; if 700 data 
points are unavailable, the availability would be 98 percent.  A higher-quality data collection 
system would be indicative of continuous data availability, characterized by better design, 
operation and maintenance.  Table 4.9 outlines the data quality guidelines for classifying data 
traffic sensor data availability. The percentages are the average probabilities that a specific 
data element will be operational and send data.  Again, the guidelines are subjective and do 
not provide a time frame for which the availability percentage should be based.   

Table 4.8 Availability Data Quality Guidelines (ITS America 2000) 

Good 90-95% 
Better 95-99% 
Best > 99% 

4.4.2.6 Breadth of Coverage  The fraction of roadways in a metropolitan region 
where sensor technology is installed defines the breadth of coverage.  Typically, this is 
reported in the total number of lane miles or in a metropolitan area where a given technology 
is operational, often as a percentage of the total lane miles for a defined metropolitan region.  
It is important to distinguish the breadth of coverage by sensor technology type, as often the 
attributes of existing and state-of-the-art systems are quite different.  For example, loop 
detectors measuring spot speeds may cover some highways, while another area may be 
covered by AVI where speeds are reported for link segments.  The attributes of each are quite 
different and should be noted and correctly interpreted.  Table 4.10 contains the extent of 
coverage data quality guidelines from the ITS Steering Committee.    
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Table 4.9 Breadth of Coverage Data Quality Guidelines (ITS America 2000) 

 Limited Access Highways 
Good Major Limited Access Roadways 

Better All Limited Access Roadways 

Best N/A 

4.4.2.7 Depth of Coverage  The density of a traffic sensor technology along the 
facility is the depth of coverage.  The depth of coverage refers to sensor spacing.  For 
segment data, the section length is the primary attribute.  Closer detector spacing or shorter 
section lengths provide higher-quality data.  Table 4.11 outlines the metrics for determining 
the quality of traffic sensor data related to the depth of coverage.     

Table 4.10 Depth of Coverage Data Quality Guidelines (ITS America 2000) 

 Point Data Section Data 
Good Between Major Interchanges Between Major Interchanges 

Better Between Every Interchange Between Every Interchange 

Best Maximum 0.5 mile spacing with 
at least one sensor site between 
every interchange  

N/A 

4.4.3 Data Sharing 

A major issue with collection of data for ATIS purposes is identifying the agencies 
that collect data and the agencies or distribution channels that need data.  Identification of the 
key players should be determined from both a public and private perspective, as well 
identifying the key ITS components that need raw traffic data.  Often a public entity, such as 
a department of transportation or metropolitan planning organization, has the data and a 
private entity has the opportunity to utilize the data.  Many information service providers 
argue that the data needed to support commercial ATIS applications are not made available.  
Other ITS functions, such as freight mobility services for commercial vehicle operations, 
could benefit from sharing data collected for ATIS purposes.  It is important to maintain a 
wide scope when evaluating the collection of data for a particular purpose, as there may be 
several other applications for which the collected data could be useful. 

4.4.3.1 Public/Private Partnerships  A primary distribution channel of ATIS services 
is through private entities, while the primary data collection agent is often the public sector.  
The relationship between the public and private sector is essential to fostering an effective 
ATIS system.  The three basic questions presented when public and private agencies form 
business relationships are “who performs, who pays, and who provides” (Gilroy, Puentes, 
and Schuman 1998).  
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Complex business relationships are forming between data collectors (typically the 
public sector) and information providers (typically the private sector).  Some models include, 
in order of increasing private sector involvement: public-centered operations, contracted 
operations, contract fusion with asset management, franchise operations, and private 
competitive operations.  The division between public and private responsibility in data 
collection, fusion, and dissemination is not well delineated and the usability of the data 
collected relies on efficient partnerships between agencies with data and businesses 
providing information.  (Gilroy, Puentes, and Schuman 1998)  

For example, a local toll authority may be charged with the responsibility of toll 
collection independent of the TMC.  If automatic vehicle identification technology is 
employed to facilitate the collection of tolls, cooperation between the private toll authority 
and the public TMC would be necessary to use the AVI-equipped toll road users as probes 
for the regional system.  Likewise, if a public entity collects traffic performance data and 
provides the data to an information service provider the limitations and quality of the data 
must be understood for effective information distribution.   

4.4.3.2 Relationship to Other Functional ITS Areas  ITS’s consist of many entities 
that are collecting data or desire additional data for individual ITS components.  The role of 
ATIS data needs to be positioned within the context of other data needs.  A truly integrated 
ITS coordinates existing data collection with other areas and systems.  Strategy developers 
should consider the needs of the various ITS component systems as well as existing data 
collected.  The ITS architecture provides a framework to guide deployment of ITS’s 
(USDOT 2000).   

Typically, advanced traffic management systems (ATMS) represent the majority of 
the ITS data collection effort.  ITS system integrators should assess available ATMS data and 
the goals of ATIS to efficiently use all data available to the TMC.  Advanced public 
transportation systems often employ automatic vehicle location technology to track transit 
vehicles.  Real-time bus tracking could be an additional input into the ATIS data collection 
effort.  Again, an assessment of the type and quality of the data provided from the transit 
fleet needs to be considered with the goals of the ATIS implementation.  (ITS America 2000) 

Commercial vehicle operations (CVO) applications stand to benefit substantially 
from the data collection efforts undertaken in conjunction with other ITS applications.  
Existing CVO data collection applications can be enhanced to facilitate collection of data for 
ATIS purposes.  Similar technologies are used for AVI for both truck weigh station 
applications and traffic management purposes.  Integrating the two systems would be natural 
within the ITS framework.   

Data collected for ATIS purposes can also be used for planning purposes.  Planning 
activities usually require historical traffic volumes for calibration of forecasting models.  
Planning results can assist in selection of corridors that would be best for ATIS data 
collection.  The National ITS Architecture recently provided for an Archived Data User 
Service (ADUS) to set standards for storing historical traffic data.  Local metropolitan 
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planning organizations (MPOs) can benefit from the origin and destination patterns of a 
sample of the population.  Traffic assignment models require calibration with actual Origin-
Destination demand data, which is often difficult to ascertain, but may be available from 
ATIS data collection efforts.  (ITS America 2000)   

4.5 CONCLUSION 

Application of the ATIS guidelines requires maintaining a long-term goal and vision 
of the ATIS strategy.  The guidelines provided by the ITS America Steering Committee can 
be adjusted to suit regional ATIS needs and issues.  Currently, these data quality guidelines 
are the best practice for assessing the data needs and implementation of ATIS systems.  
Identification of the goals of the ATIS largely defines the application of the data quality 
guidelines.  Before the guidelines can be applied to the AVI data, the raw data must be 
properly processed to compute traffic state parameters according to proper definitions.  The 
level of market penetration should also be ascertained to place the quality of AVI data within 
a context of the number of tags in the traffic stream.  The next chapter focuses on data 
analysis of the raw AVI tag data and processing of the loop data for comparison purposes.  
Chapter 7 will focus on market penetration estimation, and Chapter 9 will apply the 
guidelines outlined here to the data from San Antonio.     
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CHAPTER 5 DATA ANALYSIS 

In order to best determine the useful properties of Automatic Vehicle Identification 
(AVI) data for use in Advanced Traveler Information Systems (ATIS), the properties of the 
data and the process by which raw data is transformed into useful information must be 
reviewed.  The study area outlined Section 5.1 provides a unique opportunity to examine 
both AVI and loop detectors for the same segment.  This chapter discusses the data 
acquisition issues for both AVI and loop detectors for the San Antonio study segment.  AVI 
data from Houston, Texas, will also be discussed, although the focus will remain on the San 
Antonio system.  Section 5.4 applies traffic flow theory principles to both the AVI and loop 
data.    

5.1 STUDY AREA 

At present few cities employ ATIS’s for traffic management purposes.  The state of 
Texas is fortunate to have two of the premier operational AVI systems in the country.  The 
data is readily available or easily provided by the agencies collecting the data.  The work 
presented will focus on two cities in Texas, San Antonio and Houston; both study corridors 
are described in the following two sections.   

5.1.1 San Antonio 

The San Antonio, Texas, metropolitan area went on-line with a traffic management 
center in 1995, along 26 miles of roadway.  Later in the fall of 1996, the metropolitan area 
was identified as one of four model deployment initiative (MDI) cities.  The other cities 
included Seattle, Washington, Miami, Florida, and the New York/New Jersey metropolitan 
area.  The cities were identified to showcase installations of intelligent transportation systems 
(ITS).  The initiative called for a public and private partnership to develop and integrate ITS 
technology to reduce travel times, improve emergency response, and provide travel 
information to the public (FHWA 1998).   

An AVI System was installed in San Antonio in 1997.  The Texas Department of 
Transportation (TxDOT) purchased 78,000 tags for the AVI deployment in San Antonio.  Of 
these, 58,500 have been distributed anonymously to San Antonio drivers as of October 2000 
(Rodrigues, 2000).  Residents voluntarily pick up tags at the TransGuide center or at other 
civic functions.  There are fifty-two reader sites monitoring 193 lanes throughout the 
metropolitan region. 

The study area, shown in Figure 5.1, is a 10-mile segment of Interstate 35 north of 
downtown San Antonio.  The corridor stretches from New Braunfels Avenue to Randolph 
Boulevard (at the IH-410 interchange).  There are numerous access locations along the 
facility, as the area is urban.  There are five AVI locations along the facility, providing eight 
primary study links (four northbound and four southbound).  Recently installed inductive 
loop detectors (ILDs) are provided on six of the links, allowing for a comparison of 
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measurement technologies.  The study area was selected by the TxDOT, as the corridor 
provides a unique opportunity to compare the two technologies. 
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Figure 5.1 San Antonio Study Corridor 

 

5.1.2 Houston 

The Harris County Toll Road Authority maintains and operates two toll facilities 
within the Houston metropolitan region.  The TxDOT installed AVI detectors along their 
facilities to gather traffic data from the vehicles tagged for toll collection.  According to the 
Harris County Toll Road Authority, as of November 2000, 644,031 tags have been 
distributed.  The Houston AVI study corridor is shown in Figure 5.2.  
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Figure 5.2 Houston Study Corridor 

 

Limited data was provided by the Texas Transportation Institute (TTI), the agency 
that manages the Houston AVI project for TxDOT.  The 14-mile AVI system along US 290 
can provide a basis for comparison to the San Antonio installation. 

5.2 SOURCE AND NATURE OF THE DATA 

AVI and ILD data is obtained from TransGuide via an anonymous FTP site 
(www.transguide.dot.state.tx.us) and is extracted and converted to ASCII format.  The daily 
files are processed individually and converted to standard spreadsheet files for further 
analysis.  The following sections outline the basic properties of the data.   

The San Antonio study period focuses on the last 2 weeks in June and 3 weeks in 
September.  Installation of Austin Local Controller Units (LCUs) in June 2000 along the 
study corridor improved the quality of loop data.  The Austin LCUs are provided by the 
Austin TxDOT District, and are different from the original LCUs implemented in the 
TransGuide system.  AVI data was not affected by the installation of new LCUs.  Data from 
Houston was provided for 3 weeks beginning on March 6, 2000.  Valid loop data was not 
available from the Houston installation.  The team did not have continuous access to Houston 
AVI data, and therefore limited analysis was performed on the data. 
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5.2.1 AVI Data 
AVI data consists of two parts.  The first is static information including the distances 

between the readers and reader configurations.  For reader configurations, it is important to 
understand the format of direction information, if such information is provided.  Accurate 
distances between site locations and synchronized clocks are essential for the proper 
computation of speed from travel times.  The second component is the dynamic tag read data.  
The important elements of the tag data are a consistent tag identifier (at the very least daily 
consistency must be maintained), station identification, and an accurate time stamp.  If 
direction information is provided, it can either be within the station identification or as an 
additional field. 

 
5.2.1.1 San Antonio AVI Data  The AVI data provided by San Antonio is raw tag 

read data, with scrambled tag identifiers.  For security reasons the tags are scrambled with 
the UNIX crypt function using the date as a seed value.  This is to dissuade any users of the 
data from tracking the anonymously assigned tags.  The tags are scrambled with the same 
seed value for the duration of the day, so one can match the tag data and compute travel 
times and resulting speeds.  San Antonio system integrators placed anonymity as a top 
priority and not only are the tags handed out at random and with no records maintained, the 
tag reads are also strongly encrypted.  Figure 5.3 contains a sample of raw AVI tag data from 
June 14, 2000.  
 

137 Sde9z8PKhuYHAnWcFNrvGwq6WYN437.o2&07:01:00.86 06/14/00%2C-1-04-1 
112 yifEy.N2DK.rhMR1bex13ge8.A/UDe2/.&06:58:59.87 06/14/00%5E-0-0A-0 
141 XAJLLGb8PU2C8ucfTZGj1Iq6WYN437.o2&07:02:17.75 06/14/00%32-0-02-0 
123 EvrGROk8IZoWUFeQtUtHowq6WYN437.o2&07:02:15.76 06/14/00%46-1-0E-1 
123 XAJLLGb8PU2swB8X093AVEq6WYN437.o2&07:02:17.43 06/14/00%46-1-04-1 
119 EvrGROk8IZoZlb8W6hrEmQq6WYN437.o2&07:01:53.12 06/14/00%57-0-07-0 
147 rUDUMNCIvrE8JOym6etOu2ZnMtIcX06bY&07:00:11.99 06/14/00%21-0-05-0 
147 rUDUMNCIvrE8JOym6etOu2ZnMtIcX06bY&07:00:11.99 06/14/00%21-0-05-0 
145 XAJLLGb8PU2Wv8zg8NhoJYq6WYN437.o2&07:00:49.13 06/14/00%1C-1-09-1 
142 1o9fGHXn/MMD90nnN/ICNIq6WYN437.o2&06:59:01.37 06/14/00%16-0-06-0 
145 EvrGROk8IZoC.JwXRo9B9.q6WYN437.o2&07:00:52.65 06/14/00%1D-1-02-1 
142 9AJBA5t.e4IhyDjCeT0K1Yq6WYN437.o2&06:59:25.43 06/14/00%16-1-01-1 
145 Q8s6g8nitRMkSGxLBoICm6q6WYN437.o2&07:00:58.72 06/14/00%1B-1-06-1 
142 Sde9z8PKhuYRyyfjmhJS/Uq6WYN437.o2&07:00:00.89 06/14/00%16-1-07-1 
145 I/HAlD3tAokrOsFLuZi1Rge8.A/UDe2/.&07:01:12.46 06/14/00%1E-1-0B-1 

 

Figure 5.3 Raw San Antonio AVI Data 

The first field is the station identification, followed by the scrambled tag identifier.  
For our purposes, the station identifiers are all reduced by 100 as they are all in the hundreds 
(that is, site 147 will be referred to as simply 47).  The time and date are recorded after the 
tag identification.  A TransCore (formerly Amtech) representative informed the author that 
the two digits following the percent sign represent the strength of the read in hexadecimal; 
the units are not known to the author.  The last binary field indicates the lane and will be 
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discussed in Section 3.2.2.  Note that at 07:00:11.99, site 47 returned a duplicate entry, which 
will be removed prior to analysis. 

The analysis will focus on 5 weeks of San Antonio data including the last 2 weeks of 
June, and the last 3 weeks of September 2000.  New loop detector equipment installed in the 
middle of June precludes the use of earlier June data to maintain consistency.  Both AVI and 
loop data were not available on September 21, 2000.  A gap in the data will be noted in the 
subsequent analysis, but this will not influence the statistical results.  Weekdays are the focus 
of investigation; however, AVI data is obtained on the weekends and can provide valuable 
information to travelers.     

 
5.2.1.2 Houston AVI Data  The Houston AVI data for the network described in 

Section 1.4.2 were obtained via a temporary FTP agreement with the TTI, at the North Post 
Oak Road facility in Houston, Texas.  Three weeks of weekday data, and static link 
information were provided to the research team.  The data is provided in ASCII format and is 
processed by the same program, written by the author.  Figure 5.4 shows a sample of 
Houston data from March 7, 2000.   

 

0MCA00317931 2004   22  8:09:38   3/07/00 
0MCA00159904 2060   28  8:09:49   3/07/00 
0MCA00349488 2009   34  8:10:33   3/07/00 
0MCA00324270 2000   35  8:09:40   3/07/00 
0MCA00266778 2055   27  8:10:01   3/07/00 
0MCA00400229 2045   26  8:09:53   3/07/00 
0MCA00055121 2028   32  8:09:51   3/07/00 
0MCA00467036 2059   29  8:09:51   3/07/00 
0MCA00057965 2000   35  8:09:42   3/07/00 
0MCA00489489 2009   34  8:10:38   3/07/00 
0MCA00048615 2045   26  8:10:01   3/07/00 
0MCA00268745 2054   27  8:10:04   3/07/00 
0MCA00366546 2034   25  8:09:52   3/07/00 

 

Figure 5.4 Raw Houston AVI Data 

The first field contains the scrambled tag identifier.  The second field represents the 
antenna number. It is important to note that this does not correspond to the lane, as most 
antennae span multiple lanes in the Houston installation.  It is primarily used as a 
maintenance check measure (Vickich 2000).  The third field is the station identifier, followed 
by the time and date of the tag read.  The station identifier inherently defines direction, and is 
defined by the static data provided by the Houston division of the TTI.  The tags are 
scrambled the same way everyday, using the same algorithm.  Most of the Houston tag reads 
are from toll tags distributed for the Sam Houston Tollway and Hardy Toll Road, operated by 
the Harris County Toll Road Authority. 
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5.2.2 Loop Data 

The loop data are provided in a similar structure to the AVI data for the San Antonio 
study corridor.  Averages are computed in the field and transmitted to TransGuide.  The data 
prior to June 14, 2000, (that is, prior to the installation of the Austin LCUs) are not reported 
using a consistent average time window.  From June 14, 2000, forward, data are provided on 
a 20-second average basis.  Not all loop sites report data at exactly the same time; however, 
the rolling averages are maintained within each site.  Some minor fluctuations do occur and 
some averaging windows are not exactly 20 seconds.  It is not within the scope of this 
research to investigate the errors in the loop data from installation, hardware, or data 
collection software errors.  The focus is on using this data in its current format for the express 
purpose of comparison with AVI data.   

Figure 5.5 is a sample of San Antonio loop data for September 19, 2000. 

09/19/2000 00:07:17  EN1-0410E-026.371 Speed=-1  Vol=000  Occ=000 
09/19/2000 00:07:17  EX1-0410W-026.475 Speed=-1  Vol=000  Occ=000 
09/19/2000 00:07:17  L1-0410W-026.515  Speed=71  Vol=002  Occ=002 
09/19/2000 00:07:17  L2-0410E-026.515  Speed=61  Vol=000  Occ=000 
09/19/2000 00:07:17  L2-0410W-026.515  Speed=68  Vol=002  Occ=002 
09/19/2000 00:07:17  L3-0410E-026.515  Speed=66  Vol=001  Occ=001 
09/19/2000 00:07:24  EN1-0035S-160.768 Speed=-1  Vol=000  Occ=000 
09/19/2000 00:07:24  L1-0035N-160.892  Speed=61  Vol=002  Occ=002 
09/19/2000 00:07:24  L2-0035N-160.892  Speed=57  Vol=002  Occ=002 
09/19/2000 00:07:24  L2-0035S-160.892  Speed=61  Vol=000  Occ=000 
09/19/2000 00:07:25  L2-0035N-162.899  Speed=71  Vol=000  Occ=000 
09/19/2000 00:07:25  L3-0035N-162.899  Speed=71  Vol=001  Occ=001 
... 
09/19/2000 00:07:57  L1-0410W-026.515  Speed=68  Vol=002  Occ=002 
09/19/2000 00:07:57  L2-0410W-026.515  Speed=64  Vol=002  Occ=002 
09/19/2000 00:07:57  L3-0410E-026.515  Speed=66  Vol=000  Occ=000 
09/19/2000 00:07:57  L3-0410W-026.515  Speed=66  Vol=002  Occ=001 
09/19/2000 00:07:57  L4-0410E-026.515  Speed=79  Vol=000  Occ=000 
09/19/2000 00:08:04  EN1-0035S-160.768 Speed=-1  Vol=000  Occ=000 
09/19/2000 00:08:04  L1-0035N-160.892  Speed=64  Vol=001  Occ=001 
09/19/2000 00:08:04  L2-0035N-160.892  Speed=62  Vol=001  Occ=001 
09/19/2000 00:08:04  L3-0035N-160.892  Speed=57  Vol=002  Occ=002 

 

Figure 5.5 Raw San Antonio Loop Data 

The first field is the date followed by the 24-hour time.  The third field is the location 
of the loop. This research only needs the main lane loops indicated by an “L#” where # 
represents the lane of the loop (Lane 1 is the innermost lane of travel, closest to the median).  
The milepost uniquely identifies each loop location as the distance north of the start of 
Interstate 35 in Laredo, Texas.  The average speed in miles per hour, total volume over the 
average window, and percent occupancy follow the location information.     

Loop data were provided from Houston for 3 days in March.  The data are not 
useable, because most of the loop sites are not operational.  There is not enough continuous 
data to work with from any given loop detector. 
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5.2.2.1 Loop Time Errors  Time errors observed in the loop data are defined as gaps 
in the database.  Given that the loop detectors in their current configuration are designed to 
produce reads every 20 seconds, successive records in the database should be separated by 
20-second intervals.  However, this is not always the case.  Although most of the loop 
readings occur at 20-second intervals, other interval lengths were observed.  Figure 5.6 
presents a plot of the time interval between successive reads against the time of day for a 
typical detector.  
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Figure 5.6 Graphical Representation of Time Between Consecutive Readings 

 
The observed time gaps between consecutive reads for this particular reader vary 

from 20 seconds to 83 seconds with the bulk of the reads made at 20-second intervals. 
The time error problem negatively impacts incident detection algorithms that take 

input from two successive detector stations.  If the time stamps of the reads that the algorithm 
is comparing do not coincide, there is a possibility that the traffic characteristics represented 
by the reads are significantly different.  In order to solve the problem, the data has to be 
either processed before serving as input to the algorithm or additional logic should be added 
to the algorithm itself.  

There exist a number of missing value techniques aimed at filling the gaps by 
considering spatial and temporal readings from adjacent detectors. Missing values are 
generated either from previous reads of the same detector, from concurrent reads of adjacent 
detectors, or from a combination of the two.  Since the likelihood of encountering missing 
data in a particular lane is much higher than that of missing data in all lanes of travel, some 
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fixed detector algorithms try to remedy the problem by taking as input roadway section 
averages.  

For the purposes of this research, the data was processed prior to its use with AID 
algorithms in such a way to ignore missing values and to fill the gaps with records having the 
missing time stamps but no speed, volume, or occupancy values.  An example of time error 
in the data and the corresponding solution are presented in Figures 5.7 and 5.8, respectively. 

 
  

 
6/30/2000 
0:11:38 

L3-0035N-162.899 
Speed=64 
Vol=001 
Occ=004 

 
6/30/2000 
0:12:18 

L3-0035N-162.899 
Speed=00 
Vol=000 
Occ=000 

 
6/30/2000 
0:12:38 

L3-0035N-162.899 
Speed=53 
Vol=003 
Occ=003 

 
 

Figure 5.7 Example of Time Error 
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6/30/2000 
0:11:38 

L3-0035N-162.899 
Speed=64 
Vol=001 
Occ=004 

 
 

6/30/2000 
0:11:58 

L3-0035N-162.899 
 
 
 

 
6/30/2000 
0:12:18 

L3-0035N-162.899 
Speed=00 
Vol=000 
Occ=000 

 
 

6/30/2000 
0:12:38 

L3-0035N-162.899 
Speed=53 
Vol=003 
Occ=003 

 
 

 

Figure 5.8 Example of Time Error Fix 

5.2.2.2 Loop Data Errors  If one of the traffic variables reported by the loop detectors 
(speed, volume, and occupancy) has a null value, then the other two must have a null value as 
well.  Data errors are defined as a violation of the above-described rule and were identified in 
the loop data in addition to time errors.  

The data used was preprocessed to eliminate data errors. A program was written to 
identify those errors and enter blank values for the corresponding time stamp. The 
preprocessed data was then used as input for the fixed detector algorithms. 
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5.2.3 Incident Data 

In order to assess and compare the performance of AID algorithms, a substantial 
incident database containing a precise report of the time, nature, and location of each incident 
is required.  

Incidents are detected automatically at TransGuide using the Texas algorithm 
introduced in the previous chapter, or manually by visual inspection using the CCTV 
cameras.  When an operator detects an incident manually, the operator has to enter the alarm 
location causing the system to automatically generate the date and time.  The system detects 
incidents automatically by comparing the mean speed on a particular segment to a threshold. 
If the mean speed is below the threshold, the closest CCTV camera to that location is 
automatically activated and the incident is brought to the attention of the floor manager, who 
in turn assigns the alarm to an operator.  Control scenarios were developed and stored in a 
database at TransGuide to help operators manage incidents in the most efficient manner.  The 
system matches the incident characteristics with the stored scenarios and gives the operator a 
list of prespecified control options appropriate for the incident at hand.  For the system-
generated alarms, the alarm location, time, and date are entered automatically and it is left up 
to the operator to complete the documentation of the incident.  Ideally, the incident 
documentation consists of the type of incident, a field indicating if the capacity of the facility 
has been exceeded or not, the lanes affected, and the name of the incident manager. 

Incident data at TransGuide is archived every day for the whole network along with 
information regarding the Changeable Message Signs (CMS’s), and Lane Control Units 
(LCUs).  Each incident detected is given a unique identification number (ID).  If an incident 
is manually detected, the operator assigns to that incident an ID > 2500.  Alternatively, if the 
incident is detected by the system, it is automatically assigned an ID < 2500.  A program was 
developed to extract the incident-related information of importance to the study; i.e., incident 
information corresponding to the study corridor. Table 5.3 presents an example of the 
processed output format. 

Table 5.1 Sample Incident Data 

ID 
 

Start 
Date 

Start 
Time 

End 
Time Address Type Lanes 

Affected 
Capacity 
Exceeded 

170 6/29/00 16:56:50 16:57:35 
SECT-
0U35S-
156.684 

2 10000000 TRUE 

185 6/29/00 17:19:43 17:20:55 
SECT-
0281N-
145.124 

2 10000000 FALSE 

 
It is up to the operator to decide on the incident type based on the classification 

adopted by TransGuide and reported in Table 5.2.  A major accident is defined as one whose 
expected duration exceeds 15 minutes.  All other accidents are classified as minor.  Incidents 
which are not accidents are classified based on a subjective decision by the operator. 
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The lanes affected by the incident are represented using eight-digit binary numbers as 
shown in Table 5.1.  The lanes of the facility are represented from left to right with respect to 
the direction of travel i.e., the leftmost digit represents the left shoulder.  If the digit 
representing a particular lane has a value of 1, then the lane in question is blocked as a result 
of the incident.  On the other hand, if the value of the digit is 0, then the lane is not affected 
by the incident.  

Table 5.2 Incident Type Classification 

Incident Type Identifier 
Major Accident 0 
Minor Accident 1 

Congestion 2 
Debris 3 

Construction/Maintenance 4 
Weather Condition 5 

Stalled Vehicle 6 

 
The breakdown of the incident database by incident type is presented in Table 5.3 and 

can be better visualized by looking at Figure 5.9.  It should be noted that the incident 
database comprises only incidents that occurred during weekday peak periods.  The bulk of 
the reported incidents are labeled as congestion (65 percent) that compares well to the 61 
percent figure reported by Peterman (1999).  No construction incidents were reported since 
construction is more likely to be done in off-peak periods. Also, no weather incidents were 
reported, which was to be expected for the period of the year considered in the study.  

Table 5.3 Incidents According to Type 

ID Incident Type Count Percent Total 
0 Major Accident 14 19% 
1 Minor Accident 9 12% 
2 Congestion 47 65% 
3 Debris 1 1% 
4 Construction 0 0% 
5 Weather 0 0% 
6 Stalls 2 3% 
 Total 73  
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Minor Accidents
  12%

Congestion
65%

Debris
1%

Weather,
Construction

0%

Stalls
3%

Major Accidents
19%

 
 

Figure 5.9 Incident Database Breakdown According to Type 
 
Upon processing the incident data, several errors were identified.  As mentioned 

earlier, the AID algorithm in place at TransGuide relies on a predetermined speed threshold 
to detect the occurrence of incidents.  If the speed on a particular link falls below the 
threshold, the system generates an incident alarm with an ID less than 2500.  The adopted 
logic is straightforward but may lead to a high false alarm rate.  Therefore, in the absence of 
visual inspection, only those incident entries recorded manually by an operator were 
considered in this research. 

In addition, multiple incident alarms were detected.  Multiple incident alarms are 
defined as entries having the same incident ID, date, and location.  The incident start and end 
times were either identical or consecutive.  It is believed that multiple entries occur as a 
result of congestion-generated incidents.  When encountered, the multiple alarm problem was 
resolved by creating a single entry for the incident with the earliest incident start time and the 
latest incident end times of the multiple entries.  

Furthermore, upon comparing the incident start time and end time for all entries in the 
database, entries with similar start and end times or with an end time occurring before the 
start time were encountered.  Such entries result in zero or negative incident durations and 
were entirely removed from the database. 

5.3 DATA PROCESSING AND EXPLORATION 

Initial efforts to characterize the quality of AVI data focused on the AVI data itself 
and its variation across the day and across multiple weekdays.  Early work identified some 
system problems, which were brought to the attention of the staff at TransGuide.  Initial work 
focused on the system as a whole, however most of the effort focused on the study corridor.   
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5.3.1 Unique Tag Reads and Duplicates Removed 

One of the more important metrics for an AVI system is the number of unique tags 
read in a given day.  The tagged vehicles represent only a sample of the actual vehicle 
population.  The number of unique tags read coupled with an actual estimate of the number 
of vehicles can allow for a simple estimation of market penetration.  The San Antonio tags 
are scrambled differently each day, therefore the number of unique tags read across days can 
not be ascertained.  It would be beneficial to determine the number of tags read consistently 
across days, weeks or months to estimate the number of tags that can be relied on as active 
probes in the system.   

In the early stages of analysis during the fall of 1999, duplicate entries were noted in 
the data set and it was desired to determine the cause of these repeat entries.  A duplicate is a 
tag record that is exactly the same as the previous record in tag ID, station ID, and time.  In 
November 1999, the number of duplicates dramatically increased.  It was later determined 
that the cause was an invalid time-reporting problem at the AVI field sites.  The time 
reporting problem was corrected by early May 2000.  Duplicate entries are still observed in 
the data and are often due to reporting errors at the AVI field sites or with the processing data 
at the TransGuide center.  The cause of duplicate entries in the data is not known; however, 
they can be filtered out and do not affect the analysis.  A sharp rise in duplicates should 
concern operators that some aspect of the system is malfunctioning.   

The chart in Figure 5.10 depicts the total unique tag reads per day for weekdays 
during the study period for the entire San Antonio AVI system. 
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Figure 5.10 San Antonio System Daily Unique Tag Reads 
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It is clear that there is an increase in tag reads as the week progresses, often with a 
higher jump in reads for Friday.  The most logical reason for the Friday increase is a rise in 
through travel, such as Houston or Dallas travelers (with toll tags installed in their vehicles).  
The hypothesis cannot be tested because the tag identification is encrypted, the first four 
characters in the tag ID defines the agency of the tag provider.  No increase in the number of 
unique tag reads from June to September is apparent.  It does not appear that tag penetration 
increased between June and September in the San Antonio system.   

5.3.2 Peak Period Determination 

In order to determine the best interval for peak period analysis, a count of the tag 
reads by time of day was made.  Figure 5.11 shows the average number of tag reads by site 
for the month of June.  Note that this average includes all weekdays in June.  In this case, 
only the AVI sites in the 10-mile study corridor are considered.   
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Figure 5.11 Mean Tag Reads by Site 

It is clear that sites 45 and 44 read many more tags per day than the other sites.  Sites 
45 and 47 monitor all eight lanes of the facility (four northbound and four southbound).  Site 
44 is just north of the Interstate 410 interchange.  The morning peak is clearly centered on 
07:00 and the afternoon peak around 17:00.  The exact time varies across the days of the 
week. Figure 5.5 is a monthly average and, therefore, most of these effects have been 
smoothed out.   
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The standard deviations of the average number of tag reads by hour across all 
weekdays in June 2000 are shown in Figure 5.12.  The mid-day tag reads of site 44 vary 
substantially across the weekdays of June more than at the other locations.  This is most 
likely due to the proximity to the Interstate 410 interchange (refer to Figure 5.1 for a map of 
the study area).  There is a higher level of merging and diverging traffic at this location. 
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Figure 5.12 Standard Deviation of Tag Reads 

 
The peak period selected for the analysis is 06:00 to 08:45 for the morning peak and 

15:30 to 18:15 for the afternoon peak.   

5.3.3 “Direction” Field 

As noted earlier, the last field in the data represents lane position.  The binary field 
was originally believed to indicate direction, zero for southbound and one for northbound.  
After some investigation, the “direction” field credibility was questioned.  Analysis was 
performed to determine that the field certainly does not indicate direction.  TransGuide and 
TransCore personnel were consulted.   

Every AVI site has an address, such as 145 or 245.  For each pair of antennae, a 
reader card resides in the cabinet.  The first of these has the same address as the site itself and 
the antennas that monitor the two inside northbound lanes are wired to this card.  The others 
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are 2XX, 3XX, or 4XX, continuing with the next northbound lanes followed by the inner 
southbound lanes.  The system identifies the inner lane of an antenna pair with a zero and the 
outer lane of a pair of antennas as one.  For a site that monitors all four lanes, such as site 
145, Figure 5.13 describes the configuration.   
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Figure 5.13 Lane Assignment at AVI Installation Site 

It is not a valid assumption that 2XX is always northbound.  Often identifier “2” 
represents southbound if the system is only monitoring the two inner lanes in each direction.  
The field sites do transmit the reader card identifier (which can be related to direction as 
described above).  Unfortunately, these data are not captured or archived by the TransGuide 
system software.   

The only method to obtain directional data with the current installation is to match the 
tag reads with downstream detectors.  Relying on matched data to discern the direction of a 
vehicle limits the directional volume measurements that could otherwise be captured at a 
point.  Often a vehicle may exit before a downstream detector can match the vehicle, the 
system fails downstream, or the vehicle changes lanes and is not detected by the downstream 
detector.  The process of matching tag reads is also important for the calculation of travel 
times and the subsequent calculation of speeds based on the distance between detectors.  The 
next section describes the match tag process.   

5.3.4 Match Results 

The central objective of an AVI system is to construct travel times for the links 
between the reader sites.  With accurate distances between the reader sites, average vehicle 
speeds can be obtained.  For the San Antonio system, matching the data is the only viable 
means to determine directional volumes of tagged (or in this case matched) vehicles.  With 
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properly matched data, accurate speed, volume, and density of tagged vehicles can be made, 
as discussed in Section 5.4. 

TransGuide provided the distances between the AVI sites.  The distances were 
reported to the thousandth of a mile or to an accuracy of about 5 feet.  It is imperative that 
these distances be measured and reported accurately.  Inaccurate distance data can cause 
erroneous, higher, or lower average speeds.  Such an error would be systematic across all 
results.  Link identification numbers are assigned to the eight links between the AVI reader 
sites for the study corridor.  The link identifications are depicted in Figure 5.1.   

In some cases a vehicle misses a reader site but is identified by the next downstream 
detector.  In order to capture vehicles that may not be read by the next subsequent 
downstream reader site, twelve additional composite links were generated.  Shown in Figure 
5.14 are the twenty possible link combinations from the array of five study AVI sites.  The 
matching procedure searches for a match in link order.  Matches are first made between 
adjacent sites (first order links) and then matches between nonadjacent sites are made.   

   

Figure 5.14 AVI Link Combinations 

After the raw tag data are read and duplicate entries are removed, the tag reads are 
matched.  The tag array is sorted using a simple insertion sort algorithm in ascending order 
by time of tag read.  The first tag identifier is read and the rest of the array is searched for 
that tag.  If the tag is located, the travel time is computed and link traversed identified, as 
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noted above.  Using the known distance from the static distance data, a speed is computed for 
the vehicle and the results are stored in the match array.    

Tags are matched for a given period of the day.  In the following case, the period 
from 06:00 to 08:45 was selected to capture the 07:00 peak.  The match is checked for 
reasonableness before the speed is actually computed.  A match is considered invalid if the 
match is between two of the same sites (e.g., a vehicle that exits and turns around).  If the 
resulting speed is less than 1 mile per hour the match is considered invalid as that often 
represents a vehicle that may have exited the facility and reentered after some time.  Other 
checks for reasonableness should also be considered as there are times when the travel time 
is greater than three standard deviations away from the average travel time.  For the purpose 
of ATIS, matches below 10 miles per hour are often invalid and are also removed.  Matches 
with speeds below 10 miles per hour are more effective for incident detection purposes.  The 
ATIS system would rely on an incident detection system to provide incident information.  All 
match results would be necessary for incident detection conditions, as slow matches are 
indicative of incident conditions.  However, periods with no incidents may have random 
slow-tagged vehicles that would not be indicative of the traffic stream for ATIS applications.     

Figure 5.15 shows the average number of matches by day for the peak hour defined 
above (06:00 to 08:45) for the study period.  On average, the total valid matches are 96.7 
percent of the actual matches.  Equipment failures may have caused the decrease in matches 
on June 7, 2000, and September 11, 2000. 
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Figure 5.15 Total Matches and Total Valid Matches 
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The matched data and individual vehicle speeds are used to estimate the traffic state 

descriptors as discussed in the following section.  At this point, matches with speeds less than 
10 miles per hour are not considered, as they are often erroneous and can skew the state 
descriptor estimates.   

5.4 CALCULATION OF TRAFFIC STATE DESCRIPTORS 

The major goal of gathering traffic data is to estimate the state of the system 
efficiently and accurately.  Data from the automatic vehicle identification system provides 
additional flexibility and allowing for easier computation of properly defined traffic state 
descriptors.  Proper definition of the traffic state descriptors is essential for correct 
interpretation and comparison across technologies.   

The matched tag data are processed for the given time period within a specified 
averaging time window.  The averaging time window is specified by the user and is most 
often 5, 10 or 15 minutes in duration.  The matched data are averaged within the window 
beginning with the start of the specified peak hour.  In order to obtain matches that may 
already exist in the network, the tag data are processed for a period of two time windows in 
advance of the specified peak hour.  Loop data are similarly averaged over the same time 
window from the 40-second polled data.  Details of the AVI implementation are presented in 
Section 5.4.2.  Definitions of the traffic state descriptors are discussed in Section 5.4.1.       

5.4.1 AVI Definitions  

Several works discuss and debate the fundamental relation between average vehicle 
speed, flow, and density, and how these quantities are measured.  The goal of this work is to 
implement a method for computing the state descriptors to evaluate the effectiveness of AVI.  
The classic definitions introduced by Edie (1965) and applied by Cassidy and Coifman 
(1997) to loop data are utilized.  Edie’s generalized definitions (1965) are used to compute 
the average flow, density, and speed on a given link monitored with AVI and loop detectors.  
Other measures, such as the standard deviation of space mean speeds, are computed by 
applying the usual definitions.  

 
 5.4.1.1 Density, Flow, and Speed   Edie describes methods to define the average 

speed ( SMSu ), flow ( q ), and density ( k ) for any region in space and time.  A rectangular 
region in space and time is shown in Figure 5.16, where there are n  vehicle trajectories and 
each jth trajectory spends time jt while traveling a distance jx .  The distance between two 
reader sites defines the spatial length ( L ) of the area.  The temporal duration (T ) of the area 
is defined as the specified averaging time window.     
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Figure 5.16 Rectangular Region with n Trajectories  
(Cassidy and Coifman 1997) 

Density for a given region LT  is given by 
LT

t
k

n

j
j∑

== 1 .  Density is the sum of the 

individual travel times for each jth trajectory during a given time segment, divided by the area 

( LT ) of the study period.  Likewise, flow is computed as: 
LT

x
q

n

j
j∑

== 1 , where the numerator is 

the summation of all distances traversed by each jth trajectory during the study period.  

Average speed can be computed as 
k
q

t

x
u n

j
j

n

j
j

SMS ==
∑

∑

=

=

1

1 , from first principles (total distance 

divided by total time) or by manipulation of the fundamental ukq =  relationship.  The speed 
computed from AVI data is a space mean speed; this is discussed further in Section 5.4.5.1 
(Cassidy and Coifman 1997). 

 
5.4.1.2 Standard Deviation of Space Mean Speeds   Space mean speeds are not the 

simple arithmetic mean of speed measurements.  It is necessary to define the standard 
deviation of space mean speed measurements carefully.  The standard deviation of the space 
mean speeds is computed as: 



 89 
 

( )
1

1

2

−

−
=

∑
=

N
S

N

i
SMSi

SMS

µµ
 

Where iµ is the speed of vehicle i , SMSµ  is the sample space mean speed in the time-
space region, as described in Section 5.4.1.1.  N  is the total number of speed observations, 
or vehicles, that contribute to the space-mean speed (May 1990).   

5.4.2 AVI Implementation 

The formulation outlined requires precise tracking of all vehicles for each individual 
link.  As previously mentioned, the program analyzes data from a given set of detectors for a 
specified period of time.  Figure 5.17 outlines the AVI implementation procedure on a 
theoretical time-space diagram.  The heavy dashed line represents the time and space period 
of analysis, typically the morning or afternoon peak period.  The thin solid diagonal lines 
represent vehicle trajectories.  The facility is multilane, therefore the vehicle trajectories can 
intersect as one vehicle passes another.  The analysis time period typically consists of eleven 
individual time windows; the selection of eleven time windows was arbitrary.   

During each time window, every match is checked to determine if it is within the 
study link.  If a match is representative of a vehicle on the link in the time window, the 
vehicle is moved according to its computed speed on that link.  The speed is known because 
the tag data is already matched; the computation of space mean speed, flow, and density is a 
postmatching process.  The sum of the individual travel times and distances traveled by all 
vehicles on the link is computed.  If a vehicle traverses past the end of the link, it is tagged 
out of the link and only the portion traveled on the link during the current time window is 
considered.  Likewise, if a vehicle is still on the link at the conclusion of the time window, 
the location is stored and the vehicle will resume from the stored location for the next time 
window.   
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Figure 5.17 AVI Process Implementation Time-Space Diagram 

The algorithm then computes the density, flow, and speed according to the definitions 
outlined in Section 5.4.1.1.  The standard deviation of the speeds is computed and the 
number of vehicles on the link recorded.  Output is displayed in a spreadsheet package for 
easy graphical interpretation and comparison with loop detector data.   

It is important to note that the implementation described here would be limited for 
real-time implementation.  The process presented must know the speed of the vehicle to 
properly “move” the vehicle during the time period of interest.  The downstream detector 
must already detect and match the vehicle and compute the speed of the vehicle; the time 
necessary for this process to complete depends on the length of the link and the level of 
congestion.  A rolling-average implementation where the state characteristics are updated 
with each new match as they are made would be more suited for a real-time implementation.   

The procedures of the AVI analysis program were tested manually with segments of 
the raw data in a spreadsheet.  Specifically, the raw data were tested to ensure that the proper 
tags for our study network and time period are extracted.  The tag-matching procedure was 
tested for correct matches and computation of speeds from tag data.  Finally, the flow, 
volume, and density computations were tested to guarantee proper calculation according to 
the definitions defined by Edie, outlined in Section 5.4.1.1.  Successful implementation of the 
fundamental definitions is achieved when each vehicle is accounted for and properly moved 
on every link for each time step.   
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5.4.3 Proof That Edie Definitions Hold 

After defining and implementing the Edie traffic state definitions, it is important to 
ensure that the definitions are applied correctly.  Figure 5.18 confirms that the kvq =  
relationship holds for AVI data when the measurements are properly defined.  The ratio of 
flow to speed is plotted against density for the morning peak period of June 19, 2000, and 
shown to produce a perfect linear relationship.  The algorithm, therefore, is computing 
correctly defined speed, flow, and density data.   
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Figure 5.18 Edie Relationship Check 

The Edie relationship could not be applied with the available loop data because of the 
inability to track individual vehicles and obtain updated position information about 
individual vehicles.  AVI is a powerful technology that facilitates proper definition and 
averaging of traffic state parameters.    

5.4.4 Loop Definitions 

As noted in Figure 5.1 there are three loop detectors installed for every first order 
link.  As currently implemented, the loop detectors do not have the ability to track vehicles 
and compute space mean speed measurements directly, as outlined in Section 5.4.1.1, for the 
AVI system.  Difficulty arises comparing the instantaneous spot speed measurements from 
loops to the inherent space mean measurement from the AVI system.  A system of three loop 
detectors comprising a single AVI study segment is shown in Figure 5.19.  The dashed 
rectangles represent “effective” detection zones or lengths over which the speed obtained 
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from a loop detector is assumed to prevail.  The length of an AVI detection zone is fixed as 
the system directly measures speed over a length.  The focus of this section is to outline the 
definitions necessary to obtain a reasonable space mean speed estimate from loop detectors.   

d1 d2 d3

 

Figure 5.19 Loop Detection Zones 

The average space between loop detectors is 0.5 mile and is assumed to be the 
“effective” detection length for all individual loop detectors.  The San Antonio loop detectors 
in the study corridor are consistently located at 0.5 increments.  The instantaneous speed 
obtained from a loop detector is assumed to be the speed of the vehicle for the entire 0.5 mile 
“effective” zone shown as dashed rectangles in Figure 5.19.  The Edie formulation outlined 
in Section 5.4.1.1 is applied approximately, as all vehicles are not tracked and assumed to 
traverse the entire “effective” zone when detected.    

A space mean speed comparable to the AVI-derived value could be obtained from 
loop data if an effective length over which the instantaneous speed obtained from the loop 
detector is assumed to prevail.  The fundamental definition of speed is total distance D  over 
total time T .  In the equation below, id is the distance an individual vehicle i  travels with 
time it . 

∑∑

∑

==

= ++=== n

i
i

n

i
i

n

i
i

SMS

t

dndndn

t

d

T
Du

1

3
3

2
2

1
1

1

1  

The individual vehicles cannot be tracked; therefore, one must assume that in each 
time window a detected vehicle traverses the entire length of the detection zone, xd , 

3,2,1=x .  There are three loop detection zones ( x ) for a single AVI segment, as shown in 
Figure 5.13.  xn is the number of vehicles that are detected by detector x , 3,2,1=x .  Because 
all the detection zones are assumed equal, the equation simplifies to  
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where d is the average detection zone of 0.5 mile.   



 93 
 

The time a vehicle traverses the detection zone is not directly measured by the loop 

detection system.  The travel time can be computed as x
i

i v
dt = , where x

iv  is the instantaneous 

speed obtained of vehicle i  from detector x .  The relationship for space mean speed 
becomes 
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The above equation is the harmonic mean of the individual speeds obtained from the 
three loop detectors.  The harmonic mean of the instantaneous spot speeds, given the 
assumption that each vehicle progresses at the detected speed over the entire length of the 
“effective” detection zone, is the space mean speed.  If the distances between the detectors 
vary, the individual “effective” distances can weight the harmonic mean; however, this is 
beyond the scope of this work.   

The loop density is computed using a procedure described in May (1990): 
 

)(%8.52 OCC
LL

k
DV +

=  

VL  is the average vehicle length in feet, and DL  is the distance between the two trap 
loop detectors in feet.  The average vehicle length was assumed to be 18 feet and the 
detection zone as 6 feet.  These parameters could also be calibrated from other data sources.   

5.4.5 Loop Implementation 

The procedure outlined in Section 5.4.4 was applied to the San Antonio loop data to 
obtain space mean speeds comparable to the AVI space mean speeds.  The peak period and 
time window are consistent with the AVI implementation outlined in Section 5.3.2.  The 
harmonic mean of the 20-second average field data is obtained.  The San Antonio data is 
limited to a 20-second aggregation; individual speed measurements cannot be obtained.  The 
number of 20-second measurement periods within the time window is obtained.  Typically a 
loop detector in one of the three lanes is not operational for one or more 20-second reporting 
periods.  The volume counts are summed for all lanes and percent occupancies are averaged.   

The loop data is directed to a spreadsheet for side-by-side comparison with AVI data.  
The harmonic mean of the 20-second arithmetic average data for each loop detector is plotted 
with the AVI data.  A single space mean average from the three loop detectors is obtained as 
follows: 
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where x
harmonicu are the harmonic means of the 20-second aggregate data at loop x  and 

xN is the number of 20-second periods included in the computation of the harmonic mean.  
The Linku estimation from loop data is the best single number available for comparison to the 
direct space mean speed measurement from the AVI system.  The Linku value is subject to the 
limitation that one arithmetic average (time mean) speed measurement is obtained for a 20-
second period from the individual spot speed measurements.  This speed is assumed to be the 
prevailing speed over an “effective” detection zone for the loop detector.    

5.4.6 Results and Discussion 

The AVI system determines the space mean speed of the probe vehicles across a fixed 
length by tracking the movements of individual vehicles.  A loop detection system 
determines the arithmetic time mean average of instantaneous vehicle speed measurements at 
a fixed location.  The AVI system has the uncommon ability to compute the average space 
mean speed for a group of vehicle trajectories, as outlined in Section 5.4.2.  The arithmetic 
mean of the spot speeds is the time mean speed from the loop detector data.  The harmonic 
mean of the spot speeds from the loop detector is the space mean speed from the vehicles 
passing the fixed location of the loop detector given the assumptions presented in Section 
5.4.5. 

Figure 5.20 presents results of the comparison of AVI and loop space mean speed 
results for Link 7 on September 25, 2000.  The morning peak period was studied using a 15-
minute average window, as described in Section 5.4.2.   
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Figure 5.20 AVI and Loop Space Mean Speed Comparison 

It is important to keep the context and assumptions in mind when comparing the two 
speed measurements.  The speed measurements obtained from the loop detectors are based 
on space mean estimates from point data.  The AVI speed was obtained as the direct 
computation of the space mean speed, based on Edie’s definitions, from a fraction of the 
population that is tagged.  Therefore, it is possible that the space mean speed from the AVI 
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system can be greater than the loop space mean speed estimate.  The probe vehicles are only 
a small fraction of the total vehicles that are used for the loop detector speed estimate.   

The definitions presented by Edie are relatively easy to apply to the AVI data; the 
nature of the detection system is natural for measuring space mean speeds.  Proper 
definitions are applied to the loop data for approximating space mean speed measurements 
given some limitations.  The application of Edie’s definitions to the loop data is more 
difficult considering the 20-second aggregation of the field data from San Antonio local 
control units.  Additional study of how probe-based and link-based measurements can be 
properly compared is necessary.  The procedure outlined in this work is suitable for a basic 
comparison and assessment of the AVI speed data for use in ATIS applications.    

5.5 DATA ANALYSIS AND QUALITY CONCLUSIONS 

In the preceding chapter, the source and nature of the raw San Antonio data were 
identified.  A comparison of the raw data structure was made with data from Houston, Texas.  
The methods used to process the raw data into useable matched data were introduced, as well 
as some of the limitations of the San Antonio AVI data.  The traffic state descriptors were 
defined and implemented for both AVI and loop data analysis.  The limitations and 
implementation of the methods for computing speed data from the two detection systems 
were presented.  The evaluation of the San Antonio AVI system uses the results from this 
analysis to assess the quality of AVI data for use in ATIS applications.  Chapter 8 contributes 
to this effort by investigating the tagged vehicle penetration.   
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CHAPTER 6  INCIDENT DETECTION METHODOLOGY 

Having described the study corridor and the data available in the previous chapter, 
this chapter introduces the methodology followed in conducting the experiments for this 
study.  The standard steps developed to prepare the traffic and incident data, calibrate the 
chosen algorithms, and, finally, test the algorithms are presented hereafter. 

Section 6.1 presents the algorithms chosen for calibration and testing. Section 6.2 
describes the traffic and incident data sets used to calibrate and test the algorithms 
respectively. Section 6.3 describes the methodology followed in testing the algorithms. 
Finally, Section 6.4 describes the methodology implemented to conduct the calibration of the 
loop and Automatic Vehicle Identification (AVI) algorithms. 

6.1 ALGORITHM SELECTION 

The literature reviewed showed that extensive research went into the development 
and refinement of Automatic Incident Detection (AID) algorithms taking loop detector data 
as input. Although some AVI algorithms have been proposed, they are still in their early 
phases of development. Moreover, very little testing has been reported using actual, not 
simulated, AVI data. It is not within the scope of this research to evaluate the performance of 
all the detection logics presented in Chapter 3. A representative subset was selected for 
calibration and testing with data collected from TransGuide. The most important requirement 
considered in selecting an algorithm was the ability to implement the detection logic in real-
time as data is received by the Traffic Management Center (TMC). Also, the detection logic 
had to be published and preferably tested. 

6.1.1 Loop Algorithms 

Two fixed detector algorithms were selected for calibration and testing, the California 
#8 algorithm and the Texas algorithm. 

 
6.1.1.1 California #8  Peterman (1999) studied the performance of different loop AID 

algorithms using data collected from the San Antonio network. The study was intended to 
compare the relative performance of the California #8 algorithm, the McMaster algorithm, 
the Minnesota DELOS algorithm, and the Texas algorithm. Results showed that the 
California #8 algorithm was able to detect more incidents than the other algorithms 
considered, regardless of incident type. Although the described research made use of data 
collected from a previous time period and from other sections of the San Antonio network 
than the segment considered in this research, it is interesting to examine the transferability of 
the California #8 algorithm across time and space. Furthermore, the California #8 algorithm 
is used in various traffic management centers across the nation and often times constitutes a 
benchmark against which the performance of many other algorithms is measured.  The 
algorithm logic described in detail in Section 3.2.1.1 is essentially a decision tree examining 
traffic measurements (OCC[i,t], DOCC[i,t], OCCDF[i,t], DOCCTD[i,t]) determined after 
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manipulating the occupancy values reported from Inductive Loop Detectors (ILDs). These 
traffic measurements were defined in Table 3.1.  

The California #8 algorithm makes use of five different threshold values referred to 
as T1 through T6.  The T1 threshold corresponds to a maximum value of the spatial 
occupancy difference (OCCDF) variable under normal conditions. The T2 threshold 
corresponds to a maximum value of the temporal difference in downstream occupancy 
(DOCCTD) variable under normal conditions. The T3 threshold corresponds to a maximum 
value of the relative spatial difference in occupancy (OCCDRF) variable under normal 
conditions. The T4 threshold corresponds to a maximum value of the downstream occupancy 
(DOCC) variable and is used to signal a tentative incident.  Like the T4 threshold, the T5 
threshold corresponds to a maximum value of the downstream occupancy (DOCC) variable 
but is used to detect compression waves.    

As reported in Chapter 3, Payne (1976) developed a total of ten refined versions of 
the original California algorithm, the most efficient of which was the California #8 
algorithm. Payne reported obtaining the best performance using a combination of five 
threshold sets presented in Table 6.1. 

Table 6.1 Optimal Threshold Set for California #8 Algorithm (Payne et al. 1976) 

T1 T2 T3 T4 T5 DR  (%) FAR 
(%) 

10.2 -0.433 0.312 28.8 30 61 0.177 
13.1 -0.296 0.309 16.9 30 51 0.038 
18.1 -0.310 0.356 18.5 30 41 0.024 
6.2 -0.401 0.590 27.9 30 31 0.010 
24.4 -0.392 0.579 13.0 30 20 0.003 

 
6.1.1.2 The Texas Algorithm  The incident detection logic adopted in the Texas 

algorithm is straightforward and was detailed in Section 3.2.1.2. If the value of a traffic 
variable falls below a predetermined threshold value, an incident is detected. Usually, 
occupancy values are used and the threshold is set to a value near 37 percent (Peterman 
1999). Unlike the California #8 algorithm that uses data from a pair of upstream and 
downstream detectors, the Texas algorithm uses data from a single detector.  

The Texas algorithm is implemented considering mean occupancy values aggregated 
over a 3-minute rolling window. The algorithm starts by averaging the 20-second averages 
received at the TMC over 1-minute periods and then 3-minute averages are produced using 
three values of the 1-minute averages. Usually the Texas algorithm is implemented using 
section averages; however, this research will consider data collected from individual lanes. 

6.1.2 AVI Algorithms 

Two probe vehicle algorithms were selected for calibration and testing, the 
Confidence Limit algorithm proposed by Hellinga and Knapp (1999) and the Texas 
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algorithm. However, these algorithms were refined in such a way as to optimize their 
performance when applied to the network under consideration. 

6.1.2.1 The Confidence Limit Algorithm  The Confidence Limit algorithm was 
presented in detail under Section 3.3.1.1 of Chapter 3. The algorithm logic calls for 
maintaining a temporally rolling average of travel times for each segment. The rolling 
window was divided into aggregation intervals and a mean travel time was determined for 
each segment by averaging individual vehicle’s travel times over the aggregation intervals 
and then averaging the aggregation intervals’ mean travel times over the comparison 
window. However, in the implemented algorithm, averaging was done based on the 
occurrence of a number of events (n) rather than on a time interval basis. An event is defined 
as a tagged vehicle detected at a link’s upstream and downstream detectors. This decision 
was made due to the low level of tagged vehicles’ market penetration experienced in the San 
Antonio network. By averaging the mean interval travel times of the aggregation intervals, 
one would be assigning an equal weight to the mean travel time of all aggregation intervals 
within the rolling window, irrespective of the number of events experienced during each 
aggregation interval. Using the logic developed by Hellinga and Knapp, an aggregation 
interval for which one travel time value was generated would be assigned an equal weight as 
an aggregation interval for which many values were generated, thus destabilizing the 
resulting rolling window mean travel time.  

Each time a tagged vehicle is matched at the upstream and downstream detectors of a 
link, a travel time value is generated and included along with that link’s last (n - 1) travel 
time values in the calculation of the link rolling window average travel time. Travel time 
values are obtained by subtracting the time a tagged vehicle passes the downstream detector 
of a link from the time that same tagged vehicle passed the upstream detector of that same 
link.  Mean travel times for the comparison window are generated using Equation 6.1. 
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∑=         (Eq.6.1) 

Where i = segment reference, 
j = event reference, 
 n = number of events considered for the rolling average, and 
τ j  = segment travel time generated from event j. 
 
The original Confidence Limit algorithm attempts to determine an upper confidence 

limit for the mean segment travel time of the interval following the comparison window by 
computing the lognormal mean and the lognormal variance of the mean interval travel times 
contained within the comparison window, thus assuming that the mean interval travel times 
are lognormally distributed. The implemented algorithm attempts to determine an upper 
confidence limit for the expected value of a segment travel time following the events 
included in the comparison window. This modification of the original logic causes the 
algorithm to execute each time an event occurs rather than executing at the end of an 
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aggregation time interval. This is perfectly feasible with the tagged-vehicle headways 
experienced on the network under the current levels of market penetration. 

In order to determine expected link travel times, link travel time data was processed 
to determine the statistical distribution that describes it best. Figure 6.1 shows typical a.m. 
travel times experienced on Link 1. 
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Figure 6.1 Typical A.M. Travel Times Experienced on Link 1 

The data plot reveals two different regimes during the a.m. peak period: normal 
conditions (phase 1 in Figure 6.1) and congested conditions (phase 2 through 4 in Figure 
6.1). Before and after congestion, the travel time values on Link 1, are close to 1 minute. 
Travel time values increase up to a value of 6.2 minutes at the peak of the congestion. When 
trying to fit a statistical distribution to all the a.m. link travel times recorded, it was found 
that no statistical distribution was adequate to represent the data due to the qualitative 
difference in travel times exhibited between normal and congested conditions. Therefore, 
attention was turned into investigating each phase separately.  Six different distributions were 
investigated for each phase: gamma, lognormal, negative exponential, normal, shifted 
negative exponential, and uniform. For the uncongested regime, the gamma distribution 
performed best followed by the lognormal distribution. Both distributions are depicted 
against the observed travel times in Figure 6.2. 
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Figure 6.2 Link 1 Uncongested: Actual versus Gamma and Lognormal 

The congested regime has been further subdivided into three phases: congestion 
buildup (2), congestion peak (3), and recovery (4). For the congestion buildup phase, the 
normal distribution performed best followed by the lognormal and the gamma distributions. 
When considering the peak of the congestion phase, the lognormal distribution gave the 
closest representation of the actual travel times. The gamma distribution was second best. 
Finally, for the recovery phase, the lognormal distribution performed best followed by the 
gamma distribution. Figures 6.3 through 6.5 present a plot of the best-performing 
distributions versus actual travel time data for the congestion builtup, congestion peak, and 
recovery phases respectively.  
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Figure 6.3 Link 1 Congestion Buildup: Actual versus Gamma and Lognormal 
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Figure 6.4 Link 1 Congestion Peak: Actual versus Gamma and Lognormal 
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Figure 6.5 Link 1 Recovery Phase A.M. Travel Times: Actual versus. Gamma and 
Lognormal 

Results show that although the lognormal distribution did not perform best for all of 
the described phases, it adequately represents actual travel times experienced. Having 
verified Hellinga’s assumption that the link travel times can be satisfactorily represented by a 
lognormal distribution, the lognormal mean and variance of each link travel time are 
calculated using the lognormal mean and variance equations presented in Chapter 3. The 
upper confidence limit for each link’s travel time is determined next using Equation 6.2. 

)( σµ zeUL +=                   (Eq. 6.2) 
where µ = lognormal mean of the link’s travel time,  
z = level of confidence, and 
σ = lognormal variance of the link’s travel time. 
The value of the travel time generated from the event following the (n) events 

contained within the comparison window is compared to the computed upper confidence 
limit for the link’s travel time. If the current travel time exceeds the upper confidence limit, 
an incident alarm is generated. 

 
6.1.2.2 The Texas Algorithm  A variant of the Texas algorithm is currently being 

applied at TransGuide and provides a benchmark against which the performance of other 
AVI algorithms can be evaluated. When used with AVI-generated data, probe vehicle speeds 
are used as input to the algorithm. The speed of each tagged vehicle traversing a link is 
compared to a fixed speed threshold. If the speed of the tagged vehicle falls below the 
threshold value, an incident alarm is generated. 
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6.2 CALIBRATION AND TESTING DATA SETS 

Different data sets are required to calibrate and test the algorithms. While the 
calibration data set is intended to determine optimal thresholds, the testing data set is 
intended to evaluate the optimal thresholds determined from the calibration phase and test 
their transferability from one situation to the other.  

The initial incident data set consisted of 73 incidents, the majority of which were 
labeled as congestion. Refer to Table 4.3 for a breakdown of incidents according to type.  

For seven of the congestion incidents in the database, loop data from the relevant 
detector pairs was not available. Therefore, these incidents were not considered in calibrating 
and testing the loop algorithms. Of the remaining sixty-five incidents in the database, twenty-
one were selected for calibration. The sample consisted of four major accidents, three minor 
accidents, and fourteen congestion incidents. The remaining forty-four incidents in the 
database were used to test the loop algorithms. The testing sample consisted of seven major 
accidents, six minor accidents, twenty-nine congestion incidents, and two stalls.  

The same incident sample used to calibrate the loop algorithms was used to calibrate 
the AVI algorithms. However, the seven incidents that were not considered in the testing of 
the loop detectors for lack of traffic data were included in the testing of the AVI algorithms, 
raising the total number of incidents in the AVI algorithm-testing database to fifty-one. Out 
of the fifty-one incidents, ten were labeled as major accidents, six as minor accidents, thirty-
two as congestion, and three as stalls.  

For calibration purposes, traffic data included only those locations and peak periods 
of days where incidents occurred. However, when testing the algorithms, traffic data 
included both the a.m. and p.m. peak periods from everyday of the time span considered for 
the research except those considered for calibration. This was necessary in order to determine 
false alarm rate (FAR) and time to detect (TTD). 

6.3 TESTING METHODOLOGY 

The steps followed in testing an algorithm and evaluating its performance are 
illustrated in Figure 6.6. In order to execute, an algorithm requires traffic data and a threshold 
combination as input. The algorithm generates incident alarms associated with the threshold 
combination used. Also, the algorithm maintains a count of the number of tests it performs 
on the traffic data. Those algorithm-generated incident alarms are used in conjunction with 
entries in the incident database as input to the evaluation algorithm. The evaluation algorithm 
loops through all the incidents in the incident database comparing the algorithm-generated 
alarms for a given set of thresholds to each entry in the incident database. If the algorithm-
generated alarm corresponds to an entry in the incident database, the evaluation algorithm 
increments accordingly the counter for the number of incidents properly detected of that type 
or the number of false alarms for that threshold combination.  In calibrating and testing the 
different algorithms, an incident alarm generated by an algorithm is considered to be correct 
if the following set of rules apply: 
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• The date of the alarm matched the date of the incident record in the incident 
database. 

• The location of the alarm matched the location of the incident record in the 
incident database. 

• The time of the incident alarm is not earlier than 10 minutes prior to the reported 
incident start time and not greater than the reported incident end time in the 
incident database. 

 
Incidents are recorded in the incident log at TransGuide as soon as they are detected. 

The 10-minute window was set to account for the typical difference between the time an 
accident actually happens and the time it was recorded in the incident log. The evaluation 
algorithm is set to detect multiple algorithm-generated alarms corresponding to the same 
entry in the incident database and removes duplicates in order to obtain accurate measures of 
performance. The sequence of events that constitute the evaluation function is presented in 
Figure 6.7. The same sequence of events repeats itself until all combinations of thresholds are 
tested and counts of incidents detected by type, as well as false alarm counts resulting from 
each threshold combination are generated. Those counts are used in determining the 
detection rate (DR) and FAR for each combination of thresholds.   

 

 

 

 

 

 

 

 

Figure 6.6 Detection Algorithm Execution Flowchart 
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Figure 6.7 Evaluation Algorithm Flowchart 

6.4 CALIBRATION METHODOLOGY 

The performance of an algorithm in terms of DR, FAR, and TTD varies according to 
the threshold combination used. When calibrating an algorithm, the DR is plotted versus the 
FAR for various combinations of thresholds in order to determine the algorithm’s “efficient 
frontier” or the “pareto-optimal” set of thresholds that produce maximum detection for given 
FARs. Refer to Figure 6.8 for an example of “pareto-optimal” threshold determination. 
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Figure 6.8 “Pareto-Optimal” Thresholds Determination for the California #8 Algorithm 

The algorithm chosen for calibration and testing requires either a combination of 
thresholds (California #8 and Upper Confidence Limit) or a single threshold value (Texas 
algorithm). The DR and the FAR obtained from each threshold value or combination of 
thresholds are plotted against each other and points falling along the algorithm’s apparent 
efficient frontier are identified. Those points represent the algorithm’s best performance and 
are used to rate the performance of the algorithms against each other.  

6.4.1. Loop Algorithms  

 A Monte Carlo simulation was developed to generate possible combinations of 
thresholds for the California #8 algorithm based on a uniform distribution over a range of 
possible threshold values determined from the literature (Peterman 1999). The California #8 
algorithm uses five different thresholds described in Section 6.1.1.1. Three hundred different 
threshold combinations were generated using the Monte Carlo simulation. Limits for the 
ranges of values that each one of the five thresholds can take were identified from the 
literature and are summarized in Table 6.2. 

 

 

 

 

Efficient Frontier 
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Table 6.2 Threshold Limits for the California #8 Algorithm 

Threshold Minimum 
Value Maximum Value 

T1 (OCCDF) 5 30 
T2 (DOCCTD) -1 0 
T3 (OCCRDF) 0.1 0.8 
T4 (DOCC1) 10 30 
T5 (DOCC2) 20 30 

 
The Texas algorithm was relatively easy to calibrate due to the fact that it requires 

only one parameter, namely an occupancy value. Occupancy values ranging from 5 percent 
to 50 percent were used in the calibration process in increments of 1 percent. 

 
6.4.2 AVI Algorithms   
 
The Confidence Limit algorithm was tested with varying values of level of 

confidence (z) and of the number of events contained in the comparison window (n). Levels 
of confidence values ranging between 2 and 6 standard deviations were tested in increments 
of 0.6. Each value of (z) was tested using values of (n) ranging between 4 and 8 in increments 
of 1 resulting in a total of 45 threshold combinations.  

 The Texas algorithm is currently being used in TransGuide with a speed 
threshold of 30 mph. The algorithm was calibrated with all integer values of speed ranging 
from 5 to 50 mph. 

 Chapter 6 presented the algorithms chosen for calibration and testing along 
with the method used to prepare the traffic and incident data.  Also, the chapter detailed the 
standard steps used in calibrating and testing the selected algorithms.  Results of the 
calibration and testing processes for each algorithm are presented in Chapter 7. 
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CHAPTER 7 CALIBRATION AND TESTING RESULTS 

The procedures detailed in the previous chapter were applied to test and calibrate the 
California #8 algorithm, the Upper Confidence Limit algorithm, and the Texas algorithm. 
The current chapter describes the results of the calibration and testing phases respectively. 
Section 7.1 presents the results of the calibration phase aimed at “training” the algorithms to 
produce “pareto-optimal” threshold values associated with superior algorithm performance.  
Section 7.2 presents the results of the testing phase aimed at examining the transferability of 
the best-performing threshold values determined from calibration to a different data set. 
“Pareto-optimal” thresholds were determined to maximize the performance of the algorithms 
in detecting both all incidents and accidents only (major and minor). While a total of twenty-
one incidents were used in the calibration phase, totals of forty-four and fifty-one other 
incidents, respectively, were used to test the loop algorithms and the Automatic Vehicle 
Identification (AVI) algorithms. The three measures of performance described in Chapter 3, 
namely the detection rate (DR), the false alarm rate (FAR), and mean time-to-detect (TTD), 
are used to evaluate the performance of the automatic incident detection (AID) algorithms.  

7.1 CALIBRATION RESULTS 

Possible threshold values and combinations were generated for each algorithm based 
on ranges identified from the literature. The DR was plotted against the FAR for each 
threshold value or combination in order to determine the algorithm “efficient frontier” or the 
“pareto-optimal” set of thresholds. The steps followed in the calibration phase were detailed 
in Section 5.4. The results of the calibration phase are presented next starting with the loop 
algorithms. 

7.1.1 Loop Algorithms Calibration Results 

The loop algorithms were calibrated and tested using the loop data obtained from 
TransGuide. At its finest resolution, the data was available in 20-second intervals and was 
filtered prior to its use with the algorithms to eliminate the errors described in Chapter 4. 

7.1.1.1 California #8   All 300 threshold value combinations obtained from the Monte 
Carlo simulation were tested. Two sets of “pareto-optimal” thresholds were determined, one 
for detecting all incidents and the other for detecting accidents only.  

Figure 7.1 illustrates the performance of the California #8 algorithm in detecting all 
types of incidents (accident, congestion, and stall). Moreover, this figure illustrates the 
typical trade-off observed between DR and FAR for any automatic incident detection 
algorithm. In order to achieve high detection rates, the algorithm must be tuned to detect the 
lowest traffic fluctuations, thus resulting in high levels of false alarms. On the other hand, 
when the incident is tuned to detect only severe traffic fluctuations, the resulting false alarms 
are reduced at the expenses of the detection rate. 
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Figure 7.1 DR and FAR Trade-Off Curve for the California #8 Algorithm 

Each data point on Figure 7.1 represents the performance of the algorithm for a 
particular combination of thresholds. The performance of the algorithms in terms of the DR 
and FAR depends on the threshold values used. Therefore, it is important to examine how the 
performance of the algorithm varies with respect to each one of the five thresholds, T1 
through T5. Figures 7.2 through 7.6 depict the variation of the DR and FAR as a result of 
changing the thresholds T1, T2, T3, T4, and T5, respectively. If a trend in algorithm 
performance with respect to each one of the five thresholds can be observed, then the values 
of the thresholds can be chosen depending on the system objectives in terms of the DR and 
FAR. 
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Figure 7.2 DR and FAR versus T1 
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 Figure 7.3 DR and FAR versus T2  
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 Figure 7.4 DR and FAR versus T3  
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Figure 7.5. DR and FAR versus T4  
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Figure 7.6 DR and FAR versus T5 

By observing Figures 7.2 through 7.5, it is evident that the performance of the 
California #8 algorithm depends to the largest extent on the value of threshold T1. As the 
critical spatial occupancy difference (OCCDF) increases, the DR and FAR decreases. 
Moreover, the DR and FAR decreases rapidly for values of OCCDF greater than 20 and at a 
much slower rate for values ranging between 20 and 30. The calibration process did not 
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reveal similar trends for the rest of the five thresholds. When considered individually, 
thresholds T2 through T4 did not seem to significantly affect the performance of the 
algorithm. 

The average TTD incidents is defined as the difference between the time an incident 
was entered in the incident database and the time of the corresponding incident alarm 
generated by the algorithm. The inherent inaccuracies in reporting incident start and end 
times in the incident reports make TTD an imprecise measure of algorithm performance. 
Therefore, the DR and the FAR are relied on in comparing the performance of the 
algorithms. The performance of the California #8 algorithm in terms of TTD is illustrated in 
Figure 7.7. 
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Figure 7.7 DR and TTD versus FAR, California #8 Algorithm 

 
Figure 7.7 shows that in general, as the sensitivity of the algorithm to traffic 

variations increase, the DR and FAR increase, but the TTD decreases.  That is, the algorithm 
will take more TTD incidents if tuned to detect only those incidents with severe 
repercussions on the flow of traffic. Negative TTD values indicate that incidents have been 
detected prior to their recorded start time in the incident report. This is possible since an 
algorithm-generated alarm is considered correct if it is within 10 minutes of the incident start 
time and the incident end time recorded in the incident report.   

The calibration process resulted in the determination of  “pareto-optimal” thresholds, 
or thresholds for which the performance in terms of the DR or FAR cannot be improved 
without negatively impacting the other. Two sets of “pareto-optimal” thresholds were 
determined, one for optimizing the detection of all incidents and the other for optimizing the 
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detection of accidents only. Some of the threshold combinations lie on the efficient frontier 
of the algorithm in detecting both all incidents and accidents only. Results indicate that the 
algorithm performed better in detecting all types of incidents rather than accidents only. The 
two sets of thresholds are presented with the associated performance measures in Tables 7.1 
and 7.2 and are illustrated in Figure 7.8. Table 7.3 presents a breakdown of the incidents 
detected by type for the “pareto-optimal” sets of thresholds. 

 

Table 7.1. All Incidents “Pareto-optimal” Thresholds, California #8 Algorithm 

 

 
T1 T2 T3 T4 T5 False 

Alarms 
Incidents 
Detected DR FAR 

Average TTD  
(min) 

13 -0.652 0.218 16 22 267 13 0.619 0.0052 7.3 

10 -0.262 0.489 28 22 281 14 0.667 0.0054 7.0 

11 -0.441 0.165 28 29 615 15 0.714 0.0119 4.0 

8 -0.192 0.194 16 28 909 16 0.762 0.0176 3.7 

8 -0.588 0.119 24 23 1094 17 0.810 0.0212 2.7 A
ll 

In
ci

de
nt

s 

7 -0.924 0.119 17 23 1239 18 0.857 0.0240 2.2 

 

Table 7.2. Accidents Only “Pareto-optimal” Thresholds, California #8 Algorithm 

 
T1 T2 T3 T4 T5 

False 
Alarms 

Accidents 
Detected DR FAR Average 

TTD (min) 

19 -0.015 0.138 12 25 46 1 0.143 0.0009 -1.6 

17 -0.824 0.119 11 25 72 2 0.286 0.0015 4.0 

10 -0.968 0.64 15 26 162 3 0.429 0.0032 4.5 

8 -0.192 0.194 16 28 909 4 0.571 0.0178 3.2 

A
cc

id
en

ts
 O

nl
y 

7 -0.924 0.119 17 23 1239 5 0.714 0.0243 -0.1 
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Figure 7.8. Efficient Frontiers for the California #8 Algorithm 
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Table 7.3. Breakdown of Incidents Detected by Type, California #8 Algorithm 

 

 
T1 T2 T3 T4 T5 Major 

Accidents 
Minor 

Accidents 
Congestion Total 

13 -0.652 0.218 16 22 2 1 10 13 

10 -0.262 0.489 28 22 2 1 11 14 

11 -0.441 0.165 28 29 2 1 12 15 

8 -0.192 0.194 16 28 3 1 12 16 

8 -0.588 0.119 24 23 3 1 13 17 A
ll 

In
ci

de
nt

s 

7 -0.924 0.119 17 23 3 2 13 18 

19 -0.015 0.138 12 25 0 1 3 4 

17 -0.824 0.119 11 25 1 1 5 7 

10 -0.968 0.64 15 26 2 1 5 8 

8 -0.192 0.194 16 28 3 1 12 16 

A
cc

id
en

ts
 O

nl
y 

7 -0.924 0.119 17 23 3 2 13 18 
 

Payne et al. (1976) studied the performance of the California #8 algorithm on data 
obtained from Los Angeles freeways. The incidents considered in this study included 
stall, accidents, gawking, and spills.  The algorithm was able to achieve DRs of 61 
percent or lower. In a similar study, Payne et al. (1976) evaluated the performance of the 
California #8 algorithm on data obtained from Minneapolis freeways. DRs of 80.6 
percent or lower were achieved with corresponding FARs ranging from 0.002 to 0.4. 

Peterman (1999) conducted a similar study on other sections of the San Antonio network. 
DRs of up to 99 percent were reported when considering all types of incidents with 
corresponding FARs ranging from 0.0309 to 0.0021. When considering accidents only, 
DRs of up to 100 percent were achieved with corresponding FARs ranging from 0.0298 
to 0.002. 

The results obtained in this study improve on the results obtained in both studies 
performed by Payne et al. (1976) in terms of the DR and FAR. However, although FARs 
obtained were lower than those reported by Peterman (1999), DRs were lower both when 
considering all incidents and when considering accidents only.  

It is important to point out that DRs are readily comparable between studies because the 
number of incidents used in each study is well defined. However, FARs depend on the 
number of tests performed by the algorithm and, therefore, should only be used as a 
relative measure to compare the performance of algorithms tested within a study. 
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7.1.1.2 Texas Algorithm with Loop Data  The calibration of the Texas algorithm 
was relatively simple due to the fact that only one threshold value is required. All 
occupancy values ranging between 5 percent and 50 percent were tested in increments of 
one. The tradeoff curve for the Texas algorithms is presented in Figure 7.9. 
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 Figure 7.9 DR and FAR Trade-Off Curve for the Texas Algorithm Applied with Loop 
Data 

The staggering exhibited by the data indicates that several values of the occupancy 
threshold gave the same results in terms of the DR but at different levels of FAR. The 
performance of the algorithm with respect to the occupancy threshold is illustrated in 
Figure 7.10. Figure 7.10 shows that both the DR and FAR decrease as the occupancy 
threshold increase. The TTD obtained from the Texas algorithm is depicted in Figure 
7.11, which suggests that the algorithm exhibits similar tradeoffs in terms of TTD as the 
California #8 algorithm. 
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 Figure 7.10 DR and FAR versus Occupancy Threshold, Texas Algorithm with Loop 
Data 
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 Figure 7.11 DR and TTD versus FAR, Texas Algorithm with Loop Data 

The “pareto-optimal” sets of thresholds are presented along with the associated 
performance measures in Table 7.4 and 7.5 and are illustrated in Figure 7.12. The Texas 
algorithm performed better in detecting all types of incidents than in detecting accidents 
only. This is mainly due to the typically longer time span of congestion incidents, thus 
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allowing the algorithm more time to detect the incident. Here also, some threshold values 
were observed to lie on both of the efficient frontiers. Since the algorithm uses only one 
threshold value, it is expected not to be adequate in differentiating between different 
types of incidents. Table 7.6 presents a breakdown of the incidents detected by type for 
the “pareto-optimal” sets of thresholds presented in Tables 7.4 and 7.5. 

Table 7.4 All Incidents “Pareto-optimal” Thresholds, Texas with Loop Data 

 Occupancy 
Threshold 

False 
Alarms 

Incidents 
Detected DR FAR Average TTD 

(min) 

50 373 2 0.095 0.0085 17.4 

48 554 3 0.143 0.0126 10.0 

40 1596 4 0.190 0.0363 10.4 

30 4464 5 0.238 0.1014 7.0 

26 6097 6 0.286 0.1385 7.3 

18 9730 7 0.333 0.2210 7.1 

17 10402 9 0.429 0.2363 7.2 

16 11251 11 0.524 0.2556 5.0 

15 12395 14 0.667 0.2816 5.3 

14 13963 17 0.810 0.3172 5.7 

A
ll 

In
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de
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13 16203 18 0.857 0.3681 3.9 

 

Table 7.5 Accidents Only “Pareto-optimal” Thresholds, Texas with Loop Data 

 Occupancy 
Threshold 

False 
Alarms 

Accidents 
Detected 

DR FAR 
Average TTD 

(Min) 

41 1413 1 0.143 0.0126 4.2 

17 10402 2 0.286 0.0363 -0.4 

16 11251 3 0.429 0.2558 -0.9 

15 12395 4 0.571 0.2818 -1.3 

A
cc

id
en

ts
 O

nl
y 

5 33722 5 0.714 0.3175 -2.5 
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Figure 7.12 Efficient Frontiers for Texas Algorithm with Loop Data 

 

Table 7.6 Breakdown of Incidents Detected by Type, Texas with Loop Data 

 

Occupancy 
Threshold 

Major 
Accident 

Minor 
Accident Congestion Total 

50 0 0 2 2 
48 1 0 2 3 
40 1 1 2 4 
30 1 1 3 5 
26 1 1 4 6 
18 1 1 5 7 
17 1 1 7 9 
16 2 1 8 11 
15 2 2 10 14 
14 3 2 12 17 

A
ll 
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13 3 2 13 18 
41 1 0 2 3 
17 1 1 7 9 
16 2 1 8 11 
15 2 2 10 14 A
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5 3 2 13 18 
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Peterman (1999) evaluated the performance of the Texas algorithm on other 
sections of the San Antonio network. Detection rates of up to 98.1 percent were reported 
when considering all types of incidents, with corresponding FARs ranging from 0.00147 
to 0.3188. When considering accidents only, DRs of up to 100 percent were achieved, 
with corresponding FARs ranging from 0.00195 to 0.59388.  

The Texas algorithm performance in terms of the DR was disappointing when 
compared to results obtained by Peterman (1999), especially in detecting accidents only. 
FAR obtained from both studies was comparable. 

7.1.2 AVI Algorithms Calibration Results 

The Upper Confidence Limit and the Texas algorithms were calibrated and tested 
using the AVI data obtained from TransGuide. The data had to be processed in order to 
produce link travel times by matching tagged vehicles at the upstream and downstream 
detectors of a given link before serving as input to the AID algorithms. Refer to Haynes 
(2000) for a detailed description of the travel time determination process.  

7.1.2.1 Upper Confidence Limit Algorithm  An event was defined for the 
Confidence Limit algorithm as a tagged vehicle that is detected at the upstream and 
downstream detectors of a particular link. The number of events considered in the 
comparison window set to calculate rolling averages of link’s travel times (n) was varied 
between four and eight in increments of one. For each value of comparison window size, 
values of the level of confidence (z) ranging between two and six in increments of 0.5 
were considered, thus resulting in a total of forty-five threshold combinations. Figure 
7.13 illustrates the performance of the Upper Confidence Limit algorithm in detecting all 
types of incidents. 
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Figure 7.13 DR and FAR Trade-Off Curve for the Upper Confidence Limit Algorithm 
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The algorithm performance exhibited a trend similar to that of the loop 
algorithms, i.e., the DR increases with FAR. When investigating the effects of the two 
threshold values on the performance of the algorithm, it was discovered that the Upper 
Limit algorithm is much more sensitive to variations in the value of (z) than it is to 
variations in the value of (n). The DR and FAR drop as the value of (z) increases from 
four to two and become almost constant for values of (z) between four and seven. Figures 
7.14 and 7.15 illustrate the variations in the DR and FAR in function of the value of (n) 
and the value of (z), respectively.  
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Figure 7.14 DR and FAR versus Number of Events (n)  
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Figure 7.15 DR and FAR versus Level of Confidence (z) 

The performance of the Upper Confidence Limit algorithm in terms of the TTD is 
illustrated in Figure 7.16. Figure 7.16 shows no correlation between the TTD and the DR 
or FAR. This is due mainly to the fact that with the current levels of tagged vehicle 
market penetration, detection time depends on the time headway between tagged vehicles 
rather than on the time it takes for the variation in travel times to be significant enough to 
trigger an incident alarm. 
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Figure 7.16 DR and TTD versus FAR, Upper Confidence Limit Algorithm 

The “pareto-optimal” sets of thresholds are presented along with the associated 
performance measures in Tables 7.4 and 7.5 and are illustrated in Figure 7.17. The Upper 
Confidence Limit algorithm performed better in detecting accidents only as compared to 
detecting all types of incidents. The algorithm was able to detect 85.7 percent of the 
accidents in the calibration database at a low FAR of 0.0904.  A maximum detection rate 
of 71.4 percent at FAR of 0.0994 was achieved when all incidents were considered. Table 
7.6 presents a breakdown of the incidents detected by type for the “pareto-optimal” sets 
of thresholds presented in Tables 7.4 and 7.5. Table 7.6 suggests that unlike the 
California #8 and the Texas algorithms applied to loop data, the algorithm performance in 
detecting accidents is superior to its performance in detecting incidents classified as 
congestion. 
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Table 7.7 All Incidents “Pareto-optimal” Thresholds, Upper Confidence Limit 

 Number of 
Events Z-Value False 

Alarms 
Incidents 
Detected DR FAR Average 

TTD (min) 

8 6 236 4 0.190 0.0204 10.4 

7 6 270 5 0.238 0.0232 8.8 

5 6 335 6 0.286 0.0282 7.0 

5 4.5 417 7 0.333 0.0352 7.8 

6 3.5 455 8 0.381 0.0389 15.9 

5 3.5 543 9 0.429 0.0458 11.1 

6 3 561 10 0.476 0.0479 13.2 

5 3 670 11 0.524 0.0566 9.9 

5 2.5 843 12 0.571 0.0714 11.5 

4 2.5 1052 13 0.619 0.0880 10.3 

6 2 1047 14 0.667 0.0897 11.3 
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5 2 1173 15 0.714 0.0994 10.3 

 

Table 7.8 Accidents Only “Pareto-optimal” Thresholds, Upper Confidence Limit 

 Number of 
Events Z-Value 

False 
Alarms 

Incidents 
Detected DR FAR Average 

TTD (min) 

8 6 238 2 0.286 0.0206 5.0 

8 3.5 376 3 0.429 0.0326 5.8 

6 3 567 4 0.571 0.0484 4.7 

6 2.5 739 5 0.714 0.0634 5.4 

A
cc

id
en

ts
 O

nl
y 

6 2 1055 6 0.857 0.0904 5.4 
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Figure 7.17 Efficient Frontiers for the Upper Confidence Limit Algorithm 

Table 7.9 Breakdown of Incidents Detected by Type, Upper Confidence Limit 

 
 

Number of 
Events Z-Value Major 

Accidents 
Minor 

Accidents Congestion Total 

8 6 2 0 2 4 
7 6 2 0 3 5 
5 6 2 0 4 6 
5 4.5 2 0 5 7 
6 3.5 2 0 6 8 
5 3.5 2 1 6 9 
6 3 3 1 6 10 
5 3 3 1 7 11 
5 2.5 3 1 8 12 
4 2.5 4 1 8 13 
6 2 4 2 8 14 
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5 2 4 2 9 15 
8 6 2 0 2 4 
8 3.5 3 0 3 6 
6 3 3 1 6 10 
6 2.5 3 2 6 11 A
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6 2 4 2 8 14 
  

 
Hellinga et al. (1999) evaluated the performance of the Upper Confidence Limit 
algorithm using simulated data. The experimental setting was detailed in Chapter 3. The 
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researchers reported a maximum detection rate of 30 percent at FAR of 0.13 for a tagged 
vehicle market penetration of 10 percent.  

The modifications done to the logic of the algorithm before being applied to real 
AVI data obtained from the San Antonio network were presented in Chapter 5. The DRs 
and FARs achieved improve significantly on the numerical results obtained by Hellinga 
et al. (1999), both in terms of the DR and FAR. 

7.1.2.2 Texas Algorithm with AVI Data  Calibration of the Texas algorithm was 
performed using a single speed threshold. All speed values ranging between 5 percent 
and 50 percent were tested in increments of 1. The tradeoff curve for the Texas algorithm 
is presented in Figure 7.18. 

Here also, the staggering in the data indicates that several values of the speed 
threshold performed equally in terms of the DR, but resulted in varying values of FAR. 
The trade-off curves would have been smoother had the incident report contained more 
entries.  

The effect of the speed threshold on the performance of the Texas algorithm is 
depicted in Figure 7.19. The higher the speed threshold, the more sensitive the algorithm 
is and, therefore, the higher the number of incidents detected and the number of false 
alarms. 
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Figure 7.18 DR and FAR Trade-Off Curve for the Texas Algorithm with AVI Data 



 128 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50

Speed Threshold

D
R

 a
nd

 F
A

R
 (A

ll 
In

ci
de

nt
s)

Detection Rate Fasle Alarm Rate

 

Figure 7.19 DR and FAR versus Speed Threshold, Texas Algorithm with AVI Data 

 
Similar to the performance of the Upper Confidence Limit algorithm, the TTDs 

obtained from the Texas algorithm do not show any trend of variation with the DR or 
with FAR. Figure 7.20 illustrates the variation of the TTD and DR versus FAR. 
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Figure 7.20 DR and TTD versus FAR, Texas Algorithm with AVI Data 
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 The “pareto-optimal” sets of thresholds are presented along with the 
associated performance measures in Tables 7.7 and 7.8 and the efficient frontiers of the 
algorithm are illustrated in Figure 7.21. When applied with AVI data, the Texas 
algorithm achieved the DRs of 95.2 percent and 85.7 percent associated with FARs of 
approximately 0.4 when considering all incidents and accidents only, respectively. A 
breakdown of the incidents detected for the two sets of “pareto-optimal” thresholds is 
presented in Table 7.10. 

Table 7.10 All Incidents “Pareto-optimal” Thresholds, Texas with AVI Data 

 Speed 
Threshold 

False 
Alarms 

Incidents 
Detected DR FAR Average TTD 

(min) 

5 238 2 0.095 0.0192 8.0 

8 335 3 0.143 0.0269 9.5 

10 413 4 0.190 0.0331 15.4 

19 1056 5 0.238 0.0841 9.7 

35 2306 6 0.286 0.1848 8.3 

38 2591 7 0.333 0.2075 9.1 

40 2814 8 0.381 0.2247 11.5 

41 2974 9 0.429 0.2368 13.9 

42 3149 12 0.571 0.2503 14.9 

44 3591 14 0.667 0.2843 11.9 

45 3860 15 0.714 0.3052 12.2 

46 4150 16 0.762 0.3276 8.7 

47 4425 17 0.810 0.3488 7.8 

48 4737 19 0.905 0.3734 5.8 
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49 5047 20 0.952 0.3981 5.1 
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Table 7.11 Accidents Only “Pareto-optimal” Thresholds, Texas with AVI Data 

 Speed 
Threshold 

False 
Alarms 

Accidents 
Detected DR FAR Average TTD 

(min) 

5 238 1 0.143 0.0192 -3.3 

10 413 2 0.286 0.0331 15.0 

35 2306 3 0.429 0.1848 5.2 

47 4425 4 0.571 0.3488 -1.0 

48 4737 5 0.714 0.3734 -1.7 A
cc
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49 5047 6 0.857 0.3981 -0.2 
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Figure 7.21 Efficient Frontiers for the Texas Algorithm with AVI Data 
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Table 7.12 Breakdown of Incidents Detected by Type, Upper Confidence Limit 

 
 

Speed  
Threshold 

Major  
Accidents 

Minor  
Accidents Congestion Total 

5 1 0 1 2 
8 1 0 2 3 
10 2 0 2 4 
19 2 0 3 5 
35 3 0 3 6 
38 3 0 4 7 
40 3 0 5 8 
41 3 0 6 9 
42 3 0 9 12 
44 3 0 11 14 
45 3 0 12 15 
46 3 0 13 16 
47 3 1 13 17 
48 3 2 14 19 

A
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49 4 2 14 20 
5 1 0 1 2 
10 2 0 2 4 
35 3 0 3 6 
47 3 1 13 17 
48 3 2 14 19 
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49 4 2 14 20 

7.1.3 Algorithm Calibration Comparison  

 In order to compare the performance of the calibrated algorithms, their efficient 
frontiers are compared for all types of incidents and for accidents only. Figure 7.22 
illustrates the efficient frontiers for all the tested algorithms considering all incident 
types. 
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Figure 7.22 Efficient Frontiers for All Calibrated Algorithms Considering All Incidents 

Figure 7.22 shows that the Texas algorithms applied with both loop and AVI data 
performed very closely in terms of the DR and FAR. The Texas algorithm applied with 
AVI data was able to detect more incidents reaching a maximum DR of 0.952, as 
compared to a maximum DR of 0.857 when applied with loop data. 

The maximum detection achieved by the Texas Algorithm comes at the expense 
of FAR. Both applications of the Texas algorithm resulted in higher FARs than the 
California #8 and the Upper Confidence Limit algorithms. However, the maximum DRs 
achieved by the California #8 and the Upper Confidence Limit algorithms are lower than 
those presented by the Texas algorithm. Finally, when all types of incidents were 
considered, the California #8 algorithm outperformed the Upper Confidence Limit 
algorithm both in terms of the DR and FAR.  

Figure 7.23 depicts the performance of the algorithms in terms of the TTD when 
calibrated to detect all types of incidents. The loop algorithms, particularly the California 
#8 algorithm, achieved lower detection times than the AVI algorithms. When comparing 
the AVI algorithms, the Upper Confidence Limit algorithm resulted in lower detection 
times than the Texas algorithm. The reported TTDs should be used only as a relative 
measure of algorithm performance. Precise TTD estimates cannot be achieved unless the 
incidents occur in a controlled environment, i.e., where the network is constantly being 
observed and exact incident start and end times are being recorded. 
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Figure 7.23 TTD versus FAR for all Calibrated Algorithms Considering All Incidents 

The performance of the algorithms is compared next using the “pareto-optimal” 
thresholds obtained after calibrating for accidents only. Figure 7.24 illustrates the 
efficient frontiers for all the tested algorithms considering accidents only. The results 
obtained are similar to those obtained from calibrating for all types of incidents with the 
exception that the Upper Confidence Limit algorithm outperformed the California #8 
algorithm in terms of the DR but not in terms of FAR. The Texas algorithm performed 
comparably with both types of data.  

Figure 7.25 depicts the performance of the algorithms in terms of the TTD when 
calibrated to detect accidents only. 
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Figure 7.24 DR versus FAR for All Calibrated Algorithms Considering Accidents Only 
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Figure 7.25 TTD versus FAR for All Calibrated Algorithms Considering Accidents Only 
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The TTD exhibited by the algorithms when they are calibrated to maximize the 
detection of major and minor accidents exhibit the same trends as when they are calibrated to 
detect all types of incidents. It is important to note that while the TTD for loop algorithms 
depends on the severity of the incident on the flow of traffic, the TTD for AVI algorithms 
depends on both the severity of the incident on the flow of traffic and the time headway of 
matched tagged vehicles at the upstream and downstream detector of a link.  

7.2 TEST RESULTS 

The testing phase is aimed at assessing the transferability of the “pareto-optimal” 
thresholds determined from the calibration phase to a different data set. While twenty-one 
incidents from the incident database were used with the corresponding peak periods in 
calibrating the algorithms, forty-four and fifty-one incidents were used to test the loop and 
AVI algorithms, respectively. The seven incidents for which loop data was missing were 
included in the testing of the AVI incidents. For testing, data is included from both peak 
periods of every day considered for this research with the exception of those peak periods 
used for calibration.  

7.2.1 Loop Algorithms Testing Results 

The forty-four incidents used to test the loop algorithms consisted of seven major 
accidents, six minor accidents, twenty-nine congestion incidents, one incident labeled as 
debris, and one stall. The results of the testing phase are reported next for all types of 
incidents and accidents only. 

7.2.1.1 California #8   The “pareto-optimal” sets of thresholds for the California #8 
algorithm considering all incidents and accidents only were presented in Tables 7.1 and 7.2, 
respectively. Table 7.13 illustrates the testing results using the “pareto-optimal” set of 
thresholds developed for all incidents and Table 7.14 illustrates the results obtained after 
using the “pareto-optimal” set of thresholds developed for accidents only. 

Table 7.13 All Incidents Testing Results, California #8 

 T1 T2 T3 T4 T5 False 
Alarms 

Incidents 
Detected DR FAR 

Average 
TTD 
(min) 

13 -0.652 0.218 16 22 11358 34 0.773 0.0069 19.0 
11 -0.441 0.165 28 29 14735 35 0.795 0.0090 15.3 
10 -0.262 0.489 28 22 23312 42 0.955 0.0142 11.9 
8 -0.192 0.194 16 28 43356 43 0.977 0.0264 11.5 
8 -0.588 0.119 24 23 48661 44 1.000 0.0296 10.0 A

ll 
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7 -0.924 0.119 17 23 59672 44 1.000 0.0363 5.5 
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Table 7.14 Accidents Only Testing Results, California #8 

 

 
T1 T2 T3 T4 T5 False 

Alarms 
Accidents 
Detected DR FAR 

Average 
TTD 
(min) 

19 -0.015 0.138 12 25 2000 9 0.692 0.0012 2.30 

17 -0.824 0.119 11 25 3230 11 0.846 0.0020 2.00 

10 -0.968 0.64 15 26 7820 11 0.846 0.0048 1.98 

8 -0.192 0.194 16 28 43356 13 1.000 0.0264 0.91 

A
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7 -0.924 0.119 17 23 59672 13 1.000 0.0363 0.89 
  

 
The same trend exhibited in the calibration phase repeats itself in the testing phase. 

As the DR increases, FAR increases and the TTD decreases. The testing results improve on 
the calibration results in terms of the DR but FAR were moderately higher for the testing 
phase. When all incidents were considered, the TTDs achieved in the calibration phase were 
significantly lower than those obtained in the testing phase. When only accidents were 
considered, the TTDs obtained from testing the algorithm compare closely to the values 
obtained during calibration. 

7.2.1.2 Texas Algorithm with Loop Data  The testing results of the Texas algorithm 
applied with loop data considering an occupancy threshold are presented in Tables 7.15 and 
7.16. 
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Table 7.15 All Incidents Testing Results, Texas with Loop Data 

 Occupancy 
Threshold 

False 
Alarms 

Incidents 
Detected DR FAR Average 

TTD (min) 

50 3221 9 0.205 0.0025 10.3 

48 4529 13 0.295 0.0035 11.8 

40 14847 20 0.455 0.0115 11.5 

30 41170 27 0.614 0.0319 10.1 

26 56442 28 0.636 0.0437 9.6 

18 110246 31 0.705 0.0854 4.7 

17 124977 35 0.795 0.0968 4.4 

16 145383 38 0.864 0.1126 3.9 

15 174883 41 0.932 0.1355 3.5 

14 218043 41 0.932 0.1689 3.3 
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13 280558 44 1.000 0.2174 1.9 

 

Table 7.16 Accidents Only Testing Results, Texas with Loop Data 

 Occupancy 
Threshold 

False 
Alarms 

Accidents 
Detected DR FAR Average 

TTD (min) 
41 13093 8 0.615 0.0102 7.8 
17 124977 9 0.692 0.0968 -5.2 
16 145383 10 0.769 0.1127 -5.4 
15 174883 11 0.846 0.1355 -4.8 A
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5 1109433 13 1.000 0.8596 -3.1 
 

The testing results improve on the calibration results in terms of the DR and FAR for 
the “pareto-optimal” thresholds developed to maximize the detection of all types of incidents. 
For the accidents only threshold values, testing revealed a higher DR associated with a much 
higher FAR then the calibration phase. TTDs were comparable in both cases to the values 
obtained from calibration. 
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7.2.2 AVI Algorithms Testing Results 

The fifty-one incidents used to test the AVI algorithms consisted of ten major 
accidents, six minor accidents, thirty-two congestion incidents, one incident labeled as 
debris, and two stalls. Results of the AVI algorithms testing phase are reported next for all 
types of incidents and accidents only. 

7.2.2.1 The Upper Confidence Limit Algorithm  Table 7.17 illustrates the Upper 
Confidence Limit testing results using the “pareto-optimal” set of thresholds developed for 
all incidents and Table 7.18 illustrates the results obtained after using the “pareto-optimal” 
set of thresholds developed for accidents only. 

Table 7.17 All Incidents Testing Results, Upper Confidence Limit Algorithm 

 
Number of 

Events Z Value False 
Alarms 

Incidents 
Detected DR FAR Average 

TTD (min) 
7 6 701 20 0.392 0.0234 22.3 
5 6 879 23 0.451 0.0287 14.5 
5 4.5 1108 26 0.510 0.0360 14.0 
6 3.5 1232 29 0.569 0.0407 12.4 
5 3.5 1460 30 0.588 0.0476 9.9 
6 3 1521 30 0.588 0.0500 10.4 
5 3 1781 32 0.627 0.0579 9.1 
5 2.5 2258 34 0.667 0.0732 7.9 
4 2.5 2744 39 0.765 0.0877 8.4 
6 2 2795 40 0.784 0.0916 11.7 
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5 2 3120 42 0.824 0.1011 8.6 

Table 7.18 Accidents Only Testing Results, Upper Confidence Limit Algorithm 

 Number of 
Events Z Value False 

Alarms 
Accidents 
Detected DR FAR Average 

TTD (min) 
8 6 650 7 0.44 0.0219 4.49 
8 3.5 996 12 0.75 0.0336 2.39 
6 3 1538 12 0.75 0.0506 0.67 
6 2.5 2010 12 0.75 0.0660 -0.88 A
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6 2 2819 13 0.81 0.0924 -2.09 
 
When all incidents were considered, the Upper Confidence Limit algorithm 

performed better in terms of the DR in the testing phase when compared to the calibration 
phase. When considering accidents only, the DRs achieved in the testing phase were lower 
than those observed in the calibration phase. The FARs and TTDs are comparable between 
the testing and calibration phases for all types of incidents as well as for accidents only. 
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7.2.2.2 Texas Algorithm with AVI Data  The results of testing the Texas algorithm 
with AVI data considering a speed threshold are presented in Tables 7.19 and 7.20. 

Results show lower detection rates and false alarm rates for the testing phase when 
compared with the calibration phase. Moreover, the TTD increased significantly between the 
calibration and testing phases.  

Table 7.19 All Incidents Testing Results, Texas with AVI Data 

 Speed 
Threshold 

False 
Alarms 

Incidents 
Detected DR FAR Average 

TTD (min) 
5 554 17 0.333 0.0171 35.5 
8 768 21 0.412 0.0235 32.8 
10 885 23 0.451 0.0269 31.3 
19 2113 25 0.490 0.0630 23.9 
35 4934 31 0.608 0.1478 13.8 
38 5535 31 0.608 0.1649 11.0 
40 6016 31 0.608 0.1783 10.8 
41 6352 33 0.647 0.1875 13.9 
42 6723 34 0.667 0.1978 13.8 
44 7690 39 0.765 0.2252 11.5 
45 8254 43 0.843 0.2412 9.8 
46 8900 43 0.843 0.2597 7.3 
47 9600 43 0.843 0.2801 7.1 
48 10384 43 0.843 0.3038 5.6 

A
ll 
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49 11241 45 0.882 0.3300 5.0 

 

Table 7.20 Accidents Only Testing Results, Upper Confidence Limit Algorithm 

 Speed 
Threshold 

False 
Alarms 

Accidents 
Detected DR FAR Average 

TTD (min) 

5 565 5 0.31 0.0175 25.9 

10 899 7 0.44 0.0273 24.7 

35 4951 12 0.75 0.1483 2.4 

47 9628 12 0.75 0.2809 -3.7 

48 10412 12 0.75 0.3046 -3.8 A
cc

id
en

ts
 O

nl
y 

49 11270 13 0.81 0.3309 -4.1 
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7.2.3 Algorithm Calibration Comparison 

The performance of the tested algorithms in detecting all types of incidents is 
illustrated by the efficient frontiers presented in Figures 7.26. 
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Figure 7.26 Efficient Frontiers for All Tested Algorithms Considering All Incidents 

Results show that when all types of incidents were considered, the California #8 
algorithm resulted in the best performance both in terms of DR and FAR reaching 100 
percent detection at relatively low levels of FAR. The Texas algorithm applied with the loop 
data performed comparably to the Upper Confidence Limit Algorithm in terms of FARs but 
resulted in higher DRs. The Texas algorithm applied with AVI data resulted in the worst 
performance both in terms of the DR and FAR relative to the other tested algorithms. 

Figure 7.27 depicts the performance of the algorithms in terms of TTD when tested 
for the “pareto-optimal” set of thresholds determined for all types of incidents. 
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Figure 7.27 TTD versus FAR for All Tested Algorithms Considering All Incidents 

The loop algorithms consistently achieved lower detection times than did the AVI 
algorithms. When comparing the AVI algorithms, the Upper Confidence Limit algorithm 
resulted in lower detection times than the Texas algorithm. These results are consistent with 
those observed in the calibration phase with the exception that the Texas algorithm applied 
with loop data exhibited higher detection times when compared with the California #8 
algorithm.  

Figure 7.28 illustrates the efficient frontiers of the algorithms in detecting accidents 
only.  
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Figure 7.28 Efficient Frontiers for All Tested Algorithms Considering Accidents Only 

When the performance of the tested algorithms was investigated considering major 
and minor accidents only, similar results were obtained as when all types of incidents were 
considered. The California #8 achieved higher detection levels at lower FARs when 
compared to the rest of the algorithms. The Upper Confidence Limit algorithm achieved 
lower FARs when compared to both applications of the Texas algorithm but could not reach 
the levels of detection achieved by the Texas algorithm applied with loop data. When 
comparing the performance of the Texas algorithm between its application with loop data 
and its application with AVI data, it was found that it performed better when applied with 
data obtained from Inductive Loop Detectors (ILDs).  

The results differ from those obtained during the calibration phase in that the Upper 
Confidence Limit algorithm resulted in the highest detection rates with respect to detecting 
accidents only. The results of the testing phase should be, however, the ones considered in 
evaluating the overall performance of the algorithms since they result from the application of 
the algorithms to a larger and, therefore, more representative data set than the one considered 
for calibration. Furthermore, the results obtained from testing the California #8 and the Texas 
algorithms with loop data are comparable to the results obtained by Peterman (1999) in his 
previously described experiments as shown in Figure 7.29. 

 



 143 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25

FAR (All Incidents)

D
R

 (A
ll 

In
ci

de
nt

s)

Peterman California #8 Peterman Texas Khoury California #8 Khoury Texas

 

Figure 7.29 Comparison of Peterman (1999) and Khoury Testing Results   

Figure 7.30 displays the performance of the algorithms in terms of the TTD when 
considering major and minor accidents only. 
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 Figure 7.30 TTD versus FAR for All Tested Algorithms Considering Accidents Only 



 144 
 

 The results are in accordance with those obtained when testing the algorithms with 
all types of incidents. The TTDs achieved were lower than those achieved with the AVI 
algorithms. However, the Upper Confidence Limit exhibited detection times close to those 
achieved with the loop algorithms. When comparing the AVI algorithms, here again the 
Upper Confidence Limit algorithm resulted in lower detection times than the Texas 
algorithm.  

The findings of the calibration and testing phase were presented in this chapter. The 
calibration phase resulted in the determination of two sets of  “pareto-optimal” thresholds for 
each algorithm, one for all incident detection and the other for detecting accidents only. The 
testing phase revealed that the loop algorithms, i.e., the California #8 algorithm and the 
Texas algorithm applied with an occupancy threshold were the most effective for detecting 
all six types of incidents or for detecting accidents only. The loop algorithms achieved higher 
DRs and lower FARs and TTDs than the AVI algorithms. However, the AVI algorithms, and 
particularly the Upper Confidence Limit algorithm, achieved promising detection levels and 
FARs. The TTDs reported in this study should be considered only in comparing the relative 
performance of the algorithms investigated in this study due to discrepancies in the incident 
reports obtained.  
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CHAPTER 8 TAGGED VEHICLE PENETRATION 
 
An important metric in evaluating and using an automatic vehicle identification 

system is the fraction of vehicles that are tagged.  If the tagged vehicle penetration is known 
accurately at all times, Automatic Vehicle Identification (AVI) becomes an extremely 
valuable system, for many facets of advanced traffic management and information systems.  
The tagged vehicle population is typically only a very small fraction of the total vehicular 
population on a facility, especially in San Antonio.  It will be many years before all vehicles 
are equipped with some type of AVI transponder.  Even with a low tag penetration, 
significant benefit can be obtained from an AVI system.  If accurate estimates of the 
penetration are available greater benefits are achieved from AVI for Intelligent 
Transportation System (ITS) purposes.   

This chapter explores various techniques for estimating the tagged vehicle penetration 
and relates these estimates to computation of the previously defined state descriptors.  The 
first method compares total AVI daily counts to past Average Annual Daily Traffic (AADT) 
counts provided by the Texas Department of Transportation (TxDOT).  Next, using inductive 
loop detectors (ILDs) to obtain volume estimates at discrete points along a link, an average 
link volume is compared to the matched AVI data for a link-based penetration estimate.  
Another method compares point-based volume measurements from each technology at two 
locations.  Finally, tag penetration by the tag identification type (or city of origin) is 
presented, followed by concluding comments in the final section.   

8.1 PENETRATION ESTIMATION FROM ANNUAL AVERAGE DAILY TRAFFIC 

A first method for gaining a general understanding of the level of tagged vehicle 
penetration is to compare the number of tagged vehicles passing a location to an existing 
vehicle count.  A common yearly measure is the AADT, which is the total number of 
vehicles that pass a given point for an entire year divided by the 365 days in the year.  The 
AADT considers travel in both directions and is not used directly for design or planning 
purposes (May 1990).  AADT estimates are available for most facilities in the state from the 
state department of transportation.   

8.1.1 San Antonio 

AADT volumes were obtained from TxDOT for 1996 and are shown in Figure 8.1.  
The 1996 data is the most recent available on CD-ROM and accessible to the author.  The 
purpose here is to obtain a rough estimate of the tagged vehicle penetration.  The errors 
associated with the TxDOT 1996 AADT data are not known.  The total count of AVI- 
equipped vehicles was obtained for weekdays during the month of June 2000.  The sites do 
not record direction, therefore the count at one station is directly applicable to the AADT 
estimation, which is also directionless.  The sum of the total weekday daily AVI counts was 
computed and divided by the number of days in the sample to obtain an estimate of the 
AADT, from the limited AVI data available.  Figure 8.1 portrays the results; the individual 
AVI sites are identified in Figure 8.2.    
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Date 42 43 44 45 47
1-Jun 1657 1320 2232 2911 1473
2-Jun 1630 1285 2123 2979 1452
5-Jun 1397 1062 1766 2574 1021
6-Jun 1562 1194 2007 2707 1320
7-Jun No Data 1193 2106 2845 1344
8-Jun 1561 1273 2069 2882 1403
9-Jun 1567 1282 2060 2909 1350
12-Jun 1376 1089 1902 2691 1232
13-Jun 1489 1160 2058 2791 1367
14-Jun 1662 1314 2177 2838 1413
15-Jun 1604 1296 2224 2953 1492
16-Jun 1711 1366 2236 3073 1583
19-Jun 1450 1125 1878 2628 1282
20-Jun 1529 1171 2027 2768 1241
21-Jun 1671 1280 2262 2979 1427
22-Jun 1730 1350 2204 2948 1478
23-Jun 1738 1355 2259 3073 1509
26-Jun 1437 1110 1785 2609 1174
27-Jun 1574 1157 1974 2756 1256
28-Jun 1702 1342 2239 3026 1386
29-Jun 1586 1254 1494 2958 1504
30-Jun 1750 1421 2300 3059 1505

Weekday 
Monthly 

Total
33,383         27,399       45,382       62,957       30,212       

AADT from 
AVI 1,590           1,245         2,063         2,862         1,373         

1996 AADT 146,000       127,000     158,000     146,000     151,000     
2000 AADT 
Estimate 165,581       143,886     177,124     174,067     171,771     

Market 
Penetration 0.96% 0.87% 1.16% 1.64% 0.80%

      
 

Figure 8.1 San Antonio AADT Data 

Considering the numerous sources of variability in both sources of data, these results 
can be used only as an initial estimate of tag penetration.  The average tagged vehicle 
penetration appears to be on the order of 1 percent of the total flow.  It will be shown later 
that this estimate compares favorably with tagged vehicle estimates from the loop detector 
data for San Antonio.     

8.1.2 Houston 

Using the same TxDOT district transportation maps, estimates for the Houston 1996 
AADT were obtained.  A projection to current values is not performed because past data 
were not obtained to define the trend.  Figure 8.2 shows the Houston study area and AADT 
values; refer to Figure 1.3 for the locations of the AVI reader sites.   
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Date 28,29 31,26 33,24
6-Mar 14364 14266 2640
7-Mar 16120 16295 3284
8-Mar 15567 15729 3431
9-Mar 15676 15540 5674
10-Mar 16022 15309 3093
13-Mar 15325 15005 2648
14-Mar 14419 14335 3675
15-Mar 15064 9546 8633
16-Mar 15284 10919 2874
17-Mar 15497 15137 2884
20-Mar 14351 14395 2429
21-Mar 14787 14405 2374
22-Mar 14675 14349 2346
23-Mar 15011 14610 9053
24-Mar 14638 13864 5020

Weekday 
Monthly 

Total
226,800  213,704  60,058    

AADT from 
AVI 15,120    14,247    4,004      

1996 AADT 227,000  188,000  175,000  
Market 

Penetration 6.66% 7.58% 2.29%
      

 

Figure 8.2 Houston AADT Data 

The Houston AADT data is sparse along the US 290 corridor; however, is it clear that 
the penetration of tagged vehicles is more than twice the penetration observed in San 
Antonio.  As mentioned previously, Houston has distributed many more tags, most for the 
purpose of toll collection.   

8.2 PENETRATION ESTIMATES FROM LOOP DATA 

The most logical method for estimating tag penetration is to compare the AVI count 
with a count from another traffic-monitoring device.  The recently installed loop detectors 
along the IH-35 study corridor permit a comparison of loop counts with AVI counts with the 
San Antonio data.  Unfortunately, the Houston loop detectors are not operational and are not 
useful for tag penetration estimation.   

The main difficulty with penetration estimations from loop data is that direction can 
only be discerned with valid matched data, as mentioned earlier.  Two penetration estimates 
are made from the loop data, using a single AVI link with three loop detectors.  The first is a 
node-based estimation where the AVI node “directionless” count is compared to the total 
flow, in both directions, from the closest loop detector.  The second is a link-based estimation 
in which the total link flow observed from the AVI system is compared to a loop detector 
installed in the middle of the link.  The penetration estimation is made independently for both 
directions of the link.   
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Another difficulty in comparing the volumes measured with AVI to the loop volumes 
is that the AVI system does not monitor all lanes of travel.  The AVI installation in the San 
Antonio test sections monitors only the inner two higher speed lanes, while the loop counts 
are for all lanes of the facility.  The analysis compares the AVI on the inner four lanes to the 
loop count of all vehicles that pass the facility.  When all lanes are monitored, the system is 
able to detect more first-order matches (Links 1 to 8, as shown in Figure 4.8), that is, a match 
from an immediate upstream detector.   

8.2.1 Selection of Penetration Study Link 

For a proper estimate of the link-based comparison, a measure of the link volume that 
traverses the entire length of the link must be made from the loop data.  One method is to use 
an upstream detector and detectors on the exit ramps.  The total flow on the link is obtained 
from the count at the upstream detector (located close to an AIV site) excluding the vehicles 
that exit the facility prior to the downstream AVI detector.  In contrast, a downstream 
detector count minus the vehicles that enter the link between the two AVI sites, can be used.  
TransGuide provides ramp data; however, it was not obtained for the analysis period.  
Identification of a configuration where a single loop detector would capture only the vehicles 
that would traverse the entire distance between two AVI sites was required.   

The middle loop detector on Links 5 and 6 provides a unique opportunity to directly 
measure the volume between AVI sites 44 and 43.  The penetration estimation segment is 
shown in Figure 8.3.   
 

 

 

Figure 8.3  Penetration Test Segment (Links 5 and 6) 

The segment was selected because of the unique properties of the link detector 
configuration and location of entrance and exit ramps.  Eight counts are required for each day 
of the study period, both AVI counts and loop counts from the three loops for each direction.  
Figure 8.4 displays the eight numbers required for the penetration analysis from a typical 
day.  The numbers are shown in bold highlight.   
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Figure 8.4 Sample AVI and Loop Counts for Penetration Analysis 

The following discussion outlines the methods and results of the node and link 
penetration estimations.  Labels A, B, and C in Figure 8.3 refer to loops at mileposts 163.89, 
162.899, and 161.846, respectively.   

8.2.2 Node Penetration 

The node penetration for the study link, shown in Figure 8.3 requires closely spaced 
loop and AVI detectors.  The two loop detectors at the end of the segment (A and B) are both 
within a few hundred feet of the AVI detector.  The northbound (VNB) and southbound (VSB) 
peak period counts are summed and a fraction α of tagged vehicles to total vehicles is 
obtained, as shown in the equations below: 
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The weighted average of the two fractions is taken to obtain a single estimate of the 

nodal penetration.  The equations below outline the procedure: 
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where ωA is the weight associated with the fraction at A, the weight at B is similarly 

defined. 
 

BBAA αωαωα +=  

 
where α is the weighted nodal average of tagged vehicles on the study link for the 

peak period defined in Section 4.2.2.   
The procedure was performed separately for both morning and afternoon peak 

periods for all days of the study period discussed in Section 4.1.1.1.  Figure 8.5 is a chart of 
the results of the morning and afternoon peak period tag penetrations based on node 
measurements. 

 Market Penetration Analysis from  6:00 to  8:45 on  27-Jun-00 
Southbound Northbound 

Link ID Count Link ID Count 
5 77 AVI Total Count: 136 6 42 AVI Total Count: 55 

13 27 Comparison Loop: 14 10 Comparison Loop: 
11 16  0035S-163.893  0035S-162.899  0035S-161.846 12 1  0035N-161.846  0035N-162.899  0035N-163.896 
15 2 10243 5262 8316 16 0 8945 7121 9759 
17 14 18 2 
19 0 20 0  
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Figure 8.5 Tag Penetration by Node (Nodes 44 and 43) 

The weighted average for an individual peak period (λpeak) across all study days is 
obtained as follows: 
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Where ωi is the weight, i

AV  is the total loop volume at location A on day i.   
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The morning peak tagged vehicle penetration by node (λAM) is 1.46 percent and 1.35 
percent for the afternoon peak (λPM).  The times where either one of the loop detectors or 
AVI detectors were down were omitted from the analysis.   

8.2.3 Link Penetration  

The tagged vehicle penetration by link is also weighted by the total loop volume 
counts.  The sum of the AVI counts from the first and second order links (refer to Figure 4.8)  
is computed for both Links 5 and 6, as shown in Figure 8.3.  The northbound AVI volume 
( NB

AVIV ) consists of Links 5, 13, 11, 15, 17, and 19; likewise, the southbound AVI volume 
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( NB
AVIV ) consists of Links 6, 14, 12, 16, 18, and 20.  The link-based fraction of AVI-equipped 

vehicles (α direction) is computed as follows:  
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where Vdirection is the volume in the specified direction from loop C in Figure 8.3.  The 
weights (ω direction) are computed as: 

 

 

∑
=

= days

i

NB
i

NB
NB

V

V

1

ω    and 

∑
=

= days

i

SB
i

SB
SB

V

V

1

ω  

 
where direction

iV is the volume for the specified direction from loop C during the peak 

period on day i.  Finally, the tagged vehicle penetration ( direction

peak
λ ) for a given direction and 

peak period is computed as the sum product of the weights and individual daily fractions.   
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The directional peak period tagged vehicle fractions for Links 5 and 6 are shown in 

Figure 8.6. 
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Figure 8.6 Tag Penetration by Link (Links 5 and 6) 

 
The morning tagged vehicle penetration by link is 2.95 percent in the southbound 

direction ( SB
AMλ ) and 0.74 percent in the northbound direction ( NB

AMλ ).  Likewise for the 

afternoon peak period, the penetration by link is 0.95 percent and 1.51 percent in the south 
( SB

PMλ ) and northbound ( NB
PMλ ) directions respectively.    

8.2.4 AVI-Loop Penetration Conclusions 

Table 8.1 shows the summary of results from the AVI Loop penetration estimation.   
 

Table 8.1 AVI-Loop Penetration Summary 

 
 
There are obvious conclusions from the penetration estimation presented in Table 8.1.  

The tagged vehicle penetration is higher in the peak direction and much greater in the 
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morning.  There are also some limitations from the assumptions in the presented method.  
One important assumption is that the loop at location C in Figure 8.3 is representative and 
adequately captures the total volume of vehicles that traverse the study segment.  The 
location of entrance and exit ramps was verified to ensure that any vehicle detected by the 
loop at C would also have to pass locations A and B (Purcell 2000).   

The accuracy of the loop detectors is critical to the interpretation of the penetration 
estimation.  If the loop detectors consistently fail for any length of time, the tagged vehicle 
penetration will be overestimated.  Analysis of the reliability of the loop detectors is beyond 
the scope of this work.  The computation of the weighted average properly computes the 
average across the days; however, consistent lapses in loop data could result in 
overestimation. 

8.3 TAG PENETRATION BY TAG TYPE 

More vehicles across the country are obtaining tags for a variety of reasons.  The rise 
in popularity of parking, ground access, and electronic toll facilities increases the tag 
population among all road users in a given region.  Provided that standards and 
interoperability between vendors is maintained, a significant percentage of the tag reads can 
be obtained from simply installing readers.  In implementing an AVI system for ATIS data 
collection purposes, sources of probe vehicles already in the network should be identified.   

As an example, TxDOT acquired 15,000 tags for an initial feasibility study for AVI in 
Houston.  The Hardy Toll Road and Sam Houston Tollway then purchased 517,000 tags for 
the purpose of Electronic Toll and Traffic Management on the toll facilities in Harris County.  
The tags are also providing travel time information for the other highways in the Houston 
network.  As stated in Section 1.4.1, 644,031 tags have been distributed in Houston in 
addition to the TxDOT pilot 15,000 tags.    

An assessment of the San Antonio AVI system would not be complete without 
investigating how many of the tags distributed by TransGuide are actually read.  San Antonio 
purchased 78,000 tags and 58,500 have been distributed freely to the public as of November 
2000 according to Rodrigues (2000).  As computed in Section 2.2.1, there are about 8,000 
unique tag reads per day.  As many as 60 percent of the tag reads per day are not San 
Antonio-distributed tags, for the last week of March 2000.  That is to say, of the 8,000 tags 
read by the system, only 3,200 tags were San Antonio tags distributed for the Model 
Deployment Initiative project.  Figure 8.7 outlines the sources of the other tag reads for the 
last week of March 2000.  TransGuide staff processed the raw tag read data for one week in 
March to obtain the fractions of tags read by the first four fields in the tag identifier.   
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Figure 8.7 San Antonio Tag Reads by Tag Type 

 
SATX are San Antonio tags, HCTR are tags from Houston, and OTA tags come from 

the Oklahoma Turnpike Authority.  DNT tags are most likely from Dallas and KTA tags 
from Kansas.  It is important to note that TransCore (formerly Amtech) tags are most popular 
in the Southwest.   

Tag penetration by type is important for system evaluation and to estimate the amount 
of tags necessary to realize a given level of total tag penetration.  From the analysis in 
previous sections, the average penetration is on the order of 1 or 2 percent.  Less than half of 
the tag reads are from the city under investigation.  Tags from vehicles that reside within the 
city are more likely to provide a recurring snapshot of traffic conditions, than through 
travelers who are often traveling for other purposes at off-peak times.   

AVI transponder tags can also be distributed for parking or to grant access to a 
multitude of private complexes.  Security is an important concern as the tag identification 
should be encrypted to prevent tracking of individuals through the network.    

8.4 TAG PENETRATION CONCLUSION 

 From the analysis presented, we can conclude that the tagged vehicle penetration is 
less than 3 percent of the total vehicles in San Antonio.  Note that not all of these are San 
Antonio vehicles.  As the popularity of AVI grows, there is a greater benefit to installing the 
system for AIT data collection.  Incentives such as electronic toll collection, ground access 
management, or electronic parking can substantially increase the tagged vehicular volumes.  
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CHAPTER 9 SAN ANTONIO ADVANCED TRAVELER INFORMATION SYSTEM 
ASSESSMENT 

 
The goal of the work presented here is the assessment of an on-line automatic vehicle 

identification (AVI) system for the purpose of data collection for advanced traveler 
information systems (ATIS’s).  Chapter 3 presented guidelines for evaluating an ATIS data 
collection system and Chapter 4 outlined the properties of the test data and the proper 
methods for defining state estimators.  Chapter 5 explored the current level of tagged vehicle 
penetration in an operational system.  With the background and analysis presented, attention 
is now directed toward assessing the current system installation in San Antonio.   

Metrics of assessment were identified and related specifically to the properties of an 
AVI system.  Match effectiveness, or the ability of the system to efficiently match equipped 
vehicles, is an important metric for AVI evaluation.  The nature of the three primary traffic 
state estimators (flow, density, and speed) is assessed based on a comparison with loop data 
keeping the proper definitions in focus.  Accuracy is also determined by comparing aggregate 
AVI data with aggregate loop data.  The confidence, delay, and availability of the AVI data 
for ATIS applications is evaluated based on results from the study period analysis.  The 
breadth and depth of coverage by AVI in San Antonio is discussed.  Finally, a cost-benefit 
analysis of the AVI system is provided as a conclusion to the chapter.  Recommendations and 
future research are presented in a separate chapter.     

9.1 MATCH EFFECTIVENESS  

Match effectiveness is the ability of the system to adequately track vehicles and 
compute derived data for ATIS purposes.  The San Antonio system has room for 
improvement to effectively capture an accurate picture of the movements of tagged vehicles.  
The major drawback to match effectiveness is that not every lane is monitored at most sites.  
Some sites monitor all four lanes of travel, while most only monitor the two inner lanes of 
travel of a three-lane facility.  An assessment of the ability of the system to match tag reads is 
made by comparing the number of tag reads to the number of matches.  The difficulty in the 
analysis arises because vehicles enter and exit the facility at multiple locations and may only 
be on the highway for one or two links.  The definition of the fraction of total tags read to 
total matches is made, followed by an analysis with San Antonio data.   

Using the fraction of vehicles that are read by total matches as a metric for match and 
ultimately system effectiveness, involves some assumptions.  If all vehicles traversed the 
entire study network and were read by all sensors (assume that all lanes are monitored and all 
equipment is functioning), then for the San Antonio study network of five sites and eight 
first- order links, 1,700 tag reads should produce 1,360 matches.  Consider a simple case 
where one vehicle passes five sensors and creates four matches.  Eighty percent of the reads 
produce valid matches because there are five sensors.  Therefore, 80 percent would be the 
theoretical upper limit on the number of total tag reads that can turn into matches.  If we had 
80 percent of the tag reads becoming matches, they all would be on Links 1-8 (as shown in 
Figure 5.14) and there would be no need for incorporating the additional second-order links, 
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based on the assumption of a perfect system and that every vehicle traverses the entire study 
corridor.   

The 80 percent theoretical maximum of the fraction of tag reads becoming matches 
varies by the number of reader sites under investigation.  The percent of tag reads is related 
to the total number of possible matches by  

           
n
n 1−                              (Eq. 9.1) 

 
where n is the number of sites in the study network.  This relationship is shown in Figure 9.1. 
 

 

Figure 9.1 Limit of Fraction of Tag Reads That Can Become Matches 

 
A larger number of available reader sites allows for more tag reads that can become 

matches.   
To evaluate the match effectiveness for the San Antonio study corridor, the number of 

total tag reads is plotted with the total number of valid matches.  The average, 51.1 percent 
total tag reads, become valid matches with a standard deviation of 2.3 percent.  Considering 
the limitations of the current installation in San Antonio, the system is effective at matching 
tagged vehicles.  Half of all tag reads become a tag match, with a narrow spread of less than 
3 percent.  Vehicles are typically traveling past at least two sites.   
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Figure 9.2 Total Number of Tag Reads and Total Number of Valid Tag Matches 

 
For example, on September 12 we have 1,700 tag reads with 862 valid matches (51 

percent).  Of those matches, seventy-seven are from second-order links, indicating vehicles 
that skipped detectors (i.e., those that somehow missed being detected).  Also, it should be 
safe to assume that some vehicles enter the network mid-study section and others may leave 
prior to the end of the study section; however, these counts cannot be determined with the 
current installation.    

The effectiveness of the San Antonio tag matches is adequate, as over 50 percent of 
the tag reads become matched tags.  Even with a completely reliable system, the match 
effectiveness may be considerably lower if the reader spacing precludes reasonable tag 
matches.  Considering the theoretical maximum number of tag reads is 80 percent, if just 
over half the tag reads become useful matches,  this justifies the San Antonio system as 
capable of obtaining useful data for traffic management and information purposes.   

9.2 NATURE AND ACCURACY 

The assessment of the nature and accuracy of data collection methods for ATIS 
applications are interrelated and, therefore, are discussed together.  The nature of the data and 
limitations of collection methods directly impact the accuracy evaluation.  The program 
developed output loop and AVI data to standard spreadsheet files for quick analysis of 
individual links.  Charts are obtained from selected days in the study period to serve as 
examples of the accuracy obtained for the given peak period (defined previously).  The goal 
is to illustrate aspects where the AVI system performs well and to identify weaknesses in the 
effectiveness of the system in order to provide valuable information to an ATIS. 
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9.2.1 Travel Time and Speed 

The speed is derived from the travel time and length of the link, therefore speed and 
travel time are investigated together.  For most ATIS applications, the speed estimated to 
within 1 mile per hour is adequate.  There are two primary factors that affect speed 
computation.  The first is the accuracy of the time stamp a tag receives when passing a reader 
site; the second is the accuracy of the distance measurement between reader sites.  The 
sensitivities of both time stamps and distances to travel time and speed are discussed.   

The time stamp applied to tag data at the reader sites is of critical importance to 
accurate travel time and speed measurements.  An early problem with the system in San 
Antonio was unsynchronized clocks at the reader sites, resulting in unreasonable speed 
estimates from invalid travel times.  The clocks were repaired in early June 2000 after invalid 
time stamps had been applied since November 1999. 

The sensitivity of AVI speed computation to clock inaccuracy was investigated.  
Table 9.1 uses a valid tag match on Link 3 to simulate an inaccurate clock, by decreasing and 
increasing the downstream time stamp.  Speeds are recomputed and compared to the actual 
speed of 63.48 miles per hour for the 2.43 mile link.   

 

Table 9.1 Impact of Clock Synchronization on Speed Measurement  

 
 
 

For a 2.4 mile link, the clocks at both reader sites cannot differ more than two 
seconds from each other without seriously affecting data integrity.   

The length of the link plays an important role in defining the accuracy of time 
synchronization.  Figure 9.3 shows the effect of a 10-second deviation in the downstream 
clock for a vehicle traversing various link lengths at a constant speed of 60 miles per hour.   
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Figure 9.3 Clock Accuracy Effect on Speed by Link Length 

 
Note that as the length of the link increases, the sensitivity to clock synchronization 

decreases.  For longer range CVO applications, clock synchronization is not a critical factor.     
The distance between the reader sites only needs to be accurate to within ±100 feet of 

the actual distance to achieve speeds accurate to within 1 mile per hour.  Table 9.2 outlines 
the sensitivity of computed speeds to reader spacing accuracy.   

 

Table 9.2 Impact of Reader Spacing on Speed Measurements 

 
 
 
The distances in San Antonio are measured to a thousandth of a mile, implying an 

accuracy of 5 feet.   
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In comparing the AVI speeds to the loop speeds for accuracy assessment, it is 
important to consider the differences in the definition of the space mean speed obtained from 
the AVI and the point speed obtained from the loop detectors.  The reader is referred to 
Section 4.3.9.  According to the guidelines outlined in Chapter 3, discrete section data is 
preferred to discrete point data or aggregated section data.  An AVI system by definition 
generates discrete section data, which is considered the best method for limited access 
highways.  For accuracy comparison, aggregated section data is compared to aggregated 
point data from the loop detectors.   

A typical plot comparing AVI 15-minute average speeds with the average speed 
obtained from loop detectors is shown as Figure 9.4. 

 

 

Figure 9.4 Loop and AVI Speed Data (9/25/00, Link 7) 

 
The three lines clustered together represent the three loops on southbound Link 7 

during the morning peak.  The AVI average speed is higher than the loop speeds in this case; 
often the difference in loop speeds is much greater.  The above instance is indicative of little 
or no congestion experienced on the link across the peak period.  The AVI system closely 
matches the loop data and the measurements are within 5 and 10 percent.  From the 
discussion presented in Section 4.4.2 because the loop speed and AVI speeds do not vary 
considerably from each other, the link can be classified as stable or uncongested.   

From the guidelines presented in Chapter 3, the AVI system could be classified as 
“better” than other traffic detection technologies when the AVI space mean speeds are 
compared to the time mean speeds of loop detectors.  The accuracy of AVI may actually be 
higher as the speed measurements should be compared to another direct space mean speed 
measurement.   
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It is, of course, prudent to look at other sections, particularly those that experience 
congestion.  Figure 9.4 is from June 28, where a significant reduction in speed is observed 
from 07:00 to 08:30.   

 

 

Figure 9.5 Loop and AVI Speed Data (6/28/00, Link 3) 

 
Note that the AVI speed data responds to the congestion, and the variability of all 

four measurements increases significantly.  The trends and onset of congestion are captured 
by the AVI system.  The accuracy of both systems declines during periods of congestion, as 
the variability in travel times and speeds increases.   

A final test of the accuracy of the San Antonio AVI system was performed by driving 
a probe vehicle through the network and comparing actual speedometer readings to the travel 
times computed from the match tag process.  On two occasions, the network was driven with 
a tagged vehicle and the time passing under the AVI antennae was noted.  The difference in 
times in the archive data file and those observed with a watch set to the atomic clock was on 
the order of a few seconds, well within the margin of reaction time error.  The speeds 
computed between the locations from the AVI or manual data would therefore be within 1 or 
2 miles per hour.   

Speed data from AVI is directly related to the observed link travel times.  The value 
in AVI data for ATIS applications lies in the link travel time and speed data.  Even with a 
low penetration rate, less than 2 percent in most cases, vehicular probes adequately and 
accurately represent current space mean speed conditions.   
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9.2.2 Volume 

The challenge in comparing AVI volume counts with loop counts lies in the fact that 
the AVI does not monitor all lanes in all cases.  Figure 9.5 shows the volume comparisons 
between AVI and loop data for Link 5 on June 15 during the peak morning period.  The 
second y-axis, shown on the right, represents the AVI volumes; both volume measurements 
are in vehicles per hour.   

 

 

Figure 9.6 Loop and AVI Volume Data (6/15/00, Link 5) 

 
As with the speed data, the general trends are maintained; however, the counts vary 

substantially from one loop detector to another. The link shown is three lanes and the 
upstream and downstream AVI both monitor the two inner lanes.  The first loop detector is 
upstream of the interchange with southbound Interstate 410, which explains the higher 
volumes.    

Another example of the volume data from a more congested period is shown in 
Figure 9.9.  The plot is of the same study period and link as the congested example in Figure 
9.4.   
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Figure 9.7 Loop and AVI Volume Data (6/28/00, Link 3) 

 
Both volume measurements are in terms of vehicles per hour.  The AVI data is 

representative of the general volume trends obtained from the loops.  The market penetration 
discussed in Chapter 4, relates the volume obtained from AVI to that obtained from the loop 
detectors.  Analysis of how the penetration may vary across the peak hour would be 
necessary.  The general trend in the data is maintained from the three loops.   

9.2.3 Density 

The accuracy of the density measurements is more difficult to ascertain.  The AVI 
density is accurate and consistent with the Edie definitions as shown in Section 4.3.1.  
Therefore, the accuracy is limited by the accuracy of the volume and travel time 
measurements.  The loop density is derived from the percent occupancy and an assumed 
average vehicle length and length of the detection zone, as outlined in Section 4.3.4.  
Comparing the two measurements is for illustrative purposes. If the loop data were calibrated 
perfectly, the AVI data should be less than the loop density by the tagged penetration factor.     

AVI density data is compared in the following Figure 9.8 and Figure 9.9.  Figure 9.8 
is from a typical day and Figure 9.9 is the third in the series of plots from June 28, which 
experienced some congestion.  The general trends in the data are maintained, but not as well 
as with the speed and volume count data.  Accurate density measurements would likely 
require a greater tagged vehicle penetration rate.  However, density information is not as 
meaningful to ATIS users, relative to the measurements of speed and travel time. 
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Figure 9.8 Loop and AVI Density Data (9/26/00, Link 7) 

 

 

Figure 9.9 Loop and AVI Density Data (6/28/00, Link 3) 

 

9.3 CONFIDENCE, DELAY, AND AVAILABILITY 

Driving a tagged test vehicle through the system and noting the time passing the 
sensors is one method to assess the confidence of AVI data.  The confidence, as introduced in 
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Section 3.2.3, relates to the ability of the system read tagged vehicles that pass and report 
information (time and tag ID) correctly.  Delay in reporting data is the time it takes for the 
raw field data to be transferred and available to the Traffic Management Center (TMC).  Data 
availability refers to when and how often the data is made available to interested parties.   

9.3.1 Confidence  

The confidence of the network is difficult to assess, as it is impossible to determine 
the number of tagged vehicles that pass undetected.  One option is driving the network and 
comparing noted times with detector results.  The tags are scrambled and it is difficult to 
ascertain the correct tag results in the raw data files.  Also, having multiple tags in the vehicle 
seems to adversely affect the performance of the system.  A given site installation is tested as 
part of the installation process to read 95 percent of the tags that pass in a controlled test by 
the installation team.   

A better measure of the confidence of the AVI system is the number of tag reads that 
are able to produce tag matches.  A tag read is most valuable when matched with another tag 
read to obtain travel time and speed.  The reader is referred to the earlier Section 9.1, where it 
was determined that at least 50 percent of the tag reads became valid tag matches.  
Considering the assumptions of a perfect closed system with only five reader sites, a 
maximum of 80 percent of tag reads could become tag matches.  Under the present 
circumstances (incomplete lane coverage and the absence of entry/exit control), obtaining 50 
percent tag reads becoming useful matches, is very good.    

9.3.2 Delay and Availability 

The field reader sites operate on a buffer and send approach.  There are no set polling 
times and the data is sent on an as-needed basis.  It is impossible to determine if data is 
available and not being sent, because no data can also be interpreted as an absence of tagged 
vehicles passing the detector station.  The system employs ample phone lines for the fifty-
two field sites to call in simultaneously and update the data.  A direct dedicated link from the 
reader sites to the TMC would be preferable, however the cost and desire to have AVI sites 
on the periphery of the metropolitan region leaves this questionable. 

The match tag algorithms and speed computation take place at TransGuide.  Average 
vehicle speeds and travel times are then updated as the raw tags are matched.  The delay with 
AVI data, after two successive readers have identified a vehicle, increases as the distance 
between the readers increases and speeds decrease.  In highly congested regions, AVI sensors 
should be located closer together to achieve minimum delay in processing matches.  The 
downstream data need to be sent from the field to the TMC and a match processed.   

The raw scrambled tag data is made available to the TransGuide anonymous FTP site 
at midnight.  The data is maintained for a single week when it is then removed for the new 
data.  Therefore, there is always a single week of AVI data available on the public servers.  
No AVI data is currently available to the public in real time.   

To apply the ATIS data-quality guidelines, an estimate of the percentage of time the 
AVI is operational is required.  For the 25 study days, data from September 21, 2000, were 
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not available for the entire day and are therefore removed from analysis.  From the remaining 
days across the five AVI sites in the study corridor, only two were down for the entire day 
throughout that time.  The availability of AVI data is “better” than other similar systems, 
according to the ATIS data-quality guidelines outlined in Chapter 3, as the data are available 
between 95 and 99 percent of the time.  

9.4 BREADTH AND DEPTH OF COVERAGE 

The San Antonio AVI system covers 89 miles of freeways and some arterial streets.  
All major limited-access highways in San Antonio are AVI equipped.  However, the breadth 
of coverage is limited to the periphery of the city.  There are sensors between major 
interchanges, but the system lacks infrastructure in the downtown area.  In the study corridor 
provided for analysis, there are sensors between every major interchange.  According to the 
guidelines, the AVI system is “better” than other methods of data collection in terms of 
breadth of coverage. 

The distance between reader sites is typically greater than 2 miles.  The exception is 
the link between sites 45 and 47 where the spacing is only 1 mile.  Table 9.3 outlines the 
lengths between the reader sites; the average spacing is 2 miles.  Simulation analysis, where 
the level of tagged vehicles and reader spacing could be adjusted, would be required to test 
benefits of increased reader spacing, as moving AVI reader sites is extremely cost 
prohibitive.  AVI spacing could be increased to distances much greater than 2 miles for rural 
ATIS applications where there are fewer interchanges.   

 

Table 9.3 San Antonio Link Lengths 

 
 
 
Because not every interchange is monitored, the AVI system only ranks in the 

middle, “better” data-quality category for depth of coverage for ATIS applications.  Facilities 
such as turnpikes where all vehicles must pass a toll facility when entering or leaving the 
facility would be ideal to meet this goal.   
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9.5 COSTS AND FINANCIAL BENEFITS OF AVI 

An important consideration when evaluating any system is the cost of implementation 
relative to an estimated economic benefit of an AVI system.  A formal cost/benefit analysis is 
beyond the scope of the work presented here; however, it is of interest to provide available 
figures concerning the known costs of the system tested for this work.  The costs of the AVI 
and loop systems will be outlined in the next two sections.  One additional cost that is often 
overlooked is the cost of the TMC, which serves as the central data collection and 
dissemination site for the system.  TransGuide is estimated to be a $23 million operation 
(TransGuide 2000).  Both detection systems share the resources of the TMC.  The relative 
additional cost of detection infrastructure is investigated in Sections 9.5.1 and 9.5.2.   

9.5.1 AVI Costs 

The cost of the entire San Antonio AVI development and installation was $2.4 
million in 1997, according to TransGuide.  That figure includes all fifty-three sites, hardware, 
and installation.  A monthly maintenance contract with TransCore is $12,000 per month for 
the entire fifty-three-site network of AVI detectors (Rodrigues 2000).  The breakdown of 
individual field installations along our study corridor is outlined in Table 9.4.  

  

Table 9.4 San Antonio AVI Costs by Site (Rodrigues 2000) 

 
 
The average site installation is over $48,000 with a total cost of $583,069.  The total 

cost per lane was estimated as sites 42, 43, and 44 monitor four lanes and sites 45 and 47 
monitor eight lanes.  The average cost per lane is over $9,000.  The incremental cost of an 
additional lane is clearly less than $9,000, probably closer to $7,000.  Such an estimate is 
important when determining whether to install partial or full coverage of all lanes in a given 
direction.  

9.5.2 Loop Costs 

The loop costs are lower than those of an AVI setup, however the infrastructure is 
more versatile in the latter case.  The estimated cost of the loop detector equipment was 

Location
Hardware & 
Amtech Labor Civil & Electrical Total 

Total Cost per 
Lane

142 IH-35 @ New Braunfels Street Overpass $20,905 $23,065 $43,970 $10,992
143 IH-35, OSB.2 mile North of Splashtown $20,905 $18,906 $39,811 $9,953
144 IH-36, OSB.2 mile South of Riftiman $20,905 $27,836 $48,742 $12,185
145 IH-35,.3 mile South of IH-410 North $25,791 $30,678 $56,469 $7,059
147 IH-35,.3 mile North of IH-410 $24,332 $33,751 $58,083 $7,260

Average $22,568 $26,847 $49,415 $9,490
Total $156,034 $184,671 $584,066
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provided by Rodrigues (2000).  The communication cabinet, which can also control 
communications to other ATIS/ITS systems, is $16,000.  Each loop requires a controller card 
that cost $800.  The actual Austin Local Control Units cost $3,300 each and contained a card 
rack that cost  $3,600 each.  The loops cost $500 each for the saw cut and wire for each loop.  
An additional $550 per location is required per location for lane closures, however this cost 
would also be required for AVI installation.  The Civil Hardware (i.e., metal conduit, boring, 
etc.) is $4,800 for a loop installation. 

The cost of the loop detectors installed in the study corridor presented in Section 1.4.1 
is $319,500.  The cost presented is for nine local control communication units with racks and 
installation at $27,700 each ($16,000 + $3,300 + $3,600 + $4,800).  Plus, $70,200 for nine 
sites with six loops, each costing $1,300 ($500 + $800).  The maintenance cost for the loop 
detectors is unknown as they are less than a year old.  However, the loop detector 
maintenance is combined with other ITS maintenance performed by TxDOT staff at 
TransGuide.  The loop detection system is less expensive than the AVI system; however, the 
AVI system infrastructure costs may decline as more systems are brought on-line.    

9.6 ASSESSMENT CONCLUSIONS 

This chapter outlined the major points and evaluation for the San Antonio AVI 
system related to an ATIS implementation.  While there are some areas where the system can 
be improved, overall an operational AVI system is in place and should be used to further 
ATIS applications.  The quality of AVI data meets or exceeds many of the guidelines for 
ATIS data.  The next chapter provides final conclusions and recommendations. 
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CHAPTER 10 CONCLUSIONS 
 
The primary objective of this study was to test the performance of Automatic Vehicle 

Identification (AVI) systems for incident detection. An extensive literature review was 
performed on existing traffic detectors and automatic incident detection (AID) algorithms. 
Results of the literature review were presented in Chapters 2 and 3. Three incident detection 
algorithms were chosen among the logics described in Chapter 3: the California #8 
algorithm, the Texas algorithm, and the Upper Confidence Limit algorithm. The algorithms 
were calibrated and tested using data acquired from TransGuide, San Antonio’s Traffic 
Management Center (TMC). A standard procedure was developed to calibrate and test the 
selected algorithms. The use of AVI for ITS applications and Advanced Traveler Information 
System (ATIS) data requirements were presented in Chapter 4. The steps followed in the 
calibration and testing effort were detailed in Chapter 6. Calibration and testing results were 
presented in Chapter 7. Chapter 9 contains an assessment of the San Antonio AVI system, 
and this last chapter presents the achievements of the research, which is divided into data 
summary, algorithm test/calibration summary, San Antonio AVI system assessment, 
recommendations, and future work. 

10.1 DATA SUMMARY 

The data obtained from AVI systems are shown to be useful to the traffic 
management operations of a metropolitan region. Once the raw data is processed to obtain 
vehicle matches, care should be taken to properly define traffic state estimators. The link-
based nature of AVI should be correctly exploited. Even at low market penetration rates, as 
observed in San Antonio, the system is very effective at obtaining travel time and speed 
information. The promise of an ATIS lies in the ability to gather accurate, timely, and 
relevant traffic stream information for distribution to users. AVI data directly provide travel 
times and derived speeds. 

10.2 ALGORITHM TEST/CALIBRATION SUMMARY 

Results obtained from the calibration and the testing phases showed some variations 
mainly due to the small number of incidents recorded during the time span considered for 
this study. In the absence of visual observation of the network, accurate start and end times 
for the recorded incidents could not be obtained. Therefore, the time to detect (TTD) 
presented in this study can serve only as a relative measure of performance among the tested 
algorithms. Furthermore, some incidents might have actually occurred, but were not recorded 
in the incident logs at TransGuide, thus contributing to the false alarm rate (FAR) exhibited 
by the algorithms. 

The selected algorithms are ranked in Table 10.1 based on the results exhibited from 
the testing phase. The ranking is done according to the three measures of effectiveness 
defined in Chapter 3, namely detection rate (DR), FAR, and TTD. 
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Table 10.1 Summary of Results (Incident Detection Algorithm Reading) 

Algorithm DR FAR TTD 
California #8 with Loop Data 1 1 1 

Texas with Loop Data 2 2 3 
Upper Confidence Limit with AVI 

Data 
3 3 2 

Texas with AVI Data 4 4 4 
 
 
The results indicate that, with the exception of the Upper Confidence Limit algorithm 

which exhibited lower TTD values than the Texas algorithm when applied with loop data, the 
loop-based incident detection performed better than the AVI-based incident detection. The 
loop algorithms were able to achieve detection rates of 100 percent at relatively low FAR in 
the case of the California #8 algorithm. The Texas algorithm was expected to have poor 
results in terms of FAR since it relies only on one threshold value, thus making it vulnerable 
to slight variations in the traffic flow. Effectively, although the Texas algorithm achieved 
high DRs, the corresponding FARs were consistently higher than those observed from other 
detection logics, and would result in significant TMC operations’ disruptions.  

When comparing the performance of the Texas algorithm between its application 
with loop data and its application with AVI data, better results were obtained when the logic 
was implemented with loop data. This is due to the fact that the loop occupancy is being 
averaged over 3-minute intervals before being compared with the corresponding threshold. In 
order to offset the problem associated with the low level of tagged vehicles’ market 
penetration and thus achieve fast detection, the speed obtained from individual tagged 
vehicles traveling on a certain link was compared to the speed threshold. Not averaging the 
speeds experienced by individual vehicles on a certain link is at the root of the high false 
alarms exhibited by the Texas algorithm when it was applied with AVI data. 

When an incident is detected by one of the loop algorithms, its location can be 
determined more precisely than when the same incident is detected by one of the AVI 
algorithms. While loop detectors are placed on average every 0.5 miles, the average AVI link 
length in the study corridor approached 2 miles. The operator would have to determine the 
location of the incident before being able to take any action.  

Although the loop algorithms performed better than the AVI algorithms considered in 
this study, the performance of the AVI algorithms, especially the Upper Confidence Limit 
algorithm, hold the promise of comparable, if not superior, performance if the AVI readers 
are properly spaced and the level of tagged vehicles’ market penetration is adequate. Also, 
due to the fact that AVI provides section speed data rather than point speed data, faster 
incident detection is anticipated if AVI tags are widely used. If a system has AVI installed 
but no loop detectors, the AVI sensors may still be useful as a source of incident detection 
information. 

AVI allows for the computation of travel time and delay information needed for 
additional operational and planning functions such as automatic toll collection, route travel 
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time generation, etc. If the AVI data is used as input for several applications, the data users 
can share the original cost of the AVI system.  

10.3 SAN ANTONIO AVI SYSTEM ASSESSMENT 

Chapter 4 presents an assessment of the San Antonio AVI installation for ATIS 
applications. While the system meets basic quality standards, there is opportunity for 
significant system expansion and improvement. 

The results of the on-line evaluation of the San Antonio AVI system primarily 
include the identification of technical difficulties that should be avoided in future AVI 
implementations. These include proper synchronization, monitoring all lanes of travel, and 
capturing the direction of tagged vehicles. The system is useful as installed, however, 
improved ATIS and incident detection systems are limited by the current installation. The 
quality and usefulness of AVI data was assessed and the ability to obtain a proper 
representation of traffic state conditions was achieved. Based on the investigation presented 
in Chapter 8, the current tagged vehicle penetration of San Antonio is less than 3 percent. 
Volume estimates must be made with an additional detector installation that is capable of 
reliably counting all vehicles. Simple estimates of the tagged vehicle penetration can be made 
from historical average annual daily traffic (AADT) data, but should only be used for 
planning purposes. The advantage of an AVI system is the ability to obtain travel times from 
a sample of vehicle probes. 

10.4 RECOMMENDATIONS 

There are many new and emerging applications for the AVI and areas for further 
development of the technology to better serve travelers. The popularity of probe vehicle 
detection technology is poised to expand rapidly with the E-911 cellular location 
requirement. If an AVI system is installed, the collected data should be used for AID since 
the marginal cost to implement an AID algorithm based on AVI data is low. The following 
section provides recommendations for further expansion of the San Antonio AVI system as 
well as suggestions for new AVI implementations.   

10.4.1 Installation Configuration 

The installation of an AVI system for ATIS applications is the most critical phase in 
AVI implementation. The reader spacing should be no more than 2 miles for metropolitan 
systems. Each AVI site should monitor all lanes of travel. Where the decision on whether to 
implement an inductive loop detector (ILD) or an AVI system is to be made, the decision 
would be based not just on incident detection considerations, but on considerations regarding 
all the anticipated users of the data. The AVI system implemented in San Antonio should be 
modified to reflect the direction of travel of a tagged vehicle, thus increasing the usable data 
obtained from the system for incident detection. The tagged vehicle penetrations are typically 
very low; the system should attempt to capture every tagged vehicle that passes a fixed 
detector location. Additional sensors at all entrance and exit ramps would provide a 
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significant benefit to transportation planners and allow for effective toll collection. Origin-
destination information could then be obtained for calibration of demand models. Other 
recommendations for TransGuide would be to investigate the causes of errors in traffic and 
incident data and proceed in order to minimize their occurrence before the data is used as 
input for an AID algorithm. Regular monitoring and inspection of detectors, whether the 
ILDs or AVI, is recommended to ensure continuous operation and swift remedial action in 
case problems are detected. 

10.4.2 Tag Types and Uses 

Tag reliability and accuracy is the most important factor in selecting a tag type for 
implementation. The battery powered tags used in Houston are much more reliable for 
detection at high-speed applications. The San Antonio tags are not powered and rely on 
reflecting the radio signal from the reader antenna. Powered tags are preferred as greater 
confidence can be obtained from the system. Tags should be distributed to the widest number 
of travelers and traveler types. Transit vehicles, trucks, state vehicles, and passenger cars 
should all be represented for an effective system. The San Antonio AVI project initially 
desired to tag every vehicle registered in the county, however, cost and privacy concerns 
preclude such distribution. The ideal method to get travelers to obtain tags is to provide an 
incentive. The most obvious is for toll collection, however, there are many other potential 
incentives for equipped vehicles with AVI tags. Different systems and organizations should 
be encouraged to use tags compatible with the traffic management center implementation to 
facilitate resource sharing. 

10.4.3 Regional Applications 

AVI systems installed between the major cities could provide intercity travelers with 
corridor congestion information both pre-trip and enroute. The AVI system typically 
communicates to the traffic management center over plain old telephone lines (POTS) and no 
special dedicated communication link is required, The large numbers of businesses along 
major corridors provide ample telephone connectivity. Examples in Texas include the San 
Antonio to Austin IH-35 corridor, San Antonio to Houston IH-10 corridor, Houston to Dallas 
IH-45 corridor, and Austin to Dallas/Ft. Worth IH-35 corridor. Variable message signs could 
be installed along the corridor to provide travel time estimates to the major cities. 
Information could also be updated on a Web page to allow travelers to modify their departure 
time if conditions are congested. The implementation challenge lies in the need for 
centralized coordinated control and cooperation between multiple agencies. The initiative 
must come from a state level and system coordination should occur at one of the 
metropolitan traffic management centers or at a statewide center. Sufficient tagged vehicles 
would be required as fewer vehicles are likely to traverse the entire study corridor. 
Commercial vehicle operations can provide the fleet an increased intercity penetration. 
Trucks would bias the travel times as they typically travel slower than the average vehicular 
travel stream. 
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10.4.4 Dynamic Traffic Input 

The raw data obtained from a properly installed AVI system can provide real-time 
data to dynamic traffic assignment models. The output from such models can yield predictive 
information about travel time, speed, and suggest alternative routes. The delayed nature of 
AVI data limits the ability of AVI data for real-time dynamic traffic applications. However, 
the origin-destination demand data can be of significant benefit for calibrating dynamic 
traffic algorithms in near real-time. An AVI system can be used for dynamic traffic 
assignment verification. Fully integrated systems of the future will provide directions to users 
based on user characteristics (reduce delay, through traveler, optimize the system). It will be 
of value to actually determine the final path for a subset of users that are provided with route 
information. 

10.4.5 Travel Demand Modeling 

Similar to using AVI data for travel demand modeling, the system can be used to 
calibrate the origin-destination patterns of travel demand models. The San Antonio AVI 
system could be enhanced to allow for improved parameter estimation for off-line origin-
destination planning models. Cooperation between the metropolitan planning organizations 
(MPOs) and the Texas Department of Transportation would be required. 

One challenge to the use of AVI for travel demand modeling lies in security concerns. 
Demand models need to determine the consistency of demand across days. Determination of 
the number of users who make the same trip or set of trips with regularity across days and 
weeks is of interest. 

Current security precautions preclude this, as the tag identification is scrambled 
differently each day in the San Antonio installation.  

10.4.6 CVO Applications 

Traffic management centers can obtain valuable truck and commodity flow 
information if existing AVI installations are compatible with technologies employed in CVO 
applications. With readers located at entry and exit points of the network able to detect 
commercial vehicles, information about origin-destination and through truck travel is 
obtainable. The difficulty in obtaining commodity flow data is often institutional and not 
technical.  

10.4.7 ATIS Implementation 

The ATIS strategy for a metropolitan region must be carefully established before an 
AVI system, or any other traffic detection system, can be effectively installed. The goals of 
the system should be developed and data collected accordingly. Applying an existing system 
to a new strategy is more difficult as the system will require modifications from a system 
integration perspective. The ATIS vision and requirements are required for proper 
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implementation. Consistency with a regionwide or statewide architecture is essential in this 
regard. 

10.5 FURTHER WORK 

There is still research to be conducted in developing more sophisticated AVI 
algorithm logic. It is possible that testing other detection logics with actual AVI data could 
produce better results than those reported in this study. The same standard steps used in 
calibrating and testing the algorithms in this research could be employed to investigate other 
logics. 

Zhou (2000) investigated loop algorithm fusion and found that combining the 
outcome of several loop detector algorithms can produce better incident detection than any 
algorithm taken separately. The same can be done with AVI detection logics. Fusing the 
outcome of AVI algorithms might lead to better results at little additional cost. Integrating 
AVI and ILD data would prove beneficial as well for improved incident detection. 

Future effort should also concentrate on conducting similar experiments on real AVI 
data collected from other networks with varying conditions such as tagged vehicle market 
penetration, link length, etc. in an attempt to determine guidelines to be used in the design of 
new AVI systems, and their application for traffic management purposes. The rise in wireless 
technology will increase the demand for real-time traveler information. The increase in 
wireless location technology will further increase the potential for probe vehicle tracking 
through the network. The exploration of the differences in link-based and point-based vehicle 
detection technologies should be expanded. 
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