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CHAPTER 1.  INTRODUCTION 

 

1.1  BACKGROUND AND OBJECTIVE 

 
State highway agencies are under constant public pressure to provide optimal 

pavement systems with limited resources.  To ensure the effectiveness of their pavement 
management systems, it is important for those agencies to be able to predict the remaining 
life of a pavement with reasonable accuracy.  For remaining pavement life or fatigue 
analyses, wheel load stresses and deflections have often been calculated using static load 
conditions (Refs 1, 2); however, critical wheel load stresses and deflections are induced by 
moving dynamic loads.  A number of studies have recently been conducted to find the 
dynamic response of pavement systems to moving loads.  Most of the studies have used 
moving loads with a constant amplitude (Refs 3, 4) and have not considered variations in 
amplitude with time that might result from the pavement surface roughness and the 
mechanical systems of the vehicles.  The pavement response due to moving trucks also 
depends on the distance between axles as well as between wheels; however, most analyses 
have used single-axle or single-wheel load instead of tandem-axle and dual-wheel loads for 
simplicity of analysis. 

The primary objective of this study was to examine and discuss the dynamic response 
of rigid and flexible pavements subjected to moving tandem-axle loads of constant amplitude 
and harmonic and arbitrary amplitude variations with a constant advance velocity.  A plate on 
viscoelastic foundation was employed as a pavement model (Refs 2, 5, 6, 7).  The 
viscoelastic nature of underlying layers was incorporated into the model as a viscoelastic 
foundation.  The materials were assumed to be linear elastic and the plate was assumed to 
extend to infinity in the horizontal plane, so the effect of discontinuities in the pavement 
system at cracks, joints, and edges was ignored.  The shape of the tire-pavement contact area 
was assumed to be rectangular, and any change in the shape during load variation was 
neglected.  The load pressure within the contact area was assumed to be uniformly 
distributed.  We developed formulations in the transformed field domain using: (1) a double 
Fourier transform in space and moving space for moving loads of constant amplitude; (2) a 
triple Fourier transform in time, space, and moving space for moving loads of arbitrary 
variation; and (3) a double Fourier transform in space and moving space for the steady-state 
response to moving harmonic loads.  We investigated the effects of various parameters such 
as viscous damping, velocity, load frequency, and phase between front and rear axle loads on 
the pavement response. 

Another objective of this study was to include the effect of the moving tandem-axle 
loads in the CRCP-9 computer program (Refs 8, 9, 10) using developed formulations.  
CRCP-9 and previous versions of the CRCP computer programs such as CRCP-8 (Ref 11) 
consider the wheel load effects by calculating wheel load stresses using Westergaard 
equations (Ref 1), which means that they consider only the static single-wheel load and do 
not include the moving dynamic tandem-axle loads.  CRCP-10, the updated CRCP-9 
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computer program, has been developed to include the effect of the moving dynamic tandem-
axle loads. 
 

1.2  ORGANIZATION 

 
This report consists of six chapters and an appendix.  The background and objective 

of this study are presented in Chapter 1.  Chapter 2 presents formulations to obtain the 
displacement and stress responses of the pavement systems subjected to moving dynamic 
tandem-axle loads.  Using the developed formulations explained in Chapter 2, in Chapter 3 
we investigate the stress response of the concrete pavements for various conditions of vehicle 
speed, viscous damping, load frequency, and phase between front- and rear-axle loads.  
Chapter 4 describes the flexible pavement response to moving tandem-axle loads.  Because 
the flexible pavement performance is related to the vertical displacements that cause rutting 
and to the tensile stresses at the bottom of the surface (asphalt mixtures) layer that cause 
cracking, the displacements and tensile stresses at the bottom of the surface layer are 
investigated.  The formulations developed to find the wheel load stresses that result from the 
moving tandem-axle loads are integrated into CRCP-10, which is the updated computer 
program of CRCP-9, and the details of the procedure are explained in Chapter 5.  Finally, 
Chapter 6 includes our summary, conclusions, and recommendations.  The subroutine 
program included in CRCP-10 to analyze the stresses of concrete pavements caused by the 
moving tandem-axle loads is listed in Appendix A. 
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CHAPTER 2.  FORMULATIONS IN TRANSFORMED FIELD DOMAINS 

 

2.1  FORMULATIONS FOR DISPLACEMENTS AND STRESSES 

 
The dynamic displacement response of a plate of infinite extent on a viscoelastic 

foundation subjected to moving loads whose amplitudes change with time, shown in Figure 
2.1, can be obtained using a triple Fourier transform in time, space, and moving space.  The 
governing differential equation for the vertical displacements w in a fixed Cartesian 
coordinate system {x, y, z}, neglecting rotatory moments of inertia and shear deformation, 
can be written as 
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where DP is the flexural rigidity of the plate defined by 
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and m, k, and c are the mass of plate per unit of area, stiffness of foundation per unit of area, 
and viscous damping constant of foundation, respectively.  E is the elastic modulus of the 
plate, h is the thickness of the plate, ν is Poisson’s ratio of the plate, and q is the loading 
function. 

Instead of obtaining the response at a fixed position, it would be more convenient to 
obtain the response at a moving position when the load amplitude varies and the critical 
response is of interest.  If the loads are moving in the positive x direction with a constant 
advance velocity V, a moving coordinate η is defined by x-Vt.  Eq. 2.1 can then be rewritten 
as 
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If ξ, ζ, and Ω are assumed to be the transformed fields of η (moving space), y (fixed 

space), and t (time), and ),,( tyw η  and ),,( tyq η  are written in the form of 
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yiiti eeeW ζξηζξ ΩΩ),,(  and yiiti eeeQ ζξηζξ ΩΩ),,( , the transformed displacements W( , , )ξ ζ Ω  
can be obtained by 
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where 1−=i  and the transformed load Q( , , )ξ ζ Ω  is obtained using the triple Fourier 
transform 
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Figure 2.1.  Plate on viscoelastic foundation with moving tandem-axle loads 

 

η 

y 

V d1 

d2 

dt 

da 

dw 

η 

z V 

η0 

y 

y0 z 



 

 5 

 
Then, the dynamic displacement response can be obtained using the triple inverse Fourier 
transform 
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If frequency-independent linear hysteretic damping (or material damping) is 

considered in addition to viscous damping, an expression 2iDk can be used for the damping 
term, where D is the damping ratio (Refs 7, 12, 13).  It should be noted that the sign of the 
linear hysteretic damping term needs to be consistent with that of the viscous damping term.  
In practice, the above equations are solved using the Fast Fourier Transform (FFT), which is 
a discrete transform.  To successfully perform the FFT in the time and frequency domains, 
the system should have some damping.  This requirement can be dropped when one uses the 
exponential window method (Refs 7, 14). 

If the moving load has a harmonic variation of the amplitude ei tΩ and only the steady-
state response is of interest, the displacement and stress responses in Eqs. 2.6 and 2.7 can be 
rewritten as 
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with 
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where Ω  is the load frequency.  The stress in the fixed space σy can similarly be obtained.  If 

the response to the force sin Ωt  (the imaginary component of ei tΩ ) is considered, the 
imaginary component of Eqs. 2.9 and 2.10 should be used. 

If the moving load with a constant amplitude ( Ω = 0) is considered, Eqs. 2.9, 2.10, 
and 2.11 can be expressed as 
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Because η is a point on the moving axis, the above equations represent the response at 

a moving point with time.  The response at a fixed point can simply be obtained by using the 
relation η = x-Vt, where x is the fixed point. 

 

2.2  FORMULATIONS FOR MOVING TANDEM-AXLE LOADS 

 
The distance between front and rear tandem axles is large, and the critical pavement 

responses from a single tandem axle will not be affected by the other axle.  Therefore, for the 
analysis in this study, a single tandem axle (a set of two axles) was selected.  With the model 
shown in Figure 2.1, if the load pressure (load per unit of area) is q and η0 and y0 are the 
coordinates of the center of a load (in this study, it is the loaded area under the rear-axle 
right-wheel outside tire), each component of the transformed load Q defined in Eq. 2.14 for 
the rear axle can be obtained by 
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where d1 and d2 are the loaded lengths of a tire print in the η and y directions, respectively; dt 
is the center-to-center distance between dual tires; and dw is the distance between left and 
right wheels.  The total transformed load for the rear axle can then be obtained by adding 
each component, 
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Similarly, each component of the transformed load for the front axle can be obtained by 
 

00

2
0

2
0

1
0

1
0

)(

21

2

2

2

2

5
2

sin
2

sin
4),( yidiyii

d
y

d
y

d
d

d
d

ee

dd

qdydeqeQ a
a

a

ζηξζξηη

η ξζ

ζξ

ηζξ −+−−−+

−

++

−+
== ∫∫          (2.20) 

 

)()(

21

2

2

2

2

6
00

2
0

2
0

1
0

1
0

2
sin

2
sin

4),( ta
t

t

a

a

dyidiyii
d

dy

d
dy

d
d

d
d

ee

dd

qdydeqeQ +−+−−−++

−+

++

−+
== ∫∫ ζηξζξηη

η ξζ

ζξ

ηζξ  (2.21) 

 

)()(

21

2

2

2

2

7
00

2
0

2
0

1
0

1
0

2
sin

2
sin

4),( wa
w

w

a

a

dyidiyii
d

dy

d
dy

d
d

d
d

ee

dd

qdydeqeQ +−+−−−++

−+

++

−+
== ∫∫ ζηξζξηη

η ξζ

ζξ

ηζξ (2.22) 

 

)()(

21

2

2

2

2

8
00

2
0

2
0

1
0

1
0

2
sin

2
sin

4),( wta
wt

wt

a

a

ddyidiyii
d

ddy

d
ddy

d
d

d
d

ee

dd

qdydeqeQ ++−+−−−+++

−++

++

−+
== ∫∫ ζηξζξηη

η ξζ

ζξ

ηζξ , 

(2.23) 



 8 

 
where da is the distance between front and rear axle tires.  The total transformed load for the 
front axle can also be obtained by adding each component, 
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Finally, the total transformed load Q for the tandem axle can be determined by adding Eqs. 
2.19 and 2.24 as 
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If the harmonic variation of the load on each axle is tiqe Ω  (four loaded areas in an 

axle have the same load history) and there is a phase ϕ between two axles, the transformed 
load defined in Eq. 2.11 can be given by 
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If the moving loads have arbitrary variations in amplitude and the variation is the 

same on each axle, the transformed load defined in Eq. 2.5 can be obtained by 
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where fr(t) and ff(t) are the variations in load amplitude with time on the rear- and front-axle 
tires. 

An alternative way to obtain the response to moving multiple loads is to find the 
response to a moving load and superimpose the response according to the load distance.  If a 
moving load has loaded lengths of d1 and d2 in the η and y directions and the load pressure 
(load per unit of area) is q, the transformed load Q defined in Eqs. 2.5, 2.11, and 2.14, can be 
obtained respectively by the equations 
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where η0 and y0 are the coordinates of the center of the load and f(t) is the variation in load 
amplitude with time. 

To obtain the response to multiple loads, one can use the superposition method to 
consider the distances between the loads and superimpose each response.  However, care 
should be taken in obtaining the steady-state response resulting from the moving harmonic 
loads because the amplitude of the response at each point does not occur at the same time.  
For instance, if there are two loads with center-to-center distances of Lη and Ly in the η and y 
directions, and the phase between the loads is ϕ, the steady-state response resulting from the 
load sinΩt  can be rewritten from Eqs. 2.9, 2.10, and 2.11 as 
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for the displacements and with 
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for the stresses.  The response to the other load sin( )Ωt + ϕ  can be written as 
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Adding Eqs. 2.31 and 2.34, the amplitude of the response can be obtained as 
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where a a y1 = ( , )η , b b y1 = ( , )η , a a L y Ly2 = − −( , )η η , and b b L y Ly2 = − −( , )η η .  If the 

two loads have constant amplitudes instead of harmonic variations, the response can be 
obtained simply by adding each response, ),(),( yLyLaya −−+ ηηη .  For multiple loads 

such as dual-wheel single-axle loads and tandem-axle loads, the response can be obtained 
similarly using the above approach. 
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CHAPTER 3.  RIGID PAVEMENT RESPONSE TO MOVING DYNAMIC TANDEM-
AXLE LOADS 

 

3.1  RESPONSE TO MOVING LOADS OF CONSTANT AMPLITUDE 

 
We first investigated the concrete stress response that results from moving tandem-

axle loads with a constant amplitude.  The material properties and geometry of the concrete 
pavement model and the dimensions of the tandem-axle loads used in this study are listed in 
Table 3.1.  Eqs. 2.13, 2.14, and 2.25 are used to obtain the analysis results for moving loads 
with a constant amplitude.  For the FFT in the moving and fixed spaces and transformed field 
domains of those spaces, we used 2,048 for the number of transformed points and 1.27 cm 
(0.5 in.) for the distance increment. 
 
 

Table 3.1.  Material properties and load geometry for rigid pavement model 
 

E 27,560 MPa (4,000 ksi) d1 17.78 cm (7 in.) 
ν 0.15 d2 20.32 cm (8 in.) 
k 136 MN/m3 (500 pci) dt 33 cm (13 in.) 
h 30.48 cm (12 in.) dw 188 cm (74 in.) 
m 708 kg/m2 (0.00261 lb sec2/in3) da 132 cm (52 in.) 
D 0.5 % c 12 MPa sec/m (44.24 lb sec/in3) 

Axle 
load 

-80 kN (-18 kip)   

 
 

Figure 3.1(a) shows the effect of velocity (vehicle speed) on the maximum 
longitudinal tensile stress in concrete slabs for various viscous damping values.  The logical 
values of the velocities up to 150 km/h (95 mph) are used in this study.  If the system has no 
viscous damping, the maximum stress remains almost constant regardless of the velocity.  If 
there is viscous damping, the maximum stress initially increases slightly and then decreases 
as the velocity becomes larger.  As the viscous damping constant increases, the stress 
decreases significantly.  It should be noted that the viscous damping constant depends largely 
on the types and moisture contents of underlying layers such as base, sub-base, and subgrade.  
Figure 3.1(b) shows the effect of velocity on the maximum transverse stress.  The overall 
trend stays the same as those for the longitudinal stresses, except that the magnitude of the 
transverse stress is smaller than that of the longitudinal stress.  Because the fatigue cracking 
potential of the concrete slab (critical stress) is the major focus of this study, only the 
longitudinal stresses are considered in the rest of this chapter.  Note that the maximum stress 
can be either tensile or compressive because the neutral surface is at the mid-depth of the 
concrete slab.  The maximum tensile and compressive stresses occur simultaneously at the 
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bottom and surface of the slab, respectively, at a point under the loads, which depends on the 
material properties, pavement structures, and load configurations.  For a configuration shown 
in Figure 2.1, the maximum stress generally occurs at the rear axle and 28 cm (11 in.) inside 
from the center of the outside tire (in Figure 2.1, at the coordinate {η0, y0 + 28 cm}).  It does 
not always occur here, but varies slightly depending on viscous damping and velocity. 
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Figure 3.1.  Effect of velocity for various viscous damping values: (a) on maximum 
longitudinal stress; (b) on maximum transverse stress (1 kPa = 0.145 psi, 1 km/h = 0.63 

mph, 1 MPa sec/m = 3.69 psi sec/in.) 
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If the concrete slab is sufficiently large and the velocity is constant, the stress 
distribution under the moving loads is the same at any instant.  This means that the stress 
distribution is moving with the loads.  Figure 3.2 shows the longitudinal stress distribution 
along the moving coordinate near the loads at the y coordinate of y0 + 28 cm where the 
maximum stress occurs.  In the figure, the 0 distance represents the midpoint between the two 
axles.  The figure shows the stress distribution for different viscous damping constants when 
a velocity is 40 km/h (25 mph).  If there is no viscous damping, the stress distribution is 
symmetric with respect to the midpoint between the two axles.  If there is viscous damping, 
the stress distribution is no longer symmetric.  The peak stress under the front axle decreases, 
and the maximum stress occurs under the rear axle.  Note that because the material damping 
(linear hysteretic damping) of the system in this study is very small (D = 0.5%), the stress 
distribution is essentially symmetric when there is no viscous damping.  However, if material 
damping is large, the response is not symmetric even when there is no viscous damping (Refs 
7, 13). 
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Figure 3.2.  Longitudinal stress distribution for various viscous damping constants (1 kPa = 
0.145 psi, 1 m = 3.28 ft, 1 MPa sec/m = 3.69 psi sec/in.) 

 
 
The longitudinal stress distribution for various velocities with constant viscous 

damping of 12 MPa sec/m (44 psi sec/in.) is shown in Figure 3.3.  The shapes of the stress 
distributions are very similar to one another regardless of the velocity, but the stresses 
decrease as the velocity increases. 
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Figure 3.3.  Longitudinal stress distribution for various load velocities (1 kPa = 0.145 psi, 1 

m = 3.28 ft, 1 km/h = 0.63 mph) 
 
 

3.2  RESPONSE TO MOVING ARBITRARY LOADS 

 
The roughness of the pavement surface will cause a variation in load amplitude when 

a truck is moving.  The stress response that results from this arbitrary variation of the load 
has been investigated.  Eqs. 2.5, 2.7, and 2.27 are used to calculate stresses.  To obtain the 
time histories of the dynamic loads on the front- and rear-axle tires, we used a computer 
program developed to predict the wheel loads in the Texas Mobile Load Simulator (TxMLS) 
research project with three different pavement profiles (Refs 15, 16).  One is a perfectly 
smooth profile (ideal profile), and the others are profiles corresponding to present 
serviceability index (PSI) values of 4.5 and 2.0.  Figure 3.4 shows the dynamic loads caused 
by various pavement roughnesses under the wheels of the front and rear axles when the 
velocity is 32 km/h (20 mph).  As the pavement roughness increases, the load amplitude as 
well as its variation becomes larger.  The maximum load amplitudes are about 10 percent and 
40 percent larger on the pavements with PSI 4.5 and 2.5, respectively, than the load on the 
perfectly smooth pavement. 
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Figure 3.4.  Time history of load for various pavement surface roughnesses: (a) on front-axle 
tires; (b) on rear-axle tires (1 kN = 0.225 kip) 
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The time histories of the longitudinal stresses under the front- and rear-axle tires at 
the coordinates of {η0 + 132 cm, y0 + 28 cm} and {η0, y0 + 28 cm} are shown in Figures 3.5 
and 3.6, respectively.  The shapes of the stress time histories are very similar to those of the 
load time histories.  The stresses under the rear-axle tires are larger than those under the 
front-axle tires.  For the perfectly smooth pavement, the stress under the rear-axle tires is 
about 20 percent larger than that under the front-axle tires, even though the load applied is of 
the same magnitude.  This trend of stresses larger under the rear-axle wheels than the front 
holds true for all roughnesses.  Figure 3.6 shows that pavement roughness has a significant 
effect on the wheel load stress under the rear axle wheels, with 40% and 10% higher 
compared with the perfectly smooth surface for PSIs of 2.0 and 4.5, respectively.  This 
analysis shows a significant effect of pavement roughness on wheel load stress and the 
subsequent fatigue life of pavements.  The analysis supports the specification changes state 
highway agencies have been making to improve pavement smoothness. 

 
 
 

400

500

600

700

0 0.2 0.4 0.6 0.8 1
Time (sec)

L
o

n
g

it
u

d
in

al
 s

tr
es

s 
(k

P
a)

Ideal Pavement

Smooth Pavement (PSI 4.5)

Rough Pavement (PSI 2.0)

 
 
Figure 3.5.  Time history of stress for various pavement surface roughnesses under front-axle 

tires (1 kPa = 0.145 psi) 
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Figure 3.6.  Time history of stress for various pavement surface roughnesses under rear-axle 

tires (1 kPa = 0.145 psi) 
 

 

3.3  RESPONSE TO MOVING HARMONIC LOADS 

 
A further investigation to evaluate the effect of load variation on the wheel load 

stresses has been conducted with the moving loads that consist of a constant amplitude 
component and a harmonic variation component.  Eqs. 2.10, 2.11, and 2.26 are used to obtain 
the stresses subjected to moving harmonic loads.  Figure 3.7(a) shows the constant amplitude 
of the load, harmonic variations under the front- and rear-axle tires, and combined loads.  It is 
assumed that the phase between the front- and rear-axle loads is 180 degrees and the half 
amplitude of the harmonic load is 30 percent of the amplitude of the constant load.  The 
stress distributions under the combined loads and their components of constant and harmonic 
loads are shown in Figure 3.7(b).  Because the stress distribution under the moving harmonic 
loads changes with time, the maximum stresses along the moving coordinate are shown in the 
figure.  Therefore, the combined stress distribution represents the maximum combined stress 
at each position and does not necessarily occur at the same time. 
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Figure 3.7.  Combined load time history and stress distribution: (a) time histories of constant 
amplitude, harmonic, and combined loads on front and rear axles; (b) stress distributions 

under constant amplitude, harmonic, and combined loads (1 kN = 0.225 kip, 1 kPa = 0.145 
psi, 1 m = 3.28 ft) 
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Figure 3.8 shows the effect of load frequency on the maximum stress.  When there is 
no viscous damping, shown in Figures 3.8(a) and (b), the maximum stress increases slightly 
with increasing frequency.  On the other hand, when viscous damping is considered with no 
phase between the front- and rear-axle loads, shown in Figure 3.8(c), the maximum stress 
decreases as the frequency increases.  The significant stress decrease can be observed within 
the frequency of less than 10 Hz.  If there is a phase of 180 degrees between the two axle 
loads, shown in Figure 3.8(d), the maximum stress decreases with increasing load frequency 
for a low velocity (40 km/h).  As the velocity becomes higher, the maximum stress increases 
initially and decreases as the frequency becomes larger.  Figure 3.9 shows velocity’s effect on 
the maximum stress.  With no viscous damping, velocity has little effect on the maximum 
stress, as shown in Figures 3.9(a) and (b).  When viscous damping is considered, as shown in 
Figures 3.9(c) and (d), the maximum stress remains almost constant at velocities less than 40 
km/h; however, it decreases as the velocity increases over that velocity.  The effect of the 
phase between the front- and rear-axle loads on the maximum stress is shown in Figure 3.10.  
The maximum stress increases as the phase becomes close to 180 degrees (π radians), and 
then it decreases.  The differences of about 5 to 8 percent between the maximum stresses for 
phase angles of 0 and 180 degrees are observed in this case.  Therefore, a phase difference 
between the loads can increase the maximum stress. 

As discussed above, variations in moving load characteristics such as amplitude, 
frequency, and phase can affect the stress significantly.  We also have studied the stress 
response of concrete pavements subjected to moving pure harmonic loads with various 
frequencies and phases.  Figure 3.11 shows the maximum stress distribution along the 
moving coordinate when there is no viscous damping.  The maximum stress distribution is 
not much affected by the load frequency.  When there is no phase, shown in Figure 3.11(a), 
the trend of the stress distribution is similar to that under the moving loads of constant 
amplitude (see Figure 3.2).  On the other hand, with a phase angle of 180 degrees (Figure 
3.11(b)), the maximum stress increases by about 23 percent.  The stress at the midpoint of the 
tandem axle is 0 because the stress caused by the front- and rear-axle loads is of the same 
magnitude but with opposite signs.  If there is viscous damping, the stress distribution is 
affected significantly by the load frequency, as shown in Figure 3.12.  The maximum stress 
decreases as the load frequency increases.  The difference between the maximum stresses for 
phase angles of 0 and 180 degrees is about 30 to 40 percent for a given frequency.  At the 
midpoint of the tandem axle, the stress is no longer 0 for a phase angle of 180 degrees, as 
shown in Figure 3.12(b), because of the different magnitude of stress caused by the front and 
rear axles that result from damping.   The effect of velocity can be observed in Figure 3.13.  
The velocity has little effect on the stresses, and the peak stresses under the front- and rear-
axle loads are similar, which is different from those under the moving loads of constant 
amplitude (compare with Figure 3.3).  Figure 3.14 shows the effect of phase angle between 
the front- and rear-axle loads.  As the phase increases, the maximum stress becomes larger.  
The maximum stress difference between phase angles of 0 and 180 degrees is about 25 to 40 
percent.  This phase effect is significant and should be included in wheel-load stress analysis.  
Because the phase effect cannot be obtained with single-axle loads, the use of tandem-axle 
loads is needed. 
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Figure 3.8.  Effect of load frequency on maximum longitudinal stress: (a) phase = 0, c = 0; 
(b) phase = 180 deg., c = 0; (c) phase = 0, c = 12 MPa sec/m; (d) phase = 180 deg., c = 12 

MPa sec/m (1 kPa = 0.145 psi, 1 km/h = 0.63 mph, 1 MPa sec/m = 3.69 psi sec/in.) 
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Figure 3.9.  Effect of velocity on maximum longitudinal stress: (a) phase = 0, c = 0; 
(b) phase = 180 deg., c = 0; (c) phase = 0, c = 12 MPa sec/m; (d) phase = 180 deg., 

c = 12 MPa sec/m (1 kPa = 0.145 psi, 1 km/h = 0.63 mph, 1 MPa sec/m = 3.69 psi sec/in.) 
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Figure 3.10.  Effect of phase between front- and rear-axle loads on maximum longitudinal 
stress when load frequency = 15 Hz: (a) c = 0; (b) c = 12 MPa sec/m (1 kPa = 0.145 psi, 

1 MPa sec/m = 3.69 psi sec/in.) 



 

 23 

(a) 

0

40

80

120

160

-1.27 -0.635 0 0.635 1.27
Distance from center of tandem axle (m)

L
o

n
g

it
u

d
in

al
 s

tr
es

s 
(k

P
a)

Frequency = 5 Hz
Frequency = 15 Hz
Frequency = 30 Hz

 
(b) 

0

45

90

135

180

-1.27 -0.635 0 0.635 1.27
Distance from center of tandem axle (m)

L
o

n
g

it
u

d
in

al
 s

tr
es

s 
(k

P
a)

 
 

Figure 3.11.  Maximum stress distribution for various load frequencies when V = 40 km/h 
and c = 0: (a) phase = 0; (b) phase = 180 deg. (1 kPa = 0.145 psi, 1 m = 3.28 ft) 
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Figure 3.12.  Maximum stress distribution for various load frequencies when V = 40 km/h 
and c = 12 MPa sec/m: (a) phase = 0; (b) phase = 180 deg. 

(1 kPa = 0.145 psi, 1 m = 3.28 ft) 
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Figure 3.13.  Maximum stress distribution for various velocities when frequency = 15 Hz: 
(a) c = 0, phase = 0; (b) c = 0, phase = 180 deg.; (c) c = 12 MPa sec/m, phase = 0; (d) c = 

12 MPa sec/m, phase = 180 deg. (1 kPa = 0.145 psi, 1 m = 3.28 ft, 1 km/h = 0.63 mph) 
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Figure 3.14.  Maximum longitudinal stress distribution for various phases when V = 40 km/h 
and frequency = 15 Hz: (a) c = 0; (b) c = 12 MPa sec/m (1 kPa = 0.145 psi, 1 m = 3.28 ft) 
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3.4  SUMMARY 

 
This project has investigated the dynamic stress response of concrete pavements 

under moving tandem-axle loads of constant amplitude and harmonic and arbitrary 
variations.  The concrete pavement has been modeled using a plate of infinite extent on a 
viscoelastic foundation.  As explained in the previous chapter, we have developed 
formulations in the transformed field domains of time, space, and moving space.  The 
analysis results show the following: 

 
• For the moving tandem-axle loads of constant amplitude, 

- Without viscous damping, the stress distribution is symmetric with respect to the 
midpoint of the tandem-axle loads, and the maximum stress remains almost the same 
regardless of velocity. 

- With viscous damping, the stress distribution is no longer symmetric, and the maximum 
stress initially increases slightly and then decreases with increasing velocity.  The peak 
stress under the front-axle loads decreases as viscous damping increases, and the 
maximum stress occurs under the rear-axle loads. 

• For the moving tandem-axle loads of arbitrary variation caused by pavement surface 
roughness, the maximum load amplitude and stress increase significantly compared with 
those obtained with the perfectly smooth pavement. 

• For the moving tandem-axle loads of harmonic variation; 
- Without viscous damping, the maximum stress is not much affected by the load 

frequency. 
- With viscous damping, the stress distribution is affected significantly by the load 

frequency, and the maximum stress decreases as the load frequency increases. 
- Regardless of viscous damping, the velocity does not much affect the stresses, and the 

peak stresses under the front- and rear-axle loads are similar to each other.  As the 
phase between the front- and rear-axle loads increases, the maximum stress becomes 
significantly larger. 
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CHAPTER 4.  FLEXIBLE PAVEMENT RESPONSE TO MOVING DYNAMIC 
TANDEM-AXLE LOADS 

 

4.1  RESPONSE TO MOVING LOADS OF CONSTANT AMPLITUDE 

 
We first investigated the displacement and stress responses of the flexible pavements 

at the bottom of the surface layer that result from moving loads with a constant amplitude.  
The material properties and geometry of the flexible pavement model and the dimensions of 
the tandem-axle loads used in this study (Figure 2.1) are listed in Table 4.1.  For the FFT in 
the moving and fixed spaces and transformed field domains of those spaces, we used 2,048 
for the number of transformed points and 1.27 cm (0.5 in.) for the distance increment.  The 
stresses considered in this study are tensile stresses in the longitudinal direction at the bottom 
of surface layer because transverse stresses are smaller than longitudinal stresses. 
 
 
 

Table 4.1.  Material properties and load geometry for flexible pavement model 
 

E 3,445 MPa (500 ksi) d1 17.78 cm (7 in.) 
ν 0.35 d2 20.32 cm (8 in.) 
k 27.2 MN/m3 (100 pci) dt 33 cm (13 in.) 
h 15.24 cm (6 in.) dw 188 cm (74 in.) 
m 354 kg/m2 (0.001305 lb sec2/in3) da 132 cm (52 in.) 
D 0.2 % c 6 MPa sec/m (22.12 lb sec/in3) 

Axle 
load 

-80 kN (-18 kip)   

 
 
 
 The differences in the responses under dual-wheel, dual-wheel single-axle, and dual-
wheel tandem-axle loads have been investigated first with a velocity of 40 km/h (25 mph), as 
shown in Figure 4.1.  If the flexible pavement is sufficiently large and the velocity is 
constant, the response to the moving loads will remain constant at any instant along the 
moving axis.  This means that the displacement and stress distributions are moving with the 
loads.  The displacement and stress distributions along the moving axis in the figure are 
shown at the y coordinate where the maximum deflection or stress occurs.  The location of 
the maximum response varies depending on the material properties, velocity, and load 
configurations.  The 0 distance in the figure represents the midpoint between the two axles.  
Dual-wheel and dual-wheel single-axle loads yield almost the same responses except that the 
dual-wheel single-axle loads yield a slightly larger maximum stress with no viscous damping.  
For the displacements, shown in Figure 4.1(a), the tandem-axle loads cause larger maximum 
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deflections than those obtained with the other loads, and the differences become significant 
with viscous damping.  Without viscous damping, the shape of pavement deflections is 
almost symmetric; however, with viscous damping, the shape is no longer symmetric, the 
peak displacement near the front-axle loads decreases, and the maximum deflection occurs 
near the rear-axle loads.  Note that because the material damping (linear hysteretic damping) 
of the system in this study is very small (D = 0.2 %), the response is essentially symmetric 
when there is no viscous damping.  However, if material damping is large, the response is not 
symmetric (Refs 7, 13).  For the stresses (Figure 4.1(b)), the tandem-axle loads yield slightly 
smaller maximum stress when there is no damping; however, with viscous damping, the 
maximum stresses near the loads are almost identical for the three loading cases.  For the rest 
of this paper, the responses from only tandem-axle, not single-axle, applications are presented 
because the tandem-axle loads cause most deflections and stresses comparable to single-axle 
loads and resulting pavement distresses. 

We next investigated the effects of velocity and material properties on the maximum 
deflection and stress.  Figures 4.2(a) and (b) show the effect of velocity for various viscous 
damping values.  The logical values of the velocities up to 150 km/h (95 mph) are used in 
this study.  If the system has no viscous damping, the increase in the maximum deflection and 
stress with velocity is negligible.  If there is viscous damping, the maximum deflection and 
stress decrease as the velocity becomes larger.  As the viscous damping constant increases, 
shown in Figures 4.2(c) and (d), the maximum deflection and stress decrease significantly.  It 
should be noted that the viscous damping constant depends largely on the binder contents in 
the asphalt mixtures and the types and moisture contents of underlying layers such as base, 
sub-base, and subgrade.  Figure 4.3 shows the effects of the stiffness of foundation and 
elastic modulus of surface layer on the maximum deflection and stress with viscous damping.  
The maximum deflection and stress decrease as the stiffness of foundation increases, as 
shown in Figures 4.3(a) and (b), with more pronounced effect on deflections than on stresses.  
As shown in Figure 4.3(c), the maximum deflection decreases as the elastic modulus of the 
surface layer becomes larger; on the other hand, the maximum stress increases significantly 
as the elastic modulus increases, as shown in Figure 4.3(d). 
 

4.2  RESPONSE TO MOVING ARBITRARY LOADS 

 
The roughness of the pavement surface will cause a variation in load amplitude when 

a truck is moving.  We have investigated the displacement and stress responses that result 
from this arbitrary variation of the load.  Eqs. 2.5, 2.6, 2.7, and 2.27 are used to calculate 
stresses.  As explained in the previous chapter, to obtain the time histories of the dynamic 
forces on the front and rear tandem-axle tires, a computer program developed to predict the 
wheel loads in the TxMLS research project has been used with three different pavement 
profiles (Refs 15, 16).  One is a perfectly smooth profile and the others are profiles 
corresponding to PSI values of 4.5 and 2.0.  Figure 3.4 shows the dynamic loads caused by 
various pavement roughnesses under the wheels of the front and rear tandem axles when a 
velocity is 32 km/h (20 mph). 
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Figure 4.1.  Comparison of responses among dual-wheel, single-axle, and tandem-axle 

loads: (a) on displacements; (b) on stresses (unit of c = MPa sec/m) (1 MPa = 145 psi, 1 m = 
3.28 ft, 1 mm = 0.0394 in., 1 MPa sec/m = 3.69 psi sec/in.) 
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Figure 4.2.  Effects of velocity and viscous damping on maximum deflection and stress 
(1 MPa = 145 psi, 1 mm = 0.0394 in., 1 MPa sec/m = 3.69 psi sec/in., 1 km/h = 0.63 mph) 
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Figure 4.3.  Effects of foundation stiffness and elastic modulus on maximum deflection and 
stress (1 MPa = 145 psi, 1 mm = 0.0394 in., 1 MN/m3 = 3.68 pci, 1 km/h = 0.63 mph) 
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The time histories of deflections and stresses under the front- and rear-axle tires at the 

coordinates of {η0 + 132 cm, y0 + 4 cm} and {η0, y0 + 4 cm} are shown in Figures 4.4 and 
4.5, respectively.  The time histories of the deflection and stress are similar to those of the 
load (Figure 3.4).  The deflections under the rear-axle tires are larger than those under the 
front-axle tires, as shown in Figure 4.4.  The increments of the maximum deflections on the 
PSI 2.0 pavement, compared with the ideal pavement are about 28 percent and 25 percent 
under the front- and rear-axle tires, respectively.  The stresses under the front- and rear-axle 
tires are similar (Figure 4.5), and the maximum stresses on the PSI 2.0 pavement are about 30 
percent greater than the stress on the perfectly smooth pavement. This analysis shows a 
significant effect of pavement roughness on wheel-load deflections and stresses as well as on 
the subsequent rutting and fatigue life of pavements.  This analysis supports the specification 
changes state highway agencies have been making to improve pavement smoothness. 

 

4.3  RESPONSE TO MOVING HARMONIC LOADS 

 
As discussed above, the actual loads cause variations in amplitude because of the 

surface roughness, and there is a phase between the front- and rear-axle loads.  It was also 
shown that these variations affect pavement responses significantly.  In order to further 
investigate the effect of the load variation on the responses, we considered the moving 
tandem-axle loads with harmonic variations.  Figures 4.6 and 4.7 show the displacement and 
stress distributions near the loads along the moving axis with a velocity of 40 km/h (25 mph).  
Because the responses under the moving harmonic loads change with time, the figures show 
the maximum amplitudes of the responses along the moving coordinates, and those shapes do 
not necessarily occur at the same time.  When there is no viscous damping, as shown in 
Figure 4.6(a), the displacement distributions are symmetric with respect to the midpoint 
between the two axles and the maximum deflection increases as the load frequency increases.  
Also, for a given frequency, a phase of 0 degrees causes higher deflections than a phase of 
180 degrees.  The 0 deflection with a phase of 180 degrees at the midpoint between the two 
axles is obtained because the influence of the front- and rear-axle loads is the same and the 
signs of the deflections resulting from those loads are opposite.  If there is viscous damping 
(Figure 4.6(b)), the distribution is no longer symmetric and the maximum deflections are 
smaller than those without viscous damping.  Note also that the maximum deflections 
decrease as frequency increases, which is an effect opposite to that of no viscous damping.  
Compared with the results without viscous damping, the effect of frequency on deflections is 
more pronounced.  In addition, the effect of phase is more pronounced at a low frequency 
than at a high one.  For the stress distributions without damping, shown in Figure 4.7(a), 
frequency does not have a significant effect, but phase does.  In distributions with viscous 
damping, shown in Figure 4.7(b), frequency has a substantial effect on stresses.  On the other 
hand, phase has only a moderate effect. 
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Figure 4.4.  Time history of deflection for various pavement surface roughnesses: (a) under 
front-axle tires; (b) under rear-axle tires (1 mm = 0.0394 in.) 
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Figure 4.5.  Time history of stress for various pavement surface roughnesses: (a) under 
front-axle tires; (b) under rear-axle tires (1 MPa = 145 psi) 
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Figure 4.6.  Displacement distribution: (a) when c = 0; (b) when c = 6 MPa sec/m 
(1 mm = 0.0394 in., 1 m = 3.28 ft) 
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Figure 4.7.  Stress distribution: (a) when c = 0; (b) when c = 6 MPa sec/m 
(1 MPa = 145 psi, 1 m = 3.28 ft) 
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Further studies have been conducted to investigate the effects of frequency, velocity, 
and phase on the maximum deflection and stress with viscous damping.  Figure 4.8 shows the 
effect of load frequency.  For a low velocity of 40 km/h (25 mph), the maximum deflections 
and stresses decrease as the frequency increases.  With a high velocity of 120 km/h (76 mph), 
the maximum deflections decrease as the frequency increases if there is no phase (Figure 
4.8(a)); however, with a phase of 180 degrees (Figure 4.8(b)), the maximum deflections 
increase initially and then decrease as the frequency becomes larger.  This relationship can 
also be observed for the maximum stresses, as shown in Figures 4.8(c) and (d).  The effect of 
velocity on deflections and stresses is shown in Figure 4.9.  With a phase of zero degrees, 
frequency has a significant effect on deflections, while its effect on stresses is more 
pronounced at low velocities than at high ones (Figures 4.9(a) and (c)).  For a phase angle of 
180 degrees, velocity has a substantial effect on the deflections at a frequency of 5 Hz, with 
deflections decreasing as velocity increases over 50 km/h.  At a frequency of 20 Hz, 
deflections increase with the velocity.  As for the effect on stresses, velocity does not have a 
significant effect at a frequency of 20 Hz, but at 5 Hz frequency, stresses decrease with 
velocity for both phases.  The effect of phase between the front- and rear-axle loads is shown 
in Figure 4.10.  At the frequency of 5 Hz, the phase effect is more pronounced on deflections 
than on stresses.  At the frequency of 20 Hz, the phase angle has a more pronounced effect on 
deflections and stresses at a high velocity than at a low velocity.  This phase effect cannot be 
obtained with single-axle loads; therefore, the use of tandem-axle loads to find the accurate 
pavement response is necessary. 
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Figure 4.8.  Effect of load frequency: (a) on maximum deflection when phase = 0; (b) when 

phase = 180 deg.; (c) on maximum stress when phase = 0; (d) when phase = 180 deg. 
(1 MPa = 145 psi, 1 mm = 0.0394 in., 1 km/h = 0.63 mph) 
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Figure 4.9.  Effect of velocity: (a) on maximum deflection when phase = 0; (b) when phase = 

180 deg.; (c) on maximum stress when phase = 0; (d) when phase = 180 deg. 
(1 MPa = 145 psi, 1 mm = 0.0394 in., 1 km/h = 0.63 mph) 
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Figure 4.10.  Effect of phase between front- and rear-axle loads: (a) on maximum deflection 
when frequency = 5 Hz; (b) when frequency = 15 Hz; (c) on maximum stress when frequency 

= 5 Hz; (d) when frequency = 15 Hz (1 MPa = 145 psi, 1 mm = 0.0394 in., 
1 km/h = 0.63 mph) 
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3.4  SUMMARY 

 
This report has investigated the dynamic displacement and stress responses of flexible 

pavements under moving loads of constant amplitude and harmonic and arbitrary variations.  
The flexible pavement has been modeled using a plate of infinite extent on a viscoelastic 
foundation.  We have developed formulations in the transformed field domains of time, 
space, and moving space, as explained in Chapter 2.  From the developed formulations, 
extensive parametric studies could be conducted.  The results of our analysis point to the 
following conclusions: 

 
• The pavement responses under moving dual-wheel and dual-wheel single-axle loads of 

constant amplitude are almost the same.  The dual-wheel tandem-axle loads, however, 
yield larger maximum deflections and slightly smaller or almost equal maximum stresses 
depending on the presence of viscous damping. 

• For the moving tandem-axle loads of constant amplitude, the following results were 
shown: 
- Without viscous damping, the response is symmetric with respect to the center of the 

tandem-axle loads, and the maximum deflection and stress increase slightly with 
increasing velocity.  With viscous damping, the response is no longer symmetric, the 
maximum deflection occurs under the rear-axle loads, and the maximum deflection and 
stress decrease with increasing velocity. 

- The maximum deflection and stress decrease as the viscous damping value or 
foundation stiffness increase.  Therefore, a stiffer foundation can reduce rutting and 
cracking. 

- The maximum deflection decreases and the maximum stress increases as the elastic 
modulus of the surface layer increases. 

• For the moving tandem-axle loads of arbitrary variation caused by pavement surface 
roughness, the maximum load amplitude and corresponding deflection and stress increase 
significantly compared to those obtained with the ideally smooth pavement. 

• For the moving tandem-axle loads of harmonic variation, the following results were 
shown: 
- Without viscous damping, the maximum deflection and stress increase with increasing 

load frequency and the phase between the front- and rear-axle loads make the maximum 
deflection smaller but the maximum stress larger. 

- With viscous damping, the maximum deflection and stress decrease with increasing 
frequency for a low velocity, but the initial increase in the maximum deflection and 
stress can be observed within low frequencies for a high velocity.  The maximum 
deflection and stress increase initially and decrease again with increasing velocity for a 
low frequency, but for a high frequency, they tend to increase with increasing velocity. 

- The phase between the front- and rear-axle loads can make the maximum deflection and 
stress significantly larger.  Because the phase effect cannot be considered with single-
axle loads, the use of tandem-axle loads is necessary to find the accurate pavement 
stresses. 



 44 

 
 
 



 

 45 

CHAPTER 5.  INTEGRATING THE EFFECT OF MOVING TANDEM-AXLE 
LOADS INTO THE CRCP-10 COMPUTER PROGRAM 

 

5.1  WHEEL LOAD STRESS CALCULATION IN PREVIOUS CRCP PROGRAMS 

 
In the previous CRCP computer programs, including CRCP-8 (Ref 11) and CRCP-9 

(Refs 8, 9, 10), the stresses caused by wheel load applications are calculated using 
Westergaard equations considering a single wheel load in the interior of a slab (Ref 1).  If the 
external load is applied to any finite element node, this load will act as a line load because the 
finite element model developed for CRCP-9 is two dimensional.  Therefore, the stresses 
caused by wheel loads have been obtained using Westergaard equations by 
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where h is the thickness of the slab in inches, ν is Poisson’s ratio, and P is the magnitude of 
the load in pounds.  The radius of relative stiffness l is defined by 
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where E is the modulus of elasticity and k is the modulus of subgrade reaction.  In Eq. 5.1, b 
is defined by 
 

ab =     when  ha 724.1≥    (5.3) 
 

hhab 675.06.1 22 −+=  when  ha 724.1< ,   (5.4) 
 

where a is the radius of the circular loaded area. 
The stresses caused by the environmental loads are calculated by using the finite 

element model, the stresses caused by the external wheel loads are calculated by the above 
Westergaard equations, and those stresses are added to yield the concrete stresses that result 
from the combined effects in the slab.  With this approach, the effect of multiple wheel loads 
such as dual tires, single axles, and tandem axles is ignored.  Moreover, because the stress 
obtained using the above equations is static, the effect of the dynamic variation of the moving 
load is also ignored. 
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5.2  WHEEL LOAD STRESS CALCULATION IN CRCP-10 

 
In order to include the effects of multiple wheel loads and dynamic variation of the 

moving loads, we have used the formulations explained in Chapter 2 to obtain critical wheel 
load stresses in the concrete pavement systems.  The final critical tensile stresses can be 
obtained by comparing three different stresses including wheel load stresses obtained from 
the formulations developed in this study; environmental load stresses obtained from the finite 
element model; and the combined stresses, obtained by adding wheel load and environmental 
load stresses.  Because the wheel load stresses do not always exist, the critical stresses may 
be only the environmental stresses or the combined stresses of wheel loads and 
environmental loads.  Figure 5.1 shows the methodology to find the critical stress 
distributions through the depth of the concrete slab.  In the examples shown in the figure, the 
critical stresses of the upper half of the concrete slab are the stresses induced by the 
environmental loads because the wheel loads induce compressive stresses in the upper half of 
the slab.  On the other hand, the combined stresses of environmental load and wheel load 
stresses are the critical stresses through the lower half of the concrete slab because the wheel 
loads induce tensile stresses in the lower half of the slab.  We also found that the maximum 
tensile stress can occur at the bottom, not always at the surface, and can occur when the 
temperature increases, not always when the temperature drops.  In this case, a new crack will 
be initiated from the bottom. 

 

 
Figure 5.1.  Critical stress distribution through depth: (a) when temperature drops and 

maximum tensile stress occurs at surface; (b) when temperature increases and maximum 
tensile stress occurs at bottom 
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The input screen in CRCP-10 for the wheel load stress calculation is shown in Figure 
5.2.  Users can select one of two different options for the wheel load calculation: One is to 
consider the single static wheel load, which is the same input in CRCP-9; the other considers 
the moving dynamic tandem-axle loads.  For load geometry, the needed input variables 
include center-to-center distance between dual tires, distance between axles, center-to-center 
distance between left and right wheels, and loaded lengths of the tire print in the longitudinal 
and transverse directions.  For the time history of the load variation, two kinds of moving 
loads can be defined.  One is the moving load of constant amplitude, and the other is the 
moving load of harmonic variation.  For the moving load of constant amplitude, it is assumed 
that the load amplitude is constant when the load is moving.  For the moving load of 
harmonic variation, it is assumed that the load amplitude changes with time.  Figure 5.3 
shows the definitions of the input variables for the load time history.  In the input screen 
(Figure 5.2), the average single-axle load is A in Figure 5.3, the half amplitude is B, the load 
frequency is f, and the phase angle is θ.  Other input variables include vehicle speed, viscous 
damping coefficient of underlying layers, and linear hysteretic damping of underlying layers.  
The effects of these input variables have been investigated in Chapters 3 and 4.  The 
subroutine program to calculate critical stresses under the moving dynamic tandem-axle loads 
is listed in Appendix A. 

 
 

 
 
 

Figure 5.2.  Input screen to define moving tandem-axle loads 
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Figure 5.3.  Definition of load time history 
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CHAPTER 6.  SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

6.1  SUMMARY 

 
This report has investigated the dynamic displacement and stress responses of rigid 

and flexible pavements subjected to moving tandem-axle loads of constant amplitude and 
harmonic and arbitrary variations.  The pavement systems have been modeled using a plate of 
infinite extent on a viscoelastic foundation.  We have developed formulations in the 
transformed field domain using the following: (1) a double Fourier transform in space and 
moving space for moving loads of constant amplitude; (2) a triple Fourier transform in time, 
space, and moving space for moving loads of arbitrary variation; and (3) a double Fourier 
transform in space and moving space for the steady-state response to moving harmonic loads.  
The effects of viscous damping, vehicle speed, load frequency, and phase between front and 
rear axle loads on the maximum deflection and stress have been investigated.  The deflection 
and stress distributions near the loads have also been analyzed.  The results of our analysis of 
viscoelasticity show significant differences from those obtained with an elastic system.  The 
pavement surface roughness causes dynamic variations in the load amplitude, and the 
maximum deflection and stress can significantly increase accordingly.  The variation in the 
load amplitude and the differences in the phase angles between front- and rear-axle loads can 
make the maximum deflection and stress considerably larger.  The use of tandem-axle loads 
is necessary to find the accurate responses because the phase effect cannot be considered with 
single axle loads.  The formulations developed to find the wheel load stresses that result from 
the moving tandem-axle loads have been integrated into CRCP-10, which is the updated 
computer program of CRCP-9. 
 

6.2  CONCLUSIONS 

 
This study was conducted to develop formulations for the pavement stress calculation under 
the moving tandem-axle loads and to investigate rigid and flexible pavement responses to 
those loads.  It points to the following conclusions: 
 
1. By using the developed formulations in the transformed field domain, one can efficiently 

obtain the pavement deflection and stress under the moving dynamic tandem-axle loads. 
2. For the moving tandem-axle loads of constant amplitude we found the following: (1) 

without viscous damping, the displacement and stress distributions are symmetric with 
respect to the midpoint of the tandem-axle loads, and the maximum deflection and stress 
remain almost the same regardless of velocity; and (2) with viscous damping, the 
displacement and stress distributions are no longer symmetric; the maximum deflection 
and stress initially increase slightly and then decrease with increasing velocity; and the 
maximum deflection and stress occur under the rear-axle loads. 
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3. For the moving tandem-axle loads of arbitrary variation caused by pavement surface 
roughness, the maximum load amplitude and corresponding deflection and stress increase 
significantly compared to those obtained with the ideally smooth pavement. 

4. For the moving tandem-axle loads of harmonic variation we found the following: (1) 
without viscous damping, the maximum stress is not much affected by the load frequency 
for concrete pavements; the maximum deflection and stress increase with increasing load 
frequency, and the phase between the front- and rear-axle loads makes the maximum 
deflection smaller but the maximum stress larger for flexible pavements; (2) with viscous 
damping, the displacement and stress distributions are affected significantly by the load 
frequency, and the maximum deflection and stress tend to decrease as the load frequency 
increases; and (3) the phase between front- and rear-axle loads can make the maximum 
deflection and stress significantly larger.  Because the phase effect cannot be considered 
with single-axle loads, the use of tandem-axle loads to find the accurate pavement 
stresses is necessary. 

5. The CRCP-10 computer program includes the effect of the moving dynamic tandem-axle 
loads. 

 

6.3  RECOMMENDATIONS 

 
The above summary and conclusions clearly indicate the significant effects pavement 

roughness has on wheel load deflections and stresses, and on the subsequent rutting and 
fatigue life of pavement systems.  The current practice of analysis using static loads will 
underestimate the maximum wheel load deflections and stresses, and the resulting pavement 
design will be less conservative.  Considering ever-increasing public pressure to provide 
optimal pavement systems with limited resources, it is important to estimate wheel load 
deflections and stresses and the resulting pavement remaining lives accurately for input into 
pavement management systems.  Further research is needed in this area to identify 
characteristics of pavement systems and truck configurations that have an effect on dynamic 
responses of pavement systems.  In addition, to improve the accuracy of the CRCP-10 
computer program, the calibration of the program with field data should be further performed 
to obtain more reasonable ranges of input values and analysis results.  Because the wheel load 
stress calculation procedure included in the program ignores discontinuities at cracks, joints, 
and edges of the pavement, further research is needed to find their effects. 
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C******************************************************************************** 
      SUBROUTINE WHEELMV(H,E,POI,AK,WEIGHT,DX,DY, 
     +           DISTIRE,DISWH,DISAX,DEGREE,VEL,PAMP,PAMPH,OMHZ,VDAMP, 
     +           HDAMP,WHSTR) 
C 
C     THIS SUBROUTINE IS USED TO ANALYZE LONGITUDINAL STRESS RESPONSE 
C     FOR A PLATE ON VISCOELASTIC FOUNDATION WITH INFINITE LENGTH DUE 
C     TO THE MOVING TANDEM (TWO AXLE) LOADS WITH CONSTANT AND HARMONIC 
C     VARIATIONS. 
C     INSTEAD OF SUPERPOSITION, DIFFERENT LOAD GEOMETRIES ARE USED. 
C     ONLY IFT IS USED FOR SPACE AND MOVING SPACE. 
C 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION RESP(2050),REC(2050) 
      DIMENSION SIG(1025,1025) 
      COMPLEX*16 CRESP(1025),CREC(1025) 
      COMPLEX*16 TRF,CFX,CFY,AK1,CTOT(1025,1025) 
      EQUIVALENCE (CRESP(1),RESP(1)),(CREC(1),REC(1)) 
C 
C DX: TIRE CONTACT LENGTH IN X-DIRECTION 
C DY: TIRE CONTACT LENGTH IN Y-DIRECTION 
C VEL: LOAD VELOCITY 
C VDAMP: VISCOUS DAMPING COEFFICIENT (C VALUE) 
C HDAMP: MATERIAL DAMPING (LINEAR HYSTERETIC DAMPING) COEFFICIENT 
C E: ELASTIC MODULUS 
C H: THICKNESS 
C POI: POISSON'S RATIO 
C AK: STIFFNESS PER UNIT OF AREA 
C PAMP: TOTAL LOAD ON EACH TIRE PRINT AREA 
C PAMPH: PEAK HARMONIC LOAD ON EACH TIRE PRINT AREA 
C OMHZ: LOAD FREQUENCY (HZ) 
C DISTIRE: CENTER-TO-CENTER DISTANCE BETWEEN DUAL TIRES 
C DISWH: CENTER-TO-CENTER DISTANCE BETWEEN LEFT AND RIGHT TIRES 
C DISAX: CENTER-TO-CENTER DISTANCE BETWEEN AXLES 
C DEGREE: PHASE ANGLE (DEGREE) BETWEEN AXLES 
C 
C AM: MASS DENSITY PER UNIT OF AREA 
 AM=0.0000015*WEIGHT*H 
C DL: DELTA LENGTH (in.) 
C NPTRL: NO. OF TRANSFORMED POINTS 
C X0: X-COORDINATE OF THE CENTER OF REAR RIGHT OUTSIDE TIRE (in.) 
 DL=1.0 
 NPTRL=1024 
 X0=500. 
C 
C IF(OMHZ.EQ.0.) PAMPH=0. 
 IF(PAMPH.EQ.0.) OMHZ=0. 

DD=E*H**3/(12.*(1.-POI**2)) 
ALTOT=NPTRL*DL 
NPL2=NPTRL/2 
PI=DACOS(-1.D0) 
PI2=PI*2.D0 
DXI=PI2/ALTOT 

 Y0=FLOAT(NPL2)*DL 
OMEGA=OMHZ*PI2 

 PHSLD=DEGREE*PI/180. 
 CONST=E*H/(-2.*(1.-POI*POI)) 
 VIS=VDAMP 
 DO I=1,NPTRL+1 
 DO J=1,NPTRL+1 
    SIG(I,J)=0. 
 ENDDO 
 ENDDO 
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C 
DX2=DX/2. 
DY2=DY/2. 

c 
 INDEX=1 
 IF(PAMPH.EQ.0.) INDEX=2 
  123 CONTINUE 
 IF(INDEX.EQ.1) THEN 
   Q=PAMPH/(DX*DY) 
 ELSE 

  Q=PAMP/(DX*DY) 
   OMEGA=0. 
   PHSLD=0. 
 ENDIF 
C 
      DO I=1,NPTRL+1 
      CRESP(I)=0. 
      CREC(I)=0. 
      ENDDO 
C 
      DO 1000 KIM=1,NPL2 
      IF(KIM.EQ.1) THEN 
      AIX=0.001 
      ELSE 
      AIX=KIM-1 
      ENDIF 
      XIX=AIX*DXI 
      XIX2=XIX*XIX 
      CFX=(CDEXP((0.,1.)*XIX*DX2)-CDEXP(-(0.,1.)*XIX*DX2))/ 
     +    XIX*(-(0.,1.))*(CDEXP(-(0.,1.)*XIX*X0)+CDEXP(-(0.,1.)*XIX* 
     +    (X0+DISAX))*CDEXP((0.,1.)*PHSLD)) 
C 
      DO 31 MIN=1,NPL2 
      IF(MIN.EQ.1) THEN 
      AI=0.001 
      ELSE 
      AI=MIN-1 
      ENDIF 
      XIY=AI*DXI 
      XIY2=XIY*XIY 
 IF((OMEGA-VEL*XIX).LT.0.) AK1=AK*(1.-2.*(0.,1.)*HDAMP) 
 IF((OMEGA-VEL*XIX).EQ.0.) AK1=AK 
 IF((OMEGA-VEL*XIX).GT.0.) AK1=AK*(1.+2.*(0.,1.)*HDAMP) 
      TRF=1./(AK1+DD*(XIX2+XIY2)**2-AM*(OMEGA-VEL*XIX)**2+VIS*(0.,1.)* 
     +    (OMEGA-VEL*XIX))*(XIX2+POI*XIY2) 
      CFY=-Q*(CDEXP((0.,1.)*XIY*DY2)-CDEXP(-(0.,1.)*XIY*DY2 
     +    ))/XIY*(0.,1.)*(CDEXP(-(0.,1.)*XIY*Y0)+CDEXP(-(0.,1.)*XIY* 
     +    (Y0+DISTIRE))+CDEXP(-(0.,1.)*XIY*(Y0+DISWH))+CDEXP(-(0.,1.)* 
     +    XIY*(Y0+DISTIRE+DISWH))) 
      CRESP(MIN)=CFY*TRF*DXI/PI2 
C 
 II=NPTRL+2-MIN 
 IF(MIN.EQ.1) THEN 
   AI=0.001 
 ELSE 
   AI=MIN-1 
 ENDIF 
      XIY=-AI*DXI 
      XIY2=XIY*XIY 
 IF((OMEGA-VEL*XIX).LT.0.) AK1=AK*(1.-2.*(0.,1.)*HDAMP) 
 IF((OMEGA-VEL*XIX).EQ.0.) AK1=AK 
 IF((OMEGA-VEL*XIX).GT.0.) AK1=AK*(1.+2.*(0.,1.)*HDAMP) 
      TRF=1./(AK1+DD*(XIX2+XIY2)**2-AM*(OMEGA-VEL*XIX)**2+VIS*(0.,1.)* 
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     +    (OMEGA-VEL*XIX))*(XIX2+POI*XIY2) 
      CFY=-Q*(CDEXP((0.,1.)*XIY*DY2)-CDEXP(-(0.,1.)*XIY*DY2 
     +    ))/XIY*(0.,1.)*(CDEXP(-(0.,1.)*XIY*Y0)+CDEXP(-(0.,1.)*XIY* 
     +    (Y0+DISTIRE))+CDEXP(-(0.,1.)*XIY*(Y0+DISWH))+CDEXP(-(0.,1.)* 
     +    XIY*(Y0+DISTIRE+DISWH))) 
      CRESP(II)=CFY*TRF*DXI/PI2 
   31 CONTINUE 
      CRESP(NPL2+1)=0. 
      CALL FOUR2(RESP,NPTRL,1,1,1) 
C 
 DO I=1,NPTRL+1 
         CTOT(KIM,I)=CRESP(I)*CFX*DXI/PI2*CONST 
 ENDDO 
C 
 KIMM=NPTRL+2-KIM 
 IF(KIM.EQ.1) THEN 
   AIX=0.001 
 ELSE 
   AIX=KIM-1 
 ENDIF 
      XIX=-AIX*DXI 
      XIX2=XIX*XIX 
      CFX=(CDEXP((0.,1.)*XIX*DX2)-CDEXP(-(0.,1.)*XIX*DX2))/ 
     +    XIX*(-(0.,1.))*(CDEXP(-(0.,1.)*XIX*X0)+CDEXP(-(0.,1.)*XIX* 
     +    (X0+DISAX))*CDEXP((0.,1.)*PHSLD)) 
C 
      DO 32 MIN=1,NPL2 
      IF(MIN.EQ.1) THEN 
      AI=0.001 
      ELSE 
      AI=MIN-1 
      ENDIF 
      XIY=AI*DXI 
      XIY2=XIY*XIY 
 IF((OMEGA-VEL*XIX).LT.0.) AK1=AK*(1.-2.*(0.,1.)*HDAMP) 
 IF((OMEGA-VEL*XIX).EQ.0.) AK1=AK 
 IF((OMEGA-VEL*XIX).GT.0.) AK1=AK*(1.+2.*(0.,1.)*HDAMP) 
      TRF=1./(AK1+DD*(XIX2+XIY2)**2-AM*(OMEGA-VEL*XIX)**2+VIS*(0.,1.)* 
     +    (OMEGA-VEL*XIX))*(XIX2+POI*XIY2) 
      CFY=-Q*(CDEXP((0.,1.)*XIY*DY2)-CDEXP(-(0.,1.)*XIY*DY2 
     +    ))/XIY*(0.,1.)*(CDEXP(-(0.,1.)*XIY*Y0)+CDEXP(-(0.,1.)*XIY* 
     +    (Y0+DISTIRE))+CDEXP(-(0.,1.)*XIY*(Y0+DISWH))+CDEXP(-(0.,1.)* 
     +    XIY*(Y0+DISTIRE+DISWH))) 
      CRESP(MIN)=CFY*TRF*DXI/PI2 
C 
 II=NPTRL+2-MIN 
 IF(MIN.EQ.1) THEN 
   AI=0.001 
 ELSE 
   AI=MIN-1 
 ENDIF 
      XIY=-AI*DXI 
      XIY2=XIY*XIY 
 IF((OMEGA-VEL*XIX).LT.0.) AK1=AK*(1.-2.*(0.,1.)*HDAMP) 
 IF((OMEGA-VEL*XIX).EQ.0.) AK1=AK 
 IF((OMEGA-VEL*XIX).GT.0.) AK1=AK*(1.+2.*(0.,1.)*HDAMP) 
      TRF=1./(AK1+DD*(XIX2+XIY2)**2-AM*(OMEGA-VEL*XIX)**2+VIS*(0.,1.)* 
     +    (OMEGA-VEL*XIX))*(XIX2+POI*XIY2) 
      CFY=-Q*(CDEXP((0.,1.)*XIY*DY2)-CDEXP(-(0.,1.)*XIY*DY2 
     +    ))/XIY*(0.,1.)*(CDEXP(-(0.,1.)*XIY*Y0)+CDEXP(-(0.,1.)*XIY* 
     +    (Y0+DISTIRE))+CDEXP(-(0.,1.)*XIY*(Y0+DISWH))+CDEXP(-(0.,1.)* 
     +    XIY*(Y0+DISTIRE+DISWH))) 
      CRESP(II)=CFY*TRF*DXI/PI2 
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   32 CONTINUE 
      CRESP(NPL2+1)=0. 
      CALL FOUR2(RESP,NPTRL,1,1,1) 
C 
 DO I=1,NPTRL+1 
         CTOT(KIMM,I)=CRESP(I)*CFX*DXI/PI2*CONST 
 ENDDO 
 1000 CONTINUE 
C 
 DO I=1,NPTRL+1 
         CTOT(NPL2+1,I)=0. 
 ENDDO 
C 
 DO J=1,NPTRL+1 
    DO I=1,NPTRL+1 
       CREC(I)=CTOT(I,J) 
    ENDDO 
C 
         CALL FOUR2(REC,NPTRL,1,1,1) 
C 
    DO I=1,NPTRL+1 
       CTOT(I,J)=CREC(I) 
    ENDDO 
 ENDDO 
C 
 NDISWH=DISWH/DL 
 NDISTIRE=DISTIRE/DL 
 NDISWT=NDISWH+NDISTIRE 
 NDISWT2=NDISWT/2 
C 
 AMAX=0. 
 DO I=1,NPTRL+1 
    DO J=1,NPL2+1+NDISWT2 
   IF(index.NE.1) THEN 
      SIG(I,J)=SIG(I,J)+REAL(CTOT(I,J)) 
       IF(SIG(I,J).GT.AMAX) THEN 
      AMAX=SIG(I,J) 
         IAMAX=I 
         JAMAX=J 
       ENDIF 
   ELSE 
      SIG(I,J)=CDABS(CTOT(I,J)) 
   ENDIF 
    ENDDO 
 ENDDO 
C 
 IF(INDEX.EQ.1) then 
   INDEX=2 
   GO TO 123 
 ENDIF 
C 
 WHSTR=AMAX 
C 
 RETURN 

END 
C******************************************************************************** 
C     --------------------------------------------------------------------------- 
      SUBROUTINE FOUR2 (DATA,N,NDIM,ISIGN,IFORM) 
      IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(I-N) 
      DIMENSION DATA(1), N(1)  
      NTOT=1 
      DO 10 IDIM=1,NDIM 
 10   NTOT=NTOT*N(IDIM) 
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      IF (IFORM) 70,20,20 
 20   NREM=NTOT 
      DO 60 IDIM=1,NDIM 
      NREM=NREM/N(IDIM) 
      NPREV=NTOT/(N(IDIM)*NREM) 
      NCURR=N(IDIM)  
      IF (IDIM-1+IFORM) 30,30,40 
 30   NCURR=NCURR/2  
 40   CALL BITRV (DATA,NPREV,NCURR,NREM) 
      CALL COOL2 (DATA,NPREV,NCURR,NREM,ISIGN) 
      IF (IDIM-1+IFORM) 50,50,60 
 50   CALL FIXRL (DATA,N(1),NREM,ISIGN,IFORM) 
      NTOT=(NTOT/N(1))*(N(1)/2+1) 
 60   CONTINUE 
      RETURN 
 70   NTOT=(NTOT/N(1))*(N(1)/2+1) 
      NREM=1 
      DO 100 JDIM=1,NDIM 
      IDIM=NDIM+1-JDIM 
      NCURR=N(IDIM)  
      IF (IDIM-1) 80,80,90 
 80   NCURR=NCURR/2  
      CALL FIXRL (DATA,N(1),NREM,ISIGN,IFORM) 
      NTOT=NTOT/(N(1)/2+1)*N(1) 
 90   NPREV=NTOT/(N(IDIM)*NREM) 
      CALL BITRV (DATA,NPREV,NCURR,NREM) 
      CALL COOL2 (DATA,NPREV,NCURR,NREM,ISIGN) 
 100  NREM=NREM*N(IDIM) 
      RETURN 
      END 
C     --------------------------------------------------------------------------- 
C     --------------------------------------------------------------------------- 
      SUBROUTINE BITRV (DATA,NPREV,N,NREM) 
      IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(I-N) 
C     SHUFFLE THE DATA BY 'BIT REVERSAL'. 
C     DIMENSION DATA(NPREV,N,NREM) 
C     DATA(I1,I2REV,I3) = DATA(I1,I2,I3), FOR ALL I1 FROM 1 TO NPREV,  
C     ALL I2 FROM 1 TO N (WHICH MUST BE A POWER OF TWO), AND ALL I3 
C     FROM 1 TO NREM, WHERE I2REV-1 IS THE BITWISE REVERSAL OF I2-1. 
C     FOR EXAMPLE, N = 32, I2-1 = 10011 AND I2REV-1 = 11001. 
      DIMENSION DATA(1) 
      IP0=2 
      IP1=IP0*NPREV  
      IP4=IP1*N 
      IP5=IP4*NREM 
      I4REV=1 
      DO 60 I4=1,IP4,IP1 
      IF (I4-I4REV) 10,30,30 
 10   I1MAX=I4+IP1-IP0 
      DO 20 I1=I4,I1MAX,IP0 
      DO 20 I5=I1,IP5,IP4 
      I5REV=I4REV+I5-I4 
      TEMPR=DATA(I5) 
      TEMPI=DATA(I5+1) 
      DATA(I5)=DATA(I5REV) 
      DATA(I5+1)=DATA(I5REV+1) 
      DATA(I5REV)=TEMPR 
 20   DATA(I5REV+1)=TEMPI 
 30   IP2=IP4/2 
 40   IF (I4REV-IP2) 60,60,50  
 50   I4REV=I4REV-IP2 
      IP2=IP2/2 
      IF (IP2-IP1) 60,40,40 
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 60   I4REV=I4REV+IP2 
      RETURN 
      END 
C     --------------------------------------------------------------------------- 
C     --------------------------------------------------------------------------- 
      SUBROUTINE COOL2 (DATA,NPREV,N,NREM,ISIGN) 
      IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(I-N) 
C     FOURIER TRANSFORM OF LENGTH N BY THE COOLEY-TUKEY ALGORITHM. 
C     BIT-REVERSED TO NORMAL ORDER. 
C     DIMENSION DATA(NPREV,N,NREM) 
C     COMPLEX DATA 
C     DATA(I1,J2,I3) = SUM(DATA(I1,I2,I3)*EXP(ISIGN*2*PI*I*((I2-1)* 
C     (J2-1)/N))), SUMMED OVER I2 = 1 TO N FOR ALL I1 FROM 1 TO NPREV, 
C     J2 FROM 1 TO N AND I3 FROM 1 TO NREM.  N MUST BE A POWER OF TWO. 
C     FACTORING N BY FOURS SAVES ABOUT TWENTY FIVE PERCENT OVER FACTOR- 
C     ING BY TWOS. 
C     NOTE--IT IS NOT NECESSARY TO REWRITE THIS SUBROUTINE INTO COMPLEX 
C     NOTATION SO LONG AS THE FORTRAN COMPILER USED STORES REAL AND 
C     IMAGINARY PARTS IN ADJACENT STORAGE LOCATIONS.  IT MUST ALSO 
C     STORE ARRAYS WITH THE FIRST SUBSCRIPT INCREASING FASTEST. 
      DIMENSION DATA(1) 
      TWOPI=2.*(4.*DATAN(1.D0))*ISIGN 
      IP0=2 
      IP1=IP0*NPREV  
      IP4=IP1*N 
      IP5=IP4*NREM 
      IP2=IP1 
      NPART=N 
 10   IF (NPART-2) 50,30,20 
 20   NPART=NPART/4  
      GO TO 10 
C     DO A FOURIER TRANSFORM OF LENGTH TWO 
 30   IP3=IP2*2 
      DO 40 I1=1,IP1,IP0 
      DO 40 I5=I1,IP5,IP3 
      J0=I5 
      J1=J0+IP2 
      TEMPR=DATA(J1) 
      TEMPI=DATA(J1+1) 
      DATA(J1)=DATA(J0)-TEMPR  
      DATA(J1+1)=DATA(J0+1)-TEMPI 
      DATA(J0)=DATA(J0)+TEMPR  
 40   DATA(J0+1)=DATA(J0+1)+TEMPI 
      GO TO 140 
C     DO A FOURIER TRANSFORM OF LENGTH FOUR (FROM BIT REVERSED ORDER)  
 50   IP3=IP2*4 
      THETA=TWOPI/     (IP3/IP1) 
      SINTH= DSIN(THETA/2.) 
      WSTPR=-2.*SINTH*SINTH 
C     COS(THETA)-1, FOR ACCURACY. 
      WSTPI= DSIN(THETA) 
      WR=1. 
      WI=0. 
      DO 130 I2=1,IP2,IP1 
      IF (I2-1) 70,70,60 
 60   W2R=WR*WR-WI*WI 
      W2I=2.*WR*WI 
      W3R=W2R*WR-W2I*WI 
      W3I=W2R*WI+W2I*WR 
 70   I1MAX=I2+IP1-IP0 
      DO 120 I1=I2,I1MAX,IP0 
      DO 120 I5=I1,IP5,IP3 
      J0=I5 
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      J1=J0+IP2 
      J2=J1+IP2 
      J3=J2+IP2 
      IF (I2-1) 90,90,80 
C     APPLY THE PHASE SHIFT FACTORS 
 80   TEMPR=DATA(J1) 
      DATA(J1)=W2R*TEMPR-W2I*DATA(J1+1)  
      DATA(J1+1)=W2R*DATA(J1+1)+W2I*TEMPR 
      TEMPR=DATA(J2) 
      DATA(J2)=WR*TEMPR-WI*DATA(J2+1) 
      DATA(J2+1)=WR*DATA(J2+1)+WI*TEMPR  
      TEMPR=DATA(J3) 
      DATA(J3)=W3R*TEMPR-W3I*DATA(J3+1)  
      DATA(J3+1)=W3R*DATA(J3+1)+W3I*TEMPR 
 90   T0R=DATA(J0)+DATA(J1) 
      T0I=DATA(J0+1)+DATA(J1+1) 
      T1R=DATA(J0)-DATA(J1) 
      T1I=DATA(J0+1)-DATA(J1+1) 
      T2R=DATA(J2)+DATA(J3) 
      T2I=DATA(J2+1)+DATA(J3+1) 
      T3R=DATA(J2)-DATA(J3) 
      T3I=DATA(J2+1)-DATA(J3+1) 
      DATA(J0)=T0R+T2R 
      DATA(J0+1)=T0I+T2I 
      DATA(J2)=T0R-T2R 
      DATA(J2+1)=T0I-T2I 
      IF (ISIGN) 100,100,110 
 100  T3R=-T3R 
      T3I=-T3I 
 110  DATA(J1)=T1R-T3I 
      DATA(J1+1)=T1I+T3R 
      DATA(J3)=T1R+T3I 
 120  DATA(J3+1)=T1I-T3R 
      TEMPR=WR 
      WR=WSTPR*TEMPR-WSTPI*WI+TEMPR 
 130  WI=WSTPR*WI+WSTPI*TEMPR+WI 
 140  IP2=IP3 
      IF (IP3-IP4) 50,150,150  
 150  RETURN 
      END 
C     --------------------------------------------------------------------------- 
C     --------------------------------------------------------------------------- 
      SUBROUTINE FIXRL (DATA,N,NREM,ISIGN,IFORM) 
      IMPLICIT REAL*8(A-H,O-Z),INTEGER*4(I-N) 
C     FOR IFORM = 0, CONVERT THE TRANSFORM OF A DOUBLED-UP REAL ARRAY, 
C     CONSIDERED COMPLEX, INTO ITS TRUE TRANSFORM.  SUPPLY ONLY THE 
C     FIRST HALF OF THE COMPLEX TRANSFORM, AS THE SECOND HALF HAS 
C     CONJUGATE SYMMETRY.  FOR IFORM = -1, CONVERT THE FIRST HALF 
C     OF THE TRUE TRANSFORM INTO THE TRANSFORM OF A DOUBLED-UP REAL 
C     ARRAY.  N MUST BE EVEN.  
C     USING COMPLEX NOTATION AND SUBSCRIPTS STARTING AT ZERO, THE 
C     TRANSFORMATION IS-- 
C     DIMENSION DATA(N,NREM) 
C     ZSTP = EXP(ISIGN*2*PI*I/N) 
C     DO 10 I2=0,NREM-1 
C     DATA(0,I2) = CONJ(DATA(0,I2))*(1+I) 
C     DO 10 I1=1,N/4 
C     Z = (1+(2*IFORM+1)*I*ZSTP**I1)/2 
C     I1CNJ = N/2-I1 
C     DIF = DATA(I1,I2)-CONJ(DATA(I1CNJ,I2)) 
C     TEMP = Z*DIF 
C     DATA(I1,I2) = (DATA(I1,I2)-TEMP)*(1-IFORM) 
C 10  DATA(I1CNJ,I2) = (DATA(I1CNJ,I2)+CONJ(TEMP))*(1-IFORM) 
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C     IF I1=I1CNJ, THE CALCULATION FOR THAT VALUE COLLAPSES INTO 
C     A SIMPLE CONJUGATION OF DATA(I1,I2). 
      DIMENSION DATA(1) 
      TWOPI=2.*(4.*DATAN(1.D0))*ISIGN 
      IP0=2 
      IP1=IP0*(N/2)  
      IP2=IP1*NREM 
      IF (IFORM) 10,70,70 
C     PACK THE REAL INPUT VALUES (TWO PER COLUMN)  
 10   J1=IP1+1 
      III2=2 
      DATA(III2)=DATA(J1) 
      IF (NREM-1) 70,70,20 
 20   J1=J1+IP0 
      I2MIN=IP1+1 
      DO 60 I2=I2MIN,IP2,IP1 
      DATA(I2)=DATA(J1) 
      J1=J1+IP0 
      IF (N-2) 50,50,30 
 30   I1MIN=I2+IP0 
      I1MAX=I2+IP1-IP0 
      DO 40 I1=I1MIN,I1MAX,IP0 
      DATA(I1)=DATA(J1) 
      DATA(I1+1)=DATA(J1+1) 
 40   J1=J1+IP0 
 50   DATA(I2+1)=DATA(J1) 
 60   J1=J1+IP0 
 70   DO 80 I2=1,IP2,IP1 
      TEMPR=DATA(I2) 
      DATA(I2)=DATA(I2)+DATA(I2+1) 
 80   DATA(I2+1)=TEMPR-DATA(I2+1) 
      IF (N-2) 200,200,90 
 90   THETA=TWOPI/FLOAT(N) 
      SINTH= DSIN(THETA/2.) 
      ZSTPR=-2.*SINTH*SINTH 
      ZSTPI= DSIN(THETA) 
      ZR=(1.-ZSTPI)/2. 
      ZI=(1.+ZSTPR)/2. 
      IF (IFORM) 100,110,110 
 100  ZR=1.-ZR 
      ZI=-ZI 
 110  I1MIN=IP0+1 
      I1MAX=IP0*(N/4)+1 
      DO 190 I1=I1MIN,I1MAX,IP0 
      DO 180 I2=I1,IP2,IP1 
      I2CNJ=IP0*(N/2+1)-2*I1+I2 
      IF (I2-I2CNJ) 150,120,120 
 120  IF (ISIGN*(2*IFORM+1)) 130,140,140 
 130  DATA(I2+1)=-DATA(I2+1) 
 140  IF (IFORM) 170,180,180 
 150  DIFR=DATA(I2)-DATA(I2CNJ) 
      DIFI=DATA(I2+1)+DATA(I2CNJ+1) 
      TEMPR=DIFR*ZR-DIFI*ZI 
      TEMPI=DIFR*ZI+DIFI*ZR 
      DATA(I2)=DATA(I2)-TEMPR  
      DATA(I2+1)=DATA(I2+1)-TEMPI 
      DATA(I2CNJ)=DATA(I2CNJ)+TEMPR 
      DATA(I2CNJ+1)=DATA(I2CNJ+1)-TEMPI  
      IF (IFORM) 160,180,180 
 160  DATA(I2CNJ)=DATA(I2CNJ)+DATA(I2CNJ) 
      DATA(I2CNJ+1)=DATA(I2CNJ+1)+DATA(I2CNJ+1) 
 170  DATA(I2)=DATA(I2)+DATA(I2) 
      DATA(I2+1)=DATA(I2+1)+DATA(I2+1) 
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 180  CONTINUE 
      TEMPR=ZR-.5 
      ZR=ZSTPR*TEMPR-ZSTPI*ZI+ZR 
 190  ZI=ZSTPR*ZI+ZSTPI*TEMPR+ZI 
C     RECURSION SAVES TIME, AT A SLIGHT LOSS IN ACCURACY.  IF AVAILABLE, 
C     USE DOUBLE PRECISION TO COMPUTE ZR AND ZI. 
 200  IF (IFORM) 270,210,210 
C     UNPACK THE REAL TRANSFORM VALUES (TWO PER COLUMN) 
 210  I2=IP2+1 
      I1=I2 
      J1=IP0*(N/2+1)*NREM+1 
      GO TO 250 
 220  DATA(J1)=DATA(I1) 
      DATA(J1+1)=DATA(I1+1) 
      I1=I1-IP0 
      J1=J1-IP0 
 230  IF (I2-I1) 220,240,240 
 240  DATA(J1)=DATA(I1) 
      DATA(J1+1)=0.  
 250  I2=I2-IP1 
      J1=J1-IP0 
      DATA(J1)=DATA(I2+1) 
      DATA(J1+1)=0.  
      I1=I1-IP0 
      J1=J1-IP0 
      IF (I2-1) 260,260,230 
  260 III2=2 
      DATA(III2)=0.  
 270  RETURN 
      END 
C******************************************************************************** 
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