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Chapter 1. Literature Review 

1.1. Pavement Texture 

Pavement texture refers to the irregularities on a surface that deviate from an ideally 

flat pavement. It is a critical characteristic as it influences tire-pavement 

interactions, affecting noise, friction, rolling resistance, water splash, tire and 

vehicle wear, and ride quality (1). However, specialized equipment and 

mathematical tools are necessary for accurate characterization due to its complex 

nature. 

The literature indicates that pavement texture can be represented using two primary 

approaches: the two-dimensional (2D) approach with linear profiles, and the three-

dimensional (3D) approach with pavement surfaces. A linear profile, which is the 

simplest representation of pavement texture, is a 2D depiction obtained using 

sensor devices. It is described by two coordinates: distance (measured either 

longitudinally, along the traffic direction, or transversely, orthogonal to the traffic 

direction) and height (measured vertically) (2). 

These profiles are considered stationary, random functions of the distance along the 

surface (3). Mathematically, they can be represented as a series of sine and cosine 

waves with various amplitudes and wavelengths using Fourier analysis. 

Wavelength, the spatial period of a wave, can be reported in units of length or as 

spatial frequency (fs), which is the inverse of the wavelength and expressed in 

cycles per meter. The amplitude is defined as the peak-to-peak height difference 

(2). Figure 1 illustrates the main parameters on a surface profile. 

Figure 1: Basic terminology: wavelength (1), amplitude (2). 
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Pavement texture can also be characterized by using 3D surfaces. This can be 

achieved by “stitching” together multiple contiguous 2D profiles (4,5), capturing 

an area image using at least two angled cameras positioned opposite each other 

(e.g., stereovision systems) (6,7), or combining data from various sensors such as 

LiDAR, cameras, and lasers to create a comprehensive, high-resolution 3D surface 

of the pavement (8). These 3D texture surfaces are powerful tools since the data 

can also be used for identifying and quantifying pavement distress. Moreover, 3D 

texture summary indices might be more suitable for correlating texture with 

pavement surface interactions, as they summarize an area of pavement rather than 

a discrete spot. 

Despite the advantages, 3D measurements come with challenges. Wang (7) points 

out several drawbacks of stereovision systems that are comparable to other 3D data 

collection systems. First, practical image processing requires very high-

performance computing equipment. Using lower-performance equipment 

compromises data quality, processing speed, or both. Second, image processing is 

an evolving field, and researchers may encounter unresolved issues while 

processing data. Third, distinguishing between surface texture features and foreign 

objects on the pavement, such as oil spills or debris, can be particularly challenging. 

Lastly, hardware and software compatibility across different vendors’ systems is 

not necessary but introduces noncomparable survey data from different vendors (7). 

Figure 2 illustrates a sample 3D and 2D representation of pavement texture. 
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Figure 2: 3D pavement surface recreated from 2D surface profiles (top), 2D transverse 

pavement profile (bottom), both collected with a laser scanner. 

1.1.1. Surface Texture Components 

In 1987, the World Road Association, formerly known as the Permanent 

International Association of Road Congresses (PIARC), established four categories 

of pavement surface irregularities: unevenness/roughness, megatexture, 

macrotexture, and microtexture. Each category is defined by the texture’s 

wavelengths or spatial frequency and its vertical amplitude (9). Figure 3 illustrates 

the surface texture spectrum, showing the four main texture components along with 

their respective wavelength and vertical amplitude domains. 

Figure 3: Definition of fundamental texture classes, as a function of the wavelengths or 

spatial frequency (top), and as a function of vertical amplitude (bottom). 

Unevenness or roughness describes the pavement surface irregularities that affect 

ride quality, smoothness, and serviceability. The reference length for unevenness is 

equivalent to a short stretch of road (10). These irregularities impact rolling 

resistance, vehicle dynamics, ride quality, surface drainage, fuel consumption, and 

maintenance costs (11). 

Megatexture refers to the distress, defects, or waviness of the road surface, with 

wavelengths similar in size to the tire-pavement interface (10). This type of texture 

is typically the most noticeable to the naked eye, including features like ruts, 

potholes, major joints, and cracks. Megatexture results from poor construction 

practices, local settlements, or surface deterioration, adversely affecting ride 

quality, causing premature vehicle suspension wear, and increasing in-vehicle and 

external noise due to tire wall vibrations (12). 
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Macrotexture pertains to the large-scale texture of the pavement surface, influenced 

by the arrangement and size of aggregates (13). In flexible pavements, the 

properties of the mixture, such as aggregate shape, size, and gradation, control 

macrotexture. In rigid pavements, macrotexture is determined by the method of 

surface finishing, including techniques like dragging, tinning, and grooving (2). 

Macrotexture plays a crucial role in drainage and wet weather friction 

characteristics, especially at high speeds, making it essential for pavements with 

operational speeds of 50 mph or higher to have good macrotexture to prevent 

hydroplaning (14). Additionally, macrotexture significantly impacts tire-pavement 

noise (15) and splash and spray (16).  

Microtexture refers to the microscopic asperities of the aggregate surface, which 

control the contact between tire rubber and the pavement surface. Microtexture 

depends on the mineralogy and petrology of individual aggregate particles, the 

aggregate source (natural or manufactured), and is influenced by environmental 

effects and traffic action (17). Microtexture is usually sufficient to provide adequate 

skid resistance on dry pavements at speeds of 50 mph or higher and on wet, but not 

flooded, pavements at speeds below 50 mph (14). However, excessive microtexture 

can be detrimental, as tire wear rates are directly proportional to microtexture levels 

(18). 

Figure 4, inspired by PIARC’s work (19), summarizes the significant tire-

pavement interactions and which texture components affect them the most. 

Figure 4: Texture wavelength influence on pavement-tire interaction, modified from (19). 

1.1.2. Measuring Texture 

Volumetric techniques, such as the outflow meter (20,21) the NASA Grease Smear 

Method (22), and the Sand Patch Test method (SPT) (21,23), have been used to 
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evaluate pavement macrotexture in terms of its mean texture depth (MTD). While 

these tests ingeniously leverage geometry to quantify pavement texture, they have 

been criticized for their inability to capture microtexture, low repeatability, and 

high variance across different operators (2,17,22). 

Non-contact measurement devices, like the Circular Track Meter (CTM) (24), do 

not suffer from these limitations. Mean Profile Depth (MPD) measurements from 

the CTM are consistent across operators at any given location. However, the CTM, 

and the SPT as well, reduce texture to a single attribute that characterizes only the 

vertical amplitude of pavement texture at discrete locations. 

To overcome these drawbacks, modern approaches prefer the use of sensors that 

capture a larger pavement area, allowing users to process raw data and compute 

multiple spatial and spectral indices to summarize the texture of the pavement in 

terms of its amplitude, spacing, slope, and frequency characteristics, not just MTD 

or MPD (2). Some of the most used devices in this category include the Ames Laser 

Texture Scanner 9500 (25), the LS-40 Portable 3D Surface Analyzer (26), the 

Stationary Laser Profilometer (27), and the line laser scanner  (13). As of June 2024, 

laser sensor technology allows the best static sensors on the market to characterize 

the full spectrum of macrotexture and the first and second decades of microtexture 

with high accuracy. However, these devices are stationary and require traffic 

control for safe field use. Additionally, some devices need shaded conditions during 

daytime to prevent sunlight from interfering with laser measurements. 

To dynamically collect pavement macrotexture data without traffic control, 

vehicle-mounted laser devices were developed. Laser-based texture profilometry 

uses technology comparable to road profilers that evaluate pavement smoothness 

(28). Initially, single-point lasers rated at 1 kHz mounted on vehicles were used to 

capture 2D longitudinal profiles (29). These vehicles, known as inertial profilers, 

are not typically used to characterize macro and microtexture. Instead, they are 

employed to measure pavement roughness. However, since pavement texture is 

anisotropic, longitudinal profiles do not fully describe all texture characteristics 

(28). Consequently, a different setup using a line laser sensor rated at 5 kHz was 

implemented to capture multiple transverse pavement profiles as the vehicle drives 

(30). This setup is better than point lasers as it captures a 3D image of the pavement, 

but the resolution in longitudinal and transverse directions differs significantly, and 

sensors struggle to capture surface finishes on rigid pavements parallel to the laser 

line direction. 

Alternatively, stereovision cameras can reconstruct a 3D pavement surface and 

avoid some issues associated with laser sensors. However, stereovision systems are 

best used for low-speed testing as they suffer from blurring due to long exposure 
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times at high speeds (28). These three configurations are the most widely used for 

2D/3D continuous texture measurements. Current research has made slight 

modifications to these configurations to address certain issues. For instance, 

Fernando et al. (31) demonstrated that aligning the sensor’s laser line at a 45° angle, 

rather than parallel or orthogonal to the travel direction, is more effective for 

detecting joints and cracks on rigid pavements. 

Figure 5 shows commonly used stationary texture measuring equipment (top) and 

a laser sensor attached to the back of a truck for continuous texture measurements 

(bottom). As of June 2024, technology allows for continuous high-speed texture 

measurements that cover unevenness, megatexture, and macrotexture components, 

but not microtexture. Some of the best sensors on the market can capture up to 

0.186 mm in wavelength during daylight, although such measurements may be 

noisy at maximum resolution. It is anticipated that in the future, sensors will be 

powerful enough to capture all four major texture components at network speeds. 

Figure 5: Stationary texture measuring devices: (A) SPT, (B) CTM, (C) Laser Texture 

Scanner, (D) Stationary Linear Profilometer, (E) LS-40, (F) Line Laser Scanner, and (G) 

multi-line laser sensor attached to the right back side of truck. 

1.1.3. Processing of Texture Data 

Despite advancements in data collection equipment, a standardized process for 

handling these measurements has not yet been established, necessitating further 
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progress in this area (32). There is a critical need for a standardized methodology 

to process texture data, as calculating unbiased texture indices requires that the data 

(i.e., surface profiles or texture surfaces) meet the following criteria: 1) be noise-

free, 2) be nearly stationary, and 3) be devoid of missing values.  

The presence of white noise, spikes, or flat signals can skew texture indices. Studies 

like Katicha et al (33), indicate that measurements from vehicle-mounted laser 

sensors may exhibit spikes, affecting the accuracy of any indices computed from 

this raw data. This issue is relevant not only at the macrotexture level but also at 

the unevenness/roughness and megatexture levels, as shown by Sayers and 

Karamihas (34) in their investigation of spikes’ adverse effects on international 

roughness index (IRI) measurements. 

In their study on pavement smoothness, Perera and Kohn (35) identified challenges 

associated with spikes in profile data collected by Long-Term Pavement 

Performance profilers. They found that environmental factors influencing height 

measurements caused biases similar to calibration errors, resulting in spikes in the 

recorded profiles, as summarized in Figure 6. 

Figure 6: Effect of measurement environment on height sensors (35). 

 Noise within Pavement Laser Measurements 

While spikes are widely recognized as a common form of noise, they are not the 

only type encountered in signal processing. Noise, generally defined as any 

interference affecting the measured signal, can stem from various sources, 

including physical phenomena, environmental conditions, sensors, data acquisition 

methods, or data transmission. In pavement surface scanning, adverse field 

conditions frequently introduce noise into the signal. Profiles collected using 

different laser sensors have demonstrated various noise types, such as white noise, 
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spikes, and flat signals. The amplitude and frequency characteristics of these noise 

types can differ across studies due to the diversity of laser devices. 

White noise, a random signal with consistent intensity across frequencies, poses a 

challenge by potentially creating the illusion of capturing microtexture. Therefore, 

understanding the resolution of the laser in both vertical and lateral directions is 

essential before assuming accurate microtexture capture. Digital filters, such as 

low-pass or band-pass filters, can be used to eliminate wavelengths smaller than the 

sensor’s resolution, thereby reducing the impact of white noise-induced 

microtexture. 

Spikes, characterized by abrupt, short-duration elevation changes, disrupt the 

pavement profile trend and are visually identifiable. While extreme spikes (i.e., 

outliers) can be easily detected and removed through automation, mild spikes that 

do not necessarily represent profile extremes require careful consideration in the 

detection and removal process (36). 

Flat signals result from a combination of low camera exposure time and very dark 

pavement surfaces. In such instances, the sensor nullifies measured information, 

producing a flat line where multiple locations share the same elevation as the last 

“good” point measured by the sensor  (36). Figure 7 provides examples of spikes 

and flat signals. 

Figure 7: Common instances of noise extreme spikes (top left), flat signal (top right), 

mild spike (bottom) (36). 

 Nearly Stationary Data 

The second criterion for processing data highlights the necessity of an almost 

stationary signal, specifically a time series with constant statistical properties such 

as mean, variance, and autocorrelation over distance (37). Essentially, this means 

that pavement elevation data should be centered around zero millimeters with no 

discernible trends. The goal is to center the data, remove linear trends, and retain 

seasonality. In this context, seasonality refers to regular and predictable changes 
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recurring after a specified distance, which is crucial as it reflects the pavement 

texture due to aggregate gradation in the mix. 

Achieving an almost stationary time series requires applying a detrending algorithm 

to the data. Common detrending methods include integration and regression 

detrending. In this context, integration involves differencing adjacent observations 

to obtain an almost stationary time series, while regression detrending uses linear 

regression to subtract the mean of the regression function at each coordinate, 

resulting in an approximately stationary time series. Detrending is often described 

as a two-step process involving the suppression of slope and offset. Figure 8 

illustrates these detrending techniques... 

Figure 8: Detrending techniques: regression (left) and integration (right) detrending. 

 No Missing Data 

The third requirement concerns the absence of missing data, which has significant 

statistical and practical implications. Missing data, categorized separately due to its 

unique challenges, often arises from sensor issues, data format conversion, or the 

removal of noisy data points. Many coding software functions are not inherently 

designed to handle missing data, leading to potential issues such as algorithm 

failure or automated imputation without user awareness. 

Incomplete data can skew indices, particularly those reliant on sample size, like 

root mean square (RMS), skewness, and kurtosis. A good rule of thumb is to discard 
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dynamically collected texture profiles or surfaces where more than 33 percent of 

the data is noise or missing. Standards such as ISO 13473 (38) and ASTM E1845-

15 (39) are more stringent, suggesting thresholds of 10 and 20 percent for stationary 

texture measurements, respectively. 

Researchers should use appropriate imputation techniques to address missing data, 

where imputation involves replacing missing data with substituted values. While 

imputation is sometimes criticized, it preserves relationships between variables 

rather than generating valid estimates for specific case values. It has proven 

consistent and superior to using only complete data or deleting incomplete cases, 

which can lead to biased results (40,41). For pavement texture data, if the 

percentage of missing or removed data exceeds an established threshold, it should 

be discarded. Otherwise, linear interpolation is recommended as the fastest, 

simplest, and most accurate imputation method for 2D surface profiles (36). For 3D 

data, two-dimensional linear interpolation along the lateral directions can be 

implemented. Ultimately, imputation ensures a complete dataset, facilitates 

analysis, and eliminates biases that may arise from ignoring missing data. 

1.1.3.2. Texture Data Processing Overview 

An extensive review of the literature on texture processing and pavement surface 

characterization reveals multiple methods for processing raw 2D surface profile 

data, summarized in Figure 9. The data processing begins with algorithm 

calibration, which varies depending on the chosen processing algorithm. This initial 

step involves estimating thresholds crucial for the later removal of noisy data points 

from the signal, such as the maximum difference in height between adjacent points 

before a point is considered a spike. Subsequent steps, both algorithm and analysis 

dependent, typically include preprocessing tasks such as converting elevation units 

to millimeters, trimming profile edges, and applying pre-imputation methods to 

ensure data completeness before further manipulation. 

The next phase involves detecting and removing noisy data points from the profile, 

a process known as denoising. Noise encompasses disturbances such as spikes, flat 

signals, and white noise that negatively affect the measured signal (36). Methods 

for addressing noisy data points include the Wavelet Methodology (33), ISO 

Standard 13473-1 (42), False Discovery Rate (43), ASTM Standard E178-21 (44), 

and the Sabillon-Orellana Filtering Algorithm (SOFA) (3). 
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Figure 9: 2D pavement surface profile data processing schematic. 

After denoising, an imputation method must be applied to replace any removed 

data. Linear interpolation is the most common imputation method used in the field 

and was proven by Sabillon-Orellana (36) to be the simplest, most efficient, and 

most accurate for 2D surface profile data. Following imputation, the surface 

profiles must be detrended to eliminate elevation biases and inherent trends, 

transforming the profiles into a nearly stationary and centered time series of 

elevation measurements. Both ASTM Standard E1845-15 (39) and ISO Standard 

13473-1 (42) recommend using a linear detrending method to center the data. 

Subsequent steps, although not always utilized in research studies, may include 

various mathematical transformations before computing a texture index. These 

transformations, as documented in ISO Standard 13473-4 (38) and National 

Cooperative Highway Research Program synthesis report 964 (45), might involve 

signal decomposition through methods such as the Fast Fourier Transform (46) to 

break down the profile into wavelength components, the application of smooth 

frequency response filters like a low-pass Butterworth filter (47) to isolate 

macrotexture wavelengths, and enveloping methods such as the indenter method 

(48) to model the contact zone where the tire interacts with the pavement surface. 

Depending on the research goals, these transformations may be necessary, but they 

are not always required before quantifying the processed profiles into a summary 

index that captures various aspects of the pavement surface, such as MPD, RMS, 

among others. 
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1.1.4. Quantifying Pavement Texture 

The foundation of pavement texture characterization lies in mathematics, 

particularly statistics. The 2D texture profiles serve only as a visual representation 

of a slice of the pavement’s surface which needs to be further summarized into a 

set of texture indexes to quantify specific surface characteristic of the profile. 

Pavement practitioners use well-established and experimental equations to describe 

texture for all four components. It’s important to note that terms like “statistic,” 

“parameter,” “metric,” and “index” are often used interchangeably in the literature 

to refer to numerical summaries that characterize features within the profile. In this 

report, these numerical summaries will consistently be referred to as “indices.” 

At the unevenness/roughness level, the most common index is the International 

Roughness Index. Other indices include the coefficient of planarity, and the bump 

integrator trailer index, among others (49). 

Comprehensive texture indices for the megatexture component are lacking, unlike 

unevenness/roughness and macrotexture. The primary standardized index for 

megatexture is the “megatexture level,” defined by ISO 13473-5 (2009). The 

scarcity of texture indices at this scale is primarily due to the focus on quantifying 

distresses such as faulting, rutting, and cracking, rather than on texture analysis 

(50). As of June 2024, no state or federal highway agency explicitly measures 

megatexture in managing their pavement networks, nor do they specify 

megatexture for newly paved or resurfaced pavements.  

Macrotexture relies on essential indices like mean profile depth (MPD) and mean 

texture depth (MTD), which are widely recognized in pavement engineering 

literature. These indices characterize pavement texture and are frequently used in 

studies correlating surface interactions such as friction (3,51), rolling resistance 

(52), noise (15,51), and water splash (53). However, relying solely on MPD or 

MTD provides an incomplete depiction of surface topography, as they only 

represent the profile’s vertical amplitude. Pavements with similar MPDs can still 

exhibit differing textures, friction levels, and noise levels, as noted by (28). 

Therefore, a more comprehensive description requires the integration of additional 

indices. 

While many texture indices established at the macrotexture level can be computed 

at the microtexture level using a high-pass filter to isolate higher frequencies (2), 

quantifying microtexture remains challenging, particularly during dynamic data 

collection at speeds of at least 45 mph. Consequently, standardized methods for 

characterizing this intricate texture level are currently lacking. Past research studies 

(2,17,54) addressed this issue by using high-precision stationary texture measuring 

equipment to capture and quantify microtexture. These studies employed 
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microtexture data to predict skid resistance and noise with varying degrees of 

success. 

Pavement texture quantification involves two primary types of summary indices: 

spatial and spectral. Spatial indices, computed in the spatial domain, vary with 

scale, such as MPD at macro and microtexture scales. In contrast, spectral indices, 

evaluated in the frequency domain, are scale-independent and assessed across 

various texture wavelengths/frequencies to avoid the complexity of scale-specific 

definitions (17). 

1.1.4.1. Spatial Indices 

Spatial texture indices are divided into five categories: amplitude, spacing, hybrid, 

functional, and feature indices. 

Amplitude indices are crucial for characterizing the vertical characteristics of 

surface deviations on the pavement. The most common in pavement engineering 

are MPD and MTD. Other examples include the RMS, skewness, kurtosis, solidity 

factor, and ten-point mean roughness. These amplitude indices are used for various 

purposes in literature. For more detailed information, refer to the study by Sabillon 

et al. (3). 

Spacing indices measure the horizontal characteristics of surface deviations. These 

indices are particularly important in fields like manufacturing, where consistent 

lubrication is necessary to avoid scoring and ensure a smooth surface finish on 

products like pressed sheet steel (55). In pavement engineering, spacing indices 

have proven useful in predicting the type of flexible pavement surface using field 

texture data (54). Common spacing indices include the mean, variance, skewness, 

and coefficient of variation in the cross width of the profile. The cross width 

measures the horizontal distance between inflection points along the profile, i.e., 

the distance between consecutive points crossing the zero-elevation line. 

Hybrid indices quantify the profile’s slope by combining elements of its spacing 

and amplitude. Changes in either amplitude or spacing can affect hybrid properties 

(3). In tribology analysis, surface slope, surface curvature, and developed 

interfacial area are important factors influencing the tribological properties of 

surfaces (55). Examples of hybrid indices include the surface area ratio, two-point 

slope variance, and six-point slope variance. 

Functional indices provide information about the surface structure based on a 

function such as the material bearing ratio curve. This curve is the cumulative 

probability distribution of the amplitude distribution function, indicating the 

probability of a texture profile having a certain height (Z) at any position (X) (2). 
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The automotive industry has sought to optimize and define indices for functional 

characterization of surface texture, focusing on the contact area between two 

bodies. The surface bearing ratio index describes the functional characteristics of 

the pavement surface that may affect tire wear or friction (56). Other functional 

indices include the areal material ratio and the inverse areal material ratio. 

Feature indices are used to describe the surface texture’s properties over a 

predetermined length of the profile, such as 100 mm, as opposed to the entire profile 

(57). This definition allows these indices to have a dual identity, in the sense that 

they can be both feature and amplitude like in the case of MPD, or feature and 

spacing in the case of the Mean Profile Element Spacing. In the pavement 

engineering literature, these are one of the most commonly used indices to correlate 

with friction and noise (51) as they encompass MPD, the most commonly used 

index in the field. 

A compilation of 80 spatial texture indexes was created using research articles and 

standards in transportation engineering, including works from ISO (2021), Zuniga-

Garcia (2017), Gadelmawla et al. (2002), and Sabillon-Orellana et al. (2023). This 

comprehensive list, along with their respective sources, is summarized in Table 1. 

Table 1: List of indexes reviewed and their respective source. 

Amplitude (Height) Index 

ID Index Source 

1 Arithmetic Mean Height ISO 21920-2, 2021 

2 Root Mean Square Height ISO 21920-2, 2021 

3 Skewness ISO 21920-2, 2021 

4 Kurtosis ISO 21920-2, 2021 

5 Total Height ISO 21920-2, 2021 

6 Maximum Height per Section ISO 21920-2, 2021 

7 Solidity Factor Gadelmawla et al, 2002 

Spatial Index 

ID Index Source 

8 Dominant Spatial Wavelength ISO 21920-2, 2021 

9 Mean Spacing of Adjacent Local Peaks Gadelmawla et al, 2002 

10 Mean of Cross Width Sabillon-Orellana et al 2023 

11 Variance of Cross Width Sabillon-Orellana et al 2023 

12 Skewness of Cross Width Sabillon-Orellana et al 2023 

13 Number of Intersections at the Mean Line Gadelmawla et al, 2002 

14 Number of Peaks per Profile Length Gadelmawla et al, 2002 

15 Number of Inflection Points Gadelmawla et al, 2002 

16 Mean Radius of Asperities Gadelmawla et al, 2002 
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Hybrid Indexes 

ID Index Source 

17 Root Mean Square Gradient ISO 21920-2, 2021 

18 Arithmetic Mean of Absolute Gradient ISO 21920-2, 2021 

19 Maximum Absolute Gradient ISO 21920-2, 2021 

20 Developed Length ISO 21920-2, 2021 

21 Developed Length Ratio ISO 21920-2, 2021 

22 Two-Point Slope Variance Zuniga-Garcia, 2017 

23 Six-Point Slope Variance Zuniga-Garcia, 2017 

24 Profile Slope at Mean Line Gadelmawla et al, 2002 

25 Mean Slope of the Profile Gadelmawla et al, 2002 

26 Average Wavelength Gadelmawla et al, 2002 

27 RMS of Wavelength Gadelmawla et al, 2002 

28 Relative Length of the Profile Gadelmawla et al, 2002 

29 Bearing Area Length Gadelmawla et al, 2002 

30 Steepness Factor of the Profile Gadelmawla et al, 2002 

31 Waviness Factor of the Profile Gadelmawla et al, 2002 

32 Roughness of Height Uniformity Gadelmawla et al, 2002 

33 Roughness Height Skewness Gadelmawla et al, 2002 

34 Roughness Pitch Uniformity Gadelmawla et al, 2002 

35 Roughness Pitch Skewness Gadelmawla et al, 2002 

Functional Indexes 

ID Index Source 

36 Autocorrelation Length ISO 21920-2, 2021 

37 Relative Material Ratio ISO 21920-2, 2021 

38 Material Ratio Height Difference ISO 21920-2, 2021 

39 Core Height ISO 21920-2, 2021 

40 Reduced Peak Height ISO 21920-2, 2021 

41 Reduced Pit Depth ISO 21920-2, 2021 

42 Maximum Peak Height ISO 21920-2, 2021 

43 Maximum Pit Depth ISO 21920-2, 2021 

44 Material Ratio of Hills ISO 21920-2, 2021 

45 Material Ratio of Dales ISO 21920-2, 2021 

46 Area of Hills ISO 21920-2, 2021 

47 Area of Dales ISO 21920-2, 2021 

48 Plateau Root Mean Square Deviation ISO 21920-2, 2021 

49 Dale Root Mean Square Deviation ISO 21920-2, 2021 

50 Material Ratio at Plateau to Dale 

Transition 

ISO 21920-2, 2021 

51 Hill Material Volume ISO 21920-2, 2021 

52 Core Material Volume ISO 21920-2, 2021 

53 Core Void Volume  ISO 21920-2, 2021 

54 Dale Void Volume ISO 21920-2, 2021 

55 Mean of Local Curvature ISO 21920-2, 2021 

56 Standard Deviation of Local Curvature ISO 21920-2, 2021 
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Feature Indexes 

ID Index Source 

57 Mean Profile Depth ASTM E1845-15, 2016 

58 Maximum Peak Height ISO 21920-2, 2021 

59 Mean Peak Height ISO 21920-2, 2021 

60 Maximum Pit Depth ISO 21920-2, 2021 

61 Mean Pit Depth ISO 21920-2, 2021 

62 Maximum Height ISO 21920-2, 2021 

63 Mean Profile Element Spacing ISO 21920-2, 2021 

64 Maximum Profile Element Spacing ISO 21920-2, 2021 

65 Standard Deviation of Profile Element 

Spacing 

ISO 21920-2, 2021 

66 Mean Profile Element Height ISO 21920-2, 2021 

67 Maximum Profile Element Height ISO 21920-2, 2021 

68 Standard Deviation of Profile Element 

Height 

ISO 21920-2, 2021 

69 Peak Count Parameter ISO 21920-2, 2021 

70 Density of Peaks ISO 21920-2, 2021 

71 Density of Pits ISO 21920-2, 2021 

72 Arithmetic Mean Peak Curvature ISO 21920-2, 2021 

73 Arithmetic Mean Pit Curvature ISO 21920-2, 2021 

74 Five-point Pit Depth ISO 21920-2, 2021 

75 Five-point Peak Height ISO 21920-2, 2021 

76 Ten-point Height ISO 21920-2, 2021 

77 Mean of Maximum Peak to Valley Height Gadelmawla et al, 2002 

78 Largest Peak to Valley Height Gadelmawla et al, 2002 

79 Third Point Height Gadelmawla et al, 2002 

80 Mean of Third Point Height Gadelmawla et al, 2002 

For further information on these spatial indices refer to the studies by Gadelmawla 

et al. (55), NASEM (45) , ISO 21920-2 (57), Chen et al. (58), and Sabillon et al. 

(3). 

1.1.4.2. Spectral Indices 

Spectral indices refer to those obtained in the frequency domain, requiring Fourier 

analysis to examine surface texture. A Fourier transform decomposes a texture 

profile into a function of sinusoidal waves. One common approach to characterize 

texture in the spectral domain is to determine indices from the texture spectrum. 

The technical specification ISO/TS 13473-4 (38) describes the procedure for 

obtaining the texture spectrum expressed in octave or one-third octave bands. The 

index used to characterize the texture spectrum is known as the texture level, a 

logarithmic transformation of an amplitude representation for a texture profile with 

a center wavelength, reported in dB. This approach has mainly been used to find 
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correlations between tire-pavement noise and road texture, but it has also been used 

to correlate texture with friction (27,59). 

Another commonly used approach is Power Spectral Density (PSD), which 

analyzes pavement texture in the frequency domain. PSD describes how the energy 

of a pavement texture profile is distributed over different frequencies. The PSD of 

a roadway is obtained by applying a Fourier transform to the linear profile of a 

pavement surface, decomposing it into sinusoidal functions with discrete 

frequencies. Given the complexity of road profiles, individual amplitudes are 

almost always small, so the Fourier transform is adjusted to show how the variance 

of the profiles is distributed over a set of sinusoids. This adjustment is known as 

the Power Spectral Density (60,61). They used the slope and intercept of the 

linearized PSD curve to characterize surface macro and microtexture, observing a 

strong correlation between the log of the PSD and the log of the frequency in most 

sampled test surfaces. 

Wavelet transform (WT) or wavelet analysis is an analytical method developed to 

overcome the shortcomings of the Fourier transform. Wavelets are functions that 

satisfy certain mathematical requirements used to represent data. WT decomposes 

a signal into different frequency components, presenting each component with a 

resolution matched to its scale (62). The major advantage of WT is its ability to 

analyze localized areas of a larger signal, capturing aspects like trends, breakdown 

points, and discontinuities that other signal analysis techniques might miss. In road 

roughness analysis, WT can reveal localized surface irregularities such as surface 

depressions, potholes, surface heaving, and bumps (63). 

Other studies have used fractal and multi-fractal theory to characterize texture. A 

fractal is a mathematical set with a fractal dimension that usually exceeds its 

topological dimension and may be non-integral (64,65). Fractals are typically self-

similar patterns, meaning they appear the same from near and far. The fractal theory 

for pavement assumes that texture irregularities follow similar patterns at different 

scales. To appreciate the similarity of texture patterns at different levels, the 

patterns need to be scaled by different factors known as the fractal dimension in the 

coordinate axis (66). Villani et al. (67) evaluated pavement surface friction 

properties using fractal analysis and developed a methodology to select aggregate 

type and mix design for optimized skid resistance performance. 

Although the spectral indices described above are based on solid physical 

principles, they are often too complex for road engineers to use due to the 

significant time required to compute the accompanying indices (68). To address 

this issue, simpler approaches based on modern signal processing techniques have 

been developed. Among these, the simplest and most promising is the Hilbert-
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Huang Transform (HHT) (69). Unlike the theoretical approaches of Fourier or 

Laplace transforms, HHT is an empirical method that decomposes a signal into a 

set of functions to obtain instantaneous amplitudes and frequencies. 

1.1.4.3. Surface Characteristics in other Fields 

The spatial and spectral indices reviewed in the previous section are indices used 

in pavement engineering to describe roadway surface characteristics. However, 

pavement engineering is just one of many fields that uses surface engineering 

concepts to understand and quantify the morphological characteristics of surfaces 

to enhance desired properties. This section explores how other disciplines quantify 

and control the surface roughness of their materials. 

 Materials Science: Surface Engineering 

Surface engineering, a sub-discipline of materials science, deals with the surface of 

solid matter. It is an interdisciplinary field focused on manipulating the chemical, 

physical, and mechanical properties of materials to enhance surface properties 

independently from those of the underlying substrate. Enhancements may target 

visual appearance, tactile properties, optical properties, wettability, corrosion 

resistance, or tribological behavior (70). 

Surface engineering processes can be divided into three basic groups. The first 

group includes processes that modify the existing surface without changing its 

composition, such as transformation hardening, surface melting, and surface 

texturing. The second group involves processes that change the surface 

composition, such as altering the crystal structure or creating surface precipitates 

through chemical reactions. The third group applies a material to the surface, 

generally referred to as coatings. This includes practices like painting, weld 

hardfacing, and electroplating, where a surface-engineered layer is applied over the 

original material to achieve a desired property (70). 

Many processes used in surface engineering are also observed in pavement 

engineering. For example, surface texturing is commonly done on rigid pavements 

during curing or after hardening to reduce pavement/tire noise, improve drainage, 

or enhance skid resistance (71,72). Additionally, most surface treatments applied 

to pavements today are examples of surface engineering coatings used to enhance 

skid resistance without modifying the original flexible or rigid pavement 

underneath. 
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 Tribology 

Tribology is an interdisciplinary field drawing on principles from physics, 

chemistry, materials science, and mechanical engineering to study the interactions 

between surfaces in relative motion, including friction, wear, and lubrication. A 

tribological system has functional characteristics and performs technical tasks 

related to energy, material, or signal transmission. The tribological properties 

depend on system function, load complexity, and structure. Understanding the 

complete tribological system (Figure 10) is essential for evaluating and designing 

many products. Friction and wear are considered system properties rather than 

material characteristics, meaning that even slight modifications to the system can 

significantly alter these properties (73,74). 

Figure 10: Complete description of a tribological system (73). 

The tribological system involves frictional and wear contact between two bodies, 

the base body and the counter-body, which move relative to each other, with or 

without an intermediate medium (Figure 11). Interactions on the surface of the 

solid arise from this relative movement. The load complexity and structure 

determine the wear behavior of the tribological system (74). Tribological studies 

characterize the interacting surfaces’ material properties at both physical and 

chemical levels, although this study focuses on the physical level. 
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Figure 11: Schematic representation of a tribological system (74). 

Physically, tribologists assert that all technical surfaces deviate from their ideal 

geometric form due to manufacturing processes. According to DIN 4760 (75), 

deviations can be categorized from the first to the sixth order, analogous to the 

texture components in pavement engineering (e.g., roughness, megatexture). The 

first order has the longest wavelength, while the sixth has the shortest. Form 

deviations from the first to the fourth order are typically superimposed on the real 

surface profile (74), as shown in Figure 12. 

Figure 12: Schematic illustration of the form deviations of the first to fourth order (74). 

The microscopic form deviations of the third and fourth orders are typically 

determined using a contact stylus and described as roughness values. Measurement 

procedures for these orders are standardized according to ISO 21920-2 (57). The 

most frequently cited roughness values in these orders are the mean roughness 

depth (Rz) and the mean roughness value (Ra), both illustrated in Figure 13. These 
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indices are commonly used by tribologists to perform quality assurance and control 

on materials during experimentation. 

Form deviations of the fifth and sixth orders refer to deviations in the microstructure 

and lattice structure of materials. Due to the manufacturing process, the 

microstructure of material surfaces almost always differs from that within the 

material (74). While tribologists have indices to quantify the fifth and sixth orders, 

analogous to the first and second decades of microtexture, their characterization is 

too complex for practical purposes in pavement surface identification. 

Figure 13: Diagrams portraying the computation of mean rough depth (Rz, on the left) 

and mean roughness value (Ra, on the right) (74) 

 Fluid Dynamics 

Fluid dynamics, a subdiscipline of fluid mechanics, describes the flow of fluids, 

including liquids and gases. It encompasses several subdisciplines such as 

aerodynamics (the study of air and other gases in motion) and hydrodynamics (the 

study of liquids in motion) (76). Surface engineering plays a crucial role in fluid 

dynamics as engineers seek to reduce turbulence in airflow or control pressure 

drops during internal flow in fluid systems (77). 

Surface roughness was identified as an important index in fluid flow as early as the 

nineteenth century by Darcy (78), who conducted experiments with pipes of 

varying roughness. Subsequent work by Fanning (79), Nikuradse (80), and 

Colebrook (81) further expanded the understanding of how surface roughness 

influences pressure drops. In 1944, Moody presented Colebrook’s results 

graphically in the well-known Moody diagram, where the Darcy friction factor is 

represented as a function of Reynolds number over a relative roughness (82). This 

plot covered both laminar and turbulent regions, showing that while roughness has 

little effect in the laminar region, it plays a major role in the turbulent region. In the 

turbulent region, the friction factor increased with Reynolds number and 

asymptotically reached a constant value at higher Reynolds numbers. This constant 

asymptotic value of the friction factor increased with increasing relative roughness 

(77), as shown in Figure 14. 
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Figure 14: The Moody diagram (82). 

In fluid dynamics, surface texture is defined as the composite profile of certain 

deviations typical of an ideal real surface. Since Nikuradse’s work in 1937, a series 

of 2D indices aimed at describing amplitude, spacing, waviness, and shape of 

material surfaces have been developed and documented in several standards 

(57,83–85). Despite the breadth of available surface indices, common industry 

practice is to specify and control surfaces with a single indicator, generally the 

mathematical average roughness (Ra). However, experience has shown that this 

single index is insufficient to describe the complete functionality of a surface or its 

interface. A surface with sharp spikes, deep pits, or general isotropy may all yield 

the same Ra but perform very differently. While Ra remains useful as a general 

guideline on surface texture, it has proven too general to describe the functional 

nature of surfaces in today’s increasingly complex applications (77). This 

overreliance on Ra in fluid dynamics mirrors the overuse and limitations of MPD 

in pavement engineering. 

Over the years, numerous indices have been developed to address the limitations of 

using a single index. These have been broadly classified into categories such as 

roughness, waviness height, spacing and amplitude, shape, and areal indices. 

Advances in instrumentation have provided information on surface texture in 

various formats and resolutions (77). Work by Kandlikar et al. (86) proposed six 

new roughness indices for studying systems with relative roughness values up to 

14% for single-phase fluid flow applications. These include three indices for 

roughness characterization (maximum profile peak height, Rp; mean spacing of 

profile irregularities, Rsm; and floor distance to mean line, Fp) and three indices 

for localized hydraulic diameter variation (maximum, minimum, and average). The 

roughness is then defined as Rp + Fp, as shown in Figure 15. This index, along 
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with a more accurate representation of pipe diameter, improved modeling 

performance and extended the model into areas not previously covered, as 

demonstrated in a study by Schmitt and Kandlikar (87). 

Figure 15: Definition of the roughness index as defined by (86). 

 Geological Sciences  

Geological sciences have made significant contributions to pavement engineering, 

particularly in mineralogy and morphological characterization of aggregates. 

Within geological sciences, essential particle morphology is expressed in terms of 

contour shape, angularity, and surface texture (88). 

Contour shape reflects the overall change characteristics of particles at a large 

spatial scale, distinguishing between flat, elongated, or flat and elongated particles  

(89). It is often defined in terms of aspect ratio (AR) and form factor (FF), as shown 

in equations (1) and (2), respectively. Where a and b represent the lengths of the 

major and minor axes of the equivalent ellipse, respectively, A as the particle area, 

and P as the particle perimeter. 

(1) 

(2) 

Angularity refers to the sharpness of the edges and corners of a particle’s 2D image, 

reflecting its spatial characteristics at the mesoscopic scale (90). The angularity 

index (AI) is a common index used to describe angularity. This index measures the 

degree of change between the particle’s perimeter or outer boundary and the 

perimeter of its equivalent ellipse, as indicated by equations (3) and (4). A higher 

AI value indicates a more angular particle. Particles with more edges and corners 

tend to form stronger internal friction, preventing movement and maintaining 

structural stability under external forces (89). The formulas for AI are: 
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(3) 

(4) 

Where P is the perimeter, Pc is the outer boundary perimeter, and Pe is the 

equivalent ellipse perimeter of each particle. 

Surface texture reflects the complexity of a particle’s uneven surface at the 

microscopic scale, characterizing its microstructure to some extent (89). Fractal 

geometry theory and its evaluation method are widely applied, with fractal 

dimension (FD) and feature roughness (FR) considered reliable indicators of a 

particle’s geometric complexity (91). These indices are defined as per equations 

(5)and (6). 

(5) 

(6) 

Where ci is the mean dimension, d is the aperture size, B is a dimension index, and 

K is the fractal intercept. 

These three morphological properties—contour shape, angularity, and surface 

texture—are not mutually exclusive. Accurate prediction of particle behavior 

requires understanding the origin and evolution of fragmental particles from 

minerals (92,93). Characterizing particle morphology is key to determining their 

formation mechanisms, defining fragmented particle properties (94), and predicting 

behaviors such as fluid-particle interaction and physical resistance (95). 

Several other indices describe particle morphology. Morphological indices, which 

determine geometrical variables like length, radius, perimeter, area, and volume, 

are categorized into 1D, 2D, and 3D images based on associated methods and 

variables (96). Typically, 1D morphological indices, such as aspect ratio, 

elongation, and flatness, are based on particle length in three dimensions and can 

be measured quickly with a ruler or caliper. 2D morphological indices are measured 

using image analysis of particle projections, including projection perimeter, area, 

and circumscribing circles (96,97). For 3D visualization and quantitative analysis 

of particle microstructures, Fourier transform interferometry and X-ray computed 
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tomography are very useful. These methods analyze 3D morphological indices such 

as sphericity and 3D angularity (98). 

Despite the development of numerous indices, there is a lack of consensus on which 

particle morphological indices are most effective in describing morphological 

characteristics (89). 

1.2. Pavement Mixes and Surfaces 

The previous sections have discussed the general characterizations of surface 

roughness and texture in pavement engineering and other disciplines. This section 

will introduce the most common pavement surfaces found on Texas highways, 

providing a brief description of what makes each pavement mix or surface unique. 

A roadway pavement surface can fall into two types: flexible or rigid. A flexible 

pavement consists of a relatively thin asphalt wearing course over layers of granular 

base and subbase, protecting the subgrade from overstresses (99). In contrast, a 

rigid pavement comprises portland cement concrete slabs poured over a base 

course, designed to be much stiffer than the foundation material, providing a strong 

and durable surface, particularly for heavy traffic and loads (99). 

1.2.1. Flexible Pavements: Hot mix asphalt (HMA)  

The HMA is an asphalt concrete that combines heated asphalt binder and 

aggregates with air voids, that are then laid down and compacted at specific 

temperatures to form a durable road surface. This process results in a flexible and 

relatively impermeable surface for diverse engineering applications such as 

highways, taxiways, and parking lots. HMA can be further subdivided based on 

their aggregate matrix: dense-graded, open-graded, and gap-graded mixes. 

1.2.1.1. Dense-Graded Mixes 

A dense-graded mix is a commonly used mixture for structural surface courses, 

characterized by a high concentration of well-graded aggregate particles, ensuring 

a dense arrangement, as shown in Figure 16, that stabilizes and impermeabilizes 

the surface. The percentage of air voids in this mix depends on aggregate gradation, 

with fuller curves resting close to the density line (45 degrees) (100). These mixes, 

classified by nominal maximum aggregate particle size, are versatile for various 

pavement layers and traffic conditions, serving structural, friction, leveling, and 

patching purposes (101). 
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Figure 16: Diagram of an ideal pavement surface (102) and a field picture for a dense-

graded mix 

1.2.1.2. Open-Graded Mixes 

An open-graded mix, often referred to as: “open-graded friction course” (OGFC) 

or porous friction course (PFC),  is a permeable asphalt layer with a skeleton of 

uniformly sized aggregates and a minimal amount of fines (103), as shown in 

Figure 17. The high percentage of internal air voids is achieved through uniform 

aggregate grading, typically consisting of 50-60 percent particles of similar size. 

OGFCs are effective in improving surface friction, draining water, reducing 

hydroplaning, and lowering noise levels (103), but they face challenges such as 

clogging of voids and structural issues leading to a shorter lifespan compared to 

dense-graded mixes. Nonetheless, the application of modified binders and 

preventive maintenance can significantly extend their service life (104). 

Figure 17: Diagram of an ideal pavement surface (102) and a field picture for an open-

graded mix 

1.2.1.3. Gap-Graded Mixes: Stone Matrix Asphalt (SMA) 

An SMA is a gap-graded mix known for its stable stone-to-stone interlock, 

developed initially in Europe for studded tire wear and rutting prevention through 
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the use of a stable stone-on-stone skeleton held together by a rich mixture of asphalt 

cement, as shown in Figure 18, along with stabilizing agents such as fibers and/or 

asphalt modifiers (105). SMAs gained popularity in the United States since 1991, 

featuring approximately 70 percent  coarse aggregate, 3-4 percent  air voids, and a 

high filler content (106). Despite higher upfront costs, SMAs offer enhanced 

durability, fatigue and rutting resistance, reduced tire noise, and improved wet 

weather friction (105). However, the rough texture of an SMA can lead to a higher 

number of internal air voids, which are associated with a decline in performance, 

even if the total volume of air voids matches that of a conventional asphalt 

pavement (107).   

Figure 18: Diagram of an ideal pavement surface (102) and a field picture for a gap-

graded mix. 

1.2.2. Flexible Pavements: Surface Treatments 

A surface treatment involves strategically applying binder and aggregates 

combined to the current pavement surface, aiming to reduce the deterioration rate 

while enhancing performance in terms of durability, and safety. The selection of a 

surface treatment is influenced by factors such as pavement condition, traffic 

volume, and desired performance outcomes. This study categorizes surface 

treatments into four groups: seal coats, high-friction surface treatments, thin 

overlay mixes, and bonded wearing courses. However, note that the names for these 

treatments may vary across countries and different states within the U.S. 

1.2.2.1. Seal coats  

Seal coats, also known as chip seals or surface dressings, are a cost-effective 

pavement preservation method applied to existing paved surfaces (108). The 

process involves applying an asphalt binder layer followed by uniformly-graded 

aggregate, as shown in Figure 19, to create a weather-resistant seal, preventing air 

and water intrusion, and extending pavement life (108,109). Seal coating is 
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effective for roads with light traffic, providing a skid-resistant surface that can last 

six to ten years when applied correctly (110,111). This method encompasses 

various treatments, including crack seal, fog seal, slurry seal, and many more (109),  

where the main difference lies in the type and gradation of aggregate used (112). 

The study specifically focuses on seal coats in Texas, where the Texas Department 

of Transportation has established standards for different grades based on 

permissible aggregate sizes, as shown in Table 2. 

Figure 19: Representative diagram (113) and field picture for a single layer seal coat.  

Table 2: Aggregate gradation requirements for seal coats in terms of cumulative 

percent retained at each sieve (114). 

 Grade 

Sieve 
1 2 3S1 3 4S1 4 5S1 5 

   NL2 L2     

1” ~ ~ ~ ~ ~ ~ ~ ~ ~ 

7/8” 0-2 0 ~ ~ ~ ~ ~ ~ ~ 

3/4” 20-35 0-2 0 0 0 ~ ~ ~ ~ 

5/8” 85-100 20-40 0-5 0-5 0-2 0 0 ~ ~ 

1/2” ~ 80-100 55-85 20-40 10-25 0-5 0-5 0 0 

3/8” 95-100 95-100 95-100 80-100 60-80 60-85 20-40 0-5 0-5 

1/4” ~ ~ ~ 95-100 95-100 ~ ~ 65-85 ~ 

#4 ~ ~ ~ ~ ~ 95-100 95-100 95-100 50-80 

#8 99-100 99-100 99-100 99-100 98-100 98-100 98-100 98-100 98-100 
1 Single size gradation 
2 NL – Non-lightweight aggregates, L – Lightweight Aggregates 

1.2.2.2. High Friction Surface Treatments (HFST) 

HFSTs differ from seal coats in that they use high-quality aggregates like calcined 

bauxite with polymer binders (e.g., Epoxy-resin, polyester-resin, or polyurethane-

resin), as shown in Figure 20, to endure extreme shear forces and maintain or 

restore pavement friction. This treatment is applied in areas prone to high-crash 

incidents, providing enhanced control for motorists in dry and wet conditions 

(115,116). The choice of aggregate material considers factors like cost, availability, 

and performance. HFSTs have proven effectiveness in reducing accidents, 
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particularly in wet conditions, offering durability, long-lasting results, and cost-

effectiveness compared to geometric design improvements (116,117). They present 

a resilient and environmentally friendly solution with minimal traffic impacts 

where insufficient friction contributes to crashes, and pavement quality is good 

(115–117). 

Figure 20: Representative diagram (118) and field picture for a high friction surface 

treatment. 

1.2.2.3. Thin-Overlay Mix (TOM) 

A TOM is a type of asphalt mixture used for pavement overlays, typically with a 

relatively thin layer and thus, smaller nominal aggregate size, as shown in Figure 

21. This mix is designed to preserve the pavement structure by providing a smooth 

and durable surface to improve the ride quality and extend the life of existing 

pavements (119). Thin overlays may include modified binders and fine aggregates 

to enhance performance and resist common distresses such as cracking. The 

specific mix design and materials may vary based on project requirements and 

standards of the jurisdiction, ensuring the overlay meets performance and durability 

expectations. 

Figure 21: Representative diagram (119) and field picture for a thin overlay mix.  
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1.2.2.4. Bonded Wearing Coarse (BWC) 

A BWC refers to a specialized asphalt overlay applied to an existing pavement 

surface. The application of a bonded wearing course not only aims to enhance the 

surface characteristics, ride quality, and overall performance of the road but also 

ensures a secure and lasting bond between the layers, designed to create a strong 

connection with the underlying pavement, which enhances durability and prevents 

delamination and crack propagation (120). It typically involves the use of high-

quality materials and asphalt binders to ensure a reliable connection between the 

new overlay and the existing pavement, as shown in Figure 22. Additionally, there 

are variations such as thin bonded wearing courses (TBWC) and ultra-thin bonded 

wearing courses, (UTBWC) each varying levels of thickness is tailored to the 

specific requirements of pavement enhancement needed for the road. 

Figure 22: Representative diagram (120) and field picture for a bonded wearing coarse 

surface.  

1.2.3. Rigid Pavement: Textures Constructed in Plastic 

Concrete 

Various techniques are employed to texture the surface of portland Cement 

Concrete (PCC) pavements in their plastic state (i.e., when the concrete is still fresh 

and unhardened), aiming to create a safe, high-friction surface while considering 

noise reduction from tire-pavement interaction. Nonetheless, some texture types 

and orientations are inherently more prone to noise production than others (121). 

1.2.3.1. Dragged Texturing: Burlap, Carpet, Brooming and Artificial 

Turf 

Dragged texturing techniques for plastic concrete pavement involve using objects 

like moistened coarse burlap, brooms, carpet, or artificial turf, usually dragged 

along the direction of traffic. Burlap, carpet, and broom dragging create shallow 

textures (approximately 0.008 inches) with longitudinal striations and low 

macrotexture. Burlap drag, prevalent until the mid-1960s, provides a relatively 

quiet surface but may lack wet-weather friction at high speeds and can decrease in 

friction over time (122).  
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Artificial turf drag, pioneered by the Minnesota Department of Transportation, 

produces textures ranging between 0.06 to 0.12 in. in depth. The depth varies 

depending on turf factors and the concrete mix design (72). Noise and friction data 

suggest values comparable to durable asphalt pavements (123), highlighting the 

importance of a high-quality, low water/cement ratio concrete mixture for a lasting 

turf drag texture (124). These two PCC dragged surface texturing techniques are 

shown in Figure-23. 

Figure-23: Field pictures for textures constructed in plastic PCC dragged surfaces 

burlap (left), artificial turf (right).  

1.2.3.2. Tining 

Tining is a texturing method often used in conjunction with burlap drag which 

creates grooves on the pavement with specified dimensions, where groove depths 

typically vary between 0.06 and 0.25 inches. Actual groove depth is influenced by 

concrete mix properties, tine down-pressure, and timing of the tining operation 

(72). Transverse tining, prevalent until the late 2010s, yields durable and 

hydroplaning-resistant surfaces for concrete pavements but tended to generate 

highly objectionable noise (72,124).  

Longitudinal tining, the current standard, tends to produce pavement surfaces with 

reduced tire-pavement noise and a reduced variability of the noise itself (125). 

Friction testing shows minimal differences in skid resistance across pavements 

textured with transverse and longitudinal tining (71,125). Advantages of using 

longitudinal instead of transverse tining include reduced noise, earlier curing 

compound application, and less variability. Challenges involve ensuring grooves 

are straight and control for the uniformity of shallow grooves (125). Additionally, 

tine spacing can be fixed or random, with fixed spacing being regular and 

predetermined, and random spacing being irregular (71). These two PCC surface 

tined texturing techniques are shown in  



53 

Figure 24. 

Figure 24: Field pictures for textures constructed in plastic PCC tined surfaces fixed 

transverse (left) and random longitudinal tining (right). Direction of travel shown by 

arrow.  

1.2.3.3. Exposed Aggregate 

Exposed aggregate texture is achieved by incorporating hard, angular, polish-

resistant coarse aggregate into the surface concrete mixture and exposing it after 

placement using water or a surface-applied set retarder with mechanical brushing 

(72), as shown in Figure 25. While not commonly used in the U.S. (124), properly 

designed exposed aggregate surfaces are reported to have reduced noise, improved 

friction, and good durability (122,126). The construction cost of an exposed 

aggregate surface typically adds around 10 percent  to the paving cost, although 

some short demonstration projects have reported higher costs (12). 
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Figure 25: Field pictures for textures constructed in plastic PCC exposed aggregate 

surface. 

1.2.4. Rigid Pavement: Textures Constructed in Hardened 

Concrete 

Various techniques are employed to texture the surface of hardened concrete 

pavements, aiming to enhance tire-pavement noise characteristics and friction 

properties. Common methods include diamond grinding, diamond grooving, and 

shotblasting. Shotblasting will not be covered because it is not commonly used in 

Texas; nor will surface milling with carbide teeth be included, since it is deemed 

unsuitable for creating concrete pavement texture due to the potential damage to 

joints and its generation of unacceptable tire-pavement noise levels (72). 

1.2.4.1. Conventional Diamond Grinding 

Diamond grinding is a technique that involves removing a thin layer (typically 0.1 

to 0.8 inches) from the surface of hardened concrete using closely spaced diamond 

saw blades (around 50-60 blades per foot) mounted on a rotating shaft, as shown in 

Figure 26. The resulting texture depends on factors such as aggregate hardness, 

blade spacing, and post-grind treatments (72). Since its inception in 1956, diamond 

grinding is now recognized as a highly effective method for pavement texturing 

and surface profiling. It is beneficial in pavement rehabilitation and restoration 

programs, improving ride quality, restoring surface friction, and reducing tire-

pavement noise (72). The friction-increment and noise-reducing can be lost with 

time and wear, depending on traffic levels and aggregate hardness, but can be 

restored through additional grinding operations. Any slight pavement thickness 

reductions associated with grinding are generally compensated by increases in 

concrete elastic modulus (stiffness) over time (127). 

Figure 26: Field picture for texture constructed in hardened PCC using conventional 

diamond grinding  
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1.2.4.2. Diamond Grooving 

Diamond grooving is a technique that adds macrotexture to hardened concrete by 

cutting grooves in the pavement surface, resembling tining, as shown in Figure 27. 

The grooves are typically longitudinally cut with a blade spacing (center-to-center) 

of 0.75 inches and a depth ranging from 0.12 to 0.25 inches. On occasion, grooves 

are cut transversely at intersections or on airfield runways (72). This method proves 

highly effective in preventing hydroplaning and enhancing wet weather pavement 

friction. Longitudinal grooving also offers increased resistance to lateral skidding 

in curved sections (124). 

Figure 27: Field picture for texture constructed in hardened PCC using conventional 

diamond grooving  

1.2.4.3. Next-Generation Concrete Surfaces (NGCS) 

NGCS is a diamond saw-cut concrete pavement texturing technique developed 

around 2006, creating a texture resembling a hybrid of diamond grinding and 

grooving (72), as shown in Figure 28. It is typically produced in two passes, 

utilizing a flush grind followed by a grooving operation with closely spaced blades 

(72). The resulting texture is predominantly “negative,” featuring grooves with 

minimal upward-oriented texture, providing effective dry- and wet-weather friction 

while being one of the quietest concrete pavement textures. NGCS is applied to 

reasonably smooth pavement surfaces, either in new construction or after diamond 

grinding (128). Although construction costs are higher than conventional diamond 

grinding due to the need for up to three equipment passes, NGCS is suitable for 

both pavement restoration and new construction projects (72).  
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Figure 28: Field picture for texture constructed in hardened PCC using NGCS. 

1.3. Machine Learning  

This section introduces machine learning and its potential for determining 

pavement surface types using field texture or picture data. Before proceeding, it is 

crucial to use proper machine learning terminology: the dependent variable is 

referred to as the target, and the independent variables as features. 

Machine learning is a subfield of artificial intelligence focused on developing 

algorithms that can automatically learn from data and make predictions or decisions 

without being explicitly programmed (129,130). Machine learning algorithms can 

be used for both regression and classification problems. Regression involves 

predicting a continuous numerical value given a set of input features (130). For 

instance, a regression model might predict the price of a house based on its size, 

location, and other features. 

Classification, on the other hand, involves assigning a class label to an input sample 

based on a set of features (130). Examples include predicting whether an email is 

spam or categorizing images into different classes such as “dog,” “cat,” or “person.” 

For this particular study, the Performing Agency is interested in predicting 

pavement surface type (a discrete outcome) given a set of features about its surface 

texture. Thus, classification algorithms will be the main focus of this literature 

review. 

1.3.1. Types of Learning 

Given the focus on “learning” in machine learning, there are various types of 

learning, often referred to as problems, encountered by practitioners. Some types 

describe entire subfields like “supervised learning,” while others, such as “transfer 
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learning,” leverage existing models. Although there are approximately 14 

recognized types, this study will focus on the two main learning problems. 

The first learning problem is supervised learning, where the algorithm is trained on 

a labeled dataset, with correct outputs provided for each input sample. The goal is 

to learn the mapping from inputs to outputs, enabling the algorithm to generalize to 

new, unseen data and make accurate predictions (129).  

The second type is unsupervised learning, where the algorithm is not given labeled 

data and must find structure in the data independently. The goal is to identify 

patterns or relationships for tasks such as dimensionality reduction, clustering, or 

association rule learning (129). Examples include clustering analysis, principal 

component analysis, and autoencoders. 

Each type of learning has its advantages and disadvantages, and the choice of 

algorithm depends on the specific problem and data available. This study 

emphasizes supervised  and unsupervised learning algorithms, as these have been 

most used in determining pavement surface types. 

1.3.2. Supervised Learning (SL): Classification Models   

Supervised learning (SL) methods instruct models to map a set of features to their 

corresponding labels, utilizing numerous frameworks for this mapping. These 

frameworks are: 

• Distance-based methods, including k-nearest neighbors (KNN) and 

Support Vector Machines (SVMs), classify instances based on their 

proximity to other labeled instances. KNN utilizes a simple distance 

measurement to predict a class based on the nearest neighbors, while SVMs 

create a hyperplane that maximally separates the classes in the feature 

space. 

• Probability-based models, such as Naive Bayes and Generalized Linear 

Models (GLMs), rely on statistical techniques to estimate the probabilities 

of data points belonging to various classes based on their input features. 

These models are particularly effective when there is a clear statistical link 

between the input features and the output labels and are most useful when 

prior probabilities are well understood. 

•  Tree-based methods utilize hierarchical models to segment data and make 

predictions, with Decision Trees being a foundational technique within this 

category. These methods work by breaking down the dataset into smaller 

subsets through a series of feature-based decisions, forming a tree structure 
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where each node represents a decision point, and each leaf represents a 

prediction.  

• Ensemble methods enhance predictive accuracy in machine learning by 

combining multiple models, termed “weak learners,” into a more robust 

“strong learner.” These techniques operate on the principle that a group of 

weak models can collectively outperform individual ones. Common 

techniques include bootstrap aggregating, boosting, and stacking. 

Ensemble methods are valued for their ability to reduce errors and provide 

more reliable and consistent predictions. 

•  Network-based models, namely neural networks, are distinguished by 

their ability to model complex, nonlinear relationships through layers of 

interconnected nodes, or neurons. Each neuron processes inputs from 

previous layers and passes its output to subsequent layers, enabling the 

network to learn deep representations of the data through a process called 

backpropagation, which adjusts the weights of connections to minimize 

prediction errors.  

Figure 29 illustrates five foundational frameworks that employ unique 

principles to address diverse predictive challenges. It is important to note 

that this is not an exhaustive list, as more models are being developed as the 

field evolves. The subsequent section provides an overview of the 

traditional SL models under each of these frameworks. 
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Figure 29: Diagram summarizing the traditional machine learning algorithm which can be used to predict pavement surface type based on 

texture indices.
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1.3.2.1. K-Nearest Neighbor (KNN) 

KNN is a simple and popular non-parametric machine learning algorithm used for 

classification and regression problems, although it is mostly applied to 

classification problems. Non-parametric models do not make assumptions about 

the data distribution (131,132). The KNN algorithm is based on the idea that an 

instance’s behavior or characteristics can be determined by the behavior or 

characteristics of its neighbors (133). It employs instance-based learning to find 

patterns in features that map to labels. Instance-based learning implies that the 

model memorizes every feature vector for all observations in the training dataset 

and uses that knowledge to make predictions on unseen data. Because this model 

relies on memorization, its learning phase is considered instantaneous and 

straightforward (132). 

The KNN algorithm works by computing the distance between feature vectors for 

each observation and creating a distance matrix. The algorithm then selects a 

number “K” of the closest neighbors to the observation being predicted. The closest 

neighbors are those with the smallest entries in the distance matrix. Once the 

neighbors are selected, the model uses their labels to make a prediction. In 

regression-KNN, the prediction is made by taking the mean of the labels for all 

nearest neighbors. In classification-KNN, inference is made using a majority voting 

system (133), as shown in Figure 30. 

Figure 30: Example of the KNN classification algorithm. 

The key parameters of the KNN algorithm are the number of nearest neighbors (K) 

and the distance metric used to calculate similarity between instances. Common 

distance metrics include Euclidean distance, Manhattan distance, and Cosine 

similarity (132). KNN assumes that objects or subjects in close proximity are 

similar, whereas those far apart are dissimilar. This assumption indirectly implies 

that the algorithm assumes all features provided to the model are independent of 

each other and highly correlated with the label. 

The KNN model offers several advantages. First, it has an instantaneous training 

phase because the algorithm simply memorizes distances between data points. 
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Secondly, the model requires only simple distance calculations to explain its 

predictions, making it straightforward to understand. Thirdly, KNN is a “white 

box” algorithm, meaning it is easy to interpret. Lastly, it can predict complex 

behaviors using simple mathematics. 

However, the KNN model also has some limitations. Since it memorizes data, this 

can be a limiting factor if the dataset is large, and the value of K is high. 

Additionally, the model is highly susceptible to the curse of dimensionality, making 

it unsuitable for datasets with many features. There is no agreed-upon method to 

choose the optimal K, which can affect the model’s performance. KNN struggles 

to make accurate predictions for outlier data points and, even if the model provides 

high accuracy, it offers no insight into how the data is generated. Finally, its reliance 

on the notion of distance can be influenced by the scale and distribution of features 

(132). 

1.3.2.2. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised machine learning algorithm used 

for classification and regression problems. It aims to find a hyperplane, or decision 

boundary, that best separates different classes of data points. The optimal 

hyperplane is determined by finding the values of the SVM’s parameters that 

control the margin and kernel function. The margin is the distance between the 

hyperplane and the nearest data points from each class, and the goal of the algorithm 

is to maximize this margin while minimizing classification errors (134). 

The kernel function maps the input data into a higher-dimensional space where it 

can be more easily separated by the hyperplane. In a binary classification problem, 

the SVM algorithm finds the hyperplane with the largest margin, as shown in 

Figure 31. The maximum margin is the distance between the closest data points 

from each class and the hyperplane. These closest points, called support vectors, 

define the hyperplane (130). 

For non-linearly separable data, the SVM algorithm can transform the data into a 

higher-dimensional space using kernel functions, making it possible to find a linear 

hyperplane that separates the data (134,135). This approach allows SVM to handle 

complex classification tasks effectively. 
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Figure 31: Maximum-margin hyperplane and margins for an SVM trained with samples 

from two classes (136). 

One of the main advantages of SVM is its ability to handle high-dimensional data 

effectively. SVM maximizes the margin between classes, resulting in more accurate 

and robust classification, even when the number of features exceeds the number of 

samples (130,135). Additionally, SVM is versatile and supports different kernel 

functions, such as linear, polynomial, and radial basis function, allowing it to fit 

various types of data. Another advantage of SVM is its robustness to outliers and 

noise. By maximizing the margin between classes, outliers are less likely to fall 

within this margin, making SVM perform better on noisy data compared to other 

algorithms (134). 

However, SVM has several disadvantages. One major drawback is its 

computational complexity. SVM can be slow when working with large datasets and 

requires significant memory, as it needs to solve a quadratic optimization problem 

for every sample in the dataset (135). This makes SVM computationally expensive 

and impractical for large datasets. Additionally, SVM is sensitive to parameter 

tuning, requiring careful selection of the kernel function and tuning of parameters 

such as the regularization parameter and kernel coefficient. This can be time-

consuming and challenging, especially for non-experts. Another disadvantage is 

that SVM is inherently a binary classification algorithm, capable of classifying data 

into only two classes. To extend it to multi-class classification, techniques like one-

vs-one or one-vs-all are used, but these can be computationally expensive and may 

not scale well for large datasets (130). Lastly, SVM’s interpretability is limited 

because it produces a black-box model, making it challenging to understand how 

predictions are made. This can be a significant disadvantage in applications where 

interpretability is essential. However, techniques such as feature importance 

measures can help understand the contribution of each feature to the final prediction 

(130). 
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1.3.2.3. Gaussian Naive Bayes (GNB)  

Naive Bayes is a probabilistic machine learning algorithm based on Bayes’ 

theorem, primarily used for classification problems. It is termed “naive” due to its 

strong independence assumption between features, assuming that features are 

independent and have no impact on each other, despite often being correlated in 

practice (130). The GNB model extends the Naive Bayes model by assuming that 

each class within the labels has a unique Gaussian distribution, hence the name. 

In the GNB classifier, the goal is to estimate the class-conditional probabilities, 

assuming that the features for each class follow a Gaussian distribution. Given a 

new instance with a set of features, the algorithm calculates the posterior probability 

of each class label using Bayes’ theorem and assigns the label with the highest 

posterior probability to the instance. Gaussian Naive Bayes is one of several 

variants of the Naive Bayes algorithm, with others including Multinomial Naive 

Bayes and Bernoulli Naive Bayes, each suited to different types of data and feature 

distributions (130,137). 

One of the main advantages of GNB is its ease of implementation and 

computational efficiency, making it well-suited for large datasets. It performs well 

with high-dimensional data and is particularly effective when the number of 

features is much greater than the number of observations. GNB also provides 

probabilistic predictions, which can be useful in decision-making (137,138). 

However, GNB has some limitations. Its assumption that all features are normally 

distributed and independent is not always true in real-world data, leading to 

suboptimal performance when features are correlated. The algorithm also assumes 

that all features contribute equally to the outcome, which may not be the case in 

some datasets, resulting in suboptimal performance. Moreover, GNB is prone to 

the “zero-frequency problem,” where it assigns a probability of zero to a class when 

a feature is not present in the training set. This issue can be addressed through 

smoothing techniques. Lastly, GNB may not be the best choice for tasks where 

maximizing accuracy is the goal, as more complex models like decision trees or 

neural networks may outperform it  (130,137). 

1.3.2.4. Generalized Linear Models (GLM) 

A GLM is an extension of traditional linear regression models that allows for 

response variables to have error distributions other than a normal distribution. 

GLMs are defined by three components: a linear predictor, a link function, and a 

probability distribution from the exponential family. The linear predictor is a 

combination of model parameters and explanatory variables. The link function 

connects the means of the distribution of the response variable to the linear 
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predictor. The exponential family encompasses a wide range of distributions, 

including normal, binomial, Poisson, and gamma distributions, making GLMs 

highly versatile for various types of data. 

This report will focus specifically on logistic, Probit and complementary log-log 

regression models as these are commonly used in discrete choice modeling, 

survival analysis and ML classification problems 

 Logistic Regression (LOG) 

LOG is a statistical method used for binary classification problems, though it can 

be extended to multi-class classification. The goal is to model the relationship 

between independent features and a binary target (139). It uses the logistic function, 

or sigmoid function, to map independent variables to a probability range of 0 to 1, 

representing the likelihood of the input data belonging to a certain class. The model 

is trained using maximum likelihood estimation to find the coefficients that best fit 

the observed data (139). 

After training, the model can make predictions for new instances by inputting 

features and computing the predicted class probability. A classification threshold, 

often set at 0.5, determines the final class decision. LOG is popular due to its 

simplicity, interpretability, and ability to handle both linear and non-linear 

relationships. It is computationally efficient and easy to implement. However, it has 

limitations, such as sensitivity to outliers, the requirement for feature independence, 

and difficulty in capturing complex non-linear relationships (139). 

 Probit Regression (PRO) 

PRO is a statistical method for binary classification problems similar to LOG, with 

the primary difference being that it uses the standard normal cumulative distribution 

function (Probit function) to model the relationship between independent variables 

and the binary dependent variable. In PRO, the relationship between input variables 

and the binary outcome is modeled as a linear combination of the inputs, with 

coefficients estimated through maximum likelihood estimation (140). The 

estimated coefficients are used to calculate the predicted value of the cumulative 

distribution function of the standard normal distribution, which is then transformed 

into a probability value between 0 and 1. 

One advantage of the Probit model is its ability to estimate thresholds or cut-off 

points at which the binary outcome changes, which is useful when the relationship 

between inputs and the binary outcome is not linear. PRO also provides a natural 

probabilistic interpretation of the predicted probabilities due to the Probit function 

(140). 
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However, PRO is less widely used than LOG because it is computationally more 

intensive and less interpretable. Additionally, it assumes that errors are normally 

distributed, which may not be suitable for all datasets (140). 

 Complimentary Log-Log Regression (CLL) 

CLL is a type of regression analysis used in binary classification problems. It is a 

variant of LOG, where the logistic transformation is replaced by the complimentary 

Log-Log function. This function maps predicted probabilities to a space that better 

models the probabilities of extreme events (i.e., events close to 0 or 1), providing a 

better fit for datasets with rare target variables or many outliers (140). 

The coefficients of the independent variables in CLL are estimated using maximum 

likelihood estimation. Once the model is trained, it can make predictions for new 

instances by inputting the features and computing the predicted CLL transformed 

probabilities. A threshold, such as 0.5, is set to convert these probabilities into 

binary class predictions (140). 

Although less widely used than LOG, CLL is useful when the target variable is rare 

or when there are many outliers. However, it is more computationally intensive and 

can be more difficult to interpret compared to LOG or PRO (140). 

1.3.2.5. Decision Tree (DT) 

A DT is a popular and simple machine learning algorithm used for both 

classification and regression problems. It is a tree-like model representing a series 

of decisions and their possible consequences. Each node in the tree represents a test 

on an input feature, each branch represents the outcome of the test, and the leaves 

represent the final prediction or class, as shown in Figure 32. The decisions in the 

tree are based on the most important feature that splits the data into homogeneous 

groups (130). The algorithm recursively splits the data into smaller groups based 

on the feature that provides the highest information gain. This process continues 

until all data in each group belongs to the same class, or until the maximum tree 

depth or the minimum number of samples per leaf is reached. The final result is a 

tree with branches representing decisions based on features and leaves representing 

the final prediction or class. To make a prediction for a new instance, the instance 

is passed down the tree, following the branches corresponding to the feature values 

until a leaf is reached, providing the final prediction (130).  
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Figure 32: Basic structure of a DT. 

DTs are widely used due to their interpretability and ease of use. One of their 

biggest advantages is their interpretability, as the tree structure makes it easy to 

explain results to a non-technical audience. They can handle missing values and 

irrelevant features, as not all features need to be relevant for the prediction task. 

Additionally, DTs are non-parametric, meaning they do not make any assumptions 

about the underlying data distribution (141). They are also fast to train and make 

predictions, making them suitable for real-time applications ((130). 

However, DTs also have some disadvantages. One major challenge is overfitting, 

especially when the tree grows very deep, resulting in a complex structure that may 

not generalize well to unseen data. DTs can also be unstable, as small changes in 

the data can lead to a completely different tree structure and different predictions. 

They can be biased towards features with many levels or towards classes with more 

samples in the training data. Additionally, DTs are limited in their expressiveness, 

as they can only capture linear decision boundaries. Finally, the algorithm used to 

build DTs is a greedy approach, which may not always result in the optimal tree 

structure (141). 

1.3.2.6. Random Forest (RF) 

RF are an ensemble learning method that constructs multiple decision trees during 

training and outputs the modal class for classification or the mean prediction for 

regression. The random component arises from training each decision tree with a 

different, randomly selected subset of the original data, with each subset containing 

a random set of variables to ensure low correlation among the trees (142,143). A 

diagram showing the general structure of the RF is shown in Figure 33. 
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The fundamental concept behind a RF model is the “wisdom of crowds.” This 

approach works well because many relatively uncorrelated models operating as a 

committee will outperform any individual constituent model. The low correlation 

between models is crucial. Similar to how a diversified investment portfolio with 

low-correlated assets (e.g., stocks and bonds) is more robust, uncorrelated models 

in a RF produce ensemble predictions that are more accurate than individual 

predictions. This is because the trees protect each other from their individual errors. 

While some trees may be wrong, many others will be correct, allowing the forest 

to collectively make more accurate predictions (142,143). 

Figure 33: Basic structure of a RF. 

RF models offer several advantages over single DTs, including improved accuracy, 

reduced overfitting, better handling of noisy data and outliers, and the ability to 

estimate feature importance. It is also relatively fast and easy to implement, making 

it a popular choice for many applications. However, RF can be computationally 

expensive for large datasets, and its predictions may be slower than those of other 

algorithms because it needs to make a prediction for each tree in the forest 

(142,143). 

1.3.2.7. Bootstrap Aggregating (BA) 

BA, also known as bagged decision trees, involves creating multiple DTs using 

random subsets of the training data. For each tree in the ensemble, a new subset of 

the training data is created by randomly selecting examples from the original 
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training set with replacement, meaning some examples may appear multiple times 

in the new subset while others may be left out. Each DT in the BA model is then 

trained using this new subset of training data, and a different subset of input features 

is used for each node split in the tree to increase diversity and prevent overfitting 

(144). 

During prediction, each DT in the BA model independently evaluates the input 

features and generates a prediction. The final prediction is determined by 

aggregating the predictions of all individual trees, typically by averaging in 

regression problems or taking the majority vote in classification problems. By 

combining the predictions of multiple DTs, BA reduces the variance of the model 

and improves its accuracy. Additionally, because each tree is trained on a different 

subset of the training data, BA helps reduce the impact of outliers and noise in the 

data (144). Figure 34 shows the basic structure of a bagged decision tree. 

Figure 34: Basic structure of a BA model.  

BA models offer several advantages over single DT, such as improved accuracy, 

reduced overfitting, better handling of noisy data and outliers, and the ability to 

estimate feature importance. They are also relatively fast and easy to implement, 

making them a popular choice for many applications. However, BA models can be 

computationally expensive for large datasets, and their predictions may be slower 

than those of other algorithms because a prediction must be made for each tree in 

the bag (144). 
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1.3.2.8. Adaptive Boosting (AB) 

AB, also known as AdaBoost, is a machine learning algorithm used for binary 

classification problems. It is a meta-algorithm that combines several weak learners, 

such as DTs with small depth, to form a strong learner. The algorithm iteratively 

fits weak learners on weighted versions of the training data, updating the weights 

of instances in each iteration to give more importance to the misclassified instances. 

The final prediction is obtained by weighted voting of the weak learners (145,146). 

In each iteration, AB fits a weak learner on the weighted training data and assigns 

a weight to the weak learner based on its accuracy. The weights of the instances are 

updated so that misclassified instances have higher weights in the next iteration. 

This process continues until a stopping criterion is met, such as a maximum number 

of iterations or a minimum error rate. The final prediction is made by weighted 

voting of the weak learners, where the weight of each weak learner is proportional 

to its accuracy, giving more importance to those that perform well on the training 

data (146). Figure 35 shows a visual example of how AB works. 

Figure 35: Visual depiction of AB using multiple weak learners to create one strong 

classifier. 

One of the main advantages of AB is its ability to handle both linear and non-linear 

decision boundaries, making it suitable for a wide range of data distributions and 

types. Additionally, AB is not prone to overfitting, can handle noisy data and 

outliers effectively, and is computationally efficient, making it suitable for large-

scale applications (146). 

However, AB has some disadvantages. It is sensitive to the choice of weak 

classifiers and the number of iterations; if weak classifiers are not chosen carefully, 

or if too many iterations are used, the algorithm can become overly complex and 
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perform poorly (146). AB is also sensitive to class imbalance, which can lead to 

poor performance if one class has many more samples than the other. Additionally, 

AB requires significant hyperparameter tuning, which can be time-consuming and 

requires expertise. Finally, AB can be sensitive to outliers, as they can significantly 

impact the algorithm’s performance (145). 

1.3.2.9. Gradient Boosting (GB) 

GB is a machine learning algorithm used for both classification and regression 

problems. It is an ensemble learning algorithm that combines several simple weak 

learners, such as SVMs or DTs, to form a strong learner. The algorithm works by 

iteratively fitting weak learners on the training data and adjusting their weights 

based on the errors made in previous iterations. The final prediction is obtained by 

weighted voting of the weak learners, where the weight of each weak learner is 

proportional to its accuracy (147). GB can achieve higher accuracy than single 

weak learners and other machine learning algorithms and is widely used in 

applications such as credit scoring, customer segmentation, and disease diagnosis 

(146). Figure 36 shows the basic architecture of GB using DT as weak learners. 

Figure 36: The architecture of GB (148). 

One of the main advantages of GB is its ability to handle large datasets with many 

features and instances, as well as their capability to manage noisy and complex 

data. The algorithm is relatively fast and easy to implement and can be parallelized 

for even faster computation. However, GB can be sensitive to overfitting, especially 

if the number of iterations is too large or if the weak learners are too complex. It is 
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also computationally expensive, and its predictions may be slower than those of 

other algorithms (146,147). 

1.3.2.10. Extreme Gradient Boosting (XGB) 

XGB, also known as XGBoost, is a popular gradient boosting library widely used 

for both regression and classification problems. It is highly customizable, with 

many parameters that can be tuned to optimize performance for different datasets 

and problems. XGB builds an ensemble of decision trees sequentially, each tree 

correcting the errors of the previous one. During training, the algorithm calculates 

the gradient of the residuals and uses this information to adjust the weights of each 

instance in the dataset (149).  

XGB uses parallel processing and memory optimization to make the training 

process efficient and scalable. It implements advanced techniques for handling 

overfitting and improving prediction accuracy, such as regularization, early 

stopping, and tree pruning. It also supports GPU acceleration, making it much faster 

than other gradient boosting libraries (149). Figure 37 shows a schematic for how 

XGB works. 

Figure 37: Flowchart of XGB algorithm (150). 

In addition to its efficiency and scalability, XGBoost is known for its 

interpretability, providing feature importance scores that help understand each 

feature’s contribution to the prediction. However, XGB can be sensitive to noisy 
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data and requires careful tuning of hyperparameters, such as the learning rate and 

the number of trees, to achieve good results (149). 

1.3.2.11. Neural Networks 

Neural networks are a subset of machine learning that mimics how the human brain 

learns by using a network of connected nodes (neurons) to output a prediction. The 

general architecture of an artificial neural network (ANN) comprises three types of 

layers: the input layer, hidden layers, and the output layer (130) as shown in Figure 

38. The input layer consists of the data fed into the model, such as images of 

handwritten numbers for a digit recognition task. The hidden layers, which can 

range from a single layer to many layers depending on data complexity, contain 

neurons that learn specific features of the data. Neurons perform mathematical 

calculations optimized with each feature to reduce the error between the model’s 

prediction and label. 

Figure 38: Representation of an ANN Model with 2 hidden layers (151). 

Typically, neural network models are supervised, meaning they are trained on 

labeled data. The data is usually split into training, validation, and testing sets in a 

70%, 20%, and 10% ratio, respectively. The training data adjusts the numerical 

values in the neurons, while the validation data monitors the model’s performance 

during training. The output layer, connected to the last hidden layer, makes the final 

decision about the input data. It produces a vector where each value represents the 

confidence that the input belongs to a particular class, with the highest value 

indicating the predicted class (130). 

When an ANN has a single hidden layer, it is considered a shallow neural network 

(SNN). In contrast, when there are two or more hidden layers, it is referred to as a 

deep neural network (DNN). DNNs are capable of capturing more complex patterns 

in the data, making them suitable for tasks requiring high-level abstractions, such 

as image and speech recognition. The depth of a neural network allows it to learn 
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hierarchical representations, improving its ability to generalize from training data 

to unseen instances. 

However, even with the improved predictive power provided by DNNs relative to 

SNN. It is important to know that SNNs are widely used due to the universal 

approximation theorem, which states that a neural network can approximate any 

function with at least one hidden layer (152). This implies that any computational 

function can be approximated by a SNN. However, the theorem does not specify 

the optimal architecture needed to best approximate the function (152), leaving it 

up to the data analyst to determine the best structure. Despite their versatility, ANNs 

are often considered “black boxes” because their internal workings do not provide 

insights into the structure of the approximated function. Nevertheless, for many 

high-complexity tasks, the ability to predict outputs accurately is more valuable 

than understanding the underlying structure. 

 Convoluted Neural Networks 

Convoluted Neural Networks (CNN) are a specialized type of neural network 

model that excel in image classification for computer vision and image analysis. In 

fact, picture-based classification is largely dominated by neural networks, like the 

CNN, as other methods like RF, KNN, and GNB achieve poorer accuracy.  

CNNs extract distinct features from images, enabling the classification of various 

classes within the data. Unlike traditional ANNs, CNNs are particularly effective 

for pattern recognition in images. For example, a color image of a cat might be 32 

x 32 pixels with three channels (R, G, B). While an ANN architecture could require 

neurons for each pixel in each channel, resulting in high computational time, a CNN 

can condense the input data into smaller sizes as it progresses through the layers, 

making it more efficient (153). Figure 39 shows how the convolutional layer fits 

into the ANN’s architecture.  
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Figure 39: An input image, followed by a convolutional layer and the output of the 

convolutional layer (151). 

The overall architecture of a CNN is similar to an ANN, but the hidden layers in 

ANNs are replaced by three types of layers in CNNs: convolutional layers, pooling 

layers, and fully connected layers (Figure 40). The input and output layers function 

the same as in ANNs. The convolutional layer takes smaller segments from the 

image and applies filters/kernels learned during training. to extract low-level 

features, such as edges, used for classification. The pooling layer then 

undersamples the data, reducing the number of calculations needed. Finally, the 

fully connected layer produces a confidence score for the image class, similar to 

the output in traditional ANNs. These layers can be repeated multiple times within 

the model (153). 

Figure 40: A CNN architecture to classify handwritten numbers (153). 

CNN models involve fewer neuron calculations compared to ANNs for image data. 

However, CNNs have many parameters that require tuning, often making the 

process trial-and-error to find the optimal architecture. As the model becomes more 

complex with more layers, the computational power required increases 

significantly, sometimes beyond the capacity of a regular personal computer. 

Training time for CNNs is also dependent on computational power. Overfitting is 

a common issue, where the model starts to memorize the training data rather than 

learning generalizable patterns. This can be mitigated through various tools and 

methods designed to prevent overfitting. Balancing the input complexity and the 

number of layers is crucial to maintaining a model’s effectiveness without 

overfitting. 

1.3.3. Unsupervised Learning 

Unsupervised Learning (UL) is a branch of machine learning that trains algorithms 

using data without predefined labels or outcomes determined by human input. UL 

is categorized into three primary types: clustering, association rule learning, and 

dimensionality reduction. Clustering groups objects so that those within the same 

group are more similar to each other than to those in other groups, enhancing pattern 
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recognition and classification within datasets. Association rule learning identifies 

significant relationships between variables in large databases, uncovering strong 

rules using various measures of interestingness. Dimensionality reduction 

simplifies data by focusing on principal variables, reducing the number of variables 

considered without substantial information loss, which supports data compression 

and feature extraction.  

1.3.3.1. Dimensionality Reduction 

PCA is a dimensionality reduction technique designed to simplify the complexity 

of high-dimensional data while preserving essential trends and patterns. It achieves 

this by forming linear combinations of the original data to create a new set of 

variables, known as principal components. The first principal component captures 

the maximum amount of variance from the original variables, with each subsequent 

component accounting for the maximum amount of remaining unexplained 

variance. These components are uncorrelated and ordered, ensuring that the initial 

few components retain the majority of the variation found in all the original 

variables. 

In the context of clustering, PCA facilitates the projection of high-dimensional data 

into a lower-dimensional space with minimal information loss, enhancing data 

interpretability. One effective method to visualize PCA’s efficacy is by comparing 

scatterplot matrices of the first three principal components against those of all the 

original variables. To illustrate the benefits of PCA, consider an example involving 

high-dimensional data. Figure 41 displays a density scatterplot of the original data 

containing six variables (top) and the first three principal components (bottom). 
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Figure 41: Comparison between scatterplot of the original data (top) and the reduced 

data using the first three principal components (bottom).2 

2 Note that the numerical values on both axes were suppressed due to excessive overlap at this 

resolution which distracts from cluster visualization. 

The scatterplot matrices are divided into three distinct regions. The main diagonal 

illustrates the distribution of each variable, providing a straightforward visual 

representation of individual data trends. The off-diagonal elements on the bottom 

left consist of simple scatterplots that showcase relationships between two 

variables. In contrast, the off-diagonal elements on the top right consist of density 

plots, which are useful for highlighting areas of high density and identifying 

clusters. 
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While both the original data scatterplot matrix (top) and the principal component 

scatterplot matrix (bottom) represent the same data, the complexity of the top 

section, which includes a larger number of variables, renders it more difficult to 

interpret. The PCA scatterplot matrix, on the other hand, provides a clearer and 

more interpretable visual due to its reduced dimensionality, featuring only three 

variables instead of six. This simplification greatly enhances the ease of 

understanding the underlying data structure and the relationships between 

variables. 

Reducing the number of variables from six to three often suffices to reveal the 

clustering structure within the data, particularly by examining the density plot of 

the first and second principal components. These components typically capture 

most of the variance from the original variables. Figure 42 zooms into the top 

middle element of the PCA scatterplot matrix to showcase the density plot for these 

two principal components. Visually, at least three distinct groups are easily 

identifiable: a large cluster at the top, a smaller cluster in the mid-right, and another 

cluster in the bottom middle. The clarity of these groupings in the density plot 

provides valuable insights that inform and guide the subsequent application of 

clustering algorithms, effectively leveraging the streamlined data structure 

achieved through PCA to improve clustering accuracy. 

Figure 42: Density plot overlaid by scatter point of the first and second principal 

components for texture indices in rigid pavements. 

1.3.3.2. Clustering 

Clustering methods are distinct from discrimination or assignment methods—types 

of supervised machine learning used for classification—where the groups are 

predefined. Cluster analysis focuses on identifying and revealing naturally 
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occurring groups within the data, often referred to as clusters. A cluster is generally 

characterized by the homogeneity of its members (i.e., internal cohesion) and their 

distinct separation from members of other clusters (i.e., external isolation). Such 

properties are illustrated informally with a diagram in Figure 43. The clusters 

present in this figure will be clear to most observers without attempting an explicit 

formal definition. 

Figure 43: Clusters with homogeneity and/or separation (154) 

Identifying clusters mathematically is significantly more complex than merely 

visualizing them. The earlier definition of clusters was intentionally qualitative to 

highlight the challenges inherent in rigorously defining concepts such as 

homogeneity and separation. The difficulty in precisely defining these concepts, 

and the uncertainty around how the human brain visually isolates clusters, as 

illustrated in Figure 43, have led to a proliferation of clustering algorithms. The 

vast array of documented methods—each adapting the definition of what 

constitutes a cluster and how to measure homogeneity and separation—continues 

to grow as new algorithms are developed. Figure 44 provides a diagram that offers 

a broad overview of just a few of the many clustering techniques and frameworks 

employed by researchers across various fields of study. 

Given the sheer number of clustering algorithms available, the Performing Agency 

could not perform an exhaustive analysis of all techniques. Instead, the focus was 

placed on identifying a clustering method that not only mirrors the clusters visually 

discernible through PCA but also produces reproducible results when tested with 

an alternative method. To this end, the Performing Agency evaluated several 

algorithms, including: 

• Partition Around Medoids (PAM), 

• Agglomerative Nesting (AGNES), 

• Gaussian Mixture Models (GMM), and 

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN). 
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Figure 44: Clustering of clustering techniques
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 Partition Around Medoids (PAM) 

PAM  is an unsupervised clustering algorithm that organizes a dataset into clusters 

using actual data points as central elements, known as medoids. Unlike k-means 

clustering, which minimizes variance within clusters, PAM reduces the sum of 

dissimilarities between points and their respective medoids, making it more robust 

to noise and outliers. During the clustering process, PAM iteratively refines its 

clusters by evaluating potential medoids and selecting those that yield the most 

coherent and compact groupings. This method enhances the robustness of the 

results and provides an intuitive understanding of each cluster through real, 

representative examples (155). 

PAM is robust to noise and outliers because it uses medoids instead of means, 

minimizing dissimilarity rather than variance. This makes PAM effective for 

datasets with irregular distributions, providing interpretable and realistic cluster 

representations. However, PAM can be computationally intensive, especially with 

large datasets, due to the need to evaluate all possible medoid candidates, resulting 

in higher time complexity compared to k-means. It can also be sensitive to the initial 

selection of medoids. Despite these challenges, PAM is valuable for datasets 

requiring robustness to outliers and clear cluster interpretability (156).  

 Agglomerative Nesting (AGNES) 

AGNES is a hierarchical clustering technique that groups data points based on their 

similarities using an agglomerative approach. Each data point starts as its own 

cluster, and clusters are gradually merged based on a specified linkage criterion, 

such as minimum, maximum, or average distance between clusters. This process 

results in a dendrogram (Figure 45), a tree-like diagram that displays the nested 

grouping of points and clusters, which is invaluable for analysts seeking to 

understand the data structure at different levels of granularity and to identify the 

natural hierarchy in data. AGNES is particularly useful when the number of clusters 

is unknown, allowing analysts to explore the hierarchical structure and determine 

an appropriate number of clusters by interpreting the dendrogram. To decide which 

clusters should be combined, a measure of dissimilarity between sets of 

observations is required, typically using metrics like Euclidean distance and linkage 

criteria such as Ward’s method, which minimizes the sum of squared differences 

within all clusters. 
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Figure 45: Sample dendrogram. 

The mergers and splits in AGNES are determined using a greedy strategy, making 

locally optimal choices at each stage. While this approach may not always yield the 

global optimum, it often produces satisfactory results efficiently (157). However, 

the main drawback of AGNES is its computational time, with a time complexity of 

𝑂(𝑁³). Despite this, agglomerative hierarchical clustering with a specified metric 

and linkage criterion is guaranteed to converge to the same unique solution every 

time (158). 

 Density-Based Spatial Clustering Application with Noise (DBSCAN) 

DBSCAN is a clustering algorithm that defines clusters as areas of high density 

separated by areas of low density. Unlike methods requiring a predetermined 

number of clusters, DBSCAN operates based on two parameters: epsilon, which 

specifies the neighborhood radius in terms of distance, and minPts, the minimum 

number of points required to form a dense region. This flexibility makes DBSCAN 

suitable for datasets with irregularly shaped and sized clusters and effectively 

handles noise. DBSCAN also excels at excluding outlier data points that do not 

belong to any cluster, providing a robust solution for real-world data clustering 

where outliers are prevalent (155). However, DBSCAN has disadvantages, such as 

struggling with datasets of varying density, as it relies on parameters like epsilon 

and MinPts  that need careful tuning. Additionally, it can be computationally 

intensive for large datasets. (159). 

 Gaussian Mixture Models (GMMs) 

GMMs are probabilistic models that posit all data points are generated from a finite 

number of Gaussian distributions with unknown parameters. Part of the mixture 

models family, GMMs offer a soft-clustering approach, calculating the probability 

of each data point belonging to each distribution rather than assigning each point to 

a single cluster. This flexibility allows GMMs to accommodate clusters of varying 
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sizes and correlation structures, making them particularly useful in fields such as 

image processing, pattern recognition, and bioinformatics, where they help 

elucidate underlying parameters in data exhibiting multiple modes of variation 

(155). 

Nonetheless, GMMs have several disadvantages, including sensitivity to initial 

parameter values, which can lead to convergence at local optima. They assume data 

is generated from Gaussian distributions, making them unsuitable for non-Gaussian 

data or datasets with significant outliers. Moreover, GMMs are computationally 

intensive, especially for large or high-dimensional datasets, and require specifying 

the number of components in advance, which can lead to overfitting or underfitting 

(160). 

1.3.4. Assessing Performance 

Goodness-of-fit metrics are statistical measures used to evaluate how well a model 

fits the data it is meant to represent. These metrics compare observed values to 

predicted values, providing a quantitative assessment of the model’s fit. The choice 

of metric depends on the specific problem and desired properties of the metric. It is 

crucial to use appropriate metrics and interpret results carefully to ensure accurate 

quality assessment. 

In classification problems, numerous goodness-of-fit metrics exist, with no 

consensus on a single preferred metric. For example, logistic regression models 

often use deviance or log-likelihood, while neural networks or decision tree 

frameworks may use confusion matrices or the F1 score. This section briefly 

describes commonly used goodness-of-fit statistics in machine learning 

classification models. 

1.3.4.1. Deviance or Maximum Likelihood 

Deviance is a goodness-of-fit statistic used in statistical hypothesis testing, 

generalizing the sum of squares of residuals in ordinary least squares to cases where 

model-fitting is achieved by maximum likelihood (161). It measures the difference 

between observed and predicted outcomes in a discrete choice regression model, 

with lower deviance indicating a better fit. Deviance is formulated as: 

(7) 

Where D is the deviance, LR is the likelihood under the restricted model, and LU 

is the likelihood under the unrestricted model. Deviance can compare logistic 

regression models and test hypotheses about predictor-response relationships (161). 
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1.3.4.2. Confusion Matrix 

A confusion matrix evaluates the performance of a classification algorithm 

(162,163). It is a table with true class values as rows and predicted class values as 

columns. Diagonal entries represent correctly classified samples (true positives and 

true negatives), while off-diagonal entries represent misclassified samples (false 

positives and false negatives), as shown in Figure 46. 

By examining the confusion matrix, various performance metrics such as accuracy, 

precision, recall, and F1 score can be calculated, providing different perspectives 

on classifier performance. The confusion matrix is a valuable tool for analyzing and 

comparing classification algorithms, helping identify areas for improvement and 

determining the best algorithm for a particular task (163).  

Figure 46: Example of a confusion matrix. 

Understanding the definitions of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN) is crucial as these terms form part of the 

confusion matrix and are foundational for many other goodness-of-fit metrics. TPs 

refer to instances where the classifier correctly predicts the positive class, such as 

correctly identifying a patient with a disease. TNs are instances where the classifier 

correctly predicts the negative class, like correctly identifying a patient without a 

disease. FPs are instances where the classifier incorrectly predicts the positive class, 

mistaking a healthy patient for having the disease. FNs occur when the classifier 

incorrectly predicts the negative class, failing to identify a disease in a patient who 

actually has it (162). 

1.3.4.3. Accuracy 

Accuracy (A) measures the overall correctness of a classification algorithm in 

predicting the class of instances. It is defined as the number of correct predictions 

(both true positives and true negatives) divided by the total number of predictions: 
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(8) 

Accuracy provides a general idea of how well a classifier performs but can be 

misleading when the class distribution is imbalanced. In such cases, a classifier 

always predicting the majority class may show high accuracy without making 

meaningful predictions (130,162). 

1.3.4.4. Precision (Specificity) 

Precision (P), also known as specificity, is the probability of correctly predicting a 

given class. It measures the proportion of correctly classified groups over the total 

number of observations for each group and the classifier’s ability to avoid false 

positives: 

(9) 

Precision ranges from 0% to 100%, with 0% indicating all predictions are false and 

100% indicating perfect precision with no false positives. 

1.3.4.5. Recall (Sensitivity) 

Recall (R), also known as sensitivity or true positive rate, measures the probability 

of correct predictions given a class prediction and is computed as per equation 

(10). It measures the proportion of correctly classified groups over the total number 

of predictions for each group and the classifier’s ability to avoid false negatives: 

(10) 

Recall also ranges from 0% to 100%, with 0% indicating all predictions are false 

and 100% indicating perfect recall with no false negatives. Recall and precision are 

similar but incomplete on their own; a model can have perfect precision but poor 

recall in imbalanced datasets. These metrics should be analyzed together or through 

a combined statistic (130,162). 

1.3.4.6. F1 Score 

The F1 Score, also known as the F-measure or F1 value, combines the precision 

and recall of a classifier into a single metric by taking their harmonic mean, as 

shown in equation (11). 
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(11) 

The F1 score provides a single value representing the overall performance of a 

classifier, considering both its ability to avoid false positives (precision) and to 

identify all relevant instances (recall). This makes the F1 score particularly useful 

for evaluating classifier performance when the class distribution is imbalanced, as 

it balances two complementary metrics (162). 

The F1 score ranges from 0% to 100%, with 100% indicating perfect balance and 

0% indicating the worst possible balance. It can also be adjusted to prioritize recall 

over precision, depending on the goal. This adjustment is shown in equation (12). 

(12) 

Where β is the weighting factor. Common β values are 0.5 and 2.0. Choosing β=0.5 

gives higher weight to recall relative to precision (making false positives more 

concerning), while β=2.0 gives higher weight to precision (making false negatives 

more concerning). Setting β=1 reverts to the original F1 score, which equally 

weights precision and recall.  

1.3.4.7. Matthew’s Correlation Coefficient (MCC) 

MCC is a performance metric for binary classification problems, considering all 

elements of the confusion matrix (162). It is a balanced metric that summarizes 

overall classifier performance by means of equation (13).  

(13) 

MCC ranges from -1.0 to +1.0, with +1.0 indicating perfect prediction, 0 indicating 

random prediction, and -1.0 indicating perfectly incorrect prediction. MCC can be 

more robust for imbalanced datasets compared to other metrics. It accounts for all 

parts of the confusion matrix and can be a stronger indicator of performance than 

the F1 score. However, this robustness comes at the cost of interpretability. The F1 

score is easier to understand and calculate, focusing solely on precision and recall. 

In most cases, the F1 score is sufficient to distinguish high-performing classifiers 

(164). 

MCC is particularly useful for highly unbalanced datasets where the positive case 

is less important. In such scenarios, MCC provides a balanced evaluation, while the 
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F1 score can yield high values only when the classifier accurately identifies the 

positive (minority) class (162). 

1.3.4.8. Fowlkes–Mallows index 

The Fowlkes–Mallows Index (FMI) is a performance metric used to determine the 

similarity between two clusters obtained after running a clustering algorithm. It can 

also be used as a goodness-of-fit metric for a binary classification algorithm. FMI 

measures similarity between either two hierarchical clustering models or a 

clustering and a benchmark classification (162). It is calculated as the geometric 

mean of precision and recall as per equation (14): 

(14) 

FMI ranges from 0% to 100%, with 100% indicating perfect similarity between the 

two sets of predictions and 0% indicating complete dissimilarity. This metric is 

most often used when comparing unsupervised machine learning implementations 

and is rarely seen as a goodness-of-fit metric for supervised learning classification 

models. 

1.3.4.9. Receiver Operating Curve (ROC) and Area under the ROC (AUC) 

The Receiver Operating Curve (ROC) visually assesses a model’s performance 

using a graph with the false positive rate (FPR or 1-specificity) on the x-axis and 

the true positive rate (TPR or recall) on the y-axis at various classification 

thresholds or hyperparameter values, as shown in Figure 47. The ROC curve 

illustrates the trade-off between TPR and FPR, helping to select the optimal 

threshold or hyperparameter value that balances the risk of false positive and false 

negative predictions (162,163). A classifier with perfect performance has an ROC 

curve that passes through the top left corner of the plot (TPR = 1, FPR = 0), while 

a classifier with random performance has an ROC curve close to the diagonal (TPR 

= FPR). The closer a point is to the top left of the ROC curve (0, 1.0), the better the 

classifier’s performance. 
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Figure 47: The ROC space for a “better” and “worse” classifier (165). 

While the ROC curve is useful for tuning hyperparameters and finding the best 

performing model within a framework, it is not used to compare different models. 

Instead, the Area under the ROC Curve (AUC) is used. The AUC is a numerical 

measure summarizing the overall performance of a classifier by evaluating its 

ability to distinguish between positive and negative instances across all possible 

classification thresholds or hyperparameter values (146,166). 

The AUC ranges from 0% to 100%. An AUC of 0.0 indicates a classifier that 

perfectly predicts negative input data as positive and vice versa. An AUC of 0.5 

indicates a classifier equivalent to random guesses, while an AUC of 1.0 indicates 

a classifier that perfectly predicts all data without error. The area under the ROC 

curve is typically estimated using the trapezoidal rule (162). 

This section highlights commonly cited performance metrics in the literature. For 

a more comprehensive list, refer to studies by Fawcett (166), Powers (162), 

Piryonesi and El-Diraby (147), and Chicco et al. (164). 

1.3.4.10. Aggregation Methods for Goodness-of-fit Metrics 

When discussing goodness-of-fit statistics, particularly those using elements within 

the confusion matrix, it’s important to note that these metrics usually quantify the 

model’s performance in classifying a single category of the target variable. Thus, 

for each category being classified, there will be separate values for accuracy, 

precision, recall, F1 score, or MCC. To quantify the overall performance of the 
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model across all categories, these metrics must be aggregated in one of three ways 

(167). 

The first method is to compute the model performance as a macro or unweighted 

performance metric. This means the goodness-of-fit metric for the model is the 

arithmetic mean of each class’s performance metric, assigning equal weight to the 

performance of each class, regardless of the number of observations in each class. 

Macro statistics are only relevant when the class distribution is well-balanced (167). 

The second method is to compute performance as a weighted average of the 

performance observed for each class. This method accounts for the proportion of 

the sample allocated to each class when summarizing the model’s performance, 

making it more robust to imbalanced datasets (167). 

The third method is to compute a micro average of the performance metrics. The 

micro average is the global average for the goodness-of-fit metric of interest. 

Instead of computing an F1 score for each category and averaging those, the micro 

average counts the total number of TP, FP, and FN observed across all categories 

and computes a single F1 score based on that (167). 

Micro averages tend to perform worse on imbalanced datasets compared to macro 

and weighted average F1 scores. This is because micro averages give equal 

importance to each observation, meaning classes with more observations will have 

a larger impact on the final score, potentially hiding the performance of minority 

classes and amplifying the majority. In contrast, macro F1 scores give equal 

importance to each class, ensuring that a majority class contributes equally along 

with the minority, thus returning more objective results on imbalanced datasets 

(167). 

Chapter 2. Prototype Development 

2.1. Past Methods Used by the Performing Agency for 

Measuring and Determining Pavement Surface 

Characteristics 

2.1.1. Equipment from Previous Studies 

The Performing Agency conducted friction and texture measurement tests in 

northeast Austin, Texas. The test circuit included Farm-to-Market roads, State 

Highways, and US highways with various flexible pavements, such as dense-

graded, open-graded, gap-graded mixes, and chip seals. Pavement sections of 800 
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meters were measured for both friction and texture, with data collected along the 

lane centerline and the left wheel path. 

The equipment used included a prototype developed in-house, featuring continuous 

friction measurement equipment, the GripTester MK2, and a line laser scanner. 

Although the GripTester information is not relevant to this study, it was retrofitted 

with a line-laser scanner to capture the texture profile before wetting the surface. 

The line-laser was positioned in front of the water nozzle and test tire, centered on 

the test tire’s path, and oriented transversely to the direction of travel, covering the 

100 mm contact patch of the tire. The line-laser scanner measured the entire 

macrotexture range (50 to 0.5 mm) and a portion of the first decade of microtexture 

(>0.322 mm). A profile was captured every 40 mm using the GripTester’s internal 

distance measuring unit, allowing synchronized data collection from both pieces of 

equipment. Figure 48 shows an image of the data collection prototype. Figure 48 

shows an image of the data collection prototype. 

Figure 48: Original data collection prototype to measure pavement surface profiles at 

high speed and predict pavement surface. 

During this study, cluster analysis revealed that texture statistics could identify six 

distinct pavement surfaces. Additionally, a decision tree classifier using four 

texture statistics achieved an F1 Score of approximately 90%. This strong 

predictive power was hypothesized to extend beyond pavement friction to models 

predicting rolling resistance, splash and spray, tire/pavement noise, and other 

pavement surface interactions. 
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2.1.2. Original Prototype for Collecting 2D Surface Profiles  

The previous pavement texture measurement equipment had limitations, such as 

low laser power, which resulted in noise and missing data due to sunlight and dark-

colored pavements. Additionally, it relied on the GripTester for mounting and 

triggering the sensor. To address these issues, the Performing Agency developed a 

standalone system that eliminates the need for the GripTester and incorporates a 

high-power line-laser scanner capable of measuring pavement texture at higher 

rates. The system’s flexible mounting mechanism allows for versatile 

configurations of the line-laser. 

To further enhance measurement accuracy, the Performing Agency plans to 

integrate a wheel encoder on the test vehicle’s rear wheel. This encoder will trigger 

the sensor based on the distance traveled, ensuring evenly spaced measurements 

instead of varying profiles due to changes in vehicle speed. 

Preliminary testing positioned the laser’s line at a 45-degree angle relative to the 

direction of travel, enhancing the algorithm’s ability to classify pavement surfaces 

by capturing both transverse and longitudinal features. The sensor’s position can 

be adjusted to measure the right or left wheel path or the center of the lane. The 

initial test involved installing the system on the rear hitch receiver of a full-size 

truck, with the line-laser positioned on the left wheel path, as shown in Figure 49. 

The data showed reduced noise and the ability to perform testing under full sunlight 

and at highway speeds. Future tests will include the addition of a wheel encoder to 

this setup. 

Figure 49: New data collection prototype to measure pavement surface profiles at high 

speed and predict pavement surface. 
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2.1.3. Original Prototype for Collecting Surface Images 

In parallel to the aforementioned setup, the Performing Agency tested a proof of 

concept by using images of pavement surfaces to classify the type using supervised 

machine learning. A prototype consisting of a machine vision camera installed on 

a vehicle, positioned 610 mm above the surface, covering an area of 127 x 100 mm, 

was tested. Initial tests revealed challenges due to changing lighting conditions, 

such as the position of the sun and overcast skies, which caused irregular lighting. 

To address this, two high-power spotlights with wavelengths simulating midday 

sunlight were added. While these spotlights improved image quality in shaded 

conditions, they were not as powerful as natural sunlight, leading to variations in 

image contrast, as shown in (Figure 50).  

Figure 50: (A) Prototype magnetically mounted to the passenger side of the vehicle. (B) 

Close-up of the camera in the middle and two spot-lights focusing the light at the center 

area of where the images are being captured. 

The prototype was tested on pavement near the city of Austin, previously evaluated 

with friction and texture equipment, in the same sections with homogeneous 

surfaces. The vehicle, equipped with the prototype, traveled at 60 mph while 

capturing images at 170 frames per second, collecting approximately 10,000 

images per section under varying lighting conditions. Six flexible pavements were 

analyzed, reduced from prior testing due to repaved roads. 

To expand the study, various concrete surface finishes were sampled, including 

carpet drag, diamond grinding, longitudinal tining, transverse tining, and 

combinations of these finishes. Samples were collected from cities across Texas, 

including Austin, Abbott, Corsicana, Dallas, and Houston. Quality control 

eliminated images that were unclassifiable due to heavy distress, external features, 

or contaminants. Approximately 60,000 images underwent manual classification, 

resulting in a small database of four distinct concrete types.. 
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2.2. Technologies Considered during Prototype Development 

This section highlights the most promising sensor devices and hardware considered 

by the Performing Agency in designing the data collection prototype. The final 

prototype consists of three major components: 1) a laser scanner, 2) a high-speed 

camera, and 3) a lighting system to illuminate the pavement at night or when 

shadows affect the camera’s field of view. 

2.2.1. Laser Scanners 

The purpose of the laser scanner is to measure the surface elevations of the 

pavement with high resolution, allowing for the quantification of texture indexes to 

characterize its morphological features. The laser sensors discussed in this section 

were candidates considered for the final prototype. 

2.2.1.1. AccuProfile 820 Laser Scanners 

These sensors are part of the Acuity Laser product line by Schmitt Measurement 

Systems, Inc. Commonly used in automation and quality control, these sensors 

measure and verify dimensions, detect flaws, and identify surface variations (168). 

The laser measurements create two-dimensional and three-dimensional 

representations of the scanned item and perform well on shiny or jagged targets, in 

environments with high ambient light, and are robust against vibration and shocks 

(169). Typical applications for a 2D laser line scanner include steel and aluminum 

production, automotive, aerospace technology, electronics, robotics, and welding 

(169–172) The AccuProfile 820 Laser Scanners offer various case sizes, measuring 

ranges, and diode/accessory options for a wide range of measurement applications 

(168), as shown in Figure 51. Although popular in other engineering and scientific 

fields, there are no peer-reviewed papers in pavement engineering literature that 

have used these sensors. 
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Figure 51: AP820 2D laser scanner series (168) 

2.2.1.2. 8300 High Speed Inertial Profiler - Ames AccuTexture 100 

The Model 8300 High Speed Inertial Profiler (left side of Figure 52) is an inertial 

profiling system designed by AMES Engineering to enhance efficiency for paving 

contractors, testing agencies, and State and Federal highway departments (29). The 

Model 8300 offers multiple add-ons and configurations, including the AMES 

AccuTexture 100 single point laser sensor (right side of Figure 52). This sensor 

uses a single point laser rated at 100 kHz to measure the longitudinal profile of 

roadways at highway speeds (at least 45 mph) and is touted as “the new standard in 

accurate texture measurements” (173). The system also features a Profiler GPS-

DMI, which replaces the need for a wheel-mounted encoder, improving data 

collection efficiency and operator safety (29). 

Tests conducted by AMES Engineering with the AccuTexture on flexible and rigid 

pavements demonstrated that this sensor significantly reduces variances in 

elevation measurements due to speed or surface type, proving superior to the 

previously used Optocator sensor (173). The sensor has been utilized in studies on 

the quality control of seal coats (174) and the integration of network-level 

macrotexture measurements into pavement management systems (175).  
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Figure 52: 8300 High Speed Inertial Profiler (29) on the left, and Ames AccuTexture 100 

single point laser (173) on the right 

2.2.1.3. Pathway Services Laser Sensor System 

Pathway Services specializes in automated pavement condition data collection in 

North America. Their data collection vehicle, the Pathrunner (Figure 53), is 

equipped with advanced equipment for various pavement condition assessments, 

including image collection, distress data collection, and skid and texture 

measurements (176). The texture measuring equipment includes three-line laser 

sensors positioned along the two wheel paths and the center line of the lane, all 

oriented at a 10-degree angle from the transverse direction (177). These sensors 

feed data to the “3-zone texture signature subsystem” for microtexture 

characterization at high speeds and to their macrotexture system for pavement 

macrotexture analysis (177). 

 Replicating their system is currently not possible due to the novelty of the 

technology, and most technical information about their system is not publicly 

available. So far, the system has been referenced in one technical report (178) and 

one conference presentation (179), where their texture characterization approach is 

explained. 
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Figure 53: Pathrunner (176) on the top, Macrotexture sensors (177) on the bottom right, 

and scan obtained from 3-zone texture signature subsystem on the bottom left (177). 

2.2.1.4. Keyence LJ-X8000 series 

The LJ-X8000 series of laser sensors (Figure 54) manufactured by Keyence is a 

widely used 2D/3D line laser scanner available in the market. These sensors are 

employed in diverse applications such as pavement engineering (180,181), 

materials engineering (182), precision manufacturing (183), and quality control 

(184). They measure up to 3200 points per profile, ensuring accurate measurements 

of any target shape or material (185). The scanners are compatible with four 

different controller options, allowing users to align system capabilities with 

application requirements. With a maximum laser linewidth of over 720mm (28”), 

multiple sensors can be paired together to scan larger targets. Programming these 

high-performance sensors involves three simple steps, making accurate in-line 3D 

measurement accessible for users of any experience level(185). Additionally, the 

sensors use a distance-correction algorithm to maintain consistent point spacing 

within operating limits. 
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Figure 54: Images from the LJ-X8000 series sensors from the provider (185) on the top, 

and images of the sensors mounted on stage for use in laboratory measurements (180) on 

the bottom. 

2.2.1.5. HyMIT Sensors 

HyMIT, based in Austin, Texas, specializes in manufacturing laser sensors for 

pavement engineering applications. These sensors (Figure 55) are primarily used 

for high-speed data collection of texture, roughness, or distress quantification at 

speeds up to 70 mph (186). Known for their high-power lasers, these sensors allow 

for short exposure times, minimize moving average error, and provide good quality 

data at speeds below 70 mph (186). Typically mounted on adjustable braces on the 

back of a vehicle, these sensors can be positioned to measure different parts of the 

lane (wheel path versus center), set at various heights, and installed in different 

orientations (parallel, perpendicular, or angled with traffic direction). The Texas 

Department of Transportation (TxDOT) Maintenance Division currently uses these 

sensors for quality control measurements across their network. 
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Figure 55: High power laser sensor by itself from a bottom side view (186), shown on the 

top and the laser sensor mounted on a pushcart and  a vehicle to for field use (186) on 

the bottom. 

2.2.2. Cameras 

The camera’s purpose is to capture high-resolution images of the pavement surface, 

complementing the texture data collected by the laser sensor. These images are used 

in image detection algorithms to determine the pavement type. 

2.2.2.1. 3D Machine Vision Ranger3 

The 3D Machine Vision Ranger3 camera (Figure 56) is a high-speed, high-

resolution camera manufactured by SICK Sensor Intelligence. This advanced 

camera features a distinctive CMOS sensor that enables rapid 3D measurement, 

providing precise assessments of shape, volume, and positioning across various 

objects. It ensures reliable precision on both dark and bright surfaces without 

requiring increased laser power (187). The Ranger3 integrates with standard 

software and is easy to incorporate mechanically, making it versatile for modern 

industrial needs (187). In research applications, the camera has been used in 

pavement engineering studies to estimate pavement texture depth (188), in 

industrial engineering for automating quality control pipelines (189), and in 

structural engineering studies on crack detection in concrete bridges (190). 
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Figure 56: Front and back view of the 3D Machine Vision Ranger3 camera (187) 

2.2.2.2. Canon 5D Mark IV 

The Canon 5D Mark IV (Figure 57) is an advanced camera system featuring a 30.4 

Megapixel full-frame CMOS sensor, designed for versatile imaging in various 

lighting conditions (191). It offers 4K Motion JPEG video capabilities at 30p and 

24p frame rates and can achieve a resolution of 8.8 Megapixels (191). Its optical 

architecture includes a 150,000-pixel RGB+IR metering sensor, which ensures 

precise exposure quantification, sensitivity to changing light conditions, and 

enhanced scene recognition and facial detection (191). These features collectively 

enhance its imaging capabilities. The camera has been used in studies on computer 

vision and pattern recognition (192), dentistry for exploring oral rehabilitations 

using a digital protocol (193), and has been featured in Australian Photography 

publications (194). However, there is no scientific literature indicating its use in 

pavement engineering applications. 

Figure 57: Front and back view of the Canon 5D Mark IV camera (191) 

2.2.2.3. Arducam 2MP Global shutter OV2311  

The Arducam 2MP Global shutter OV2311 camera’s module (Figure 58) is 

primarily designed for Raspberry Pi boards and connects directly to the RPi’s CSI-

2 camera interface without additional hardware (195). This camera, based on a 

1/2.9-inch Omnivision OV2311 image sensor, provides full-frame, sub-sampled, 

and windowed 8/10-bit MIPI images, operating at up to 60fps in full resolution on 



99 

a 2-lane MIPI bus, with complete user control over image quality (195). The 

OV2311 offers highly accurate gaze- and eye-tracking capabilities and high near-

infrared quantum efficiency to minimize active illumination power and reduce 

system power requirements (195). However, this camera model was discontinued 

between December 2022 and August 2023. Its successor, the Arducam PiVariety 

2MP Global Shutter OV2311, offers the same quality with additional features. As 

of August 2023, the Arducam OV2311 has been used in one peer-reviewed 

geotechnical engineering study on 3D deformation measurements during triaxial 

testing (196). The Arducam series has also been used in smart surveillance (197), 

crop disease detection (198), and biology and physiology (199). 

Figure 58: Front and side view of the Arducam 2MP Global shutter OV2311 camera 

(195) 

2.2.2.4. Blackfly S USB 1.3 MP 

The Blackfly S camera (Figure 59) features advanced sensors in a compact ice-

cube form factor, enabling the capture of high-resolution images even at high 

speeds (200). It offers both automatic and precise manual control over image 

capture and on-camera pre-processing. Additionally, it is compatible with third-

party software and hardware, supports the development of custom applications with 

rich sample code and descriptive API logging, and works with a wide range of 

operating systems and host system hardware architectures (200). While the 

Blackfly S has not been cited as a sensor used in pavement engineering, it has been 

utilized in various scientific fields such as geographic information science (201), 

computer and electrical engineering (202), and mechanical engineering (203). 
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Figure 59: Front and back view of the FLIR Blackfly S camera (200) 

2.2.3. Lighting Systems 

The purpose of the lighting system is to ensure that the camera always captures 

images with sufficient light, regardless of environmental and lighting conditions at 

high speeds. This is particularly important when driving at night, under cloudy 

skies, or when the vehicle’s shadow falls over the area being photographed. It is 

also crucial when driving over terrain that casts shadows, such as tree lines, 

buildings, or bridges. 

2.2.3.1. Dual Magnetic Spotlights 

In the first iteration of the prototype, researchers attached two generic spotlights to 

a test vehicle. The spotlights were mounted on magnetic stands, allowing for easy 

orientation towards the area where the high-speed camera was focused, as shown 

in Figure 60. This versatile setup allows the placement of both the camera and 

lights anywhere on the vehicle with a solid, flat metal surface. The lights can draw 

12 V power either from the vehicle itself or from a separate battery inside the test 

vehicle. These lights remain on continuously during testing, regardless of the time 

of day or terrain conditions. 

Figure 60: Part (A), camera and lighting system magnetically mounted to the passenger 

side of the vehicle. Part (B), close-up of the camera in the middle and two spot-lights 

focusing the light at the center area of where the images are being captured. 
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2.2.3.2. Metaphase – Line lights 

Metaphase, with over two decades of expertise in advanced LED lighting, has a 

history of working with clients in various fields, including road and railroad track 

inspection. Ultimately, Metaphase’s TX Barlight 6000K (Figure 61) was chosen, 

offering over 100,000 lux in continuous mode and up to eight times more power 

when configured as a strobe light. This setup covers an area of 5 x 5 inches (127 x 

127 mm) from a height of 2 feet (0.6 m). 

The engineers at Metaphase collaborated with the Performing Agency to 

synchronize the camera and lightbar by carefully wiring the camera’s strobe-out 

signal to the light trigger input, ensuring proper synchronization between the light 

flashing and camera exposure. Although the current configuration is non-shrouded, 

plans are underway to install a second lightbar and add shrouding for the camera 

and lights to ensure that all illumination in the inspection area is solely from the 

designated light source. 

Figure 61: TX Barlight with a 3-sided T-slot extrusion. 

2.3. Current System’s Components and Assembly 

In the initial phases of this study, passenger vehicles, such as sedans and small-size 

pickup trucks, served as the primary means to transport the prototype system. 

However, these vehicles exhibited significant vertical displacement on highways 

due to their suspension systems bouncing more than expected, causing the sensors 

to frequently go outside their working range. This led to blurry images, abnormal 

readings, and unwanted vibrations in the laser signal. To address this issue, A 

heavy-duty pickup truck with robust build, strong suspension, and reliable towing 

capacity became the chosen host vehicle for field testing to address this challenge. 

This selection was based on the stiff suspension of these trucks, which proved 
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resilient against large vertical bounces. Nevertheless, it’s worth noting that these 

trucks had the drawback of being more than 2 ft above the ground, measured from 

the rear hitch receiver. In contrast, smaller trucks could be as low as 1.4 ft, and 

sedans as low as 1 ft.  

To accommodate different vehicle heights, a fully customizable mounting system 

was developed. This system, made from 1.57 x 1.57 in (40 x 40 mm) aluminum 

profiles, allows for quick assembly, removal, and modification. It enables vertical 

and lateral positioning of the system’s components with respect to the vehicle. The 

system is fixed to the test vehicle via the rear hitch, using 2 x 2 in (50.8 x 50.8 mm) 

steel square tubing inserted into the hitch and secured by a heavy-duty bolt. The 

other end of the steel piece has a vertical 2 x 2 in (50.8 x 50.8 mm) square tube with 

a T-shape, where the horizontal part of the T fastens the main body of the aluminum 

profile. 

Figure 62: Side and rear view of the mounting system. 

The horizontal aluminum profile serves as a rail on which the sensors can be 

mounted, allowing for independent adjustments of each component, such as the line 

laser and the camera/light system Figure 63. These profiles can be positioned 

anywhere within the vehicle’s width (e.g., left wheel path, center wheel path, right 

wheel path) and permit height adjustments of up to 3 feet, addressing the issue of 

varying vehicle heights. When mounting the sensors, it is crucial to measure their 

heights accurately to set them at the correct stand-off distances. Specifically, the 

laser sensor requires a height of 18 in (457 mm) from the camera window to the 

surface, while the camera/light needs to be 24 in (610 mm) from the camera lens to 

the surface. This configuration accommodates vertical movement in both sedans 

and pickup trucks. Measurements should be taken on a level surface, such as 

concrete, and account for the weight of passengers and/or extra load in the vehicle.  
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Figure 63: System mounted onto vehicle shown on the top; line laser sensor shown on 

the bottom-right; and camera and light system (perpendicular to the main beam), shown 

on the bottom left. 

For electrical wiring, each sensor has specific power and data communication 

requirements. The line laser requires a 12 V power supply from the vehicle’s 

cigarette lighter, consuming 0.7 amps. Data transmission is handled by a 20-foot (6 

m) Cat 6E Ethernet cable connecting the sensor to a laptop in the front passenger 

seat. The area camera operates on a 5 V supply and connects to the laptop via a 20-

foot (6 m) USB 3.1 cable, which provides both power and data transmission. The 

lighting system uses a 24 V power source from a battery pack. Wiring for the 

camera and light source, including synchronization connections, is shown in Figure 
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64, with their respective pins and color-coded wires from each pigtail. For safety, 

a waterproof enclosure houses the wires, reinforced with special wire connectors. 

Figure 64: Diagram to wire the camera and light source. 

Synchronization between the area camera/light and the line laser sensor is achieved 

through a wheel encoder connected to the vehicle’s wheel. This encoder is 

programmed to activate the laser and the camera/light sequentially every 40 mm of 

forward travel. 

2.4. General Specification for a System with Comparable 

Performance 

This section outlines the specifications for the three main components used in this 

project: the line-laser sensor, the area camera, and the light source for the area 

camera. The requirements for the line laser sensor, as proposed by the Performing 

Agency, are presented in Table 3. and should be considered the minimum standard 

for future data collection of the same quality. These parameters were established 

through extensive testing in real-world scenarios under various conditions, 

including different vehicle heights, ambient conditions, and road surface types. 
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Table 3. General Specifications for the sensor used in the data collection prototype 

Line Laser 

Working Distance 400-450 mm 

Z-Range (+/-) 75 mm 

Resolution Height < 5 micrometers 

Field of View 142 - 190 mm 

Wavelength 810 nm 

Optical Power 2.3 W 

Data Points > 2000 

Sampling Cycle ≥ 600 Hz 

Resolution Lateral < 100 micrometers 

Trigger TTL 

AOI 608 pixels 

Area Camera 

Resolution ≥ 1280 × 1024 

Frame Rate ≥ 50 

Megapixels ≥ 1.3 

Chroma Color 

Operating Temperature 0° to 50°C 

Readout Method Global shutter 

ADC 10-bit 

Exposure Range ≤ 10.0 μs 

Interface USB 3.1 or Ethernet 

Light Source 

Color White, 6000K 

Operating Temperature 0° to 40°C 

IP Rating IP64 

Intensity ≥ 100,000 Lux 

The first eleven parameters under the “Line Laser” bracket are crucial for 

developing a system capable of operating effectively at speeds up to 80 mph, in 

both extremely bright and dark conditions, and on various pavement surfaces. The 

working distance was set at 400 mm with a tolerance of ± 75 mm to accommodate 

vehicle movements during travel. A stiff suspension is ideal to stay within this 

range. With the working distance and Z-Range set, the height resolution was 3.8 

micrometers (anything less than 5 micrometers is acceptable). The field of view 
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should ideally be between 142 to 190 mm, providing sufficient coverage to capture 

a 100 mm length (transverse) at a 45-degree angle relative to the direction of travel. 

The laser’s wavelength should be at least 810 nm to minimize interference from the 

solar spectrum, which peaks around 500 nm. A minimum optical power of 2.3 W 

is necessary to ensure visible profiles on very dark pavements, allowing the laser 

sensor’s camera to operate with exposure times as low as 3-5 microseconds. While 

the number of data points per profile is optional, it is recommended to have at least 

2000 data points for adequate lateral resolution. 

An external trigger source is advisable, although the hardware can function without 

one. The trigger collects profiles at predefined intervals of distance traveled, 

independent of vehicle speed. In this project, profiles were collected approximately 

every 44 mm, with the TTL trigger sending a pulse to the line laser. The trigger 

distance can be adjusted based on the camera’s sampling cycle. The laser sensor 

can operate at speeds up to 80 mph, collecting data every 44 mm at a sampling rate 

of 812 Hz. For this project, data was collected at 50 mph, equating to a sampling 

rate of 508 Hz. The Area of Interest (AOI) is a defined window within the camera 

image where the software focuses on the laser line, enhancing sampling cycles and 

Z-Range. The AOI should have at least 608 pixels. 

For the “Area Camera,” there are nine main parameters to consider. The camera 

must have a high frame rate (≥ 50 FPS), low exposure time (≤ 10 microseconds), 

and a global shutter. At 50 mph, the image blur should be no more than 6 mils (0.15 

mm). The camera should have a lens capable of capturing an area of approximately 

15 x 15 cm from a height of 50 cm, such as a 2/3” lens with a 12 mm focal length 

and various iris stops (F1.4/F4/F8/F16). 

Finally, the light source should provide sufficient illumination as the main lighting 

for the area camera. This can be a continuous light source or a synchronized light 

burst with the area camera. 

2.5. Target Degree of Prediction Accuracy and Method of 

Evaluation 

In a surface prediction study conducted for TxDOT project 0-7031, results 

indicated that it was possible to distinguish six distinct pavement surfaces on 

flexible pavements (54). These were chip seals with a high macrotexture, chip seals 

with a low to medium macrotexture, open-graded mixes, gap-graded mixes or 

SMAs, dense course-graded mixes, and dense fine-graded mixes  

The dataset in this study included 21 pavement sections, each at least 0.5 miles 

long, located on the east side of Travis County near Austin, as shown in Figure 65. 
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Texture measurements were collected along the centerline of the outer lane using a 

line laser sensor with a resolution of 0.161 mm in the transverse direction and 5 

microns in the vertical direction. 

Figure 65: Map showing the location of every pavement section surveyed (54) 

The researchers reported a prediction accuracy, measured in terms of the F1 score, 

that ranged between 80% to 98% using a decision tree classification model, as 

shown in Table 4. Where the easiest pavements to classify where the open and gap-

graded mixes and the relatively harder ones were the chip seals and dense graded 

mixes (54).  

This preliminary study demonstrated that pavement surface identification in 

flexible pavements is possible and feasible using the technology available to the 

Performing Agency. However, the study did not address how pavement age or the 

presence of distresses such as rutting, cracking, or flushing (bleeding) would affect 

prediction accuracy. These factors could potentially reduce the accuracy for each 

specific surface. Alternatively, pavements that are severely cracked, rutted, or 

flushed might be classified as distinct surfaces. 

Table 4: Classification Report Obtained from Decision Tree Model (54) 

 Precision Recall F1 Score Sample Size 

CS1 0.82 0.89 0.85 523 

CS2 0.85 0.91 0.88 471 

OM 0.98 0.98 0.98 484 

BOM 0.96 0.98 0.97 484 

DCM 0.88 0.73 0.80 582 

DFM 0.78 0.81 0.80 236 

  Overall Model Accuracy 0.89 
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Note: CS = chip seal, OM = open-graded mixes, BOM = open mix with the asphalt binder 

exudated to the near surface, DCM = dense coarse mixes, and DFM = dense fine mixes 

and microsurfacing 

2.5.1. Target Classification Groups based on new Measured Data 

Based on previous results, the Performing Agency aims to develop prediction 

models for pavement surface classification. Initially, a model will be created to 

distinguish rigid pavements from flexible pavements with the highest possible 

accuracy. Flexible pavements will then be categorized into the following broad 

groups based on their surface profile and images: 

• Surface Treatments: likely to include all pavements that resemble a seal 

coat, 

• Dense Mixes: likely to include all pavements resembling dense graded 

mixes (note that gap-graded mixtures may appear similar), and 

• Open Mixes: likely to include all pavements resembling open graded mixes. 

After classifying these surfaces, more specific classifications can be made. For 

instance, surface treatments can be broken down by the gradation of the chip seal, 

while dense mixes can be further divided into coarse mixes, fine mixes, and gap-

graded mixes. Rigid pavements will be categorized based on their surface profile 

and images into the following groups: 

• Transverse and Longitudinal Tining • Carpet or Astroturf Drag 

• Diamond Grinding • Exposed Aggregates 

Although no published articles or peer-reviewed papers have classified rigid 

pavements, a preliminary analysis on a few rigid surfaces around Austin found that 

transverse tinning, carpet drag, and diamond grinding could be distinguished with 

F1 scores above 70%. However, the sample size was small, with only 10 pavement 

sections, each 0.5 miles long. The Performing Agency expects that with the aid of 

image recognition, the classification accuracy for different types of rigid pavement 

surface finishing/texturing can be improved to at least 80%. 
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Chapter 3. Experimental Design and Data Collection 

The goal of this project was to create a comprehensive database of pavement 

surfaces across Texas, accounting for variability in pavement type (flexible vs. 

rigid), texture (positive vs. negative), surface (different mixes and texturing 

techniques), materials (different aggregate types), and age (pavements at different 

service life stages). To achieve this, the Performing Agency collaborated with 

multiple TxDOT district offices in North, East, West, South, and Central Texas, 

requesting locations of at least 10 highway sections with diverse surfaces, 

including: Hot and Warm Mix Asphalt Surfaces: dense, gap, and open-graded mixes 

of varying gradations; Portland Cement Concrete Surfaces: carpet/burlap drag, 

longitudinal/transverse tining, diamond grinding, grooving, etc.; and Surface 

Treatments: seal coats of different grades, microsurfacing, fog seals, etc. 

The Performing Agency prioritized newer pavements for their certainty regarding 

pavement type. However, some agencies provided locations of pavements over ten 

years old without any surface-altering maintenance. While most variability sources 

are accounted for, pavement age and aggregate source are not always known with 

certainty. Additionally, variations in asphalt binder content, water-cement ratio, or 

chemical admixtures are not considered due to data collection difficulties. All data 

was collected using the prototype system detailed in Chapter 2. 

Before data collection, two data subsets were established: one where the pavement 

surface type is known, based on TxDOT personnel information, and another where 

the surface type is unknown. The known subset serves as the training, testing, and 

validation dataset for developing classification models. The unknown subset is a 

holdout dataset, where the best classification algorithm will predict pavement types 

based on surface texture and images. These predictions will be compared to actual 

images to assess the algorithm’s accuracy. 

For consistency, a “testing site” refers to a highway section longer than 0.4 miles 

where equipment was run continuously, while a “pavement section” refers to a 0.1-

mile-long section within the testing site. Each pavement section is homogeneous, 

containing only one type of pavement surface. 

The Performing Agency collected a substantial amount of data to ensure a robust 

dataset for developing machine learning algorithms. They gathered 400 miles of 

pavement texture data and over 100,000 pavement surface images, with at least 300 

miles on flexible pavements and 100 miles on rigid pavements. Of the 400 miles, 

235 are part of the ground truth dataset for model development, and 165 are part of 

the holdout dataset for model visualization. 
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3.1. Data Collection 

3.1.1. Locations of Tested Pavements  

The Performing Agency contacted personnel in the materials or maintenance 

divisions of multiple TxDOT districts to obtain reliable ground truth information 

on the locations of pavements with varying surface types. Initially, the contract 

specified that the Performing Agency would collect “60 different sections, 20 at 

each of three districts: Austin, Dallas, and Houston.” However, the Performing 

Agency exceeded this requirement by collecting more than 60 sections across more 

than three TxDOT districts. This success was due to the enthusiasm, willingness, 

and proactiveness of several TxDOT districts in aiding the Performing Agency. 

Table 5 summarizes the six TxDOT districts that contributed the most information 

and resources, along with the key personnel in those districts who assisted in 

obtaining the pavement sections. The main contact persons in these districts were 

contacted exclusively by email. Table 6 summarizes additional supporting districts 

that provided aid either with the data collection process or by suggesting locations 

of other pavement surfaces of interest to the Performing Agency. 

Table 5: TxDOT Districts and personnel who provided the most support and the 

locations of pavement surfaces to the Performing Agency 

District Main Contact Supporting Personnel 

Atlanta Lacy Peters Cody Fuller 

Austin Andre Smit 
Andy Naranjo  

John Wirth 

El Paso Aldo Madrid 

Mauricio Esquivel Lara 

 Monica Ruiz 

Anthony Marquez 

Christopher J. Weber 

Houston Melody Galland 

Viet Pham 

Juan Fuentes 

John Zientek III 

Laredo Epigemio Gonzalez Jesus Saavedra 

Lubbock Ed Goebel Mike Stroope 

Some TxDOT districts in the original experimental design could not be surveyed 

as planned. Thus, to prevent prolonged delays in data collection, the Performing 

Agency reached out to all other adjacent TxDOT districts in an effort to obtain 

reliable ground truth to move forward.  
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Table 6: TxDOT Districts and personnel who provided the additional support and 

the locations of more pavement surfaces to the Performing Agency 

District Main Contact Supporting Personnel 

Amarillo Cody Harris ~ 

Bryan Joel Withem ~ 

Fort Worth Tom Brown ~ 

Odessa Zane Honeyfield ~ 

San Angelo Evan Jones Lonnie Green III 

San Antonio Alejandro Miramontes Jose Emilio Ramos 

Tyler Dustin Morgan ~ 

Waco Jerrod Swift ~ 

Wichita Falls Brian Moore ~ 

Yoakum Bradley Polasek ~ 

3.1.2. Locations Tested 

The Performing Agency surveyed numerous pavement surfaces as discussed in the 

previous section. All the testing sites are portrayed in Figure 66, which contains 

three maps of Texas, highlighting TxDOT districts, Texan counties, and exact 

locations for each of the testing sites used in this study. 

Figure 66: Testing sites within TxDOT districts (left), Texas counties (middle) with tested 

sites in blue, and exact site locations marked by blue circles (right). 

3.1.3. Data Collection Protocol 

The Performing Agency made a remote survey of the locations provided by the 

Receiving Agency’s personnel using a combination of Google Street map view and 

video recording from Pathweb (in house software from Pathway) prior to going to 

the field. This survey allowed the Performing Agency to pinpoint the exact 

locations where a pavement surface started and ended. These resources were also 

used to determine if the pavement had visible distresses, such as raveling, bleeding, 

cracking, patching, rutting, and punchouts, among others that could potentially 

affect the quality of the data. The Performing Agency later planned which routes 

would be taken to travel from one testing site to another and coordinated with 
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district personnel to let them know that data collection was going to occur during 

certain dates, in case the Performing Agency required field assistance. 

Unlike pavement sections used to evaluate friction, the sections in this project were 

not necessarily flat or straight. Data was collected at grade, along turns, under 

varying lighting conditions, and without traffic control to mimic real-world 

conditions faced by the Receiving Agency’s contractors. All texture measurements 

were collected along the inner wheel path of the rightmost lane. The laser sensor 

was oriented at a 45-degree angle from the transverse direction to detect patterns of 

tining, grinding, or grooving on rigid pavement. The average spacing between 

adjacent points within a 2D profile was 0.18 mm, which varied based on the height 

of the laser sensor. The laser sensor was installed at a height of 17.5 inches (44.45 

cm) from the ground, with an average spacing of 44 mm between adjacent profiles. 

The vertical resolution of the laser sensor was 5 microns, and each raw profile 

collected 2046 data points. Pavement surface images were taken as close as possible 

to the inner wheel path, approximately 30 cm to the right of its center. The camera 

and laser sensor were synchronized to trigger simultaneously. 

Before data collection, the Performing Agency parked the surveying vehicle about 

half a mile from the start of the pavement site. Researchers mounted the equipment, 

performed quality control checks, activated the overhead amber lights, and 

recorded the pavement’s surface temperature. The vehicle then traveled in the 

rightmost lane, accelerating to a speed of 50 mph, at which point cruise control was 

activated to maintain this speed. Researchers then began collecting data and 

monitored the equipment to ensure proper operation. Data collection ended a few 

yards from the end of the pavement surface of interest or if there was an unexpected 

obstacle or pavement change. Afterward, the researchers parked the vehicle in a 

safe spot and dismounted the sensors for safe transport. At the end of the day, all 

raw data files were backed up to the cloud. 

3.1.4. Pavement Surfaces Surveyed 

The Performing Agency prioritized obtaining a wide variety of distinct pavement 

surfaces, as previously mentioned. Table 7 summarizes all the types of pavement 

surfaces provided by the Receiving Agency’s personnel. These labels will generally 

serve as the ground truth for developing machine learning classification models. In 

a few instances, the surface type information provided by the Receiving Agency 

did not match the actual site conditions. For example, a location expected to have 

a high friction surface course turned out to be a rigid pavement with transverse 

tining. These mismatches constitute less than 5% of the total dataset. Instead of 

discarding these sections, they will be added to the holdout dataset for proper 

labeling later on. 
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Table 7:  Summary of all the pavement surfaces provided by TxDOT and surveyed 

by the Performing Agency. 

Flexible Pavements Rigid Pavements 

Dense Graded Mixes (C, D) AstroTurf or Carpet Drag 

Thin Overlay Mix Longitudinal and Transverse Tining 

Superpave (C,D) Fixed and Random Tining 

Stone Mastic Asphalt (Rubber, D) Conventional Diamond Grinding 

Permeable Friction Coarse New Generation Diamond Grinding 

Thin Bonded Wearing Coarse  

Chip Seals (Grades 3, 3S, and 4)  

Fog Seals  

High Friction Surface Treatments  

Microsurfacing  

3.2. Data Collection Results 

This subsection provides a summary of the data collection in terms of mileage and 

the number of pictures taken. Table 8 summarizes the mileage collected by 

pavement type, showing that the Performing Agency met the requirement of 

measuring at least 300 miles of flexible pavement and 100 miles of rigid pavement. 

Table 9 categorizes the mileage collected into the ground truth and holdout datasets. 

The ground truth dataset includes pavement sections where the surface type is 

known and matches field observations. The holdout dataset includes sections where 

the surface type is unknown or where field observations did not match the provided 

information. 

Table 8: Breakdown of mileage for data collected in terms of pavement type. 

Type Mileage (mi.) 

Flexible Pavement 313.7    (73.73%) 

Rigid Pavement 111.8    (26.27%) 

Total 425.5    (100.00%) 

Table 9: Breakdown of mileage for data collected in terms of dataset. 

Type Mileage (mi.) 

Ground Truth  238.4   (56.03%) 

Hold-out 187.1   (43.97%) 

Total 425.5   (100.0%) 

Figure 67 summarizes the mileage collected, broken down by TxDOT district. El 

Paso had the most data collected, with almost 80 miles, while Tyler had the least, 

with three miles. Figure 68 shows the mileage broken down by the type of 

pavement surface reported by each district. Some districts provided detailed 

information, such as the grade of the aggregates, their source, and whether the 
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aggregate was lightweight. Others simply specified that the pavement was a seal 

coat. 

Figure 69 shows the number of pictures taken, broken down by the type of 

pavement surface reported by each district. The abbreviations used are as follows: 

HFST stands for High Friction Surface Course, A represents AstroTurf, SC G3S 

denotes a grade 3 seal coat with single size gradation, DG refers to conventional 

diamond grinding, FTT is fixed transverse tining, NGDG indicates new generation 

diamond grinding, SC G3 signifies a grade 3 seal coat, RLT stands for Random 

Longitudinal Tining, TOM is a thin overlay mix, TBWC is a thin bonded wearing 

course, RTT means random transverse tining, SC G4 indicates a grade 4 chip seal, 

SMA refers to stone matrix asphalt, SC stands for a seal coat of unspecified grade, 

SP represents a Superpave mix, and PFC denotes a permeable friction course. 

Figure 67: Distribution of mileage surveyed broken down by TxDOT district. 
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Figure 68: Distribution of mileage surveyed broken down by pavement type. 

Figure 69: Distribution of number of pictures taken broken down by pavement type. 
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Chapter 4. Database of Pavement Surface Types 

4.1. The Database 

The database for Product #1 (P1) will be delivered to the Receiving Agency in the 

form of an external hard drive disk named “0-7139 Data” which comprises 

pavement texture data coming from two-dimensional (2D) profiles and area 

pictures of the pavement surface from a high-speed camera. These data can be 

found inside the folder “TxDOT Project 0-7139 Surface Determination,” following 

the folders and files shown in Figure 70: 

Figure 70: Screenshot of the “TxDOT Project 0-7139 Surface Determination” folder 

view 

4.2. Texture Database 

The “Texture Data (Profiles from Laser)” folder is organized into three subfolders 

and one Excel file, as shown in Figure 71. 

Figure 71: Screenshot of the “(Profiles from Laser)” folder view 

The folder entitled “1. 2D Profile Data” holds both the raw and processed profile 

data. The “2. Texture Indexes” folder contains the computed texture indexes for 

each profile and the same indexes aggregated into 0.1-mile pavement sections. 

Lastly, the “3. Final Database” subfolder consolidates texture index data for all 

sites, while also adding details about testing locations such as district, county, 
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approximate GPS locations, among others. Further explanations of these directories 

are provided in subsequent sections. The Excel file in this folder holds the inventory 

information for each site.  

4.2.1. 2D Profile Data 

The folder entitled “1. 2D Profile Data” contains the raw data, raw profiles, and 

the processed profiles, as shown in Figure 72.  Each of these folders is then 

subdivided by TxDOT District, as shown in Figure 73.  

Figure 72: Screenshot of the “1. 2D Profile Data” folder view 

Figure 73: Screenshot of the “1. Raw Data (.tsd files)” folder view 

4.2.1.1. Raw Data 

The “1. Raw Data (.tsd files)” folder contains the initial output from the data 

collection software, featuring both range and intensity measurements for each 

surveyed site. This data remains in its original, unaltered form, meaning it has not 

undergone trimming, detrending, denoising, imputation or any other data 

manipulation technique. The naming of these files adheres to a specific convention 

determined by the Performing Agency, structured as follows: 

𝑋#_𝑆𝑖𝑡𝑒𝑁𝑎𝑚𝑒_𝑇𝑒𝑠𝑡𝑇𝑦𝑝𝑒_# 

The naming convention for most files in the “Raw Data” folder begins with an 

uppercase letter which represents the primary location where data was collected. 

Each letter is associated with a specific TxDOT district, as detailed in Table 10.  
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Table 10: List of letters used to designate TxDOT’s district. 

Letter District Letter  District Letter District 

A Lubbock O Odessa T Atlanta 

H Houston P El Paso W Fort Worth 

L Laredo S Austin   

Following this initial character there is a number that represents the sequence in 

which the sites were surveyed. An underscore then precedes a designated name for 

the site, chosen to reflect the nearest city, town, county, or notable landmark, 

though the selection is largely arbitrary. Another underscore introduces the test type 

whose nomenclature will be explained using examples in the next paragraph. The 

final segment, separated by an underscore, is a numerical batch identifier for the 

site, starting at 0 and incrementing by one for each batch. A “batch” refers to a 

collection of 15,360 profiles, which represents the maximum number of profiles 

per file that the data collection software allows. An example of the naming 

convention using real data from the project is shown in Figure 74. 

Figure 74: Screenshot of the “L – Laredo District” subfolder view within the “1.Raw 

Data (.tsd files)” view, showing the nomenclature used for file naming. 

The file name “L15_Sunflower_t1_0.tsd” starts with the letter L, meaning that the 

data was collected in or near the Laredo District. It is then followed by the number 

15, meaning that the site was the 15th in the survey sequence. The proximity of a 

sunflower field is noted in the site’s descriptive name “Sunflower.” Since the test 

conducted was the first of multiple runs (repeated run), the term “t1” was employed. 

Finally, because this file pertains to the very first batch of data collected, it was 

designated by the number “0” at the end of the file name. 
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Conversely, a file named “A4_Cricket_long_3” or “A4_Cricket_3” indicates that 

the site was the fourth site surveyed in the vicinity of the Lubbock District as 

indicated by the term, A4. This site was labelled “Cricket” arbitrarily due to the 

notable presence of crickets at the location and not because there was a town named 

Cricket. The term “long” at the end of the filename (or its omission) signifies the 

execution of a single long run test. Finally, the batch identifier “3” specifies that 

this file contains the fourth batch of collected data.  

The range (texture profile) data contained within the .tsd files was subsequently 

transformed into .csv format to facilitate manipulation via statistical coding 

software. Nonetheless, a discrepancy can be observed for testing sites in the Austin, 

Laredo, and Lubbock Districts, shown in Table 11. This happened because the 

original .tsd files for a few locations in these districts were not successfully 

uploaded to cloud storage following their conversion to .csv format, resulting in 

their loss. Despite the issue, all the range data within these files was successfully 

saved as .csv and stored within this database. This implies that the intensity data for 

the sites shown in Table 11 is lost. Nonetheless, because no practical application 

was found for the intensity data, the Performing Agency did not utilize it. 

Table 11: Testing sites for which the .tsd files are not available 

Austin District Laredo District Lubbock District 

S1 – MopacRiver 

S2 – DripSpring 

S3 – BeeCaves 

S4 – LagoVista 

 

L20 – Rattlesnake 

L21 – Comstock 

L22 – Cattle 

L23 – MountainHome 

L24 - Picnic 

A13 – Lockney 

A14 – Dead 

A15 – HaleCounty 

A16 – Silo 

A17 – Peter 

4.2.1.2. Raw Profiles 

The folder entitled “2. Raw Profiles (.csv files)” contains the unprocessed range 

data from the .tsd files, now reformatted into CSV (Comma-Separated Values) 

format. This transformation enhanced the ease of data processing and manipulation, 

particularly when utilizing statistical and database management tools such as 

RStudio, Jupyter Notebook, or MATLAB. The naming convention for these files 

mirrors that of the .tsd files. Structurally, the raw files consist of 2,048 columns 

(points comprising a texture profile), with the number of rows varying according to 

the length of each test site. Each row represents a distinct texture profile. The 

average spacing between points along the transverse direction (from one column to 

the next) varies with the laser sensor’s height during measurement. The spacing 

information is documented in the “Texture_Database.csv” file. The standard 

spacing between adjacent profiles (from row to row) is approximately 0.44 mm. 
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Each cell entry in these files represents a “biased and trended” elevation of the 

pavement surface, measured in decimeters (dm). The term “biased and trended” 

means that a systematic positive bias is intentionally added to the elevation 

measurements. This bias helps in storing most data points as large integers, 

simplifying data storage compared to storing numbers with decimal points. 

Moreover, the elevation measurements might show a positive or negative trend 

depending on the road’s grade or lateral slope, which influences the angle of the 

laser sensor during measurements.  

For analysis, these measurements need to be converted into millimeters (mm) using 

a conversion factor of 0.01. To correct the biases and trends in each profile, a linear 

regression detrending method can be applied. This process effectively centers 

(detrends) the data, preparing it for further analysis. While there is no universally 

accepted standard for these data processing steps, the Performing Agency 

recommends the following routine: (1) convert the data to millimeters; (2) remove 

noisy data points; (3) impute the removed data; and (4) detrend the data.  

Considering the significant size of the data, the Performing Agency recommends 

employing advanced database management tools such as RStudio, Oracle, or 

MATLAB for efficient data handling and analysis. Utilizing simpler programs like 

Microsoft Excel or Access to open these files might lead to partial data retrieval 

due to memory limitations. To enhance storage efficiency, all eight district 

subfolders within the “2. Raw Profiles” directory have been compressed, as shown 

in Figure 75. 

Figure 75: Screenshot of the “2. Raw Profiles (.csv files)” view, showing the that folders 

have been compressed by district. 

4.2.1.3. Processed Profiles 

The folder was labeled “3. Processed Profiles (.csv files)” contains profiles that 

have undergone comprehensive processing using a texture processing algorithm. 

The Performing Agency conducted rigorous quality control on the raw data to 

ensure the cleanest data possible was used. Initially, the data was converted from 

decimeters to millimeters. Subsequently, any data points outside the central 150 
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mm length of each profile were removed. The number of points within this central 

segment varies between sites, depending on the point-to-point spacing, ranging 

from 587 points (with a spacing of 0.256 mm) to 933 points (with a spacing of 

0.161 mm). This trimming step reduces the data size to a manageable level and 

eliminates potentially inaccurate measurements typically found near the profile 

edges. The selected 150 mm length is optimal for calculating key texture indexes 

such as the mean profile depth (MPD) 

Following the trimming, the profiles underwent further scrutiny via a specialized 

texture processing algorithm, namely the Sabillon-Orellana Filtering Algorithm 

(SOFA). For more details on this algorithm, please see Sabillon-Orellana et al (3). 

In brief, SOFA identifies and removes both spike and flat signal noise from the 

profile data. It also excludes any profiles with over 33% missing or noisy data, fills 

gaps using linear interpolation, and applies linear regression detrending to 

centralize the data. The processed profiles provide an accurate representation of the 

pavement surface in millimeters, characterized by minimal noise. 

The nomenclature of the files in this folder is similar to that of the raw data with 

the exception that now the files have the suffixes “DN_trim,” indicating that the 

files were first trimmed and then denoised. Lastly, the eight district subfolders 

inside “3. Processed Profiles” have all been compressed similar to how they were 

in the “Raw Profiles” folder. 

4.2.2. Texture Indexes 

There are two folders in the “2. Texture Indexes” folder (Figure 76) that are 

subdivided into eight folders named after a TxDOT District.  

Figure 76: Screenshot of the “Texture Indexes” folder view, showing the that folders 

have been compressed by district. 

Careful analysis of these indexes revealed significant linear correlations among 

them. This finding is helpful since it implies that indexes that are difficult to 

understand or compute can be estimated with a high level of goodness-of-fit using 
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a more familiar or easier to compute index. Indexes exhibiting a correlation higher 

than 60% were deemed redundant and subsequently excluded from the study, with 

preference given to those that were simpler to both compute and understand. 

Exceptions were made for those variables with established relevance in pavement 

engineering such as mean profile depth, the root mean square of height, and the 

two-point slope variance. Also, the continued inclusion of these particular indexes 

is justified by their widespread recognition and application in the field, rendering 

them invaluable to industry professionals despite the redundancy. 

This correlation criteria reduced the effective list of indexes from 80 to 19 given 

the correlation criteria. Despite that, feasible computation time proved key when 

choosing which variables to use in the final database. Even though a few indexes 

were uncorrelated with others, their computation time was still excessively lengthy 

for practical application of texture processing at a network-level scale. 

Consequently, this consideration required a further reduction of the list, resulting 

in a selection of 12 indexes: Root Mean Square Height (RMS), Kurtosis (Rk), 

Solidity Factor (Rs), Mean Cross Width (Cm), Standard Deviation of Cross Width 

(Cstd), Skewness of Cross Width (Cs), Maximum Absolute Gradient (Rdt), Two-

Point Slope Variance (Sv2), Autocorrelation Length (Ral), Mean Local Curvature 

(Hcme), Standard Deviation of Local Curvature (Hcst), and Mean Profile Depth 

(MPD) 

4.2.2.1. Texture Indices per Profile 

The “1. Per Profile (.csv files)” folder (Figure 77) contains eight compressed 

folders for each of the TxDOT districts. Within each district folder, there are CSV 

files for test sites, as shown in Figure 78. All CSV files contain the set of indexes 

described in Section 4.2.2, as depicted in Figure 77. Notice that the nomenclature 

of the CSV files is similar to that within the “3. Processed Profiles” folder, with 

the addition of a “IND_” suffix standing for the word “index” after the profiles 

were trimmed and denoised. 

Figure 77: Screenshot of the “Per Profile (.csv files)” folder view 
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Figure 78: Screenshot of the “O - Odessa” subfolder view within the “Per Profile (.csv 

files)” folder. 

Figure 79: Screenshot from one of the CSV files within the “Per Profile (.csv files)” 

folder showing all the variables contained within it. 

Each CSV file has 14 columns output (two general properties and the 12 indexes 

from Section 4.2.2 within it). The following is a data dictionary to understand them: 

PER PROFILE (.CSV FILES) DATA DICTIONARY 

1. “distance”: This is a numerical variable. It DOES NOT actually represent  

Distance; instead, it is an index indicating the order in which the 

profiles were collected. It is possible for some indexes to be missing. 

For instance, in Figure 79 the values 2, 3, 4, and 5 are missing. That 

means that those profiles had more than 20% noise or missing data 

which is the threshold level of uncertainty for this study. 

2. “na_counter”: This is a numerical variable: It ranges from 0 to 100% and  

indicates the percetange of data points within the profile that were 

either missing or removed by the SOFA for being considered noise. 

The value of this variable will never exceed 20%. 

3. “RMS”: This is a numerical variable. It represents the amplitude index  

“root mean square height” (ID# 2)3. RMS is measured in units of 

mm. 

4. “Rku”: This is a numerical variable. It represents the amplitude index  

 
3 ID refers to the ID displayed in Table 1: List of indexes reviewed and their respective source.
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“kurtosis” (ID# 10)3. Rku is a unitless index. 

5. “Rso”: This is a numerical variable. It represents the amplitude index  

“solidity factor” (ID# 7) 3. Rso is a unitless index. 

6. “MPD”: This is a numerical variable. It represents the feature index  

“mean profile depth” (ID# 57) 3. MPD is measured in units of mm. 

7. “Cwm”: This is a numerical variable. It represents the spacing index  

“mean of cross width” (ID# 10) 3. Cwm is measured in units of mm. 

8. “Cwst”: This is a numerical variable. It represents the spacing index  

“standard deviation of cross width” (ID# 11) 3. Cwst is measured in 

units of mm. 

9. “Cws”: This is a numerical variable. It represents the spacing index  

“skewness of cross width” (ID# 12) 3. Cws is a unitless index. 

10. “Ral”: This is a numerical variable. It represents the functional index  

“autocorrelation length” (ID# 36) 3. Ral is measured in units of mm. 

11. “Sv2”: This is a numerical variable. It represents the hybrid index  

“two-point slope variance” (ID# 22) 3. Sv2 is measured in units of 

mm. 

12. “Rdt”: This is a numerical variable. It represents the hybrid index  

“maximum absolute gradient” (ID# 19) 3. Rdt is measured in units 

of mm.. 

13. “Hcme”: This is a numerical variable. It represents the functional index  

“mean of local curvature” (ID# 55) 3. Hcme is measured in units of 

mm1/2. 

14. “Hcst”: This is a numerical variable. It represents the functional index  

“stardard deviation of local curvature” (ID# 56) 3. Hcst is measured 

in units of mm1/2. 

4.2.2.2. Aggregated Texture Indexes 

The “2. Aggregated (.csv files)” folder contains eight uncompressed folders for each 

of the TxDOT districts, as shown in Figure 80. The information contained within 

these folders has now been aggregated or summarized every 0.1 miles similar to 

the pavement management systems used by the Receiving Agency. The 

aggregation involves taking the mean, median, and standard deviation for the 12 

texture indexes shown in Section 4.2.2 
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Figure 80: Screenshot of the “Aggregated (.csv files)” folder view 

Inside each of the eight district folders, there will be a single CSV file, as opposed 

to one file per test site. That file will have the name of the district followed by the 

terms “_texture_collection,” as shown in Figure 81.  

Figure 81: Screenshot of the “A - Lubbock” folder view inside the “Aggregated (.csv 

files)” folder. 

The following is a data dictionary that explains the variables found inside the CSV 

files examplified in Figure 81: 

AGGREGATED (.CSV FILES) DATA DICTIONARY 

1. “Site_Number”: This is a categorical variable. This variable is  

composed by combining of the uppercase characters shown in Table 

10 and the number which indicates the order in which this section 

was surveyed. 

2. “Type_of_Test”: This is a categorical variable: It indicates the type of test  

conducted on the test site. “Long” indicates the test site was 

surveyed a single time, and “Repeat” indicates it has been tested at 

least twice. 

3. “Run”: This is a numerical variable. It identifies the chronological order of   
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data collection, especially on sites with repeated measurements. A 

value of 1 indicates the data comes from the first run, 2 for the 

second, and so on. For testing sites where the “Type_of_Test” is 

“Long” this variable will be strictly marked as 1. 

4. “n”: This is a numerical variable. The number of rows or profiles that were  

summarized (by using of a median, mean, or standard deviation) for 

the 0.1 mile long pavement section in consideration. 

5. “Mile_group”: This is a numerical variable. This variable starts at 0.1 and  

increases in units of 0.1 miles. It represents a pavement section that 

is 0.1 miles long, as it would in the Pavement Management Systems 

used by the Receiving Agency. 

6. “###_med”: The “###” term stands for any of the texture indexes discussed   

in Section 4.2.2. All the variables ending in “_med” represent the 

median for the index in consideration over the 0.1 mile long 

pavement section.  

7. “###_mean”: The “###” term stands for any of the texture indexes  

discussed in Section 4.2.2. All the variables ending in “_mean” 

represent the arithmetic average for the index in consideration over 

the 0.1 mile long pavement section. 

8. “###_sd”: The “###” term stands for any of the texture indexes discussed 

in Section 4.2.2. All the variables ending in “_sd” represent the 

sample standard deviation for the index in consideration over the 0.1 

mile long pavement section. 

4.2.3. Final Texture Database 

The Performing Agency compiled all the texture data collected during Task 4 

alongside other information about the testing site, such as GPS location, direction 

of travel of the vehicle, county, and district locations, among others, onto a single 

CSV file entitled “Texture_Database.csv.” Figure 82 shows the “3. Final 

Database” folder view. 
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Figure 82: Screenshot the “3. Final Database” folder view. 

The following is a data dictionary describing all the relevant information found 

inside the “Texture_Database.csv” file. Note that since this database is used to 

classify a vast array of pavement surfaces, some of the variables will reference a 

so-called level of specificity, which will be explained in more detail in Chapter 5. 

In summary, the level of specificity is an integer ranging from 1 to 5, where one is 

the most basic and generalized grouping of pavements (pavement type: flexible vs 

rigid), and the higher the number goes, the more specific the classification is. For 

instance, an arbitrary portland cement concrete pavement in Texas could have the 

following levels of specificity: 

- Level 1: Rigid Pavement 

- Level 2: Plastic Surface Finished (textured while concrete was fresh) 

- Level 3: Tinned Surface Texturing 

- Level 4: Transverse Tinning 

- Level 5: Fixed Transverse Tinning 

Figure 83 depicts the tree-diagram for the specificity levels used for this project. 
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Figure 83: Diagram indicating the different levels of specificity for the pavements surveyed based on their surface type. 
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TEXTURE_DATABASE DATA DICTIONARY 

1. “Folder Name”: This is a catergorical variable. It represents one of the  

eight TxDOT district folder names which have been used in this 

study. 

2. “District”: This is a categorical variable: It represents the TxDOT district  

where the section of interest can be located. Note that there are two 

sections that were collected in the state of New Mexico due to their 

proximity to a pavement section of interest. Those sections will have 

a suffix (NM) to indicate they come from New Mexico followed by 

the corresponding district name that the New Mexico DOT has 

assigned to that region. 

3. “County”: This is a categorical variable. It represents the Texas county  

where the section of interest can be located. Note that there are two 

sections that were collected in the state of New Mexico due to their 

proximity to a pavement section of interest. Those sections will have 

a suffix (NM) to indicate they come from New Mexico followed by 

the corresponding New Mexico county name. 

4. “Site_Number”: This is a categorical variable. This variable is 

composed by combining of the uppercase characters shown in Table 

10 and the number which indicates the order in which this section 

was surveyed. 

5. “Site_Name”: This is a categorical variable. It shows the name that 

was assigned to the section of interest. As mentioned earlier, this 

name tends to be related to the closest town, city, or landmark, but 

it is ultimately arbitrary.  

6. “Highway”: This is the name of the highway ID using the Receiving  

Agency’s nomeclature. This variable does not include roadbed 

information. 

7. “Direction”: This is a categorical variable. It gives a rough estimate of the   

vehicle’s direction of travel, possible values include:  

EB – Eastbound NW – Nortwest  SW – Southwest  

NB – Northbound SB – Southbound  WB – Westbound 

NE – Norteast  SE – Southeast   

8. “Approx_GPS_Location”: This is a set of numerical variables. It contains  

the longitude and latitude coordinates for the testing site using the 

decimal degree system. 



130 

9. “Pavmt_Type”: This is a categorical variable. It indicates if the pavement 

is “Flexible” or “Rigid.” This is also the first level of specificity 

within Figure 83. 

10. “General Surface Type”: This is a categorical variable. It represents a   

general category for pavement surface as determined by the 

Performing Agency. Note that this variable is only meaningfully 

defined for testing sites where the Receiving Agency provided 

information about the surface type. This also represents the second 

level of specificity shown in Figure 83. Possible catergories 

include: 

HWMA Plastic Unknown 

Surface Treatment Hardened   

HWMA stands for hot and warm mix asphalt pavements. Surface 

treatment encompasses all flexible pavements consisting of seal 

coats, microsurfacing, high friction surface treatment and thin 

overlay mixes. Plastic represents rigid pavement whose surface 

finish was done while the portland Cement Concrete (PCC) was in 

its “plastic” or fresh state. Hardened represents rigid pavement 

whose surface finish was done after the PCC had already fully 

hardened. Finally, Unknown indicates that the section surface type 

is not fully known. 

11. “Specific Surface Type”: This is a categorical variable. It represents a   

a more specific classification for pavement surface as determined by 

the Performing Agency. Note that this variable is only meaningfully 

defined for testing sites where the Receiving Agency provided 

information about the surface type. Furthermore, this the third level 

of specificity within Figure 83. Possible catergories include: 

Dense- and Gap-Graded Dragged NGDG 

Open-Graded Tining  Unknown 

Seal Coat Exposed Aggregate  

High Friction Surface Treatment CDG  

Dense- and Gap-Graded mixes cover the coarse and fine graded 

mixes as well as Superpave (SP) and stone matrix asphalt (SMA) 

mixes. Open-Graded encompasses permeable friction and bonded 

wearing courses that were surveyed. Seal Coat covers all the 

gradations of seal coats as well as fog seals and microsurfacing. 

High Friction Surface Treatment (HFST) are strictly HFST, or seal 
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coats built with volcanic rock also known to provide high friction 

levels. Dragged surfaces include Astroturf, carpet and burlap drag. 

Exposed Aggregates only encompasses that surface type. Tinning 

accounts for transverse and longitudinal tining as well as fixed and 

random tining. CDG stands for conventional diamond grinding. 

NGDG stands for new generation diamond grinding. Finally, 

“Unknown” indicates that the site’s surface type is not fully known. 

12. “Specific Surface Type II”: This is a categorical variable. It represents a   

a more specific classification for pavement surface as determined by 

the Performing Agency. Note that this variable is only meaningfully 

defined for testing sites where the Receiving Agency provided 

information about the surface type. Furthermore, this the fourth 

level of specificity within Figure 83. Possible catergories include: 

Type C SC Grade 4 Longitudinal 

Type D Fog Seal  Transverse 

TOM Microsurfacing Unknown 

SC Grade 3 PFC  

SC Grade 3S BWC  

Type C, Type D refer to hot mix asphalt pavements following the 

mix design options within Tex-204-F (204). Gradations type C for 

SMAs, SPs, TOMs, and dense-graded mixes all look identical for 

surface texture point of view (even though they are different from 

the structural and design aspect) thus were group together across the 

mix designs. The same was done for Type D. TOM covers all dense- 

and gap-graded mixes whose gradation is composed mostly of fine 

aggregates. The term SC stands for seal coat and the gradation 

numbers correspond to those found in Item 302: Aggregates for 

Surface Treatments within the Standard Specifications for 

Construction and Maintenance of Highways, Streets, and Bridges 

(114). Fog seal and microsurfacing correspond their respective 

surface types as defined in Item 315 and Item 350, respectively, of 

the aforementioned standard (114). PFC and BWC stand for 

permeable friction course a bonded-wearing course, respectively 

and are defined as per Tex-204-F (204). In this project only thin-

bonded wearing courses were evaluated. The terms longitudinal and 

transverse refer to the directionality of the tining within a rigid 

pavement. Finally, “Unknown” indicates that the section surface 

type is not fully known or not applicable. 
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13. “Specific Surface Type III”: This is a categorical variable. It represents a   

a more specific classification for pavement surface as determined by 

the Performing Agency. Note that this variable is only meaningfully 

defined for testing sites where the Receiving Agency provided 

information about the surface type. Furthermore, this the fifth level 

of specificity within Figure 83 and it is only applicable to rigid 

pavements. Possible catergories include: 

Fixed Random Unknown 

Fixed indicates that the spacing within the tines of the pavements 

are consistent, whereas random indicates the spacing between tines 

is randomly distributed. “Unknown” indicates that the section 

surface type is not fully known or not applicable. 

14. “Surface”: This is a categorical variable. It represents the true surface type 

of the pavement as indicated by the Receiving Agency. 

Astroturf Recycled Plastic Mix 

Burlap Seal Coat 

Burlap and Transverse Tining  Seal Coat GR 3 Lightweight 

Dense Type C Seal Coat GR 4 hard rock 

Exposed Aggregates Seal Coat GR 4 Lightweight 

Fixed Transverse Tining Seal Coat Volcanic Rock 

Fog Seal SMA 

Grade 4 / Hot-Rubber Seal SMA-HMA 

HFST  SP-C 

Longitudinal Tining  SP-D 

Microsurfacing  TBWC 

NGCS TOM 

NGDG TOM-C 

PB 3S (Gradation 3S) Transverse Tining 

PD 3  Transverse Tining and Carpet Drag 

PFC Unknown 

Random Transverse Tining  

Where, HFST stands for High Friction Surface Treatment; NGCS, 

Next Generation Concrete Surface; NGDG, Next Generation 

Diamong Grinding; PB 3S, Precoated Crushed Gravel, Crushed 

Slag, Crushed Stone or limestone rock asphalt with a “3S” aggregate 

gradation; PD 3, Precoated Crushed Gravel, Crushed Slag, Crushed 

Stone with a “3” aggregate gradation; PFC, Permeable friction 

course; SMA, Stone Matrix Asphalt; HMA, Hot Mix Asphalt; SP-

C, SuperPave Type C; SP-D, SuperPave Type D; TBWC, Thin 
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Bonded Wearing Coarse; TOM, Thin Overlay Mix; and TOM-C, 

Thin Overlay Mix Type C. 

15. “Type_of_Test”: This is a categorical variable. It indicates the type of test  

conducted on the test site. “Long” indicates the test site was 

surveyed a single time, and “Repeat” indicates it has been tested at 

least twice. 

16. “Run”: This is a numerical variable. It identifies the chronological order of   

data collection, especially on sites with repeated measurements. A 

value of 1 indicates the data comes from the first run, 2 for the 

second, and so on. For testing sites where the “Type_of_Test” is 

“Long” this variable will be strictly marked as 1. 

17. “Provider”: This is a categorical variable: This variable specifies the source 

 of the surface information and the test section’s location. When set 

to “TXDOT,” it indicates that the surface details and site location 

were provided by the Receiving Agency. If set to “CTR,” then the 

Performing Agency found the site, but the surface information is 

considered unknown. 

18. “Texture_Point_Spacing”: This is a numerical variable. It represents the  

point-to-point spacing within each profile for a given test site. The 

spacing is measured in units of mm. 

19. “Mile_group”: This is a numerical variable. This variable starts at 0.1 and 

increases in units of 0.1 miles. It represents a pavement section that 

is 0.1 miles long, as it would in the Pavement Management Systems 

used by the Receiving Agency. 

20. “n_texture”: This is a numerical variable. The number of rows or profiles 

that were summarized (by using of a median, mean, or standard 

deviation) for the 0.1 mile long pavement section in consideration. 

21. “###_med”: The “###” term stands for any of the texture indexes discussed 

in Section 4.2.2. All the variables ending in “_med” represent the 

median for the index in consideration over the 0.1 mile long 

pavement section. 

22. “###_mean”: The “###” term stands for any of the texture indexes  

discussed in Section 4.2.2. All the variables ending in “_med” 

represent the median for the index in consideration over the 0.1 mile 

long pavement section. 

23. “###_sd”: The “###” term stands for any of the texture indexes discussed 

In Section 4.2.2. All the variables ending in “_med” represent the 

median for the index in consideration over the 0.1 mile long 

pavement section. 
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4.2.4. Inventory of Pavement Texture 0-7139 

The Microsoft Excel file “Inventory of Pavement Texture 0-7139” served as 

document to catalog and summarize the information contained within the “texture” 

portion of the database in P1. Researchers from the Performing Agency would 

record information in this file immediately after collecting the data. Figure 84 

shows the view within the “Summary” tab of the document. 

Part A (Figure 84) presents a summary of the districts that were surveyed. The 

districts’ names that are bolded contributed a significant amount of data to this 

project. Conversely, if not bolded, the district contributed with some sections to the 

database. Lastly, if the district name is almost white that implies that no data was 

collected in that district. 

Part B summarizes the mileage that the Performing Agency agreed to survey and 

the mileage that was truly surveyed by the end of Task #4. 

Part C shows a collection of tabs, of which the first tab is the summary of all 

districts, and the subsequent tabs are named after each district where data was 

collected. Figure 85 shows a sample view of the spreadsheet for the tabs in Part C. 
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Figure 84: Screenshot of the “Summary” tab within the “Inventory of Pavement Texture 

0-7139” file. 

Figure 85: Screenshot of the “Austin” tab within the “Inventory of Pavement Texture 0-

7139” file. This is a representative view of all the other district tabs. 

As presented in Figure 85, district tabs have two main sections: A and B. Section 

A contains inventory information for every site surveyed. The information found 

in the columns are a counter (#), to quickly know how many sites were surveyed 

and in what order they were surveyed. The columns “Site_number,” “Site_Name,” 



136 

“Pavmt_Type,” and “Surface” are the same as those described in the data 

dictionaries for earlier files. “Location Description” provides a description for the 

location of the site. “Age” indicates the best guess of how many years have passed 

since the site was constructed or received its most current maintenance treatment. 

“Ground_truth” is equal to “1” if the surface information was provided by the 

Receiving Agency and “0” otherwise. “Coordinates” are the site’s GPS coordinates 

written using the decimal degree system. “Miles_Tested” indicates the mileage 

tested with the equipment, and the “Provider” indicates specifically which person 

provided the surface information for the site and on what date the information was 

provided. If the surface information is unknown, then the term “CTR” is used. 

Section B, in Figure 85, summarizes the mileage collected in the districts in terms 

of the pavement type and in terms of who provided the surface information. 

4.3. Picture Database (Image Data Folder) 

The 2D pictures taken with a high-speed camera were used in conjunction with the 

texture measurements to complement the classification of pavement surfaces. All 

the picture data has been stored in a folder entitled “2. Image Data (Camera 

Images)” inside the main directory of the hard drive. This folder is broken down 

into three subfolders: “1. All Pictures,” that contains all images collected during 

this study, “2. Revised Pictures Only” that contains only pictures who passed a 

quality control inspection, and “3. Deleted Pictures Only” that contains images 

deemed noisy, misleading, or useless for the purposes of training a surface detection 

model. A spreadsheet named “Inventory of Pavement Pictures 0-7139” that 

contains bookkeeping records for all the images collected across the eight district 

folders is attached to the pictures database. Each of the folders displayed in Figure 

86 will be discussed in more detail in the upcoming sections. 

Figure 86: Screenshot of the “Image Data (Camera Images)” folder view, showing the 

that folders have been compressed by district. 
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4.3.1. All Pictures 

The “1. All Pictures” folder is broken up into nine folders (all compressed due to 

significant file size). Eight of these folders correspond to the same districts which 

have been previously discussed in the sections for texture of this document. A ninth 

folder, named “Bleeded Pavmts in Brownwood,” was included as additional data, 

and it contains pictures of multiple seal coats collected from the Brownwood 

district. This dataset can be used in the future to detect the presence and degree of 

severity of bleeding in surface treatments. Figure 87 displays the folder view for 

the “1. All Pictures” folder. 

Figure 87: Screenshot of the “Image Data (Camera Images)” folder view, showing the 

that folders have been compressed by district. 

The “1. All Pictures” folder contains images that have not been subjected to quality 

control. As a result, some pictures may include obstructions such as cables across 

the image, road debris, or suffer from issues with extreme contrast or brightness. 

Additionally, sections labeled as “Ground Truth” might contain significant 

anomalies like large pavement patches or bridges with different surface types in the 

middle of the test site. These inconsistencies could potentially mislead machine 

learning algorithms during training. Therefore, the Performing Agency advises 

using the images in this folder to develop an automated method for distinguishing 

between high and low-quality pictures, rather than for classifying pavement surface 

types. 

4.3.2. Revised Pictures 

The folder “2. Revised Pictures” contains only those pictures that passed a rigorous 

manual visual inspection conducted by the Performing Agency. There were two 

standards of quality control criteria applied to the image data: one for test sites that 

comprised the “Ground Truth” data subset, and another for the “Holdout” data 

subset. 
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The “Ground Truth” sites are those for which the surface information was known 

in advance and provided by the Receiving Agency. This data will be used for 

training and testing the machine learning models. Any picture that did not comply 

with the information provided by the Receiving Agency was moved to the “Deleted 

Pictures” folder. Additionally, if an image was of poor quality or had features that 

would obstruct or complicate surface classification (e.g., excessive cracking), it was 

also moved to the “3. Deleted Pictures” folder. 

The “Holdout” data subset comprises pavement sites where the surface type is not 

known, thus it follows a different quality control criterion. In this subset, a picture 

was only deleted if it possessed features that would obstruct or complicate surface 

classification. All pictures passing this criterion will be used to assess the accuracy 

of the algorithm in detecting pavement changes. Data from the “Holdout” subset 

will not be used for training or testing the pavement detection models but will serve 

solely as a validation dataset. The “2. Revised Pictures” is subdivided into eight 

compressed folders as shown in Figure 88. The additional file for bleeded 

pavements was not part of this quality control process. 

Figure 88: Screenshot of the “Image Data (Camera Images)” folder view, showing the 

that folders have been compressed by district. 

4.3.3. Deleted Pictures 

The “3. Deleted Pictures” folder contains all of the pictures that were removed 

during the quality control stage. Figure 89 depicts some sample images with 

features that would be not representative of an ideal homogenous pavement surface, 

or whose inclusion in the database could result in detrimental performance. The file 

sizes of these compressed folders are significantly smaller compared to the ones of 

“2. Revised Pictures,” as shown in Figure 90. The “3. Deleted Pictures” folder is 

broken up into eight district subfolders. Notice that once a folder is extracted and 

opened, not all the test sites for that specific district will have a folder. If a test site 

is missing, that implies that the pictures taken from that site were all homogenous. 
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Figure 89: Sample images showing what kind of criteria would be considered enough to 

delete an image from the database: unexpected debris, objects or animals such as a 

critter’s tail (top left), pavement markings (top right), cracking which can be confused as 

surface features (bottom left), interface of a pavement change (bottom right). 

Figure 90: Screenshot of the “3. Deleted Pictures” folder view. 

4.3.4. Inventory of Pavement Pictures 0-7139 

The Microsoft Excel file “Inventory of Pavement Pictures 0-7139” served as a 

document to catalog and summarize the information contained within the “pictures” 

portion of the database in P1. Researchers from the Performing Agency would 

record information in this file immediately after collecting the data in the field. 

Figure 91 shows the view within the “Grand Summary” tab of the document. 
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Figure 91: Screenshot of the “Grand Summary” tab within the “Inventory of Pavement 

Pictures 0-7139” file. 

Part A (Figure 91) summarizes the picture information for all the sites which 

composed the Ground Truth dataset. 

Part B does the same for those sites within the Holdout dataset.  

Part C summarizes the relevant information across both datasets. The columns, 

which can be found within the “Grand Summary” tab, are:  

• “Folder Initial” covers the initials as discussed in Table 10.  

• “District” is the name of the district where most data was collected.  

• “N_dataset_sites” is the number of sites within a specific dataset. 

“N_pictures_dataset” is the total number of pictures taken within that 

district. “N_pictures_revised_dataset” stands for the number of pictures that 

passed the quality control within a given district.  

• “N_pictures_deleted_dataset” is the number of pictures removed from a 

district because they did not pass the quality control.  
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• “N_Homogenous_sites” is the number of sites for which the surface type 

was homogenous across all pictures. 

• “N_Heterogenous_sites” is the number of sites for which there is at least 

one pavement change or different surface texturing across all the pictures. 

Lastly, Part D shows the tabs that can be found in this file. The other two tabs hold 

more specific information about the pictures in each site based on which dataset 

they belong to. Figure 92 depicts a sample view of the spreadsheet for the other 

tabs in Part D. 

Figure 92: Screenshot of the “TxDOT (Ground Truth)” tab within the “Inventory of 

Pavement Pictures 0-7139” file. This is also a representative view for the “CTR (Extra)” 

tab. Note that many columns are not shown in this image. 

Both the “TxDOT (Ground Truth)” and the “CTR (Extra)” hold the same 

information for different sites. In each of these tabs, the following information can 

be found:  

• The columns, “Folder,” “District,” “County,” “Site_Number,” 

“Site_Name,” “Highway,” “Direction_of_Travel,” 

“Approx_GPS_location,” “Type_of_Test,” and “Run,” have the same 

meanings as the ones given in the data dictionary for the “Final Texture 

Database.”  

• “TXDOT Surface” is the surface information as provided by the Receiving 

Agency.  

• “N_Pictures” is the total number of pictures taken at a given site.  

• “N_kept” is the number of pictures that passed the quality control.  
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• “N_deleted” is the number of pictures removed for not passing the quality 

control.  

• “Homogeneity” has a value of “1” if the site was homogenous across all 

pictures and 0 otherwise.  

• “Approx_n_pvmt_changes” is an educated guess based on the pictures for 

the total number of pavement changes seen across the pictures. A pavement 

change constitutes going from one pavement type to another (flexible to 

rigid), from one type of flexible pavement to another (HMA to surface 

treatment), or from one PCC surface finish to another (NGDG to tining).  

• “Excessive_Bleeded sections” counts the number of pictures with too much 

bleeding to determine surface type.  

• “Combined_surfacing_sections” counts the number of pictures where two 

types of PCC texturing techniques are in equal proportions, such as 

longitudinal and transverse tining creating a sort of tining mesh.  

• “Notes” are comments on why each picture was removed, or comments of 

the pictures which remained in the database but have interesting 

characteristics such as a thin layer of dirt on the pavement’s surface. 
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Chapter 5. Model Development, Training, and 

Testing 

5.1. Data Processing 

This section outlines the Performing Agency’s approach to processing the data. It 

was divided into two subsections, each dedicated to a different type of data 

collected: 1) 2D surface profiles, and 2) 2D RGB area images of the pavement 

surface. 

5.1.1. Implemented Algorithm 

The Performing Agency developed Figure 93 to illustrate the specific steps used 

to process the texture data, following the structure highlighted in Figure 9. The 

Performing Agency calibrated their processing algorithm by assessing at least 

2,000 profiles to estimate five thresholds for identifying mild and extreme spikes 

in the data. Next, during the preprocessing stage, the algorithm converted the units 

of both the profile measurements and the thresholds to millimeters, trimmed all 

measurements not within the middle 150 mm, and pre-imputed any missing data 

using the median height. For the denoising stage, the Performing Agency 

implemented SOFA4 (3). Linear interpolation imputation was then performed on 

profiles where the total number of removed data did not exceed 20%. Profiles where 

removed noise exceeded 20% were discarded. Once imputed, a linear regression 

detrending subroutine was implemented to center the profile at an elevation of 0 

mm. 

 
4 SOFA is an algorithm developed by The University of Texas at Austin which uses boxplot filters 

and the difference between adjacent points alongside the previously determined thresholds to detect 

and remove spikes or flat signals from the profile. 

Figure 93: Schematic illustrating a detailed description of the data processing algorithm. 
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The Performing Agency did not apply any signal decomposition, smooth frequency 

response filters, or enveloping methods to the profiles, as these methods require 

significant computational resources when processing large quantities of texture 

data, particularly at a network level. After full processing, a large representative 

sample of profiles from each tested site was visually inspected to ensure the 

algorithm performed as expected. Figure 94 depicts a comparison between a raw 

profile and a fully processed profile. Fully processed profiles were then used to 

compute a set of twelve texture summary indices. 

Figure 94: Example of the SOFA on 2D texture profile for a pavement with new 

generation diamond grinded surface finish. 
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5.1.2. Computed Indices 

The Performing Agency sourced material from Gadelmawla et al. (55), ISO 21920-

2 (57), and Sabillon et al. (3). Putting together these sources yielded a list of 80 

spatial texture indices. However, due to the complexity and lengthy computation 

time of some indices, particularly spectral ones, the list was refined by excluding 

those that were impractical for efficient processing. 

Spatial texture indices were organized into five categories: 

• Amplitude indices: to characterize vertical deviations. 

• Spacing indices: to quantify horizontal characteristics. 

• Hybrid indices: to describe characteristics regarding the profile’s slope. 

• Functional indices: derived more complex textural feature by using 

auxiliary functions like the material ratio curve. 

• Feature indices: typically include amplitude, spacing, hybrid, and 

functional indices, calculated over specific segments—such as 100 mm—

rather than across the entire profile.  

Significant linear correlations identified among these indices suggested that 

simpler, well-understood indices could approximate more complex ones 

effectively. Therefore, indices exhibiting over 60% correlation were excluded, 

except for essential ones widely recognized in pavement engineering, such as MPD 

and RMS of height. This correlation-based selection process reduced the list from 

80 to 19 indices. Further reduction prioritized indices requiring minimal 

computation time, refining the selection to those most feasible for network-level 

analysis. This process resulted in 12 essential indices, ensuring their practicality 

and familiarity to industry professionals. These indices are detailed in Table 12. 

Table 12: List of indices used in the study 

Amplitude (Height) Index 

Index Equation 

Root Mean 

Square Height 

Kurtosis 

Solidity Factor 
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Spacing Index 

Index Equation 

Mean of Cross 

Width 

Standard 

Deviation of 

Cross Width 

Skewness of 

Cross Width 

Hybrid Indices 

Index Equation 

Maximum 

Absolute 

Gradient 

Two-Point 

Slope Variance 

Functional Indices 

Index Equation 

Autocorrelation 

Function 

Autocorrelation 

Length 

Local 

Curvature 

Mean of Local 

Curvature 

Standard 

Deviation of 

Local 

Curvature 

Feature Indices 

Index Equation 

Mean Profile 

Depth 

Where ℎ𝑖 and ℎ(𝑥) is the elevation at point 𝑖 or 𝑥, respectively, ℎ̅ is the mean 

elevation, 𝑛 is the number of datapoints, ℎ𝑚/2 is the elevation value midway 

through segment, ℎ𝑚 is the elevation value at the end of segment, 𝑥𝑖 is the 
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horizontal spacing between inflection points along the profile, 𝑥̅ is the mean spacing 

between inflection points, 𝑡𝑥 is a spatial shift in the horizontal direction, 𝑙𝑒 is the 

evaluation length, and 𝑙0 is the overlap interval, 𝑑 ℎ(𝑥) 𝑑𝑥⁄  and 𝑑2ℎ(𝑥) 𝑑𝑥2⁄  are 

the first and second derivatives, respectively, of the scale-limited profile ℎ with 

respect to the position 𝑥. 

5.2. Picture Processing 

5.2.1. Quality Control 

The high-speed pictures underwent a rigorous quality control process before any 

manipulation was conducted, adhering to two distinct standards tailored for each 

data subset. The “Ground Truth” data subset (DS1) comprises all test sites with 

known surface information provided by the Receiving Agency. Pictures in DS1 

were removed if they met any of the following criteria: 

1) The surface type in the images did not match the information provided by 

the Receiving Agency. 

2) The images exhibited excessively high or low contrast or brightness, 

impeding accurate pavement type determination. 

3) The images displayed significant pavement distress, such as cracking or 

bleeding, which could affect classification accuracy. 

4) The images contained foreign objects, like debris, cables, or critters, 

unrepresentative of a pavement surface. 

Pictures from DS1 that passed the quality control process were subsequently 

utilized for training and validation of the image classification algorithm. In contrast, 

the ‘Holdout’ data subset (DS2) consists of pavement sites with unidentified surface 

types. Thus, these pictures adhere to a slightly different quality control standard. 

Images from DS2 were excluded based on criteria #2, #3, or #4 of the DS1 

standards. Criterium #1 cannot be implemented as the “ground truth” is not known. 

Successfully vetted images from DS2 were designated as part of the testing dataset 

to heuristically evaluate the accuracy of the model developed using DS1.  

5.2.1.1. Data Augmentation 

The practice of manipulating data prior to model training is generally referred to as 

“pre-processing,” “data processing,” or “feature engineering,” in various contexts. 

However, within the context of image classification, this step is specifically termed 

“data augmentation.” Data augmentation ensures that the model receives input 
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conducive to learning genuine patterns rather than merely memorizing noise. Data 

augmentation derives its name from its capacity to artificially augment both the 

volume and variety of the training dataset, proving particularly valuable in 

scenarios where data accessibility is limited. 

The initial phase of data augmentation involved resizing the images to a uniform 

resolution of 224 x 224 pixels, a significant reduction from the original 1280 x 1024 

pixels. This adjustment serves two purposes: it diminishes the computational 

resources required and simplifies the extraction of effective contextual information 

crucial for classification, which becomes more challenging with larger images. 

Subsequently, the Performing Agency introduced variations in lighting conditions 

by adding noise through over- or under-saturation of the images. When executed 

correctly, this strategy enhances model robustness by simulating a wider array of 

environmental factors, akin to those encountered in field conditions where lighting 

varies drastically when traveling at 50 mph. 

Further data augmentation techniques, such as rotations, cropping, shearing, and 

zoom adjustments, contribute significantly to the model’s ability to generalize. 

Rotations simulate scenarios where the camera is physically rotated, cropping 

mimics situations where the image resolution is smaller than expected, shearing 

represents the perspective shift seen when objects are viewed at an angle, and zoom 

adjustments replicate varying distances between the camera and the pavement 

surface. Collectively, these techniques aim to make the classification algorithm 

invariant to translation and rotation, ensuring minimal impact on classification 

accuracy regardless of camera movement or orientation. 

5.3. Machine Learning Implementation 

The Performing Agency implemented two unsupervised learning techniques: 

dimensionality reduction and clustering. Employing a higher number of variables 

(i.e., higher dimensionality) generally enhances the performance of machine 

learning algorithms due to the richer data environment provided. However, when 

the dimensionality exceeds three variables, visualizing data effectively becomes a 

challenge. To overcome this issue, the Performing Agency utilized a dimensionality 

reduction technique known as Principal Component Analysis (PCA). This method 

was instrumental in revealing potential clustering patterns within the complex data. 

Building on this, a series of clustering techniques was subsequently applied to 

objectively identify and analyze the clusters that were visualized through PCA. 

Then, the Performing Agency utilized traditional classification supervised learning 

algorithms on texture indices derived from 2D profiles and trained nuanced 
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supervised learning image recognition models to predict pavement surface types 

from 2D RGB images.  

5.3.1. Index-Based Classification (IBC) Models 

The Performing Agency trained a comprehensive suite of 14 traditional supervised 

learning classification models which utilize texture indices as features to predict 

pavement surface type. The models have been summarized in Table 13 and 

encompass a diverse range of methodologies, each tailored to specific aspects of 

the classification challenge: 

Table 13: List of IBC models 

Model name (Abbreviation) Model name (Abbreviation) 

K-Nearest Neighbor (KNN) Bootstrap Aggregating (BA) 

Gaussian Naïve Bayes (GNB) Adaptive Boosting (AB) 

Logistic Regression (LOG) Gradient Boosting (GB) 

Probit Regression (PRO) Extreme Gradient Boosting (XGB) 

Complementary Log-log Regression (CLL) Support Vector Machine (SVM) 

Decision Tree (DT). Shallow Neural Network (SNN) 

Random Forest (RF) Deep Neural Network (DNN) 

These IBC models performed classification tasks in hierarchical manner, according 

the hierarchy shown in Figure 83. The hierarchy of pavement specificity begins 

with the broad differentiation between flexible and rigid pavements. Subsequent 

levels refine this categorization: the second level splits flexible pavements into hot 

and warm mix asphalt and various surface treatments, while rigid pavements are 

categorized by the timing of surface texturing—either “Plastic” for fresh concrete 

texturing or “Hardened” for post-set texturing. Further distinctions are made at the 

third specificity level based on the types of asphalt mixes and seal coats, and the 

numerous texturing technique for PCC texturing. The highest levels of specificity 

detail the gradations within seal coats and asphalt mixes and differentiates rigid 

pavement tining into longitudinal or transverse patterns, with an additional 

distinction in the latter for the spacing of tining lines. This structured approach 

ensures detailed and nuanced classification, crucial for accurate pavement 

management and maintenance strategies. 
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5.3.2. SL Pictures-Based Classification 

The Performing Agency utilized TensorFlow, an open-source machine learning 

framework developed by Google to leverage the capabilities of CNNs for 

classifying images of pavement surfaces. This framework is specifically designed 

to facilitate the building, training, and deployment of machine learning models, 

including those for deep learning. The CNN model implemented for image 

classification uses transfer learning, a technique where a model developed for a 

specific task is repurposed as the starting point for a model on a second task. This 

approach leverages pre-trained models, which have already learned a substantial 

number of relevant features from large and diverse datasets, to improve learning 

efficiency and performance on related but distinct tasks.  

In this particular application, the model of choice was ResNet50, a 50-layer CNN 

developed by Microsoft Research Asia (205), pre-trained on a dataset comprising 

over a million images depicting approximately 1,000 different objects. This pre-

trained model, known for its deep architecture and robustness in feature detection 

across various visual domains, was adapted for the specific task of pavement 

surface classification.  

5.4. Results 

This section is broken down into four subsections: cluster analysis, a comparison 

of index-based classification (IBC) model characteristics, IBC model results, and 

picture-based classification (PBC) model results 

5.4.1. Cluster Analysis 

Cluster analysis was performed to determine whether the data naturally forms 

groups that correlate with the surface types specified by their mix design. If the UL 

analysis produces clusters that logically correspond to pavement surface types, it 

would suggest that the classification algorithms are capable of identifying different 

surfaces using texture indices alone. However, no similar inference can be drawn 

for image data, as no UL analysis has been conducted in that domain yet. Given the 

variability in conditions and ages of the tested pavement surfaces, it is probable that 

these clusters will reflect differences in surface conditions more than surface types. 

The Performing Agency carried out this analysis focusing on both flexible and rigid 

pavements within the Ground Truth (DS1) dataset. 

5.4.1.1. Flexible Pavements 

The first step of cluster analysis is to find uncorrelated variables. Thus, a pairwise 

correlation matrix was computed to isolate those pavement texture indices whose 
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Pearson correlation coefficient was lower than 60%. Figure 95 depicts the five 

indices used for the flexible pavements subset of DS1: height kurtosis (RKU), two-

point slope variance (SV2), autocorrelation length (RAL), mean of local curvature 

(HCME), and the standard deviation of local curvature (HCST). 

Figure 95: Pearson correlation coefficient matrix for the final selection of five indices 

used in flexible pavement clustering. 

Next, the Performing Agency plotted a density plot of the first two principal 

components, as shown in Figure 96.  



152 

Figure 96: Density plot of the first two principal components for flexible pavements. 

Although it is challenging to discern a clear clustering structure through visual 

inspection alone, a dendrogram (Figure 97) was utilized to enhance the 

visualization of the clustering arrangement. A dendrogram is a tree-like diagram 

that displays the relationships formed by hierarchical clustering. Each leaf on the 

dendrogram represents an individual data point, while branches merge at different 

heights, indicating the level of similarity between clusters. The height at which 

branches converge serves as a crucial indicator for estimating the optimal number 

of clusters in the data. 

Figure 97: Dendrogram for flexible pavements with colored rectangles indicating the 

clustering structure for five groups in the data. 

The dendrogram depicted in Figure 97 has been enhanced by the addition of 

colored rectangles along the bottom of the x-axis, which represent the size of the 

clusters, assuming the data contains five clusters5. This assumption is based on the 

height at which branches join, serving as the cutoff for cluster membership. The 

selection of exactly five clusters is informed by the distinct textural properties of 

pavements within these groups. Moreover, these clusters demonstrate a significant 

degree of separation when analyzed in the principal component domain. To further 

illustrate this, the density plot in Figure 98 has been adjusted to display how the 

clusters, identified in the dendrogram of Figure 97 overlap on the scatterplot for 

the first two principal components. 

The clusters, as depicted in the dendrogram, were identified using the AGNES 

model. This method’s successful application in delineating these clusters 

necessitated the scaling of the indices from Figure 95 using robust scaling, as 

 
5 The clusters in Figure 98 are labelled FPC#, where FPC stands for flexible pavement cluster 

followed by an index used to distinguish the clusters. 
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outlined by equation (15). This precise scaling process was essential to achieve the 

cluster formations observed in the dendrogram. 

Figure 98: Visualization of the five clusters derived from a dendrogram on the 

scatterplot of the first two principal components. 

(15) 

Where, 𝑋𝑅 is a robust scaled index, 𝑥𝑖 is the original value of index 𝑖, 𝑥̃ is the 

median value of the index, and 𝐼𝑄𝑅 is the interquartile range of the index or the 

difference between the third and first quartiles of the index. 

Once the indices are scaled, they are clustered using the Ward linkage method, a 

method of measuring the distance between clusters that minimizes within-cluster 

variance. This method systematically identifies the pair of clusters that, when 

merged, results in the smallest increase in total within-cluster variance, thereby 

ensuring that the most similar groups are combined to form more cohesive cluster 

structures. 

It should be noted that none of the other three methods tested were able to replicate 

these five clusters precisely, due to differences in cluster assignment techniques. 

Consequently, only the AGNES model was utilized for clustering flexible 

pavements, owing to the effective classification it achieves. Detailed descriptions 

of the pavements comprising each cluster, along with representative median values 
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for six texture indices of the pavements within those clusters, are presented in Table 

14. The number of pavement section in each cluster and their corresponding 

percentage out of the total, shown in parenthesis, is shown the right side of the table. 

Table 14: Summary of flexible pavement cluster analysis with description of the 

cluster and median index measurements of the member pavements 

FPC1: Highest macrotexture pavements  n: 198 (11%) 

MPD RKU SV2 RAL p| HCME | HCST 

2.49 -0.36 1.08 1.05 -5.65 2.86 

FPC2:  Course well-graded surfaces resembling a dense mix n: 816 (46%) 

MPD RKU SV2 RAL p| HCME | HCST 

1.27 1.37 0.68 0.89 -4.97 3.12 

FPC3: High macrotexture and uniform gradation  n: 279 (16%) 

MPD RKU SV2 RAL p| HCME | HCST 

1.97 1.97 0.67 1.48 -5.40 3.11 

FPC4: Lowest macrotexture pavements  n: 391 (22%) 

MPD RKU SV2 RAL p| HCME | HCST 

0.92 0.92 0.54 0.96 -5.00 2.23 

FPC5: Coarse surfaces with uniform gradation  n: 92 (5%) 

MPD RKU SV2 RAL p| HCME | HCST 

1.42 0.82 0.57 1.46 -6.93 1.33 

Table 14 indicates that all pavements in FPC1 exhibit the highest macrotexture, as 

evidenced by their elevated median MPD and SV2 values. FPC2, the largest of the 

five clusters, primarily consists of two pavement types: (1) dense and gap-graded 

mixes with higher than usual macrotexture, and (2) open-graded mixes and seal 

coats showing signs of deterioration and polishing, making them resemble coarse 

dense-graded mixes. FPC3 predominantly includes seal coats of Gradation 3 and 

similar pavement surfaces, characterized by high MPDs and significant variation in 

profile heights, as denoted by RKU values and the standard deviation of local 

curvature. Additionally, the substantial RAL suggests that these surfaces have 

uniform gradations, with profile patterns recurring every 1.48 mm. FPC4 comprises 

mixes, primarily dense and gap-graded, which display minimal macrotexture, as 

indicated by low median MPD and SV2. FPC5 mainly consists of seal coats and 

PFCs undergoing polishing. These surfaces maintain a macrotexture slightly above 

average, as reflected by their MPDs and SV2, yet they do not exhibit the 
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smoothness typical of a polished dense-graded mix. Representative pavement types 

for each cluster are depicted in Figure 99. 

Figure 99: Representative pictures of each of the five cluster. Members of the same 

clusters are shown along the row. 

5.4.1.2. Rigid Pavements 

The texture indices calculated for flexible and rigid pavements exhibit different 

correlational patterns owing to the distinct textural properties inherent in each 
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pavement type. Consequently, it is essential to conduct separate correlation 

analyses before advancing to the cluster analysis. Figure 100 presents the five 

indices utilized for the rigid pavement subset of DS1: Mean Profile Depth (MPD), 

Kurtosis of Height (RKU), Standard Deviation of Cross Width (CWST), 

Autocorrelation Length (RAL), and Mean of Local Curvature (HCME).  

Figure 100: Pearson correlation coefficient matrix for the final selection of five indices 

used in rigid pavement clustering. 

Subsequent analysis by the Performing Agency revealed two distinct and  easy 

separable clusters in the density plot of the first two principal components (Figure 

101), a contrast to the findings with flexible pavements. These clusters were 

identified as new generation (RPC1) and conventional (RPC2) diamond grinding 

pavement surfaces, showcased in Figure 102.  
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Figure 101: Density plot of the first two principal components for flexible pavements 

highlighting the two clusters that are easily separable by visual inspection6. 

 
6 The clusters in Figure 101 are labelled RPC#, where RPC stands for rigid pavement cluster 

followed by an index used to distinguish the clusters. 

Figure 102: Representative pictures of each of the first two clusters. Members of the 

same clusters are shown along the row. 

To confirm the detectability of these clusters, the Performing Agency applied all 

four clustering algorithms discussed in Section 2, all of which successfully 

identified the two clusters. AGNES and DBSCAN recognized three clusters, while 

PAM and GMM initially divided the larger, topmost cluster (labeled as the residual 

cluster in Figure 101) into two before identifying RPC2. This division is attributed 

to their limitation in detecting clusters of equal sizes. Figure 103 illustrates the 

clustering outcomes for each algorithm, with a summary of the specific algorithm 

parameters used to identify clusters RPC1 and RPC2 detailed in Table 15.  
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Figure 103: Visualization of the clustering output from the four clustering algorithms as specified in Table 1. Note that for DBSCAN cluster 0 are 

noisy data points not belonging to any cluster. 
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Table 15: Summary of algorithm specification which enables the identification of clusters RPC1 

and RPC2 

Algorithm Specification 

PAM 

Feature Scaling:              Robust 

Number of Clusters:       4 

Distance Metric:             Manhattan 

AGNES 

Feature Scaling:              Robust 

Number of Clusters:        3 

Linkage Method:              Ward 

GMM 
Feature Scaling:               Robust 

Number of Clusters:         4 

DBSCAN 

Feature Scaling:               Robust 

Epsilon:                             1 

Minimum Points:               17 

The data within Figure 101 not included in RPC1 and RPC2 form a substantial cloud, termed the 

residual cluster. Although data points within this cluster were separable, the dominance of the two 

more distinct clusters obscured their internal structure. Consequently, data points from the two 

diamond grinding clusters were removed to clarify the residual cluster’s structure. A density plot 

for the residual cluster is displayed in Figure 104. highlighting five areas of high density with 

colored circles.  

Figure 104: Density plot of the first two principal components for flexible pavements highlighting the 

clustering structure within the residual cluster. 
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RPC3 consists solely of exposed aggregate surfaces, while RPC4 includes pavement surfaces with 

dragged texturing, such as AstroTurf, and others surfaces so polished they appear dragged. The 

remaining clusters involve various types of tining: RPC5 features shallow grooves with short 

landing spacing, RPC6 exhibits deeper grooves and wider spacing, and RPC7 consists of heavily 

polished tined surfaces. Examples of these clusters are shown in Figure 105. Table 16 provides a 

summary of the hyperparameter specifications for the four clustering algorithms used. 

Table 16: Summary of algorithm specification which enables the identification of clusters RPC3 

through RPC7 

Algorithm Specification 

PAM 

Feature Scaling:              Robust 

Number of Clusters:       5 

Distance Metric:             Manhattan 

AGNES 

Feature Scaling:              Robust 

Number of Clusters:        6 

Linkage Method:              Ward 

GMM 
Feature Scaling:               Robust 

Number of Clusters:         7 

DBSCAN 

Feature Scaling:               Robust 

Epsilon:                             0.615 

Minimum Points:               13 

While visually identifying these five clusters may seem straightforward, mathematically detecting 

them presents a unique challenge. Nonetheless, all four clustering techniques implemented were 

capable of identifying these five clusters, though with varying degrees of efficiency, as illustrated 

in Figure 105. PAM proved to be the most efficient, successfully discerning the clusters with a 

specification of only five groups, whereas GMM was the least efficient, requiring detection of 

seven clusters to identify the five groups depicted in Figure 106. DBSCAN managed to identify 

subsets of each cluster, but adjusting its hyperparameters was a time-consuming process. 
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Figure 105: Representative pictures of each of the five cluster within the residual cluster. Members of the 

same clusters are shown along the row. 
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Figure 106: Visualization of the clustering output from the four clustering algorithms as specified in Table 16. Note that for DBSCAN cluster 0 

are noisy data points not belonging to any cluster. 
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The results of the cluster analysis for rigid pavements are summarized in Table 17. 

Similar to the approach for flexible pavements, this table includes a description of 

each cluster, a set of six texture indices with their corresponding median values 

within the same cluster, the number of pavement sections in each cluster, and their 

percentage of the total. This comprehensive overview allows for a detailed 

comparison and understanding of the textural characteristics of each cluster. 

Table 17: Summary of rigid pavement cluster analysis with description of the 

cluster and median index measurements of the member pavements 

RPC1: New Generation Diamond Grinding  n: 76 (14%) 

MPD Rku Cwst Cws Ral p|Hcme| 

1.46 -0.20 5.89 0.21 0.69 -5.66 

RPC2: Conventional Diamond Grinding  n: 47 (8%) 

MPD Rku Cwst Cws Ral p|Hcme| 

0.79 0.11 1.96 0.84 0.40 -6.25 

RPC3: Exposed aggregates  n: 50 (9%) 

MPD Rku Cwst Cws Ral p|Hcme| 

0.52 0.43 3.46 2.38 1.34 -6.03 

RPC4: Dragged surfaces  n: 67 (12%) 

MPD Rku Cwst Cws Ral p|Hcme| 

0.77 -0.14 5.40 1.92 1.54 -5.63 

RPC5: Tining, shallow grooves, short landing spacing  n: 141 (26%) 

MPD Rku Cwst Cws Ral p|Hcme| 

0.67 0.89 5.05 1.90 1.11 -5.68 

RPC6: Tining, deep grooves, wide landing spacing n:126 (23%) 

MPD Rku Cwst Cws Ral p|Hcme| 

0.92 1.41 6.46 1.52 1.00 -5.44 

RPC7: Tining, significantly polished n: 53 (10%) 

MPD Rku Cwst Cws Ral p|Hcme| 

0.59 2.47 5.71 2.10 0.82 -6.18 

5.4.2. IBC Models Comparison 

The Performing Agency conducted a qualitative analysis to comprehensively 

evaluate the characteristics of the SL models before proceeding with their training 
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and validation. This analysis involved formulating a series of yes/no questions 

across four categories: model sensitivities (Set S), statistical assumptions (Set A), 

computational concerns (Set C), and implementation feasibility (Set I). These 

questions aimed to evaluate the adequacy, limitations, transparency, 

interpretability, and adaptability of the models. The responses to these questions 

were systematically organized in tables, employing a color-coded system where 

each color has distinct meanings depending on the question set. 

5.4.2.1. Model Sensitivities (Set S) 

The Performing agency explored several dimensions of model sensitivity, 

including: 

• S1: Is the model sensitive to outliers? 

• S2: Is the model sensitive to the scale of the features? 

• S3: Is the model sensitive to multicollinearity? 

• S4: Is the model sensitive to irrelevant features? 

• S5: Is the model sensitive to imbalanced data? 

• S6: Is the model sensitive to high dimensionality? 

• S7: Is the model sensitive to missing data? 

• S8: Is the model sensitive to autocorrelation? 

• S9: Is the model sensitive to nonlinearity in the data? 

The sensitivity of each model was depicted using a color-coded table (Table 18). 

Cells indicating a significant decrease in performance, as measured by the F1 score, 

were colored red. Yellow cells indicated performance changes contingent upon 

specific model attributes, such as the choice of base learner in ensemble methods. 

Conversely, cells unaffected by the criterion, demonstrating model robustness, 

were colored green. 
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Table 18: Summary of Model Sensitivities  
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The sensitivity analysis reveals differing levels of responsiveness among various 

models to factors such as outliers, multicollinearity, and feature scale. Notably, 

models such as Decision Trees (DT) and Random Forests (RF) exhibit robustness 

(green cells) against challenges like high dimensionality and irrelevant features, 

making them well-suited for complex data landscapes. Conversely, models like 

Logistic Regression may exhibit sensitivity (red cells) to multicollinearity, 

affecting their performance when predictor variables are highly correlated. This 

underscores the versatility of certain models across diverse data scenarios, while 

emphasizing the need for meticulous data preprocessing to ensure precise outcomes 

with others. 

5.4.2.2. Model Assumptions (Set A) 

The following set of questions assessed the models based on their statistical 

assumptions about the data: 

• A1: Does the model require homoskedasticity? 

• A2: Does the model require linearity between features and labels? 

• A3: Does the model require the residuals to follow a given distribution? 

• A4: Does the model require the features to follow a given distribution? 

• A5: Does the model require the observations to be independent? 

• A6: Does the model require the constituent models to be independent? 

• A7: Is there another statistical assumption(s) the model makes? 

For each assumption, a red cell in Table 19 indicated a requirement by the model, 

potentially limiting its applicability without fulfilling these conditions. A green cell 

signaled no such requirement, enhancing the model’s flexibility. Additional 
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statistical assumptions were specifically noted with a superscript detailing the 

nature of the assumption. This detailed assessment helps clarify the suitability of 

various models under different conditions, ensuring a more informed selection and 

application of the appropriate modeling technique. Nonetheless, some models 

operate on assumptions beyond statistical principles. For instance, KNN relies on 

the notion that proximity in distance signifies similarity, whereas greater distance 

indicates dissimilarity. These non-parametric assumptions were not considered in 

this analysis. 

Table 19: Summary of Model Statistical Assumptions 

A1               

A2               

A3               

A4               

A5               

A6               

A7   1 2 3          
1 Assumption of Independence of Irrelevant Alternatives (only applicable to multinomial 

logit) 
2 Latent variable (label in the probit model) is assumed to come from a normal distribution 

and the assumption of proportional odds. 
3 Assumption of proportional hazards 

The adherence to statistical assumptions significantly affects the suitability of 

models for different data types. For example, models that require a linear 

relationship between features and labels, such as Logistic Regression (LOG), are 

marked in red when this assumption is unmet, highlighting their limitations in 

managing nonlinear relationships. The presence of additional assumptions, 

indicated with a red cell and a superscript (e.g., Probit Regression -PRO), 

necessitates a thorough understanding of the data distribution prior to deployment. 

This emphasizes the critical role of preliminary data analysis in ensuring that the 

conditions for optimal model performance are satisfied. 

5.4.2.3. Model Computational Concerns (Set C) 

The following set of questions assessed the models’ performance in terms of 

computational resources: 

• C1: Does the model take relatively long to train? 

• C2: Does the model take relatively long to make predictions? 

• C3: Does the model have high computer memory requirements? 
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In the corresponding table (Table 20), a red cell indicates undesirable traits, yellow 

suggests conditional desirability depending on data quantity or hyperparameter 

settings, and green denotes favorable characteristics.  

Table 20: Summary of Model Computational Concerns 
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The results for the question in Set C highlight the practical considerations in model 

deployment, particularly in terms of computational efficiency. For instance, models 

like Deep Neural Networks or most of the ensemble methods, with high demands 

for computational resources, may not be practical in time-sensitive or hardware-

constrained environments. Conversely, simpler models such as Gaussian Naïve 

Bayes may be more appropriate for quick deployment or on systems with limited 

computational power due to their lower demands. 

5.4.2.4. Model Complexity and Interpretability (Set I) 

The final set of questions seeks to explore the models’ transparency, complexity, 

interpretability, and adaptability: 

• I1: Does the model have a “black box” framework? 

• I2: Is the model’s tuning complex? 

• I3: Is the model easy to interpret? 

• I4: Can the model handle multinomial data? 

In the corresponding table, (Table 21) cells are colored red if the answer is no, 

yellow if the outcome is dependent on data volume or hyperparameter 

configuration, and green if the answer is yes.  

Table 21: Summary of Model Implementation, Interpretability, Transparency and 

Adaptability 
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Interpretability is a critical aspect, especially in sectors where transparency is 

essential, such as healthcare, finance, and civil engineering. The analysis shows 

that models like K-Nearest Neighbors (KNN) and Decision Trees (DT) are more 

interpretable (indicated by green cells), allowing for clearer insight into the 

decision-making process. Conversely, models falling under the “black box” 

category, such as Deep Neural Networks (DNN), provide less transparency in how 

decisions are formulated, which can pose regulatory or operational challenges. 

In summary, these tables offer crucial insights for selecting the most suitable 

models for specific tasks, by weighing both their technical capabilities and practical 

implications. This careful selection process ensures that the chosen machine 

learning models not only achieve optimal performance but also comply with 

deployment feasibilities and industry regulations. 

5.4.3. IBC Classification 

The classification of pavement surfaces based on their texture indices was executed 

using all fourteen ML algorithms outlined in Section 3.1.1. However, some 

algorithms were restricted and unable to perform multi-class classification due 

either to inherent limitations (the CLL model) or the absence of readily available 

code libraries that would make the model adaptable to those circumstances (the 

PRO model). 

The performance of these ML algorithms, including those for image classification, 

was evaluated based on the weighted average model F1 Score—a metric that 

calculates the harmonic mean of precision (the proportion of properly classified 

pavements over all classifications performed) and recall (the ratio of properly 

classified pavements over the total number pavements predicted for that class). The 

F1 score ranges from 0 to 1, where values close to 1 signify near-perfect 

classification and scores near 0 indicate pervasive misclassification. The weighted 

average F1 score was chosen over the standard F1 score to account for varying 

sample sizes across different pavement types, but for simplicity, it is referred 

hereafter as merely “F1 score.” 

In machine learning, data is typically divided into three distinct datasets before 

model development: training, validation, and testing. The training dataset is used 

to teach the model to recognize patterns and learn from them. The validation dataset 

is used to finetune the model’s parameters and select the best version by providing 

feedback on its performance during training. The testing dataset evaluates the final 

model’s performance in an unbiased manner after training and validation. This 

structured division ensures that the model can generalize effectively to new, unseen 
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data, rather than merely memorizing patterns within the training data. Note that all 

F1 scores reported in this report are derived from the testing dataset. 

This section is segmented into four subsections, each focusing on a specific level 

of prediction accuracy achieved by the algorithm. Notably, the fifth level of 

specificity is omitted from this section of the report due to insufficient performance 

observed when using texture indices.  

5.4.3.1. Level of Specificity #1: Flexible Versus Rigid 

The dataset used to classify between rigid and flexible pavements comprised the 

ground truth dataset (DS1) and the holdout dataset (DS2). DS1, with a total of 2,346 

0.1-mile-long pavement sections, employed an unconventional 30%-70% training-

validation split. This specific division was chosen because pavement sections from 

the same site might be included in both training and validation datasets, and such 

double inclusions could negatively affect model performance in the testing dataset. 

By limiting the training data to 30%, the algorithms were compelled to generalize 

patterns effectively, preventing overfitting to overly site-specific patterns. 

In contrast, DS2, consisting of 2,019 samples, was exclusively used to evaluate the 

performance of the trained models (the testing dataset). The distinction between 

rigid and flexible pavements, designated as Level of Specificity #1, was the only 

category where training, validation and testing data was distributed between DS1 

and DS2. This arrangement was possible because accurate classification of 

pavement type was based on visual inspections conducted by the Performing 

Agency during data collection. For higher levels of specificity, only data from DS1 

was used as the details for those levels could not be ascertained with complete 

certainty from DS2. 

The hyperparameters for all ML classification models, where applicable, were 

optimized to maximize the testing F1 score while ensuring that the training and 

validation F1 scores did not significantly differ from the testing F1 score. This 

approach helps prevent overfitting of the models by keeping the differences 

between these scores negligible for practical purposes. Once trained for level #1 

specificity, the models were tested against the data in DS2, and their testing F1 

scores were recorded, as illustrated in Figure 107. 
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Figure 107: Summary of F1 scores across all 14 ML models for classification pavements 

using Level #1 specificity. 

The bar chart suggests that ensemble methods, particularly gradient boosting (XGB 

and GB), were highly effective in classifying whether a pavement is rigid or 

flexible, achieving a maximum testing F1 score of 0.931. Conversely, at the lower 

end of the spectrum, probabilistic models such as LOG, PRO, CLL, and GNB were 

observed. Among them, LOG performed the poorest with an F1 score of 0.73. 

Nevertheless, it’s worth noting that even the least performing algorithm attained a 

predictive power close to 0.800, a commonly accepted threshold for practical 

implementation of algorithms. This underscores the ease of achieving a high F1 

score within the first level of specificity using only texture indices, as anticipated. 
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Table 22 and Table 23 present the confusion matrix and classification report for the 

best model, XGB, at classifying the first level of specificity. 
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Table 22: Confusion matrix for the XGB model in Level #1 specificity 

  Predicted Class 

  Rigid Flexible 

True Class 
Rigid 840 39 

Flexible 44 288 

Table 23: Classification report for the XGB model in Level #1 specificity 

Class 
Testing Sample 

Size 
Testing F1 Score 

Weighted 

Average F1 Score 

Flexible 884 0.959 

0.931 

Rigid 327 0.874 

5.4.3.2. Level of Specificity #2: General Mix/Surface Type 

The second level of specificity involves differentiating flexible pavements into 

surface treatments and hot and warm mix asphalts and categorizing rigid pavements 

into plastic and hardened surface texturing. The dataset for training, validating, and 

testing these models exclusively comprises DS1, with a data split of 30%-20%-

50%, respectively. A crucial aspect of these and all subsequent models is the 

inclusion of pavement type (flexible or rigid) as one of the input variables. This 

adjustment prevents the misidentification of smoother flexible pavement surfaces 

as their rigid counterparts, such as mistaking a thin overlay mix for a polished 

dragged concrete surface. 

Ground truth data regarding pavement type was utilized as an input variable. 

However, predictions from the best-performing model at Level #1 will be tested to 

assess the effectiveness of this approach. 

Due to their limitations in predicting categorical outcomes and the absence of 

readily available libraries for implementation, two models, namely CLL and PRO, 

were excluded from the analysis. All remaining models were finely tuned to 

maximize the testing F1 score while ensuring that both training and validation 

scores remained high to prevent overfitting. The testing F1 scores for these models 

are presented in Figure 108. 
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Figure 108: Summary of F1 scores across twelve ML models for classification pavements 

using Level #2 specificity. 

The bar chart reveals that the shallow neural network (SNN) achieved the highest 

performance, with an F1 score of 0.980, closely matched by the next five highest 

scores. Interestingly, gradient boosting models populated the lower end of the chart, 

with the XGB model recording a notably low F1 score of 0.185. This poor 

performance is attributable to the inherent limitations of the gradient boosting 

framework, where an error by a weak learner, given the structure of the provided 

data, proves difficult for subsequent weak learners to correct. 

It’s important to note that these high results were achieved with the inclusion of 

pavement type information as an input variable. Without this data, the maximum 

F1 score for the model dropped to around 0.750, highlighting the challenges in 

accurately identifying specific pavement surfaces using only texture indices 

without prior knowledge of the pavement type. Table 24 and Table 25 provide a 

detailed look at the confusion matrix and the classification report for the best 

performing SNN model at this second level of specificity, respectively.  

Table 24: Confusion matrix for the SNN model in Level #2 specificity 

  Predicted Class 

  HWMA ST PCT HCT 

True Class 

HWMA 557 10 0 1 

ST 9 321 0 0 

PCT 0 0 205 2 

HCT 0 0 3 61 
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Where HWMA stands for hot and warm mix asphalt, ST stands for surface 

treatment, PCT stands for plastic concrete texturing, and HCT stands for hardened 

concrete texturing. 

Table 25: Classification report for the SNN model in Level #2 specificity 

Class 
Testing 

Sample Size 
Testing F1 Score 

Weighted 

Average F1 Score 

Hot and Warm Mix 

Asphalt 
567 0.961 

0.980 

Surface Treatment 321 0.984 

Plastic Concrete 

Texturing 
208 0.987 

Hardened Concrete 

Texturing 
64 0.973 

5.4.3.3. Level of Specificity #3: Specific Mix/Surface Type 

At the third level of specificity, the general surface types are further subdivided into 

specific mixes or types of PCC surface finishing techniques, as detailed in Figure 

109. The dataset utilized for training, validation, and testing the model once again 

comprised DS1, with the same data split as observed in the second level of 

specificity (30%-20%-50%). Notably, the pavement type was incorporated as one 

of the inputs to predict the third level of specificity, enhancing the accuracy of 

surface prediction, as depicted in Figure 109. 

Figure 109: Summary of F1 scores across twelve ML models for classification pavements 

using Level #3 specificity. 
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Figure 109 shows that the support vector machine (SVM) model exhibited the 

strongest performance with an F1 score of 0.962, closely followed by the next four 

highest scores. Despite a slight decrease in F1 score due to the complexity of 

classifying more pavement surfaces, the results remained highly satisfactory. 

However, the gradient boosting models continued to struggle, underfitting the data 

due to inherent limitations in their framework that compound prediction errors from 

earlier weak learners during the development process. Gradient boosting models 

aside, the least effective model was the logistic regression (LOG), achieving a still 

respectable F1 score of 0.870, which is still considered adequate for scientific 

applications. 

Notably, in Figure 109, the decision tree model (DT) did not register an F1 score. 

This absence resulted from the model’s inability to accurately predict any instance 

of the high friction surface treatment (HFST) pavement surface, a limitation due to 

its simplistic framework and insufficient support for that particular surface type in 

the dataset. This outcome was anticipated, given the decision tree model’s 

inadequacy for handling complex classification tasks like those required here. 

Table 26 and Table 27 provide a detailed confusion matrix and classification report 

for the best-performing SVM model at the third level of specificity, respectively. 

Table 26: Confusion matrix for the SVM model in Level #3 specificity 

  Predicted Class 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 

True 

Class 

S1* 325 14 5 1 0 0 0 0 0 

S2 2 217 0 0 0 0 0 0 0 

S3 7 1 317 0 0 0 0 0 0 

S4 0 0 0 6 0 0 0 0 0 

S5 0 0 0 0 28 3 1 0 0 

S6 0 0 0 0 2 151 0 2 1 

S7 0 0 0 0 0 0 16 0 0 

S8 0 0 0 0 0 5 0 39 0 

S9 0 0 0 0 0 0 0 0 21 

*S1 stands for dense- and gap-graded mixes, S2 stands for open-graded mixes, S3 

stands for seal coat, S4 stands for high friction surface treatment, S5 dragged 

texturing, S6 stands for tined texturing, S7 stands for exposed aggregate texturing, 
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S8 stands for next generation diamond grinding, and S9 stands for conventional 

diamond grinding. 

Table 27: Classification report for the SVM model in Level #3 specificity 

Class 
Validation 

Sample Size 

Validation F1 

Score 

Weighted 

Average F1 Score 

Dense- and Gap- 

Graded Mixes 
334 0.957 

0.962 

Open-Graded Mixes 232 0.962 

Seal Coat 322 0.980 

High Friction Surface 

Treatment 
7 0.923 

Dragged Texturing 30 0.903 

Tinned Texturing 159 0.959 

Exposed Aggregate 

Texturing 
17 0.970 

Next Generation 

Diamond Grinding 
41 0.918 

Conventional 

Diamond Grinding 
22 0.977 

5.4.3.4. Level of Specificity #4: Specific Mix/Surface Type II 

The fourth level of specificity categorizes pavement surfaces into highly detailed 

classifications based on the information provided by the Receiving Agency. At this 

level, dense and gap-graded mixes, as well as seal coats, are differentiated by their 

gradation, while open mixes are subdivided into Porous Friction Courses (PFCs) 

and bonded wearing courses. Similarly, tined concrete pavements are classified into 

fixed and random tining. However, certain surfaces such as exposed aggregates, 

HFSTs, all diamond grinding types, and dragged concrete surfaces do not lend 

themselves to further specification and are thus excluded from the dataset used for 

training these models. Additionally, some sites lacked sufficiently detailed surface 

information to achieve this level of specificity; for example, many surface 

treatments were simply labelled as seal coats without detailed gradation 

information, leading to their exclusion from the dataset. Consequently, the final 

subset of data from DS1 used for model training comprised 1,604 observations, a 

reduction from the original 2,346. 
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The data split for training, validation, and testing was adjusted to 30%-40%-30%. 

This change was necessary as tuning these models with only 20% for validation 

previously proved to be inadequate. Pavement type continued to be used as an input 

variable to enhance the accuracy of surface predictions at this advanced level of 

specificity, as shown in Figure 110. 

Figure 110: Summary of F1 scores across twelve ML models for classification pavements 

using Level #4 specificity. 

Figure 110 shows that the K-nearest neighbor (KNN) model outperformed others 

with an F1 score of 0.887, closely followed by the Random Forest (RF) model. 

Although there was a significant reduction in the F1 score due to an increase in the 

number of pavement surfaces to classify, it remained above the previously 

mentioned threshold of 0.80. 

However, the Decision Tree (DT) model continued to struggle, failing to classify 

at least three of the pavement surfaces, and the gradient boosting models 

persistently underperformed despite multiple optimization efforts. The next lowest 

F1 scores, around 0.70, were recorded by the probabilistic models, Gaussian Naive 

Bayes (GNB) and Logistic Regression (LOG). Despite these scores seeming 

relatively high, they were not practically useful. Preliminary tests on the holdout 

dataset DS2 showed that GNB and LOG failed to consistently assign a surface type 

to sites with homogeneous surfaces, instead inaccurately suggesting multiple 

surface types for subsequent sites despite photographic evidence and change point 

analysis indicating no such variation. 

Due to the large number of surface types involved in the fourth level of specificity, 

the confusion matrix for the best model is not displayed; only the classification 

report for the top-performing KNN model is provided in Table 28. Notably, even 

the best model achieved low F1 scores for certain pavement types such as random 
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tining, bonded wearing course, and fog seals, which were too low to be considered 

effective. These low scores suggest either a lack of sufficient data to accurately 

classify these surfaces, as was the case with random tining where only one site was 

available, or a minimal textural variance that made distinguishing these surfaces 

challenging, as seen with bonded wearing courses compared to PFCs and fog seals 

compared to different gradation seal coats. 

Table 28: Classification report for the KNN model in Level #4 specificity 

Class 
Validation 

Sample Size 

Validation F1 

Score 

Weighted 

Average F1 Score 

Type C 43 0.882 

0.887 

Type D 25 0.808 

Thin Overlay Mix 29 0.909 

Porous Friction 

Course 
101 0.915 

Bonded Wearing 

Course 
36 0.677 

Seal Coat Grade 4 40 0.914 

Seal Coat Grade 3S 19 0.905 

Seal Coat Grade 3 27 0.880 

Fog Seal 25 0.792 

Microsurfacing 8 0.933 

Fixed Tining 24 0.958 

Random Tining 6 0.667 

Note that the IBC models do not provide a Level #5 specificity, which differentiates 

transverse from longitudinal tining. This omission is due to the manner in which 

the texture data was collected. Since the laser sensor was positioned at a 45-degree 

angle to the direction of traffic, both longitudinal and transverse tining exhibit 

identical appearances at the profile level. Distinguishing between these two 

surfaces would necessitate a more intricate 3D analysis of the texture data. 
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Consequently, the Performing Agency chose to classify this level of specificity 

using picture classification models instead. 

5.4.4. PBC Classification 

The Performing Agency enhanced the ResNet50 architecture for pavement surface 

classification by adding an extra hidden layer with 512 neurons and making the 

entire network trainable. This modification allowed the model to better discern 

unique pavement characteristics such as aggregate shapes, texture patterns, and 

material colors through the dynamic updating of weights and biases in all layers 

during training. 

For optimization, the model utilized the Adam optimization algorithm, known for 

its effectiveness with large datasets and complex architectures, offering advantages 

over traditional methods like stochastic gradient descent. Each neuron within the 

hidden layers employed a rectified linear unit (ReLU) activation function to 

introduce non-linearity, enabling the capture of complex data patterns and 

improving learning capabilities. 

The model’s output layer featured a Softmax activation function, ideal for multi-

class classification by normalizing the output values between 0 and 1, representing 

the likelihood of each class, with all probabilities summing to one. To enhance 

model reliability and prevent overtraining, checkpoints were used to save the most 

effective model iterations, and training could be halted early if no significant 

improvements were observed. Additionally, a dropout layer was incorporated to 

randomly deactivate a portion of the neurons during training, reducing overfitting 

by introducing noise into the system and promoting better generalization. 

The finalized CNN model was trained and validated using a dataset of 48,328 

manually inspected images representing all surveyed surface types, with a data split 

of 70%-30% for training and validation, respectively. After achieving satisfactory 

F1 scores, the model was tested on a new set of images. Detailed results for each 

level of specificity are provided in the subsequent sections. 

5.4.4.1. Level of Specificity #1: Flexible Versus Rigid 

The testing dataset utilized for the CNN model comprised a total of 1,300 rigid and 

1,599 flexible pavements, all sourced from testing sites distinct from those used in 

the model’s training and validation phases. A summary of the confusion matrix and 

classification report can be found in Table 29 and Table 30, respectively. The 

results unequivocally indicate that images are the most effective means of 

distinguishing between flexible and rigid pavement, boasting a remarkable 

predictive power with an F1 score of 0.995. The few misclassifications observed 
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predominantly involved heavily polished rigid pavements erroneously classified as 

flexible pavement. Given sufficient time for proper training and validation of a 

CNN model, this approach likely supersedes the use of indices when predicting 

pavement surface at the first level of specificity. 

Table 29: Confusion matrix for the CNN in Level #1 specificity 

  Predicted Class 

  Flexible Rigid 

True Class 
Flexible 1,599 0 

Rigid 12 1,288 

Table 30: Classification report for the CNN model in Level #1 specificity 

Class 
Testing Sample 

Size 
Testing F1 Score 

Weighted 

Average F1 Score 

Flexible 1,599 1.000 

0.995 

Rigid 1,300 0.989 

5.4.4.2. Level of Specificity #2: General Mix/Surface Type 

The same dataset utilized for level one predictions was employed to forecast 

pavement surface at the second level of specificity. Summaries of the confusion 

matrix and classification report can be found in Table 31 and Table 32 respectively. 

Similar to the IBC models, the CNN incorporated the ground truth pavement type 

as an additional feature to enhance prediction accuracy at the second level of 

specificity. However, despite parameter optimization efforts, the CNN’s 

performance fell short, yielding an F1 score of 0.904. In comparison, the best-

performing IBC model (the SNN, also a neural network) achieved a higher F1 score 

of 0.980. Notably, CNN encountered the greatest challenges when classifying 

surface treatments compared to other surface types. 
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Table 31: Confusion matrix for the CNN model in Level #2 specificity 

  Predicted Class 

  HWMA ST PCT HCT 

True Class 

HWMA 1,286 139 0 0 

ST 114 681 0 0 

PCT 0 0 507 12 

HCT 0 0 12 148 

Where HWMA stands for hot and warm mix asphalt, ST stands for surface 

treatment, PCT stands for plastic concrete texturing, and HCT stands for hardened 

concrete texturing. 

Table 32: Classification report for the CNN model in Level #2 specificity 

Class 
Testing 

Sample Size 
Testing F1 Score 

Weighted 

Average F1 Score 

Hot and Warm Mix 

Asphalt 
1,400 0.911 

0.904 

Surface Treatment 820 0.844 

Plastic Concrete 

Texturing 
519 0.976 

Hardened Concrete 

Texturing 
161 0.922 

5.4.4.3. Level of Specificity #3: Specific Mix/Surface Type 

Utilizing the same database employed for levels one and two, predictions for 

pavement surface at the third level of specificity were made. A summary of the 

confusion matrix and classification report is provided in Table 33 and Table 34, 

respectively. Once again, the ground truth pavement type was included as an 

additional feature in the CNN model. However, as observed previously, the CNN’s 

performance diminished with increased specificity. The model achieved an F1 

score of 0.876, notably lower than the 0.962 achieved by the SVM model when 

utilizing texture indices. This decline in performance was primarily attributed to 

two surfaces: conventional diamond grinding and high friction surface treatment, 

while most other surfaces maintained sufficiently high F1 scores. 
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Table 33: Confusion matrix for the CNN model in Level #3 specificity 

  Predicted Class 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 

True 

Class 

S1 810 34 12 3 0 0 0 0 0 

S2 5 541 0 0 0 0 0 0 0 

S3 17 2 790 0 0 0 0 0 0 

S4 0 0 0 15 0 0 0 0 0 

S5 0 0 0 0 70 8 2 0 0 

S6 0 0 0 0 5 376 0 5 2 

S7 0 0 0 0 0 0 40 0 0 

S8 0 0 0 0 0 12 0 97 0 

S9 0 0 0 0 0 0 0 0 53 

Where S1 stands for dense- and gap-graded mixes, S2 stands for open-graded 

mixes, S3 stands for seal coat, S4 stands for high friction surface treatment, S5 

dragged texturing, S6 stands for tined texturing, S7 stands for exposed aggregate 

texturing, S8 stands for next generation diamond grinding, and S9 stands for 

conventional diamond grinding. 
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Table 34: Classification report for the CNN model in Level #3 specificity 

Class 
Validation 

Sample Size 

Validation F1 

Score 

Weighted 

Average F1 Score 

Dense- and Gap- 

Graded Mixes 
832 0.859 

0.876 

Open-Graded Mixes 578 0.869 

Seal Coat 801 0.881 

High Friction Surface 

Treatment 
18 0.444 

Dragged Texturing 75 0.787 

Tinned Texturing 396 0.944 

Exposed Aggregate 

Texturing 
42 0.850 

Next Generation 

Diamond Grinding 
102 0.942 

Conventional 

Diamond Grinding 
55 0.650 

5.4.4.4. Level of Specificity #4: General Mix/Surface Type II 

A slightly smaller dataset was employed to evaluate the CNN model’s performance 

in predicting pavement surface at the fourth level of specificity. This reduction was 

necessitated by the same constraint observed with the IBC models: certain 

pavement sites lacked the requisite detail to reach this level of pavement surface 

granularity. The classification report for the fourth level of specificity using images 

is succinctly outlined in Table 35.  

Similar to previous levels of specificity, the ground truth pavement type was 

incorporated into the CNN as an additional feature. However, this time, there was 

a notable decline in the F1 score, plummeting to as low as 0.717. With this decline, 

the model’s efficacy diminishes significantly, falling below the 0.800 threshold 

deemed acceptable for practical application. Consequently, the Performing Agency 

strongly advises against utilizing this particular CNN model for predicting 

pavement surface at the fourth level of specificity. 
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Table 35: Classification report for the KNN model in Level #4 specificity 

Class 
Validation 

Sample Size 

Validation F1 

Score 

Weighted 

Average F1 Score 

Type C 275 0.483 

0.717 

Type D 160 0.556 

Thin Overlay Mix 186 0.676 

Porous Friction 

Course 
646 0.828 

Bonded Wearing 

Course 
230 0.298 

Seal Coat Grade 4 256 0.769 

Seal Coat Grade 3S 122 0.533 

Seal Coat Grade 3 173 0.653 

Fog Seal 160 0.679 

Microsurfacing 51 0.933 

Fixed Tining 154 0.920 

Random Tining 38 0.727 

5.4.4.5. Level of Specificity #5: Specific Mix/Surface Type III 

For the fifth and final level of specificity, which distinguishes between transverse 

and longitudinal tining, a distinct dataset was utilized for testing purposes. This new 

data set was expanded to include numerous instances of both longitudinal and 

transverse tining, in contrast to the less than 200 instances present in the previous 

testing dataset. Notably, in this iteration, the pavement type was not included as an 

additional input to the model.  

The confusion matrix and classification report for the fifth level of specificity are 

summarized in Table 36 and Table 37, respectively. The results are indicative of the 

CNN model’s exceptional performance in classifying transverse and longitudinal 

tining pictures of pavements, achieving near-perfection with only one 

misclassification. This outcome aligns with expectations, given that the tining 



185 

patterns in the pictures are orthogonal to each other, resulting in a testing F1 score 

of 0.999. 

Table 36: Confusion matrix for the CNN in Level #5 specificity 

  Predicted Class 

  Transverse Longitudinal 

True Class 
Transverse 600 1 

Longitudinal 0 599 

Table 37: Classification report for the CNN model in Level #5 specificity 

Class 
Testing Sample 

Size 
Testing F1 Score 

Weighted 

Average F1 Score 

Transverse 600 1.000 

0.999 

Longitudinal 600 0.999 

Based on these results, the Performing Agency recommends a tiered approach to 

predicting pavement surface type. For initial pavement type classification at the 

first level of specificity, a picture-based CNN model is advised due to its superior 

performance. For subsequent levels of specificity—second through fourth—it is 

recommended to employ an index-based model, which has demonstrated the best 

fit, followed by another CNN model to classify the fifth and final level of 

specificity. 

The agency has thoroughly evaluated each model’s statistical assumptions, 

sensitivities, computational demands, implementation feasibility, transparency, and 

predictive accuracy. This comprehensive analysis allows the Receiving Agency to 

select the most suitable model based on their specific accuracy requirements and 

operational needs. 

Currently, these recommendations are provisional. The Performing Agency will 

proceed to validate these findings against the holdout dataset and additional testing 

scenarios, including varied pavement conditions across different traffic directions 

and repeated runs over the same pavement. 
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Chapter 6. Critical System Evaluation and 

Validation 

6.1. Validation data 

The Performing Agency has collected a set of data to validate the performance of 

the models developed in Chapter 5. This data is a combination of new data, some 

even unknown, that was never used at any point in the previous study), new and 

repeated measurements of the same sites of the original study, and even pavement 

sections used in other TxDOT projects. All these pavement sections were broken 

down into seven test sets which are described as follows: 

• Test Set #1 (TS1): Comprised of pavements sections that were not included 

as part of the database delivered during Task #5. Therefore, they were not 

used to train and validate the algorithms developed during Task #6. These 

sites are approximately 1 to 3 miles long and homogeneous, and their 

surface type is unknown. 

• Test Set #2 (TS2): Comprised of pavements sections that were originally 

collected for TxDOT Project No. 0-7031 “Towards Efficient Prediction of 

Highway Friction on an Annual Basis on Texas Network.” The researchers 

in that study used expert knowledge to define their pavement surface 

information. Their classification will be compared against the predictions 

produced by this algorithm. 

• Test Set #3 (TS3): This set is comprised of four sites that were used for the 

development of these algorithms. These sites were surveyed on the same 

day, along the same direction of traffic and along the same lane. Essentially, 

they are perfect repeats of the data collected for the study. The goal of this 

test set is to assess consistency of the final prediction. 

• Test Set #4 (TS4): This set is comprised of three sites that were used for 

the development of these algorithms. These sites were surveyed on the same 

day, along the outer lane, but in different directions of traffic (i.e., in 

opposite directions). The goal of this test set is to assess consistency of 

prediction across opposite lanes of the same sections and the impact of 

generalizing the pavement surface classification using data from only one 

direction. 

• Test Set #5 (TS5): This set is comprised of three sites that were used for 

the development of these algorithms. These sites were surveyed on the same 

day, along the same direction of traffic, but in different lanes (either inner 
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or outer). The goal of this test set is to assess consistency of prediction 

across different lanes in a road. 

• Test Set #6 (TS6): This set is comprised of one site that was used for the 

development of these algorithms. These sites were surveyed along the same 

direction of traffic, on the same lane, but on different days. While the data 

for this test set is limited, the goal was to assess if the prediction would 

change if the data was collected within a span of a week. 

The summary of these test sites is presented in Table 38. 

Table 38: Summary of Test Sets and Characteristics 

Test 

Set 
Description Characteristics Purpose 

TS1 

New pavement sections 

with unknown 

pavement surface 

information. 

Completely homogeneous 

pavements, ranging from 1 

to 3 miles not used during 

model training or validation. 

Evaluate model performance 

on new, previously unused 

pavement data. 

TS2 

Pavement section from 

other studies where 

surface information is 

partially known. 

Pavement sections from 

TxDOT project 0-7031, 

defined by expert opinions. 

Compare expert opinions 

with algorithm predictions. 

TS3 

Pavement sections with 

repeated measurements 

along the same lane and 

same day. 

Four sites surveyed on the 

same day, in the same lane, 

in the same direction of 

traffic. 

Assess consistency of 

predictions and texture data 

with repeated measurements. 

TS4 

Pavement sections with 

repeated measurements 

in opposite directions of 

traffic. 

Three sites surveyed in 

different directions of traffic 

on the same day. 

Evaluate consistency of 

predictions across different 

traffic directions. 

TS5 

Pavement sections with 

repeated measurements 

in different lanes. 

Three sites surveyed in 

different lanes (inner vs 

outer) on the same day. 

Assess consistency of 

predictions across different 

lanes on a road. 

TS6 

Pavement sections with 

repeated measurements 

on different days. 

One site surveyed in the 

same lane and direction of 

traffic on different days 

within a week. 

Determine if predictions 

change with data collected 

on different days. 

6.1.1. Test Set #1 (TS1): Unknown Surfaces 

The Performing Agency collected data on five completely homogenous sites, 

whose information was unknown and not utilized in the development of models for 

this study. 
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The first site (Figure 111) is located in the Austin District, within Travis County, 

in the City of Austin along SH 0071 between Texas Reference Markers (TRM) 580 

and 582.   

Figure 111: Reference map of TS1 section #1 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

The second site (Figure 112) is located in the Austin District, within Travis County, 

in the City of Austin along US 0290 between TRMs 572 and 574.  

Figure 112:. Reference map of TS1 section #2 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

The third site (Figure 113) is located in the Brownwood District, within Brown 

County, southeast of the City of Early along US 0084 between TRMs 566 and 570.  

Figure 113: Reference map of TS1 section #3 in Brown County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

The fourth site (Figure 114) is located in the Austin District, within Travis County, 

in the City of Austin along SH 0071 between TRMs 576 and 580. 
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Figure 114: Reference map of TS1 section #4 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

The fifth site (Figure 115) is located in the Waco District, within Hill County, north 

of the City of Abbott along IH 0035 between TRMs 362 and 364. 

Figure 115: Reference map of TS1 section #5 in Hill County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

6.1.2. Test Set #2 (TS2): Previous Classified Pavements by 

Experts - TxDOT Project No. 0-7031 

The sixth site (Figure 116) is located in the Austin District, within Williamson 

County, between the cities of Thrall and Rockdale along FM 1063 between TRMs 

416 and 418. 

Figure 116: Reference map of TS2 section #1 in Williamson County. (Left) Section on 

Google Maps, and (right) section on TRM map. 
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The seventh site Figure 117 is located in the Austin District, within Williamson 

County, between the cities of Coupland and Taylor along SH 0095 between TRMs 

428 and 430.  

Figure 117: Reference map of TS2 section #2 in Williamson County. (Left) Section on 

Google Maps, and (right) section on TRM map. 

The eighth site (Figure 118) is located in the Austin District, within Bastrop 

County, northwest of the unincorporated community of Paige along US 0290 

between TRMs 626 and 622.  

Figure 118: Reference map of TS2 section #3 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

6.1.3. Test Set #3 (TS3): Repeated Measurements 

The ninth site (Figure 119) is located in the Austin District, within Travis County, 

in the City of Austin along SH 0001 between Texas Reference Markers (TRM) 440 

and 438. 
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Figure 119: Reference map of TS3 section #1 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

The tenth site (Figure 120) is located in the Laredo District within the La Salle 

County east of the city of Cotulla along SH 0097 between TRMs 488 and 450. 

Figure 120: Reference map of TS3 section #2 in La Salle County. (Left) Section on 

Google Maps, and (right) section on TRM map. 

The 11th site (Figure 121) is located in the Laredo district within Maverick County 

north of the city of Eagle Pass along FM 1589 between TRMs 548 and 546. 

Figure 121: Reference map of TS3 section #3 in Maverick County. (Left) Section on 

Google Maps, and (right) section on TRM map. 
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The 12th site (Figure 122), and final repeated measurement site, is located in the 

Austin district within Travis County west of the city of Cedar Park along FM 1431 

between TRMs 550 and 552. 

Figure 122: Reference map of TS3 section #4 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

6.1.4. Test Set #4 (TS4): Opposite Direction of Traffic 

The 13th site (Figure 123) is located in the Austin District, within Travis County, 

in the City of Austin along IH 0035 between Texas Reference Markers (TRM) 234 

and 235.  

Figure 123: Reference map of TS4 section #1 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

The 14th site (Figure 124) is also located in the Austin District within Travis County 

between the unincorporated communities of Fentress and Prairie Lea along SH 

0080 between TRMs 478 and 480. 
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Figure 124: Reference map of TS4 section #2 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map.  

The 15th site (Figure 125) is located in the Laredo District, within the Webb County 

north of the Laredo Colombia Solidarity International Bridge along FM 1472 

between TRMs 422 and 424.  

Figure 125: Reference map of TS4 section #3 in Webb County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

6.1.5. Test Set #5 (TS5): Different Lane 

The 16th site (Figure 126) is located in the Laredo District, within the La Salle 

County, in the City of Cotulla along BI 0035C between TRMs 642 and 644.  
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Figure 126: Reference map of TS5 section #1in La Salle County. (Left) Section on 

Google Maps, and (right) section on TRM map. 

The 17th site (Figure 127) is located in the Austin District, within the Travis 

County, southwest of the village of Briarcliff along SH 0071 between TRMs 550 

and 552.  

Figure 127: Reference map of TS5 section #2 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

The 18th site (Figure 128) is located in the Austin District, within the Hays County, 

northwest of the village of Bear Creek along US 0290 between TRMs 560 and 562.  

Figure 128: Reference map of TS5 section #3 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 
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6.1.6. Test Set #6 (TS6): Different Testing Day 

The 19th site (Figure 129) is located in the Austin District, within Travis County, 

west of the city of Creedmoor along FM 1327 between TRMs 532 and 534. 

Figure 129: Reference map of TS6 section #1 in Travis County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

The 20th and last site (Figure 130) is located in the Austin District, within Hays 

County, south of the city of Wimberley along FM 0032 between TRMs 520 and 

522.  

Figure 130: Reference map of TS6 section #2 in Hays County. (Left) Section on Google 

Maps, and (right) section on TRM map. 

6.2. Results 

This section presents the results obtained after applying the algorithms developed 

during Task #6 to all six testing sets (20 test sites) aforementioned. As per the 

recommendation given in Chapter 5, a picture classification model was used to 

predict Level 1 specificity of pavement surface type (Flexible vs Rigid), and an 

index-based model was used for all subsequent levels of specificity. The output of 

these algorithms is provided in a hierarchical manner, i.e., the first level of 

specificity first, followed by the second level, followed by third, and so on until the 

fifth level is reached. All predictions are separated by a hyphen such that the final 

prediction complies with the following notation: 

𝐋𝐕𝐋 𝟏 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 − 𝐋𝐕𝐋 𝟐 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 − ⋯ − 𝐋𝐕𝐋 𝟓 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 



196 

Recall that all levels of prediction, after the first level, used the predicted pavement 

type information (LVL 1 Prediction) to make subsequent predictions, thus is it 

highly unlikely that a pavement firstly classified as “Rigid” will be proceeded by a 

LVL 2 Prediction of “Hot Mix Asphalt.” However, that is the only nested 

dependency built in these models. It is possible for the algorithm to predict a “Hot 

Mix Asphalt” in LVL 2, and then predict a “Seal Coat” in LVL 3. 

The Performing Agency has developed an abbreviated nomenclature for the 

predictions made at each level of specificity to simplify the prediction notation, 

summarized in Table 39. 
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Table 39 Abbreviated Nomenclature for Surface Prediction 

Level 1 

F – Flexible R - Rigid 

Level 2 

HMA – Hot mix asphalt PT – Plastic (Fresh) Concrete Texturing 

ST – Surface treatment HT – Hardened Concrete Texturing 

Level 3 

DGM – Dense and Gap Graded Mixes DT – Dragged Texturing 

OGM – Open Graded Mixes TT – Tined Texturing 

HFST – High Friction Surface Treatment EAT – Exposed Aggregate Texturing 

SC – Seal Coat 
NGDG – New Generation Diamond 

Grinding 

 CDG – Conventional Diamond Grinding 

Level 4 

TC – Gradation Type C TRT – Transverse Tining 

TD – Gradation Type D LT – Longitudinal Tining 

TOM – Thin Overlay Mixt  ∅ - Prediction is not applicable* 

PFC – Porous Friction Coarse  

BWC – Bonded Wearing Coarse  

G4 – Grade 4 Aggregates  

G4S – Grade 4S Aggregates  

G3 – Grade 3 Aggregates  

Level 5 

∅ - Prediction is not applicable* RT - Random 

 FT – Fixed Transform 

 ∅ - Prediction is not applicable* 

* Certain surfaces cannot be specified beyond Level 3. Thus, their Level 4 and 5 predictions 

were assigned the null set symbol. 



198 

6.2.1. Test Set #1 (TS1): Unknown Surfaces 

A summary of the prediction provided for all five sections in TS1 is presented in 

Table 40. 

Table 40. Prediction made for pavement surfaces in TS1 

TS1 Section  Classification Prediction 

1 F-HMA-DGM-TD-∅ 

2 R-PT-TT-DS-∅ 

3 F-ST-SC-G3-∅ 

4 R-PT-TT-TRT-RTT 

5 R-PT-TT-TRT-FTT 

The pavement in TS1 Section #1 appears to be a HMA based on a visual inspection 

(Figure 131). Specifically, a dense mix that has been cold milled in preparation for 

the application of a surface treatment. The age of the pavement is unknown. The 

prediction algorithm accurately predicted that this was a flexible pavement, and it 

is very likely that is, indeed, a hot mix asphalt. Furthermore, the algorithm 

proceeded to predict that the pavement is a dense or gap-graded mix with a 

gradation of Type D.  

Figure 131: Pavement surface at TS1 Section #1. 

The next pavement is TS1 Section #2 which appears to be a rigid pavement (Figure 

132), of unknown age, with transverse tining (direction of traffic is orthogonal to 

the tining).  The algorithm correctly predicted that the pavement was rigid, with a 

plastic texturing, but failed at specifying the type of tinning, instead the algorithms 

claims that the pavement looks more like a carpet drag pavement than a transverse 

tinned surface. This may be due to the fact that the pavement surface is already 

deteriorated, but it is still a misclassification at the Level 4 of specificity. 
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Figure 132: Pavement surface at TS1 Section #2. 

The next pavement is TS1 Section #3 which appears to a surface treatment with 

signs of bleeding and unknown age (Figure 133). Note that in the hierarchy of 

specificity, a “bleeded asphalt pavement” is not one of the options. Thus, the 

algorithm correctly predicted that this pavement is a flexible pavement, and then it 

proceeded to infer that it was a surface treatment, specifically a grade 3 seal coat. 

Figure 133: Pavement surface at TS1 Section #3. 

The next site in this test set is TS1 Section #4, which appears to be a rigid pavement 

of unknown age with transverse tining (Figure 134). In this instance, the algorithm 

was able to accurately predict the surface type up to the Level 4 of specificity with 

complete accuracy. However, neither the Performing nor Receiving Agency had 

any records that indicated whether this pavement was originally designed as a fixed 

or random transverse tining. Thus, the classification on the last level of specificity 

could not be confirmed, but the algorithm prediction was random tining. 
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Figure 134: Pavement surface at TS1 Section #4. 

The final test site was TS1 Section #5 which appears to be a rigid pavement of 

unknown age with a combination of carpet drag and transverse tining (Figure 135). 

Sites like this one were eliminated for the sake of simplicity and accuracy within 

the Ground Truth (refer to TM#5) data used in the model training phase. The 

algorithm was able to output a prediction up until the fifth level of specificity. It 

predicted that the pavement was rigid, with plastic texturing, transverse tining and 

that the tining was fixed. From Figure 135, it appears to indicate that for this 

surface, even though both carpet dragging and tining can be seen in the pictures, 

the transverse tining is more prevalent texture wise. 

Figure 135: Pavement surface at TS1 Section #5. 

In summary, the algorithm was able to learn patterns in the pavement surface that 

would agree with visual inspection up until the Level 3 of specificity. Once Level 4 

specificity prediction is required, there is a chance that the algorithm prediction 

would not match the expected pavement surface type. 
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6.2.2. Test Set #2 (TS2): Previous Classified Pavements by 

Experts - TxDOT Project No. 0-7031 

A summary of the prediction provided for all three sections in TS2 is presented in 

Table 41. 

Table 41. Predictions made for pavement surfaces in TS2 

TS2 Section Classification Prediction Expert Classification 

1 F-ST-SC-G4-∅ High Macrotexture Chip Seal 

2 F-HMA-DGM-TC-∅ Dense Coarse Mix 

3 F- HMA -OGM-PFC-∅ Porous Friction Coarse 

The pavement at TS2 Section #1 appears to have a surface treatment and the 

researchers claimed that the surface type was a high macrotexture chip seal (Figure 

136). The prediction made by algorithm appears to partially agree with the 

assessment that the surface is indeed a seal coat, but in this instance the algorithm 

predicts the gradation is of Grade 4. It is unknown whether that final prediction 

about the gradation of the seal coat is correct, but the prediction complied with the 

experts’ classification up until Level 2 specificity. 

Figure 136: Pavement surface at TS2 Section #1 (3). 

The next pavement is TS2 section #2. This site appears to be a HMA dense-graded 

mix, and it was previously classified as a dense coarse mix (Figure 137). The 

prediction by the algorithm agreed with the experts’ opinion as it predicted that the 

surface was an HMA, specifically of dense or gap-graded mix with a Type C 

gradation, which is the coarsest gradation (in terms of nominal maximum aggregate 

size) that can be predicted for dense- and gap-graded mixes given the training data 

used to develop the model. 
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Figure 137: Pavement surface at TS2 Section #2 (3). 

The final pavement site is TS2 Section #3 which appears to be an HMA open-

graded mix, and it was previously classified as a PFC (Figure 138). Once again, 

the algorithm agreed perfectly with the experts’ classification as it predicted HMA, 

specifically an open-graded mix and a PFC. This accuracy in prediction was 

expected since the picture shows a well-maintained PFC surface, and those 

pavement surfaces have a very characteristic texture.  

Figure 138: Pavement surface at TS2 Section #3 (3). 

In conclusion, the algorithm effectively replicates the experts’ classification on 

pavement surface type for the three samples collected from TxDOT Project 0-7031. 

This promising outcome highlights that for pavements near Austin, where extensive 

data has been gathered, the algorithm’s predictions closely align with those of 

experts. 

6.2.3. Test Set #3 (TS3): Repeated Measurements 

A summary of the prediction provided for all four sections in TS3 is presented in 

Table 42. 
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Table 42. Predictions made for pavement surfaces in TS3 

TS3 Sections Run Classification Prediction True Surface 

1 
Run #1 

Run  #2 

R-PT-TT-DS-∅ 

R-PT-TT-DS-∅ 
Longitudinal Tining 

2 
Run #1 

Run  #2 

F-HMA-DGM-TOM-∅ 

F-HMA-DGM-TOM-∅ 
SMA 

3 
Run #1 

Run  #2 

F-ST-SC-G3-∅ 

F-ST-SC-G3-∅ 
Seal Coat 

4 
Run #1 

Run  #2 

F-HMA-OGM-PFC-∅ 

R-HMA-OGM-PFC-∅ 
PFC 

The pavement at site TS3 #1 was identified as a rigid pavement with longitudinal 

tining of an unknown age (Figure 139). The prediction across both runs were 

identical; however, the algorithm was not able to distinguish between a carpet drag 

texturing and a longitudinal tining. The mistake in prediction was made at the fourth 

level of specificity. 

Figure 139: Pavement surface at TS3 section #1. 

The pavement at site TS3 #2 was denoted as a stone matrix asphalt (SMA) of at 

most four years (Figure 140). The prediction across both runs were identical and 

the algorithm was able to correctly predict that the pavement was a dense- or gap-

graded mix. However, given that it is difficult to distinguish between the different 

types of HMA using only surface information about the pavement, the algorithm 

was not able to explicitly specify it as a SMA. Instead, it did its best to assess the 

mix’s gradation and estimates that the pavement has a gradation equivalent to that 

of a TOM, which are usually within the dense gradation domain. 
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Figure 140: Pavement surface at TS3 Section #2. 

The pavement at TS3 #3 was denoted as a seal coat made out of crushed stone with 

unknown age (Figure 141). The prediction across both runs were identical, and the 

algorithm was able to correctly predict that the pavement was a seal coat. Moreover, 

the algorithm estimated that the was a Grade 3, which is the gradation with largest 

aggregates used to train the algorithm. 

Figure 141: Pavement surface at TS3 Section #3. 

The final site, TS3 #4, was denoted as a PFC (Figure 142) and three years old, 

according to its work history. The prediction across both runs were identical and 

the algorithm was able to correctly predict all levels of specificity up to the fourth 

level. Once again, the PFCs in good condition were relatively straightforward to 

classify. 
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Figure 142: Pavement surface at TS3 Section #4. 

In summary, the algorithm provided consistent predictions whenever the pavement 

section was measured multiple times along the same lane and direction of traffic. 

6.2.4. Test Set #4 (TS4): Opposite Direction of Traffic 

A summary of the prediction provided for all three sections in TS4 is presented in 

Table 43. 

Table 43. Predictions made for pavement surfaces in TS4 

TS4 

Sections 
Direction of Traffic Classification Prediction True Surface 

1 
Northbound 

Southbound 

F-HMA-DGM-PFC*-∅ 

F-HMA-DGM-PFC**-∅ 
SMA 

2 
Southeast 

Northwest 

F-HMA-DGM-TOM-∅ 

F-HMA-DGM-TOM-∅ 
TOM 

3 
Southeast 

Northwest 

F-ST-SC***-G3Sψ-∅ 

F-ST-SC-G4-∅ 
Seal Coat 

*The majority of 0.1-mile sections were predicted as PFC and a few were predicted to be TOMs. 

**The majority of 0.1-mile sections were predicted as PFC and a few were predicted to be BWCs. 

*** The majority of 0.1-mile sections were predicted as SC but a few were predicted as DGM. 
ψ The majority of 0.1-mile sections were predicted as G3S but a few were predicted as G4. 

The pavement at site TS4 #1 was denoted as a SMA (Figure 143) pavement with 

an approximate age of six years, along both directions of traffic. The algorithm was 

able to provide consistent predictions across both directions of traffic, but only 

because a majority voting system was implemented to decide what type of 

pavement was prevalent across the mile-long sections that were tested. On the 

northbound approach, three out of the ten 0.1-mile-long sections were classified as 

TOM at the fourth level of specificity, potentially indicating the presence of patches 

or deteriorated pavement. Along the southbound approach, four out of the ten 

pavement sections were classified as BWCs. This type of mix is similar to a PFC 
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as they are both open-graded, but in general, BWCs tend to have lower MPDs. 

Again, this could be an indication of deterioration or clogging of the PFC. 

Figure 143: Pavement surfaces across both directions of traffic: (top) southbound 

approach, (bottom) northbound approach in TS4 Section #1. 

The pavement at site TS4 #2 was denoted as a TOM (Figure 144) with an 

approximate age of five years, along both directions of traffic. Here the predictions 

made across both directions of traffic were identical and completely correct. This 

is a good indication given that a visual inspection of the pavement of the site would 

give the impression that the pavement in one direction of traffic was older than the 

other, due to the grayer color that resembled asphalt binder oxidation aging. 
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Figure 144: Pavement surfaces across both directions of traffic: (top) southeast 

approach, (bottom) northwest approach in TS4 Section #2. 

Finally, the pavement at site TS4 #3 was denoted as a grade 3 seal coat (Figure 

145) with an approximate age of three years, along both directions of traffic. Prior 

to discussing the results, it should be noted that the southeast approach had patches 

along the inner wheel path where the measurements were taken, as can be seen in 

one of the pictures in Figure 145. The predictions made across both directions of 

traffic were only similar up to the third level of specificity and, even then, there 

were differences in the results. 

The southeast approach had four out of the 11 pavement sections classified as 

dense- or gap-graded mixes, whereas the northwest approach classified consistently 

as a seal coat. This difference can be an indication of the presence of multiple 

asphalt patches along the wheel patch, but also of the chip seal degradation. 

Furthermore, at the fourth level of specificity, the southeast approach was classified 

as a grade 3S seal coat (with a few sections classifying as grade 4), whereas the 

northwest approach was classified as a grade 4 seal coat consistently. 

Unfortunately, no proper assessment can be made about the fourth level of 

specificity, as the exact gradation at this site is unknown to the Performing Agency. 
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Figure 145: Pavement surfaces seen across both directions of traffic: (top) southeast 

approach, (bottom) northwest approach in TS4 Section #3. 

In summary, the Performing Agency concludes that it is unlikely that surface 

predictions made across different directions of traffic will always be identical. 

There were instances in the field survey where one direction of traffic has one type 

of pavement and the other direction has different one, but even in cases where the 

surface type was the same, it is still possible for one direction to be more 

deteriorated relative to the other. Hence the generalization of pavement surface 

made by assessing only one of the directions should be done carefully, and always 

rely on other available information. 

6.2.5. Test Set #5 (TS5): Different Lane 

A summary of the prediction provided for all three sections in TS5 is presented in 

Table 44. 
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Table 44. Predictions made for pavement surfaces in TS5 

TS5 Sections Lane Measured Classification Prediction True Surface 

1 
Inner 

Outer 

F-HMA-DGM-PFC-∅ 

F-HMA-DGM-PFC-∅ 
SMA 

2 
Inner 

Outer 

F-HMA-OGM-PFC-∅ 

F-HMA-OGM-PFC-∅ 
PFC 

3 
Inner 

Outer 

F-HMA-OGM-PFC-∅ 

F-HMA-OGM-PFC-∅ 
PFC 

The pavement at site TS5 #1 was denoted as a HMA (Figure 146) of unknown age. 

The algorithm was able to provide consistent predictions along the inner and outer 

lanes. However, those predictions were only accurate up until the third level of 

specificity. At the fourth level of specificity the algorithm predicted that the surface 

was a PFC, instead of attempting to predict the gradation of the surface. 

Figure 146: Pavement surface at TS5 Section #1. 

The pavement at site TS5 #2 was denoted as a PFC (Figure 147) with an 

approximate age of five. The algorithm was able to correctly classify this pavement 

surface and also provide consistent predictions along both lanes in the site. 

Figure 147: Pavement surface at TS5 Section #2. 
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The pavement at site TS5 #3 was also denoted as a PFC (Figure 148) with an 

approximate age of five years. Similar to the previous site, the algorithm was able 

to correctly classify this pavement surface and provide consistent predictions along 

both lanes in the site. Again, PFCs appeared to be the easiest surface to classify. 

Figure 148: Pavement surface at TS5 Section #3. 

In summary, it appears that the algorithm is accurate in predicting pavement surface 

type up to the third level of specificity in this testing set, while also being always 

consistent. That is in part a result of the sampling method conducted by the 

Performing Agency, as these sites were chosen precisely because the pavement was 

homogenous throughout their length. Thus, provided that the pavement is the same 

across the lanes, predictions will not be different between different lanes. 

6.2.6. Test Set #6 (TS6): Different Testing Day 

A summary of the prediction provided for all two sections in TS6 is presented in 

Table 45. 

Table 45. Predictions made for pavement surfaces in TS6 

TS6 Sections Time Measured Classification Prediction True Surface 

1 
Initial Day 

One Day After 

F-HMA-OGM- BWC*-∅ 

F-HMA-OGM-BWC-∅ 
TBWC 

2 
Initial Day 

Three Days After 

F-HMA-DGM-TOM-∅ 

F-HMA-DGM-TOM-∅ 
TOM 

*The majority of 0.1-mile sections were predicted as BWC and a few were predicted to be G3S. 

The pavement at this location was denoted as a TBWC (Figure 149) with an 

approximate age of three years. The algorithm was able to produce similar 

prediction results on this site after a full day elapsed. The only difference occurred 

at the section level, where two of the ten pavement sections were classified as a seal 

coat of gradation 3S at the fourth level of specificity. Other than that, the prediction 
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was consistent and correct according to information received from personnel in the 

Receiving Agency. 

Figure 149: Pavement surface at TS6 Section #1. 

The pavement at this location was denoted as a TOM (Figure 150) with an 

approximate of three years. The algorithm was able correctly and consistently 

predict the pavement surface type for this site when testing was spaced three days 

apart. Further, it appears that TOM surfaces were easy to classify in the sample 

collected for testing purposes, even though when the model was being calibrated 

these surfaces did not have an F1 score above 90%. 

Figure 150: Pavement surface at TS6 Section #2. 

In summary, it appears that even when measurements are taken a few days apart, 

the prediction of the surface type remains consistent. This is explained by the fact 

that, unless an extreme weather event happens or a specific usage of the road such 

as the case of one pass of a super-heavy truck, it is unlikely that a pavement surface 

will deteriorate enough over the span of a few days to completely change its surface 

texture characteristics to the point where it would be classified differently. 
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Chapter 7. Conclusions and Recommendations 

7.1. Conclusions 

During this study, a comprehensive evaluation and development of machine 

learning models for pavement surface classification were undertaken to enhance 

accuracy and reliability using advanced computational techniques. An initial 

detailed literature review on pavement texture and measurement methods provided 

a solid foundation for developing a prototype system. This prototype marked a 

significant advancement in capturing high-resolution texture data at highway 

speeds, integrating innovative technologies like laser scanners, high-speed 

cameras, and lighting systems to meet rigorous evaluation conditions.  

The data collection phase of this project covered 425.5 miles of pavement across 

Texas, including 313.7 miles of flexible and 111.8 miles of rigid pavements. Over 

50,000 high-resolution images and detailed texture profiles were gathered from 15 

distinct types of flexible pavements and seven types of rigid pavements. This 

diverse dataset, crucial for training and validating machine learning models, has 

also been made available to the Receiving Agency via Product #1 (P1), ensuring 

future research and continuous advancements in pavement surface classification. 

In terms of the unsupervised machine learning analysis conducted, the clustering 

results demonstrated that texture indices could effectively classify various 

pavement surfaces. Moreover, the Performing Agency identified Partition Around 

Medoids (PAM) as the best clustering method due to its robustness to noise and 

outliers. For flexible pavements, five distinct clusters were found, each representing 

unique textural properties. These included pavements with the highest 

macrotexture, coarse well-graded surfaces, high macrotexture with uniform 

gradation, lowest macrotexture pavements, and coarse surfaces with uniform 

gradation. For rigid pavements, seven clusters were identified: new generation 

diamond grinding, conventional diamond grinding, exposed aggregates, dragged 

surfaces, tining with shallow grooves and short landing spacing, tining with deep 

grooves and wide landing spacing, and significantly polished tined surfaces . 

In terms of classification, the Performing Agency performed a comprehensive 

qualitative analysis of each machine learning algorithm to be tested, and developed 

a hierarchical classification method for pavements, organized by levels of 

specificity. At the broadest level (Level 1), the distinction is made between flexible 

and rigid pavements. Subsequent levels provide more detailed classifications, such 

as mix/surface type, gradation, and texturing orientation. Comprehensive testing 

and model tuning revealed that picture-based models (PBC) excelled at predicting 
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whether a pavement is flexible or rigid, achieving an accuracy of 0.995, compared 

to 0.935 for index-based models (IBM). 

For Levels 2 through 4, the IBMs demonstrated superior performance, provided the 

predicted pavement type was also included as an input. At Level 2, the best model 

was the Stochastic Neural Network (SNN) with an F1 score of 0.980. At Level 3, 

the Support Vector Machine (SVM) model achieved an F1 score of 0.962. At Level 

4, the K-Nearest Neighbor (KNN) model led with an F1 score of 0.887. The study 

also noted that Gradient Boosting (GB) and Extreme Gradient Boosting (XBG) 

models were less effective beyond the first level of specificity, and Decision Trees 

(DT) were inadequate past the second level. 

At Level 5, which involved determining the orientation of tining (transverse or 

longitudinal), PBC models vastly outperformed IBC models, achieving an 

exceptional F1 score of 0.999. This hierarchical approach and the detailed 

performance metrics of various models underscore the efficacy of combining 

texture indices and image data to achieve precise and specific pavement surface 

classification, thereby enhancing pavement management and maintenance 

strategies. 

The classification results indicated that the best joint classifier uses PBC to predict 

levels 1 and 5 of specificity, while levels 2 through 4 are best predicted using IBCs. 

A rigorous evaluation and validation of the joint classifier ensued, involving six 

diverse test sets across 20 test sites. The unknown surfaces (TS1) test set, 

comprising pavement sections not included in the training database, demonstrated 

the model’s ability to generalize to new data with high accuracy and minimal errors. 

The previously classified pavements (TS2) test set confirmed the model’s reliability 

by comparing expert classifications with model predictions. Repeated 

measurements (TS3) assessed the model’s consistency, indicating robustness in 

repeated evaluations. The opposite direction of traffic (TS4) test set showed the 

model’s capability to generalize across different directional data, achieving 

consistent performance with minimal variance. The different lane (TS5) test set 

demonstrated the model’s ability to handle lane-specific variations, consistently 

classifying surfaces accurately across different lanes. Lastly, the different testing 

day (TS6) test set assessed temporal consistency, with the model’s predictions 

remaining stable over short time spans (one to three days). Overall, the validation 

process confirmed the models’ robustness and effectiveness in various real-world 

conditions.  

The research demonstrated that integrating picture-based models and index-based 

classifiers significantly enhances the accuracy and reliability of pavement surface 

classification. Picture-based models excelled in broad and fine-grained 
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classifications, while index-based classifiers effectively managed intermediate 

specificity levels. Rigorous validation across diverse test sets confirmed the 

models’ robustness and real-world applicability, ensuring consistent performance 

under various conditions. These findings have important implications for pavement 

management systems, enabling more accurate and efficient maintenance strategies. 

Leveraging advanced machine learning techniques, the developed models can 

improve road safety by using surface classification in empirical models to predict 

skid resistance, optimize resource allocation by better understanding pavement 

types across the network, and enhance pavement surface analysis by providing 

detailed information of pavement surfaces. This supports future research and 

practical applications in the field. 

7.2. Recommendations 

The research highlighted several areas for future work to further enhance pavement 

surface classification and management. One key area is developing systems capable 

of real-time data acquisition and processing, which will provide immediate insights 

and feedback during pavement inspections, allowing for timely maintenance 

decisions. Additionally, investing in advanced laser technologies with higher 

resolution and sampling rates is also crucial, as these improvements will enable the 

capture of finer surface details, including microtexture, thus enhancing the 

predictive power of the models. 

On the modeling side, exploring the use of 3D texture statistics can significantly 

enhance classification accuracy, especially for complex surfaces that demand 

detailed analysis. Additionally, expanding the study to encompass a wider variety 

of pavement types, such as concrete finishes like sand blasting, newly developed 

pavement materials, and obtaining larger samples of surfaces with limited 

observations, such as high friction surface treatments, will increase the models’ 

versatility. Future research should also involve alternative classification approaches 

beyond the hierarchical method used in this study, or more innovative machine 

learning classifiers, allowing for a comparative analysis of results to identify the 

most effective techniques. 

Finally, the Performing Agency strongly encourages the application of these 

pavement classification techniques in practical scenarios, such as the segmentation 

of highways. This involves allowing data collection equipment to operate 

continuously over long distances, enabling precise identification of where 

pavement changes occur. These changes can include transitions from one type of 

pavement mix to another or shifts from a high-quality pavement mix to a heavily 

deteriorated one, even if the mix remains the same. Implementing these techniques 
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will enhance the ability to monitor and manage pavement conditions more 

effectively.  
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Appendix A: Value of Research (VoR) 

An analysis of the economic benefits brought about by TxDOT Research Project 0-

7139 is explained in this appendix. Investing in the research and development of 

advanced machine learning models for pavement surface classification can yield 

significant financial benefits for the Receiving Agency. By enhancing the accuracy 

and reliability of pavement surface classification, this research project has the 

potential to save millions of dollars annually in maintenance costs, extend the 

lifespan of pavement infrastructure, and improve road safety, thereby reducing 

accident-related expenses. 

Review of Potential Savings 

Cost Savings in Maintenance 

One of the primary financial benefits of this research is the significant reduction in 

maintenance costs. Traditional methods of pavement inspection and maintenance 

are labor-intensive and often require frequent inspections to identify issues. By 

implementing machine learning models that accurately classify pavement surfaces 

and predict deterioration, the Receiving Agency can transition to a more proactive 

maintenance approach. This shift from reactive to proactive maintenance can result 

in substantial cost savings. 

For example, a study by Michigan State University estimates that every dollar spent 

on preventive maintenance can save between $4 and $10 in future repair costs 

(206). Applying this ratio to the Receiving Agency’s 2024-25 annual maintenance 

and replacement budget (207) of $13.9 billion (which includes preventive, routine, 

reactive maintenance, and rehabilitation), the potential savings become evident. 

Using a conservative estimate of $4 in savings for every dollar spent, the Receiving 

Agency could save approximately $55.6 billion in future deferred maintenance 

costs. Even if only 0.01% of these total savings is attributed to preventive 

maintenance guided by accurate pavement classification, this would still result in 

annual savings of approximately $5.5 million. 

Reducing Accident-Related Costs 

Improved pavement conditions directly contribute to enhanced road safety, 

reducing the number of accidents caused by poor road conditions. According to the 

National Center for Statistics and Analysis, approximately 2.49 million injuries and 

0.42 million deaths were reported in 2021 alone (208). The economic impact of 

these motor vehicle crashes is profound, costing $340 billion in direct losses in 
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2019 and the broader societal harm reaching $1.4 trillion when accounting for 

quality-of-life valuations (208,209). Moreover, longitudinal trends reveal a 

concerning escalation in both crashes and fatalities, with a notable 10% spike in 

2020 and 2021 compared to previous years (210). In 2006, poor road conditions 

were reported to contribute to 31.4% of all traffic crashes nationwide. The influence 

of road conditions on crash frequency and severity was significant, with road-

related factors becoming more prominent as crash severity increased. Specifically, 

road-related crashes accounted for 38.2% of non-fatal injuries, translating to 

approximately 2.2 million cases, and 52.7% of fatalities, amounting to 22,455 

deaths.(211). 

Investing in machine learning models for pavement classification and enhancing 

the predictive power of empirical models for skid resistance can significantly 

reduce accident-related costs. According to a macroeconomic analysis by Sabillon 

et al.(3) accurate network-level predictions for skid resistance, of which the surface 

information is a key input variable to improve goodness-of-fit, can yield a 

conservative net savings of approximately $20 million annually. Since the 

outcomes of this study provide essential inputs rather than the models themselves, 

it is reasonable to attribute only 10% of these savings to the enhanced pavement 

surface classification. This results in an estimated annual savings of $2 million 

directly guided by improved pavement classification. 

Additionally, there are other potential sources of savings and benefits for the 

Receiving Agency. For instance, the ability to track the performance of pavement 

mixes over time can extend pavement life and enable more efficient resource 

allocation. However, for the purposes of this Value of Research (VoR) analysis, it 

suffices to focus on the primary cost savings derived from improved maintenance 

($5.5 million per year) and reduced accident-related costs ($2 million per year). 

NPV Cost Benefit analysis 

The final economic analysis was conducted by using the Excel template provided 

by TxDOT. This template performs a net present value (NPV) cost-benefit analysis 

by considering: 

1. Project budget: the total amount of money allocated to finance this research 

project, measured in dollars, 

2. Project duration: the agreed upon timeframe for project completion, 

measured in years, 

3. Expected value per year: An estimation of the annual savings incurred by 

TxDOT after implementing the project’s products, measured in dollars, 
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4. Expected value duration: the timeframe over which this economic analysis 

is conducted, measured in years, and 

5. Discount rate: the interest rate used in discounted cash flow analysis to 

determine the present value of future cash flows, measured as a percentage. 

Many of the inputs were dictated by TxDOT or could not be varied as they were 

based on values from the contract; however, there are two terms, Exp. Value (per 

Yr.) and Expected Value Duration (Yrs.), which the Performing Agency had full 

freedom to vary. The values associated with those two terms (highlighted in yellow 

at the top of Figure C.2) governed the outputs of the economic analysis.  

Inputs for the Economic Analysis 

The project budget was set at $414,534.68. This value was the agreed upon budget 

as stipulated in the project’s contract team. The input project duration was 2.00274 

years. The University Handbook (212) states that the project duration is not 

rounded. The project commenced on September 1, 2022, and the termination date 

is August 31, 2023. There are 731 days from the start date of the project to the end 

date (with the end date included), which equates to 2.00274 years. The expected 

value per year was $7.5 million. This input is the total savings that were computed 

for the macro analysis. As mentioned in the previous sections, most of the values 

used in both analyses were as conservative as possible. The expected value duration 

of the project was assumed to be 10 years to reflect a potential timeframe between 

the inception of this project and the time it takes for it to be fully implemented. 

Finally, the input for the discount was 5% as recommended by the University 

Handbook (212). The inputs and outputs of this economic analysis can be seen at 

the top of Figure 151 and a graphical representation of the NPV measured in 

millions of dollars over the timeframe of the economic analysis can be seen at the 

bottom of Figure 151.  
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Figure 151: Inputs and outputs of NPV cost-benefit analysis (top), graphical 

representation of NPV over the course of ten years (bottom). 

Conclusion 

The projected economic savings from this project for the Receiving Agency are 

estimated to be $70 million over a decade. Mathematically, this project pays for 

itself in a mere 0.055 years and boasts a cost-benefit ratio of 148. Such impressive 

figures are typical for projects focused on driver safety and infrastructure 

maintenance. 

Investing in advanced machine learning models for pavement surface classification 

offers a compelling value proposition for the Receiving Agency. The potential 

financial benefits include reduced maintenance costs, extended pavement lifespan, 

optimized resource allocation, and decreased accident-related expenses, 

collectively leading to substantial cost savings. By embracing these innovative 

approaches, the Receiving Agency can enhance operational efficiency, improve 

road safety, and ensure the longevity of its infrastructure, ultimately delivering 

significant economic and societal benefits. 
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