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Executive Summary 

As fully automated or “autonomous” vehicles (AVs) become increasingly 
available in the coming years, their travel, trade, emissions, cost, and other 
implications need to be anticipated. Prior studies predict AVs dominating US 
passenger travel between 100 and 500 miles (one-way) and freight travel of over 
300 ton-miles. With network vehicle-miles traveled (VMT) predicted to rise by 
over 25% (due to many Texas air travelers shifting to shared AVs, others 
extending their current ground-trip distances, and still others making more trips), 
this project gathered new data to simulate changes in freight and passenger flows 
across Texas and the US for all competing modes in the future. Integrating related 
trends like AV technology price change, the research team anticipated the impacts 
of AVs on passenger mode and destination choice for long-distance trips over 75 
miles as well as the impacts of automated trucks (ATrucks) on freight travel. 

The team designed and distributed a long-distance passenger-travel survey with 
almost 70 questions (as described in Chapter 2, Chapter 3, and Appendix A) 
tackling aspects of long-distance travel, AVs, and shared autonomous vehicle 
(SAV) use, as well as the COVID-19 pandemic’s effects on long-distance travel. 
The survey included a mix of revealed and stated preference questions for 
reasonably recent long-distance trips and future scenarios. The survey responses 
from 1,004 individuals (45% Texans and 55% other US residents) indicated that 
Texans were about 40% more willing to travel long-distance using AVs than other 
US respondents in scenarios where the use of AVs imposes a 0–50% increase in 
travel time. Texans reacted similarly to other US respondents in scenarios where 
long-distance AV trips impose an added cost (60% were “unlikely” to travel in an 
AV that incurred a 50% cost increase, and 37% were “unlikely” to choose an AV 
when it would increase costs by 25%). More than 40% of Texans were 
“absolutely” or “more likely” to use AVs for a long-distance trip than before the 
pandemic if it didn’t impact costs. If AV travel decreased long-distance travel 
costs by half, the share of Texans who would be at least “more likely” to travel in 
an AV went up to almost 60%. For 60% of Texans, using an AV would not 
change their destination choice, but about 20% would decide to visit a place that’s 
farther away. Regarding increasing travel party size, 32% of Texans would do so 
on a long-distance AV trip, while only 22% of others surveyed would. People 
who would prefer an AV for long-distance travel most related this choice to added 
safety, followed by reliability. Safety was also the priority for respondents who 
opted not to use AVs for long-distance travel, and they tended to consider faulty 
software to be a potential issue. Texans were slightly more willing to use an SAV 
in a pandemic scenario, compared to respondents across the US. 
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The team used different datasets (Chapter 4), including the long-distance AV 
survey, 2016/17 National Household Travel Survey (NHTS), EPA Smart 
Location dataset, Air Passenger Origin and Destination Survey (DB1B), the 
rJourney dataset from the Federal Highway Administration (FHWA), and a 2017 
AV fleet survey for passenger model estimation. The fourth and fifth versions of 
the Bureau of Transportation Statistics’ and Federal Highway Administration’s 
Freight Analysis Framework (FAF) and TxDOT’s Statewide Analysis Model 
(SAM) were used for freight travel model estimation and application. To simulate 
US long-distance passenger travel, the research team used PopGen 2.0 software to 
synthesize household and person data for 28.1 million persons (in 12.1 million 
households) across 2,351 Public Use Microdata Areas (PUMAs) to mimic the 
nation’s population distribution across 50 states and the District of Columbia 
consistent with census datasets (using the nation’s 73,056 census tracts). The team 
used these persons and households to estimate the set of travel demand models. 
These seven travel demand model or equation types are used in the following 
sequence: household vehicle ownership, trip frequency, travel season, trip 
purpose, party size, destination choice, and mode choice, in order to generate 
specific trips for each person and travel party within the US (no international trips 
were modeled). The research team’s key estimations from these passenger mode 
applications are as follows: 

• The team estimated 0.85 vehicles per capita in 2019, which is consistent with
the US census data’s vehicles per capita of 0.83 in 2020. 61% of US
households are predicted to own at least one AV after their introduction
assuming a $3,500 AV technology cost in year 2040.

• 2.003 long-distance trips per month per capita were estimated for the current
10% synthetic population, which matches the NHTS data. Long-distance trips
are assumed to rise 15% after AVs are in market.

• Mode splits for long-distance, domestic trips prior to AV access were
estimated as 64.10% by private automobile, 30.42% by rental car, and 5.49%
by air. After AVs become available for purchase (with a premium cost of
$3,500) and SAVs are available with $0.70/mile operation cost, mode splits
shift to 31.67% by conventional human-driven vehicle, 23.02% by
conventional rental car, 23.54% by AV, 18.24% by SAVs, and 3.53% by air.

• Assuming a $3,500 AV technology cost premium in 2040 in today’s dollars,
total person-miles traveled (PMT) per capita in long-distance trips is estimated
to rise 35% (from 280 to 379 miles per month). For the same AV technology
cost premium scenario, vehicle-miles traveled (VMT) in long-distance trips

2 



 
 

  
 

 
   

  

  
 

 

 
  

 
  
 

 

 

 

   
 

 

 
 

  

increases from 121 to 152 miles per capita per month as many travelers shift 
from air to cars and shorter trips. 

In terms of freight-travel impacts, this project applied demand models with and 
without ATrucks (Chapter 6 for US and Chapter 7 for Texas). A four-step travel 
demand modeling process (with feedback loops, for congestion’s effects on mode 
and destination choices) was used for Texas freight trip generation and 
distribution, mode choice, and traffic assignment. It was applied to both freight 
and passenger travel (allowing for AVs and SAVs) to better reflect traffic 
congestion and travel times. The model simulates just one time of day to 
recognize that many long-distance trips span many times of day (involving both 
peak and off-peak traffic levels), and thus different congestion settings. A base 
case scenario without AV, SAV, and ATruck modes was run first, for comparison 
to the scenarios that include automation technology, to reflect the cost- and time-
saving impacts on passenger and trade flows. For the freight mode choice model, 
human-driven trucks (HTrucks) and ATruck alternatives are nested under the 
truck mode after AV introduction to the market, and in competition with carload 
rail (CL) and intermodal rail (IM). Various parameter settings were tested, and 
key observations are as follows: 

• According to the freight prediction model for the Texas region in year 2045,
1.7 billion tons of goods (or 60% of total tons moved, about 1.3 trillion ton-
miles) will be transported across the state by HTrucks and ATrucks (based on
assumptions that ATrucks cost 1.5 times as much as HTrucks but save
HTrucks’ dwelling time), while the rest will be transported by CL (23.5%)
and IM (16.5%).

• All modeled industries would witness an increase in the mode share of trucks
and decline in CL and IM due to the use of ATrucks. This happened even for
the commodities that are oriented toward the use of CL or IM. The increase in
truck ton-miles is quite stable across trips of all distances in Texas, at around
5%. Across all commodities transported in ton-miles, trucks experienced a
7.8% increase in tonnage, while CL’s and IM’s tonnages dropped by 12.6%
and 2.3%, respectively.

• Coal truck ton-miles are predicted to rise by 86%, as this commodity shifts
away from CL modes (which are expected to still dominate coal transport
after ATruck implementation).

• In the long term, if ATruck costs drop to half of HTruck costs, heavy
trucking’s mode share in tons is predicted to rise by 4.2% (from 57.0% to
61.2%), with a 7.3% increase in tons transported by truck.
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This project’s primary product is an executive guide, titled Investigating the 
Impacts of Automated Vehicles on Long-Distance Passenger and Freight Travel, 
for use by practitioners and other interested parties. Chapter 1 of this guide 
synthesizes relevant prior research and current industry practices. Chapter 2 
details the long-distance travel survey’s design, and Chapter 3 highlights 
summary statistics and key results of that survey. Chapter 4 introduces other 
datasets central to model estimation and application for future-year predictions of 
passenger and freight travels. Chapter 5 describes estimation and application of 
long-distance travel demand models for passengers across the US with and 
without AV mode options, and Chapter 6 describes the models for ATruck 
impacts on freight choices (across 20 commodity sectors). Chapter 7 applies the 
Chapter 6 long-distance travel demand models for freight across Texas, with and 
without ATruck options. Chapter 8 explains the value of this research and 
provides a cost-benefit analysis. Guide appendices contain other supporting 
documents for investigating the impacts of AVs and ATrucks on long-distance 
travel, including the long-distance travel survey instrument (Appendix A), Python 
scripts for the weighting process of the survey and summary statistics (Appendix 
B and C), US census regions and divisions (Appendix D), US and Texas top 
freight flow commodity rankings (Appendix E), and international long-distance 
trip models (Appendix F). 
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Chapter 1. Literature Synthesis 

Before the 1995 American Travel Survey (ATS) data (for trips over 100 miles 
one-way) became available, travel demand researchers focused mostly on urban 
mobility and local congestion issues (Aultman-Hall, 2018). Due to rising need 
and interest, several long-distance (or inter-city) travel surveys emerged in the 
US, including questions in the 2001, 2009, and 2016/17 National Household 
Travel Surveys (NHTS) and state-focused long-distance surveys in Ohio, 
Michigan, California, Colorado, Utah, Vermont, and Alabama. The FHWA’s 
(2015) rJourney long-distance travel demand model incorporated data from the 
1995 ATS, the 2001 NHTS, and long-distances surveys in California, Colorado, 
and Ohio. European survey projects include Axhausen and Youssefzadeh’s (1999) 
Methods for European Surveys of Travel Behaviour (MEST), Frei et al.’s (2010) 
Knowledge-base for Intermodal Passenger Travel in Europe” (KITE), and 
Zumkeller et al.’s (2010) Intermodal Linking of Passenger Transport Modes 
Considering User Needs (INVERMO) project. 

Long-distance trips are a key component of the nation’s traffic volumes, 
congestion levels, emissions, crashes, and pavement damage. Long-distance trips 
are usually defined as one-way trips over 50 miles, but that definition does vary 
by context, ranging from 75-mile (as in this report) to 100-mile trips, and out-of-
town travel or overnight travel (Aultman-Hall et al., 2018; LaMondia et al., 
2016a; Bacon and LaMondia, 2016). According to 2016/17 NHTS trip records, 
43.3% of US person-miles traveled (PMT) come from one-day one-way trips over 
50 miles. These are just 2.5% of all person trips being made in the US but almost 
half of all PMT (McGuckin, 2018). Although the 2001 NHTS was the last 
national travel survey in the US to ask about long-distance trips in detail (Hu and 
Reuscher, 2004), the 2016/17 NHTS (which focused on one-way travel during 
one survey day) estimates over 1,500 trillion miles of long-distance PMT annually 
(McGuckin, 2018). 

1.1. Literature Review 
This section reviews various aspects of the literature related to long-distance 
travel, including the factors impacting long-distance trip-making, new predictions 
of inter- and intra-regional travel patterns due to autonomous vehicles (AVs) and 
fully autonomous trucks (ATrucks) with environmental implications, long-
distance tourism, and long-distance travel predictions during the COVID-19 
pandemic. 
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1.1.1. Long-Distance Travel Factors 
Given the distances and costs involved, long-distance travel decisions are heavily 
influenced by travel cost and time considerations, and can include choices of 
whether and where to stay overnight en route. Long-distance personal travel is 
more often as compared to daily trip-making (e.g., for school, work, medical 
appointments, and shopping). And long-distance passenger-vehicle trips tend to 
involve higher occupancies than intra-urban trips (over 2 persons per long-
distance trip, rather than just 1.1 for work trips and 1.3 for other intra-urban trips). 
Schedule coordination (between members of the same travel party) is also 
important, and larger vehicles tend to be used compared to those used for intra-
urban trip-making (LaMondia et al., 2016b). 

Key variables impacting long-distance passenger trips include frequency, 
distance, mode, destination, household income, traveler age, education level, 
presence of children in the household, and more (Van Wee et al., 2006; Sandow 
and Westin, 2010; Collia et al., 2003; Holz-Rau et al., 2014; LaMondia et al., 
2016a; Cho, 2013). Specific events and objectives—like professional conferences, 
vacations, weddings, funerals, sports tournaments, and music concerts (Yang et 
al., 2016; Burke and Woolcock, 2013; McKercher et al., 2008; Aguilera, 2008)— 
regularly motivate long-distance travel for many different types of people. 

A key factor impacting long-distance business trip choices is employer 
reimbursement (Schaeffer, 2009; Cai et al., 2011). For those receiving 
reimbursement, higher-speed modes (like air travel with a ride from a 
transportation network company at either end) may still capture a high portion of 
mode share in many markets, especially for business trips over 750 miles (one-
way). Frequent long-distance business travelers tend to be highly educated, with 
higher income, status, and position in their organization (Gustafson, 2012), so 
their mode choices may be less affected by cost. Travel time, seat-scheduling 
flexibility, and other factors may take center stage for that subset of long-distance 
travelers (Unger et al., 2016). Tourism and business purposes are key designations 
for long-distance passenger travel, with tourism and leisure trips happening more 
often during holiday periods (Große et al., 2019). 

Statewide and nationwide trip models have sought to evaluate the impacts of 
long-distance travel (Erhardt et al., 2007; Rohr et al., 2013; Bernardin et al., 2017; 
LaMondia et al., 2016b; Perrine et al., 2020). To anticipate congestion impacts, 
understanding long-distance-trip timing is very important, with many travelers 
(and freight carriers) purposefully avoiding the a.m. and p.m. peaks around and 
through urban areas. This has been examined in some depth in past studies 
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(Aultman-Hall et al., 2015; Sullivan et al., 2016; Scheiner, 2010; Reichert and 
Holz-Rau, 2015). 

Li et al. (2022) conducted a 73-question online survey (with a focus on the Austin 
area) in 2019 that captured 2,327 long-distance trips (over 100 miles each way) 
made by 929 respondents over the prior 12 months. Predictive models for long-
distance business trips per adult per year, numbers of overnights, travel times, and 
other travel attributes were developed; the results show that those with higher 
education tend to travel more often—for both business and non-business 
purposes—everything else constant. Older and/or lower-income people are likely 
to spend more nights at business trip destinations, as well as locations that are 
farther away from their origins. Persons who travel long-distance more frequently 
are more likely to spend less time in transit or en-route, and those who travel more 
often for business tend to spend more nights away, especially if the destination is 
more than 300 miles from their home. 

1.1.2. Long-Distance Trips by AVs 
The short- and long-distance travel impacts of AVs have been studied in recent 
years, including predictions of increased national vehicle miles traveled (VMT) 
by heavy trucks and passenger vehicles. Trip generation increase is an interesting 
place to start, since 19% of Americans with disabilities leave their homes 
infrequently and are unlikely to take long-distance trips (BTS, 2003). Harper et al. 
(2016) estimated a 14% increase in US VMT due to travel by currently non-
driving, travel-restricted, and elderly Americans thanks to AVs. Meyer and Deix 
(2014) noted that if AVs allow disabled persons to make the same length and 
number of car trips as non-disabled Americans, their VMT will rise by over 50%. 
Lee and Kockelman’s (2019) holistic look at all vectors of added passenger travel 
predicts a 25% rise in VMT as a result of AV introduction, and Huang et al.’s 
(2019) look at the Texas Triangle predicts a rise of over 40% in VMT for that 
megaregion long-term (i.e., by year 2045) due to AVs, with the number of links 
exceeding daily capacity more than doubling. 

AVs reduce the burden of travel for drivers and may improve the quality of travel 
for passengers, who can now focus on more meaningful interactions with those 
previously focused on driving. Business travelers will be freed to work en-route to 
their destination, as they would on a plane, but with no airport access, egress, or 
wait times. Families and friends traveling together may be able to have quality 
interaction time while traveling with great flexibility in departure time and at a 
reduced cost, as compared to trains and airlines. Thanks to easier “driving,” a 
driver’s value of travel time (VOTT), or his/her willingness to pay (WTP) to save 
travel time, is expected to fall 20–50% or more. LaMondia et al. (2016a) explored 
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long-distance mode choices originating in Michigan and forecasted that over 25% 
of airline trips under 500 miles will shift to AVs. Such changes will have 
important impacts on airlines, infrastructure planning and future land use 
(especially on and around long-distance-transportation facilities), highway 
congestion, and the travel industry more generally. Gurumurthy and Kockelman 
(2020) designed, disseminated, and then analyzed a nationwide survey on AVs’ 
impacts on Americans’ passenger travel choices and found that AV-sharing and 
dynamic ride-sharing should rise over time, for a variety of reasons, with shared 
AVs (SAVs) particularly popular for long-distance business travel. 

To analyze the impacts of AVs in the United States, Perrine et al. (2020) added a 
new AV mode to a subset of the rJourney mode and destination choice models. 
With a base scenario assuming AV operating costs to be 20% higher than those of 
conventional vehicles, AVs reduced US airline revenues from domestic travel by 
a dramatic 53%. Availability of SAVs and AVs also shifted destination choices, 
for an overall 6.7% decline in US PMT from existing long-distance trip-
generation rates. Such research needs much further development and can be 
supplemented with newer Texas- and long-distance-focused surveys, 
incorporating more complete details on Texas airport offerings, airline responses, 
and a thoughtful prediction of market shares over time (rather than simply a 
“before” vs. long-term “after” scenario comparison). Kim et al. (2020) surveyed 
more than 3,000 Georgians regarding their expectations of 16 potential changes 
brought by AVs. Results show that more than half of the respondents expressed 
enthusiasm for changing their activity patterns due to AVs, in terms of conducting 
more leisure and long-distance travel, as well as traveling to farther destinations. 

1.1.3. Automated Trucking 
Most existing AV studies focus on intra-urban trip-making, but few (Huang et al., 
2019, Huang and Kockelman, 2019) anticipate changes in freight transport. Fully 
automated, self-driving trucks or “ATrucks” are those that can leave truck 
terminals and travel to a destination without human intervention (Viscelli, 2018). 
ATrucks may be equipped with other automated functions, like drop-offs and 
pick-ups, but most experts expect an attendant on board, doing other types of 
work, sleeping as needed, and ensuring successful deliveries and pickups while 
protecting the truck asset and its cargo en route (Yankelevich, et al., 2018). 
Vehicle attendants’ ability to multi-task will allow for extended use of 
commercial trucks (e.g., every day, closer to 24 hours a day) and greater labor 
productivity, resulting in lower per-mile and per-ton-mile freight delivery costs. 

Trucks carry over 2 trillion ton-miles of freight around the US each year, which is 
almost 40% of the nation’s total (BTS, 2017). Investment in and use of ATrucks 
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will affect not only national and regional economies (Clements and Kockelman, 
2017) but trade patterns, production levels, and goods pricing. Commercial trucks 
consume about 20% of the nation’s transportation fuel, and self-driving 
technologies are predicted to reduce those diesel fuel bills by 4 to 7% (Barth et 
al., 2004; Shladover et al., 2006). 

ATrucks can reduce some environmental impacts, lower crash rates, and increase 
efficiency in warehousing operations, line-haul transportation, and last-mile 
deliveries. Platooned convoys should enable following truck drivers to avoid 
certain restrictions on service hours, enabling longer driving distances. Uranga 
(2017) predicts greater use of ATrucks before passenger vehicle automation, 
thanks to the more obvious economic benefits of self-driving trucks (which start 
with higher price tags as investment is less of a cost burden for trucking 
companies relative to personal travelers). 

Huang and Kockelman (2019) anticipated changes in US highway and rail trade 
patterns in the long-term, following widespread ATruck availability. They used a 
random-utility-based multiregional input-output (RUBMRIO) model, driven by 
foreign export demands, to simulate changes in freight flows among 3,109 US 
counties and 117 export zones via a nested-logit model for shipment or input 
origin and mode, including the shipper’s choice between ATrucks and 
conventional or human-driven trucks (HTrucks). Mode and shipment-origin 
choices (by freight carrier) were investigated to see how freight flow patterns 
would shift based on cost and operations changes due to vehicle automation. An 
ATruck’s total ownership and operation cost (normalized per mile of driving) was 
assumed to be 25% lower than that of a conventional truck, thanks to some safety 
benefits (per mile traveled), fewer rest stops (thus more productive use of the 
vehicle and the operator, if one is on board, who can stay with the expensive 
vehicle and help with pickups and deliveries), and much better use of the on-
board operator, who can do work that adds value while en route (e.g., taking the 
place of office staff, thereby reducing the shipping firm’s payroll). Such savings 
help offset the higher acquisition cost of a self-driving truck (relative to a 
conventional heavy-duty truck). 

Different VOTT and cost scenarios were explored, to provide a sense of variation 
in the uncertain future of ground-based trade flows. Using the current US Freight 
Analysis Framework (FAF) data for travel times and costs—and assuming that 
ATrucks lower trucking costs by 25% (per ton-mile delivered)—truck flow values 
in ton-miles were predicted to rise 11% due to automation’s lowering of trucking 
costs, while rail flow values fall 4.8%. Rail flows were predicted to rise 6.6% for 
trip distances between 1,000 and 1,500 miles, with truck volumes rising for all 
other distance bands. All major cities were predicted to see lower rail flows 
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(inbound and outbound), with San Jose, CA, and Washington, DC, experiencing 
more than 70% reductions in outbound rail flows. Truck flows were also 
predicted to lose many interactions between the northwestern US and Florida and 
northeastern states, while experiencing greater interactions along the western US 
(between California and Oregon), and also between the Great Lakes region 
(including Michigan and Illinois) and California. Rail flows were estimated to rise 
only in and around New Mexico, while dropping noticeably elsewhere (e.g., in 
Texas and from San Francisco and Arizona to the Great Lakes and northeastern 
areas, respectively). 

1.1.4. AVs’ Effects on Intra-Regional Travel Patterns 
To date, there have been more than 20 simulations of AVs’ and SAVs’ effects on 
within-region travel. For example, Childress et al. (2015) used a Seattle, 
Washington, activity-based travel model (including short-term travel choices and 
long-term work-location and auto-ownership choices) to anticipate AVs’ impacts 
on regional travel (assuming higher roadway capacities, lowered VOTT, reduced 
parking costs, and increased car-sharing). They estimated that higher-income 
households are more likely to choose the AV mode, as costly technology and 
VOTT reductions for higher-VOTT travelers are likely to be more significant. 
When SAVs cost $1.65 per mile (almost the same as current ride-sharing taxi 
services, like Lyft and Uber), drive-alone trips were estimated to fall by one-third 
and transit shares to rise by 140%, since modeled households let go of 
conventional vehicles and bought AVs, or shifted to SAVs as well as other travel 
options. 

Zhao and Kockelman (2018) extended Capital Area Metropolitan Planning 
Organization’s (CAMPO) demand model for the Austin region to include AV and 
SAV mode options and predicted a 20% rise in regional VMT over a 10-year 
horizon, assuming AVs and SAVs were widely available. Without shorter 
headways and common use of ride-sharing (between strangers), congestion would 
worsen. Liu et al. (2017) simulated conventional vehicles and SAVs in the Austin 
network using different SAV fare assumptions (e.g., $2, $1, and $0.50 per mile) 
with agent-based MATSim software. Assuming that the average SAV can serve 
17 to 20 person trips per day, higher SAV fleet sizes deliver greater vehicle 
replacement rates, with one SAV replacing 5.6 to 7.7 conventionally owned and 
operated household vehicles. Martinez and Crist (2015) replaced Lisbon, 
Portugal’s buses and cars with mid-size and small SAVs and estimated a 1:10 
replacement rate, along with a 6% increase in VMT. Importantly, reduced parking 
needs freed up sizable land areas throughout the region. 
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1.1.5. Environmental Implications 
Transportation accounted for 28.5% of US greenhouse gas (GHG) emissions in 
2016, among which 41.6% was from passenger cars, 22.9% from freight trucks, 
9% from air travel, and 2% from rail (EPA, 2018). Van Goeverden et al. (2016) 
estimated that trips longer than 100 km (62 miles) account for 45% of VMT and 
50% of GHG emissions due to person travel in Holland using 2011 data, and 
passenger rail had one-third the emissions per passenger-km compared to 
automobile for personal trips. The Federal Aviation Administration (2015) 
reported that relative to air travel, transit buses are less efficient in fuel 
consumption per passenger mile due to lower passenger vehicle occupancy, and 
US rail travel energy efficiency was only slightly higher. 

While more driving generally means more emissions from the transport sector, 
passenger AVs are expected to be highly or fully electric, due to all the computing 
and sensor demands on board. Wadud et al. (2016) sought to combine 
automation’s effects on VMT and GHG emissions but found striking variability in 
future-year outcomes, since AVs can generate so much new travel, electrification 
of vehicle drivetrains is not guaranteed, and changing power-grid feedstocks 
deliver very different emissions impacts. Fagnant and Kockelman (2014) micro-
simulated right-sized SAV fleet operations for a 10-mile-squared “town” and 
compared net emissions to those from the standard US household vehicle mix. 
They estimated that SAV systems may raise VMT 10% or more but save a great 
deal of carbon monoxide and VOCs, thanks to keeping engines warm and 
catalytic converters hot (with very few “cold starts” for a hard-working SAV 
fleet). When they added dynamic ride-sharing (between strangers), they were able 
to get total VMT to fall, rather than rise (Fagnant et al., 2015). Lee and 
Kockelman’s (2019) recent work that randomizes all the possible contributions to 
VMT and energy use suggests that the overall trend is downward on energy and 
GHGs, thanks to most AVs being electric. But the VMT and congestion effects 
remain stark, and in the wrong direction. Even once the US DOT and/or state 
DOTs mandate one-second headways on highways (and eventually local streets), 
congestion associated with at-grade intersections and excessive VMT increases 
will still delay travelers. 

1.1.6. Long-Distance Tourism 
Distance plays an important role in tourists’ travel behaviors, and the relationships 
between distance and tourist behavior have been extensively explored. It is 
believed that distance negatively affects tourists’ destination choices and tourists 
are more likely to take short-distance rather than long-distance trips (Lee et al., 
2014). However, tourists’ preference for short-haul trips relates to many other 
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factors as well, such as time cost, financial cost, and safety concerns (McKercher, 
2008; Xue and Zhang, 2020). 

Travel distance is commonly used to divide tourists into two groups: short-
distance (short-haul) and long-distance (long-haul), since tourist behaviors change 
abruptly once long-distance travel is established as an objective (Bao and 
McKercher, 2008). The definition of long-distance tourism is not decisive, and 
many scholars use different versions. For example, Boerjan (1995) considered 
long-haul travel by airplane as trips with a travel duration of more than 5 hours or 
travel distance of more than 3,000 miles to destination. Lehto et al. (2002) defined 
long-haul travel as “travel more than four nights or more by plane outside of the 
international area.” As tourists’ preferences and the technologies facilitating travel 
change, the definition of long-haul travel is also changing. 

Many studies have been conducted to compare tourist behaviors between long-
distance and short-distance travel, in terms of motivation, preferred activities, 
length of stay, travel intensity, and consumption. Long-distance travelers tend to 
engage in multi-destination travel and attempt to satisfy multiple trip purposes 
(McKercher and Cros, 2003; Tideswell and Faulkner, 1999). The long-distance 
traveler has a higher length of stay and travel expenditure (Jackman et al., 2020; 
Nicolau et al., 2018). Also, long-distance travelers care more about quality and 
product features and tend to spend more on travel (Boerjan, 1995; Lo and Lam, 
2004). 

1.2. 2016/17 NHTS Long-Distance Data Summary 
The 2016/17 NHTS data were collected with travel dates starting on April 19, 
2016, and ending on April 25, 2017 (FHWA, 2017). A respondent’s designated 
24-hour travel day started at 4:00 a.m. (local time) of the assigned travel day and
ended at 3:59 a.m. of the following day. Weights were utilized to produce well-
balanced population-level estimates, including weights of household, trip, person,
and vehicle (FHWA, 2017). Below are some explorations of the 2016/17 NHTS
data, and comparisons of travel behaviors between the respondents from entire US
and the state of Texas. For most of the analysis, results are shown from both the
US and Texas, as well as for three types of trips: trips across all distances (all-
distance trips), long-distance trips greater than 50 miles one-way (LD50+ trips),
and long-distance trips greater than 100 miles one-way (LD100+ trips).

1.2.1. Long-Distance Trips vs. All Trips 
The differences between long-distance trips and all-distance trips are compared in 
this section. Figure 1 shows the percentage of person trips taken each day of the 
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week. The US and Texas show a similar pattern. As expected, for trips across all 
distances, each day of the week has similar person trips, but they are slightly more 
likely on weekdays. Long-distance trips (LD50+ trips and LD100+ trips) are more 
likely to occur on weekend days. 

Figure 1. Percentage of one-way person trips by day of the week in both the US (left) 
and Texas (right) 

The all-distance and long-distance person-trip counts by different trip purposes 
are presented by day of the week in Figure 2 and Figure 3). Since the LD50+ and 
LD100+ trips have a similar pattern, the figures compare only the all-distance 
trips and LD50+ trips. Several findings can be observed from the figures below: 

• Compared with all-distance trips, LD50+ trip purposes are made up of
larger shares of visit friends or relatives, work-related business, and other
social or recreational trips. This is expected because the destinations of
trips with these purposes are more likely to be over 50 miles away.

• The US and Texas show similar weekly patterns for both all-distance trips
and LD50+ trips. Compared with long-distance trips, all-distance trips
include more shopping and other social or recreational trips on weekends,
more dental or medical trips on weekdays, and more school or church trips
on Saturday.

• LD50+ trips have a higher share of visit friends or relatives and “other”
trips than all-distance trips do, for each day of the week. Similar to all-
distance trips, there are more shopping, visit friends or relatives, and other
social or recreational trips on weekends, but more dental or medical trips
on weekdays.
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Figure 2. Percentage of one-way person trips by trip purpose (WHYTR90) in the US and 
Texas 

Figure 3. Percentage of one-way person trips by trip purpose (WHYTR90) and day of the 
week in the US and Texas 

1.2.2. Person Trips by Mode 
Figure 4 shows the share of person trips by transportation mode for both all-
distance and long-distance (>50 miles) trips in the US and Texas. For all-distance 
trips, the five dominant modes are car, SUV, van, pickup truck, and walking. 
Texas has a larger portion of pickup truck and SUV trips compared to the US for 
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both all-distance trips and long-distance trips. As expected, the five dominant 
modes for long-distance trips are car, SUV, van, pickup truck, and airplane.  

Figure 4. Percentage of one-way person trips by different transportation modes in the US 
and Texas 

Mode share by travel distance is further presented. For simplicity, vehicle trips are 
split into single-occupancy vehicle (SOV) and high-occupancy vehicle (HOV) 
driving trips and all transit trips are categorized together. As observed in Figure 5 
and Figure 6, the US and Texas have a similar pattern. Automobile (SOV + HOV) 
is the dominant mode (84% in the US vs. 89% in Texas) for travel of less than 
400 miles, while air becomes the dominant mode (72% in the US vs. 64% in 
Texas) for trips longer than 400 miles, which is similar to the results obtained by 
Moeckel et al. (2015). Most bike and walk trips are less than 25 miles. Texas has 
a higher share of vehicle mode choice for trips over 600 miles than the US overall 
(19% for the US and 29% for Texas). Some transit trips for both Texas and US 
are also observed to be longer than 100 miles, indicating some people choose 
transit, like rail or shuttle bus, for long-distance travel.  
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Figure 5. The mode share by travel distance for US person trips 

Figure 6. The mode share by travel distance for Texas person trips 
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1.2.3. Person-Miles Traveled (PMT) 
This section presents PMT by trip purpose. PMT is calculated by summing 
weighted trip miles. The total PMT for one-way trips is 3,951.2 billion for US all-
distance trips (352.1 billion in Texas), among which 1,707.7 billion, about 43% 
(158.0 billion, about 45%, in Texas), are LD 50+ trips, and 1,356.6 billion, about 
34% (130.3 billion, about 37%, in Texas), are LD 100+ trips. Texas has higher 
shares of LD50+ and LD100+ trips, compared with the US average. Figure 7 
indicates that Friday has the greatest share of PMT for all-distance trips in the US, 
while for Texas it’s Saturday. For long-distance trips, Sunday has the biggest 
share of PMT both for the US and Texas. 

Figure 7. The PMT share by day of the week in both the US and Texas 

PMT by trip purpose (in two different categories in NHTS: “TRIPPURP” and 
“WHYTRP90”) was explored, and the results are shown in Figure 8. The US and 
Texas show a similar pattern for both trip purpose categorization methods. 

• For the trip purpose method of WHYTRP90, to- or from-work trips make
up the biggest share of PMT for all-distance trips, followed by “other”
trips, while for long-distance trips, “other” trips are the biggest share of
PMT, followed by other social or recreational trips. Long-distance trips
(>50 miles) have larger PMT shares of “other,” visit friends, and work-
related business trips compared to their all-distance trip shares.

• For the trip purpose category of TRIPPURP, the non-home-based (NHB)
makes up the biggest share of PMT for both all-distance trips and long-
distance trips (LD50+ and LD100+). For long-distance trips, the
percentages of PMT on home-based trips (HBO, HBSHOP, HBO) are
lower than they are for all-distance trips.
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Figure 8. PMT share by WHYTRP90 (top) and TRIPPURP (bottom) in the US and Texas 

The PMT by mode was also explored, using the same definition of travel mode 
used in 1.2.2. Figure 9 shows that, for all-distance trips, Texas and the US present 
similar patterns, with automobile (SOV+HOV) trips making up the majority of 
total PMT. Also, for trips across all distances and long distances, Texas’s PMT 
are made up of a higher proportion of automobile (SOV+HOV) and a lower 
proportion of air modes than the US overall, indicating that on average, Texas 
prefers road trips more than the US does as a whole. Compared with mode share 
for all-distance trips, the share of PMT by air increases for long-distance trips 
(LD50+) both in the US and Texas, but the share of PMT by SOV decreases 
dramatically, suggesting that SOV trips tend to be short-distance trips. 
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Figure 9. The PMT share by mode for both US and Texas 

1.2.4. Travel Party Size 
This section analyzes the number of persons on the trip (party size) by date 
(Figure 10 and Figure 11). The party size is the weighted average number of 
persons on a trip, considering duplicate trips (household members on the same 
trip). Figure 10 and Figure 11 show the travel party size for all-distance trips and 
long-distance trips by week and by month, respectively. Party size varies more for 
modes like transit or airplane, so the party size of personal car travel (SOV+HOV) 
was explored by week and by month. As observed, long-distance (>50 miles) trips 
tend to have more people in a party than all-distance trips: the average party sizes 
for long-distance trips are 1.38 for the US and 1.66 for Texas, and the average 
party sizes for all-distance trips are 1.21 for the US and 1.42 for Texas. For all-
distance trips, the trend of party size for the US and for Texas by timeline looks 
similar, while for long-distance trips, Texas has a larger party size in June, July, 
and January than the broader US. 
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Figure 10. The travel party size of automobiles (SOV+HOV) by week in the US and 
Texas 

Figure 11. The travel party size of automobiles by month in the US and Texas 

Table 1 compares the average vehicle occupancies (based on miles traveled, using 
PMT/VMT) for four types of travel methods in the US and Texas. 

20 



 
 

     

   
   
   
   

   
   

 

    
  

  
 

    
  

    
             
          

  
 

  
     

   
  

   
 

    

     

   
  

 
  

 
 

 
  

 
 
         

         

         
         
         

Table 1. Average vehicle occupancy 

PMV/VMT Texas US 
Car 1.89 2.15 
SUV 2.28 2.73 
Van 2.77 3.93 
Pickup truck 1.85 2.11 
Rental car 2.27 2.51 

In contrast to commonly seen statistics of average vehicle occupancy weighted by 
trip counts, this table shows the average number of members in a travel party by 
trip distance. For most travel methods, two or more people are traveling together, 
with the exceptions of Texans in cars and pickup trucks. Texans drive around 
relatively “solo” compared to all Americans, as the average occupancies for every 
mode are lower in Texas than the US overall. This owes to plentiful parking and 
low gas prices, increasing Texans’ rates of owning vehicles for individual use. 

1.2.5. Loop Trips vs. One-Way Trips 
The 2016/17 NHTS data collected round trips because the survey was designed to 
be completed online without an interviewer, in contrast to earlier surveys in the 
series, where an interviewer could help respondents artificially split the loop in 
half. Round trips were considered those where the respondent listed the same start 
and end locations, often with the destination unspecified. The total number of 
trips reported in the survey and using expansion factors is 371.2 billion (30.4 
billion in Texas), of which 1.9% (1.7% in Texas) are loop trips and 98.1% (98.3% 
in Texas) are one-way trips. Table 2 summarizes the trip length and trip duration 
of both valid loops and one-way trips, showing similar patterns in the US and 
Texas. The mean and median trip durations for loop trips are longer than for one-
way trips. Most of the loop trips are around the home, so the mean and median 
trip lengths in miles of loop trips are shorter compared to one-way trips. 

Table 2. Summary of trip distance and trip duration in US and Texas 

US Texas 
Trip Duration 

(min) 
Trip Distance 
(miles) 

Trip Duration 
(min) 

Trip Distance 
(miles) 

Trip 
Type Loop One-

Way Loop One-
Way Loop One-

Way Loop One-
Way 

Sample 
Size 19,587 901,526 19,587 901,526 3,296 174,777 3,296 174,777 

Mean 37.6 21.2 2.3 11.2 39.1 21.5 2.4 11.8 
Median 30.0 15.0 1.0 3.5 30.0 15.0 1.0 3.7 
Std Dev 60.4 31.7 10.0 67.7 68.1 31.7 11.1 69.2 
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US Texas 
Trip Duration 

(min) 
Trip Distance 
(miles) 

Trip Duration 
(min) 

Trip Distance 
(miles) 

Min 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 
Max 1200.0 1140.0 440.0 9621.1 1160.0 1050.0 300.0 6515.9 

Loop trips represent only a small portion of overall trips and require further 
efforts to be manually separated for analysis (Buehler et al., 2020), so only one-
way trips were used for the data analysis in this section. 

1.3. COVID-19’s Effects on US Households and 
Passenger Travel 
The COVID-19 pandemic has impacted the transportation system and travel 
behaviors, especially long-distance travel. Almost all modes and all purposes of 
trips witnessed a worldwide drop from February to May 2020 (Beck and Hensher, 
2020; Molloy et al., 2020). More people tend to work from home during the 
pandemic (Wang, 2020; Geman, 2020), and telecommuting is expected to 
continue long after the pandemic, based on a survey during late March 2020, 
when half of the employed adult respondents were working from home (Guyot 
and Sawhill, 2020). 

1.3.1. Travel Trends During COVID-19 
Since people hesitate to use shared modes during COVID-19, public transit has 
been extensively affected (Beck and Hensher, 2020; Transit, 2020; Wang et al., 
2020). According to the Bureau of Transportation Statistics (2020), there was a 
30–50% reduction in trips less than 25 miles between March and September 2020 
in the US, compared to 2019. Trips between 25 and 100 miles dropped at the 
beginning of March and reached their lowest point in early April, a roughly 47% 
reduction compared to the same time in 2019, but the trend began to recover and 
remained stable (about 20% reduction vs. 2019) after May. Interestingly, 
compared to a stable trend in 2019, trips longer than 100 miles in 2020 first 
witnessed a small peak pre-pandemic but dropped to their lowest point, about a 
30% reduction, in April. Then, however, the trend began to bounce back to 
normal, reaching 2019 levels at the end of May, and exceeding them by 64% at 
the end of August 2019. The same reduction trend was witnessed for US 
commercial flights, both domestic and international, which experienced a nearly 
70% drop in mid-April, but then domestic flights started to revive from their 
earlier drops with a slight increase seen for international flights. International 
passenger vehicle trips, which presumably are long-distance trips, also greatly 
decreased during the first year of the COVID-19 pandemic. 
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A similar trend of trip counts and mode share has been observed in many other 
countries. In Switzerland, there was widespread suppression of travel demand 
across almost all modes during the pandemic (Molloy et al., 2020). In Australia, 
commuting trips fell from an average of seven per week down to three, and half of 
respondents canceled their planned air travel (Beck and Hensher, 2020). In India, 
about 41% of commuters stopped traveling during the transition to the lockdown 
phase, and 5.3% of commuters shifted from public to private modes (Pawar, 
2020). However, biking has become more popular during the pandemic, with trips 
increasing by 22% in places such as Greater Manchester in the UK (Rannard, 
2020), inducing some short-distance trips. The same trend has been observed in 
Switzerland (Molloy et al., 2020), where biking trip lengths increased up to a 
180% in early April. 

Overall, COVID-19 has disrupted long-distance travel globally. In the US, drops 
have been observed in flight trips (both international and domestic) and other 
public modes, as well as international passenger vehicle trips, but domestic 
passenger vehicle trips are recovering, indicating greater long-distance travel, 
which is more likely for recreation purpose. At the same time, the use of bikes has 
increased, leading to more shorter trips in active modes. 

1.3.2. Travel Trend Predictions 
Surveys have been conducted to understand travel behavior before, during, and 
after the pandemic. The “COVID-19 and the Future Survey” (covidfuture.org) is a 
joint project of Arizona State University and the University of Illinois at Chicago 
with support from the National Science Foundation. Researchers in the project 
team focus on identifying the impacts that are likely to endure after the pandemic 
is over. The survey consists of questions in different categories for “before and 
now and future” scenarios of COVID-19, in terms of employment, working and 
studying, shopping and dining, daily transport, attitudes, demographics, and social 
networks. States with denser populations yielded more responses (about 20 
metropolitan areas across the US), and Arizona is oversampled. The results are 
weighted to match the regional and national population, in terms of age, gender, 
education, Hispanic population, vehicle, income, and children. 

By mid-November, the survey showed that 20% of respondents had been tested, 
with 1.6% positive, and 12% believed that they had had COVID-19. Among all 
respondents, 33% had faced a decreased income, but a few people observed an 
increase in income. COVID-19 also caused more home relocation; 14% of 
respondents had moved in the seven months since April 2020, matching the 
annual percentage of home moves in the US in all of 2019. 

23 

http:covidfuture.org


 
 

 
 

 

 
    

 

 

   
   

  
  

  
 

  

 
  

 

  

Survey results revealed trends related to travel, such as working from home, e-
shopping, people’s attitudes toward travel, and mode choice. An estimated 35% of 
respondents experienced increased productivity at home, mostly by recapturing 
time previously spent commuting, followed by other reasons like flexible hours 
and comfortable spaces at home. Based on the survey results, working at home 
would reduce transit use by half as well as driving. This has already been 
observed in many cities like New York and Washington, D.C., which feature 
reliable mass public transportation systems (Sadik-Khan and Solomonow, 2020). 
In terms of e-shopping, about 20% of respondents use online grocery shopping at 
least once per week. And among those who plan to use online grocery shopping a 
few times per month after the pandemic, 12.6% never used e-shopping before the 
pandemic. Most respondents agree that one should stay at home until COVID-19 
subsides, and they perceive high risk in the use of public transportation and 
airplanes. This indicates that concerns regarding sharing space with other people 
are the main reason for not using air travel post-pandemic, but some respondents 
indicated that they would make more trips because they have been pent up at 
home for too long and desire to make up for travel that was canceled. Survey 
results also indicated that the new familiarity with conducting business meetings 
online would be the top reason for reduced business air trips in the future. As the 
pandemic influenced future transportation patterns, it will impact the way AVs 
transform future mobility. Survey results indicate that some people will tend to 
keep telecommuting after the pandemic (Mokhtarian and Grossman, 2020). It will 
be interesting to see how the increase in teleworking and the implementation of 
AVs would alter the way people make long-distance trips. 
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Chapter 2. Survey Design and Application 

AVs and SAVs will become increasingly available over the coming years. For 
this reason, the implications of these services on travel, trade, emissions, travel 
cost, and other factors need to be anticipated across Texas. This chapter addresses 
the design of a long-distance passenger-travel survey to predict impacts on mode 
and destination choices, travel preferences, VMT changes, and near- and long-
term policies and cost scenarios across emerging technologies. The survey 
questions as well as the analyses of responses will be explained in more detail in 
the next chapters. 

2.1. Survey Design 
The long-distance passenger-travel survey was designed and coded into Qualtrics 
software. The final set of questions are shown in Appendix A. The survey consists 
of 70 questions (20–25 minutes) tackling aspects of long-distance travel, AV and 
SAV usage, and effects of the COVID-19 pandemic. The survey includes a mix of 
revealed and stated preference questions for current or recent trips and futuristic 
scenarios. A set of adaptative questions is included to evaluate travel time 
changes and users’ willingness to pay to ride in AVs. Questions related to the 
effects of COVID-19 are also included, and different scenarios are tested for a 
future COVID-19-like virus to understand the impacts of possible future 
pandemics. The survey is divided into seven sections; each one collects different 
types of details. The following subsections describe the survey sections and their 
informational goals. 

2.1.1. Introduction and Long-Distance Trip Definitions 
The first section of the survey introduces the study and gives contact information 
for the research team. It also provides definitions of relevant concepts such as 
self-driving vehicles, one-way and round trips, and long-distance travel before 
respondents are shown the questions. For this study, long-distance travel is 
defined as a one-way trip that takes more than 75 miles from the origin to the 
destination (or round trips that involve more than 150 miles of travel, in total). 

2.1.2. Long-Distance Trip Frequency and Trip Purpose 
The trip frequency and trip purpose section asks how many non-business and 
business long-distance trips a respondent took in the calendar years 2019 and 
2020. The separation by calendar year will facilitate users’ memory and provide 
the average annual frequency of long-distance trips before the impacts of the 
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COVID-19 pandemic. This section also includes questions about mode choice and 
trip purpose for two ranges of distances: (1) between 75 miles and 500 miles, and 
(2) more than 500 miles. Research in the field indicates that users are more likely
to travel by airplane when the distance is greater than 500 miles. Therefore, the
survey differentiates these two types of long-distance trips. Finally, this section
includes questions about trip purpose and trip frequency changes due to the
COVID-19 pandemic. It contains questions that focus on travel plans in the
following periods:

• Before the COVID-19 pandemic

• During the COVID-19 pandemic

• After COVID-19 is no longer a threat

2.1.3. Self-Driving and Shared Vehicle Technology
Definition and Preferences 
This section includes a further definition of self-driving automation. It introduces 
the concept of an SAV fleet, of vehicles that can be shared among people in a city 
or region. Figures of the service are shown, and a link is provided to access 
further information on the topic. Figure 12 shows an example of the definition of 
self-driving automation in the formats that the user will access for both computer 
and mobile versions. This section tests the understanding of the user, adding 
follow-up questions about the definitions. It also includes questions about 
preferences for using a self-driving car or a shared self-driving car and 
willingness to share a trip with other users in the same ride. 
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Figure 12. Self-driving automation definition, computer and mobile versions 

2.1.4. Long-Distance Trip Revealed and Stated Preferences 
This section includes a mix of revealed and stated preference questions. The 
survey asks for the description of a long-distance trip of more than 75 miles from 
the origin to the destination, made during a pre-COVID-19 period (12 months 
before March 2020). The respondent provides details of the trip, such as origin, 
destination, mode, duration, travel party size, and cost. While answering those 
questions, the respondent is asked what would have changed if he/she could have 
access to a self-driving vehicle for that same trip. This approach helps the 
respondent envision him- or herself in that situation and provide more realistic 
responses. The questions include the likelihood of changing their travel mode to 
the self-driving car under different cost and time assumptions and their 
willingness to pay for these situations. The survey also asks for possible travel 
party size, destination, and duration changes if the respondent had access to self-
driving cars. 

2.1.5. Long-Distance Future Scenario Questions 
This section provides the user a futuristic scenario where self-driving cars are 
widely used for different services such as mail delivery and ride-sourcing (such as 
Uber and Lyft). Figure 13 shows the description presented to the respondent. 
Furthermore, self-driving vehicles are assumed to be affordable for the survey 
respondent. Based on this scenario, the survey asks questions about changes in 
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frequency, duration, distance, destination, and departure time of possible long-
distance trips using self-driving cars. 

Figure 13. Description of the futuristic scenario, computer and mobile versions 

Furthermore, this section includes mode choice preferences for long-distance trips 
in situations where the respondent is in a pandemic with a COVID-19-like virus 
under two different conditions: 

• Situation 1. Consider a scenario where a COVID-19-like virus vaccine is
universal and more than 70% of the population has received it with a
clinical success rate higher than 85%.

• Situation 2. Consider a scenario where a COVID-19-like virus vaccine is
universal and more than 50% of the population has received it with a
clinical success rate higher than 85%.

2.1.6. Demographics 
The demographic section collects user information such as sex and age range and 
household information such as income and number of vehicles. It also includes 
COVID-19-related questions such as if the user is considered to be at high risk of 
developing severe symptoms, which would influence their travel behavior during 
the pandemic period and other answers related to the topic. 
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2.1.7. End of Survey 
The final section provides space for adding additional details the user would like 
to share. It also provides the option for the respondent to share his or her email 
address for further communication. 

2.2. Survey Application 
The survey was distributed online to a total sample of 1,004 US residents, using 
the large US panel of respondents that Dynata (previously named ResearchNow 
and SSI) maintains. To ensure the sample would catch people traveling through or 
into and out of Texas, it included 45% Texas residents and 55% residents of other 
continental US states (i.e., excluding Hawaii, Alaska, and Puerto Rico). 
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Chapter 3. Survey Data Analysis 

The influencing factors impacting long-distance trips; predictions of the impacts 
of AVs, SAVs, and ATrucks on long-distance trip-making; and impacts on 
tourism and overall travel behavior were explored through a thorough review of 
literature, data, and survey responses in Chapter 1. These facets of travel behavior 
are incredibly important in predicting network use, travel demand, and industry 
costs and expenses by mode and will be highly impacted by the introduction of 
automation technology. The most critical observations from the intensive 
literature review involve accepted patterns in long-distance travel in both the US 
and Texas. Long-distance travel is heavily impacted by frequency, distance, 
mode, destination, household income, traveler age, education level, and presence 
of children in the household; the opportunity for employee reimbursement is a 
factor in the case of long-distance travel for business. 

Automation will allow for large cost savings as drivers will be able to spend their 
“driving” time in more productive ways, which will lead to an altered value of 
travel time and higher willingness to pay for an automated mode that allows for 
this heightened utility. The survey conducted during this project allows 
examination of how AV travelers may use their time on the road and how their 
travel choices may impact other modes of travel. The literature review found that 
the most common purpose for long-distance trips is visiting friends and relatives 
and that long-distance tourists are more likely to have higher numbers of 
destinations and trip purposes, greater expenditures, and trips of longer durations. 
It is also observed in both Texas and across the US that the primary mode for 
long-distance travel up to 400 miles is an automobile; beyond that distance air 
travel becomes the dominant mode. The survey addressed how the introduction of 
AVs impacts this distinction in mode choice. Finally, the literature surrounding 
the impacts of COVID-19 indicated that air travel greatly decreased during the 
height of the pandemic but has since returned to near-normal levels, with the 
number of longer work trips not bouncing back as quickly as the number of 
shorter trips and an overall heightened concern about using shared modes of 
transportation. The survey aims to address the discussed topics in-depth and 
provide respondents with various options on how they would address long-
distance travel with the introduction of AVs and in a post-pandemic world. 

As referenced in-depth in previous section, the survey developed is one of the first 
of its kind that focuses directly on long-distance travel with the use of AVs. The 
survey also accrues data on multiple variables that are excluded from other 
surveys and data sources on this topic, such as costs of accommodation, airlines’ 
business expenses, and fuel, as well as stops and total trip duration—factors that 
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cannot be captured in typical 24-hour travel behavior surveys. The survey also 
contributes to new research focusing on how long-distance travel has been 
impacted by the COVID-19 pandemic and how the pandemic may impact 
people’s travel choices in the long term. 

3.1. Survey Results 
Following demographics determined by the US Census, the targets in Table 3 
were set to collect a sample of responses that was representative of the nation and 
the state of Texas. A total sample of 1,004 responses was obtained after the 
filtering and cleaning process described in the next section. The final pool 
includes 451 (45%) Texans and 553 (55%) respondents from the rest of the 
nation. Figure 14 shows the location of the respondents across the nation. 

Table 3. Demographic distribution of cleaned data 

Texas US 
Sample: 451 Sample: 553 
Target Survey % Target Survey % 

Gender 
Male 249 189 76% 246 243 99% 
Female 252 262 104% 254 310 122% 
Age 
18 to 24 years 65 52 80% 60 51 85% 
25 to 34 years 98 69 70% 90 98 109% 
35 to 44 years 92 92 100% 82 126 154% 
45 to 54 years 83 50 60% 80 103 129% 
55 to 64 years 76 81 107% 83 107 129% 
65 years and over 87 107 123% 106 68 64% 
Census Region (Appendix D) 
Northeast 94 118 126% 
Midwest 114 125 110% 
West 131 137 105% 
South 161 173 107% 
Education 
High school or less 108 75 69% 190 97 51% 
Some college/assoc/tech degree 152 154 101% 130 183 141% 
Bachelor’s degree 183 130 71% 113 168 149% 
Master’s degree or higher 67 82 122% 67 100 149% 
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Figure 14. Respondents across the continental US 

3.1.1. Response Cleaning 
To preserve the accuracy of and reduce bias in the survey results, the responses 
were heavily monitored to ensure that only complete responses were examined. 
The cleaning tasks essentially include visual inspection of data format and value 
range and consistency checking to help identify incomplete records and invalid or 
inconsistent field entries. Responses were kept based on completion within a 
reasonable amount of time (longer than 13 minutes), no inconsistencies in 
responses (e.g., inconsistent zip code and state of residence), and legible and 
reasonable responses. As responses were eliminated by the research team, the 
sample demographic goals were readjusted. Poor response IDs were sent back to 
Dynata to be removed and for the survey to be retargeted toward groups with 
impacted response rates during the data collection process. 

3.1.2. Weighting 
As Table 3 and Figure 14 demonstrate, about half the sample comes from Texas, 
allowing both a detailed representation of the Texas region and a comparison with 
the rest of the US. This approach helps to comprehensively depict AV-related 
long-distance travel preferences across the US. The collected data were further 
weighted using the iterative proportional fitting (IPF) method to match the most 
recent five years of data from the American Community Survey (ACS) (Roth et 
al., 2017). The weighting targets incorporated the demographic distribution of 
age, region, and gender. The southern US area was separated into two parts: 
Texas and the rest of the southern US, such that Texas as well the US as a whole 
both match the ACS demographic distribution using the same weight set. The 
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weights are used to generate the summary statistics; the following results are all 
weighted results. 

3.1.3. Introduction and Definitions 
Section 1 serves as an introductory portion of the survey to ensure that survey 
participants are actively reading and retaining pertinent information that will 
improve responses throughout the rest of the survey. The introductory section 
includes a basic introduction to the survey purpose, the scope of self-driving 
vehicles posited in survey scenarios, and the definitions of different long-distance 
trip types. No results are determined from this section. 

3.1.4. Long-Distance Trip Frequency and Purpose 
In Section 2 of the survey, respondents revealed how their trip-making behavior 
changed between the years 2019 and 2020, regarding the type of trip, mode of 
transportation, and frequency of travel, with additional consideration of how the 
COVID-19 pandemic impacted these responses. Table 4 shows the demographic 
distribution of the respondents who made long-distance non-business and 
business trips during 2019 and 2020, for the Texas region and the whole US. The 
year 2019 was not impacted by the COVID-19 pandemic, unlike the year 2020. 
Business and non-business trips suffered equally from the impacts of COVID-19, 
so the share of each does not change. In both years, more non-business trips were 
made compared to business trips, with a ratio of 3:2 in Texas and 2:1 in the US. 

Table 4. Demographic distribution of long-distance trip occurrence in 2019 and 
2020 

Texas US 
Trip purpose Non-Business Business Non-Business Business 

Calendar year 
2019 2020 2019 2020 2019 2020 2019 2020 
61% 60% 39% 40% 66% 67% 34% 33% 

Gender 
Female 37% 35% 34% 25% 52% 51% 34% 38% 
Male 63% 65% 66% 75% 48% 49% 66% 62% 

Age 
18 to 24 years 12% 14% 22% 33% 5% 6% 5% 7% 
25 to 34 years 26% 29% 27% 22% 26% 27% 52% 55% 
35 to 44 years 25% 26% 21% 18% 15% 17% 12% 13% 
45 to 54 years 17% 18% 17% 21% 15% 18% 19% 20% 
55 to 64 years 10% 8% 9% 2% 19% 20% 9% 4% 
65 or more 
years 11% 6% 3% 4% 20% 11% 3% 1% 
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Texas US 
Trip purpose Non-Business Business Non-Business Business 

Census Region (Appendix D) 
Northeast 28% 26% 14% 15% 
Midwest 12% 11% 5% 4% 
South* 31% 35% 34% 41% 
West 30% 29% 47% 41% 
Texas 9% 11% 11% 15% 

*Note: Southern US here includes Texas.

An assessment of the survey results by demographics revealed that, compared to 
women, men made more long-distance trips in Texas for both non-business and 
business trips in 2019 and 2020. In particular, Texas men’s share of business 
long-distance trips relative to women’s increased in 2020 compared to 2019, a 
shift likely the result of the pandemic. At the national level, this difference was 
not apparent for non-business trips: about the same share of men and women 
made non-business trips, a proportion unaffected by the pandemic. Interestingly, 
when moving the lens from Texas to the US, more women made long-distance 
business trips than men during the pandemic. In terms of the age distribution, 
adults younger than 24 years old in Texas made more long-distance trips 
compared to the US overall, but adults older than 55 in Texas made fewer long-
distance trips than the US average. In the US, travel of young adults were less 
affected by the pandemic while the population older than 55 was more affected. 
About a quarter of the long-distance trip-makers from the southern US were 
Texans. Figure 15 charts the pandemic’s effects on long-distance trip frequency. 

a) Texas region b) The US
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Figure 15. Long-distance trip frequency under the impacts of COVID-19 

COVID-19 had a clear impact on trip-making, as seen from the increase in the 
population that did not make a single long-distance trip during the pandemic, as of 
the survey. Almost one-third of the US population did not make long-distance 
trips during the pandemic, the same proportion in the Texas region. Before the 
pandemic, a frequency of one long-distance trip per season was the most 
common, followed by one long-distance trip every half year. During the 
pandemic, a huge reduction was observed for those who used to take two to six 
long-distance trips per year. The situation is expected to be mitigated after the 
pandemic for both the US and the Texas region, and more people will make 12 to 
24 long-distance trips, even compared to before the pandemic. However, fewer 
people will commute long-distance weekly, and more people will prefer to stay in 
their home region all the time. 

Figure 16 shows the trip purposes of all long-distance trips that people made 
before and after the pandemic, as well as their long-distance travel plan when the 
pandemic is no longer a concern. The trip purpose information is collected only 
for those who made long-distance trips during the pandemic. Since this figure 
does not involve the trip frequency associated with the purposes, the work-related 
trip shares are underrepresented. Therefore, the insight from this figure mainly 
lies in the change in trip purposes under the pandemic. During the pandemic, 
Texans’ long-distance work trips and shopping trips decreased, while trips for 
school and church, medical and dental, and recreational purposes increased. 
COVID-19 policies varied between states during the pandemic, and Texans’ long-
distance travel has shown a different pattern compared to the average statistics in 
the US. At the national level, long-distance trips for school and church, visiting 
friends and relatives, and other social and recreational purposes all fall, but 
people’s plans show that the trend will recover to levels observed before the 
pandemic, with an even higher trip rate. 
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a) Texas region b) US

Figure 16. Long-distance trip purpose under the impacts of COVID-19 

Respondents also indicated their primary travel mode for long-distance trips 
between 75 and 500 miles and over 500 miles. Personal car is the main mode 
choice for long-distance trips between 75 and 500 miles, especially for non-
business purposes. Business trips are more often time-constrained and typically 
subsidized by employers, so airplane mode is used more. Compared to US 
travelers, Texans relied more on personal vehicles for both business and non-
business trips, resulting in their larger mode share. Since Texas is a coastal state, 
boats and ships were also used more, generally, compared to regions of the US 
with inland states. Figure 17 charts the long-distance trip mode share. Overall, 
COVID-19 had a clear impact on trip-making, as the number and frequency of 
trips decreased, and people were more likely to use personal modes of 
transportation rather than shared modes like airplanes and trains. 
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Figure 17. Long-distance trip mode share 

3.1.5. Self-Driving and Shared Vehicle Technology
Definition and Activity Preferences 
This section of the survey further reminds respondents of the automation 
technology definition and the potential for ride-sharing services in the form of an 
SAV fleet. Texans’ attitudes towards pursuing different activities in a self-driving 
car are also investigated (Figure 18). The survey found that passengers of a self-
driving car were most likely to spend their time watching the landscape, listening 
to music, and eating or drinking. This is consistent with Lenz’s (2016) findings, 
which indicated that users would most likely use the time to enjoy the landscape 
and talk to other passengers, and be least likely to work, as opposed to Das et al.’s 
(2017) study, which found that users would most likely use the time to perform 
tasks related to their main job. Some studies also argue that, based on how we see 
transit users engaging in non-work activities to simply pass time, we may not see 
AV users devoting their in-vehicle time to work (Singleton, 2019). Since the 
Texas region and the US show a very similar pattern in terms of activity 
preference, the US pattern is not shown here. 
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Figure 18. Texans’ likelihood to perform different activities in a self-driving car 

3.1.6. Long-Distance Trip Revealed and Stated Preferences 
The next section of the survey asked respondents to answer a series of questions 
relating to a specific long-distance trip taken before the pandemic. This portion 
revealed crucial information about trip duration, trip chaining, and time and 
financial expenses for all modes taken to complete the trip. All of these details are 
critical to our modeling and prediction of future travel and its impact on the 
market share of various modes. Respondents were also asked to consider a 
hypothetical scenario where this trip is made with an AV. By offering various 
options of costs and time savings, the survey revealed respondents’ perceptions of 
how AVs would change their trip in terms of the amount paid, duration of travel, 
duration of stay, and party size. 

Figure 19 shows the departure date of the long-distance trip taken by the 
respondent before the pandemic. Most of the long-distance trip-makers traveled in 
2019 and early 2020, but some of the trips described occurred in 2018. Most of 
the travel occurred in summer (around July). The trip destinations are shown in 
Figure 20. New York, California, Texas, and Florida were the top four 
destinations, perhaps due to some of their attractive coastal locations; Florida was 
the most popular overall. 
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Figure 19. Long-distance trip departure date 

Figure 20. Long-distance trip destinations 

In Texans’ responses, about 73.5% of the long-distance trips were round trips, 
while chain trips accounted for 15.7%, followed by one-way trips (10.7%). This is 
similar to the broader US, which had a few more round trips (76.3%) but fewer 
chain trips (13.1%). Among these long-distance trips in the US, 47.5% were 
shorter than 500 miles, 26.1% were between 500 and 1,000 miles, and 26.3% 
were longer than 1,000 miles. Compared to the US overall, Texans made more 
long-distance trips between 75 and 500 miles (50.5%), with fewer trips longer 
than 500 miles, possibly due to more commuting trips among the four major 
Texas metro areas: Dallas Fort-Worth, Houston, San Antonio, and Austin. 
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For the specific long-distance trip that respondents were asked to recall, they were 
more likely to think of a non-business trip, particularly trips visiting friends and 
families, as well as vacations (Figure 21). 

Figure 21. Trip purposes across Texas and US 

As Figure 2 indicated, non-business trips are more frequent than business trips, 
but the sample may bias toward the long-distance trips that can be easily recalled. 
This survey is different from the NHTS in that respondents need to offer the trip 
details for a specific day. The mode choice pattern for this specific long-distance 
trip follows the general pattern that was obtained for 2019 and 2020. Texans 
favored personal cars, rental cars, and boats for long-distance trips more than the 
rest of the US (Figure 22). However, air travel takes a larger mode share in the US 
compared to in Texas, because the US is much larger than Texas, allowing more 
origin-destination (OD) pairs that are far away and thus favoring airplanes. 
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Figure 22. Long-distance trip mode choice 

For those who took an airplane as the primary travel mode for this specific trip, 
the travel times of different legs of the trip were collected. The average travel 
time within Texas was about 6.7 hours, which was about 1.2 hours shorter than 
the average long-distance travel time across the US (a figure that encompasses 
door-to-door time elapsed, not merely the in-air component). As Table 5 
indicates, time onboard planes accounted for just over half of the total travel, 
since a great deal of time is spent accessing, waiting at, and egressing the airport. 

Table 5. Average time spent on different legs for air travel 

Texas US 
Time scheduling the trip to the airport (e.g., 
reserving a van or calling Uber/Lyft, renting a car) 0.36 hours 0.38 hours 

Time traveling to the airport (driving or being 
driven by someone else) 0.60 0.65 

Time parking at the airport 0.18 0.13 

Time spent going through airport security 0.37 0.38 

Time waiting at the airport 0.96 0.87 

Airplane onboard time 3.38 4.66 

Time scheduling the trip from the airport (e.g., 
reserving a van, calling Uber/Lyft, renting a car) 0.17 0.22 

Time traveling from the airport to your destination 
(driving or being driven by someone else) 0.66 0.57 

Time parking at your destination 0.10 0.08 

Total 6.67 7.86 
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Table 6 and Figure 23 show the respondents’ willingness to use AVs for long-
distance trips under different travel time and travel cost assumptions. Table 6 
shows four different travel time assumptions to ascertain the willingness to use 
AVs, and a longer travel time question was asked only if the respondent replied 
“Yes” or “Maybe” to a shorter travel time scenario. Looking at the “Yes” answers 
reveals that Texans were about 40% more willing to travel long-distance with 
AVs than the US respondents. Texans are even willing to spend more time 
traveling with AVs; if the travel time involved increased by 50%, 15% of Texans 
would or may choose an AV as opposed to only 9% of US respondents. 
Therefore, Texans seem to perceive more benefits from freeing their hands for 
long-distance trips. 

Table 6. Willingness to use AVs for long-distance trips by the change in travel time 

Travel time 
assumption 

Texas US 
No 

change 
10% 
increase 

25% 
increase 

50% 
increase 

No 
change 

10% 
increase 

25% 
increase 

50% 
increase 

Yes 38% 20% 12% 8% 28% 13% 8% 5% 

Maybe 26% 18% 12% 7% 29% 16% 9% 4% 

No 27% 22% 10% 7% 33% 24% 8% 5% 
I do not 
know 9% 5% 3% 2% 10% 5% 4% 2% 

Figure 23. Willingness to use AVs for long-distance trips by the change in travel cost 
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In terms of the cost variations, Texans reacted similarly to US respondents when 
the long-distance trip cost either 25% or 50% more. For example, if the AV long-
distance trip costs 50% more compared to traveling with a human-driven vehicle 
(HV), about 60% of Texans and the US population were “unlikely” to travel in an 
AV. However, Texans showed more willingness to use AVs for long-distance 
travel when the cost remains the same or becomes lower. More than 40% of 
Texans were “absolutely” or “more likely” to use AVs under the same cost 
scenario. The share went up to almost 60% when AVs dropped to half the cost. 

Figure 24 and Figure 25 show respondents’ destination choice and willingness to 
include more stops during long-distance travel. This factor was included because 
the introduction of AVs may create changes in how travelers structure their long-
distance travel. For example, long-distance trip-makers may want to make more 
stops (such as for leisure or family visits) because AVs lighten the driving burden 
and also minimize the time otherwise needed for drivers to take a break. AVs may 
also make it possible for long-distance trip-makers to travel to destinations farther 
away than they would consider when traveling using a human-driven vehicle. And 
since AVs can drive overnight, people may just stay in the AV to avoid another 
overnight stop at hotels, which would reduce the number of involuntary stops 
along the way. The results show that almost half of the respondents expressed a 
willingness to make more stops during the long-distance trip if an AV were used. 
In contrast to Texas respondents, the US population was more likely to make the 
same number of stops along the way, or even have fewer stops. However, 
destination choice is robust, because almost 70% of the population would not 
change their destination with an AV. Similarly, 60% of Texans would not change 
their destination and about 20% would change to visiting a destination farther 
away. 

Figure 24. Willingness to include more stops in long-distance trips with AVs 
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Figure 25. Change in destination choice for long-distance trips with AVs 

Trip duration was also investigated in terms of whether respondents would like to 
extend or shorten their stay, due to the flexibility that AVs can offer. Although 
many people would like to include additional stops along the way, at least 60% 
(in both the US and Texas) do not want to shorten or extend their stay, perhaps 
due to the time constraint on the vacation or other reasons. However, Texans are 
more flexible in their schedule; almost 40% are willing to extend their stay, 
probably due to the convenience that an AV can provide (Figure 26). 

Figure 26. Willingness to change stay duration in long-distance trips with AVs 

Figure 27 further shows the travel duration distribution of respondents’ long-
distance trips. The “0 day” point on the axis means it is an overnight trip. The 
majority of long-distance trips lasted less than one week (83% in Texas and 81% 
in the US). In Texas, more long-distance trips lasted 5 days or less, and fewer 
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trips lasted more than 6 days. Few long-distance trips between two weeks and one 
month were observed. Of trips listed as taking over one month, which make up 
roughly 5% of trips, this may include one-way trips due to home relocation as 
well as temporary jobs. 

Figure 27. Long-distance travel duration 

Travel party size is another key feature of long-distance travel, but one rarely 
captured by prior surveys. Table 7 shows that both the US and Texas populations 
were more likely to travel with family members and friends for non-business 
trips. The average party size was larger in Texas than in the US in general, with 
the average companion number including 30% more family members and a 
roughly doubled party size of friends and colleagues or associates. For long-
distance travel both in the US and Texas, the most common traveling party size 
was two, followed by traveling alone. Figure 28 indicates that Texas had a smaller 
share of party sizes of one and two compared to the rest of the US, with more 
long-distance trips of three or more people traveling together. 

Table 7. Travel party size by traveler type 

Texas US 

Family 
members Friends 

Colleagues 
and/or 
associates 

Family 
members Friends 

Colleagues 
and/or 
associates 

Travel 
without 29% 79% 90% 33% 83% 95% 

Travel with 71% 21% 10% 67% 17% 5% 
Average # to 
travel with 2.03 0.75 0.62 1.53 0.39 0.28 
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Figure 28. Travel party size distribution 

Since the majority of the long-distance trips were non-business family trips, 
children were often involved. Results show that more than 40% of families 
traveled with at least one child. Texas had a larger party size of children, 
compared to the general case in the US (Figure 29). With automation technology, 
households may also bring more children since AVs help in better attending to 
them. About 16% of both Texans and the US population (including those who do 
not have children in the household) would be more likely to travel with an AV. 
Shifting the focus from children to anyone they would like to travel with, 32% of 
Texans would travel with more people in an AV for long-distance trips, while 
only 22% of the US population would increase their travel party size. 

Figure 29. Travel party size of children 
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The survey also asked about reasons for respondents’ preference for and against 
taking long-distance trips by AVs (Figure 30 and Figure 31). People who would 
like to use an AV for long-distance travel enjoyed the safety most, followed by 
the reliability. The convenience offered by AVs came next, which was valued 
more than their ability to self-park. However, safety was also the main reason that 
people opted not to use AVs for long-distance travel, citing concerns about the 
potential for faulty software. Interestingly, enjoying the act of driving was also 
another key point for those not wanting to travel in an AV, even though driving 
for long periods of time may be tiresome and tedious. 

Figure 30. Reasons informing preference for long-distance trips using AVs 

Figure 31. Reasons informing preference against long-distance trips using AVs 
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3.1.7. Future Scenario Questions about Long-Distance
Travel 
In this section of the survey, respondents were given a future scenario in which 
AVs are widely available and affordable. The questions were designed to provide 
insights on how this future mode choice of a self-driving vehicle would impact 
the frequency, duration, distance, destination, and departure time of possible long-
distance trips. 

Figure 32 shows respondents’ mode choice considering two new AV choices: 
personal AVs and rental AVs. For long-distance trips shorter than 500 miles, 
personal self-driving cars dominate the market in the hypothetical scenario, for 
both business and non-business trips across the US and Texas. The conventional 
car is the second choice, in general, after the personal self-driving car. Air travel 
is more popular for business trips, compared to non-business trips. In terms of 
rental options, respondents preferred AVs significantly over conventional cars. 

a) Trips between 75 and 500 miles b) Trips longer than 500 miles

Figure 32. Mode choice for long-distance trips with AV choices 

For long-distance trips that exceed 500 miles, the airplane is the most popular 
mode for business trips in the US, followed by personal AVs and rental AVs. For 
non-business trips in the US, the self-driving car is still the first choice. However, 
the pattern is different in Texas. The rental AV is the top choice for non-business 
trips, while airplanes, personal AVs, and conventional rental cars are all very 
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popular for business trips. In contrast to long-distance trips shorter than 500 miles, 
the mode share for trips exceeding 500 miles decreased for personal cars but the 
share of conventional rental cars, buses, and trains all increased, which is 
expected because of the burden and cost of driving for such a long distance. 

Figure 33 presents six different aspects of long-distance trip-making preferences 
when traveling in AVs. Figure 33a depicts the trip frequency preference if the 
respondents can travel with an AV. The majority chose to make the same number 
of trips per year. About a quarter of the population would like to make more trips 
per year, while about 12% of the population would make fewer trips. This could 
owe to their safety concerns about traveling in an AV or the presence of other 
AVs on the road. About 20% of respondents did not offer an answer, as they may 
be still uncertain about the exact changes that AVs may bring. US and Texas 
respondents presented a similar pattern, but more Texans are likely to make more 
long-distance trips per year. Figure 33c shows the changes in long-distance trip 
duration that respondents would make. The pattern is similar to Figure 33a, where 
over 40% would remain the same, with more Texans enjoying longer trip 
durations. Figure 33e illustrates a similar trend in trip distance. The pattern 
corresponds to when the respondents were asked about their preference of using 
AVs for their recalled trip in the previous section. 

a) Trip frequency b) Overnight stay decisions

c) Trip duration d) Departure time
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e) Trip distance f) Willingness to share rides

Figure 33. Long-distance trip-making preference with AVs 

Figure 33b shows the respondents’ decisions about where to stay overnight when 
AVs are available. With an AV, one can just stay in the car overnight while it 
drives to the destination. However, about 40% of the population still preferred to 
stay in a hotel, although 50% would at least possibly remain overnight in self-
driving cars. Figure 33d shows the departure time choice with AV travel. 
Although morning is the top choice, night was preferred to the afternoon, a more 
congested and busy time. Driving at night is a challenge for people who suffer 
from night vision problems, but AVs are anticipated to have technology that 
adequately supports night travel. The last question asked is about people’s 
willingness to share a ride with someone they do not know under a social-
distancing policy during a pandemic like COVID-19. As Figure 33f shows, over 
40% of respondents would not like to share the ride, while about 20% may share. 
Texans were slightly more positive about sharing rides, compared to the broader 
US. 

3.1.8. Limitations 
The survey has demonstrated many useful and interesting results that help 
anticipate Americans’ and Texans’ long-distance travel choices. However, some 
limitations exist in the survey design and data collection process. 

The survey respondent pool of 1,004 represents a small sample of both Texas and 
US residents and has been scaled proportionally to represent the entire state and 
country. These responses may include outliers despite all efforts to be as 
representative as possible of the population. More samples can help reduce the 
sample bias, which also means a higher cost for the data collection. 

Due to the total time constraint on the survey questionnaire, only approximately 
70 questions were asked. Considering the multiple topics involved, including 
automated technology, the COVID-19 pandemic, and long-distance travel, 
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additional questions would help the team discover more in-depth results but 
would also increase the burden for respondents and thus produce an undesirable 
response quality. 

The limited time to collect data also prevented the team from collecting survey 
responses that perfectly match the US and Texas demographics. Allowing more 
time to collect responses would help in collecting samples from demographic 
groups that are difficult to reach, but the benefit is marginal. The team chose to 
apply the IPF method to weigh the samples. 

Presenting this survey in the unusual atmosphere of a pandemic may lead to bias 
in the responses, especially the stated preference questions. For example, those 
respondents who are still worried about the pandemic may be too conservative 
about long-distance travel. The team has made efforts to diminish such bias across 
the survey questions by clearly stating the background assumptions and ensuring 
the stated preferences are matched to trips in the pre-pandemic period. 
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Chapter 4. Assembly of Other Datasets 

Assembly of datasets is a vital step in creating a long-distance travel demand 
model that leverages this project’s survey model. Because the LD-AV survey 
represents a subsample of the entire population, it is necessary to use other 
resources to properly model the entire population. After the data sources and 
models are identified, and their scales and caveats are understood, it is also 
necessary to consider how to combine different data sources using scientific, 
repeatable processes. Here, models using these components will be finalized, 
including identifying parameters for those models that will be true to the 
subsamples found in this and other projects’ surveys on long-distance travel, 
vehicle ownership, and AV usage. 

This section is organized to first introduce the model structure, followed by 
further explorations of each major dataset that feeds into it. This document then 
touches on prior work around models that predict AV ownership and usage, an 
important aspect that is also challenging to predict. Finally, a separate exploration 
is made into freight models to support the creation of an AV long-distance freight 
model. 

4.1. Model Structure 
The modeling framework of this study begins with a population generation stage, 
feeding into travel choice and then destination and mode choice. The final 
outcome is a set of disaggregate long-distance trips that represent all long-
distance travel of a future US population that lives with a market where AVs are 
readily available as a viable mode choice. A separate freight module produces 
disaggregate long-distance freight trips. 

While the Texas Department of Transportation (TxDOT) focuses on long-distance 
travel among Texans, the researchers found it important to model long-distance 
travel for the entire US due to the pervasive interconnections between their travel 
networks. This is because of the significant number of trips where Texans travel 
outside of the state, visitors come to Texas, and non-Texans pass through Texas. 
This also provides opportunities to contrast Texans’ travel patterns with those of 
the rest of the US. When the nationwide model is completed, it will be 
straightforward to analyze results that affect Texas with an anticipated higher 
degree of accuracy. 

A microsimulation model requires a representation of the full population of 
interest (i.e., the population of the United States). The PopGen synthesizer was 
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used to generate a synthetic population. ACS Public Use Micro Sample (PUMS) 
data will be used as the population seed. Individuals within the synthesized 
population will be allocated according to the rJourney National Use Microdata 
Area (NUMA) travel analysis zone system, allowing us to adopt rJourney data 
and validate spatial patterns against their results. (Further detail about rJourney 
and its NUMA zone system is found later in this chapter). 

The next stage of the model will represent a set of “pre-trip” decisions by 
households. Such processes include the decision to participate in long-distance 
travel, tour frequency over the course of a year, and party size for each tour. 
Results from the recently completed long-distance AV (LD-AV) survey by the 
project team will be combined with NHTS and regional long-distance travel data 
to estimate and validate these models. 

The final stage of the model comprises destination and mode choice for each 
long-distance tour. The mode choice will be conditional upon a household AV 
ownership choice model. An existing AV ownership model for the US developed 
by the project team in 2017 will be updated for this purpose. A 2021 survey of 
Americans’ preferences for AVs will be used to adjust the model, as it asked a 
parallel set of questions to the 2017 study. Mode and destination choice models 
will use a variety of data sources to generate alternative attributes for model 
estimation. The DB1B database from the Bureau of Transportation Statistics 
(BTS) provides both a source for air travel attributes (e.g., fare, travel time, and 
number of legs) and a validation of total annual travel through expansion of its 
10% sample. Other datasets include Amtrak route details and NHTS long-distance 
trip records. 

4.2. Data Sources 
This section introduces each of the major data sources that the new long-distance 
travel model will heavily rely on, identifying key attributes for each and caveats 
that must be considered for appropriate usage. 

4.2.1. Long-distance Automated Vehicle (LD-AV) Travel 
Survey of Americans 
As presented in Chapter 2 and Chapter 3, the survey consisted of 70 questions (15 
to 25 minutes), divided into three main topics involving seven sections, targeting 
different aspects of long-distance travel, AV and SAV usage, and effects of the 
COVID-19 pandemic. It included a mix of revealed and stated preference 
questions for current or recent trips and future scenarios. Questions related to the 
effects of COVID-19 were also included, and different scenarios were tested for a 
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future COVID-19-like virus to understand the possible impacts of future 
pandemics. 

The survey started with definitions of relevant concepts such as self-driving 
vehicles, one-way trips, round trips, and long-distance travel before respondents 
were shown the questions. For this study, long-distance travel is defined as a one-
way trip over 75 miles from the origin to the destination (or a round trip over 150 
miles in total). The first main topic investigated respondents’ general long-
distance trip-making patterns during 2019 and 2020. This offered a detailed 
comparison of long-distance trip patterns that could reveal the impacts of the 
pandemic. The second main topic inquired about details of the most recent pre-
pandemic long-distance trip made by the respondent, followed by questions 
focusing on how their travel behavior would change if they can travel with an 
AV. The third main topic provided future scenarios when AVs are widely used, 
exploring respondents’ preferences for future long-distance trip-making. The 
survey then ended with collecting demographic information. 

The response collection process lasted three weeks, with rigorous scrutinizing of 
the responses over time. The targets were set for 50% of the sample being Texan 
and 50% from the rest of US, with individual targets for both Texas and non-
Texas samples concerning gender, age, census region, and education. The 
responses were analyzed during the collection process so that the targets were 
adjusted daily based on data cleaning results. The demographic distribution of 
cleaned data is shown in Table 3. 

A total sample of 1,004 responses was obtained after the filtering and cleaning 
process described. The final pool includes 451 (45%) Texans and 553 (55%) 
respondents from the rest of the nation, allowing both a detailed representation of 
the Texas region and a comparison with the rest of the continental US. The survey 
data incorporates many variables that can be valuable to the long-distance 
passenger travel demand model. While the detailed summary is shown in previous 
sections, Table 8 here shows the list of key variables. 

Table 8 Key variables in LD-AV survey 
Long-Distance Trips Frequency & Trip Purpose 

Variables Data type Value list 
# LD business trips made in 
2019 

Numerical Positive Integer 

# LD non-business trips made 
in 2019 

Numerical Positive Integer 

# LD business trips made in 
2020 

Numerical Positive Integer 

# LD non-business trips made 
in 2020 

Numerical Positive Integer 
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Primary LD mode choice for 
LD 75–500 mi. in 2019 & 2020 

Categorical Personal car; rental car; bus; train; airplane; 
boat/ship 

Primary LD mode choice for 
LD over 500 mi. in 2019 & 
2020 

Categorical 

Avg LD trip-making frequency 
before COVID-19 pandemic 

Ordinal Never; less than 1 trip per year; every 9 
months; every 6 months; every 3 months; 
every month; more than once a month; more 

than twice a month; every week 
Avg LD trip-making frequency 
during COVID-19 pandemic 

Ordinal 

LD trip-making frequency after 
COVID-19 pandemic is no 
longer a concern 

Ordinal 

LD trip purposes before 
COVID-19 pandemic 

Categorical To/from work; work-related business; 
shopping; other family/personal business; 
school/church; medical/dental; visit 

friends/relatives; other social/recreational; 
other; refused/don’t know 

LD trip purposes during 
COVID-19 pandemic 

Categorical 

LD trip purposes after COVID-
19 pandemic is no longer a 
concern 

Categorical 

Long-Distance Trip Revealed & Stated Preferences 
Variables Data type Value list 
Exact or estimated date of 
travel 

Date Before March 2020 

Type of LD trip Categorical Round trip; one-way trip; chained trip 
Trip purpose Categorical — Business: — 

To visit customers; to meet other colleagues; 
to interview or to be interviewed; for 
marketing and advertising purposes; for 

consulting and advising purposes; to attend a 
convention, conference, and/or seminar; other 

— Non-business: — 
To visit friends; to visit family and/or to 

attend family-related events; for leisure and/or 
vacation purposes; for recreational purpose; 

for entertainment purposes; other 
Origin city, state, country Text 
Destination city, state, country Text 
Estimated LD trip distance Ordinal 75 mi. to 500 mi.; 500 mi. to 1,000 mi.; 1,000 

mi.+ 
Primary mode choice Categorical Personal car; rental car; bus; train; airplane; 

boat/ship 
Days staying at destination Numerical Positive integer 
Days staying at destination if 
AVs are available 

Numerical Positive integer 

Travel party size, including 
family members, friends, and 
colleagues 

Numerical Non-negative integer 

# Children on the trip Numerical Non-negative integer 
Future Scenario of Long-Distance Travel 

Variables Data type Value list 
Primary mode choice for one-
way LD business trip 75–500 
mi. 

Categorical Personal self-driving car; self-driving rental 
car; conventional car; conventional rental car; 

bus; train; airplane; boat/ship; N/A 
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Primary mode choice for one-
way LD non-business trip 75– 
500 mi. 

Categorical 

Primary mode choice for one-
way LD business trip over 500 
mi. 

Categorical 

Primary mode choice for one-
way LD non-business trip over 
500 mi. 

Categorical 

Change in LD trip-making 
frequency if AVs are available 

Ordinal Fewer; about the same as current situation; 
50% more as many/frequently/far as current 
situation; twice as many/frequently/far as 

current situation; three times as 
many/frequently/far as current situation 

Change in LD total journey 
duration for leisure if AVs are 
available 

Ordinal 

Change in LD travel distance if 
AVs are available 

Ordinal 

Departure time preference if 
AVs are available 

Categorical Morning; midday; afternoon; night 

Overnight stay decision change 
if AVs are available 

Ordinal Stay in a hotel; maybe stay in a hotel or self-
driving car; stay in a self-driving car 

Likelihood to ride a self-driving 
car with strangers for a reduced 
price under social-distancing 
policy during a pandemic 

Ordinal Unlikely; less likely; neutral; more likely; 
absolutely 

Demographics 
Variables Data type Value list 
Household size Numerical Positive integer 
# Workers Numerical Non-negative integer 
# Household vehicles Numerical Non-negative integer 
Age Categorical 18 to 24 years; 25 to 34 years; 35 to 44 years; 

45 to 54 years; 55 to 64 years; 65 or more years 
Gender Categorical Male; female; other; prefer not to say 
Ethnicity Categorical White/European White/Caucasian, 

Hispanic/Latino/Mexican American, 
Asian/Asian American; Black/African 

American, American Indian/Native American; 
Mixed/Multiracial; other; prefer not to say 

# Children Numerical Non-negative integer 
Household’s total annual 
income 

Categorical Less than $10,000; $10,000 to $19,999; 
$20,000 to $29,999; $30,000 to $39,999; 
$40,000 to $49,999; $50,000 to $59,999; 
$60,000 to $74,999; $75,000 to $99,999; 

$100,000 to $124,999; $125,000 to $149,999; 
$150,000 to $199,999; $200,000 or more 

Education Categorical Didn’t complete high school; completed high 
school, some college but no degree; associate 
or technical degree; bachelor’s degree; 

master’s degree; Ph.D. 
Employment status Categorical Employed, 40 or more hours per week; 

employed less than 40 hours per week; 
student, working part time; student, not 

working; not employed, looking for work; not 
employed, not looking for work; retired; 

disabled, not able to work 
Marital status Categorical Single; married; divorced; widowed 
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9-digit home zip code Zipcode 
US home state States 
Closest airport Text 

4.2.2. RSG rJourney 

Produced by RSG for the FHWA (FHWA, 2015), the rJourney long-distance 
nationwide travel demand model incorporates long-distance travel surveys (i.e., 
ATS, 2001 NHTS, and long-distances surveys in California, Colorado, and Ohio), 
socioeconomic data, and network data (FHWA, 2015). The 1.17 billion rJourney 
tours are generated from a synthesized household population of 31.5 million, 
representing all long-distance travel in the year 2010. All simulated tours consist 
of one outbound and one return trip over the same path, none shorter than 100 
miles. As expected, car usage largely dominates shorter trips (less than or equal to 
500 miles, or 805 km), while air travel dominates for longer ranges. Bus and rail 
consistently account for a small portion of all trips. The average party size in a 
tour is 2.15 people in this dataset. 

Because rJourney was targeted for conventional mode choices in 2010, AVs were 
never considered. Although an experimental effort was conducted to add AVs as a 
mode choice in the downstream portion of the overall model structure (Perrine et 
al., 2020), this project’s researchers surmise that the presence of AVs would 
impact auto ownership, trip generation, and “trip nights staying” outcomes 
enough that those respective modeling processes should be performed anew for 
this project to ensure better accuracy, rather than being “borrowed” from 
rJourney. 

Despite that, rJourney still offers several features that can assist this project’s 
efforts. In rJourney, long-distance travel is modeled among almost all pairwise 
combinations of 4,486 NUMA zones that are derived from both Census Bureau 
Public Use Microdata Areas (PUMAs) and county boundaries. The scale found 
with these NUMAs is not too large to obscure valuable finer details for long-
distance travel demand modeling, nor too small to be infeasible for nationwide 
modeling efforts. As a result, NUMAs shall be leveraged for this project’s 
modeling efforts. 

rJourney provides skims matrices among all NUMAs for personally owned auto, 
bus, rail, and air travel with several items about travel time, distance, cost, air 
entry and egress overhead, and more, tuned to 2010. A subset of relevant 
summary statistics from this skim file are shown in Table 9. 
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Table 9. Summary statistics for the rJourney skim file for year 2010 LD trips within 
US 

Variable Mean Std Min Max 
Air File, N = 18,424,925 journeys 

Time (minutes) 218.7 97.94 25 812 
Transfer time (minutes) 82.37 50.19 0 200 

Frequency of direct journeys per week 10.58 24.07 0 339 
Frequency of journeys with 1 stop per week 145.4 258.5 0 2,286 
Frequency of journeys with 2 stops per week 348.8 932.7 0 10,968 
Percent journeys within 30 minutes of 

scheduled arrival 
88.79 4.00 0 100 

Economy fare ($) 519.1 327.7 0 50,776 
Business fare ($) 1,200 955.6 0 152,328 

Access distance to airport from NUMA center, 
max. 100 (miles) 

38.15 25.99 0 101 

Egress distance from airport to NUMA center, 
max. 100 (miles) 

38.22 26.34 0 102 

Rail File, N = 8,010,759 journeys 
Time (minutes) 2,167 1,270 4 6,270 
Transfers * 100 134.6 111.1 0 800 

Frequency of departures per week 7.77 10.41 3 93 
Economy fare ($) 131.8 39.51 9 181 
Business fare ($) 340.6 132.4 18 605 

Access distance to rail station from NUMA 
center, max. 50 (miles) 

22.82 14.65 0 50 

Egress distance from rail station to NUMA 
center, max. 50 (miles) 

22.16 15.14 0 50 

Road File, N = 19,727,179 journeys 
Time (minutes) 1,162 668.1 1 3,613 
Distance (miles) 1,185 706.5 1 3,582 
Toll (cents) 67.15 137.9 0 1,344 

Bus time (minutes) 1,313 1,250 0 5,617 
Bus fare (minutes) 94.71 85.72 0 383 

4.2.3. National Household Travel Survey 2016/17 
The 2016/17 NHTS surveyed travel behavior (e.g., travel mode and trip purpose) 
by residents in all 50 states and the District of Columbia. The travel data were 
collected with travel dates starting on April 19, 2016, and ending on April 25, 
2017 (FHWA, 2017). Respondents in a stratified random sample of US 
households were designated a 24-hour travel day which started at 4:00 a.m. (local 
time) on the assigned travel day and ended at 3:59 a.m. of the following day. The 
daily travel data for each household includes all trips made by all household 
members aged five or older in that 24-hour period. Weights were utilized to 
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produce well-balanced population-level estimates, including weights of 
household, trip, person, and vehicle (FHWA, 2017). 

Figure 34. Core information in four components of NHTS data (FHWA, 2017) 

Figure 34 shows how the household, person, vehicle, and trip datasets from 
NHTS are interrelated. The trip dataset offers information on all trips made by all 
household members, including the details of the trip (e.g., origin and destination, 
distance, etc.) associated with the vehicle, person, and household linked to more 
details in separate datasets. 

The key variables at the household level and trip level that will be valuable to 
assemble the dataset that will be used for parameter estimations of the long-
distance travel demand model can be found in Table 10. These variables will be 
further weighted, combined, and normalized with the survey dataset developed by 
the team. 

Table 10. Key variables in NHTS 2016/17 data 
Household Trip 
Household size 
# Workers in household 
# Persons aged between 0 
and 4 in household 
# Drivers in household 
2010 census division 
classification for the 
respondent’s home address 
Count of household trips on 
travel day 
Urban / rural indicator 
Household income 

• Respondent’s age
• Respondent’s gender
• Respondent drove on trip indicator
• Respondent’s educational attainment
• Trip start time & trip end time
• Trip origin and destination
• Trip duration in minutes
• Trip origin purpose
• Trip destination purpose
• Trip purpose summary
• Generalized purpose of trip, home-based
and non-home-based
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Household Trip 
Household state • Weekend/weekday trip indicator
# Household vehicles • Price of gasoline in cents on
Homeownership respondent’s travel day
# Adult household members • Number of non-HH/HH members on trip
at least 18 years old • Primary activity in previous week
Frequency of paratransit use • Household vehicle used on trip indicator
for travel • Trip distance in miles, adjusted for
Frequency of train use for comparability to past surveys
travel • Trip distance in miles, derived from
Travel is a financial burden route geometry returned by Google Maps
Date of travel day & travel API or from reported loop-trip distance
day of week • Trip mode, derived
Land use variables in the • Vehicle type
census tract of the • Public transportation used on trip
household’s home location: • Count of transfers
workers per square mile; • Trip time to transit station in minutes
percent of renter-occupied • Bus/rail/other modes used to get to
housing; population density; public transit indicator
housing units per square • Transit wait time in minutes
mile 

A data summary of the NHTS has been provided in Chapter 1. A few key findings 
are as follows: 

• Automobile travel (i.e., single-occupancy vehicle [SOV] and high-
occupancy vehicle [HOV]) dominates short-distance travel less than 400
miles (84% of trips for the US vs. 89% for Texas), while air becomes the
dominant mode (72% for the US vs. 64% for Texas) for trips longer than
400 miles.

• The total PMT for one-way trips is 3,951.2 billion (352.1 billion in Texas)
for US all-distance trips, among which 1,707.7 billion, about 43% (158.0
billion, about 45%, in Texas), are one-way long-distance trips over 50
miles and 1,356.6 billion, about 34% (130.3 billion, about 37%, in Texas),
are one-way long-distance trips over 100 miles. Texas has a higher share
of one-way long-distance trips over 50 miles and over 100 miles,
respectively, compared with the US average.

• Friday has the biggest share of PMT for trips in the US across all distances
and all seven days of the week, while Saturday has the top share of PMT
in the Texas region. However, for long-distance trips, Sunday has the
biggest share of PMT for both the US and Texas.
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• For all trips in both the US and Texas, automobile (SOV + HOV) trips
have the majority share of total PMT, with the percentage in Texas being
slightly higher. As the trip distance increases, the percentage of airplane
PMT increases in both the US and Texas, and the SOV PMT percentage
decreases significantly.

• According to NHTS 2016/17 household travel survey data, we find that
Americans are driving 2.106 trillion miles, or 9,441 miles per licensed
driver, per year. The average American (age five and older) travels 13,179
miles a year, while those age 18 and up travel 16,031 miles a year. The
average American flies about 2,215 miles per year (with the average adult
American flying 2,694 miles per year, or 16.8% of his/her total PMT).
About 44.0% of Americans’ PMT each year occurs on trips over 50 miles
each way, and 34.7% of PMT occur on trips over 100 miles each way.

• Long-distance trips tend to have more people in the vehicle compared to
short-distance trips, shown by the average vehicle party size (for trips over
50 miles: 1.38 in the US vs. 1.66 in Texas, and for trips across all
distances: 1.21 in the US vs. 1.42 in Texas). Looking at the party size
variations by month for all trips, the party size for the US and Texas
presents a similar trend, while Texas has a larger party size in June, July,
and January than that of the US for long-distance trips.

4.2.4. Passenger Airline Ticket Sales (DB1B) 
The Office of Airline Information of the BTS collects airline ticket data from 
reporting carriers and gathers the data in a dataset called the Origin and 
Destination Survey Databank or DB1B. DB1B is a 10% random sample of airline 
passenger tickets. This dataset, which is reported quarterly (i.e., four times per 
year), contains three tables: coupon, market, and ticket. The DB1B ticket table, 
which is of interest in this study, includes trip origin and destination data, year 
and quarter indicators, number of passengers, number of legs, and distance and 
fare information for each itinerary. This dataset has been published since 1993, 
providing 28 years of data. The team downloaded the data for the period between 
January 2019 and March 2021. This includes the first year of the COVID-19 
pandemic and the year prior, so the team can understand the effect of COVID-19 
on air travel frequency and other factors. The total number of itineraries available 
in this dataset over the course of 27 months (from January 2019 to March 2021) is 
almost 27 million, for around 58 million passengers. A subset of relevant 
summary statistics from this dataset is shown in Table 11. The reduction in air 
travel due to COVID-19 can be easily observed in the data reported in this table. 
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This dataset will be used to model the utility of air travel for long-distance trips in 
the mode choice model. 

Table 11. Summary statistics for the DB1B air ticket data 
Variable Mean Median Std 
2019 Quarter 1, N = 3,981,589 
Distance (mi) 2,164 1,850 1,485 
Itinerary fare ($) 403 344 500 
# of legs in the itinerary 2.47 2.00 1.11 
Price per miles flown ($/mi) 0.26 0.18 0.59 
2019 Quarter 2, N = 4,595,761 
Distance (mi) 2,166 1,834 1,499 
Itinerary fare ($) 416 362 1435 
# of legs in the itinerary 2.47 2.00 1.11 
Price per miles flown ($/mi) 0.27 0.19 1.10 
2019 Quarter 3, N = 4,390,179 
Distance (mi) 2,182 1,846 1,505 
Itinerary fare ($) 404 354 453 
# of legs in the itinerary 2.49 2.00 1.12 
Price per miles flown ($/mi) 0.26 0.18 0.58 
2019 Quarter 4, N = 4,480,274 
Distance (mi) 2,155 1,832 1,475 
Itinerary fare ($) 417 359 1325 
# of legs in the itinerary 2.48 2.00 1.00 
Price per miles flown ($/mi) 0.27 0.19 3.52 
2020 Quarter 1, N = 3,281,382 
Distance (mi) 2,157 1,840 1,487 
Itinerary fare ($) 391 333 374 
# of legs in the itinerary 2.47 2.00 1.11 
Price per miles flown ($/mi) 0.25 0.18 0.56 
2020 Quarter 2, N = 762,315 
Distance (mi) 1,992 1,740 1,237 
Itinerary fare ($) 279 233 1,755 
# of legs in the itinerary 2.39 2.00 1.09 
Price per miles flown ($/mi) 0.18 0.13 2.16 
2020 Quarter 3, N = 1,675,969 
Distance (mi) 2,102 1,837 1,302 
Itinerary fare ($) 270 227 460 
# of legs in the itinerary 2.56 2.00 1.13 
Price per miles flown ($/mi) 0.17 0.12 2.40 
2020 Quarter 4, N = 1,926,506 
Distance (mi) 2,157 1,874 1,385 
Itinerary fare ($) 294 251 361 
# of legs in the itinerary 2.54 5.00 1.12 
Price per miles flown ($/mi) 0.18 0.13 0.56 
2021 Quarter 1, N = 1,965,254 
Distance (mi) 2,137 1,850 1,422 
Itinerary fare ($) 298 253 249 
# of legs in the itinerary 2.46 2.00 1.12 
Price per miles flown ($/mi) 0.19 0.13 0.19 
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4.2.5. TxDOT’s Statewide Analysis Model (SAM) 
The Texas statewide analysis model was initialized and built in 2001, and four 
versions have been developed so far. The SAM-V4 was designed to model 2015 
as the base year and forecast travel demand for years 2025, 2035, and 2045. 

Both SAM’s passenger and freight models follow the four-step model structure, 
which is shown in Figure 35. After trip generation and distribution, the mode and 
destination choice results of passenger travel are transformed into trip tables or 
OD matrices for the final traffic assignment. The freight trip tables (in tons by 
commodity) are converted to trucks and rail cars, based on SAM weights. 
Feedback loops are performed to provide consistent results between travel time 
and cost skims and network assignment flows, feeding congested travel times 
back for subsequent iterations. 

Figure 35. SAM four-step model of passenger and freight 

The SAM network covers all of North America, with greater detail in and near 
Texas. Figure 36 shows the state’s highway, railway, and airline networks, which 
contain 200,445 links and 168,507 nodes. 
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a. SAM Traffic Analysis Zones b. SAM Networks
Figure 36. SAM geographic data 

The team summarized the data from the SAM-V3 output, which had already been 
obtained. SAM-V3 shows that the average trip length of passenger travel across 
Texas is about 12.0 miles. Around 60% of trips are under 10 miles, but these trip 
only account for 30% of total vehicle miles. Figure 37 charts the passenger and 
freight trip distribution across Texas. The trip distribution pattern of freight 
movement shows a close connection between Texas’s major cities, since there is a 
peak in freight trips from 175 miles to 275 miles. Incidentally, 175 miles is about 
the distance from Austin to Houston, while 275 is about the distance from 
Houston to Dallas. 

a. Passenger trip distribution
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b. Freight trip distribution

Figure 37. Passenger and freight trip distribution based on SAM-V3 data 

4.3. Automated Vehicle Ownership and Usage 
This section explores research efforts to predict the future of AV ownership and 
usage—aspects that will heavily influence this project’s models of AVs as a mode 
choice. We will identify the works that researchers anticipate leveraging as 
immediate inputs to AV ownership and destination and mode choice. This is 
supported by an overview of other surveys and models that will serve as guidance 
for considering the accuracy and validity of this project’s outcomes. 

There are several studies in the literature to model AV and conventional vehicle 
ownership with the advent of new technologies, including AVs. For example, 
Lavieri et al. (2017) modeled individual preferences for ownership and sharing of 
AVs using education, age, income, employment status, household composition, 
and experience of ride sharing and car crashing. The results showed that 15.4% of 
respondents were interested in AV ownership and sharing. A study conducted by 
Zhang et al. (2018) modeled vehicle ownership reduction and unoccupied VMT 
based on the advent of AVs using travel surveys and synthesized trip profiles 
from the Atlanta metropolitan area. The study developed a greedy algorithm, 
which showed that more than 18% of households can reduce vehicle ownership 
while maintaining their current travel patterns; that is equivalent to a 9.5% 
reduction in private vehicles in the study region. The study found that if travelers’ 
schedules are relaxed by 15 minutes, up to 24.1% of households are likely to 
eliminate at least one of their current private vehicles. The study also applied a 
logistic regression model, which showed that people who live in suburban areas 
and have high income levels are more likely to reduce vehicle ownership as AVs 
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become available. A more recent study by Lee et al. (2019) assessed factors that 
influence people’s intentions to use AVs. The demographic factors used in the 
study include age, gender, marital status, monthly income, and current vehicle 
ownership. A structural equation model was estimated in this study to examine 
relationships between perceived usefulness, intention to use, perceived risks, and 
ease of use. 

In another study by Kim et al. (2020), 3,106 respondents in Georgia were asked 
about short-term impacts of AVs on mode choice, medium-term impacts on 
activity patterns, and long-term impacts on behavior change. They used a cross-
nested logit model for modeling the choice of home location and vehicle 
ownership. The results indicated that those with more vehicles than the number of 
household members of driving age are more likely to let go of vehicles. The 
younger pro-suburban individuals were more likely to move farther away from 
their current location after adopting an AV. 

Furthermore, Bansal and Kockelman (2016) put forward a simulation-based fleet 
evolution network to forecast long-term adoption of connected and autonomous 
technologies by Americans. Respondents were asked about their preferences 
towards their household’s annual vehicle transactions and CAV technologies. 
Similar activity pattern changes were studied by Le-Klähn et al. (2019), using 
SimMobility (an integrated simulation model) to assess how AV services change 
respondents’ preferences and attitudes. This study also tried to determine changes 
in house location and vehicle ownership. 

In addition to AV ownership models, a study conducted by Maeng and Cho 
(2022) aimed to assess consumer choice and usage patterns in anticipation of 
SAVs’ upcoming launch into the market. The study used stated preference data 
from South Korea to reflect the mode choices at a disaggregated level. Usage of 
SAVs also leads to predicted future reduced demand for parking. Silva et al. 
(2021) used a case study conducted in Budapest, Hungary, to analyze the impacts 
of AV acceptability and usage of shared vehicles on parking demand. They used 
the responses collected in the survey to build present, transitional, and future 
scenarios to quantify the gradual changes in AV ownership. Similarly, Jiang et al. 
(2018) used a mixed logic model to analyze AV ownership behavior in Japan, 
while Saeed et al (2020) used a random parameter logit model on 2,097 survey 
responses collected across the US. The parameters used in the study included age, 
gender, education level, income level, and travel behavior. 

Apart from demographic parameters and daily travel activities, it has been found 
that adoption of AVs and SAVs is quite susceptible to psychological parameters, 
such as enjoying driving and trust issues with upcoming technology, both of 
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which make a personal car more attractive for trips. Such parameters are 
considered by Asgari and Jin (2019) while analyzing AV adoption rates and 
willingness to pay (WTP) for AVs on four levels of automation. They found that 
AVs were quite readily accepted by technologically savvy people. However, it 
was hard to convince the people who enjoyed driving to adopt the new 
technology. Also, people are more likely to accept increased costs and the new 
automation features when they believe that they will improve quality of life in 
terms of time and cost savings, stress reduction, and more convenience. 

Wang et al. (2021) also conducted a stated preference experiment in the greater 
Toronto area to understand Torontonians’ WTP for different vehicle automation 
levels and their preferences towards shared vehicle ownership. A survey was 
conducted that received 190 usable responses. The authors used the dataset from 
this survey to estimate WTP for different automation levels and users’ vehicle 
ownership choices. The results showed a strong inertial tendency among 
respondents to stay with conventional private vehicles. In addition, the private car 
buyers showed a higher tendency towards Level 4 automation, while car-sharing 
service users preferred Level 5. The parameters of this study’s vehicle ownership 
model can be used for this project’s mode choice modeling. 

The research team conducted a survey in 2017 to measure the impacts of 
technology availability and costs on vehicle ownership in the US. In this study, 
Quarles et al. (2018) surveyed adult Americans about their and their households’ 
willingness to buy or use electric, self-driving, and shared vehicle types. After 
cleaning the dataset and removing responses that were nonsensical or 
contradictory, the final sample contained the responses of 1,426 Americans. In 
this survey, respondents were asked about the number of vehicles owned by their 
household and their willingness to purchase a new vehicle type or release an 
existing vehicle next year. If the respondent was willing to do so, he/she was 
asked about the likeliness of this plan and the new vehicle type he/she plans to 
acquire. 

To track vehicle ownership in later years of the survey, Quarles et al. (2021) used 
a household-level micro-simulation to model vehicle ownership for 2017–2050. 
The micro-simulation is calibrated with the survey data and assumes that the trend 
of acquiring a new vehicle will remain constant in the future. For this purpose, 
2017 survey data is first used to model the households’ WTP for AVs, where 
human-driven vehicle capability is maintained in all fully autonomous vehicles. 
The coefficients of this model are presented in Table 12. 
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Table 12. Regression coefficients for annual application of household WTP with
human-driven option (Quarles et al., 2020) 

Variable Parameter t-statistic
Intercept 5124.40 8.94 
Age -53.87 -7.22
HH children 210.16 1.73 
HH income 7.34 3.20 
Student or not -1127.40 -1.87
Unemployed or not -1127.3 -4.01
Married or not 544.63 2.35 
HH vehicles -271.91 -2.07
Vehicle purchase year probability 31.06 10.74 
Grocery distance 34.52 1.83 
Public transit distance -14.95 -1.41
No disability -837.69 -2.17
N = 1426, R2 = 0.2025 

The study then assumes that the WTP for AV technology will increase 5% each 
year. Using the calibrated model and this assumption, the authors simulated a base 
scenario considering a constant 5% annual decline in an AV’s purchase price 
premium (maintaining human-driven capability) over the simulation period (i.e., 
from 2017 to 2050). The AV ownership for each household is defined by 
comparing WTP with the AV technology price in the year of interest. Table 13 
shows that total vehicle ownership increases during the simulation period under 
this scenario. AV ownership does not increase until 2040, when it then begins 
increasing dramatically, reaching almost 40% of private vehicle ownership by 
year 2050. The project team used the survey data and the vehicle ownership 
model in the study by Quarles et al. (2021) in this project. 

Table 13. US privately owned fleet composition with 5% AV premium decline and 
human-driven capability (Quarles et al., 2020) 

Year Vehicle/HH (Std) Vehicles/HH of AV or Conventional Vehicle 
% AV % Conventional 

2020 1.95 (0.030) 0 100 
2025 1.78 (0.038) 0 100 
2030 1.62 (0.041) 0 100 
2035 1.54 (0.039) 0 100 
2040 1.48 (0.041) 0.97 99.03 
2045 1.46 (0.044) 13.66 86.34 
2050 1.45 (0.037) 36.41 63.59 

4.4. Freight Data: Freight Analysis Framework 
The Freight Analysis Framework 4 (FAF4) data integrates different data sources 
like the 2012 Commodity Flow Survey (CFS) and international trade data from 
the Census Bureau to provide 30-year estimates of tonnage, value, ton-miles, and 
value-miles by FAF regions of origin and destination and by transportation modes 
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for different industry sectors like agriculture, extraction, utilities, construction, 
service, and others. 

Two types of freight flow are defined in FAF4 data: domestic flow and 
international flow. The domestic flows are the freight trips from domestic origins 
and destinations, while the international flows are either import flow from foreign 
origins arriving at domestic destinations or export flow from domestic origins 
arriving at foreign destinations. A flow of freight movement can be a combination 
of international flow and domestic flow. The origins and destinations in the FAF 
are at the state level, or at the FAF region level, which has a better resolution of 
132 domestic regions and 8 international regions. In terms of the commodity, 
FAF4 data uses the two-digit level of the Standard Classification of Transported 
Goods (SCTG) to define the commodity categories. 

Table 14 shows the definitions of transportation modes that are used to categorize 
the freight flow, which is documented in the FAF4 user guide (BTS, 2017). 

Table 14. FAF modes (BTS, 2017) 

Code Mode Description 
1 Truck Includes private and for-hire truck. 

Does not include truck that is part of Multiple Modes and 
Mail or 
truck moves in conjunction with domestic air cargo. 

2 Rail Includes any common carrier or private railroad. 
Does not include rail that is part of Multiple Modes andMail. 

3 Water Includes shallow draft, deep draft, Great Lakes and intra-port 
shipments. 
Does not include water that is part of Multiple Modes and 
Mail. 

4 Air (includes truck-
air) 

Includes shipments move by air or a combination of truck and 
air in 
commercial or private aircraft. Includes air freight and air 
express. 
In the case of imports and exports by air, domestic moves by 
ground to 
and from the port of entry or exit are categorized with Truck. 

5 Multiple Modes and 
Mail 

Includes shipments by multiple modes and by parcel delivery 
services, 
US Postal Service, or couriers (capped at 150 pounds). This 
category 
is not limited to containerized or trailer-on-flatcar shipments. 

6 Pipeline Includes crude petroleum, natural gas, and product pipelines. 
Note: Does include flows from offshore wells to land which 
are 
counted as Water moves by the US Army Corps of 
Engineers. 
Does not include pipeline that is part of Multiple Modes and 
Mail. 

7 Other and Unknown Includes movements not elsewhere classified such as flyaway 
aircraft, 
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Code Mode Description 
and shipments for which the mode cannot be determined. 

8 No Domestic Mode Includes shipments that have an international mode, but no 
domestic 
mode and is limited to import shipments of crude petroleum 
transferred 
directly from inbound ships to a US refinery at the zone of 
entry. This 
is done to ensure a proper accounting of import flows, while 
avoiding 
assigning flows to the domestic transportation network that 
do not use. 

Based on the definition above, Figure 38 shows the mode shares of domestic, 
import, and export freight movement in ton-mile and value for the whole US as 
well as Texas. Excluding truck trips involved in the multi-modes, truck dominates 
domestic freight movements in both tonnage and value transported, accounting 
for over 40% in ton-miles and almost 70% in value. Following truck, rail is the 
second mode choice in the US, transporting about 20% of miles. Compared to the 
US overall, Texas has a higher usage of pipeline, while truck’s mode share is 
lower. 

International flow shows a different pattern from domestic flow. Water is the 
dominating mode choice of export and import flow in the US, for both ton-miles 
and value transported. In terms of export flows, air freight trips rank second in 
total value transported in the US, mostly due to electronic goods. However, in 
Texas, truck ranks first in total value transported, followed by water. Compared to 
export flow, import flow has higher water in ton-miles transported and lower air 
mode shares in value. 
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Figure 38. Freight mode shares by weight and value (Source data: FAF5) 

The nation’s and state’s top 10 commodities transported, in tonnage and value, are 
also presented in Appendix E. Electronics are always the top commodity 
transported in value, for both Texas and nation, for domestic or international trips. 
In general, the tonnage freight movement pattern is different from the freight 
movement pattern for value transported. High-ranking goods in transported 
tonnage include more essential and large-size raw materials, like coal and gravel, 
while goods that rank high in transported value are mostly delicate and high-value 
electronics or machinery. As expected, Texas presents a similar pattern to the US, 
but fuel oil and petroleum rank higher in tonnage compared to the US. 
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Chapter 5. Passenger Travel Models and Application 

This chapter continues efforts that were undertaken in the previous chapter to 
create a nationwide travel model to predict mode and destination choices for long-
distance passenger travel in a future where AVs are readily available in the 
marketplace. This chapter documents efforts to synthesize the population and use 
this synthesis to generate disaggregate long-distance trip models for scenarios 
before and after AV market penetration. Figure 39 provides the model framework, 
delivering a set of individual long-distance trip estimates to reflect all long-
distance travel by future US populations. Pre-trip models include the decision to 
participate in long-distance travel and its purpose, tour frequency over the course 
of a year, trip season, and party size for each tour. The outputs of these models are 
used as inputs to estimate the destination and mode choice models, with mode 
choice conditioned on household vehicle ownership decisions. US household and 
person synthetic data at census tract level (10% of the entire population) as well 
as 2019 PUMS data were used to run these models and generate disaggregate 
long-distance trips for the sampled population. 

Figure 39. Long-distance travel model framework for domestic US passenger travel 

Figure 40 illustrates the steps required to use synthetic populations and estimated 
models to generate disaggregated long-distance trips for the sample US 
population. The model application uses different datasets in addition to the 
synthetic population, including the 2016/17 NHTS, PUMS, EPA Smart Location, 
and FHWA rJourney datasets. Other data sources map different geographic codes 
among these datasets. The model application starts by applying the vehicle 
ownership models prior to and after AV market penetration to different 
households. The number of human-driven vehicles (HVs) and AVs owned by 
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each household is then used as an input to person-level models to find the 
specifications of long-distance trips. Note that some variables in the estimated 
models, such as driver’s license possession and distance from home to transit and 
grocery stores, were not available in the synthetic population and PUMS dataset. 
Thus, the research team estimated models for these variables using the 2016/17 
NHTS data. 

Person-level models start by finding long-distance trip frequency using the zero-
inflated negative binomial model. Trip season and trip purpose are estimated for 
each trip using multinomial logit models. The results of all these models are then 
used to estimate the destination choice of each traveler. The destination choice 
model then requires mode choice logsums for all OD pairs, which were found 
using FHWA rJourney skims and mode choice models. Next, party sizes for each 
trip are estimated, followed by the mode choice. The details of each model as well 
as the outputs are explained in the following sections. 
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Figure 40. Detailed steps of the model application for disaggregated long-distance trip 
generation 

5.1. Synthetic Population 
To simulate US travel, the research team created a 10% synthetic population at 
the level of the nation’s 73,056 census tracts. The team had to run this massive 
data synthesis on the Texas Advanced Computing Center’s (TACC) super-
computers over several days. The synthesized population is based on marginals 
from 2019 five-year ACS data using PopGen 2.0 software, developed by 
Pendyala et al. (2011) and Ye et al. (2009). 
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The household and person data were synthesized across 2,351 PUMAs to mimic 
the population distributed across the US (50 states and the District of Columbia), 
consistent with census datasets and geographic-correspondence files. Margins of 
households’ income and size and individuals’ gender, age, race, and education 
were scraped from the Census Bureau and processed as the input for PopGen. The 
output of the synthesis is a 10% sample of Americans’ household and person data 
that are well-matched to each other and to the control margins. The personal and 
household margins from ACS at census travel level were used; detailed categories 
and the share of each category in the synthesized population are summarized in 
Table 15. The synthetic households and persons are sampled from PUMS. The 
PUMS 2019 data and dictionary were obtained from the US Census Bureau FTP 
site (US Census Bureau, 2022). The household IDs and person IDs in the 
synthetic population correspond to the IDs in PUMS files. Thus, these data were 
used to extract variables that were not reported in the synthetic population files. 
Overall, the synthetic population provided the specification of 12,082,535 
households and 28,097,623 individuals across 73,056 census tracts. 

Table 15. Summary statistics of the synthesized population (2019, 28.1M persons
and 12.1M households) 

Variable Category 2019 Synthetic 
Population 2016/17 NHTS 

PERSON 

Sex Male 47.43% 49.07% 
Female 52.56% 50.93% 

Race 

White 73.54% 72.49% 
Black or African American 12.23% 12.71% 
Asian 5.38% 5.33% 
American Indian or Alaska Native 0.76% 0.86% 
Native Hawaiian/Pacific Islander 0.16% 0.28% 
Multiple responses selected 3.19% 3.96% 
Some other race 4.73% 4.37% 

Education 

High school graduate or GED 52.71% 33.51% 
Some college or associate degree 23.91% 28.56% 
Bachelor’s degree 14.72% 21.02% 
Graduate or professional degree 8.66% 16.90% 

Age 

Younger than 10 years old 11.99% 8.37% 
11–17 years old 10.10% 9.69% 
18–24 years old 8.49% 10.37% 
25–34 years old 13.79% 14.07% 
35–44 years old 12.80% 14.03% 
45–54 years old 13.34% 13.43% 
55–64 years old 13.29% 14.45% 
65–74 years old 9.44% 10.05% 
75 years or older 6.75% 5.12% 

HOUSEHOLD 

Household 
Size 

1-person HH 27.86% 27.88% 
2 persons in HH 33.93% 33.88% 
3 persons in HH 15.59% 15.67% 
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Variable Category 2019 Synthetic 
Population 2016/17 NHTS 

4 persons in HH 12.90% 14.33% 
5 persons in HH 5.97% 5.42% 
6 persons in HH 2.30% 1.93% 
7 or more persons in HH 1.44% 0.89% 

Annual 
Household 
Income 

Less than $10,000 5.87% 7.51% 
$10,000–$14,999 4.33% 6.02% 
$15,000–$24,999 8.95% 9.78% 
$25,000–$34,999 8.97% 10.01% 
$35,000–$49,999 12.30% 12.37% 
$50,000–$74,999 17.26% 16.54% 
$75,000–$99,999 12.77% 12.30% 
$100,000–$124,999 9.17% 9.38% 
$125,000–$149,999 6.07% 5.35% 
$150,000–$199,999 6.84% 5.22% 
$200,000 or more 7.49% 5.50% 

#Children 

0 children 70.60% 69.92% 
1 child 9.69% 12.13% 
2 children 11.96% 12.29% 
3 children 5.18% 3.94% 
4 children 1.84% 1.22% 
5 or more children 0.72% 4.93% 

5.2. Trip Frequency 
The long-distance trip frequency model was developed using the zero-inflated 
negative binomial distribution based on population-weighted 2016/17 NHTS trip 
data for domestic travels. A zero-inflated model assumes that a “zero outcome” 
comes from two different processes. In this case, it starts with a decision process 
about whether or not a person is making a long-distance trip (>75 miles). If the 
person decides not to make a long-distance trip, the only possible outcome is zero. 
If the person is making a long-distance trip, then a count model is utilized to 
predict how many trips will be made. 

The two parts of the zero-inflated negative binomial model are, first, a logit model 
to decide whether a person will make a long-distance trip or not, and second, a 
negative binomial count model to find the number of trips. Table 16 presents the 
summary statistics of all tested variables in the zero-inflated negative binomial 
model. These variables include respondents’ and households’ information, such as 
age, sex, employment status, household income, and number of workers in the 
household. 

Table 17 presents the negative binomial regression coefficients for each variable 
along with t-stat, p-values, and practical significance. The practical significance is 
defined as the change in percentage of the estimated predictor resulting from 
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increasing the value of variables by one standard deviation (SD). This table also 
shows the inflation model’s coefficients for predicting excess zeros (along with 
their t-stats and p-values). The count model’s parameter estimates show that long-
distance trip rates rise almost 51% following a 1 SD increase in the natural 
logarithm of household annual income (measured in US dollars). Shifting the 
population-weighted sample toward men by 1 SD increased the average long-
distance trip frequency 21.6%. A 1 SD increase in households’ vehicles increased 
long-distance trip-making rates by 66%. Applying the trip frequency model to the 
synthetic population indicated that 4.51% would take long-distance trip on a given 
day. The estimated number of long-distance trips per month is 2.003 per person, 
while this number was 2.03 per month per individual in the NHTS data. 
Following Huang et al. (2020), it is assumed in this research that trip frequency 
rises 15% after AVs are in market. 

Table 16. Summary statistics of variables used in zero-inflated negative binomial 
(ZINB) model (N = 189,718) 

Variable 

LD_trips 

Description 
Daily long-distance trips per person 
>75mi

Mean 

0.08 

Median 

0 

SD 

0.387 

Min 

0 

Max 

6 

Age 
Veh_per_Adults 
Worker_ per_Adults 

Age of the household head? 
#Vehicles per adults in household 
#Workers per adults in household 

52.15 
1.13 
0.60 

55 
1 
0.67 

17.838 
0.573 
0.425 

16 
0 
0 

92 
12 
3 

HH_Income 
#Adults 

Household income ($1000) 
# Adults in household 

83.78 
2.05 

62.50 
2 

55.28 
0.790 

10 
1 

200 
10 

#Workers 
HH_Veh_Count 
Education_high school 
or higher 
Male? 

# Working adults in household 
# Household vehicle count 
Household head has completed high 
school? 
Household head is male? 

1.26 
2.25 

0.76 

0.48 

1 
2 

1 

0 

0.985 
1.023 

0.499 

0.499 

0 
0 

0 

0 

7 
12 

1 

1 
Worker Household head is worker? 0.59 1 0.490 0 1 

Table 17. ZINB model for long-distance trip frequency using 2016/17 NHTS 
household data 

Negative binomial (NB) model coefficients 
Variable Estimate t-stat P-value Pract. Sign. 
(Intercept) 0.799 3.62 0.000 
Male 0.172 7.85 0.000 0.216 
Age -0.002 -3.52 0.000 -0.099
Ln (HH income) ($) -0.079 -2.72 0.006 0.507 
Education associate degree or higher 0.191 6.84 0.000 0.216 
#Adults -0.228 -14.71 0.000 -0.460
Worker -0.080 -3.95 0.000 -0.077
HH vehicle count 0.141 12.40 0.000 0.657 
ln(theta) 15.45 6.44 0.017 
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Zero-inflation (ZI) model coefficients 
Variable Estimate t-stat P-value Pract. Sign.
(Intercept) 7.125 31.49 0.000 
Ln (HH income) ($) -0.043 -4.04 0.000 0.507 
HH vehicle count -0.410 -19.80 0.000 0.657 

N = 201,820, Pseudo-R2 = 0.015 

5.3. Vehicle Ownership 
The number of vehicles owned by each household is a key variable in different 
travel models, including the trip frequency and trip purpose models. Thus, the 
research team estimated two household vehicle ownership models: prior to and 
following the mainstream introduction of AVs into the marketplace. Households’ 
vehicle ownership prior to AVs is predicted via a Poisson regression model using 
population-weighted 2016/17 NHTS household data. A negative binomial model 
was also used to estimate households’ vehicle ownership, but it was found that the 
Poisson model was sufficient. Table 18 presents the summary statistics of the 
tested variables in the conventional car ownership model. Table 19 shows the 
Poisson model estimates for vehicle ownership prior to AVs as well as the 
practical significance of the variables (shown in the last column) in this model. 

Results show that the population density of the household home location, number 
of drivers and workers in the household, number of children, and household 
average income are practically significant variables. Vehicle ownership rises 85% 
when the number of drivers in the household is increased by 1 SD. It also rises 
24% and 12% by increasing income per household size and number of workers 
per number of adults in the household, respectively. Vehicle ownership falls by 
27% if the population density of households’ home location rises by 1 SD. 

Table 18. Summary statistics of variables used in household vehicle ownership
model (N = 125,217) 

Variable Description Mean Median SD Min Max 
HH_Veh_Count Household vehicle count 1.98 2 1.18 0 12 
Income ($1000) Household income ($1000) 76.03 62.50 57.96 0 225 
Income_per_HHSize 
($1000) 

Household income per 
household size 

40.30 31.25 33.04 0 225 

Workers_per_Adults 
# of workers in the HH per # of 
adults 0.55 0.50 0.45 0 1.00 

HHSize # Household members 2.14 2 1.17 1 13 

#Children < 18 yo 
# of members younger than 18 
years old 0.35 0 0.82 0 8 

#Children < 4 yo No. of household members 
younger than 4 years old 

0.09 0 0.36 0 5 
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Variable 

#Adults 

White 

Description 
# of adults in the household 
(>18 years old) 
Household head is white? 

Mean 

1.78 

0.83 

Median 

2 

1 

SD 

0.71 

0.38 

Min 

1 

0 

Max 

10 

1 
#Drivers # of drivers in Household 1.68 2 0.77 0 9 

ln(Home_pop_dens_tract) 
Pop. density (persons per sq 
mi) in the census tract of the 
household home 

7.08 7.31 1.77 3.91 10.31 

Table 19. Poisson model to estimate vehicle ownership using 2016/17 NHTS 
household data 

Estimate t-Stat P-value Pract. Sig. 

(Intercept) 0.042 3.84 0.000 
Income_per_HH_Size 0.0032 28.62 0.000 24.49 
Workers_per_Adults 0.120 14.52 0.000 12.22 
#Children<18 yo 0.013 3.37 0.001 2.32 
White 0.087 10.12 0.000 7.41 
#Drivers 0.434 92.02 0.000 85.77 
ln(Home_pop_dens_tract) −0.073 −37.33 0.000 −27.09
N = 125,217, Pseudo-R2: 0.112 

To track vehicle ownership in later years of the model, Quarles et al. (2021) used 
a household-level micro-simulation to model vehicle ownership for 2017–2050. 
The micro-simulation was calibrated with the survey data and assumes that the 
rate of acquiring a new vehicle will remain constant in the future. For this 
purpose, 2017 survey data were first used to model households’ WTP for AVs, 
and all capabilities found in today’s HVs are maintained in all AVs. Vehicle 
purchase year probability is a statistically significant variable inside this model. 
This variable finds the probability of replacing an HV with a newer HV or an AV 
in the upcoming year. Thus, a binary logit model was used to find the probability 
of acquiring or releasing a vehicle. 

The study assumed that the WTP for AV technology will increase 5% each year 
(Quarles et al., 2021). Using the calibrated model and this assumption, the 
research team simulated a base scenario with a consistent 10% annual decline rate 
in an AV’s purchase price premium (assumed to be $40,000 in 2017) over the 
simulation period, 2019–2040 (Quarles el al., 2021). The number of new 
purchased AVs is determined by comparing WTP with the AV technology price 
in the year of interest. 
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Figure 41 shows the number of vehicles owned by households in 2019, estimated 
by the vehicle ownership model prior to AV market penetration. More than 40% 
of the synthetic households are estimated to have two vehicles and more than 30% 
are estimated to have one. The mean number of vehicles owned by 2019 synthetic 
population households is 2.01, compared to almost 1.98 in the 2016/17 NHTS 
data. The 1.5% difference in the mean values can be attributed to the difference 
between the year of estimation and the calibration data. 

2016/2017 NHTS Synthetic Population (2019) 

45 
40 
35 
30 
25 
20 
15 
10 
5 
0 

0 1 2 3 4 5 >5
#vehicles owned by household 

Figure 41. Passenger vehicles owned by synthetic US households in 2019 compared to 
the 2016/17 NHTS data 

5.4. Trip Season 
Trip seasonality is tied to trip purpose, mode, and (implicitly) destination choice. 
For this model, 2016/17 NHTS data were used to predict the season in which the 
long-distance domestic passenger trips were taken. Table 20 shows multinomial 
model parameter estimates, with summertime travel as the base alternative. The 
application of the synthetic population to this model resulted in trips being 
divided as follows: 30% in summer, 28% in fall, 22% in winter trips, and 19% in 
spring. The distribution of trips in the NHTS data is 31% summer, 25% fall, 20% 
winter, and 24% spring (Figure 42). 

Table 20. Specifications of the multinomial logit model for trip seasons using
2016/17 NHTS data 

Sh
ar
e 
of
 th
e 
sy
nt
he
tic
 p
op
ul
at
io
n 
(%
) 

Fall Trip Winter Trip Spring Trip 
Estimate t-Stat P-value Estimate t-Stat P-value Estimate t-Stat P-value

(Intercept) 0.034 0.341 0.733 -0.630 -6.92 0.000 -0.828 -6.55 0.000
Male 0.270 6.16 0.000 0.270 6.16 0.000 0.270 6.16 0.000 
Age - - - - - - 0.010 7.55 0.000 
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Fall Trip Winter Trip Spring Trip 
Estimate t-Stat P-value Estimate t-Stat P-value Estimate t-Stat P-value

College 
Educated or 
Higher 

0.167 2.49 0.013 0.217 3.07 0.002 0.117 1.775 0.076 

Income ($1000) 0.001 1.45 0.147 - - - - - -
HH Size -0.097 -5.03 0.000 -0.097 -5.03 0.000 -0.097 -5.03 0.000
#Vehicle Owned 0.091 4.88 0.000 0.091 4.88 0.000 0.091 4.88 0.000 
Employed? -0.250 -5.56 0.000 - - - -0.250 -5.56 0.000
#Adults -0.113 -3.54 0.000 - - - 0.084 2.73 0.006 
N = 10,455, Adj. Rho2: 0.0013 

2016/17 NHTS Synthetic Population 

Tr
ip
 S
ea
so
n Spring 

Winter 

Fall 

Summer 

0 10 20 30 40 
Share (%) 

Figure 42. Trip season share in the NHTS data vs synthetic population 

5.5. Trip Duration Model 
The trip duration model predicts the number of nights that the traveler spends on 
the journey before heading back home. The outlier for the 85th percentile is 9 nights 
or longer, while the outlier for the 95th percentile is 24 nights or longer. Several 
entries show travel durations over one month. These outliers may be explained by 
home relocation (the traveler never returns) or temporary work relocations. Only 
trips shorter than 30 days are considered in the model. Table 21 shows the 
descriptive statistics of the variables that are used in the negative binomial count 
model. 

Table 21. Descriptive statistics of variables used in journey duration model 

Variables Mean Median SD Min Max 
Nights 4.14 3 3.79 0 28 

Travel Mode Is Personal Car 0.67 1 0.47 0 1 

Travel Mode Is Rental Car 0.08 0 0.26 0 1 

Household Annual Income ($1000) 79 68 51.8 5 200 

Age 47 50 16 21 70 
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Variables Mean Median SD Min Max 
Education—Associate Degree or 
Higher 0.32 0 0.47 0 1 

Number of Vehicles 1.71 2 0.92 0 5 

Full-Time Employed 0.45 0 0.50 0 1 

Table 22 shows the parameter estimates of the trip duration model. The model 
shows that married and female travelers have longer journey durations while 
employed travelers are likely to have shorter trips. Households that are traveling by 
air or own more vehicles have longer trip durations. 

Table 22. Parameter estimates in trip duration (in nights) prediction using 
population-weighted negative binomial count model 

Variable Coefficient Std. Err. P Value 
(Intercept) 2.829 0.1083 0.000 
Married 1.129 0.091 0.184 
Female? 1.403 0.093 0.000 
Employed? 0.775 0.0914 0.005 
#Vehicles Owned 1.069 0.0481 0.164 
Trip Mode Air 1.754 0.0959 0.000 

5.6. Trip Purpose 
Multinomial logit models were estimated to model purposes of long-distance trips 
using 2016/17 NHTS trip data. The filtered dataset of long-distance trips included 
11,414 observations. The trip purposes considered in the model include commute 
(9%), business (6%), shopping (16%), personal business (10%), school (1%), 
medical or dental (3%), religious (1%), visits to friends and relatives (18%), other 
social recreation (26%), and other purposes (10%). Table 23 presents the 
summary statistics of all tested variables considered in the multinomial model. 
These variables include respondents’ information such as age, sex, and 
employment status. It also includes household information, such as household 
income, number of vehicles owned, household size, and number of employed 
adults in the household, along with land use variables, such as population density. 

Table 23. Summary statistics of variables used in multinomial model using 2016/17 
NHTS data (N = 11,414) 

Variable name Mean Median SD Min Max 
Trip Distance 189.84 120.13 302.68 75.00 6830.957 
Age 52.24 55.00 16.88 12 92 
Male? 0.53 1.00 0.50 0 1 
Worker? 0.60 1.00 0.49 0 1 
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Variable name Mean Median SD Min Max 
Driver? 0.97 1.00 0.17 0 1 
College degree or higher? 0.53 1.00 0.50 0 1 
HH White? 0.87 1.00 0.33 0 1 
HH Black? 0.05 0.00 0.22 0 1 
Urban? 0.73 1.00 0.45 0 1 
Summer Trip 0.30 0.00 0.46 0 1 
Fall Trip 0.28 0.00 0.45 0 1 
Winter Trip 0.22 0.00 0.41 0 1 
Spring Trip 0.19 0.00 0.39 0 1 
#Adults 2.04 2.00 0.66 1 4 
#Workers 1.23 1.00 0.95 0 4 
HH Size 2.49 2.00 1.14 1 6 
#Vehicles 2.48 2.00 1.18 0 6 
HH Income ($1000) 95.45 87.50 55.86 10 200 
Friday to Sunday Trips 0.48 0.00 0.50 0 1 

Multinomial logit models with 10 alternatives are presented in Table 24, which 
keeps commute trips as the base. These models show that as household income 
increases, the probability of making long-distance business, shopping, personal, 
and recreational trips increases as compared to daily long-distance work 
(commute) trips. However, household income has an inverse impact on medical 
and dental trips. The most common long-distance trip purpose for employed 
family heads is a commute. There is a high probability of making business trips in 
the spring and fall seasons relative to other trip seasons. As their age increases, 
family heads tend to make more medical or dental and personal trips as compared 
to commute trips. 

Table 24. Specifications of the multinomial logit mode choice model for trip 
purpose using 2016/17 NHTS data (commute trip is the base purpose) 

Work business trips Shopping trips 
Response Variable Estimate t-stat P-value Estimate t-stat P-value
(Intercept) −0.543 −2.53 0.011 2.916 15.04 0.000 
Worker? - - - −2.178 −18.97 0.000 
Age 0.012 4.26 0.000 0.007 3.74 0.000 
Male? - - - −0.499 −7.54 0.000 
#Workers - - - - - -
Fall trip? 0.738 7.79 0.000 - - -
Winter trip? - - - −0.602 −7.98 0.000 
Spring trip? 0.683 7.53 0.000 −0.374 −5.41 0.000 
College degree or 
higher? 0.422 3.60 0.000 0.279 3.84 

0.000 

HH size −0.074 −1.94 0.052 −0.126 −4.32 0.000 
#Adults −0.858 −10.18 0.000 −0.436 −8.76 0.000 
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HH income ($1000) 0.014 14.84 0.000 0.007 9.12 0.000 
HH race white? 0.273 3.87 0.000 
#Vehicles −0.101 −2.79 0.005 - - -

Other family/personal business trips School trips 
Response Variable Estimate t-stat P-value Estimate t-stat P-value
(Intercept) 2.498 12.15 0.000 2.051 3.66 0.000 
Worker? −1.870 −15.45 0.000 −3.997 −14.02 0.000 
Age 0.013 6.13 0.000 −0.130 −7.82 0.000 
Male? −0.658 −8.97 0.000 - - -
#Workers - - - - - -
Fall trip? −0.247 −3.04 0.002 1.018 4.03 0.000 
Winter trip? −0.556 −6.39 0.000 −0.567 −1.65 0.098 
Spring trip? −0.679 −7.79 0.000 
College degree or 
higher? 

- - - 1.980 6.33 0.000 

HH size −0.103 −2.99 0.003 - - -
#Drivers - - - - - -
#Adults −0.188 −3.10 0.002 - - -
HH income ($1000) 0.006 6.71 0.000 0.016 7.73 0.000 
HH race white? - - - −0.548 −2.04 0.041 
#Vehicles −0.115 −3.84 0.000 −0.255 −2.63 0.008 

Medical/dental trips Religious trips 
Response Variable Estimate t-stat P-value Estimate t-stat P-value
(Intercept) −0.156 −0.51 0.613 −1.665 −3.73 0.000 
Worker? −3.244 −16.93 0.000 −2.013 −9.63 0.000 
Age 0.041 9.93 0.000 0.020 3.77 0.000 
Male? −0.197 −1.42 0.155 - - -
Driver? - - -
#Workers - - -
Fall trip? 0.202 1.34 0.180 - - -
Winter trip? - - - - - -
Spring trip? - - - - - -
College degree or 
higher? 

- - - - - -

HH size - - - −0.106 −1.46 0.145 
#Adults - - -
HH income ($1000) −0.018 −7.68 0.000 0.009 5.90 0.000 
HH race white? - - - - - -
#Vehicles - - - - - -

Social/recreational trips Friend/relative visit trips 
Response Variable Estimate t-stat P-value Estimate t-stat P-value
(Intercept) 3.237 20.47 0.000 2.806 16.11 0.000 
Worker? −2.392 −21.83 0.000 −2.131 −18.84 0.000 
Age - - - 0.005 3.19 0.001 
Male? −0.622 −10.38 0.000 −0.731 −11.45 0.000 
#Workers - - - - - -
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Fall trip? - - - 0.337 5.48 0.000 
Winter trip? −0.616 −9.53 0.000 - - -
Spring trip? −0.663 −10.50 0.000 - - -
College degree or 
higher? 

0.391 5.99 0.000 0.358 5.05 0.000 

HH size - - - −0.205 −7.96 0.000 
#Adults −0.419 −11.33 0.000 - - -
HH income ($1000) 0.009 12.04 0.000 0.007 9.67 0.000 
HH race white? 0.396 6.43 0.000 - - -
#Vehicles - - - −0.202 −8.77 0.000 

Other trip purposes 
Response Variable Estimate t-stat P-value
(Intercept) −11.123 −6.26 0.000 
Worker? - - -
Age 0.093 4.20 0.000 
Male? - - -
#Workers - - -
Fall trip? - - -
Winter trip? - - -
Spring trip? 3.172 3.90 0.000 
College degree or 
higher? - - -

HH size - - -
#Adults - - -
HH income ($1000) 0.022 5.08 0.000 
HH race white? - - -
#Vehicles −0.990 −3.72 0.000 
N = 11,414, ρ2 = 0.2501 

Figure 43 shows the distribution of trip purposes for the synthetic population and 
the 2016/17 NHTS data. The application of the trip purpose model to the synthetic 
population resulted in the following division of trip purposes: 11% commute, 7% 
business, 16% shopping, 4% personal business, 0.02% school, 0.81% medical or 
dental, 1.37% religious, 31% friend and relative visits, 29% other social 
recreation, and 0.01% other purposes. 
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Figure 43. Distribution of trip purposes for the synthetic population and NHTS data 

5.7. Party Size 
The party size model predicts the number of members, including non-household 
members, in a travel party. A negative binomial model is used to estimate the 
number of passengers on each trip (i.e., party size minus one). For this model, 
2016/17 NHTS trip data were used, after being filtered to trips longer than 75 
miles one-way to be consistent with the definition of long-distance trips in the 
LD-AV survey. In addition to the NHTS data, the EPA Smart Location data were 
used to extract job density values in the origin and destination locations of each 
trip. To align the locations of origins and destinations with the EPA Smart data, 
the former’s coordinates were matched with the Federal Information Processing 
System (FIPS) codes used in the latter’s dataset. For consistency with the NHTS 
dataset, the party size model controls for the ten trip purpose categories listed in 
5.6 Trip Purpose. We will note that in the 2016/17 NHTS dataset, and consistent 
with the 1990 Nationwide Personal Transportation Survey design, school and 
religious or community trips are combined into one trip purpose group. However, 
in this study, the research team divided this group into two trip categories, 
school/daycare and religious/community, based on the trip origin and destination 
purposes. 

Table 25 summarizes the variables and parameters tested for the party size model 
using the 2016/17 NHTS and EPA Smart Location datasets. Sample weights were 
used in the modeling process to ensure that the regression analyses reflect the 
broader population of interest. Note that the trips reported in the NHTS data were 
mostly one-way trips. A few long-distance trips (60 among 11,162) were flagged 
as round trips and reported once in the dataset. For these trips, the distances were 
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divided by two to be consistent with the definition of long-distance trips (i.e., 75 
miles one-way). Table 26 presents the negative binomial model to estimate travel 
party size (minus one, to be consistent with the assumptions of a negative 
binomial model). Variables’ practical and statistical significance are reported in 
this table. Other tested variables, which exhibited correlation or insignificance, 
are also presented in Table 25. The last column of Table 26 illustrates the 
practical significance of the travel party size model estimates. Practical 
significance values show that party size falls by 3% if age rises 1 SD. It also rises 
10% if female variable increases by 1 SD. Table 26 indicates that party size is 
smaller for commute, work business, shopping, and visiting friends or relatives 
compared to other trip purposes (i.e., family/personal business, other 
social/recreational, medical/dental, school, and religious). 

Table 25. Summary statistics of variables used in the shifted travel party size
model from the 2016/17 NHTS and EPA Smart Location datasets (N = 13,665) 

Variable Description Mean Median SD Min Max 
Party_Size Party size minus 1 1.36 1.0 2.16 0 46 
Age Age 52.30 55 16.92 16 92 

Female Respondent is 
female? 

0.48 0 0.50 0 1 

College_Education or 
higher 

Respondent has at 
least an associate 
degree? 

0.83 1 0.38 0 1 

White Respondent is white? 0.87 1 0.33 0 1 

Employed 
Respondent is 
employed? 0.60 1 0.49 0 1 

#Workers in 
Workers_per_Adults household per # 0.60 0.5 0.42 0 2 

adults 

Income_per_HH_Size 
Household income 
per household size 46.39 42.50 33.51 0.63 225 

#Children 
Number of children 
in the household 

0.44 0 0.87 0 6 

Land Use Data 

ln(O PopDens_tract) 
(persons per sq mi) 

Population density in 
the census tract of 
origin 

6.39 6.62 1.88 3.91 10.31 

ln(D PopDens_tract) 
(persons per sq mi) 

Population density in 
the census tract of 
destination 

6.43 6.62 1.88 3.91 10.31 

Trip Time 
Weekend Trip is on weekend? 0.32 0 0.47 0 1 

Summer_Trip June, July & August 
trips 

0.35 0 0.48 0 1 
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Variable Description Mean Median SD Min Max 

Fall_Trip September, October 
& November trips 

0.26 0 0.44 0 1 

Spring_Trip 
March, April & May 
trips 0.12 0 0.32 0 1 

Winter_Trip December, January & 
February trips 

0.23 0 0.42 0 1 

Trip Purposes 

Commute_Trip Commute (to/from 
work) 

0.09 0 0.28 0 1 

Work_Business_Trip Business 0.07 0 0.21 0 1 
Shopping_Trip Shopping 0.18 0 0.37 0 1 
Personal_Business_Tri 
p 

Personal business 
other than shopping 0.11 0 0.29 0 1 

Visit_Friends_Relativ 
es 

Visiting friends or 
relatives 

0.28 0 0.37 0 1 

School_Trip 
To/from school or 
daycare 0.01 0 0.10 0 1 

Religious_Community 
_Trip 

To/from 
church/community/re 
ligious activities 

0.04 0 0.15 0 1 

Medical_Dental_Trip Medical or dental 
treatments 

0.01 0 0.16 0 1 

Other_Social_Recreati 
onal 

Other social or 
recreational 019 0 0.44 0 1 

Any other trip 
Other_Trip_Purposes purpose not listed 0.01 0 0.33 0 1 

above 

Table 26. Negative binomial model for shifted party size (Y = party size minus 1) 

Estimate Stand. err. P-Value Pract. Sig. 
Theta 2.087 0.395 0.000 
(Intercept) 0.628 0.065 0.000 
Age −0.004 0.001 0.000 −3.07
Female 0.204 0.065 0.002 10.61 
Commute_Trip −1.305 0.120 0.000 −24.56
Business_Trip −1.151 0.191 0.000 −18.65
Shopping_Trip −0.220 0.068 0.001 −6.71
Visit_Friends_Relatives −0.226 0.064 0.000 −6.73
N = 13,665, Pseudo-R2 = 0.0396 

Figure 44 illustrates the estimated party size for the synthetic population prior to 
and after AVs are in the market. The application of this model showed no 
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significant change in party size after AVs are introduced. The mean party size 
both prior to and after AVs are in the market is 2.04.  
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Figure 44. Distribution of party sizes for the synthetic population 

5.8. Mode Choice 
The mode choice models were estimated using the LD-AV survey data collected 
in this project. The revealed mode preferences (RP) for the reported trips in the 
LD-AV survey were first used to estimate mode choice among the currently 
available choices. Stated preferences (SP) for future long-distance travel scenarios 
were used to estimate mode choice for business and non-business trips once AVs 
are an option, in a joint RP-SP model. Here, we present the joint mode choice 
models for business and non-business trips. The research team excluded bus, rail, 
and boat/ship from the choices due to the insufficient data available for these 
three modes. As the SP questions involving AVs did not present specific trip 
scenarios, the origin and destination locations, which were needed to extract 
travel time and cost skims, were taken from the respondents’ RP scenarios. 

Thanks to geocoding that provides a match between the rJourney zones (FHWA, 
2015) and the reported cities of origin and destination in the LD-AV survey, time 
and cost estimates for different modes were obtained from the rJourney skims 
dataset. The availability of different modes between origin and destination 
locations was also extracted from the rJourney data, under the assumption that 
OD pairs without any distance and time skims for a specific mode are not 
accessible through that mode. The summary of variables used in the mode choice 
models is presented in Table 27.  
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Table 27. Summary statistics of variables used in the mode choice model (N = 809) 

Mean Median SD Min Max 
Age 47.3 50 16 21 70 
White 0.8 1 0.42 0 1 
Education_College or Assc. higher 0.3 0 0.46 0 1 
#Adults 1.4 1 1.32 1 9 
#Children < 18 yo 0.4 0 0.73 0 6 
HH_Veh_Count 1.0 1 0.19 0 1 
Disabled 0.1 0 0.34 0 1 
Employed 0.6 1 0.49 0 1 
Married 0.5 1 0.5 0 1 
Income ($1000) 79 68 51.8 5 200 
O PopDens (/sq mi of county) 3,292 1,380 10,392 0.4 87,552 
O JobDens (/sq mi of county) 2,819 704 14,843 0.0 134,124 
D PopDens (/sq mi of county) 1,417 1,391 557 417.8 5,799 
D JobDens (/sq mi of county) 8,861 557 41,391 3.1 798,859 
PartySize 0 0 0.25 0 4 
MoreThan_1_night_Trip 0.8 1 0.37 0 1 
TravelTime Car (hr) 13.6 9.5 14.63 0 193.5 
Distance Car (mi) 838.4 574 9.15 0 12,124 
TravelTime Air (hr) 2.6 2.1 2.59 0 31 
AccessDistance Air (mi) 24.8 13 30.5 0 294 
Toll Car ($) 0.7 0 1.51 0 17.7 
LongDistance (>500 mi) 0.6 1 0.48 0 1 
Fare Air ($) 691.7 550 658 0 6903 

Mode and destination choices for long-distance domestic trips were estimated for 
business and non-business trips in a joint model prior to and after AVs become 
available, using the 2021 LD-AV survey. Less common existing long-distance 
modes (including bus, rail, and boats) were not included, so only air, rental car, 
personal car, and AVs were permitted. To consider chain trips, we summed the 
time and costs of all trip legs. The specifications of the joint RP-SP logit models 
for non-business trips with AVs are presented in Table 28. The operational cost 
for different AVs was assumed to be $0.70 per mile. The operational cost of 
personal HVs was assumed to be $0.50 per mile, while $50 per driving day 
(minimum 1 day) in addition to $0.10 per mile were assumed for a rental car. To 
avoid the correlation between travel costs and times, the residuals of travel cost 
from travel times were considered in the mode choice models. The specifications 
of the mode choice model for non-business trips show that users are more willing 
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to use airplanes for trips longer than 500 miles. In addition, AV choice has an 
inverse relationship with driver age and a direct relationship with drivers having 
at least a college or associate degree. Rental cars had a higher utility for trips with 
larger party size. 

Table 28. Specifications of the logit mode choice model after AV introduction using 
joint SP-RP LD-AV survey, EPA Smart, and RSG rJourney data 

Estimate t-ratio P-value
ASC car 0 - -
ASC air −1.187 −7.464 0.000 
ASC rental car −0.710 −10.803 0.000 
ASC AV −0.090 −0.291 0.385 
Travel time car −0.281 −5.469 0.000 
Travel time air −0.270 −2.282 0.011 
Travel time rcar −0.103 −3.618 0.000 
Travel time AV −0.113 −4.815 0.000 
Access distance air −0.028 −3.666 0.000 
Residual of cost from travel time −0.002 −3.777 0.000 
Long-distance>500 mi air 1.914 4.120 0.000 
Party size rental car 0.129 2.591 0.005 
Female car −0.207 −1.336 0.091 
Age AV −0.023 −3.472 0.000 
Associate degree AV 0.725 2.459 0.007 
μ revealed preference 1.000 - -
μ stated preference 0.752 11.398 0.000 
N = 584, R2: 0.3513 

After AVs are in market in the future (e.g., in year 2040) with AV technology 
premium of $3,500, 61% of households are estimated to have AVs; the mode 
shifts are shown in Figure 45. Note that the technology premium changes over 
time and the $3500 price is based on the assumption that AV technology premium 
was $40,000 in 2017 and drops 10% annually. 
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Figure 45. Mode share shift after AVs are in market with technology cost of $3,500 

5.9. Destination Choice Model 
Multinomial logit models were estimated to predict destination choice of domestic 
trips using 2016/17 NHTS trip data. The possible destination zones were the 
4,484 NUMAs as defined in rJourney (FHWA, 2015), comprised of combinations 
of census tract and county boundaries. Mode choice logsums were calculated 
using the before-AV mode choice model. To match the NHTS trip data with the 
NUMA zones, the coordinates of the origin and destination locations of trips 
further than 75 miles reported in the 2016/17 NHTS survey were geocoded to the 
NUMA centers. There are 15,120 long-distance trips in the 2016/17 NHTS trip 
data, which includes 1,802 work-related trips and 10,637 personal trips, with the 
rest categorized as other trip purposes. These trips are made to almost 2,000 
destination zones. An aggregate model, including attractions (eight different 
employment counts at the destination location), distance, mode choice logsum, 
and population and housing density, was tested in the destination choice models. 
Note that only the logsum of the generalized cost part of the mode choice utility 
function is used for the destination choice model. Two categories were considered 
for trip purposes, work-related and personal. Land use data were extracted from 
the EPA Smart Location data by mapping NUMAs to county FIPS codes. The 
summary of land use data in destination choice models is presented in Table 29. 
In addition, travel time and cost skims from rJourney data (FHWA, 2015) were 
used for the mode choice logsum estimations. 

Given the large choice set, i.e., the many destinations available, computational 
time was one of the main concerns in the estimation of this model. Thus, a 
strategic sampling approach, presented by Lemp and Kockelman (2012), was 
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employed, in which the alternatives are drawn in proportion to updated choice-
probability estimates. This approach has two iterations. In the first iteration, a 
simple random sampling was done among all alternatives. The second part of this 
approach uses the choice probability estimates for a strategic sampling of 
alternatives. The sampling was conducted for 20, 50, and 100 alternatives. The 
destination choice models with the strategic sampling of 100 alternatives are 
presented in Table 30. These models show that entertainment, retail, service, and 
education jobs are important contributors to destination choice for non-work trips. 
Meanwhile, the number of retail, office, service, industrial, and public 
administration jobs are significant in the work trip model. 

Table 29. Summary of EPA Smart Location data used in the destination choice
model 

Mean Median SD Min Max 
Total Population in 
Tract 

4,496 4,153 2,650 75 51,536 

Destination Population 
Density (persons per 2.97 0.11 11.42 0 237 
acre in tract) 
Tract’s Land Area (sq 
mi) 389 65 2,036 0.02 90,576 
Total Employment in 
Tract 

1,967 985 4,407 0 139,713 

#Retail Jobs in Tract 191 77 352 0 4,740 

#Office Jobs in Tract 163 34 1,032 0 37,702 

#Industrial Jobs in Tract 618 234 1,550 0 34,471 

#Service Jobs in Tract 277 76 1,347 0 59,864 
#Entertainment Jobs in 
Tract 212 70 1,306 0 81,796 

#Education Jobs in 
Tract 

195 69 756 0 26,559 

# Medical Jobs in Tract 223 80 539 0 14,718 
#Public Administration 
Jobs in Tract 87 13 276 0 7,114 

Table 30. Destination choice model parameter estimates 

Non-Business Trips Business Trips 
Estimate t-Stat P-Value Estimate t-Stat P-Value

Mode choice logsum 0.017 122.96 0.000 0.011 50.49 0.000 
Destination population 
density at the tract level 
(persons/sq mi) 

0.002 1.60 0.109 0.005 2.61 0.009 
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Non-Business Trips Business Trips 
Estimate t-Stat P-Value Estimate t-Stat P-Value

#Retail jobs in tract −0.068 −8.62 0.000 −0.049 −2.38 0.017 
#Industrial jobs in tract 0.027 3.20 0.001 0.021 1.04 0.297 
#Service jobs in tract 0.019 2.17 0.030 0.057 2.56 0.010 
#Public administration jobs 
in tract −0.019 −3.90 0.000 - - -

#Medical jobs in tract - - - −0.044 −2.81 0.005 
N = 9,325, Pseudo-R2: 0.0597 N = 1,802, Pseudo-R2: 0.060 

Figure 46 summarizes the results of the destination choice model for the synthetic 
population. Assuming a $3,500 technology cost premium (e.g., in year 2040), 
total PMT per capita in long-distance trips is estimated to rise 24% (from 250 to 
309 miles per month). The PMT in HVs is estimated to fall from 171 to 101 per 
capita per month, rental cars from 46 to 28, and airplanes from 33 to 31, while the 
PMT in AVs and SAVs are predicted to be 83 and 66 per capita per month, 
respectively. 

Personal car Rental car AV+SAV Air 

Before AVs 

After AVs are in market 

0 50 100 150 200 250 300 350 400 
Person-miles Travelled (miles per capita per month) 

Figure 46. Shift in PMT after AVs are in market 

5.10. Other Models 
A selection of variables was used as inputs for different models, as explained 
earlier. Some variables such as number of drivers in the household, retirement 
status, and distance from home to transit, grocery store, and work were not 
available in the synthetic population. Thus, the research team used different 
datasets to estimate such variables. Table 31 summarizes the estimated binomial 
logit model for being retired using 2016/17 NHTS data. 

Table 32 summarizes the Poisson model for the number of drivers in a household. 
Table 33 presents the negative binomial model for the age of the oldest vehicle 
owned by a household using the 2017 AV survey data (Quarles et al., 2021). 
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Table 34 shows the ordinary least squares models estimated for distance to transit 
and grocery store from a household’s location. Table 34 shows the ordinary least 
squares models estimated for distance to transit and grocery store from a 
household’s location. Table 35. Binary logit model to predict probability of a 
person making LD trip on any given day using 2016/2017 datagives estimates for 
binary logit model to predict probability of a person making LD trip on any given 
day using 2016/2017 data. 

Table 31. Binomial logit model for retirement status using 2016/17 NHTS person
data 

Estimate t-Stat P-Value
(Intercept) −9.264 −151.20 0.000 
Employed? −3.583 −172.80 0.000 
Age 0.159 165.70 0.000 
N = 235,904, R2: 0.559625 

Table 32. Count model for number of drivers in the household using 2016/17 NHTS 
household data 

Estimate t-Stat P-Value
(Intercept) −0.312 −16.86 0.000 
Income_per_HH_Size ($1000) 0.0012 15.59 0.000 
Workers_per_Adults 0.239 37.41 0.000 
Num_Adults 0.404 76.22 0.000 
White 0.109 15.62 0.000 
ln(Home_Pop_Dens_tract) −0.034 −23.63 0.000 
N = 125,217, R2: 0.242754 

Table 33. Negative binomial model for age of the oldest vehicle using 2017 AV
survey data (Quarles et al., 2021) 

Estimate t-Stat P-Value

(Intercept) 1.601 35.34 0.000 
HH_Veh_Count 0.596 23.52 0.000 
Income ($1000) -0.005 -10.57 0.000 
N = 1414, R2: 0.2542631, Theta: 2.317 

Table 34. Ordinary least squares models for distance from home to transit and 
grocery store using 2017 AV survey data (Quarles et al., 2021) 

Distance to transit (mi) Distance to grocery (mi) 
Estimate t-Stat P-Value Estimate t-Stat P-Value

(Intercept) 7.907 16.04 0.000 5.151 18.63 0.000 
Income ($1000) −0.018 −3.11 0.002 −0.005 −1.67 0.095 
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Distance to transit (mi) Distance to grocery (mi) 
Estimate t-Stat P-Value Estimate t-Stat P-Value

#Children 0.835 2.86 0.004 0.620 3.79 0.000 
N = 1414, R2: 0.01107 

Table 35. Binary logit model to predict probability of a person making LD trip on
any given day using 2016/2017 data 

Estimate P-Value Pract. Sig 

Intercept -4.240 0.000 
Male 0.177 0.000 0.159 
College education 0.369 0.000 0.292 
Employed 0.162 0.002 0.145 
HH income ($) 3.94E-06 0.000 0.391 
# Vehicles owned 0.087 0.000 0.193 
February 0.197 0.061 0.097 
March 0.277 0.006 0.150 
April 0.469 0.000 0.185 
May 0.252 0.036 0.101 
June 0.298 0.014 0.116 
July 0.686 0.000 0.374 
August 0.610 0.000 0.338 
September 0.340 0.001 0.186 
October 0.332 0.002 0.155 
November 0.394 0.000 0.203 
Monday -0.653 0.000 -0.424
Tuesday -0.880 0.000 -0.573
Wednesday -0.809 0.000 -0.525
Thursday -0.500 0.000 -0.328
Friday -0.247 0.002 -0.161
Saturday -0.142 0.074 -0.079
Holiday 0.297 0.023 0.087 
Close2holiday 0.214 0.001 0.156 
Christmas Week 0.540 0.000 0.164 
N = 228,595, Rho2: 0.035 

Figure 47. Number of Long-Distance Trips per Day over the Year 2016 shows 
variations of number of long-distance trips over each day from April 2016 to 
April 2017 while Figure 48. Percentage of Long-Distance Trips over the Day of 
Week for Year 2016shows percentage of long-distance trips over the day of week 
for year 2016. Figure 49. Percentage of Long-Distance Trips over the Day of 
Week for Year 2016 shows percentage of long-distance trips over the month’s 
year 2016/17. 
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Figure 47. Number of Long-Distance Trips per Day over the Year 2016 

Figure 48. Percentage of Long-Distance Trips over the Day of Week for Year 2016 

Figure 49. Percentage of Long-Distance Trips over the Day of Week for Year 2016 
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5.11. Trip-Chaining in NHTS Sample 
The aforementioned model outcomes are applicable to individual trip links 
exceeding 75 miles from the NHTS trip file. In the course of this investigation, we 
have treated each trip segment from the NHTS trip file as an individual trip, 
including those segments that entail brief stops en-route to the primary 
destination. For example, a 150-mile trip from Austin to Houston that involves a 
refueling stop shows as two separate trips (one for “shopping” midway, and one 
for the true purpose of the trip at the final destination). Long-distance (LD) trips 
are defined as those with the real destination (not an en route “pit stop” for gas or 
food) more than 75-miles away (on the travel network). To address the limitation 
in segments vs true trips, we developed an algorithm to identify intermediate 
“trips” that are really just pit stops in a longer-distance trip-chain en route to a 
final destination (resulting in fewer true LD trips). The algorithm is also designed 
to fuse “short” (less than 75-mile one-way) trip segments into long-distance (LD) 
trips (more than 75-miles one-way) as well as “long” (>75 miles) and “short” 
(<75 miles) trip segments with each when they can be considered part of chain to 
the final destination. Thus, the number of LD trips may rise or fall, relative to a 
simple counting of segments that are 75-miles or longer (which is the technique 
that most analysts use). The algorithm reflects trip coordinates (to appreciate trip 
direction, thereby avoiding back and forth trips or tours to many true destinations 
[like delivery chains]), dwell times at “destinations” (at the end of every trip 
segment, to avoid counting relatively short “pitstops”), and trip purpose (to 
distinguish refueling and meals en route, for example, from a longer-duration 
final-destination activity). 

After applying the algorithm’s many rules, the NHTS 2016/17 sample’s LD trips 
(i.e., those more than 75 miles one-way) fell by just 3.4% (from 1.84 one-way LD 
trips per American per month to 1.78). This brings the total number of NHTS 
person-trips down by 0.88%, with the average American making 3.47 trips per 
day instead of the previously estimated 3.50 trips. Notably, the algorithm was 
only applied to trips or chains of trips that met the criteria for long-distance travel 
(those segments more than 75 miles each or a series of related segments adding to 
more than 75 miles one-way), ensuring that it did not impact shorter trips. 

The best predictor in distinguishing pit stops are the coordinates (lat and long) of 
stopping points Successive trip segments by each NHTS respondent were used to 
discern whether distance from the origin kept rising in a directed way, or started 
pivoting (or even falling), indicating changes in direction. If the Euclidean 
distance from the chain origin started falling (after rising after earlier stops), it 
indicated a return trip. Combined with other factors (including mode changes, site 
activity/trip-end purpose, and short-activity durations), these falling distances or 
changes in direction helped distinguish trip chains. Mode shifts (like driving to or 
taking a bus to an airport, and changing planes at a hub airport) are not real 
destinations. Additionally, stopping away from the origin during a long-distance 
trip, to purchase food or gasoline, is often not a true destination - especially when 
the stop is short and trip direction unchanged. 
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Meal and carry-out stops shorter than 90 minutes and general errand stops (like to 
a post office) shorter than 15 minutes are assumed to be part of a longer trip. 
While the algorithm is designed to identify and classify long-distance trips more 
accurately, there are limitations to pitstop inference. For example, it is challenging 
to determine whether a person stopped to purchase gas or a breakfast coffee when 
setting out on a long-distance trip.  The NHTS “WHYTO” purpose categories 
(shown above) do not distinguish fuel stops from grocery or clothing-shop stops, 
and do not distinguish errand types (like a visit to the post office versus a library), 
making it difficult to categorize these as true destinations or pit stops along the 
way. To address this challenge, a destination dwell time threshold of 30 minutes 
(for fuel/shopping) and 15 minutes (for errands) is assumed to help identify longer 
stops that may indicate a true purpose. Some of these stops should be considered 
as necessary, separate, or true destinations that would have been made regardless 
of the longer trip that day. Similarly, stops near the end of a long-distance trip 
may be trips that would have been made anyway upon arrival at the destination. 
Travelers have many options in how they chain trips, and some important 
destinations may be along one’s long-distance trip route. 

When “pit stops'' (short stops, typically to eat, refuel, change modes, etc.) on 
long-distance trips are no longer counted as destinations (thanks to the 
algorithm’s application), only the attributes of the final leg of a trip chain 
(variables of travel day trip purpose [WHYTRP90] and trip purpose summary 
[WHYTRP1S]) are used to determine the LD trip purpose. This approach reduces 
the shares of LD trips taken for commutes plus work trips, shopping, meals/food, 
and other volunteer activities/change in mode (indicated by the “97= Something 
else” purpose) by 10.8, 35.5, 74.2, and 54.9 percentage points, respectively. 
Removing such pit stops raises the shares of (1) school plus religious trips, (2) 
medical trips, (3) transporting someone, and (4) social trips (visiting friends and 
relatives) plus recreational trips, by 14.8, 16.7, 20.8 and 21.0 percentage points, 
respectively. Average and median LD person-trip lengths also rise (after applying 
the algorithm), by about 10 percent: from 268.5 to 289.9 (average LD trip) miles 
and from 129.2 to 138.5 (median) miles, respectively.  This algorithm considers 
the location, timing, and sequence features of sample “trips” to infer the real 
reasons behind long-distance travels (where many “long” [> 75-mile] and/or 
“short” [< 75-mile] segments may be describing a single long-distance trip). 
Overall, this algorithm provides a more accurate and comprehensive 
understanding of true long-distance travel patterns, accounting for the complex 
nature of multi-stop trips and ensuring that the resulting data is meaningful for 
transportation planning and policy. This discrepancy has the potential to alter the 
outcomes of trip frequency and trip purpose models. Nevertheless, we anticipate 
that the increase on long-distance trips is approximately 10%. 

100 



 
 

      
     

      
            

              
             

 
   

 

       
       

      
        

      
      

       
       
          
        

 
  

 

      
      

       
       
      
      

       
      

  
   

 
     

 

     

 

   
 

    
   

 

 

 

Table 36. Purposes Before and After Applying the Trip Chaining Algorithm 
Without Trip Chaining 

(Prev Method) With Trip Chaining % Change 
# of trips % of Total # of trips % of Total 

# of LD Trips (> 75 miles one-way) in NHTS Sample 15972 1.73% 15434 1.69% -3.3684%
# of Person-Trips in NHTS Sample 923573 915457 -0.879%# Trips per Day per American 3.495 3.465 

WHYTRP90 
(Travel day trip 
purpose) 

01=To/From Work 1146 7.2% 1342 8.7% 17.1% 
02=Work-Related Business 809 5.1% 941 6.1% 16.3% 
03=Shopping 2350 14.7% 1562 10.1% -33.5%
04=Other Family/Personal Business 1368 8.6% 1609 10.4% 17.6% 
05=School/Church 421 2.6% 506 3.3% 20.2% 
06=Medical/Dental 351 2.2% 421 2.7% 19.9% 
08=Visit Friends/Relatives 2534 15.9% 3025 19.6% 19.4% 
10=Other Social/Recreational 3900 24.4% 3594 23.3% -7.8%
11=Other (such as change of mode) 3083 19.3% 2423 15.7% -21.4%
99=Refused / Don't Know 10 0.1% 11 0.1% 10.0% 

WHYTRP1S 
(Trip purpose 
summary) 

01=Home 4537 28.4% 6010 38.9% 32.5% 
10=Work (and work related business) 2138 13.4% 1870 12.1% -12.5%
20=School/Daycare/Religious activity 271 1.7% 311 2.0% 14.8% 
30=Medical/Dental Services 228 1.4% 266 1.7% 16.7% 
40=Shopping/Errands 1854 11.6% 1196 7.7% -35.5%
50=Social/Recreational 3316 20.8% 4013 26.0% 21.0% 
70=Transport Someone 607 3.8% 733 4.7% 20.8% 
80=Meals 1693 10.6% 436 2.8% -74.2%
97=Something Else (such as unpaid 
volunteer activities and change of 
transportation mode) 

1328 8.3% 599 3.9% -54.9%

Chapter 6. Freight Model Specification 

The implementation of autonomous trucking will bring sweeping changes to the 
world of freight transport. Semi-automated trucks may enable automated driving 
under supervision and limited circumstances, such as driving long distances on an 
interstate highway. Eventually, fully automated self-driving trucks (or ATrucks) 
may leave the truck terminal and travel to a destination without human 
intervention or presence in the truck cab (Viscelli, 2018). ATrucks may be able to 
automate other functions in addition to onboard tasks like drop-offs and pickups, 
but most experts expect an attendant will remain on board, doing other types of 
work, sleeping as needed, and ensuring thoughtful deliveries and pickups 
(Yankelevich, et al., 2018). Such multi-tasking of vehicle attendants will allow for 
extended use of commercial trucks (i.e., every day, almost 24 hours a day) and 
greater labor productivity, resulting in lower per-mile and per-ton-mile freight 
delivery costs. 

In 2014, trucks carried 1.996 trillion ton-miles of freight around the US, 37.7% of 
the nation’s total ton-miles transported that year (BTS, 2017). Investment in and 
use of ATrucks will affect not only national and regional economies (Clements 
and Kockelman, 2017) but trade patterns, production levels, and goods pricing. 
Commercial trucks consume about 20% of the nation’s transportation fuel, and 
self-driving technologies are predicted to reduce those diesel fuel bills by 4–7% 
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(Liu and Kockelman, 2017; Barth et al., 2004; Shladover et al., 2006). ATrucks 
can reduce some environmental impacts, lower crash rates, and increase line-haul 
transportation. Platooned convoys should enable following truck attendants to 
avoid certain restrictions on service hours, enabling longer driving distances. 
Uranga (2017) predicts greater use of ATrucks before passenger vehicle 
automation, thanks to the more obvious economic benefits of self-driving trucks. 

While there is active investigative interest in the travel and traffic effects of self-
driving cars, research into the travel and traffic impacts of ATrucks is dearly 
lacking. This project leverages Freight Analysis Framework 5 (FAF5) to estimate 
the mode and origin choices of freight carriers; then, model parameters are fed 
into the random-utility-based multi-regional input-output (RUBMRIO) model to 
investigate how patterns of freight flow will change based on automation 
technology’s impacts on truck cost and operation. ATrucks’ per-mile operating 
cost is assumed to be 50% of that of HTrucks’, factoring in the benefits of 
increased safety, a lower wage for truck drivers, and a higher initial cost (e.g., 
purchase of tractor) to introduce ATrucks. 

The remainder of this chapter proceeds through each component of the freight 
models, showing how it is estimated and parameterized and offering insight into 
significant trends that will affect the overall RUBMRIO model. 

6.1. Datasets and Model Parameter Estimation 
This section introduces the prepared datasets for the freight model, as well as the 
model estimations. The estimated models will be used in the RUBMRIO model 
specified in section 6.2. 

6.1.1. Freight Analysis Framework (FAF5) Data 
FAF5 integrates trade data from a variety of industry sources, with emphasis on 
the Census Bureau’s 2017 Commodity Flow Survey (CFS) and international trade 
data (Census Bureau, 2021). It provides estimates of US trade flows (in tons and 
dollar value) by industry, across 8 modes (truck, rail, water, air, multiple modes 
and mail, pipeline, non-domestic, and others), and between FAF5’s 129 aggregate 
zones within the US. FAF5’s origin-destination-commodity-mode annual freight 
flows matrices were used to predict domestic and export trade flows by zones. 
FAF5 data show foreign export flows exiting the US from 117 of these 129 zones, 
as shown in gray in Figure 50a. Consequently, these same 117 zones serve as both 
production and export zones in this paper’s trade modeling system. 
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FAF5 zones were then disaggregated into county-level matrices using the 2017 
CFS boundary data (which identify the counties belonging to each FAF5 zone). 
Ten metro areas were also added to the CFS data in 2017, leading to 3,109 
contiguous counties (as shown in Figure 50b) after excluding Hawaii and Alaska. 
Interzonal travel times and costs by rail, ATruck, and HTruck were all computed 
for the 3,109-by-3,109-county matrix using the shortest highway and railway 
paths in terms of free-flow travel time. All intracounty travel distances were 
assumed to be the radii of circles having that county’s same area. 

(a)  

(b) 
Figure 50. Continental US domestic and export zones for trade modeling: (a) FAF5’s 129 
zones, including the 117 export zones (shown in gray), and (b) its 3,109 domestic freight 

counties. 

6.1.2. Freight Mode Choice Model 
The freight mode choice model serves as a key component in the RUBMRIO 
model, as it distributes the freight flow for an OD pair by mode. The freight mode 
choice model was estimated by leveraging data assembled from different sources. 
FAF5 freight flow data provides freight flow records, with skims supported by 
FAF4, rJourney, and county-level population data. Due to the large gap in 
magnitude of the transported values of different commodities, one mode choice 
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model was estimated for each commodity. FAF5 provides 42 different types of 
commodities. They are aggregated further to 20 types, which can be matched to 
the input-output table. Sector/Industry 3 is considered similar to sector 2, so they 
are estimated as the same category. Ton-miles of each commodity transported 
between OD pairs by mode are used as the weights for each freight flow record, 
and weights are further normalized and transformed using a log function to 
maintain a reasonable scale. Sectors 14 to 20 do not have specific SCTG code, so 
their parameters are the average of all other sectors. Table 35 also shows the 
IMPLAN (Impact Analysis for Planning) code matching with other freight code 
to utilize the input-output (IO) table. 

Table 37. Description of economic sectors in RUBMRIO model 

Sector Description IMPLAN 
Code 

NAICS 
Code SCTG Code 

Ton-Miles 
Transported 
in 2017 
(billion) 

1 Agriculture, Forestry, 
Fishing, and Hunting 1 to 19 11 1 16.6 

2 Mining 20 to 30 21 
10 to 15 791.4 

3 Construction 34 to 40 23 

4 
Food, Beverage, and 
Tobacco Product 
Manufacturing 

41 to 74 311, 312 2 to 9 965.2 

5 Petroleum and Coal 
Product Manufacturing 115 to 119 324 16 to 19 337.8 

6 
Chemicals, Plastics, and 
Rubber Product 
Manufacturing 

120 to 152 325, 326 20 to 24 343.9 

7 Primary Metal 
Manufacturing 170 to 180 331 32 104.8 

8 Fabricated Metal 
Manufacturing 181 to 202 332 33 57.4 

9 Machinery 
Manufacturing 203 to 233 333 34 58.6 

10 

Computer, Electronic 
Product, and Electrical 
Equipment 
Manufacturing 

234 to 275 334, 335 35, 38 44.7 

11 
Transportation 
Equipment 
Manufacturing 

276 to 294 336 36, 37 83.7 

12 Other Durable and Non-
Durable Manufacturing 

75 to 114, 
153 to 169, 
295 to 304 

313 to 
316, 321 
to 323, 
327, 337 

25 to 31, 39 481.6 

13 Miscellaneous 
Manufacturing 305 to 318 339 40, 41, 43 119.8 

14 
Transportation, 
Communication and 
Utilities 

31 to 33, 
332 to 353 

22, 48, 49, 
51 -- --
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Sector Description IMPLAN 
Code 

NAICS 
Code SCTG Code 

Ton-Miles 
Transported 
in 2017 
(billion) 

15 Wholesale Trade 319 42 -- --
16 Retail Trade 320 to 331 44, 45 -- --

17 FIRE (Finance, Insurance 
and Real Estate) 354 to 366 52, 53 -- --

18 Services 367 to 440 
54 to 56, 
61, 62, 71, 
72, 81, 92 

-- --

19 Household -- -- -- --
20 Government -- -- -- --

For each model, four skim tables are used as variables in the utility function: truck 
travel time, truck cost, rail travel time, and rail cost. Truck travel time was derived 
from the 2010 rJourney data, which provides passenger travel times between 
NUMAs across the US. NUMAs are zones utilized for the rJourney model that are 
comprised of counties or PUMAs. The origin and destination’s population-
weighted travel times at the NUMA level are aggregated into FAF zone level to 
offer an average passenger travel time between FAF zones. Since trucks require 
more highway travel time than passenger vehicles, the following equation is used 
to convert a passenger vehicle’s highway travel time to a truck’s. (Cambridge 
Systematics, 2002):  

�!",$%&'( = (highway distance in miles / 45 mph) + Floor ((highway distance in miles / 
45 mph) / 10 hours) ∙ 14 hours (1) 

Rail time is calculated based on rail distance, adjusted following the equation in 
Texas’s statewide analysis model version 4 (SAM4) to show a fixed 30 hours’ 
dwelling time and an average speed of 21.72 miles per hour on railways: 

�!",%)!* = 30 hours + rail distance / 21.72 mph (2) 

In addition, to maintain the travel time variable under a reasonable scale for both 
truck and rail, two transformations were applied. The first was to change from 
hours to minutes by multiplying a factor of 60, and a log transformation was 
further applied to travel time in minutes.  

Truck cost and rail cost are calculated based on travel distances. The National 
Private Truck Council (2021) gives an average truck cost for 2021 of $2.90 per 
mile, with drivers’ wages accounting for 40% and fuel for 12%. Rail’s cost was 
about $1.59 per mile on average in 2019 (Ashe, 2022). Since ton-mile data is not 
available in FAF5, truck and rail distances are calculated based on FAF4, by 

105 



 
 

 

 
 

  
 

 
 

  

  
 

 
   

 

        

       

    
  

     
     
     

   
     
     
     

    
   

     
     
     

   
  

     
     
     

   
   

     
     
     

  
     
     
     

- -

dividing total ton-miles by total tons transported to get the average distance per 
ton for each FAF’s OD pair by commodity. The cost terms are used directly, 
without a log transformation, as it is easier to normalize the cost to a dollar unit 
when using the equations in the RUBMRIO model. 

With freight flow records and skim tables obtained, the model was estimated in 
the R computer language using the Apollo package. Table 38 presents model 

-results with generic time and cost coefficients for both truck and rail (�'+,$ and 
�$!-. , respectively), setting truck as the baseline (�/ = 0). This gives the 
following utility function for truck and rail: 

#,%&'() � � �!" = ��0 + ����� ⋅ ���,����� + ����� ⋅ ���,����� (3) 

#,&*!+ � � �!" = �0 ⋅ ���,���� + ����� ⋅ ���,���� (4) 
� + ����� 

Results show a disutility with increased travel times and costs, and trucks are 
preferred in general for every commodity. Most coefficients have significance 
levels of 0.05, except those for the commodity groups Agriculture, Forestry, 
Fishing, and Hunting; Primary Metal Manufacturing; and Miscellaneous 
Manufacturing. This may be due to one or more commodities within the category 
showing a pattern distinct from the rest. 

Table 38. Freight model choice parameter estimates using FAF5 data 

Sector Parameters Estimate Std. Err. t-stat P-value

(1) Agriculture, Forestry,
Fishing, and Hunting

% �!"#$ −5.085 6.442 −0.789 0.430 
% �&#'( −2.390 3.465 −0.690 0.491 
% �)*+& −0.827 1.449 −0.571 0.568 

(2) Mining and Construction

, �!"#$ −0.693 0.079 −8.766 0.000 
, �&#'( −0.283 0.028 −10.186 0.000 
, �)*+& −0.084 0.029 −2.894 0.004 

(4) Food, Beverage, and Tobacco
Product Manufacturing

-�!"#$ −1.336 0.050 −26.462 0.000 
-�&#'( −0.270 0.019 −14.026 0.000 
-�)*+& −0.143 0.015 −9.264 0.000 

(5) Petroleum and Coal Product
Manufacturing 

. �!"#$ −0.780 0.123 −6.357 0.000 
. �&#'( −0.379 0.042 −8.960 0.000 
. �)*+& −0.277 0.047 −5.867 0.000 

(6) Chemicals, Plastics, and
Rubber Product Manufacturing 

/ �!"#$ −0.774 0.049 −15.660 0.000 
/ �&#'( −0.348 0.019 −18.116 0.000 
/ �)*+& −0.043 0.016 −2.715 0.007 

(7) Primary Metal Manufacturing

0 �!"#$ −1.510 0.096 −15.722 0.000 
0 �&#'( −0.030 0.036 −0.832 0.405 
0 �)*+& −0.189 0.031 −6.036 0.000 
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Sector Parameters Estimate Std. Err. t-stat P-value

(8) Fabricated Metal
Manufacturing

1 �!"#$ −1.798 0.107 −16.750 0.000 
1 �&#'( −0.088 0.042 −2.089 0.037 
1 �)*+& −0.186 0.033 −5.694 0.000 

(9) Machinery Manufacturing

2 �!"#$ −1.770 0.109 −16.214 0.000 
2 �&#'( −0.166 0.044 −3.794 0.000 
2 �)*+& −0.199 0.032 −6.207 0.000 

(10) Computer, Electronic
Product, and Electrical
Equipment Manufacturing 

%3 �!"#$ −2.120 0.097 −21.928 0.000 
%3 �&#'( −0.133 0.038 −3.477 0.001 
%3 �)*+& −0.228 0.028 −8.229 0.000 

(11) Transportation Equipment
Manufacturing 

%% �!"#$ −1.637 0.086 −19.117 0.000 
%% �&#'( −0.131 0.033 −3.949 0.000 
%% �)*+& −0.136 0.026 −5.182 0.000 

(12) Other Durable and Non-
Durable Manufacturing

%, �!"#$ −1.806 0.044 −40.837 0.000 
%, �&#'( −0.114 0.017 −6.694 0.000 
%, �)*+& −0.250 0.013 −18.782 0.000 

(13) Miscellaneous
Manufacturing

%4 �!"#$ −5.002 0.866 −5.779 0.000 
%4 �&#'( −0.039 0.315 −0.122 0.903 
%4 �)*+& −0.858 0.233 −3.685 0.000 

6.1.3. Freight Origin Choice Model 
The freight origin choice model is also a key component in the RUBMRIO model, 
as it distributes freight flow across different potential origins. The freight origin 
choice model uses similar freight flow records as the mode choice model 
estimation but aggregates records by mode. Two variables are used in the origin 
choice model: the logsum estimated from the mode choice model, and the 
population of the origin FAF zone with a log function transformation. The utility 
function to transport commodity m from i to j is as follows: 

�!"# = �� log(���) + �#ln () exp-�!"#,./ (5)
,∈. 

where �' and �# are parameters to be estimated for log of population and mode 
choice logsum, respectively. The model was also estimated using the Apollo 
package in R, with iterative coding for 132 different FAF zone as origins, while 
excluding any origins that are unavailable. “Unavailable” here indicates FAF OD 
pairs that do not have freight flow between them. Table 39 shows the model 
estimates. 
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Table 39. Freight origin choice model estimates 

Sector Parameters Estimate Std. Err. t-stat

(1) Agriculture, Forestry,
Fishing, and Hunting

�% 0.260 0.055 4.7 
�% 0.347 0.017 20.8 

(2) Mining and Construction
�, 0.283 0.021 13.6 
�, 2.517 0.039 64.1 

(4) Food, Beverage, and
Tobacco Product
Manufacturing

�- 0.502 0.011 47.7 

�- 1.858 0.016 116.3 

(5) Petroleum and Coal Product
Manufacturing 

�. 0.322 0.030 10.8 
�. 2.457 0.046 53.7 

(6) Chemicals, Plastics, and
Rubber Product Manufacturing 

�/ 0.533 0.011 48.5 
�/ 1.842 0.018 104.0 

(7) Primary Metal
Manufacturing

�0 0.440 0.022 20.4 
�0 2.452 0.056 44.0 

(8) Fabricated Metal
Manufacturing

�1 0.531 0.020 26.2 
�1 1.818 0.042 43.1 

(9) Machinery Manufacturing
�2 0.529 0.020 27.1 
�2 1.329 0.031 42.4 

(10) Computer, Electronic
Product, and Electrical
Equipment Manufacturing 

�%3 0.748 0.016 47.7 

�%3 1.121 0.024 47.0 

(11) Transportation Equipment
Manufacturing 

�%% 0.582 0.016 37.3 
�%% 2.023 0.034 59.8 

(12) Other Durable and Non-
Durable Manufacturing

�%, 0.605 0.009 69.8 
�%, 1.668 0.014 118.0 

(13) Miscellaneous
Manufacturing

�%4 0.624 0.015 40.8 
�%4 0.737 0.011 68.7 

6.1.4. Economic Interaction Data 
The model’s embedded IO matrices’ technical coefficients and regional purchase 
coefficients (RPCs) were obtained through IMPLAN’s transaction tables, as 
derived from US inter-industry accounts. Technical coefficients reflect production 
technology or opportunities (i.e., how dollars of input in one industry sector are 
used to create dollars of product in another sector) and are core parameters in any 
IO model. RPCs represent the share of local demand that is supplied by domestic 
producers. RPC values across US counties are assumed to be constant here, since 
variations are unknown. However, counties closer to international borders are 
more likely to “leak” sales (as exports) than those inland, everything else 
constant. And production processes or technologies can vary across counties (and 
within industries, across specific manufacturers and product types, of course). 
This application assumes that all US counties have access to the same production 

108 



 
 

   
     

    

    
  

  

   

  
 

 

	  

  
   
   

 

  
 

  

   

	 	  

  
  

   

technologies or technical coefficients table. IMPLAN’s 440-sector transaction 
table was also split into 20 industry sectors, plus Household and Government 
sectors, to represent the US economy in this trade-modeling exercise. 

6.2. Random-Utility-Based Multiregional Input-Output
Model Specifications 
This section introduces the different components of the RUBMRIO model, 
including the disutility function, production function, and trade flows. Proof is 
also given of the existence and the uniqueness of the RUBMRIO variant model. 

6.2.1. Disutility Function 
In the RUBMRIO model, both internal trade flows and external trade flows (from 
counties to export zones/customs districts) are based on the disutility of acquiring 
some commodity m from origin zone i and consuming it in zone j, shown in 
equation (6) (or exporting it to zone k, shown in equation (7)). 

�!"# = −�!# + �� log(���) + �#ln () exp-�!"#,./ (6)
,∈. 

�!)# = −�!# + �� log(���) + �#ln () exp-�!)#,./ (7)

-,$%&'( and �!"
,∈. 

where � = {�����, ����}, with �!" 
-,%)!* defined in equations (3) and 

-(4), �! is the price of purchasing $1 of commodity m in zone i (in units of utility), 
and �- and �- are estimated parameters based on Ben-Akiva and Lerman (1985) 
of input origin and shipping-mode choice by zone and sector. 

6.2.2. Production Function 
The behaviors of land and transport markets are highly affected by the 
components’ market prices, including land rents and transport costs, which in turn 
affect production, consumption, and location decisions. The cost of producing one 
unit of commodity n in zone i is a function of the cost of inputs from other firms 
at other locations and the corresponding transport costs. The form of the overall 
manufacturing cost and ultimate sales price for a unit is shown in equation (8). 

> -> -; �" = 9:�/" ∙ �" ∀�, � (8)
-

where �36'7 is the technical coefficient for zone j, which defines the fractional 
amount of commodity m required to produce one unit of commodity n in zone j, 
and �6' is the weighted-average cost of input m in zone j. These technical 
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coefficients, �3'67, come from the original IMPLAN transactions tables (Minnesota 
IMPLAN Group, 1997) for total purchases, both local and imported. IMPLAN is 
a social accounting and impact analysis software, developed by the Minnesota 
IMPLAN Group. The input costs, �"-, are a weighted average of input purchase 
price �#' for commodity m from all input zones i plus the associated generalized 
transport costs �#6'8 (from each zone i to zone j using mode d), as shown in 
equations (9) and (10). The weight factors are the interzonal trade flows by mode 
(�!"-?). 

-? - -? (9)�!" = �! + �!"

-?; ∑ ∑ :�!"-? 
! ? ∙ �!"-�" = (10) 
∑ ∑ �!"-?! ? 

6.2.3. Trade Flows 
Trade flows can be calculated when all the other values are given, including 
export demands, production costs, technical coefficients, and transport costs. 
Under an assumption of profit-maximizing and cost-minimizing behavior, with 
unobserved heterogeneity in alternatives, consumers (both final and intermediate) 
will buy from the producer that can supply the lowest total price (including 
transport costs) of any input. Unobserved heterogeneity introduces the random 
element, which, under an assumption of IID Gumbel distribution, leads to the 
multinomial logit model for origin and mode choices. Two kinds of trade flow are 
estimated in the current RUBMRIO model; these are the interzonal trade flows by 
mode, �#6'8, and the flows to export zones by mode, �#9'8, as shown here: 

-?; exp:�!"-; exp:�!"�!"-? = �- ∀�, �,�, � (11) " -; -?; ∑! exp:�!" ∑? exp:�!"

-) -?; exp(�!( exp:�!(-? -= �( ∀�, �, �, � (12) �!( ∑! exp(�!(-) ∑ exp:�!(-?;? 
-where � is the total volume of m consumed in zone j, which can be calculated " 

based on equation (13): 

- -> � = 9:�" ∙ �">; ∀�, � (13)" 
> 

Here, �6'7 is the technical coefficient matrix (following leakage considerations) 
for zone j, which defines the amount of commodity m required (from within the 

110 



 
 

    
 

 

 	

	 	  

  

 

   

  
 

     
   

  

 

 

 

 

 

- - -

-state) to produce one unit of commodity n in zone j. And �! is the total 
production of commodity n in zone i, which is the sum of the trade flows leaving 
zone i to meet the demands of other producers and export zones. 

- -? -? �! =99 �!" +99 �!( ∀�,� (14)
" ? ( ? 

Equations (6) through (14) constitute the majority of the RUBMRIO model; these 
equations are solved iteratively to achieve an equilibrium trade pattern. To resolve 
this set of equations (and achieve a convergent solution), the iterations begin by 
setting all prices to zero, solving for trade-flow probabilities, and generating an 
initial pattern of trade. This alters the price structure, and thus the trade pattern. 
We continue updating prices and patterns until convergence. Zhao and 
Kockelman (2002) describes this process. 

6.2.4. Solution Existence and Uniqueness 
This section presents the fixed-point RUBMRIO variant problem that 
incorporates the cost of modes in the average cost calculations for commodities, 
compared to the general form in Zhao and Kockelman (2004), which uses an 
average cost term as logsum. 

-Define �!" as the probability that region j purchases input m from region i and 
�!"-? as the probability of choosing mode d for transport given that region j 
purchases input m from region i: 

exp:�!"-;-�!" = (15) 
∑! exp:�!"-;

-?;exp:�!"�!"-? = (16) -?; ∑? exp:�!"
Then we can reformulate the average cost: 

-? -?;∑ ∑ :�!" ∙ �!"! ? > -> - -> - -> �" =9�/" ∙ �" =9�/" ∙ �" =9�/" ∙
∑ ∑ �!"-?! ? 

-? - -?;Y∑ ∑ ! ?X�!" ∙ :�! + �!"-> = 9 �/" ∙
∑ ∑ ? �!"-?! -
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- -exp:�!"-; exp:�!"∑ ∑ Z� ∙ + �!"! ? " -; 

-?

-?
; 
; 
:�! -?;[∑! exp:�!" ∑? exp:�!"-> = 9 �/" ∙

∑ ∑ �!"-?! ? -

- ∑ ∑ Z 
exp:�!"-; exp:�!"-?; - -?;[�" ! ? -?;

∙ :�! + �!"∑! exp:�!"-; ∑? exp:�!"-> = 9 �/" ∙ -�" -

-; exp:�!"-> -=9�/" ∙99Z
exp:�!" -?; 

∙ :�! -?;[ 
∑ exp:�!"-;∑ exp:�!"-?;

+ �!"
! ? - ! ?

-> -? -= 9 �/" ∙ 9 9X�!" ∙ :�! -?;Y -�!" + �!"
- ! ?

We then denote: 

�⃑ = {�">}

Therefore, 

-> -? -�>(�⃑) = 9�/" ∙99X�!"-(�⃑)�!" ∙ :�! -?;Y " + �!"
- ! ?

-> - -? -?; = 9 �/" ∙ 9 �!"-(�⃑) ∙ ̂ �! + 9:�!" ∙ �!" _
- ! ? 

Therefore, we have a fixed-point problem as follows: 

�⃑ = �⃑(�⃑) (17) 

Compared to Zhao and Kockelman (2004), this fixed-point problem variant 
replaces the generic transportation price (regardless of mode) with the probability-
weighted transportation cost for different modes. The proof of existence and 
uniqueness of the solution to this fixed-point model follows Zhao and Kockelman 
(2004): 

• Existence condition for the price solution

First, we impose a rather weak condition on the feasible set to ensure the
existence of a solution. Let �@ = a�!" > ≤ �!" >∗d are > |0 ≤ �!" >∗, ∀�, �, �d, where a�!"
upper bounds that we assume can be determined a priori (in practice, one can 
usually choose very large numbers as upper bounds). Then �@ is a bounded 
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and closed convex subset (therefore, a compact set) on the space �BCC. We 
can easily observe that if the prices are bounded, the function �⃑ also can be 
considered bounded, since it is a convex combination of prices (plus 

-transportation costs) across space (i.e., ∑! �!" = 1, ∀�) and economic sectors
-> (i.e., ∑ �" >∗d, ≤ 1, ∀�, �). If one assumes that �⃑’s upper bounds are also a�!"-

one essentially assumes that the upper bounds are large enough to 
accommodate the transportation prices’ contributions to �⃑. Then, �⃑ is a 
mapping �@ → �@, and it is continuous. Following Brouwer’s theorem (see 
Khamsi and Kirk, 2001), we then have the following condition: 

The fixed-point problem (17) provides at least one solution if and only if there 
exist positive constants a�!">∗d such that the fixed-point problem (17) provides 
at least one feasible solution in the space �D. 

• Uniqueness condition for the price solution

Sufficient conditions for the uniqueness of the solution of a fixed-point
problem are given by Banach’s theorem (see Border, 1985), which requires
that the function be contractive over a complete set or quasi-contractive
(implying monotonicity) over a compact set. We consider that �@ is in a
normed space, due to the mean-value theorem (see Khamsi and Kirk, 2001), if
f∇�⃑(�⃑)f < 1; then the fixed-point problem has a unique solution, and the
sequence �⃑($FG) = �⃑(�⃑($)) converges on the unique solution �⃑ = �⃑(�⃑), if
�⃑(+) ∈ �@.

Now consider the general case of a dispersion parameter �- for the origin choice 
model: 

exp:�-�!"-;-�!" = (18) 
∑! exp:�-�!"-;

The same process in Zhao and Kockelman (2004) can be followed, when the 
probabilities are determined by relative disutilities, which depend on prices: 

��">(�⃑) � -> - - -? -?; - = - ^9 �" -(�⃑) ⋅ k�( + �( ∙ �!" l_9 �(" + 9:�!"��! ��! - ( ? 

� -> - -? -?; = �" ^9 �(" + 9:�!" ∙ �!" _-(�⃑) ⋅ k�( l -��! ( ? 
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- -

- -

- - -? -?; = �"-> ⋅ �!" ⋅ m1 − �- ^k�! + 9:�!" ∙ �!" l − �"-_o (19)
? 

? -? -?; Letting �!" = ∑?:�!" ∙ �!" , equation (19) can be written as: 

��>(�⃑) " = �"-> ⋅ �!" ⋅ a1 − �-X�! ? − �"-Yd- + �!"��! 
which is the same equation as (3.14) in Zhao and Kockelman (2004). This proof 
then merges with the proof in Zhao and Kockelman (2004) (equation 3.14 
forward) to show that f∇�⃑(�⃑)f < 1, and we reach the following restrictive 
uniqueness condition for price solution: 

The fixed-point problem (17) results in at most one equilibrium price solution if 
the dispersion parameters {�-} are sufficiently small such that the inequality 
�- < 1/ ��� :�! + �!" − �"-; ∀� holds. 

GI!,"IC

6.3. Scenario Experiment and Analysis 
The base case scenario for the model was set based on the US’s export flow from 
2017, when only HTrucks were available. In the ATrucks scenario, they were 
added as an additional mode nested within the truck mode. The alternative 
specific constants (ASCs) for Atrucks are set as −0.1 to recognize the initial high 
cost and the gradual adoption and preference for Atrucks. The operating cost of 
ATrucks is taken to be 50% of that of HTrucks, based on the assumption that no 
drivers are needed in the vehicles. More sensitivity analysis will be conducted to 
also create a model where ATrucks have drivers to react to emergencies. Figure 
51 shows the nesting structure of the mode and origin choices. The new equations 
are from Huang and Kockelman (2020) and the parameters are shown in Table 40. 
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Table 40. Parameter estimates for origin, mode, and truck choice equations 

Origin Choice Mode Choice Parameters Truck Choice Parameters Parameters 
m m Sector m=1 θij θij,mode=1/1.2 θij,truck=1/1.4 

m m m m m m γm λm β β β β β1, rail rail,time rail,cost β1, ATruck truck,time truck,cost 

1 0.26 0.35 −5.09 −2.39 −0.83 −0.10 −2.79 −0.96
2 0.28 2.52 −0.69 −0.28 −0.08 −0.10 −0.33 −0.10
4 0.28 2.52 −0.69 −0.28 −0.08 −0.10 −0.33 −0.10
5 0.50 1.86 −1.34 −0.27 −0.14 −0.10 −0.32 −0.17
6 0.32 2.46 −0.78 −0.38 −0.28 −0.10 −0.44 −0.32
7 0.53 1.84 −0.77 −0.35 −0.04 −0.10 −0.41 −0.05
8 0.44 2.45 −1.51 −0.03 −0.19 −0.10 −0.04 −0.22
9 0.53 1.82 −1.80 −0.09 −0.19 −0.10 −0.10 −0.22
10 0.53 1.33 −1.77 −0.17 −0.20 −0.10 −0.19 −0.23
11 0.75 1.12 −2.12 −0.13 −0.23 −0.10 −0.16 −0.27
12 0.58 2.02 −1.64 −0.13 −0.14 −0.10 −0.15 −0.16
13 0.61 1.67 −1.81 −0.11 −0.25 −0.10 −0.13 −0.29

The base case scenario without ATrucks shows a total $1.06 trillion export 
demand and $11.1 trillion domestic demand, with trucks dominating the market, 
generally moving 93% of product value while rail moves the other 7%. If 
measuring by transported ton-mile, truck accounts for 83% and rail 17%. Since 
the model was driven by export demand, it remains the same in both the base case 
and the ATruck scenarios, and the domestic flow is also very similar across 
scenarios (dropping slightly to $10.9 trillion in the ATruck scenario).  
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Figure 52. Change in domestic and export ton-miles by mode after the introduction of 
ATrucks 

Figure 52 shows the percentage change in truck (sum of ATruck and HTruck) and 
rail mode choice for domestic and export flow in ton-miles after the introduction 
of ATrucks. Their introduction causes an increase in domestic and export truck 
ton-miles for trips of all distances, and especially those between 1,000 and 1,500 
miles. Export rail ton-miles shift to trucks, but domestic rail’s ton-miles still 
increase for trips between 1,000 and 1,500 miles, or shorter than 500 miles. 

Figure 53 shows the mode split (in terms of transported ton-miles) between 
HTrucks, ATrucks, and rail in the ATruck scenario. HTrucks’ mode share rises as 
the distance increases but drops after 500 miles, while rail share is fairly stable 
across all distances.  
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        Figure 53. Mode share (in ton-miles) with introduction of ATrucks 

As mentioned, a major benefit of ATrucks is that unlike HTrucks, whose drivers 
need to rest nightly, they can keep driving overnight. In the mode choice model 
estimates, an extra 14 hours of non-driving time is assumed for every 10 hours of 
an HTruck’s on-road travel time. Figure 54 provides a comparison of two ATruck 
scenarios, one where ATrucks reduce cost by 50% and also eliminate overnight 
resting time, and another where ATrucks only reduce the cost without realizing 
any time savings. Figure 54 demonstrates that if the travel time saved by ATrucks 
is taken into consideration, they attract 25% more value and ton-miles, especially 
for trips between 500 and 750 miles. This increase drops off when the distances 
become longer, only comparatively raising ATrucks’ ton-miles by about 10% and 
their value transported by 5% for trips over 1,500 miles.  
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Figure 54. Change in value and ton-miles transported when ATrucks’ overnight time 
savings and cost savings are taken into account (compared to cost savings only) 
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Chapter 7. Texas Freight Demand Model Application 

In this chapter, we leverage TxDOT’s SAM-V4 to conduct freight travel 
predictions for 2045 accounting for the use of ATrucks. Both ATrucks and 
automated passenger cars are modeled to reflect the future use of automation 
technology, with the analysis emphasis on freight patterns. 

The SAM network covers all of North America, with greater detail in and near 
Texas. Figure 55b shows the state’s highway, railway, and airline networks, 
which contain 200,445 links and 168,507 nodes. There are 6,860 traffic analysis 
zones (TAZs) in SAM-V4, significantly more detail compared to the 4,400 TAZs 
in SAM-V3. As illustrated, dense networks exist within Houston, San Antonio, 
Austin, and the Dallas-Fort Worth metroplex. 

a. SAM-V4 TAZs b. SAM-V4 Networks

Figure 55. Geographic data used in SAM model 

7.1. Travel Demand Model Methods 
A four-step travel demand modeling process with a feedback loop is used here to 
model traffic patterns across the entire state of Texas, including trip generation, 
trip distribution, mode choice, and traffic assignment. For passenger travel’s four-
step model, the traditional trip distribution table was obtained from the SAM-V4 
model, and the production-attraction matrix was then converted into an OD 
matrix. The model uses one time of day (24 hours) as the simulation horizon, 
recognize that many trips, especially freight trips, are long-distance, spanning 
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many times of day and many different congestion settings. Computation time is 
another concern that is addressed by using only one time-of-day simulation. For 
the freight model, a doubly constrained trip distribution procedure was used, 
based on SAM-V4’s 2045 freight trip generation parameters. A mode choice 
model was then applied, reflecting truck, carload rail (CL), and intermodal 
transport (IM) alternatives. A base case scenario, without AV, SAV, and ATruck 
modes, was run first, to compare against the self-driving scenarios. Various 
parameter settings were also tested, using sensitivity analysis, to provide a sense 
of prediction variability. 

7.2. Trip Generation 
Trip generation data were obtained from the SAM-V4 2045 scenario results, 
based on underlying population and jobs forecasts by zone (Alliance 
Transportation Group, 2018), using 2016/17 NHTS data. Passenger trip types here 
include home-based work, home-based other, home-based school, non-home-
based other, and non-home-based visitor. In terms of freight trip generations, 
Table 41’s 15 commodity groups are based on US SCTG code. SAM-V4 freight 
transport attraction and production are conducted across all Texas counties and 
also non-Texas US states. 

7.3. Trip Distribution 
As previously mentioned, the passenger trip distribution table was obtained from 
SAM-V4 directly; however, this procedure can be replaced with a destination 
choice model in future work. Freight trips are distributed by ton of each 
commodity, using a doubly constrained gravity model, to keep values in strong 
alignment with current freight production and consumption levels across the state 
of Texas and beyond. The associated utility function is as follows: 

�!"'=exp k-1/:Dc ∙ �!";+δ ∙ ln(popi)+τ ∙ log k9 exp:�!"-;ll
-

where Dc is the average travel distance for commodity group c and �!" is the 
distance from zone i to zone j. 

7.4. Mode Choice 
Four passenger modes exist in the base case (Year 2040) scenario: conventional 
automobile (“HV”), bus, rail, and air. Three freight modes exist: truck, (carload) 
rail, and IM. These choice models were expanded to accommodate AV, SAV, and 
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ATruck modes, as shown in Figure 56. Trip costs, fares, and in-vehicle travel 
times for bus, rail, and air all come from SAM-V4 outputs. Rail’s values are the 
average of all SAM rail modes for each OD pair (including urban rail, intercity 
rail, and high-speed rail alternatives in many OD cases). When AVs and SAVs 
are added to the set of alternatives, they, along with HVs, are nested under the 
auto mode (Figure 56b). There is no parking cost for SAV use (much like a taxi), 
and privately owned AVs are assumed to face the same parking costs as HVs 
(since AVs are not expected to be allowed to drive empty, as this would create 
additional congestion for cities and regions). 

a. Passenger mode choice structure without AVs

b. Passenger mode choice structure with AVs

c. Freight mode choice structure without ATrucks

d. Freight mode choice structure with ATrucks

Figure 56. Mode choice structures for passenger and freight transport, before and with 
AVs 

Operating costs of bus, rail, and air modes come directly from SAM-V4 outputs, 
while several assumptions are used for vehicle costs. Litman (2018) anticipates 
AV operating costs to be $0.80–1.20 per mile in the early years of AV 
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availability, before declining to $0.60–1.00 per mile, compared to $0.40–$0.60 
per mile for HVs. Johnston and Walker (2017) expected SAVs to debut in some 
cities in 2018 at $0.86 per mile, or $0.84 per mile for shared autonomous electric 
vehicles (SAEVs). They expect traditional transportation network company 
vehicles (like today’s Lyft and Uber rides) to cost $2.04 per mile, and SAEV fees 
to fall to $0.51 per mile in 2025, $0.36 in 2030, and $0.33 in 2035. Bösch et al. 
(2017) predict that SAVs may cost $0.44 per mile to cover operating costs and 
deliver a very healthy 30% profit margin, while a dynamic ride-sharing (en route 
carpooling) service may cost $0.20–0.30 per passenger mile. They also suggest 
that SAVs purpose-built for use as pooled taxis may lower fares to just $0.16 per 
mile, long term. 

Perrine et al.’s (2018) model of long-distance US travel assumed AV costs would 
range from $0.10 to $1.65 per mile and value of travel time (VOTT) would be 
$3.00 to $9.00 per hour for AV occupants, with the base case scenario of $0.20 
per mile operating cost and VOTT of $6.00 across six distinct scenarios. Fagnant 
and Kockelman (2016) estimated that SAV pricing at $1.00 per mile could 
generate a 19% annual return on investment if each AV’s purchase price is 
$70,000. This return varied from 12.3% to 38.8% for operating costs of $0.50 and 
$0.25 per mile, respectively. Arbib and Seba (2017) envision internal-combustion 
SAVs will cost roughly $0.38 per mile, while SAEVs may be much cheaper, at 
$0.16 per mile in 2021 and $0.10 per mile in 2030. They posit that government 
subsidies or advertising may one day make SAEVs free to most or all riders. 

Based on all these estimates, this work assumes that both AVs and HVs carry 
operating costs of $0.60 per mile and SAVs cost either $1.50, $1.00, or $0.50 per 
mile (across scenarios). These are combined with parameter assumptions from 
Zhao and Kockelman (2017) to create the mode choice parameters used here. The 
parameters are summarized in Table 41, with several varying later during 
sensitivity analyses. The ASCs for AVs and SAVs are set to be negative, at −0.05 
and −0.2, respectively, to reflect some consumer hesitation. This is based on 
surveys and other work by Casley et al. (2013), Schoettle and Sivak (2014), and 
Bansal and Kockelman (2017) suggesting that AVs and SAVs will improve 
travelers’ safety and mobility but may generate some acquisition cost, privacy, 
and controllability concerns (especially when the vehicle is not privately owned). 

Table 41. Passenger and freight model parameters 

(a) Passenger Model

Mode Choice 

Base Case Automobile Bus Rail Air 
Constant 0 −2.8 −2.8 −2.8

Operating Cost 
Coefficient 

0.072 −0.14 −0.14 −0.14
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In-Vehicle Time 
Coefficient −0.019 −0.019 −0.01

9
−0.019

Operating Cost ($/mile) 0.6 N/A N/A N/A 
Parking Cost • N/A N/A N/A 
VOTT 15.83 8.14 8.14 8.14 
AV Case HV AV SAV Bus Rail Air 

Nesting Coefficient l = 0.6* N/A N/A N/A 
Constant 0 −0.05 −0.2 −2.8 −2.8 −2.8

Operating Cost 
Coefficient 

−0.07
2

−0.072 −0.072 −0.14 −0.14 −0.14

In-Vehicle Time 
Coefficient 

−0.01
9

−0.015
*

−0.015
*

−0.019 −0.01
9

−0.019

Operating Cost ($/mile) 0.6 0.8* 1* N/A N/A N/A 
Parking Cost • • • N/A N/A N/A 
VOTT ($/hr) 15.83 11.08* 11.08* 8.14 8.14 8.14 

(b) Freight Model (Adapted from TxDOT SAM4)
Trip 

Distribution 
Mode Choice Logsum Log of Population 

t = 0.5 d = 0.1 

Mode Choice Rail 
Constant 

IM 
Constant 

Cost Coefficient Time Coefficient Average Travel 
Distance (mi.) 

Agriculture −1.343 −5.224 −0.018 - 1,539 
Mining −2.291 −6.111 −0.033 - 888 
Coal 3.316 - −0.007 - 1,175 

Nonmetallic 
Minerals −1.441 −8.469 −0.031 - 670 

Food −2.237 −6.430 −0.016 - 1,715 
Consumer 

Manufacturing −6.742 −4.233 −0.012 - 2,174 

Non-Durable 
Manufacturing −5.941 −5.345 −0.019 - 1,837 

Lumber −2.253 −6.053 −0.029 −0.021 1,437 
Durable 

Manufacturing 2.407 −2.771 −0.008 −0.064 1,828 

Paper −1.772 −4.420 −0.013 - 1,463 
Chemicals −0.874 −6.644 −0.011 - 1,322 
Petroleum −2.529 −8.443 −0.030 - 935 
Clay, 

Concrete, 
Glass 

−2.668 −6.520 −0.019 - 1,414 

Primary Metal −0.609 −7.263 −0.010 - 1,661 
Secondary & 
Misc. Mixed −4.143 −4.457 −0.016 - 1,902 

Note: Numbers marked with * are modified during sensitivity analysis. 
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As shown in Figure 56c and d, the HTruck and ATruck alternatives are nested 
under the truck mode after AVs are introduced to the market. The air and water 
modes are ignored here, since they are considered fixed in the SAM-V4. (In 
reality, some air-freight and water-born-freight trips will probably be replaced by 
ATruck trips, due to their convenience, cost, and speed.) An ATruck is assumed 
to cost 1.5 times as much as an HTruck per mile because of the cost of automation 
equipment and training for the drivers who attend the truck, but is also assumed to 
save some connecting (uploading or downloading) time at origins and 
destinations. The nesting coefficient is set to 0.7, recognizing that HTrucks and 
ATrucks have more relative substitutability as their costs and times are similar. 
Travel time and travel cost skims of the IM mode were obtained from SAM-V4 
(Alliance Transportation Group, 2018). 

7.5. Traffic Assignment and Feedback Loop 
Mode and destination choice results are transformed into trip tables or OD 
matrices and round-trip tours are split in two for the final traffic assignment. 
Based on 2009 NHTS data (Santos et al., 2011), HV, AV, and SAV occupancies 
are set to 1.5 persons. The freight trip table (in tons by commodity) is converted 
to trucks and rail cars, based on SAM weights. Feedback loops are performed to 
provide consistent results between travel time and cost skims and network 
assignment flows, feeding congested travel times back for subsequent iterations, 
using the method of successive averages. 

A multi-modal, multi-class assignment was conducted in each scenario to reflect 
large differences in VOTT between human drivers and self-driving vehicles. The 
feedback loop was set to perform 20 iterations, with a stopping criterion of a 
relative gap below 10-4, to try and achieve a stable, convergent equilibrium. 

7.6. Model Calibration 
To appreciate how parameter and model specification changes affect predictions, 
the revised model’s results (for the before-ATruck base case) were compared to 
the original SAM-V4 outputs, with histograms of trip distances shown in Figure 
57. The correlation is 0.899 at 1-mile distance bins for trip counts between every
OD pair. Truck and CL volumes exhibit relatively high correlations in each of the
15 commodity classes, while IM results (for intermodal assignments) are
relatively uncorrelated. Fortunately, the IM mode accounts for a relatively small
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amount of Texas trade for most commodities. 

Figure 57. Comparing predicted trip distance to SAM model results 

7.7. Results 
The following discussion looks at mode split shifts before and after AVs and 
ATrucks are introduced in passenger and freight transport markets across Texas. 
Trip length distributions and travel patterns across zone pairs are examined, and 
the network congestion is also presented.  
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a. Volume capacity ratio in Texas

b. Link flow in Texas

Figure 58. Network performance 

Figure 58a shows the volume capacity ratio across the Texas region. Congestion 
(v/c > 1.25) occurs mostly among the major cities across Texas, especially Dallas-
Fort Worth, Houston, San Antonio, and Austin. Congestion is also observed in a 
few other cities like El Paso, Corpus Christi, and Amarillo. In the visualization of 
the total flow in Figure 58b, the sample patterns merge. 

Using the SAM-V4 mode choice specification, mode share for freight by industry 
sector can be obtained (Table 42). 1.7 billion tons of goods (60% of total goods) 
are transported by HTrucks and ATrucks, while the rest are transported by CL 
(23.5%) and IM (16.5%). All of the 15 industries modeled would witness more 
truck trips and fewer CL and IM trips after ATrucks are introduced. This 
happened even for the commodities that are oriented toward CL or IM. Across all 
commodities transported in ton-miles, truck transportation saw a 7.8% increase, 
while CL and IM dropped by 12.6% and 2.3%, respectively. The increase in truck 
trips varies by mode but most transportation by CL and IM decreases. Coal 
commodity truck ton-miles see a massive increase (140.2%), mainly shifted from 
CL, which dominates coal transportation prior to ATruck implementation. 
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Figure 59a presents the trip distribution of trucks before and after ATrucks 
become available. Since the freight mode choice is doubly constrained, truck 
share after AV introduction shows the same trend as the “before” scenario. Truck 
trips increase slightly for all trip distances, with the conventional HTruck gaining 
a greater share of ton-miles at all distances than the ATruck in this megaregion, 
since the ATruck costs more, especially for these intermediate (under 5 hour) 
travel times. In the future, as the cost of ATrucks decreases, their market share 
would be expected to increase. The jump at 230 miles can be seen as the distance 
between Dallas-Fort Worth and Houston, San Antonio and Houston, or Austin 
and Houston. It is evident that Houston is the main freight center in the 
megaregion. 

Figure 59b shows the percentage change in ton-miles transported by each mode 
after ATruck introduction. The increase in truck ton-miles is quite stable, with a 
roughly 5% increase across all distances. The decreasing trend for IM is stable as 
well, at around 3%, except for a greater drop at distances longer than 800 miles. 
Interestingly, CL mode choice decreases the most for short distances, due to a 
shift to truck mode, but this decrease diminishes at longer transportation 
distances. 

The ATruck base case assumes that ATruck cost is 1.5 times (on a per-mile basis) 
HTruck cost, due to the high initial cost of automation technology (e.g., cameras 
and radars). However, ATruck costs may vary in the future due to different stages 
of automation implementation and advances in automation technology. Thus two 
additional scenarios were tested, one assuming that ATruck cost is 1.25 times 
HTruck cost, and another in which they cost the same. Figure 60 shows the 
change in mode share (measured in ton-miles) by trip distance when ATruck cost 
drops from 1.5 times HTruck cost to its equal. ATruck mode share increases 
across all distances when its cost is lower, with the most dramatic effect on longer 
trip distances, reaching a 50% increase in mode share at about a thousand miles. 
Accordingly, the other modes’ shares decrease across all distances, especially 
HTruck’s, which drops 20% at a thousand miles. 

Table 42. Mode shares of freight ton-miles moved within Texas 

Commodity 
Billion Ton-Miles Transported after ATrucks 

Introduced 
HTruck ATruck Truck Rail IM 

Mode Share after ATrucks Introduced 

HTruck ATruck Truck Rail IM 

Change in Tons Transported 
from Base Case 

Truck Rail IM 
Agriculture 0.1 0.2 0.2 119.3 0.3 

22.6 6.5 29.1 15.5 0.6 
9.8 4.2 14.0 63.1 8.1 

39.0 73.6 112.6 87.6 0.2 

25.3 68.2 93.5 10.0 17.2 

0.1% 0.1% 0.2% 99.6% 0.2% 
50.0% 20.1% 64.5% 34.2% 1.3% 
11.5% 5.4% 16.5% 74.1% 9.5% 

19.4% 39.5% 56.2% 43.7% 0.1% 

21.0% 58.5% 77.5% 8.3% 14.3% 

33.8% −0.1% −0.1%
77.4% −46.3% −47.2%
140.2% −9.4% −9.3%

14.2% −15.6% −21.0%

4.6% −15.7% −15.9%

Mining 
Coal 

Nonmetallic 
Minerals 
Food 
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Commodity 
Billion Ton-Miles Transported after ATrucks 

Introduced 
HTruck ATruck Truck Rail IM 

Mode Share after ATrucks Introduced 

HTruck ATruck Truck Rail IM 

Change in Tons Transported 
from Base Case 

Truck Rail IM 
Consumer 

Manufacturing 
2.1 0.7 2.8 0.1 2.2 

4.3 13.4 17.7 1.7 0.1 

21.3 17.5 38.8 0.2 0.0 

34.1 56.8 91.0 5.6 0.2 

1.0 3.3 4.3 11.6 0.8 
59.3 148.1 207.4 48.2 0.9 
30.5 67.1 97.6 12.7 0.3 

21.5 49.1 70.5 5.9 0.2 

6.2 17.8 24.0 12.3 0.7 

0.3 0.7 1.0 0.1 263.2 

40.8% 18.7% 55.2% 1.4% 43.4% 

22.2% 69.8% 91.0% 8.5% 0.5% 

54.7% 45.0% 99.4% 0.5% 0.0% 

35.3% 60.1% 94.0% 5.8% 0.2% 

6.3% 20.2% 25.9% 69.3% 4.8% 
23.1% 59.9% 80.9% 18.8% 0.4% 
27.6% 61.9% 88.2% 11.5% 0.3% 

28.0% 65.2% 92.1% 7.7% 0.2% 

16.8% 50.0% 64.8% 33.3% 1.9% 

0.1% 0.3% 0.4% 0.0% 99.6% 

68.9% −41.9% −37.7%

1.6% −14.1% −15.2%

0.7% −47.4% −46.3%

2.5% −29.3% −29.5%

13.5% −4.5% −5.5%
4.8% −17.2% −18.1%
2.3% −15.9% −20.8%

1.9% −19.0% −21.2%

6.9% −11.7% −12.8%

31.0% −0.2% −0.2%

Non-Durable 
Manufacturing 
Lumber 
Durable 

Manufacturing 
Paper 

Chemicals 
Petroleum 
Clay, 

Concrete, 
Glass 

Primary Metal 
Secondary & 
Misc. Mixed 
Total 277.6 527.0 804.6 393.9 294.9 18.6% 36.7% 53.9% 26.4% 19.7% 7.8% −12.6% −2.3%

a. Ton-miles transported by distance for each mode
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b. Percentage change in ton-miles transported by distance for truck, CL, and IM modes
after ATruck introduction 

Figure 59. Freight trip distance before and after ATrucks 

Figure 60. Mode share change (in ton-miles) by trip distance if ATruck cost drops from 
1.5 times HTruck cost to the same as HTruck cost 

129 



 
 

 
 

      

 

 

 

  
   
  

    
   
  

     
     

         
          

          
          
 
          

          
 
          

          

          
 
          

          
          
          

 
 

 
         

          
 

  
          

          
 

 
  

 
  

  
  

  
    

   

 

Table 43. Mode splits in freight ton-miles under different ATruck cost assumptions 

Commodity 

Billion 
ton-
miles 

Mode share 
(ATruck cost = 1.5 
HTruck cost) 

% change in mode share 
(ATruck cost = 1.25 
HTruck cost) 

% change in mode share 
(ATruck cost = HTruck cost) 

Truck HTruck ATruck Truck HTruck ATruck Truck HTruck ATruck 
Agriculture 0.2 69.5% 30.5% +7.7% −1.9% +29.4% +7.7% −4.2% +69.6%
Mining 29.1 22.4% 77.6% +4.7% −12.2% +9.5% +4.7% −23.5% +18.6%
Coal 14.0 29.9% 70.1% +0.0% 0.0% +0.0% +0.0% 0.0% +0.0%

Nonmetallic 
minerals 112.6 65.4% 34.6% +2.5% −4.3% +15.2% +2.5% −9.2% +33.6%

Food 93.5 72.9% 27.1% +1.8% −8.9% +30.6% +1.8% −19.7% +68.7%
Consumer 

manufacturing 2.8 26.2% 73.8% +3.5% −7.4% +7.3% +3.5% −14.6% +14.6%

Non-durable 
manufacturing 17.7 75.6% 24.4% +0.9% −10.6% +36.4% +0.9% −23.9% +83.5%

Lumber 38.8 45.0% 55.0% +0.1% −6.6% +5.5% +0.1% −13.0% +10.8%
Durable 

manufacturing 91.0 62.5% 37.5% +0.3% −4.7% +8.5% +0.3% −9.5% +17.3%

Paper 4.3 75.8% 24.2% +6.2% −5.5% +43.0% +6.2% −13.3% +111.4%
Chemicals 207.4 71.4% 28.6% +1.6% −8.4% +26.5% +1.6% −18.3% +58.7%
Petroleum 97.6 68.7% 31.3% +1.0% −7.2% +19.0% +1.0% −16.1% +43.6%
Clay, 
concrete, 
glass 

70.5 69.6% 30.4% +0.8% −8.1% +21.1% +0.8% −17.7% +46.6%

Primary metal 24.0 74.0% 26.0% +3.0% −8.0% +34.5% +3.0% −18.3% +81.1%
Secondary & 
misc. mixed 

1.0 71.2% 28.8% +7.8% −2.0% +32.2% +7.8% −4.9% +82.7%

Total 804593.7 65.5% 34.5% +1.5% −7.2% +18.2% +3.5% −15.8% +40.2%

Table 43 shows the change in mode share (measured in ton-miles transported) for 
different commodities as the relationship between ATruck and HTruck costs 
changes. Cost impacts paper mode choice the most, with an 111.4% increase in 
the mode choice of ATruck when its cost drops to the same as that of an HTruck, 
followed by impacts on non-durable manufacturing, secondary and miscellaneous 
mixed goods, and primary metal mode choices. Overall, the ATruck mode share 
increases by 40.2% when ATruck and HTruck cost the same, and by 18.2% when 
ATruck cost is 1.25 times HTruck cost, as compared to when it’s 1.5 times the 
cost. Interestingly, the mode share for trucks overall does not change much across 
the scenarios, and therefore the change brought by the reduced cost of ATrucks is 
mainly shifting truck use from HTrucks to ATrucks. Coal does not show a change 
in mode share when ATruck cost changes, which is due to the utility function of 
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this commodity, which does not involve a cost term. Coal is more sensitive to 
transportation time than costs, which could be the reason for this unchanged mode 
split. 

In the long term, the cost of ATrucks will decrease, especially when drivers are no 
longer needed to operate trucks. Employees will manage and control the truck 
fleet remotely, without attending to each vehicle, or they may perform other work 
activities while traveling onboard. Therefore, a sensitivity analysis was conducted 
on different cost reductions based on current HTruck cost, assuming the cost-ratio 
factor as ATruck cost divided by HTruck cost, ranging from 1 to 0.5. When the 
ATruck cost drops from equal to HTruck cost to half of it, this will have little 
impact on those commodities for which trucks already dominate the mode share. 
However, for commodities like food, paper, and primary metal, the mode share of 
trucks increases by over 10%. Tons of agriculture, paper, and secondary and 
miscellaneous mixed goods transported by truck will increase over 60%, shifted 
from CL and IM. Overall, truck mode share increases by 4.2% when the cost of 
ATrucks is reduced to half the HTruck cost, and tons transported by truck 
increases 7.3% (Table 44). 

Table 44. Mode share of ATrucks by commodity with different cost assumptions 

ATruck cost/HTruck cost 1 0.9 0.8 0.7 0.6 0.5 
% change in 
mode share 
from 1 to 0.5 

% change in 
tons from 1 
to 0.5 

Agriculture 0.2% 
68.3% 
10.4% 
58.6% 
75.8% 
70.9% 
89.0% 
99.3% 
91.8% 
25.0% 
80.6% 
92.4% 
93.5% 
66.1% 
0.4% 

0.2% 
69.4% 
10.4% 
59.6% 
78.5% 
72.0% 
90.8% 
99.4% 
92.2% 
27.6% 
82.3% 
93.0% 
94.1% 
68.9% 
0.5% 

0.2% 
70.5% 
10.4% 
60.6% 
81.0% 
73.0% 
92.3% 
99.4% 
92.5% 
30.7% 
83.8% 
93.5% 
94.5% 
71.7% 
0.5% 

0.2% 
71.6% 
10.4% 
61.7% 
83.2% 
73.9% 
93.6% 
99.4% 
92.9% 
34.3% 
85.3% 
93.9% 
95.0% 
74.4% 
0.6% 

0.2% 
72.6% 
10.4% 
62.7% 
85.2% 
74.9% 
94.7% 
99.4% 
93.2% 
38.6% 
86.6% 
94.4% 
95.4% 
77.0% 
0.7% 

0.3% 
73.6% 
10.4% 
63.7% 
87.0% 
75.7% 
95.6% 
99.4% 
93.5% 
43.5% 
87.8% 
94.7% 
95.7% 
79.5% 
0.8% 

0.1% 
5.3% 
0.0% 
5.2% 
11.2% 
4.8% 
6.6% 
0.1% 
1.7% 
18.5% 
7.2% 
2.3% 
2.2% 
13.4% 
0.4% 

64.1% 
7.7% 
0.0% 
8.8% 
14.8% 
6.8% 
7.4% 
0.1% 
1.8% 
74.0% 
8.9% 
2.5% 
2.3% 
20.3% 
80.6% 

Mining 
Coal 

Nonmetallic minerals 
Food 

Consumer manufacturing 
Non-durable manufacturing 

Lumber 
Durable manufacturing 

Paper 
Chemicals 
Petroleum 

Clay, concrete, glass 
Primary metal 

Secondary & misc. mixed 
Total 57.0% 57.9% 58.8% 59.7% 60.5% 61.2% 4.2% 7.3% 
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7.8. Conclusions 
This report applies long-distance travel demand models for passengers and freight 
across the US and Texas, with and without the inclusion of AVs and ATrucks, 
which are expected on Texas roadways in the upcoming decades. We 
microsimulate long-distance (over 75 miles one-way) travel choices and vehicle 
ownership choices for a 10% sample of the US population, and for freight 
simulations, we use TxDOT’s SAM-V4 as a four-step, traditional application. 
Both applications are for domestic travel only. The passenger travel model 
indicated that in 2019, there were expected to be 0.85 vehicles per capita in the 
US, which is consistent with the estimate of 0.83 vehicles per capita in 2020 
based on US census data. AV ownership per capita is likely to be 0.33 vehicles 
after their introduction, assuming a $3,500 technology premium in 2040. Two 
long-distance trips per month per capita were estimated for the 10% synthetic 
population, which matches the NHTS data. Mode splits for long-distance, 
domestic trips prior to AV access were estimated as 64.10% by private 
automobile, 30.42% by rental car, and 5.49% by airplane. After AVs become 
available at $0.70 per mile operation cost, mode splits shift to 31.67% by 
conventional HV, 23.02% by conventional rental car, 23.54% by AV, 18.24% by 
SAVs, and 3.53% by air. Assuming a $3,500 technology cost premium (e.g., in 
year 2040), total PMT per capita in long-distance trips is estimated to raise 35%, 
from 280 to 379 per month. 

In the short term, assuming that ATrucks cost 1.5 times as much as HTrucks but 
save the latter’s dwelling time, 1.7 trillion tons of goods are anticipated to be 
transported by HTrucks and ATrucks across Texas in 2045, while the remaining 
goods will be transported by CL (23.5%) and IM (16.5%). All 15 modeled 
industries would witness increases in truck trips and decreases in CL and IM trips 
due to the use of ATrucks. Across all commodities transported in tons, ton-miles 
transported by trucks will increase 7.8%, while ton-miles transported by CL and 
IM will drop by 12.6% and 2.3%, respectively. In the long term, ATruck cost may 
drop below HTruck cost when on-board truck drivers are no longer required. 
When ATruck cost drops to half of HTruck cost, truck mode share increases by 
4.2% and the number of tons transported by truck increases an additional 7.3%. 
Such cost decreases will also bring an over 10% increase in trucks’ mode share 
for transporting certain commodities like food, paper, and primary metal. They 
may also lead to an over 60% increase in truck mode choice for a few selected 
commodities that do not have a high share of truck use to start with, but this does 
not significantly impact the truck mode share. 
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Chapter 8. Value of Research (VoR): LD-AV 

Quantitative valuation of research projects is difficult since agency implementation 
of the research results is not yet known. Two assessment areas, value of travel time 
savings and safety benefits, are examined here to arrive at benefit-cost ratios 
(BCRs) for TxDOT Research and Technology Innovation Project 0-7081, 
“Understanding the Impact of Autonomous Vehicles on Long-Distance Travel 
Mode and Destination Choice in Texas.” The project delivers model equations and 
parameters, as well as direct estimates of AVs’ impacts on long-distance passenger 
and freight travel in Texas. If these models and estimates are used in TxDOT’s 
transportation planning process and those of regional MPOs, border towns, freight 
carriers, airlines, and ports, Texans can expect a more efficient, less congested, and 
higher-welfare future. This is because this project’s results will help planners, 
engineers, and businesses prepare for a future with AVs—including SAVs and 
ATrucks. In addition to the benefits quantified here of lowered driving burdens for 
AV travelers and benefits of improved infrastructure that supports long-distance 
AV journeys, the project has other quantifiable benefits. Examples include the 
following: 

• better understanding of future travel demand that can help inform
appropriate roadway user fees that are fair and supportive of infrastructure
maintenance (to complement motor fuel taxes) for freight and passenger
travel in smart vehicles.

• economic benefits (like lower-cost shipping, retail development that caters
to more roadway users, and avoidance of overbuilt parking lots and
unnecessary airport expansions) from anticipating, designing for, and
essentially welcoming AVs onto Texas roadways; and

• better planning for added pavement maintenance needs, which will result
from higher roadway use rates, thanks to AVs making “driving” easier.

Perceived Travel Time Benefits (via Lower Driving Burdens) 

By facilitating planning for and responding to AV use of Texas roadways, this 
project ultimately enables lower-cost travel. It does so in two ways: (1) reducing 
the perceived burden of travel for those previously driving cars and trucks by 
enabling an infrastructure that supports better use of travelers’ time, and (2) opening 
up new modes of travel so that many travelers and some goods avoid the costs and 
challenges of air travel or rail use by staying on the roadways. 
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Various assumptions are used to perform this assessment. All monetary values are 
expressed in year 2022 dollars, unless otherwise noted. Although travel demand 
and congestion are expected to rise over time, this analysis relies on network traffic 
levels from 2019, to avoid COVID-19 impacts. 

Annual congestion costs: Roadway delay costs were estimated to be as follows in 
Texas’s major regions (Schrank et al., 2021): 

Metro Area 
Delay Cost 
(2019, in 
billions) 

Hours Wasted 
(2019, in millions) 

Houston $5.66 263 
Dallas-Fort Worth $4.81 220 

Austin $1.73 81.1 
San Antonio $1.58 71.9 
TOTAL $13.8 636 

Value of travel time (VOTT): Without AVs, the value of travel time for commuter 
drivers is estimated to be $20 per hour (Schrank et al., 2021). Since those previously 
driving can pursue more productive activities while in AVs (like sleeping, reading 
emails, eating, or making phone calls), Zhong et al. (2020) and others have 
estimated that “driver” VOTT will fall by about 32% and 24% in suburban and 
urban settings, respectively. (“Non-driving” passengers’ VOTT is assumed not to 
change). Using the midpoint of these percentages, 28%, drivers’ VOTT while 
riding in an AV (along with those of passengers) is likely to average around $14.52 
per hour (pivoting off of Schrank et al.’s 2021 estimate). 

Long-distance AV mode share on roadways: Assuming a readily available 
supply of AVs in the marketplace, this research project forecasts that for long-
distance passenger travel in Texas, conventional passenger vehicles will have a 
mode share of just 31.67% in 2040, down from 64.10% today, with AVs making 
up a 41% share. (Air travel and rental vehicles account for the remaining). This 
means that roughly 43% (41/(41 + 32+ 23) = 0.33) of ground travelers will be using 
AVs for their long-distance travels by 2040. 

Congestion cost savings: The difference in congestion costs in 2040 between a 
scenario with AVs and a business-as-usual scenario without AVs can be computed 
as follows: 

�G = �/ + ℎ(�G − �/)(1 − �)

where: 
c0 = Total cost of congestion prior to AV introduction 
c1 = Total cost of congestion in 2040, after AV introduction 
h = Number of hours wasted due to congestion (using today’s congestion 
as a proxy) 
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v0 = VOTT for those in conventional vehicles 
v1 = VOTT for those riding in AVs 
m = Mode share predicted for personal commuter transport in 2040 

The total congestion cost in the scenario with AVs is $11.4 billion in 2040, with a 
perceived savings of $2.41 billion per year (assuming 2019 traffic volumes persist 
year after year, which is conservative). 

Contribution share of this research: While the researchers believe that the work 
performed in this project is important for TxDOT to successfully integrate AVs into 
their long-distance travel demand forecasting by 2040, they acknowledge that many 
efforts funded by TxDOT will contribute to this. These include construction, policy 
changes, taxation changes, economic incentives, and more. Researchers also expect 
much of the time savings benefit will be on short-distance trips. If we hypothetically 
and conservatively estimate that this project enables just 0.01% of the future 
improvement in time quality attributed to AVs, the final economic impact of this 
project with respect to reduction in VOTT lost due to congestion is $241,000 for a 
single year. 

Safety Benefits 

Another project contribution would be Texas’s faster realization of AVs’ safety 
benefits. This value is estimated by computing fatal crash costs in a future where 
AVs do not exist, and then adjusting for expected fatal crash reductions due to faster 
adoption of AVs in Texas thanks to better planning, investment, and policy 
decisions by TxDOT and other users of this project’s work. 

Today’s crash costs: Texas’s 4,489 fatalities caused by crashes in 2021 cost about 
$51.4 billion (TxDOT, 2021), using figures from the National Safety Council 
(2020) and the Texas Peace Officer’s Crash Reports (CR-3). This analysis just 
looks at fatalities, since non-fatal injuries typically have much smaller costs than 
fatal crashes (e.g., just 2.1% in Harmon et al. [2008]). It is important to note that 
inclusion of all types of crashes would result in a significantly higher total cost. 

Future crash costs: A linear extrapolation of TxDOT’s fatal crash costs (TxDOT, 
2021) puts 2040 crash costs at approximately $40 billion (in today’s dollars). 

Estimate of crash reductions caused by AVs: AVs’ crash reduction benefits are 
expected to be sizable. The Insurance Institute for Highway Safety (IIHS, 2020) 
suggests that a 33% crash reduction relative to the rates experienced today with 
HVs alone is a realistic estimate, assuming agencies maintain today’s transportation 
system’s objectives of speed and convenience. 
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Contribution share of this research: If we hypothetically assume that this project 
enables an additional 0.01% reduction, attributable to AVs, in Texas roadway 
fatalities, the final annual economic impact of this project with respect to fatality 
reduction can be estimated as: 

$40,000,000,000 * 33% * 0.01% = $1,720,000 

Benefit-Cost Ratio (BCR) 

The results of these two analyses are then compared to this project’s cost and 
projected into the future on the Value of Research spreadsheet to arrive at an 
estimated BCR for this project. The method utilized in the spreadsheet treats the 
cost savings according to a 20-year decay as a mechanism to assess long-term 
effects of the project. 

TxDOT project cost: $366,199 
Conservative benefits estimate: $1,961,000 ($241,000 + $1,720,000) 
Example (conservative) single-year BCR: 5.3:1 

In summary, despite the challenges in predicting the future, this rough quantitative 
analysis conservatively suggests at least a fourfold benefit from this project’s work 
in 2040, and much more over the course of the following 20 years, while the project 
also broadly contributes to TxDOT’s other efforts to prepare for a future where 
AVs are readily available in the marketplace. 
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Appendix A: Qualtrics Survey 

The following Qualtrics-software-based survey was presented to respondents.
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6/15/2021 Qualtrics Survey Software

https://utexas.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview?ContextSurveyID=SV_eF1O8nvgYxaoXGt&ContextLibraryID=UR_d5shoR… 33/34

How would you describe your level of happiness over the past year?

End of the Survey

If there are any other long-distance trips that you would like to tell us about, please enter them below

and include any relevant details (origin & destination, number of days you were on your trip, the form

of transportation you used to get there, costs, reason for trip, whether you could have participated

remotely, and anything else you think may be important).

When answering this survey, did you use a calendar, journal, or other documentation to help you

remember details about your trips?

THANK YOU FOR COMPLETING OUR SURVEY!

Do you have any comments or suggestions for us?

Very Unhappy Moderately
Unhappy

Neutral Moderately Happy Very Happy

Yes

No

Other (please specify)



 
 

      
  

 
 
 
 
 

 
  
  

 
 

  
  

     
         

  
 

 
  

  
   

  
       

  
 

   
   

  
  

  
   

 
  

  
   

   
  
  
    

  
 

  
 
  

  
   

Appendix B: R Script for Domestic Long-
distance Model Application 

library(tidyverse) 
library(dplyr) 
library(R.matlab) 
library(tidyverse) 
library(data.table) 
library(MASS) 

rm(list=ls()) 
set.seed(123) 

# Upload PopGen, PUMS, EPA SMART Location, and vehicle ownership data and 
match them wit each other in a file named Person 

################################# 
## Trip Frequency 

# find trip frequency for each person 
# first use the zero inflated to find the probability of having a trip -> use a random # to 
assign 0 or 1 to each person 
# use negative binomial to find the # of trips and round it to find an integer # 

INTERCEPT_ZM = 7.12499 
log_HHFAMINC_ZM = -0.40993 # log of HHincome 
HHVEH_ZM = -0.04275 

#COUNT MODEL 
Theta_Trpfreq = exp(15.450170) 
INTERCEPT_CM = 0.799302 
MALE_CM = 0.172263 
AGE_CM = -0.002365 
WORKER_CM = -0.069870 
EDUC_CM = 0.190799 # college or associate degree 
NUMADULT_CM = -0.227657 
HHVEHCNT_CM = 0.141216 
log_HHFAMINC = -0.079772 # log of HHincome 

#Zero-Inflated 
zinf = NA 
zinforg = NA 
Person$count = NA 
znboutput = NA 
RandomNum <-array(runif(nrow(Person)), c(nrow(Person),1)) 
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zinforg = 1/(1+exp(INTERCEPT_ZM + HHVEH_ZM *Person$NUM_VEH_OWNED 
+ 

log_HHFAMINC_ZM * log(Person$hhinctype))) 

Person$zinf = ifelse(zinforg>RandomNum, 1, 0) 

countMu <- exp( INTERCEPT_CM + MALE_CM *Person$P_Male + 
AGE_CM *Person$pagetype + WORKER_CM *Person$Employed 

+ 
EDUC_CM *Person$P_College_Educated + 
NUMADULT_CM*(Person$hhsizetype-Person$hhchtype+1)+ 
log_HHFAMINC *log(Person$hhinctype)+ 
HHVEHCNT_CM *Person$NUM_VEH_OWNED) 

Person$count <- rnegbin(countMu, theta = Theta_Trpfreq) 

## Trip Frequency After AVs 
Vmax_Trip = NA 
ASC_fewertrip = -1.3134059 
ASC_moretrip = -0.6425161 

Diability_fewer = 1.0466447 
Female_fewer = -0.4734072 
AssociateDegree_fewer = -0.5268476 

Disability_more = 0.3603576 
Female_more = 0.1737178 
AssociateDegree_more = 0.2106390 

V_fewertrip = c(0,nrow(Person)) 
V_moretrip = c(0,nrow(Person)) 

V_sametripfreq = 0 

V_fewertrip = ASC_fewertrip + Diability_fewer*Person$Disability 
+Female_fewer*Person$P_Female
+AssociateDegree_fewer*Person$P_College_Educated
V_moretrip = ASC_moretrip + Disability_more*Person$Disability
+Female_more*Person$P_Female +
AssociateDegree_more*Person$P_College_Educated
Vmax_Trip <- apply(data.frame(V_sametripfreq, V_fewertrip, V_moretrip), 1, max)

SameTripFreq = ifelse(Vmax_Trip == V_sametripfreq, 1,0) 
FewerTrips = ifelse(Vmax_Trip == V_fewertrip, 1,0) 

171 



 
 

      
  
  

      
   

  
  
  

   
   

  
  

 

 
   

  
 

 
  

 
 

  
  
  
  
  

  
  

  
  

  
  

 
 

  
   
  
   
  
  

  
    
    

  
    
   
   
  

  

MoreTrips = ifelse(Vmax_Trip == V_moretrip, 1,0) 

multiplier = ifelse(MoreTrips==1, 2 , 1) 
multiplier = ifelse(FewerTrips==1, 0.5,multiplier) 
Person$count_AV = Person$count*multiplier 

Person <- Person %>% filter(Person$zinf==1) 
RandomNum_NBfreq <-array(runif(nrow(Person)), c(nrow(Person),1)) 
Person$count = ifelse((Person$count-floor(Person$count))>RandomNum_NBfreq, 
ceiling(Person$count), floor(Person$count)) 
Person$count_AV = ifelse((Person$count_AV-
floor(Person$count_AV))>RandomNum_NBfreq, ceiling(Person$count_AV), 
floor(Person$count_AV)) 
Person <- Person %>% filter(Person$count>0) 

## Trip Frequency Ends 
################################# 

################################# 
## Trip Season 

# 1: summer 
# 2: winter 
# 3: spring 
# 4: fall 

ASC_sum = 0 

ASC_win = -0.62990 
b_Male_win = 0.27019 
b_Edu_win = 0.21694 # college or associate degree 
b_HHsize_win = -0.09684 
b_vehct_win = 0.09096 

ASC_spr = -0.82755 
b_Age_spr = 0.01031 
b_Edu_spr = 0.11676 
b_Male_spr = 0.27019 
b_HHsize_spr = -0.09684 
b_vehct_spr = 0.09096 
b_Emp_spr = -0.25027 
b_Adlt_spr = 0.08437 

ASC_fall = 0.03354 
b_Male_fall = 0.27019 
b_Edu_fall = 0.16675 
b_Inc_fall = 5.9856e-04 # HHincome in $1000 
b_HHsize_fall = -0.09684 
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b_vehct_fall = 0.09096 
b_Emp_fall = -0.25027 
b_Adlt_fall = -0.11332 

Person$Vmax = NA 

V_summer = c(0,nrow(Person)) 
V_winer = c(0,nrow(Person)) 
V_spring = c(0,nrow(Person)) 
V_fall = c(0,nrow(Person)) 

V_summer = ASC_sum 

V_winter = ASC_win + 
b_Male_win * Person$P_Male+ 
b_Edu_win * Person$P_College_Educated + 
b_HHsize_win * Person$hhsizetype+ 
b_vehct_win * Person$NUM_VEH_OWNED 

V_spring = ASC_spr + 
b_Age_spr * Person$pagetype + 
b_Edu_spr * Person$P_College_Educated + 
b_Male_spr * Person$P_Male+ 
b_HHsize_spr * Person$hhsizetype + 
b_vehct_spr * Person$NUM_VEH_OWNED + 
b_Emp_spr * Person$Employed + 
b_Adlt_spr* (Person$hhsizetype-Person$hhchtype+1) 

V_fall = ASC_fall + b_Male_fall *Person$P_Male + 
b_Edu_fall * Person$P_College_Educated + 
b_Inc_fall * Person$hhinctype/1000 + 
b_HHsize_fall * Person$hhsizetype + 
b_vehct_fall * Person$NUM_VEH_OWNED + 
b_Emp_fall * Person$Employed + 
b_Adlt_fall * (Person$hhsizetype-Person$hhchtype+1) 

Person$Vmax <- apply(data.frame(V_summer, V_winter, V_spring, V_fall), 1, max) 

vmax = Person$Vmax 

Person$summer = ifelse(vmax == V_summer, 1,0) 
Person$winter = ifelse(vmax == V_winter, 1,0) 
Person$spring = ifelse(vmax == V_spring, 1,0) 
Person$fall = ifelse(vmax == V_fall, 1,0) 
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sum(Person$summer==1)/nrow(Person) 
sum(Person$winter==1)/nrow(Person) 
sum(Person$spring==1)/nrow(Person) 
sum(Person$fall==1)/nrow(Person) 

# Trip Season Ends 
################################# 

################################# 
## Trip Purpose 

# Trip_Purposes: 
# 1: Commute 
# 2: Work Trip 
# 3: Shopping 
# 4: Personal 
# 5: School 
# 6: Religious 
# 7: Medical 
# 8: Visit Friends or Relatives 
# 9: Other Social/Recreational 
# 10: Other 

ASC_WRT = 0 
ASC_WBT = -0.543233 
ASC_SHT = 2.916234 
ASC_PBT = 2.498416 
ASC_SCT = 2.050929 
ASC_RLT = -1.665406 
ASC_MDT = -0.15632 
ASC_VFT = 2.805805 
ASC_SOT = 2.537149 
ASC_ORT = -11.122502 

b_AGE_WBT = 0.012155 
b_AGE_SHT = 0.006691 
b_AGE_PBT = 0.012714 
b_AGE_SCT = -0.129569 
b_AGE_RLT = 0.020371 
b_AGE_MDT = 0.040912 
b_AGE_VFT = 0.005476 
b_AGE_ORT = 0.093359 

b_MALE_SHT = -0.498716 
b_MALE_PBT = -0.657965 
b_MALE_MDT = -0.197307 
b_MALE_VFT = -0.730896 
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b_MALE_SOT = -0.621629 

b_EDU_WBT = 0.42181 
b_EDU_SHT = 0.279359 
b_EDU_SCT = 1.980288 
b_EDU_VFT = 0.357579 
b_EDU_SOT = 0.391097 

b_WHITE_SHT = 0.273256 
b_WHITE_SCT = -0.548281 
b_WHITE_SOT = 0.395993 

b_INCOME_WBT = 0.013596 
b_INCOME_SHT = 0.007107 
b_INCOME_PBT = 0.005563 
b_INCOME_SCT = 0.015688 
b_INCOME_RLT = 0.00916 
b_INCOME_MDT = -0.017628 
b_INCOME_VFT = 0.007356 
b_INCOME_SOT = 0.008704 
b_INCOME_ORT = 0.022453 

b_FALL_WBT = 0.738291 
b_FALL_PBT = -0.247305 
b_FALL_MDT = 0.202146 
b_FALL_VFT = 0.337261 

b_SPRING_WBT = 0.682746 
b_SPRING_SHT = -0.374397 
b_SPRING_PBT = -0.67928 
b_SPRING_SOT = -0.662715 
b_SPRING_ORT = 3.172233 

b_hhsize_WBT = -0.061071 
b_hhsize_SHT = -0.128132 
b_hhsize_PBT = -0.102816 
b_hhsize_RLT = -0.106177 
b_hhsize_VFT = -0.205214 

b_hhveh_WBT = -0.101324 
b_hhveh_PBT = -0.115326 
b_hhveh_SCT = -0.254812 
b_hhveh_VFT = -0.202286 
b_hhveh_ORT = -0.989605 

b_numadlt_WBT = -0.857942 
b_numadlt_SHT = -0.436381 
b_numadlt_PBT = -0.188189 
b_numadlt_SOT = -0.419459 
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b_wrkr_SHT = -2.177625 
b_wrkr_PBT = -1.870397 
b_wrkr_SCT = -3.996799 
b_wrkr_RLT = -2.012919 
b_wrkr_MDT = -3.244297 
b_wrkr_VFT = -2.131344 
b_wrkr_SOT = -2.391524 

Person$Vmax = NA 

Person$Trip_Purpose = NA 

V_WRT = c(0,nrow(Person)) 
V_WBT = c(0,nrow(Person)) 
V_SHT = c(0,nrow(Person)) 
V_PBT = c(0,nrow(Person)) 
V_SCT = c(0,nrow(Person)) 
V_RLT = c(0,nrow(Person)) 
V_MDT = c(0,nrow(Person)) 
V_VFT = c(0,nrow(Person)) 
V_SOT = c(0,nrow(Person)) 
V_ORT = c(0,nrow(Person)) 

V_WRT = ASC_WRT 

V_WBT = ASC_WBT + b_AGE_WBT * Person$pagetype + 
b_EDU_WBT * Person$P_College_Educated + 
b_INCOME_WBT * Person$hhinctype/1000 + 
b_FALL_WBT * (Person$fall) + 
b_SPRING_WBT * (Person$spring) + 
b_hhsize_WBT * Person$hhsizetype + 
b_hhveh_WBT * Person$NUM_VEH_OWNED + 
b_numadlt_WBT * (Person$hhsizetype-Person$hhchtype+1) 

V_SHT = ASC_SHT + b_AGE_SHT * Person$pagetype + 
b_MALE_SHT * Person$P_Male + 
b_EDU_SHT * Person$P_College_Educated + 
b_WHITE_SHT * Person$P_White + 
b_INCOME_SHT* Person$hhinctype/1000 + 
b_SPRING_SHT * (Person$spring) + 
b_hhsize_SHT * Person$hhsizetype + 
b_numadlt_SHT * (Person$hhsizetype-Person$hhchtype+1) + 
b_wrkr_SHT * Person$Employed 

V_PBT = ASC_PBT + b_AGE_PBT * Person$pagetype + 
b_MALE_PBT * Person$P_Male + 
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b_INCOME_PBT * Person$hhinctype/1000 + 
b_FALL_PBT *(Person$fall) + b_SPRING_PBT * (Person$spring) + 
b_hhsize_PBT * Person$hhsizetype + b_hhveh_PBT * Person$NUM_VEH_OWNED 

+ 
b_numadlt_PBT * (Person$hhsizetype-Person$hhchtype+1) + b_wrkr_PBT * 

Person$Employed 

V_SCT = ASC_SCT + b_AGE_SCT * Person$pagetype + 
b_EDU_SCT * Person$P_College_Educated + 
b_WHITE_SCT * Person$P_White + 
b_INCOME_SCT * Person$hhinctype/1000 + 
b_hhveh_SCT * Person$NUM_VEH_OWNED+ b_wrkr_SCT * Person$Employed 

V_RLT = ASC_RLT + b_AGE_RLT * Person$pagetype + 
b_INCOME_RLT * Person$hhinctype/1000 + 
b_wrkr_RLT * Person$Employed 

V_MDT = ASC_MDT + b_AGE_MDT * Person$pagetype + 
b_MALE_MDT * Person$P_Male + 
b_INCOME_MDT * Person$hhinctype/1000 + 
b_FALL_MDT * (Person$fall) + 
b_wrkr_MDT * Person$Employed 

V_VFT = ASC_VFT + b_AGE_VFT * Person$pagetype + 
b_MALE_VFT * Person$P_Male + 
b_EDU_VFT * Person$P_College_Educated + 
b_INCOME_VFT * Person$hhinctype/1000 + 
b_FALL_VFT * (Person$fall) + 
b_hhsize_VFT * Person$hhsizetype + b_hhveh_VFT * Person$NUM_VEH_OWNED 

+ 
b_wrkr_VFT * Person$Employed 

V_SOT = ASC_SOT + b_MALE_SOT * Person$P_Male + 
b_EDU_SOT * Person$P_College_Educated + 
b_WHITE_SOT * Person$P_White + 
b_INCOME_SOT * Person$hhinctype/1000 + 
b_SPRING_SOT * (Person$spring) + 
b_numadlt_SOT * (Person$hhsizetype-Person$hhchtype+1) + 
b_wrkr_SOT * Person$Employed 

V_ORT = ASC_ORT + b_AGE_ORT * Person$pagetype + 
b_INCOME_ORT * Person$hhinctype/1000 + 
b_SPRING_ORT * (Person$spring) + 
b_hhveh_ORT * Person$NUM_VEH_OWNED 

Person$Vmax2 <- apply(data.frame(V_WRT, V_WBT, V_SHT, V_PBT, V_ORT, 
V_RLT, V_MDT, V_VFT,V_SOT, V_ORT ), 1, max) 
vmax2 = Person$Vmax2 
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Commute = ifelse(vmax2== V_WRT, 1, 0) 
Business= ifelse(vmax2== V_WBT, 1, 0) 
Shopping= ifelse(vmax2== V_SHT, 1, 0) 
Personal= ifelse(vmax2== V_PBT, 1, 0) 
School= ifelse(vmax2== V_ORT, 1, 0) 
Religious= ifelse(vmax2== V_RLT, 1, 0) 
Medical= ifelse(vmax2== V_MDT, 1, 0) 
VisitFriends= ifelse(vmax2== V_VFT, 1, 0) 
Recreational= ifelse(vmax2== V_SOT, 1, 0) 
Other= ifelse(vmax2== V_ORT, 1, 0) 

Person$Trip_Purpose = Commute*1+Business*2+Shopping*3+Personal*4+School*5+ 
Religious*6+Medical*7+VisitFriends*8+Recreational*9+Other*10 

CommuteTrp = sum(Person$Trip_Purpose==1)/nrow(Person)*100 
BusinessTrp = sum(Person$Trip_Purpose==2)/nrow(Person)*100 
ShoppingTrp = sum(Person$Trip_Purpose==3)/nrow(Person)*100 
PersonalTrp = sum(Person$Trip_Purpose==4)/nrow(Person)*100 
SchoolTrp = sum(Person$Trip_Purpose==5)/nrow(Person)*100 
ReligiousTrp = sum(Person$Trip_Purpose==6)/nrow(Person)*100 
MedicalTrp = sum(Person$Trip_Purpose==7)/nrow(Person)*100 
VisitFRTrp = sum(Person$Trip_Purpose==8)/nrow(Person)*100 
RecreationalTrp = sum(Person$Trip_Purpose==9)/nrow(Person)*100 
OtherTrp = sum(Person$Trip_Purpose==10)/nrow(Person)*100 
trpPurpose = c(CommuteTrp,BusinessTrp, ShoppingTrp, PersonalTrp,SchoolTrp, 

ReligiousTrp, MedicalTrp, VisitFRTrp, RecreationalTrp,OtherTrp) 

# Trip Purpose Ends 
################################# 

################################# 
## Destination Choice before AV 

# Distance from home location to all destinations (NUMAs): build dist file for all 
NUMAs 
Geo2NUMA <- read.csv('.../Tract_Index_NUMA.csv') 
numaIDmap <- read.csv('.../numa_map4477.csv') 

NUMA = rep(0,NROW(Person)) 
for (i in 1:NROW(Person)){ 
NUMA_temp = Geo2NUMA$numa_id[Person$geo.x[i]] 
if (is.numeric(NUMA_temp)){ 
NUMA[i] = numaIDmap$NUMA_map[NUMA_temp+1]; 
} 
} 
Person$NUMA = NUMA 
Person <- Person %>% filter(Person$NUMA != "0") 

178 



 
 

  
 

     
      

    
    

 
      

  
  

     
 

 
 

  
  
  
  

  
  

  
 

  
  

 
  

        
      

 
      

    
         

  
 

   
        

 
     

 
         

 
     
     

 
     

# Read rJourney data 
# Road file (RjourneyData_Road) includes Distance, Toll, CarTime 
# Air file (RjourneyData_Air) includes Time, EconomyFare, BusinessFare 
# Match destination alternatives with the EPA SMART Location data 
# Find Euclidean distances of the home locations to destination alternatives 
(NUMA_Dist) 
# Data Structure: RjourneyData_Road$Toll[i,j], i & j are NUMAs 

# Build MC logsum for all NUMAS to NUMAs 
ASC_car_NB = 0 
ASC_rcar_NB = -0.709864235 
ASC_air_NB = -1.187837823 

b_tt_car_NB = -0.281153029 
b_tt_rcar_NB = -0.103684715 
b_tt_air_NB = -0.270527915 

b_cost_NB = -0.00215975 

lambda_NB = 1.0 

Car_Operation = 0.5 
rcar_Operation = 0.1 

Num_NUMAs = nrow(SMART) # Number of NUMA zones in this study 
car_cost = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 
rcar_cost = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 
air_cost = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 
lg1 = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 
MC_logsum_NB = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 

for (i in 1:Num_NUMAs){ 
for (j in 1:Num_NUMAs){ 
car_cost[i,j] = ASC_car_NB + b_tt_car_NB*RjourneyData_Road$CarTime[i,j]+ 

b_cost_NB*(RjourneyData_Road$Toll[i,j]+Car_Operation*RjourneyData_Road$Distanc 
e[i,j]-(34.38*RjourneyData_Road$CarTime[i,j]/60+18.05)) 
rcar_cost[i,j] = ASC_rcar_NB + b_tt_rcar_NB*RjourneyData_Road$CarTime[i,j] + 

b_cost_NB*(RjourneyData_Road$Toll[i,j]+Car_Operation*RjourneyData_Road$Distanc 
e[i,j]+50*(floor(RjourneyData_Road$CarTime[i,j]/(60*24))+1)-
(10.43*RjourneyData_Road$CarTime[i,j]/60+66.91)) 
air_cost[i,j] = ASC_air_NB + b_tt_air_NB*RjourneyData_Air$Time[i,j] + 

b_cost_NB*(RjourneyData_Air$EconomyFare[i,j]-
(52.65*RjourneyData_Air$Time[i,j]/60+272.98)) 
lg1[i,j] = log(exp(car_cost[i,j]/lambda_NB) + exp(rcar_cost[i,j]/lambda_NB)) 
explogsum = 

exp(lg1[i,j])*ifelse(RjourneyData_Road$CarTime[i,j]>0,1,0)+exp(air_cost[i,j])*ifelse(Rj 
ourneyData_Air$Time[i,j]>0,1,0) 
if(explogsum!=0){ 
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MC_logsum_NB[i,j] = log(explogsum); 
}else{ 
MC_logsum_NB[i,j] = -9999 
} 
} 
} 

# MCLogsum for business trips 
MC_logsum_B = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 

for (i in 1:Num_NUMAs){ 
for (j in 1:Num_NUMAs){ 
car_cost[i,j]  = ASC_car_NB  + b_tt_car_NB*RjourneyData_Road$CarTime[i,j]+ 

b_cost_NB*0.5*(RjourneyData_Road$Toll[i,j]+Car_Operation*RjourneyData_Road$Di 
stance[i,j]-(34.38*RjourneyData_Road$CarTime[i,j]/60+18.05)) 
rcar_cost[i,j] = ASC_rcar_NB + b_tt_rcar_NB*RjourneyData_Road$CarTime[i,j] + 

b_cost_NB*0.5*(RjourneyData_Road$Toll[i,j]+Car_Operation*RjourneyData_Road$Di 
stance[i,j]+50*(floor(RjourneyData_Road$CarTime[i,j]/(60*24))+1)-
(10.43*RjourneyData_Road$CarTime[i,j]/60+66.91)) 
air_cost[i,j] = ASC_air_NB + b_tt_air_NB*RjourneyData_Air$Time[i,j] + 

b_cost_NB*0.5*(RjourneyData_Air$EconomyFare[i,j]-
(52.65*RjourneyData_Air$Time[i,j]/60+272.98)) 
lg1[i,j] = log(exp(car_cost[i,j]/lambda_NB) + exp(rcar_cost[i,j]/lambda_NB)) 
explogsum = exp(lg1[i,j])*ifelse(RjourneyData_Road$CarTime[i,j]>0,1,0) + 

exp(air_cost[i,j])*ifelse(RjourneyData_Air$Time[i,j]>0,1,0) 
if (explogsum!= 0){ 
MC_logsum_B[i,j] = log(explogsum); 
}else{ 
MC_logsum_B[i,j] = -9999 
} 
} 
} 

# Load job counts and pop_dens for all NUMAs 
E8_Ret = SMART$E8_Ret 
E8_Off = SMART$E8_off 
E8_Ind = SMART$E8_Ind 
E8_Svc = SMART$E8_Svc 
E8_Ent = SMART$E8_Ent 
E8_Ed = SMART$E8_Ed 
E8_Hlth= SMART$E8_Hlth 
E8_Pub = SMART$E8_Pub 
JobDens = SMART$TotEmp/SMART$Ac_Total 
Pop_Dens = SMART$TotPop/SMART$Ac_Total 

# Destination choice model coefficients 
param_NB = c(0.0172304,0.0015238, -0.0683365, 0.0268633, 0.0191227, -0.0191561) 

param_B = c(0.0113599, 0.0047736, -0.0487999, 0.0206213, 0.0569246, -0.04418867) 
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# Destination Choice Before AVs 
Z = matrix(0, nrow = 8, ncol = Num_NUMAs) 
LongDist = matrix(0, nrow = 1, ncol = Num_NUMAs) 
V1 = matrix(0, nrow = 1, ncol = Num_NUMAs) 
V2 = matrix(0, nrow = 1, ncol = Num_NUMAs) 
expv = matrix(0, nrow = 1, ncol = Num_NUMAs) 

Person$Distance_D = 0 
Person$CarTime_D = 0 
Person$CarToll_D = 0 
Person$AirTime_D = 0 
Person$AirTime_D = 0 

Distance_D = 0 
CarTime_D = 0 
CarToll_D = 0 
AirTime_D = 0 
AirFare_D = 0 
AccessDist_D =0 
CarDistance_D =0 
Destination =0 

start_time <- Sys.time() 

for (k in 1:nrow(Person)){ 
if (Person$Trip_Purpose[k] != 1|Person$Trip_Purpose[k] != 2){ # non-business trips 
Z[1,] = MC_logsum_NB[Person$NUMA[k],] # from home Numa to Numa i 
Z[2,] = Pop_Dens # Destination i 
Z[3,] = log(E8_Ret+1);# Destination i 
Z[4,] = log(E8_Ind+1); 
Z[5,] = log(E8_Svc+1); 
Z[6,] = log(E8_Pub+1); 
Z[1,] = 

ifelse(MC_logsum_NB[Person$NUMA[k],]!=0,MC_logsum_NB[Person$NUMA[k],],-
99999) 
V1 = Z[1,]*param_NB[1] + Z[2,]*param_NB[2] + Z[3,]*param_NB[3]+ 

Z[4,]*param_NB[4]+Z[5,]*param_NB[5]+ Z[6,]*param_NB[6] 
V1 = ifelse(NUMA_Dist$Distance.eud[Person$NUMA[k],]>25,V1,-99999) 
expv = exp(V1) 

# New: Find the maximum random probability 
P_D = expv/sum(expv) 
r_D = runif(1, 0, 1) 
P_cum_D = cumsum(P_D) 
for (i in 1:length(P_D)){ 
if (i==1){ 
if (r_D<P_cum_D[1]){ 
temp =1 
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} 
}else{ 
if ((r_D<P_cum_D[i])&&(r_D>=P_cum_D[i-1])){ 
temp = i 

} 
} 
} 
Destination[k] = temp 

Distance_D[k] = NUMA_Dist$Distance.eud[Person$NUMA[k],Destination[k]] 
CarDistance_D[k] = RjourneyData_Road$Distance[Person$NUMA[k],Destination[k]] 
CarTime_D[k] = RjourneyData_Road$CarTime[Person$NUMA[k],Destination[k]] 
CarToll_D[k] = RjourneyData_Road$Toll[Person$NUMA[k],Destination[k]] 
AirTime_D[k] = RjourneyData_Air$Time[Person$NUMA[k],Destination[k]] 
AirFare_D[k] = RjourneyData_Air$EconomyFare[Person$NUMA[k],Destination[k]] 
AccessDist_D[k]= 

RjourneyData_Air$AccessDistance[Person$NUMA[k],Destination[k]] 

}else{ # business trips 

Z[1,] = MC_logsum_B[Person$NUMA[k],] # from home Numa to Numa i 
Z[2,] = Pop_Dens # Destination i 
Z[3,] = log(E8_Ret+1)# Destination i 
Z[4,] = log(E8_Ind+1) 
Z[5,] = log(E8_Svc+1) 
Z[6,] = log(E8_Hlth+1) 
LongDist = ifelse(NUMA_Dist$Distance.eud[Person$NUMA[k],]>25,1,-99999) 
Z[1,] = 

ifelse(MC_logsum_B[Person$NUMA[k],]!=0,MC_logsum_B[Person$NUMA[k],],-
99999) 
V1 = Z[1,]*param_B[1] + Z[2,]*param_B[2] + Z[3,]*param_B[3]+ 

Z[4,]*param_B[4]+Z[5,]*param_B[5]+ Z[6,]*param_B[6] 
V1 = ifelse(NUMA_Dist$Distance.eud[Person$NUMA[k],]>25,V1,-99999) 
expv = exp(V1) 

# Find the maximum random prob 
P_D = expv/sum(expv) 
r_D = runif(1, 0, 1) 
P_cum_D = cumsum(P_D) 
for (i in 1:length(P_D)){ 
if (i==1){ 
if (r_D<P_cum_D[1]){ 
temp =1 
} 
}else{ 
if ((r_D<P_cum_D[i])&&(r_D>=P_cum_D[i-1])){ 
temp = i 

} 
} 
} 
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Destination[k] = temp 

Distance_D[k] = NUMA_Dist$Distance.eud[Person$NUMA[k],Destination[k]] 
CarDistance_D[k] = RjourneyData_Road$Distance[Person$NUMA[k],Destination[k]] 
CarTime_D[k] = RjourneyData_Road$CarTime[Person$NUMA[k],Destination[k]] 
CarToll_D[k] = RjourneyData_Road$Toll[Person$NUMA[k],Destination[k]] 
AirTime_D[k] = RjourneyData_Air$Time[Person$NUMA[k],Destination[k]] 
AirFare_D[k] = RjourneyData_Air$EconomyFare[Person$NUMA[k],Destination[k]] 
AccessDist_D[k]= 

RjourneyData_Air$AccessDistance[Person$NUMA[k],Destination[k]] 
} 
} 
End_time <- Sys.time() 
End_time-start_time 

DCResults_before = cbind(Destination, Distance_D,CarDistance_D, CarTime_D, 
CarToll_D, AirTime_D,AirFare_D, AccessDist_D) 
Person$Destination = Destination 
Person$Distance_D = Distance_D 
Person$CarDistance_D = CarDistance_D 
Person$CarTime_D = CarTime_D 
Person$CarToll_D = CarToll_D 
Person$AirTime_D =AirTime_D 
Person$AirFare_D = AirFare_D 
Person$AccessDist_D = AccessDist_D 

################################# 
# Destination Choice before AV 

ASC_AV_NB = -0.090286984 
b_tt_AV_NB = -0.113089708 
AV_Operation = 0.70 
mu_SP = 0.75157487 

AV_cost = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 
lg1 = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 
MC_logsum_AVNB = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 

for (i in 1:Num_NUMAs){ 
for (j in 1:Num_NUMAs){ 
car_cost[i,j] = ASC_car_NB + b_tt_car_NB*RjourneyData_Road$CarTime[i,j]+ 

b_cost_NB*(RjourneyData_Road$Toll[i,j]+Car_Operation*RjourneyData_Road$Distanc 
e[i,j]-(34.38*RjourneyData_Road$CarTime[i,j]/60+18.05)) 
rcar_cost[i,j] = ASC_rcar_NB + b_tt_rcar_NB*RjourneyData_Road$CarTime[i,j] + 

b_cost_NB*(RjourneyData_Road$Toll[i,j]+Car_Operation*RjourneyData_Road$Distanc 
e[i,j]+50*(floor(RjourneyData_Road$CarTime[i,j]/(60*24))+1)-
(10.43*RjourneyData_Road$CarTime[i,j]/60+66.91)) 
AV_cost[i,j] = ASC_AV_NB + b_tt_AV_NB*RjourneyData_Road$CarTime[i,j]+ 

b_cost_NB*(RjourneyData_Road$Toll[i,j]+AV_Operation*RjourneyData_Road$Distanc 
e[i,j]-(46.97*RjourneyData_Road$CarTime[i,j]/60+14.42)) 
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air_cost[i,j] = ASC_air_NB + b_tt_air_NB*RjourneyData_Air$Time[i,j] + 
b_cost_NB*(RjourneyData_Air$EconomyFare[i,j]-
(52.65*RjourneyData_Air$Time[i,j]/60+272.98)) 
lg1[i,j] = log(exp(car_cost[i,j]*mu_SP) + 

exp(rcar_cost[i,j]*mu_SP)+exp(AV_cost[i,j]*mu_SP)) 
explogsum = exp(lg1[i,j])*ifelse(RjourneyData_Road$CarTime[i,j]>0,1,0) + 

exp(air_cost[i,j]*mu_SP)*ifelse(RjourneyData_Air$Time[i,j]>0,1,0) 
if (explogsum!=0){ 
MC_logsum_AVNB[i,j] = log(explogsum); 
} else{ 
MC_logsum_AVNB[i,j] = -9999 
} 
} 
} 

MC_logsum_AVB = matrix(0, nrow = Num_NUMAs, ncol = Num_NUMAs) 

for (i in 1:Num_NUMAs){ 
for (j in 1:Num_NUMAs){ 
car_cost[i,j] = ASC_car_NB + b_tt_car_NB*RjourneyData_Road$CarTime[i,j]+ 

b_cost_NB*0.5*(RjourneyData_Road$Toll[i,j]+Car_Operation*RjourneyData_Road$Di 
stance[i,j]-(34.38*RjourneyData_Road$CarTime[i,j]/60+18.05)) 
rcar_cost[i,j] = ASC_rcar_NB + b_tt_rcar_NB*RjourneyData_Road$CarTime[i,j] + 

b_cost_NB*0.5*(RjourneyData_Road$Toll[i,j]+Car_Operation*RjourneyData_Road$Di 
stance[i,j]+50*(floor(RjourneyData_Road$CarTime[i,j]/(60*24))+1)-
(10.43*RjourneyData_Road$CarTime[i,j]/60+66.91)) 
AV_cost[i,j] = ASC_AV_NB + b_tt_AV_NB*RjourneyData_Road$CarTime[i,j]+ 

b_cost_NB*0.5*(RjourneyData_Road$Toll[i,j]+AV_Operation*RjourneyData_Road$Di 
stance[i,j]-(46.97*RjourneyData_Road$CarTime[i,j]/60+14.42)) 
air_cost[i,j] = ASC_air_NB + b_tt_air_NB*RjourneyData_Air$Time[i,j] + 

b_cost_NB*0.5*(RjourneyData_Air$EconomyFare[i,j]-
(52.65*RjourneyData_Air$Time[i,j]/60+272.98)) 
lg1[i,j] = log(exp(car_cost[i,j]*mu_SP) + 

exp(rcar_cost[i,j]*mu_SP)+exp(AV_cost[i,j]*mu_SP))*ifelse(RjourneyData_Road$CarT 
ime[i,j]>0,1,0) 
explogsum = exp(lg1[i,j])*ifelse(RjourneyData_Road$CarTime[i,j]>0,1,0) + 

exp(air_cost[i,j]*mu_SP)*ifelse(RjourneyData_Air$Time[i,j]>0,1,0) 
if (explogsum!=0){ 
MC_logsum_AVB[i,j] = log(explogsum); 
} else{ 
MC_logsum_AVB[i,j] = -9999 
} 
} 
} 

# Distance Change 
Vmax_Trip = NA 
ASC_shorter = -0.2725579 
ASC_longer = 0.7464680 

184 

http:52.65*RjourneyData_Air$Time[i,j]/60+272.98
http:stance[i,j]-(46.97*RjourneyData_Road$CarTime[i,j]/60+14.42
http:10.43*RjourneyData_Road$CarTime[i,j]/60+66.91
http:stance[i,j]-(34.38*RjourneyData_Road$CarTime[i,j]/60+18.05
http:52.65*RjourneyData_Air$Time[i,j]/60+272.98


 
 

  
  
   
   
  

  
  
  
   
  

  
   
  

  
  

  
    

 
    
  
  
  

   
 

   
  

        
  
  

    
   

    
  

    
     

 
  

   
  

  
  
  

 
 
 

  
 
 
 

age_shorter = -0.02938859 
white_shorter = -0.5637792 
male_shorter = 0.5670996 
LD500_shorter = -0.14343693 

age_longer = -0.03477074 
white_longer = -0.2190936 
male_longer = 0.2751390 
LD500_longer = -1.19815479 

V_shorter = c(0,nrow(Person)) 
V_longer = c(0,nrow(Person)) 

V_samedist = 0 

V_shorter = ASC_shorter + age_shorter*Person$pagetype 
+white_shorter*Person$P_White+
male_shorter*Person$P_Male +LD500_shorter*(Person$Distance_D>500)

V_longer = ASC_longer + age_longer*Person$pagetype 
+white_longer*Person$P_White+
male_longer*Person$P_Male + LD500_longer*(Person$Distance_D>500)

Vmax_Dist <- apply(data.frame(V_samedist, V_shorter , V_longer), 1, max) 

SameDist = ifelse(Vmax_Dist == V_samedist, 1,0) 
ShorterTrip = ifelse(Vmax_Dist == V_shorter, 1,0) 
LongerTrip = ifelse(Vmax_Dist == V_longer, 1,0) 

Dist_multiplier = ifelse(LongerTrip==1, 1.5 , 1) 
Dist_multiplier2 = ifelse(ShorterTrip==1, 0.5 , 1) 
################################# 

## Destination Choice after AV 
Destination_AV = rep(0, NROW(Person)) 
dim(Destination_AV) = c(NROW(Person)) 

Distance_DAV = 0 
CarTime_DAV = 0 
CarToll_DAV = 0 

AirTime_DAV = 0 
AirTime_DAV = 0 
AirFare_DAV = 0 
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AccessDist_DAV = 0 
CarDistance_DAV = 0 

start_time <- Sys.time() 
for (k in 1:nrow(Person)){ 
if (Person$Trip_Purpose[k] != 1|Person$Trip_Purpose[k] != 2){ #non-business 

Z[1,] = MC_logsum_AVNB[Person$NUMA[k],] # from home Numa to Numa i 
Z[2,] = Pop_Dens # Destination i 
Z[3,] = log(E8_Ret+1);# Destination i 
Z[4,] = log(E8_Ind+1); 
Z[5,] = log(E8_Svc+1); 
Z[6,] = log(E8_Pub+1); 
Z[1,] = 

ifelse(MC_logsum_AVNB[Person$NUMA[k],]!=0,MC_logsum_AVNB[Person$NUMA 
[k],],-99999) 

V2 = Z[1,]*param_NB[1] + Z[2,]*param_NB[2] + Z[3,]*param_NB[3]+ 
Z[4,]*param_NB[4]+Z[5,]*param_NB[5]+ Z[6,]*param_NB[6] 

V2 = ifelse(NUMA_Dist$Distance.eud[Person$NUMA[k],]>25,V2,-99999) 
expv = exp(V2) 

# New: Find the maximum random prob 
P_D = expv/sum(expv) 
r_D = runif(1, 0, 1) 
P_cum_D = cumsum(P_D) 
for (i in 1:length(P_D)){ 
if (i==1){ 
if (r_D<P_cum_D[1]){ 
temp =1 
} 
}else{ 
if ((r_D<P_cum_D[i])&&(r_D>=P_cum_D[i-1])){ 
temp = i 
} 
} 
} 

Destination_AV[k] = temp 

Distance_DAV[k] = 
NUMA_Dist$Distance.eud[Person$NUMA[k],Destination_AV[k]] 
CarDistance_DAV[k] = 

RjourneyData_Road$Distance[Person$NUMA[k],Destination_AV[k]] 
CarTime_DAV[k] = 

RjourneyData_Road$CarTime[Person$NUMA[k],Destination_AV[k]] 
CarToll_DAV[k] = RjourneyData_Road$Toll[Person$NUMA[k],Destination_AV[k]]  
AirTime_DAV[k] = RjourneyData_Air$Time[Person$NUMA[k],Destination_AV[k]] 
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AirFare_DAV[k] = 
RjourneyData_Air$EconomyFare[Person$NUMA[k],Destination_AV[k]] 
AccessDist_DAV[k]= 

RjourneyData_Air$AccessDistance[Person$NUMA[k],Destination_AV[k]] 

}else{ # business 

Z[1,] = MC_logsum_AVB[Person$NUMA[k],] # from home Numa to Numa i 
Z[2,] = Pop_Dens # Destination i 
Z[3,] = log(E8_Ret+1)# Destination i 
Z[4,] = log(E8_Ind+1) 
Z[5,] = log(E8_Svc+1) 
Z[6,] = log(E8_Hlth+1) 
Z[1,] = 

ifelse(MC_logsum_AVB[Person$NUMA[k],]!=0,MC_logsum_AVB[Person$NUMA[k], 
],-99999) 

V2 = Z[1,]*param_B[1] + Z[2,]*param_B[2] + Z[3,]*param_B[3]+ 
Z[4,]*param_B[4]+Z[5,]*param_B[5]+ Z[6,]*param_B[6] 
V2 = ifelse(NUMA_Dist$Distance.eud[Person$NUMA[k],]>25,V2,-99999) 
expv = exp(V2) 
P_D = expv/sum(expv) 
r_D = runif(1, 0, 1) 
P_cum_D = cumsum(P_D) 
for (i in 1:length(P_D)){ 
if (i==1){ 
if (r_D<P_cum_D[1]){ 
temp =1 
} 
}else{ 
if ((r_D<P_cum_D[i])&&(r_D>=P_cum_D[i-1])){ 
temp = i 
} 
} 
} 

Destination_AV[k] = temp 

################################# 

Distance_DAV[k] = 
NUMA_Dist$Distance.eud[Person$NUMA[k],Destination_AV[k]] 
CarDistance_DAV[k] = 

RjourneyData_Road$Distance[Person$NUMA[k],Destination_AV[k]] 
CarTime_DAV[k] = 

RjourneyData_Road$CarTime[Person$NUMA[k],Destination_AV[k]] 
CarToll_DAV[k] = RjourneyData_Road$Toll[Person$NUMA[k],Destination_AV[k]] 
AirTime_DAV[k] = RjourneyData_Air$Time[Person$NUMA[k],Destination_AV[k]] 
AirFare_DAV[k] = 

RjourneyData_Air$EconomyFare[Person$NUMA[k],Destination_AV[k]] 
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AccessDist_DAV[k]= 
RjourneyData_Air$AccessDistance[Person$NUMA[k],Destination_AV[k]] 
} 
} 
end_time <- Sys.time() 
end_time-start_time 

DCResults_AV = cbind(Destination_AV, Distance_DAV,CarDistance_DAV, 
CarTime_DAV, CarToll_DAV, AirTime_DAV,AirFare_DAV, AccessDist_DAV) 

Person$Destination_AV = Destination_AV 
Person$Distance_DAV = Distance_DAV 
Person$CarDistance_DAV = CarDistance_DAV 
Person$CarTime_DAV = CarTime_DAV 
Person$CarToll_DAV = CarToll_DAV 
Person$AirTime_DAV =AirTime_DAV 
Person$AirFare_DAV = AirFare_DAV 
Person$AccessDist_DAV = AccessDist_DAV 

# Destination Choice Ends 
################################# 

################################# 
# Find party size for each individual 
theta = 2.086870433 
PS_ASC = 0.628116377 
PS_Age = -0.003968709 
PS_Female = 0.204270333 
PS_Commute = -1.305129877 
PS_Business = -1.151497601 
PS_Shopping = -0.22035264 
PS_VisitFriends = -0.225880759 

# Party size before AV 
Party_Size_mu = exp(PS_ASC)* exp(PS_Age*Person$pagetype)* 
exp(PS_Female*Person$P_Female)* 
exp(PS_Commute*(Person$Trip_Purpose==1))* 

exp(PS_Business*(Person$Trip_Purpose==2))*exp(PS_Shopping*(Person$Trip_Purpose 
==3))* 
exp(PS_VisitFriends*(Person$Trip_Purpose==8)) 

Party_Size <- rnegbin(Party_Size_mu, theta = 2.081392099) 

# Party size after AV 
Party_Size_AV_mu = exp(PS_ASC)* exp(PS_Age*Person$pagetype)* 
exp(PS_Female*Person$P_Female)* 
exp(PS_Commute*(Person$Trip_Purpose==1))* 

188 



 
 

  

 
   

    
   
     
  

  
   

 
   
   
    
   

   
 

   
 

 
    

  
   
  

 
 

   
  

  
  
  
  

  
  

 
  

   
  
       
                  

 
                   
     
     
       
                    

 
                     

exp(PS_Business*(Person$Trip_Purpose==2))*exp(PS_Shopping*(Person$Trip_Purpose 
==3))* 
exp(PS_VisitFriends*(Person$Trip_Purpose==8)) 
Party_Size_AV <- rnegbin(Party_Size_AV_mu, theta = 2.081392099) 

RandomNum_NumVeh <-array(runif(nrow(Person)), c(nrow(Person),1)) 
Party_Size = ifelse((Party_Size-floor(Party_Size))>RandomNum_NumVeh, 
ceiling(Party_Size), floor(Party_Size))+1 
Party_Size_AV = ifelse((Party_Size_AV-
floor(Party_Size_AV))>RandomNum_NumVeh, ceiling(Party_Size_AV), 
floor(Party_Size_AV))+1 

Person$Party_Size = Party_Size 
Person$Party_Size_AV = Party_Size_AV 

# Party Size Ends 
################################# 

################################# 
# Mode Choice before AVs 

Utility_car = rep(0,NROW(Person)) 
Utility_rcar =rep(0,NROW(Person)) 
Utility_air = rep(0,NROW(Person)) 
Utility_AV = rep(0,NROW(Person)) 
Utility_SAV = rep(0,NROW(Person)) 
Mode = rep(0,NROW(Person)) 
expsum = 0 

b_female_car = -0.207439158 
b_Party_rcar = 0.128564158 
b_Access_Air = -0.027957021 
b_LD_Air = 1.914413897 

# Non-Business 
for (k in 1:NROW(Person)){ 
if (Person$Trip_Purpose[k] != 1|Person$Trip_Purpose[k] != 2){ 

Utility_car = ASC_car_NB + b_tt_car_NB*CarTime_D[k]/60+ 
b_cost_NB*0.5*(CarToll_D[k]+CarDistance_D[k]*Car_Operation-

(34.38*CarTime_D[k]/60+18.05))+ 
b_female_car* Person$P_Female[k] 

Utility_rcar = ASC_rcar_NB + b_tt_rcar_NB*CarTime_D[k]/60 + 

b_cost_NB*0.5*(CarToll_D[k]+CarDistance_D[k]*rcar_Operation+50*ceiling(CarTime 
_D[k]/24)-(10.43*CarTime_D[k]/60+66.91))+ 

b_Party_rcar*Party_Size[k] 
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Utility_air = ASC_air_NB + b_tt_air_NB*AirTime_D[k]/60 + 
b_cost_NB*0.5*(AirFare_D[k]-(52.65*AirTime_D[k]/60+272.98)) + 

b_Access_Air* AccessDist_D[k]+ 
b_LD_Air*(Distance_D[k]>500) 

expsum = exp(Utility_car)+exp(Utility_rcar)+exp(Utility_air) 
prob_car = exp(Utility_car)/expsum 
prob_rcar = exp(Utility_rcar)/expsum 
prob_air = exp(Utility_air)/expsum 

if (CarTime_D[k] == 0){ 
prob_car = 0 
prob_rcar = 0 
prob_air = 1 
}else if (AirTime_D[k] == 0){ 
prob_car = prob_car 
prob_rcar = prob_rcar 
prob_air = 0 
} 
prob_mode = c(prob_car, prob_rcar, prob_air) 
r_D = runif(1, 0, 1) 
P_cum_D = cumsum(prob_mode) 
for (i in 1:length(prob_mode)){ 
if (i==1){ 
if (r_D<P_cum_D[1]){ 
temp =1 
} 
}else{ 
if ((r_D<P_cum_D[i])&&(r_D>=P_cum_D[i-1])){ 
temp = i 
} 
} 
} 

Mode[k] = temp 

################################# 

}else{ 

# Business 

Utility_car = ASC_car_NB + b_tt_car_NB*CarTime_D[k]/60+ 
b_cost_NB*(CarToll_D[k]+CarDistance_D[k]*Car_Operation-

(34.38*CarTime_D[k]/60+18.05))+ 
b_female_car* Person$P_Female[k] 
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Utility_rcar = ASC_rcar_NB + b_tt_rcar_NB*CarTime_D[k]/60 + 

b_cost_NB*(CarToll_D[k]+CarDistance_D[k]*rcar_Operation+50*ceiling(CarTime_D[ 
k]/24)-(10.43*CarTime_D[k]/60+66.91))+ 
b_Party_rcar*Party_Size[k] 

Utility_air = ASC_air_NB + b_tt_air_NB*AirTime_D[k]/60 + 
b_cost_NB*(AirFare_D[k]-(52.65*AirTime_D[k]/60+272.98)) + b_Access_Air* 

AccessDist_D[k]+ 
b_LD_Air*(Distance_D[k]>500) 

expsum = exp(Utility_car)+exp(Utility_rcar)+exp(Utility_air) 
prob_car = exp(Utility_car)/expsum 
prob_rcar = exp(Utility_rcar)/expsum 
prob_air = exp(Utility_air)/expsum 

if (CarTime_D[k] == 0){ 
prob_car = 0 
prob_rcar = 0 
prob_air = 1 
}else if (AirTime_D[k] == 0){ 
prob_car = prob_car 
prob_rcar = prob_rcar 
prob_air = 0 
} 

prob_mode = c(prob_car, prob_rcar, prob_air) 
r_D = runif(1, 0, 1) 
P_cum_D = cumsum(prob_mode) 
for (i in 1:length(prob_mode)){ 
if (i==1){ 
if (r_D<P_cum_D[1]){ 
temp =1 
} 
}else{ 
if ((r_D<P_cum_D[i])&&(r_D>=P_cum_D[i-1])){ 
temp = i 
} 
} 
} 

Mode[k] = temp 

################################# 

} 
} 
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Person$Mode = Mode 

Mode_AV = 0 

b_age_AV = -0.02304909 
b_edu_AV = 0.724960476 

prob_SAV = 0 
## Mode Choice after AV 
for (k in 1:NROW(Person)){ # Non-business 
if (Person$Trip_Purpose[k] != 1|Person$Trip_Purpose[k] != 2){ 
# Non-Business 

Utility_car = (ASC_car_NB + b_tt_car_NB*CarTime_DAV[k]/60+ 
b_cost_NB*0.5*(CarToll_DAV[k]+CarDistance_DAV[k]*Car_Operation-

(34.38*CarTime_DAV[k]/60+18.05))+ 
b_female_car* Person$P_Female[k])*mu_SP 

Utility_rcar = (ASC_rcar_NB + b_tt_rcar_NB*CarTime_DAV[k]/60 + 

b_cost_NB*0.5*(CarToll_DAV[k]+CarDistance_DAV[k]*rcar_Operation+50*ceiling(C 
arTime_DAV[k]/24)-(10.43*CarTime_DAV[k]/60+66.91))+ 

b_Party_rcar*Party_Size_AV[k])*mu_SP 

Utility_air = (ASC_air_NB + (b_tt_air_NB-0.8)*AirTime_DAV[k]/60 + 
b_cost_NB*0.5*abs(AirFare_DAV[k]-(52.65*AirTime_DAV[k]/60+272.98)) + 

b_Access_Air* AccessDist_DAV[k]+ 
b_LD_Air*(Distance_DAV[k]>500))*mu_SP 

Utility_AV = (ASC_AV_NB + b_tt_AV_NB*CarTime_DAV[k]/60+ 
b_cost_NB*0.5*(CarToll_DAV[k]+CarDistance_DAV[k]*AV_Operation-

(46.97*CarTime_DAV[k]/60+14.42))+ 
b_age_AV* Person$pagetype[k]+ 
b_edu_AV* Person$P_College_Educated[k])*mu_SP 

expsum = exp(Utility_car)+exp(Utility_AV)+ exp(Utility_rcar)+exp(Utility_air) 

prob_car = exp(Utility_car)/expsum 
prob_AV = exp(Utility_AV)/expsum 
prob_rcar = exp(Utility_rcar)/expsum 
prob_air = exp(Utility_air)/expsum 

if (CarTime_DAV[k] == 0){ 
prob_car = 0 
prob_rcar = 0 
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prob_AV = 0 
prob_air = 1 
}else if (AirTime_DAV[k] == 0){ 
prob_car = prob_car 
prob_rcar = prob_rcar 
prob_AV = prob_AV 
prob_air = 0 
} 
if (Person$hhcurrveh_AV[k] ==0) { 
prob_SAV = prob_AV 
prob_AV = 0 
} 

prob_mode_AV = c(prob_car, prob_rcar,prob_AV,prob_SAV, prob_air) 
r_D = runif(1, 0, 1) 
P_cum_D = cumsum(prob_mode) 
for (i in 1:length(prob_mode)){ 
if (i==1){ 
if (r_D<P_cum_D[1]){ 
temp =1 
} 
}else{ 
if ((r_D<P_cum_D[i])&&(r_D>=P_cum_D[i-1])){ 
temp = i 
} 
} 
} 

Mode_AV[k] = temp 

################################# 

}else{ 

# Business 

Utility_car = (ASC_car_NB + b_tt_car_NB*CarTime_DAV[k]/60+ 
b_cost_NB*(CarToll_DAV[k]+CarDistance_DAV[k]*Car_Operation-

(34.38*CarTime_DAV[k]/60+18.05))+ 
b_female_car* Person$P_Female[k])*mu_SP 

Utility_rcar = (ASC_rcar_NB + b_tt_rcar_NB*CarTime_DAV[k]/60 + 

b_cost_NB*(CarToll_DAV[k]+CarDistance_DAV[k]*rcar_Operation+50*ceiling(CarTi 
me_DAV[k]/24)-(10.43*CarTime_DAV[k]/60+66.91))+ 

b_Party_rcar*Party_Size_AV[k])*mu_SP 

Utility_air = (ASC_air_NB + (b_tt_air_NB-0.8)*AirTime_DAV[k]/60 + 
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b_cost_NB*abs(AirFare_DAV[k]-(52.65*AirTime_DAV[k]/60+272.98)) 
+ b_Access_Air* AccessDist_DAV[k]+

b_LD_Air*(Distance_DAV[k]>500))*mu_SP 

Utility_AV = (ASC_AV_NB + b_tt_AV_NB*CarTime_DAV[k]/60+ 
b_cost_NB*(CarToll_DAV[k]+CarDistance_DAV[k]*AV_Operation-

(46.97*CarTime_DAV[k]/60+14.42))+ 
b_age_AV* Person$pagetype[k]+ 
b_edu_AV* Person$P_College_Educated[k])*mu_SP 

expsum = exp(Utility_car)+exp(Utility_AV)+ exp(Utility_rcar)+exp(Utility_air) 

prob_car = exp(Utility_car)/expsum 
prob_AV = exp(Utility_AV)/expsum 
prob_rcar = exp(Utility_rcar)/expsum 
prob_air = exp(Utility_air)/expsum 

if (CarTime_DAV[k] == 0){ 
prob_car = 0 
prob_rcar = 0 
prob_AV = 0 
prob_air = 1 
}else if (AirTime_DAV[k] == 0){ 
prob_car = prob_car 
prob_rcar = prob_rcar 
prob_AV = prob_AV 
prob_air = 0 
} 
if (Person$hhcurrveh_AV[k] ==0) { 
prob_SAV = prob_AV 
prob_AV = 0 
} 
prob_mode_AV = c(prob_car, prob_rcar, prob_AV,prob_SAV, prob_air) 
r_D = runif(1, 0, 1) 
P_cum_D = cumsum(prob_mode) 
for (i in 1:length(prob_mode)){ 
if (i==1){ 
if (r_D<P_cum_D[1]){ 
temp =1 
} 
}else{ 
if ((r_D<P_cum_D[i])&&(r_D>=P_cum_D[i-1])){ 
temp = i 
} 
} 
} 
Mode_AV[k] = temp 
} 

} 
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Person$Mode_AV = Mode_AV 
# Mode Choice Ends 
################################# 

# Report PMT, VMT, and mode share before and after AVs 
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Appendix C: Python Script for Weighting 
Process via Iterative Proportional Fitting 

from ipfn import ipfn 
import numpy as np 
import csv 
import datetime 

def read_targets(filename): 
# create two sets that works for the collected survey and the ACS data 
# matrix index =  education, gender, ege, region 

acs = np.zeros((4,2,6,5), dtype=int) 
# read the target form ACS input 
acs_rd = csv.reader(open(filename, 'r')) 
gender_index = 0 
age_index = 0 
region_index = 0 
for row in acs_rd: 

if row[0].startswith("Northeast") or row[0].startswith("Midwest") \ 
or row[0].startswith("South") or row[0].startswith("West"): 

acs[:, gender_index, age_index, region_index] = [int(row[1]), 
int(row[2]), int(row[3]), int(row[4])] 

region_index += 1 
elif row[0].startswith("Texas"): 

acs[:, gender_index, age_index, region_index] = [int(row[1]), 
int(row[2]), int(row[3]), int(row[4])] 

acs[0, gender_index, age_index, region_index -2 ] -= int(row[1]) 
acs[1, gender_index, age_index, region_index -2 ] -= int(row[2]) 
acs[2, gender_index, age_index, region_index -2 ] -= int(row[3]) 
acs[3, gender_index, age_index, region_index -2 ] -= int(row[4]) 
age_index += 1 
region_index = 0 

if age_index == 6: 
gender_index = 1 
age_index = 0 

acs = acs[0,:,:,:] + acs[1,:,:,:] + acs[2,:,:,:] + acs[3,:,:,:] 
print("ACS Matrix ---------") 
print(acs) 

return acs 

def survey_response(filename,date): 
survey = np.zeros((4, 2, 6, 5), dtype=int) 
gender_index, age_index, region_index, education_index = set_indices() 
# read dataset from survey data 
db_rd = csv.reader(open(filename, 'r')) 
for row in db_rd: 

if row[0].startswith("5") or row[0].startswith("6") : 
if row[187] in gender_index.keys() \ 

and row[186] in age_index.keys() \ 
and row[199] in region_index.keys() \ 
and row[193] in education_index.keys(): 
if date == True: 

if row[47] == "NA": 
# print(row[48]) 
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read_date = row[48].split('/') 
d = datetime.datetime(2000+int(read_date[2]), 

int(read_date[0]), int(read_date[1])) 
else: 

# print(row[47]) 
read_date = row[47].split('/') 

d = datetime.datetime(2000+int(read_date[2]), 
int(read_date[0]), int(read_date[1])) 

if d < datetime.datetime(2020, 4, 1): 
survey[education_index[row[193]], 

gender_index[row[187]], age_index[row[186]], 
region_index[row[199]]] += 1 

else: 
survey[education_index[row[193]], gender_index[row[187]], 

age_index[row[186]], region_index[row[199]]] += 1 

survey = survey[0, :, :, :] + survey[1, :, :, :] + survey[2, :, :, :] + 
survey[3, :, :, :] 

print("Survey Matrix "," ---------", date, " ---------") 
print("Total valid = ",survey[:,:,:].sum()) 
print(survey) 
return survey 

def set_indices(): 
# define the index of each category 
gender_index = {"Male" : 0, "Female" : 1} 
age_index = {"18 to 24 years" : 0, "25 to 34 years" : 1, "35 to 44 years" : 

2, "45 to 54 years" : 3, 
"55 to 64 years" : 4, "65 or more years" : 5} 

region_index = {"CT" : 0, "ME" : 0, "MA" : 0, "NH" : 0, "NJ" : 0, "NY" : 0, 
"PA" : 0, "RI" : 0, "VT" : 0, 

"IL" : 1, "IN" : 1, "IA" : 1, "KS" : 1, "MI" : 1, "MN" : 1, 
"MO" : 1, "NE" : 1, "ND" : 1, "OH" : 1, "SD":1, 
"WI" : 1, 

"AL" : 2, "AR" : 2, "DE" : 2, "FL" : 2, "GA" : 2, "KY" : 2, 
"LA" : 2, "MD" : 2, "MS" : 2, 

"NC" : 2, "OK" : 2, "SC" : 2, "TN" : 2, "VA" : 2, "WV" : 2, 
"Washington D.C." : 2, 

"AK" : 3, "AZ" : 3, "CA" : 3, "CO" : 3, "HI" : 3, "ID" : 3, 
"MT" : 3, "NV" : 3, "NM" : 3, "OR" : 3, "UT" : 3, 
"WA" : 3, "WY" : 3, 

"NA" : 4} 
education_index = {"I completed high school (or equivalent)." : 0, "I did 

not complete high school." : 0, 
"I completed some college, but no degree." : 1, "I 

obtained an associate's or technical degree (or 
equivalent)." : 1, 

"I obtained a Bachelor's degree." : 2, 
"I obtained a Master's degree." : 3, "I obtained a PhD." 

: 3} 
return gender_index, age_index, region_index, education_index 

def IPF(acs, survey): 
#calculate the marginal from ACS data 
#education(4), 
#gender(2), ege(6), region(5) 
xipp = np.array([acs[0,:,:].sum(), acs[1,:,:].sum()]) 
xpjp = np.array([acs[:,0,:].sum(), acs[:,1,:].sum(), acs[:,2,:].sum(), 

acs[:,3,:].sum(), acs[:,4,:].sum(), 
acs[:,5,:].sum()]) 
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xppk = np.array([acs[:,:,0].sum(), acs[:,:,1].sum(), acs[:,:,2].sum(), 
acs[:,:,3].sum(), acs[:,:,4].sum()]) 

xijp = np.array([[acs[0, 0, :].sum(), acs[0, 1, :].sum(), acs[0, 2, 
:].sum(), acs[0, 3, :].sum(), acs[0, 4, :].sum(), 
acs[0, 5, :].sum()], 

[acs[1, 0, :].sum(), acs[1, 1, :].sum(), acs[1, 2, 
:].sum(), acs[1, 3, :].sum(), acs[1, 4, :].sum(), 
acs[1, 5, :].sum()]]) 

xpjk = np.array([[acs[:, 0, 0].sum(), acs[:, 0, 1].sum(), acs[:, 0, 
2].sum(), acs[:, 0, 3].sum(), acs[:, 0, 4].sum()], 

[acs[:, 1, 0].sum(), acs[:, 1, 1].sum(), acs[:, 1, 
2].sum(), acs[:, 1, 3].sum(), acs[:, 1, 4].sum()], 

[acs[:, 2, 0].sum(), acs[:, 2, 1].sum(), acs[:, 2, 
2].sum(), acs[:, 2, 3].sum(), acs[:, 2, 4].sum()], 

[acs[:, 3, 0].sum(), acs[:, 3, 1].sum(), acs[:, 3, 
2].sum(), acs[:, 3, 3].sum(), acs[:, 3, 4].sum()], 

[acs[:, 4, 0].sum(), acs[:, 4, 1].sum(), acs[:, 4, 
2].sum(), acs[:, 4, 3].sum(), acs[:, 4, 4].sum()], 

[acs[:, 5, 0].sum(), acs[:, 5, 1].sum(), acs[:, 5, 
2].sum(), acs[:, 5, 3].sum(), acs[:, 5, 
4].sum()]]) 

xipk = np.array([[acs[0, :, 0].sum(), acs[0, :, 1].sum(), acs[0, :, 
2].sum(), acs[0, :, 3].sum(), acs[0, :, 4].sum()], 

[acs[1, :, 0].sum(), acs[1, :, 1].sum(), acs[1, :, 
2].sum(), acs[1, :, 3].sum(), acs[1, :, 
4].sum()]]) 

aggregates = [xipp, xpjp, xppk, xijp, xpjk, xipk] 
dimensions = [[0], [1], [2], [0, 1], [1, 2], [0,2]] 

IPF = ipfn.ipfn(survey, aggregates, dimensions) 
m = IPF.iteration() 
print("Weighted Matrix ---------") 
print(m.astype(int)) 

# calculate weights for each category = total weights in that category / 
number of collected samples in that category 

weights = np.zeros((2, 6, 5), dtype=int) 
for i in range (2): 

for j in range (6): 
for k in range (5): 

weights[i,j,k] = m[i,j,k] / survey[i,j,k] 
print("Weights Matrix ---------") 
print(weights) 

return weights 

def write_db(weights,filename, out_filename): 
# Read and calculate the average of the weights 
gender_index, age_index, region_index, education_index = set_indices() 
total = [] 
total_tx = [] 
with open(filename, 'r') as csvinput: 

for row in csv.reader(csvinput): 
if row[0].startswith("5") or row[0].startswith("6"): 

if row[187] in gender_index.keys() \ 
and row[186] in age_index.keys() \ 
and row[199] in region_index.keys() \ 
and row[193] in education_index.keys(): 
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total += [weights[gender_index[row[187]], 
age_index[row[186]], region_index[row[199]]]] 

if row[187] in gender_index.keys() \ 
and row[186] in age_index.keys() \ 
and row[199] == "NA" \ 
and row[193] in education_index.keys(): 

total_tx += [weights[gender_index[row[187]], 
age_index[row[186]], region_index[row[199]]]] 

avg = sum(total) / len(total) 
avg_tx = sum(total_tx) / len(total_tx) 

csvinput.close() 

# write weights to database for each category 
with open(filename, 'r') as csvinput: 

with open(out_filename, 'w', newline='') as csvoutput: 
writer = csv.writer(csvoutput) 
for row in csv.reader(csvinput): 

if row[0].startswith("5") or row[0].startswith("6"): 
if row[187] in gender_index.keys() \ 

and row[186] in age_index.keys() \ 
and row[199] in region_index.keys() \ 
and row[193] in education_index.keys(): 

wg = weights[gender_index[row[187]], 
age_index[row[186]], region_index[row[199]]] 

if row[199] == "NA": 
wg_tx = weights[gender_index[row[187]], 
age_index[row[186]], region_index[row[199]]] 

writer.writerow(row + [wg, wg / avg, wg_tx / 
avg_tx]) 

else: 
writer.writerow(row + [wg, wg / avg, 0]) 

else: 
writer.writerow(row + [0, 0, 0]) 

else: 
writer.writerow(row + ['Weights', 'Normalized Weights', 

'Normalized TX Weights']) 
csvoutput.close() 

csvinput.close() 

if __name__ == "__main__": 

acs = read_targets("ACS_export.csv") 

survey = survey_response("June_15_filtered2_precovid.csv", False) 
survey_datefilter = survey_response("June_15_filtered2_precovid.csv", True) 

weights = IPF(acs, survey) 
weights_datefilter = IPF(acs, survey_datefilter) 

write_db(weights,"June_15_filtered2_precovid.csv", 
"June_15_filtered2_precovid_weights.csv") 

write_db(weights_datefilter, "June_15_filtered2_precovid.csv", 
"June_15_precovid_datefiltered2_weights.csv") 
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Appendix D: Python Script for Data Summary 
Statistics 

#!/usr/bin/env python 
# coding: utf-8 

# In[1]: 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.dates as mdates 
from matplotlib.ticker import FuncFormatter 
from pandas.tseries.holiday import USFederalHolidayCalendar as calendar 
import math 
import csv 

get_ipython().run_line_magic('matplotlib', 'inline') 
plt.style.use('seaborn-paper') 
plt.rcParams['font.family'] = 'sans-serif' 

# In[2]: 

df_raw = pd.read_csv('June_15_filtered2_precovid_weights.csv') 
pd.set_option('display.max_columns', 200) 
pd.set_option('display.max_rows', 200) 

# In[3]: 

#df.head() 

# In[4]: 

#df.info(verbose=True) 

# In[5]: 

#df.loc[0] 

# In[6]: 

#region filter 
filt = df_raw['RegionTX'] == 'Yes' 
tx_db = 1 
if tx_db == 1: 

outkey = 'Texas' 
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df = df_raw[filt].copy() 
else: 

outkey = 'US' 
df = df_raw.copy() 

# In[7]: 

#raw data processing 
df['2019_nb_Weights'] = df['2019_nb'] * df['Weights'] 
df['2019_b_Weights'] = df['2019_b'] * df['Weights'] 
df['2020_nb_Weights'] = df['2020_nb'] * df['Weights'] 
df['2020_b_Weights'] = df['2020_b'] * df['Weights'] 

df['schedule1_w'] = df['schedule1'] * df['Weights'] 
df['access_w'] = df['access'] * df['Weights'] 
df['parking1_w'] = df['parking1'] * df['Weights'] 
df['security_w'] = df['security'] * df['Weights'] 
df['wait_w'] = df['wait'] * df['Weights'] 
df['onboard_w'] = df['onboard'] * df['Weights'] 
df['schedule2_w'] = df['schedule2'] * df['Weights'] 
df['egress_w'] = df['egress'] * df['Weights'] 
df['parking2_w'] = df['parking2'] * df['Weights'] 

df['av_days_p_w'] = df['av_days_p'] * df['Weights'] 
df['av_days_n_w'] = df['av_days_n'] * df['Weights'] 

df['family_w'] = df['family'] * df['Weights'] 
df['friends_w'] = df['friends'] * df['Weights'] 
df['colleagues_w'] = df['colleagues'] * df['Weights'] 

df['family_more_w'] = df['family_more'] * df['Weights'] 
df['friends_more_w'] = df['friends_more'] * df['Weights'] 
df['colleagues_more_w'] = df['colleagues_more'] * df['Weights'] 

if tx_db != 1: 
region_index = {"CT" : 0, "ME" : 0, "MA" : 0, "NH" : 0, "NJ" : 0, "NY" : 0, 

"PA" : 0, "RI" : 0, "VT" : 0, 
"IL" : 1, "IN" : 1, "IA" : 1, "KS" : 1, "MI" : 1, "MN" : 1, 

"MO" : 1, "NE" : 1, "ND" : 1, 
"OH" : 1, "SD" : 1, "WI" : 1, 
"AL" : 2, "AR" : 2, "DE" : 2, "FL" : 2, "GA" : 2, "KY" : 2, 

"LA" : 2, "MD" : 2, "MS" : 2, 
"NC" : 2, "OK" : 2, "SC" : 2, "TN" : 2, "VA" : 2, "WV" : 2, 

"Washington D.C." : 2, 
"AK" : 3, "AZ" : 3, "CA" : 3, "CO" : 3, "HI" : 3, "ID" : 3, 

"MT" : 3, "NV" : 3, "NM" : 3, 
"OR" : 3, "UT" : 3, "WA" : 3, "WY" : 3, 
"TX" : 4} 

#df['Region'] 
List = [] 
for i in range(df.shape[0]): 

if df.loc[i]['RegionTX'] == "Yes": 
region = 4 

else: 
region = region_index[df.loc[i]['RegionState']] 

List += [region] 
df.insert(df.shape[1],'Region', List, allow_duplicates = True) 

TotalWeightSum = df['Weights'].sum() 
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# # Long-Distance Trips Frequency & Trip Purpose 
# 

# LD Trip Frequency 

# In[8]: 

Output1 = [["","Non-Business","Non-Business","Business","Business"]] 
Output1 += [["", "2019","2020","2019","2020"]] 

filt1 = df['2019'] == 'Yes' 
filt2 = df['2020'] == 'Yes' 
df_2019 = df.loc[filt1] 
df_2020 = df.loc[filt2] 

b_19 = df['2019_b_Weights'].sum()/(df['2019_nb_Weights'].sum() + 
df['2019_b_Weights'].sum()) 

nb_19 = df['2019_nb_Weights'].sum()/(df['2019_nb_Weights'].sum() + 
df['2019_b_Weights'].sum()) 

b_20 = df['2020_b_Weights'].sum()/(df['2020_nb_Weights'].sum() + 
df['2020_b_Weights'].sum()) 

nb_20 = df['2020_nb_Weights'].sum()/(df['2020_nb_Weights'].sum() + 
df['2020_b_Weights'].sum()) 

Output1 += [["",nb_19,nb_20, b_19,b_20]] 

# In[9]: 

Output1 += [['Gender']] 

filt19F = df_2019['Gender'] == 'Female' 
filt19M = df_2019['Gender'] == 'Male' 
filt20F = df_2020['Gender'] == 'Female' 
filt20M = df_2020['Gender'] == 'Male' 

Gender19_grp = df_2019.groupby(['Gender']) 
Gender20_grp = df_2020.groupby(['Gender']) 

G_19nb = 
Gender19_grp['2019_nb_Weights'].sum()/sum(Gender19 
_grp['2019_nb_Weights'].sum()) 

G_20nb = 
Gender20_grp['2020_nb_Weights'].sum()/sum(Gender20 
_grp['2020_nb_Weights'].sum()) 

G_19b = 
Gender19_grp['2019_b_Weights'].sum()/sum(Gender19_ 
grp['2019_b_Weights'].sum()) 

G_20b = 
Gender20_grp['2020_b_Weights'].sum()/sum(Gender20_ 
grp['2020_b_Weights'].sum()) 

Output1 += [["Female", G_19nb[0], G_20nb[0], G_19b[0], G_20b[0]]] 
Output1 += [["Male", G_19nb[1], G_20nb[1], G_19b[1], G_20b[1]]] 

# In[10]: 
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Output1 += [["Age"]] 

Age19_grp = df_2019.groupby(['Age']) 
Age20_grp = df_2020.groupby(['Age']) 
A_19nb = 

Age19_grp['2019_nb_Weights'].sum()/sum(Age19_grp[' 
2019_nb_Weights'].sum()) 

A_20nb = 
Age20_grp['2020_nb_Weights'].sum()/sum(Age20_grp[' 
2020_nb_Weights'].sum()) 

A_19b = Age19_grp['2019_b_Weights'].sum()/sum(Age19_grp['2019_b_Weights'].sum()) 
A_20b = Age20_grp['2020_b_Weights'].sum()/sum(Age20_grp['2020_b_Weights'].sum()) 

Output1 += [["18 to 24 years", A_19nb[0], A_20nb[0], A_19b[0], A_20b[0]]] 
Output1 += [["25 to 34 years", A_19nb[1], A_20nb[1], A_19b[1], A_20b[1]]] 
Output1 += [["35 to 44 years", A_19nb[2], A_20nb[2], A_19b[2], A_20b[2]]] 
Output1 += [["45 to 54 years", A_19nb[3], A_20nb[3], A_19b[3], A_20b[3]]] 
Output1 += [["55 to 64 years", A_19nb[4], A_20nb[4], A_19b[4], A_20b[4]]] 
Output1 += [["65 or more years", A_19nb[5], A_20nb[5], A_19b[5], A_20b[5]]] 

# In[11]: 

Output1 += [["Location"]] 

if tx_db != 1: 
#0:Northeast; 1:Midwest; 2:South, 3:West 

Region19_grp = df_2019.groupby(['Region']) 
Region20_grp = df_2020.groupby(['Region']) 

R_19nb = 
Region19_grp['2019_nb_Weights'].sum()/sum(Region19 
_grp['2019_nb_Weights'].sum()) 

R_20nb = 
Region20_grp['2020_nb_Weights'].sum()/sum(Region20 
_grp['2020_nb_Weights'].sum()) 

R_19b = 
Region19_grp['2019_b_Weights'].sum()/sum(Region19_ 
grp['2019_b_Weights'].sum()) 

R_20b = 
Region20_grp['2020_b_Weights'].sum()/sum(Region20_ 
grp['2020_b_Weights'].sum()) 

Region19_grp['Region'].value_counts() 

Output1 += [["Northeast", R_19nb[0], R_20nb[0], R_19b[0], R_20b[0]]] 
Output1 += [["Midwest", R_19nb[1], R_20nb[1], R_19b[1], R_20b[1]]] 
Output1 += [["South", R_19nb[2] + R_19nb[4], R_20nb[2] + R_20nb[4], R_19b[2] 

+ R_19b[4], R_20b[2] + R_20b[4]]]
Output1 += [["West", R_19nb[3], R_20nb[3], R_19b[3], R_20b[3]]] 
Output1 += [["Texas", R_19nb[4], R_20nb[4], R_19b[4], R_20b[4]]] 

# Long-Distance Trip Frequency & COVID-19 

# In[12]: 
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Output2 = [["",'Long-Distance Trip Frequency & COVID-19']] 
Output2 += [["", outkey]] 

covid_before_grp = df.groupby(['before_c']) 
covid_during_grp = df.groupby(['during_c']) 
covid_after_grp = df.groupby(['after_c']) 

C_before = 
covid_before_grp['Weights'].sum()/sum(covid_before 
_grp['Weights'].sum()) 

C_during = 
covid_during_grp['Weights'].sum()/sum(covid_during 
_grp['Weights'].sum()) 

C_after = covid_after_grp['Weights'].sum()/sum(covid_after_grp['Weights'].sum()) 

covid_before_grp['Weights'].sum() 

Output2 += [["","Before the COVID-19 pandemic", "During the COVID-19 pandemic", 
"Plan after COVID-19 is no longer a concern"]] 

Output2 += [["Every week", C_before[4],C_during[4],C_after[4]]] 
Output2 += [["More than twice a month", C_before[6],C_during[6],C_after[6]]] 
Output2 += [["More than once a month", C_before[5],C_during[5],C_after[5]]] 
Output2 += [["Every month", C_before[3],C_during[3],C_after[3]]] 
Output2 += [["Every 3 months", C_before[0],C_during[0],C_after[0]]] 
Output2 += [["Every 6 months", C_before[1],C_during[1],C_after[1]]] 
Output2 += [["Every 9 months", C_before[2],C_during[2],C_after[2]]] 
Output2 += [["On average, less than 1 trip per year", 

C_before[8],C_during[8],C_after[8]]] 
Output2 += [["Never", C_before[7],C_during[7],C_after[7]]] 

#Output2 

# Long-Distance Trip Purposes 

# In[13]: 

Output3 = [["","Long-Distance Trip Purposes"]] 
Output3 += [["", outkey]] 

ListofStrings = ["To/From Work", "Work-Related Business", "Shopping", "Other 
Family/Personal Business", 

"School/Church", "Medical/Dental", "Visit Friends/Relatives", 
"Other Social/Recreational", 

"Other"] 
ListColumns = ['before_c_p', 'during_c_p', 'after_c_p'] 
df_purpose_covid = pd.DataFrame(columns = ListColumns, index = ListofStrings) 

for i in ListColumns: 
for j in ListofStrings: 

df_purpose_covid.loc[j][i] = 
df[df[i].str.contains(j,na=False)]['Weights'].sum( 
) 

df_purpose_covid = df_purpose_covid/[df_purpose_covid['before_c_p'].sum(), 
df_purpose_covid['during_c_p'].sum(), 
df_purpose_covid['after_c_p'].sum()] 
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Output3 += [["","Before the COVID-19 pandemic", "During the COVID-19 pandemic", 
"Plan after COVID-19 is no longer a concern"]] 

Output3 += df_purpose_covid.reset_index().values.tolist() 

#Output3 

# Long-Distance Mode Choice 

# In[14]: 

Output4 = [["",'Revealed Long-Distance Mode Choice']] 
Output4 += [["", outkey]] 

short_nb_grp = df.groupby(['short_nb']) 
short_b_grp = df.groupby(['short_b']) 
long_nb_grp = df.groupby(['long_nb']) 
long_b_grp = df.groupby(['long_b']) 
#short_nb_grp['short_nb'].value_counts() 

M_short_nb = 
(short_nb_grp['Weights'].sum()/sum(short_nb_grp['W 
eights'].sum())).rename('M_short_nb') 

M_short_b = 
(short_b_grp['Weights'].sum()/sum(short_b_grp['Wei 
ghts'].sum())).rename('M_short_b') 

M_long_nb = 
(long_nb_grp['Weights'].sum()/sum(long_nb_grp['Wei 
ghts'].sum())).rename('M_long_nb') 

M_long_b = 
(long_b_grp['Weights'].sum()/sum(long_b_grp['Weigh 
ts'].sum())).rename('M_long_b') 

df_mc = pd.concat([M_short_nb, M_short_b, M_long_nb, M_long_b], axis=1, 
sort=True) 

df_mc_ind = df_mc.reindex(['Airplane', 'Boat/Ship', 'Bus', 'Personal 
car','Rental car','Train']) 

df_mc_ind.sum(axis=0) 
df_mc_ind/df_mc_ind.sum(axis=0) 

Output4 += [["","Non-Business", "Non-Business", "Business", "Business"], 
["between 75 and 500 miles", "longer than 500 miles", "between 75 

and 500 miles", "longer than 500 miles"]] 
Output4 += df_mc_ind.reset_index().values.tolist() 
#Output4 

#Output4 += [df.columns.tolist()] + df.reset_index().values.tolist() 

# # Activities in AVs 

# In[15]: 

Output5 = [["",'Activities in AVs']] 
Output5 += [["", outkey]] 

Act1 = (df.groupby('Q3.03_1')['Weights'].sum()).rename('Talking to other 
passengers') 
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Act2 = (df.groupby('Q3.03_2')['Weights'].sum()).rename('Making phone calls or 
messaging') 

Act3 = (df.groupby('Q3.03_3')['Weights'].sum()).rename('Emailing or browsing 
internet') 

Act4 = (df.groupby('Q3.03_4')['Weights'].sum()).rename('Using social media') 
Act5 = (df.groupby('Q3.03_5')['Weights'].sum()).rename('Reading for leisure') 
Act6 = (df.groupby('Q3.03_6')['Weights'].sum()).rename('Watching videos or 

playing games') 
Act7 = (df.groupby('Q3.03_7')['Weights'].sum()).rename('Listening to music') 
Act8 = (df.groupby('Q3.03_8')['Weights'].sum()).rename('Eating or drinking') 
Act9 = (df.groupby('Q3.03_9')['Weights'].sum()).rename('Sleeping or resting') 
Act10 = (df.groupby('Q3.03_10')['Weights'].sum()).rename('Working or studying') 
Act11 = (df.groupby('Q3.03_11')['Weights'].sum()).rename('Watching the roadway 

or landscape') 

df_act_con = pd.concat([Act1, Act2, Act3, Act4, Act5, Act6, Act7, Act8, Act9, 
Act10, Act11], axis=1, sort=True) 

df_act_ind = df_act_con.reindex(['Absolutely', 'More likely', 'Neutral', 'Less 
likely','Unlikely']) 

df_act = df_act_ind/df_act_ind.sum(axis=0) 

Output5 += [["Likelihood"] + df_act.columns.tolist()] + 
df_act.reset_index().values.tolist() 

#Output5 

# # Long-Distance Trip Revealed & Stated Preferences 

# Trip Type 

# In[16]: 

Output6 = [["",'Trip Type']] 
Output6 += [["", outkey]] 

ttype = 
df.groupby('trip_type')['Weights'].sum()/sum(df.gr 
oupby('trip_type')['Weights'].sum()) 

df_ttype = ttype.to_frame().reset_index().values.tolist() 

Output6 += df_ttype 

#Output6 

# Long-Distance Revealed Trip Purposes 

# In[17]: 

Output7 = [["","Long-Distance Revealed Trip Purposes"]] 
Output7 += [["", outkey]] 

ListofStrings = ["To visit customers", "To meet other colleagues", "To interview 
or to be interviewed", 

"For marketing and advertising purposes", "For consulting and 
advising purposes", 

"To attend a convention, conference, and/or seminar", 
"For personal business", 
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"For other business-related reasons", 
"To visit friends", "To visit family and/or to attend family-

related events", 
"For leisure and/or vacation purposes", 
"For recreational purposes", 
"For entertainment purposes", 
"For other non-business-related reasons"] 

ListColumns = ['Q4.04'] 
df_tpurpose = pd.DataFrame(columns = ListColumns, index = ListofStrings) 

for j in ListofStrings: 
df_tpurpose.loc[j]['Q4.04'] = 

df[df['Q4.04'].str.contains(j,na=False)]['Weights' 
].sum() 

df_tpurpose = df_tpurpose/TotalWeightSum 

Output7 += [["","Trip Purpose"]] 
Output7 += df_tpurpose.reset_index().values.tolist() 

#Output7 

# Travel Distance 

# In[18]: 

Output8 = [["","Travel Distance"]] 
Output8 += [["", outkey]] 

tdist = 
df.groupby('Distance')['Weights'].sum()/sum(df.gro 
upby('Distance')['Weights'].sum()) 

df_tdist = tdist.to_frame().reindex(["Between 75 and 500 miles.", "Between 500 
and 1000 miles.", "More than 1000 
miles."]).reset_index().values.tolist() 

Output8 += df_tdist 
#Output8 

# Primary way of traveling 

# In[19]: 

Output9 = [["","Primary Way of Traveling"]] 
Output9 += [["", outkey]] 

twot = 
df.groupby('wot')['Weights'].sum()/sum(df.groupby( 
'wot')['Weights'].sum()) 

df_twot = twot.to_frame().reset_index().values.tolist() 

Output9 += df_twot 
#Output9 
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# Time Spent on Air Travel 

# In[20]: 

Output10 = [["",'Time Spent on Air Travel']] 
Output10 += [["", outkey]] 
ListofStrings = ["Time scheduling the trip to the airport (e.g., reserving a van 

or calling Uber/Lyft, renting a car)", 
"Time traveling to the airport (driving or being driven by 

someone else)", "Time parking at the airport", 
"Time spent going through airport security", "Time waiting at 

the airport", "Airplane time", 
"Time scheduling the trip from the airport (e.g., reserving a 

van, calling Uber/Lyft, renting a car)", 
"Time traveling from the airport to your destination (driving 

or being driven by someone else)", 
"Time parking at your destination", "Total"] 

ListInputColumns = 
['schedule1','access','parking1','security','wait' 
,'onboard','schedule2','egress','parking2'] 

ListInputWColumns = 
['schedule1_w','access_w','parking1_w','security_w 
','wait_w','onboard_w','schedule2_w','egress_w','p 
arking2_w'] 

ListColumns = ['Max','Mean'] 

df_airtime = pd.DataFrame(columns = ListColumns, index = ListofStrings) 

for i in range(len(ListInputColumns)): 
df_airtime.loc[ListofStrings[i]]['Max'] = df[ListInputColumns[i]].max() 
df_airtime.loc[ListofStrings[i]]['Mean'] = 

sum(df.groupby(ListInputColumns[i])[ListInputWColu 
mns[i]].sum())/sum(df.groupby(ListInputColumns[i]) 
['Weights'].sum()) 

df_airtime.loc['Total']['Max'] = sum(df_airtime[:-2]['Max']) 
df_airtime.loc['Total']['Mean'] = sum(df_airtime[:-2]['Mean']) 

Output10 += [["Minutes"] + df_airtime.columns.tolist()] + 
df_airtime.reset_index().values.tolist() 

#Output10 

# Willingness to use AVs (travel time) 

# In[21]: 

Output11 = [["",'Willingness to use AVs (travel time)']] 
Output11 += [["", outkey]] 

ListofStrings = ['I do not know','Maybe','No','Yes'] 
ListColumns = ['No Change','10% increase','25% increase', '50% increase'] 
df_AV_p = pd.DataFrame(columns = ListColumns, index = ListofStrings) 

AV_p_t0 = 
(df.groupby('pre_t0')['Weights'].sum()/sum(df.grou 
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pby('pre_t0')['Weights'].sum())).rename('No 
Change') 

AV_p_t10 = 
(df.groupby('pre_t10')['Weights'].sum()/sum(df.gro 
upby('pre_t10')['Weights'].sum())).rename('10% 
increase') 

AV_p_t25 = 
(df.groupby('pre_t25')['Weights'].sum()/sum(df.gro 
upby('pre_t25')['Weights'].sum())).rename('25% 
increase') 

AV_p_t50 = 
(df.groupby('pre_t50')['Weights'].sum()/sum(df.gro 
upby('pre_t50')['Weights'].sum())).rename('50% 
increase') 

df_AV_p['No Change'] = AV_p_t0.values 
df_AV_p['10% increase'] = AV_p_t10.values 
df_AV_p['25% increase'] = AV_p_t25.values 
df_AV_p['50% increase'] = AV_p_t50.values 

df_AV_p_ind = df_AV_p.reindex(['Yes','Maybe','No','I do not know']) 

Output11 += [[""] + df_AV_p_ind.columns.tolist()] + 
df_AV_p_ind.reset_index().values.tolist() 

#Output11 

# Willingness to use AVs (travel cost) 

# In[22]: 

Output12 = [["",'Willingness to use AVs (travel cost)']] 
Output12 += [["", outkey]] 

AV_c_t50l = 
(df.groupby('c_50less')['Weights'].sum()/sum(df.gr 
oupby('c_50less')['Weights'].sum())).rename('50% 
less') 

AV_c_t25l = 
(df.groupby('c_25less')['Weights'].sum()/sum(df.gr 
oupby('c_25less')['Weights'].sum())).rename('25% 
less') 

AV_c_t0 = 
(df.groupby('c_same')['Weights'].sum()/sum(df.grou 
pby('c_same')['Weights'].sum())).rename('Same 
cost') 

AV_c_t25 = 
(df.groupby('c_25more')['Weights'].sum()/sum(df.gr 
oupby('c_25more')['Weights'].sum())).rename('25% 
more') 

AV_c_t50 = 
(df.groupby('c_50more')['Weights'].sum()/sum(df.gr 
oupby('c_50more')['Weights'].sum())).rename('50% 
more') 

df_AV_c = pd.concat([AV_c_t50l, AV_c_t25l, AV_c_t0, AV_c_t25, AV_c_t50], axis=1, 
sort=True) 
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df_AV_c = df_AV_c.reindex(["Absolutely","More likely","Neutral","Less 
likely","Unlikely"]) 

Output12 += [["Trip cost"] + df_AV_c.columns.tolist()] + 
df_AV_c.reset_index().values.tolist() 

#Output12 

# Skipping/Adding stops en route 

# In[23]: 

Output13 = [["",'Any layovers, highway rest areas, restaurants, or 
accommodations before reaching destination']] 

Output13 += [["", outkey]] 

df_stop = 
df.groupby('stop')['Weights'].sum()/sum(df.groupby 
('stop')['Weights'].sum()) 

Output13 += df_stop.reset_index().values.tolist() 

# Whether to include more stops 

# In[24]: 

Output14 = [["",'Whether to include more stops']] 
Output14 += [["", outkey]] 

incstop = 
df.groupby('incstop')['Weights'].sum()/sum(df.grou 
pby('stop')['Weights'].sum()) 

incstops = incstop.reindex(["Yes, I would include more stops on my way to my 
destination.", 

"I may consider including more stops.","No, I would not 
include more stops.", 

"I would have made fewer stops instead."]) 

df_incstop = pd.DataFrame(columns = ["incstop"], index = ["Will include more 
stops","May include more stops", 

"Remain the same number of stops.","Will 
have fewer stops instead."]) 

df_incstop["incstop"] = incstops.values 

Output14 += df_incstop.reset_index().values.tolist() 

# Output14 

# Whether to change destination to a new place 

# In[25]: 
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Output15 = [["","Whether to change destination to a new place "]] 
Output15 += [["", outkey]] 
newdest = 

df.groupby('newdest')['Weights'].sum()/sum(df.grou 
pby('newdest')['Weights'].sum()) 

newdest_ind = newdest.reindex(["Yes, I would have chosen a destination with a 
further distance.", 

"Yes, I would have chosen a destination with a shorter 
distance.", 

"I may have changed my destination choice.", 
"No, I would not have changed my destination."]) 

df_newdest = pd.DataFrame(columns = ["newdest"], index = ["Yes, a further 
place","Yes, a nearear place", 

"Maybe","No"]) 
df_newdest["newdest"] = newdest_ind.values 

Output15 += df_newdest.reset_index().values.tolist() 

# Long-distance Travel Duration 

# In[26]: 

Output16 = [["","Long-distance Travel Duration"]] 
Output16 += [["", outkey]] 

tripdur = 
df.groupby('days')['Weights'].sum()/sum(df.groupby 
('days')['Weights'].sum()) 

# print(tripdur) 

df_tripdur = pd.DataFrame(columns = ['tripdur'], index = [str(i) for i in 
range(len(tripdur))]) 

df_tripdur['tripdur'] = float(0) 

for i in tripdur.index.values: 
df_tripdur.at[str(i),'tripdur'] = tripdur[i] 

# print(df_tripdur) 

df_tripdur.loc['30','tripdur'] += sum(df_tripdur.iloc[30:,0]) 
df_tripdur = df_tripdur.rename({'30':'30+'}, axis='index').squeeze() 

df_tripdur = df_tripdur.iloc[0:31] 

# In[27]: 

fig, ax = plt.subplots(figsize=(16,8)) 
width = 0.6 
ax.set_xlabel('Travel Duration (days)', fontsize=14) 
ax.set_ylabel('Percent (%)', fontsize=14) 
ax.tick_params(axis='both', which='major', labelsize=12) 
# plt.xticks(rotation=45) 

ax.bar(df_tripdur.index.values.tolist(),df_tripdur*100, width) 
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Output16 += df_tripdur.reset_index().values.tolist() 
# Output16 

# Trip duration with AV 

# In[28]: 

Output17 = [["","Trip duration preference with AV"]] 
Output17 += [["", outkey]] 

filt = (df['av_days_p'] <= 20) & (df['av_days_n'] <= 20) 
df_raw_avdur = df[filt] 

df_avdur_ext = 
df_raw_avdur.groupby('av_days_p')['Weights'].sum() 
/sum(df_raw_avdur.groupby('av_days_p')['Weights']. 
sum()) 

df_avdur_sho = 
df_raw_avdur.groupby('av_days_n')['Weights'].sum() 
/sum(df_raw_avdur.groupby('av_days_n')['Weights']. 
sum()) 

Output17 += [["","Extend Stay", "Shorten Stay"], 
["Yes", 1-df_avdur_ext[0], 1-df_avdur_sho[0]], 
["No", df_avdur_ext[0], df_avdur_sho[0]]] 

# Output17 

# In[29]: 

# This analysis is not useful 
Output18 = [["","Trip duration with AV"]] 
Output18 += [["", outkey]] 
df['per_av_days_p'] = df['av_days_p']/df['days'] 
filt = (df['av_days_p'] > 0) | (df['av_days_n'] > 0) 

df_raw_avdur = df[filt] 

df_avdur_ext = 
df_raw_avdur.groupby('per_av_days_p')['Weights'].s 
um()/sum(df_raw_avdur.groupby('per_av_days_p')['We 
ights'].sum()) 

df_avdur_sho = 
df_raw_avdur.groupby('av_days_n')['Weights'].sum() 
/sum(df_raw_avdur.groupby('av_days_n')['Weights']. 
sum()) 

# df_avdur_ext.group(by=(df_avdur_ext.index * 1000) // 300) * 0.3) 
df_avdur_ext = df_avdur_ext.to_frame().reset_index()[0:48] 

# print(df_avdur_ext) 
df_avdur_extdist = df_avdur_ext.groupby(by = (np.ceil(df_avdur_ext.per_av_days_p 

* 10)).astype(int)/10)['Weights'].sum()

# df_avdur_extdist.plot.line() 
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# Tralve party 

# In[30]: 

Output18 = [["","Numebr of people traveling together"]] 
Output18 += [["", outkey]] 

with_family = 
df.groupby('family')['Weights'].sum()/sum(df.group 
by('family')['Weights'].sum()) 

with_friends = 
df.groupby('friends')['Weights'].sum()/sum(df.grou 
pby('friends')['Weights'].sum()) 

with_colleagues = 
df.groupby('colleagues')['Weights'].sum()/sum(df.g 
roupby('colleagues')['Weights'].sum()) 

with_family_mean = 
sum(df.groupby('family')['family_w'].sum())/sum(df 
.groupby('family')['Weights'].sum()) 

with_friends_mean = 
sum(df.groupby('friends')['friends_w'].sum())/sum( 
df.groupby('friends')['Weights'].sum()) 

with_colleagues_mean = 
sum(df.groupby('colleagues')['colleagues_w'].sum() 
)/sum(df.groupby('colleagues')['Weights'].sum()) 

Output18 += [["Family members", "Friends", "Colleagues and/or associates"], 
[with_family_mean, with_friends_mean, with_colleagues_mean], 
["Without", with_family[0], with_friends[0], with_colleagues[0]], 
["With", 1 - with_family[0], 1 - with_friends[0], 1 -

with_colleagues[0]]] 
# Output18 

# In[31]: 

Output19 = [["","Numebr of people traveling together (size)"]] 
Output19 += [["", outkey]] 

df['partysize'] = df['family'] + df['friends'] + df['colleagues'] 
partysize = 

df.groupby('partysize')['Weights'].sum()/sum(df.gr 
oupby('partysize')['Weights'].sum()) 

partysize_ind = partysize.reset_index() 
# combine 11+ 

partysize_ind.loc[11,'Weights'] = partysize_ind.loc[10:,'Weights'].sum() 
partysize_new = partysize_ind[:12].copy() 

partysize_new.loc[:,'partysize'] = (partysize_new.partysize.astype(int) + 
1).astype(str) 

partysize_new.loc[11,'partysize'] = '12+' 
partysize_plot = partysize_new.set_index('partysize').squeeze() 
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# plot the figure 
fig, ax = plt.subplots(figsize=(12,8)) 
width = 0.6 
ax.set_xlabel('Travel Party Size', fontsize=14) 
ax.set_ylabel('Percent (%)', fontsize=14) 
ax.tick_params(axis='both', which='major', labelsize=12) 

ax.bar(partysize_plot.index.values.tolist(),partysize_plot*100, width) 

Output19 += partysize_plot.reset_index().values.tolist() 

# Output19 

# In[32]: 

Output20 = [["","Numebr of children traveling together"]] 
Output20 += [["", outkey]] 

with_children = 
df.groupby('childrenn')['Weights'].sum()/sum(df.gr 
oupby('childrenn')['Weights'].sum()) 

Output20 += with_children.reset_index().values.tolist() 

# Output20 

# In[33]: 

Output21 = [["",'Number of additional people when using AVs']] 
Output21 += [["", outkey]] 

df['partysize_more'] = df['family_more'] + df['friends_more'] + 
df['colleagues_more'] 

partysize_more = 
df.groupby('partysize_more')['Weights'].sum()/sum( 
df.groupby('partysize_more')['Weights'].sum()) 

partysize_more_ind = partysize_more.reset_index() 
# print(partysize_more_ind) 

partysize_more_ind.loc[1,'Weights'] = sum(partysize_more_ind.loc[1:,'Weights']) 

partysize_more_new = partysize_more_ind[:2].copy() 
# print(partysize_more_new) 
partysize_more_new.loc[:,'partysize_more'] = 

(partysize_more_new.partysize_more.astype(int)).as 
type(str) 

partysize_more_new.loc[1,'partysize_more'] = '1+' 
partysize_more_plot = partysize_more_new.set_index('partysize_more').squeeze() 

# plot the figure 
fig, ax = plt.subplots(figsize=(12,8)) 
width = 0.6 
ax.set_xlabel('Additional Travel Party Size', fontsize=14) 
ax.set_ylabel('Percent (%)', fontsize=14) 
ax.tick_params(axis='both', which='major', labelsize=12) 
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ax.bar(partysize_more_plot.index.values.tolist(),partysize_more_plot*100, width) 

Output21 += [["Number of people","Percentage"]] 
Output21 += partysize_more_plot.reset_index().values.tolist() 
# Output21 

# In[34]: 

Output22 = [["",'Whether to bring additional children when using AVs']] 
Output22 += [["", outkey]] 

with_add_children = 
df.groupby('AddChildren')['Weights'].sum()/sum(df. 
groupby('AddChildren')['Weights'].sum()) 

Output22 += [["","Percentage"], 
["Yes", with_add_children["Yes, I would have taken my children with 

me."]], 
["Maybe", with_add_children["I may have taken my children with 

me."]], 
["No", with_add_children["No, I wouldn't have taken my children 

with me."]]] 

# Output22 

# In[35]: 

Output23 = [["","Reasons for using AVs to make long-distance trips"]] 
Output23 += [["", outkey]] 

ListofStrings = ["The safety offered by a self-driving car.", 
"The convenience offered by a self-driving car so I can use my 

travel for other activities instead of driving.", 
"The convenience offered by a self-driving car so I can have a 

good rest during long-distance driving.", 
"The reliability of the self-driving vehicle.", 
"The self-driving car’s ability to self-park.", 
"Other"] 

ListColumns = ['WithAV'] 
df_WithAV = pd.DataFrame(columns = ListColumns, index = ListofStrings) 

for j in ListofStrings: 
df_WithAV.loc[j]['WithAV'] = 

df[df['WithAV'].str.contains(j,na=False)]['Weights 
'].sum() 

df_WithAV = df_WithAV/TotalWeightSum 

Output23 += df_WithAV.reset_index().values.tolist() 
#Output23 

# In[36]: 
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Output24 = [["","Reasons for not using AVs to make long-distance trips"]] 
Output24 += [["", outkey]] 

ListofStrings = ["I enjoy driving by myself.", 
"I'm not yet confident in the safety benefits provided by self-

driving cars.", 
"The potential for faulty software in a self-driving car 

concerns me.", 
"Confusion arising from the mixture of human-driven and self-

driven cars concerns me.", 
"The possibility of being tracked in a self-driving car 

concerns me.", 
"Other"] 

ListColumns = ['WithoutAV'] 
df_WithoutAV = pd.DataFrame(columns = ListColumns, index = ListofStrings) 

for j in ListofStrings: 
df_WithoutAV.loc[j]['WithoutAV'] = 

df[df['WithoutAV'].str.contains(j,na=False)]['Weig 
hts'].sum() 

df_WithoutAV = df_WithoutAV/TotalWeightSum 

Output24 += df_WithoutAV.reset_index().values.tolist() 
#Output24 

# # Long-Distance Future Scenario Questions 

# In[37]: 

Output25 = [["","Stated Long-distance Mode Choice"]] 
Output25 += [["", outkey]] 

short_nb_stated_grp = df.groupby(['short_nb_stated']) 
short_b_stated_grp = df.groupby(['short_b_stated']) 
long_nb_stated_grp = df.groupby(['long_nb_stated']) 
long_b_stated_grp = df.groupby(['long_b_stated']) 
#short_nb_grp['short_nb'].value_counts() 

M_short_nb_stated = 

M_short_b_stated = 

M_long_nb_stated = 

M_long_b_stated = 

(short_nb_stated_grp['Weights'].sum()/sum(short_nb 
_stated_grp['Weights'].sum())).rename('M_short_nb_ 
stated') 

(short_b_stated_grp['Weights'].sum()/sum(short_b_s 
tated_grp['Weights'].sum())).rename('M_short_b_sta 
ted') 

(long_nb_stated_grp['Weights'].sum()/sum(long_nb_s 
tated_grp['Weights'].sum())).rename('M_long_nb_sta 
ted') 

(long_b_stated_grp['Weights'].sum()/sum(long_b_sta 
ted_grp['Weights'].sum())).rename('M_long_b_stated 
') 
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df_mc_stated = pd.concat([M_short_nb_stated, M_short_b_stated, M_long_nb_stated, 
M_long_b_stated], axis=1, sort=True) 

df_mc_stated_ind = df_mc_stated.reindex(['Personal self-driving car', 'Self-
driving rental car', 'Conventional car', 

'Conventional rental 
car','Bus','Train','Airplane','Boat/Ship','Not 
applicable']) 

df_mc_stated_ind.sum(axis=0) 
df_mc_stated_ind/df_mc_ind.sum(axis=0) 

Output25 += [["","Non-Business", "Non-Business", "Business", "Business"], 
["","between 75 and 500 miles", "longer than 500 miles", "between 75 

and 500 miles", "longer than 500 miles"]] 
Output25 += df_mc_stated_ind.reset_index().values.tolist() 

# Output25 

# In[38]: 

Output26 = [["","Long-distance Trip-making with AVs: Frequency"]] 
Output26 += [["", outkey]] 

ld_frequency = 
df.groupby('ld_fre')['Weights'].sum()/sum(df.group 
by('ld_fre')['Weights'].sum()) 

# ld_frequency 

Output26 += [["","Percentage"], 
["Three times as many trips or more.", ld_frequency["I would make 

three times as many trips or more."]], 
["Twice as many trips per year.", ld_frequency["I would make twice 

as many trips per year."]], 
["50% more trips per year.", ld_frequency["I would make 50% more 

trips per year."]], 
["The same number of trips per year.", ld_frequency["I would make 

about the same number of trips per year."]], 
["Fewer trips per year.", ld_frequency["I would make fewer trips 

per year."]], 
["I do not know.", ld_frequency["I do not know."]]] 

# Output26 

# In[39]: 

Output27 = [["","Long-distance Trip-making with AVs: Duration"]] 
Output27 += [["", outkey]] 

ld_duration = 
df.groupby('ld_dur')['Weights'].sum()/sum(df.group 
by('ld_dur')['Weights'].sum()) 

# print(ld_duration) 

Output27 += [["","Percentage"], 
["Three times as many days or more.", ld_duration["I would travel 

for about three times as many days or more."]], 
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["Twice as many days.", ld_duration["I would travel for about twice 
as many days."]], 

["50% more days.", ld_duration["I would travel for about 50% more 
days."]], 

["The same number of days.", ld_duration["I would travel for about 
the same number of days."]], 

["Fewer days.", ld_duration["I would travel for fewer days."]], 
["I do not know.", ld_duration["I do not know."]]] 

# Output27 

# In[40]: 

Output28 = [["","Long-distance Trip-making with AVs: Distance"]] 
Output28 += [["", outkey]] 

ld_distance = 
df.groupby('ld_dist')['Weights'].sum()/sum(df.grou 
pby('ld_dist')['Weights'].sum()) 

# print(ld_distance) 

Output28 += [["","Percentage"], 
["More than doubled.", ld_distance["The travel distance would be 

more than doubled."]], 
["Doubled.", ld_distance["The travel distance would be doubled."]], 
["About 50% more.", ld_distance["The travel distance would be about 

50% more."]], 
["No change in travel distance.", ld_distance["No change in travel 

distance."]], 
["Shorter.", ld_distance["The travel distance would be shorter."]]] 

# Output28 

# In[41]: 

Output29 = [["","Long-distance Trip-making with AVs: Overnight Stay"]] 
Output29 += [["", outkey]] 

ld_overnightstay = 
df.groupby('ld_overnight')['Weights'].sum()/sum(df 
.groupby('ld_overnight')['Weights'].sum()) 

# print(ld_overnightstay) 

Output29 += [["","Percentage"], 
["I would stay in a hotel.", ld_overnightstay["Yes, I would stay in 

a hotel."]], 
["Maybe I would stay in a hotel.", ld_overnightstay["Maybe I would 

stay in a hotel."]], 
["In the self-driving car.", ld_overnightstay["No, I would prefer 

to stay in the self-driving car."]], 
["Not applicable.", ld_overnightstay["Other (please specify):"]]] 

# Output29 
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# In[42]: 

Output30 = [["","Departure Time for using AVs to make long-distance trips"]] 
Output30 += [["", outkey]] 

ListofStrings = ["Morning", 
"Midday", 
"Afternoon", 
"Night"] 

ListColumns = ['depttime'] 
df_departtime = pd.DataFrame(columns = ListColumns, index = ListofStrings) 

for j in ListofStrings: 
df_departtime.loc[j]['depttime'] = 

df[df['depttime'].str.contains(j,na=False)]['Weigh 
ts'].sum() 

df_departtime = df_departtime/TotalWeightSum 

Output30 += [["Departure Time","Precentage"]] 
Output30 += df_departtime.reset_index().values.tolist() 

# Output30 

# In[43]: 

Output31 = [["","Willingness to share a ride in an AV for long-distance trips"]] 
Output31 += [["", outkey]] 

ld_SAV = 
df.groupby('SAV')['Weights'].sum()/sum(df.groupby( 
'SAV')['Weights'].sum()) 

ld_SAV = ld_SAV.reindex(["Absolutely","More likely","Neutral","Less 
likely","Unlikely"]) 

Output31 += ld_SAV.reset_index().values.tolist() 
# Output31 

# # Print Output 

# In[44]: 

write2csv = [Output1, Output2, Output3, Output4, Output5, Output6, Output7, 
Output8, Output9, Output10, 

Output11, Output12, Output13, Output14, Output15, Output16, 
Output17, Output18, Output19, Output20, 

Output21, Output22, Output23, Output24, Output25, Output26, 
Output27, Output28, Output29, Output30, 

Output31] 

#Write to file 
with open('Result_Tables_' + outkey + '.csv', 'w', newline='') as tableoutput: 

writer = csv.writer(tableoutput) 
for j in range(len(write2csv)): 
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writer.writerow([""]) 
writer.writerow(["Table", j + 1]) 
for i in range(len(write2csv[j])): 

writer.writerow(write2csv[j][i]) 
tableoutput.close() 
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Appendix E: Census Regions and Divisions of 
the United States 

Source: https://www2.census.gov/geo/pdfs/maps-
data/maps/reference/us_regdiv.pdf 
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Appendix F: Top Freight Flow Commodity 
Rankings 
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      Figure E-1. US top 10 freight flow commodity rankings 

223 



 

 

 

224 



 

 

 
     

  

Figure E-2. Texas top 10 freight flow commodity rankings 
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Appendix G: International Trip Models 

Data Sets Used 

Using international travel datasets, this research examines the overseas destination 
preferences of Americans and models international travel demand to better 
prepare for future transportation needs. This study uses 2019 DB1B flight ticket 
data and the 2016/17 NHTS, as well as publicly available international travel data 
collected by the National Travel and Tourist Office (NTTO), Survey of 
International Air Travelers (SIAT), and Travel and Tourism Satellite Account 
(TTSA). According to the US Bureau of Transportation Statistics (BTS), US 
passenger-miles travelled in 2019 were 7.7 trillion, of which 4.5% were 
international person-miles involving US air carriers (BTS, 2022). The SIAT 
survey on US residents visiting overseas countries revealed that European 
(31.7%) and Caribbean (15.6%) countries accounted for the largest proportion of 
destinations after Canada and Mexico (together 25.4%) (SIAT,2019). Figure F- 1 
Americans’ outbound travel by air in 2019 (SIAT, 2019) show Americans’ rate of 
air travel to different overseas regions in 2019. 

Canada 8.5 
Mexico 16.9 
Africa 0.9 

Middle East 4.2 
Oceania 1.6 

Central America 5.7 
South America 3.9 

Asia 10.9 
Caribbean 15.6 
Europe 31.7 

0.0 10.0 20.0 30.0 40.0 

% Percentage of Total Air Passengers (60,100,395) 
F- 1 Americans’ outbound travel by air in 2019 (SIAT, 2019)

The main data source in this study is the DB1B ticket data collected by BTS’s 
Office of Airline Information. This data is a 10% random sample of US airline 
passenger tickets reported by US flag carriers only. It includes trip origin and 
destination data, yearly and quarterly indicators, number of passengers, number of 
legs, and distance and fare information for each itinerary. This dataset began 
publishing records in 1993, providing 28 years of available data. This study uses a 
10% sample of the 2019 data (before the COVID-19 pandemic), which contains 
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2.6 million itineraries for 3.9 million passengers. Table 45 and Table 46 
summarize the 2019 DB1B data’s one-way itineraries to and from the US. 

Table 45. Summary statistics for the 2019 DB1B round-trip air ticket data 

Mean Median Std dev Max Min 
Quarter 1, N = 246,168 

Flight Fare per Itinerary ($) 953 635 1175 16427 0 
Distance Flown (miles) 6669 5232 4313 26051 196 
Fare per Mile ($) 0.171 0.127 0.16 2.918 0 
Passengers 1.446 1 2.58 311 1 
Segments 3.058 3 0.96 4 2 

Quarter 2, N = 318,033 
Flight Fare per Itinerary ($) 1022 702 1151 17177 0 
Distance Flown (miles) 7150 7298 4244 25870 196 
Fare per Mile ($) 0.173 0.128 0.16 3.209 0 
Passengers 1.414 1 2.57 427 1 
Segments 3.041 3 0.96 4 2 

Quarter 3, N = 309,842 
Flight Fare per Itinerary ($) 1033 733 1100 18491 0 
Distance Flown (miles) 7318 7662 4167 26950 196 
Fare per Mile ($) 0.171 0.128 0.15 2.883 0 
Passengers 1.374 1 2.15 229 1 
Segments 3.010 3 0.96 4 2 

Quarter 4, N = 174,532 
Flight Fare per Itinerary ($) 1055 724 1226 17272 0 
Distance Flown (miles) 6921 5331 4504 27338 196 
Fare per Mile ($) 0.186 0.144 0.16 2.617 0 
Passengers 1.307 1 2.37 322 1 
Segments 3.327 4 0.90 4 2 

Table 46. Summary statistics for the 2019 DB1B one-way air ticket data 

Mean Median Min Max Std Dev 
Quarter 1, N = 371,334 

Flight Fare per Itinerary ($) 494 304 0 11703 658.5 
Distance Flown (miles) 3260 2129 98 21943 2621.6 
Fare per Mile ($) 0.191 0.138 0 3.795 0.196 
Passengers 1.539 2 1 368 3.571 
Segments 1.899 2 1 4 0.648 

Quarter 2, N = 287,751 
Flight Fare per Itinerary ($) 495 316 0 12743 637.7 
Distance Flown (miles) 3329 2228 98 22833 2586.1 
Fare per Mile ($) 0.194 0.143 0 3.867 0.196 
Passengers 1.595 2 1 335 4.179 
Segments 1.900 2 1 4 0.644 

Quarter 3, N = 221,507 
Flight Fare per Itinerary ($) 534 342 0 11692 622.9 
Distance Flown (miles) 3450 2306 98 20248 2656.4 
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Mean Median Min Max Std Dev 
Fare per Mile ($) 0.201 0.153 0 3.5 0.193 
Passengers 1.524 2 1 440 3.714 
Segments 1.913 2 1 4 0.650 

Quarter 4, N = 167,983 
Flight Fare per Itinerary ($) 500 318 0 11477 642.4 
Distance Flown (miles) 3306 2165 98 20754 2639.1 
Fare per Mile ($) 0.197 0.144 0 3.469 0.191 
Passengers 1.570 2 1 483 4.383 
Segments 1.887 2 1 4 0.649 

This study also uses the 2016/17 NHTS dataset to model Americans’ trip-making 
choices of international versus domestic long-distance trips. The trip frequency 
model for long-distance trips (over 75 miles one-way) is estimated using this 
NHTS dataset. The 2016/17 NHTS data includes 923,572 trip records, which sum 
to 371 billion trips using NHTS expansion factors. In this dataset, 134.46 million 
expanded trips are reported as international trips, which account for only 1% of 
the total long-distance trips (~7 billion weighted). The population of 2019 
destination nations, as well as information about the languages spoken in these 
countries, were collected from the United Nations website. If English is one of the 
languages spoken, the study considers the nation English-speaking. Additionally, 
each nation’s major tourist attractions were obtained from the 2019 edition of 
Euromonitor International’s city tourist arrivals research report that covers over 
400 cities worldwide. (A tourist is defined as an international visitor who comes 
to another country for at least 24 hours and resides in paid or unpaid group or 
private lodging for a period not exceeding 12 months). (Top 100 City 
Destinations, 2019 Edition). Mexico and Canada accounted for 40% (39.9 million 
passengers) and 15% (14.9 million), respectively, of total outbound travel from 
the United States (99.7 million). The STATS Canada and Banco de Mexico 
websites were used to obtain data on Americans’ international visits (staying one 
or more nights) to Canada and Mexico by land. Both records show that land travel 
to Mexico and Canada (39.6 million visitors total) accounts for a significant 
portion of overall outbound travel to these countries (54.9 million), accounting for 
74.5% and 65.7% of total trips to the countries, respectively. 

Models 

Error! Reference source not found. illustrates the modeling framework for 
Americans’ international trip distribution. The 2016/17 NHTS data is used to 
estimate Americans’ international trip-making. The trip frequency model for long-
distance trips is estimated using this NHTS dataset. Travelers’ decision to take a 
long-distance international trip will be estimated using a binomial logit model. 
Trips are then distributed between each US origin airport and other countries’ 
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international airports using an origin-constrained gravity model and DB1B data. 
Flight duration and fare, English-language country indicator, tourism attraction 
country indicator, and population of the country are used as the inputs of this 
model. Flight duration is not provided in the DB1B data. Thus, it is estimated here 
based on an average speed and average delay for each stop. In addition, flight 
fares and their variation are estimated using FGLS models for US outbound and 
round.  

F- 2 Modeling framework to predict destinations for international trips from US

Flight Fare and Duration Models 

International Round Trips—US Origin 
Due to the large sample size and unknown nature of heteroscedasticity, we 
employed feasible generalized least square models to predict the flight fare for 
international trips. FGLS models for 2019 round-trip itineraries (Table 47) 
indicate that a flight fare falls with inclusion of an intermediate stop relative to an 
uninterrupted trip and with an increase in the number of passengers on the 
itinerary. International round-trip airfares cost $0.058 per mile on average for 
coach class and $0.281 per mile for business class or higher. Trips taken from 
October to December are more expensive than those taken during other months of 
the year. Traveling to an English-speaking nation is less expensive than traveling 
to or from a non-English-speaking country if other variables are kept constant. 
Shifting all samples towards business or higher class and towards United Airlines 
increases the flight fare by 150% and 7.5%, respectively. Table 48 presents the 
model estimates when the log of linear model residuals is regressed on all 
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dependent variables. The results show that flight prices of itineraries with more 
than one stop vary significantly compared to those without stops. 

Table 47. FGLS model estimates for international round trips to and from US
(DB1B, 2019) 

Variable Name Estimate t-stat P-value
(Intercept) 337.60 105.136 0.000 
Distance flown (miles) 0.058 208.72 0.000 
Distance flown (miles) *Business class or higher 0.281 108.32 0.000 
Trip made during April through June 20.41 12.529 0.000 

Trip made during July through September 18.54 11.364 0.000 

Trip made during October through December 69.04 54.304 0.000 

Restricted coach class 56.69 35.829 0.000 

Business class or higher −118.2 −5.649 0.000 
#Passengers on the itinerary −8.388 −63.497 0.000 

ln(population of destination country) −8.204 −36.758 0.000 

Itinerary with 1 stop −99.16 −59.481 0.000 

Itinerary with 2 stops −69.97 −67.127 0.000 
Outbound trip 125.0 124.255 0.000 

Destination is English speaking −8.798 −5.588 0.000 

Alaska Airlines −53.25 −9.542 0.000 

JetBlue Airlines −15.52 −5.375 0.000 

Delta Airlines 51.71 23.759 0.000 
United Airlines 88.66 63.178 0.000 

SkyWest Airlines 76.96 17.412 0.000 

Endeavor Air 37.65 8.713 0.000 

Canadian Pacific Airlines 14.90 2.92 0.004 

Hawaiian Airlines 775.3 26.819 0.000 
GoJet Airlines −41.06 −11.981 0.000 

Southwest Airlines −159.9 −43.468 0.000 

Spirit Airlines 143.6 47.993 0.000 

Mesa Airlines −17.45 −4.173 0.000 

Republic Airlines 110.3 17.973 0.000 
Eva Airlines 39.46 6.438 0.000 

PSA Airlines 148.3 13.788 0.000 

Frontier Airlines −215.3 −10.231 0.000 

Sun Country Airlines −227.8 −3.188 0.001 

Horizon Air −5.249 −0.67 0.503 
Distance flown (miles) *Destination is English speaking −0.002 −6.894 0.000 
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Variable Name Estimate t-stat P-value
Distance flown (miles) *Trip made during April through June 0.004 12.322 0.000 

Distance flown (miles) *Trip made during July through September 0.006 18.248 0.000 

Business class or higher *Destination is English speaking 131.2 6.995 0.000 
Trip made during April through June *Business class or higher −83.24 −4.228 0.000 

Trip made during July through September *Business class or higher −157.5 −7.571 0.000 

Business class or higher *Alaska Airlines −209.9 −3.888 0.000 

Business class or higher *JetBlue Airlines −524.0 −3.506 0.000 

Business class or higher *Delta Airlines −858.6 −38.11 0.000 
Business class or higher *United Airlines 225.0 9.995 0.000 

Business class or higher *SkyWest Airlines −276.1 −4.241 0.000 

Business class or higher *Endeavor Air −578.5 −6.903 0.000 

Business class or higher *Canadian Pacific Airlines −393.6 −3.367 0.001 

Business class or higher *Hawaiian Airlines −588.2 −7.498 0.000 
Business class or higher *Itinerary with 1 stop −143.9 −4.367 0.000 

Business class or higher *Itinerary with 2 stops −318.5 −17.82 0.000 

Distance flown (miles) *Alaska Airlines −0.008 −5.609 0.000 

Distance flown (miles) *JetBlue Airlines 0.009 13.158 0.000 
Distance flown (miles) *Delta Airlines 0.014 39.903 0.000 

Distance flown (miles) *Southwest Airlines −0.011 −10.395 0.000 

Distance flown (miles) *Spirit Airlines −0.031 −28.813 0.000 

Distance flown (miles) *SkyWest Airlines 0.017 15.968 0.000 

Distance flown (miles) *Republic Airlines 0.027 26.092 0.000 
Distance flown (miles) *Endeavor Air 0.029 25.92 0.000 

Distance flown (miles) *Eva Airlines 0.027 15.114 0.000 

Distance flown (miles) *PSA Airlines 0.013 7.713 0.000 

Distance flown (miles) *Horizon Air −0.010 −3.433 0.001 

Distance flown (miles) *Hawaiian Airlines −0.066 −18.948 0.000 
Distance flown (miles) *GoJet Airlines 0.007 2.596 0.009 

Distance flown (miles) *Frontier Airlines −0.015 −2.116 0.034 

Distance flown (miles) *Sun Country Airlines 0.047 2.255 0.024 

Y: Fare ($) per paid Itinerary per passenger, N = 1,048,268, Adj. R2: 0.3026 

Table 48. Variance model estimates for international round trips to and from US
(DB1B, 2019) 

Variable Name Estimate t-stat P-value

(Intercept) 9.371 513.9 0.000 

Distance flown (miles) 0.000 325.3 0.000 

231 



 
 

     

         

         
         

     

     

     
     

     

     

     

      
     

     

       

     

     
     

     

     

     

    
       

       

     

       

     
       

     

     

        
 

 

  
    

  
    
     

Variable Name Estimate t-stat P-value

Trip made during April through June −0.018 −2.97 0.003 

Trip made during July through September −0.023 −3.76 0.000 
Trip made during October through November 0.253 34.45 0.000 

Alaska Airlines 0.073 3.90 0.000 

JetBlue Airlines −1.017 −76.26 0.000 

Delta Airlines 0.211 34.25 0.000 
Southwest Airlines −0.609 −48.24 0.000 

United Airlines 0.116 17.41 0.000 

Spirit Airlines −0.970 −61.27 0.000 

Mesa Airlines 0.110 5.89 0.000 

SkyWest Airlines 0.156 9.90 0.000 
Republic Airways −0.081 −4.58 0.000 

Endeavor Air 0.187 10.30 0.000 

Canadian Pacific Air Lines 0.136 4.46 0.000 

Eva Air 0.166 6.50 0.000 

PSA Airlines −0.056 −2.31 0.021 
Horizon Air 0.428 11.37 0.000 

Hawaiian Airlines −0.129 −6.64 0.000 

GoJet Airlines 0.262 6.05 0.000 

Frontier Airlines −0.993 −18.90 0.000 

Sun Country Airline 1.336 21.93 0.000 
Itinerary with 2 stops −0.207 −23.03 0.000 

Itinerary with 3 stops −0.307 −53.60 0.000 

Restricted coach class −0.503 −63.38 0.000 

Business class or higher 2.840 270.69 0.000 

Outbound trip 0.351 62.39 0.000 
Destination is English speaking 0.217 41.89 0.000 

ln (population of destination country) 0.010 7.06 0.000 

#Passengers on the itinerary 0.006 6.11 0.000 

Y = log(Residuals^2) , N =1,048,268, Adj. R2: 0.2947 

International One-Way Trips to and from US 
The FGLS model results for air fares of international one-way trips to and from 
the US are shown in Table 49, and variance model estimates are shown in Table 
50. The estimated model coefficients reveal that an average flight price per mile is
$0.078 in coach class and $0.163 in business class or higher. The flight fare
decreases as the number of passengers or number of stops on the itinerary
increases. Trips made from April to June have high price variations compared to
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other months. Shifting the entire sample towards business or higher class trip 
increases the flight fare by 125%, while a shift towards Southwest Airlines 
decreases the cost by 58.5%. 

Table 49. FGLS model estimates for international one-way trips to and from US 
(DB1B, 2019) 

Variable Name Estimate t-stat P-value
(Intercept) 320.0 154.7 0.000 
Distance flown (miles) 0.078 179.0 0.000 
Distance flown (miles)*Business class or higher 0.163 61.53 0.000 
#Passengers on the Itinerary −3.602 −70.87 0.000
Outbound Trip? −34.20 −58.49 0.000
Restricted Coach Class −7.743 −7.78 0.000 
Business class or higher −66.53 −2.40 0.016 
Trip made during April to June 8.645 8.72 0.000 
Trip made during July to September 1.907 1.76 0.079 
Trip made during October to December 4.992 4.24 0.000 
Itinerary with 1 stop −40.23 −76.41 0.000
Itinerary with 2 stops −23.69 −21.29 0.000
Itinerary with 3 stops 117.5 24.43 0.000 
Destination is English speaking −24.75 −27.51 0.000
Ln (Population of Destination Country) −7.668 −53.18 0.000
Alaska Airlines −29.55 −13.63 0.000
JetBlue Airlines −42.76 −24.86 0.000
Delta Airlines −11.08 −7.54 0.000 
United Airlines −16.53 −11.23 0.000
SkyWest Airlines 24.71 11.15 0.000 
Canadian Pacific Airlines −18.48 −13.53 0.000
Horizon Air −4.890 −1.98 0.048 
Hawaiian Air 253.2 16.08 0.000 
SunCountry Airlines −72.60 −12.45 0.000
Southwest Airlines −7.897 −3.21 0.001 
Spirit Airlines −92.82 −53.99 0.000
Mesa Airlines 56.18 36.24 0.000 
Republic Airlines 1.783 0.75 0.453 
Endeavor Airlines 15.17 6.92 0.000 
Eva Airlines 21.46 6.29 0.000 
PSA Airlines 23.54 6.84 0.000 
GoJet Airlines 60.15 12.90 0.000 
Frontier Airlines −118.5 −18.18 0.000
Distance flown (miles) *Trip made during April to June −0.004 −7.81 0.000 
Distance flown (miles) *Trip made during July to September 0.008 16.50 0.000 
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Variable Name Estimate t-stat P-value
Distance flown (miles) *Trip made during October to −0.004 −6.92 0.000 December 
Distance flown (miles) *Alaska Airlines −0.008 −8.38 0.000 
Distance flown (miles) *JetBlue 0.014 21.68 0.000 
Distance flown (miles) *Delta Airlines 0.015 24.10 0.000 
Distance flown (miles) *Southwest Airlines −0.031 −21.67 0.000
Distance flown (miles) *United Airlines 0.018 35.57 0.000 
Distance flown (miles) *Spirit Airlines −0.032 −35.40 0.000
Distance flown (miles) *SkyWest Airlines 0.008 7.46 0.000 
Distance flown (miles) *Republic Airline 0.017 12.07 0.000 
Distance flown (miles) *Endeavor Airline 0.007 5.47 0.000 
Distance flown (miles) *Eva Airline 0.032 15.65 0.000 
Distance flown (miles) *PSA Airline −0.009 −3.74 0.000 
Distance flown (miles) *Horizon Air −0.004 −2.54 0.011 
Distance flown (miles) *Hawaiian Air −0.039 −12.92 0.000
Distance flown (miles) *GoJet Airline −0.005 −1.72 0.085 
Distance flown (miles) *Frontier Airline −0.012 −3.09 0.002 
Business class or higher *Alaska Airlines −123.4 −7.23 0.000 
Business class or higher *JetBlue Airlines 505.0 12.18 0.000 
Business class or higher *Delta Airlines 53.82 3.13 0.002 
Business class or higher *United Airlines −45.94 −4.17 0.000 
Business class or higher *SkyWest Airlines −43.62 −1.80 0.071 
Business class or higher *Canadian Pacific Airlines −95.83 −3.32 0.001 
Business class or higher *Horizon Air −68.84 −2.46 0.014 
Business class or higher *Hawaiian Air 262.1 3.22 0.001 
Business class or higher *SunCountry Airline −360.0 −6.10 0.000 
Business class or higher *Itinerary with 1 stop −105.5 −11.57 0.000
Business class or higher *Itinerary with 2 stops −353.4 −18.70 0.000
Business class or higher *Itinerary with 3 stops −520.1 −7.41 0.000 
Business class or higher *Destination is English speaking 52.91 5.56 0.000 
Distance flown (miles) *Destination is English speaking −0.010 −25.76 0.000
Business class or higher *Ln (Population of Destination 11.86 4.73 0.000 Country) 
Trip made during April to June *Business class or higher −50.15 −4.93 0.000 
Trip made during July to September *Business class or higher −126.1 −9.99 0.000 
Trip made during October to December *Business class or −35.60 −2.69 0.007 higher 

Y: Fare ($) per paid Itinerary per passenger, N = 1,048,575, Adj. R2: 0.2446 

Table 50. Variance model estimates for international one-way trips to and from US
(DB1B, 2019) 

Y = log(Residuals^2) , N = 1,048,575, Adj. R2: 0.2896 
Variable Name Estimate t-stat P-value 
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(Intercept) 9.880 628.2 0.000 
Distance flown (miles) 0.000 364.8 0.000 
#Passengers on the Itinerary 0.006 9.6 0.000 
Itinerary with 2 stops −0.203 −26.8 0.000 
Itinerary with 3 stops 0.088 3.80 0.000 
Restricted coach class −1.037 −153.0 0.000
Business class or higher 1.959 192.8 0.000 
Destination is English speaking −0.214 −41.1 0.000 
Ln (Population of Destination Country) −0.046 −34.7 0.000 
Trip made during April to June −0.066 −13.0 0.000 
Alaska Airlines −0.174 −12.9 0.000 
JetBlue Airlines −1.324 −124.6 0.000
Delta Airlines 0.113 16.1 0.000 
Southwest Airlines −0.642 −48.4 0.000 
United Airlines −0.126 −18.7 0.000 
Spirit Airlines −1.351 −112.3 0.000
Mesa Airlines −0.219 −13.4 0.000 
SkyWest Airlines −0.094 −6.9 0.000 
Republic Airways −0.119 −6.8 0.000 
Endeavor Air 0.040 2.5 0.014 
Canadian Pacific Air Lines −0.446 −24.7 0.000 
PSA Airlines −0.162 −5.9 0.000 
Horizon Air −0.158 −7.5 0.000 
Hawaiian Airlines −0.228 −8.3 0.000 
GoJet Airlines 0.164 5.1 0.000 
Frontier Airlines −1.145 −32.3 0.000 

International Trip Choice 
The specifications of the logistic regression model to estimate international trip 
choice for Americans are shown in Table 51. The model indicates that 
international trip frequency (per person) rises by about 16% with a 1 SD increase 
in the respondent’s household income (i.e., $62,000). Increasing the summer trip 
and spring trip indicators by 1 SD also increases the frequency of international 
trips by 19% and 14%, respectively. International trips fall 23% when the female 
indicator increases by 1 SD and 31% when the full-time-employed indicator 
increases by 1 SD. Religious and personal business trips are also less likely to be 
international. 

Table 51. Specifications of the logistic regression model for international versus
domestic trips using the 2016/17 NHTS data 

(Intercept) 
Household income 
($1000) 

Coefficient 
Estimates 
−5.594

0.006 

t-Stat

−7.14

1.63 

P-Value

0.000 

0.103 

Practical 
Significance 

-

0.161 
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Female −1.067 −2.42 0.016 −0.228
Hispanic 1.424 2.67 0.008 0.148 
White 1.114 2.27 0.023 0.159 
Full-time employed −1.501 −3.65 0.000 −0.315
Summer trip 0.988 1.78 0.075 0.193 
Spring trip 0.907 1.68 0.094 0.140 
Personal business trip −1.066 −1.44 0.150 −0.104
Religious community trip −14.232 −47.88 0.000 −0.869

R2: 0.1344, N = 13,966 

Trip Distribution Model 
An origin-constrained gravity model was used to distribute trips among different 
origins and destinations. Gravity models in their traditional form consist of 
production, attraction (e.g., tourism attractions, population, and language of the 
destination), friction (i.e., travel time and/or fare), and a gravity constant term. A 
logarithmic operator was applied to form a log-linear gravity model, and an 
ordinary-least-squares (OLS) model was estimated to find the number of trips 
distributed between each origin and destination pair. Friction factor here is a 
function of impedance incorporating auto and air travel times and cost (i.e., flight 
fare, highway toll) normalized by value of time (VOT). VOT is assumed to be 
$30 per hour for air travelers and $20 per hour for auto users. Table 52 shows the 
specifications of this log-linear model as well as the practical significance of 
different statistically significant variables. This model was estimated using data 
from multiple sources indicating trip production for 334 major US airports and 
country attractions for 1,028 international airports in countries other than the US. 
There is a lack of data for origins and destinations of land travelers to Canada and 
Mexico. For the former, major airports in most touristic cities in Canadian 
provinces that are accessible from the US (e.g., Ontario, Quebec, British 
Columbia, Alberta, Nova Scotia) are considered as the destination locations. 
Origins are assumed to be the major airport of the closest state in the US. For 
Mexico, all trips are aggregated in one origin and destination pair from Texas to 
the state of Sinaloa. The trip distribution model indicated that trips to a foreign 
destination from an American origin fall 41% when the travel time increases by 7 
hours or plane ticket cost rises by $210. Destinations hosting tourist attractions 
increase OD flow by 48%. The population and English-speaking indicators of the 
destination country are neither practically nor statistically significant. 
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Table 52. Specifications of the log-linear gravity model to estimate the number of
trips between major US airports and other countries’ airports 

Estimate t-stat P-Value Practical 
Significance 

(Intercept) 9.796 104.65 0.000 
Trip Production in Origin Airport 0.238 81.62 0.000 0.969 
Travel Time & Cost −1.578 124.11 0.000 0.409 
Population of Destination Country 0.0013 0.50 0.616 0.0012 
Tourism Indicator in Destination Country 0.907 51.60 0.000 0.136 
English Speaking Country (Destination) 0.0024 0.17 0.864 0.0004 

Conclusions 

This research contributes to a better knowledge of Americans’ overseas travel by 
estimating travel demand and expenses (in time and money) for trips between 
major US airports and international airports, as well as land trips to Mexico and 
Canada. The study uses 2019 DB1B aircraft ticket data, the 2016/17 NHTS, US 
2019 outbound passenger travel aggregate estimates from NTTO, destination 
country characteristics from the UN, and major attraction data for tourists from 
Euromonitor’s 2019 international report. The main data source of this study, 2019 
DB1B provided by BTS, revealed that the flight fare for international travel falls 
as the number of passengers on the itinerary rises. Round trips made from October 
through December are more expensive than those taken during other months, 
while one-way trips made during April through June show high variation 
compared to other times of year. A round trip to an English-speaking nation is 
less expensive than traveling to or from a non-English-speaking country if other 
variables are kept constant. International round-trip airfares cost $0.058 per mile 
on average for coach class and $0.281 per mile for business class or higher.  
Shifting the entire sample towards business or higher class increases one-way 
flight fares by 125% and round-trip fares by 151%. The international trip choice 
model reveals that the probability of taking international trips rises 16% when 
household income is increased by 1 SD (i.e., $62,000). Employment status, race, 
gender, trip season, and trip purpose are other significant variables affecting 
Americans’ international trip choices. A log-linear model was used to distribute 
international trips among various major airports in the US and other countries. 
The trip distribution model indicated that travel time and cost and tourism 
attractions at the destination are the statistically significant variables affecting the 
number of trips to an international location. This model also suggested that trips 
to a foreign destination from an American airport fall 41% when the when the 
travel time element of the friction factor goes up 7 hours and increase by 48% the 
destinations are tourist attraction. 
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