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Executive Summary 

Pedestrian crashes are a rising issue in Texas. While the total walk-miles traveled (WMT) is 
estimated to have risen 16% (BTS, 2019) between 2009 and 2017, the number of (reported) 
pedestrian deaths rose 46% (GHSA, 2020). Texas averaged 1.14 pedestrian deaths per 100,000 
residents in 2019, which is 26% higher than the US average of 0.90. 

This project used TxDOT’s Crash Records Information System (CRIS) and Roadway Inventory 
files—combined with other statewide databases on land use, climate, hospital locations, travel 
behaviors, and other sources—to understand and ultimately predict crash counts and to design 
treatments and public policies that can decrease those counts. This report explains the data 
manipulation, analysis methods, decision-tree models, and benefit-cost analysis results of the 
team’s research into pedestrian crashes in Texas. 

To assemble and prepare relevant crash data (Chapter 2), various datasets including CRIS, 
Roadway Inventory files, and police-recorded crash reports are used. From 2010 through 2019, 
5.6 million CRIS entries were recorded across the state, which contains over 73,000 centerline 
miles of inventoried roadways. The research team has also obtained a strategic sample of 300 
detailed police-recorded crash reports for pedestrian-related crashes in recent years. The 
capabilities and nuances of each dataset are analyzed, including mapping crash points across the 
network for hot-spot identification, walk-miles traveled per county, rainfall, population and job 
densities, and other factors.  

The team also analyzed the walking distances in the two most recent National Household Travel 
Surveys and assembled many other spatial and demographic datasets for this project, in order to 
identify risk factors that are leading to Texas’ and the US’ rise in pedestrian deaths and to develop 
countermeasures to reverse this trend. Results observed include a disproportionately high 
percentage of pedestrians among all Texas crash fatalities, with elevated risk of injury at night, 
along higher-speed roadways, and in high-density (in terms of jobs and population) settings. 
Alcohol and/or drugs were involved in 37.6% of pedestrian deaths. 72% of all the pedestrians 
killed in Texas’ traffic crashes were male. Higher speed limits were associated with more severe 
injuries and deaths, where median speed limit was 45 mph in locations of fatal pedestrian crashes 
versus 30 mph for non-fatal crashes. 

As seen in Chapter 3, analysis methods used in this report include negative binomial (NB), ordered 
probit (OP), heteroskedastic ordered probit (HOP), and ordinary least-square (OLS) regression 
models. NB model results show how total and fatal pedestrian-crash rates and counts rise with a 
segment’s number of lanes, transit stops, population, and job density, as well as proximity to 
schools and hospitals, while greater median and shoulder widths provide some protection. A HOP 
model for injury severity demonstrates that pedestrian crashes are more likely to be severe and 
fatal at night (8 PM–5 AM), without overhead lighting, and when the pedestrians or drivers are 
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intoxicated. The OLS regression analyzes pedestrian crash rates (per vehicle-miles and walk-miles 
traveled) across Texas’ 254 counties. At the county level, there is a moderately positive 
relationship between job density and pedestrian crash rates, but a practically significant and 
negative relationship with population density, while income-related variables and homelessness 
rates have substantial impacts on pedestrian crash and fatality rates. 

Next, in the later part of Chapter 3 and all of Chapter 4, the report discusses various crash counts and 
severity estimation methods to predict pedestrian crashes. With 2010–2019 CRIS data, decision 
trees are used to classify pedestrian injury severity reported by Texas police officers into the severity 
levels found in the CRIS data. Decision tree structures illuminate predictive results that are intuitive 
for readers and users (with binary yes/no decisions at each branch), but they are less accurate and 
robust than more complex methods in terms of prediction. To address this limitation, ensemble 
tree-based models are also calibrated and evaluated. By aggregating many decision trees (into an 
“ensemble” or “forest”) using methods like bagging, boosting, and random forests, tree-based 
methods can substantially improve the predictive performance of standard, singular decision trees 
and can provide more robust estimates. In addition to the decision tree analysis, random forests 
(RF), gradient boosting (Light GBM and XGBoost), and Bayesian additive regression trees 
(BART) were applied. Findings underscore the importance of campaigns against driving and walking 
while intoxicated, installation of streetlights in pedestrian-active areas, improved roadway design, and 
enforcement of safety countermeasures in areas where pedestrians are more vulnerable such as near 
schools and hospitals. 

Using insight gained from prior analyses and intensive data processing to derive intersections and 
uniform-length segments from the TxDOT Roadway Inventory, researchers devised an algorithm 
(shown in the first part of Chapter 5) to identify the top pedestrian crash-prone corridors across 
Texas and rank them according to crash severity. This allows for quick identification of locations 
deserving of immediate analysis for possible countermeasures. Appendix E describes this process and 
links to downloadable datasets. The Texas “Top 100” corridors roughly represents 111 
centerline miles of roadway, or just 0.035% of Texas’ total. 

Lastly, the results of various treatments and the benefit-cost ratio (BCR) of applying suitable and 
cost-effective treatments for segments and intersections in Texas over the next 10-year period are 
presented in Section 5.4. An overview of the corridor ranking and creation 
methodology is provided, which creates a list of ranked corridors by pedestrian crash and 
fatality by total comprehensive costs. A breakdown is conducted of estimated costs and crash 
modification factor (CMF) estimates for each treatment within seven categories. An overview is 
presented in Section 5.5 of the 10 corridors with the highest fatal crash rates as provided by the 
clustering model, with BCRs for sample treatments to its intersections. 

The results include the types and specifications of treatments to reduce pedestrian crash 
counts, identification of the 10 highest-crash corridors, and application of the treatments to the 
corridors and intersections to provide crash reduction estimates, benefit-cost analysis results, and  
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detailed step-by-step calculation results. The BCR analyses show that the treatments considered
—such as prohibited right-turn on red, speed limit reductions, pedestrian leading interval, 
road diet, pedestrian refuge islands, and streetlights—have BCRs ranging from 1.67 to 5.38 
when the delay costs are added, and from 428 to 6,689 when delay costs are ignored. (Note 
that a BCR greater than 1 indicates that the suggested treatments are cost-effective.) 

Policy implementations for promoting pedestrian safety in the US, compared to the European 
regulations, found that a transition from testing the vehicles’ autobrake to testing the actual ability 
to protect pedestrians are needed. A higher speed limit than 40 kph (24.85 mph) assumed in the 
vehicle test should be incorporated, and OEM’s responsibilities to protect pedestrians should be 
clearly defined. 

The primary product proceeding from this work is the “Developing Countermeasures to Decrease 
Pedestrian Deaths: Guidebook.” It was created to readily introduce the roadway treatment strategy 
selection methodology exercised within this project to a practitioner audience. The guidebook’s 
methodology was piloted through a workshop presented to an audience of relevant professionals 
and enthusiasts at state and local levels of government. Researchers recommend further work to 
find opportunities to more closely tie the Guidebook into existing TxDOT road safety guidance 
and BCR methodologies, such as those documented within the Highway Safety Improvement 
Program Manual (TxDOT, 2015). 

In short, this report is organized according to the sequence of tasks that were conducted within the 
entire project. Chapter 1 introduces relevant prior research and current industry practices as a 
literature review. This is followed by Chapter 2 that introduces the datasets that were crucial for 
all subsequent analysis within the project. Chapter 3 then documents the beginning of the analysis 
process, showing overall trends found in the data, along with sensitivity analysis and “heat-map” 
visualizations of crash activity in Texas. Chapter 4 covers the project’s exploration of decision 
trees and demonstrates their benefits and limitations. Chapter 5 then documents intersection and 
corridor-level analysis in Texas, ranking the most crash-prone corridors in the state and 
introducing a methodology for identifying treatments and their benefit-cost ratios. The appendices 
further exemplify BCR and treatment analysis on the worst corridors (Appendices A and B), 
explore an experiment that analyzes vehicle body style against crash severity (Appendix C), 
describe lessons learned from crash record training (Appendix D), and introduce the project’s 
technical data processing documentation (Appendix E). 
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Chapter 1. Literature Review 

This chapter is a review of recent literature related to pedestrian-vehicle crashes, their distribution, 
trends, contributing factors, and countermeasures taken to mitigate injuries and deaths. This review 
brings together academic literature, technical documents, reports from public and nonprofit 
agencies, media, and other practitioner-involved documents to enable greater understanding of 
factors impacting pedestrian crash counts, their severity, trends, and countermeasure benefits. This 
review emphasizes relatively recent sources, and was compiled via conferencing, communications 
with experts (including practitioners, first responders, and public agencies), and online searches 
using the Web of Science, Transport Research International Documentation (TRID) database, 
Google Scholar, JSTOR, and the University of Texas online library system. 

1.1. Background and Geography 
Pedestrian miles-traveled are less than 1% of total person-miles traveled in the US, but pedestrian 
crash fatalities remain a key component of crash fatalities (National Household Travel Survey, 
2017). Their share of total crash deaths rose from 12% in 2009 to 17% in 2018, with the total 
number of pedestrian crash fatalities rising 53% between 2009 and 2018 (NHTSA, 2019). Around 
10% of the nation’s pedestrian fatalities happen in just four counties: Los Angeles, CA; Miami-
Dade, FL; Maricopa, AZ; and Harris, TX—home to around 7% of the US population. Texas’s four 
largest metropolitan areas (Dallas-Fort Worth, Houston, Austin, and San Antonio) are all in the 
nation’s top 25 metro areas for pedestrian fatalities (NHTSA, 2019). San Antonio has the highest 
crash fatality rate of all major metros in Texas, with 2.46 pedestrian fatalities per 100,000 people, 
followed by Austin at 2.21, Dallas-Fort Worth at 1.94, and Houston at 1.9 (Webb, 2019). Overall, 
pedestrian crash deaths have risen in most US states, particularly in the South and West, including 
Texas in recent years, even as the numbers of crash deaths as a whole are decreasing (GHSA, 
2018).  

Table 1.1 shows the fatality and injury rates per person-miles traveled (PMT) by modes for both 
US and Texas. In this table, the PMT made by airline, ferry, rail, or boat are not considered. Per 
PMT, the walk mode (exhibited by pedestrians) carries the second fatality rate and third highest 
injury rate (per PMT) for US, but Texas experiences more severe pedestrian fatality and injuries 
than US per 100 million PMT. These results emphasize the previous paragraph’s statistics on 
pedestrian crash fatalities, where pedestrians are much less shielded and thus more vulnerable than 
those using other transportation modes, given their very low total PMT. 

Table 1.1 Fatality and Injury Rates per Person-Mile Traveled (US & TX, 2020) 

US Annual PMT 
(2016 NHTS) 

# Deaths 
in 2019 

# Injuries 
in 2020 

Deaths per 
100M 
PMT 

Injuries 
per 100M 

PMT 
Bike 8,500 M  846  49,000 9.95 576.54 
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US Annual PMT 
(2016 NHTS) 

# Deaths 
in 2019 

# Injuries 
in 2020 

Deaths per 
100M 
PMT 

Injuries 
per 100M 

PMT 
Car 3,020 Billion  22,215   2,448,000  0.74  81.06  

Motorcycle 17,632 M  5,015   84,000  28.44  476.41  
Walk 33,651 M  6,205   76,000  18.44  225.85  
Total 3,079 Billion  34,281   2,657,000  1.11  86.27  

Texas State Annual PMT 
(2016 NHTS) 

# Deaths 
in 2019 

# Injuries 
in 2020 

Deaths per 
100M 
PMT 

Injuries 
per 100M 

PMT 
Bike 347 M 79  1,969  22.77  567.43  
Car 202 Billion 2,472  189,558  1.22  93.52  

Motorcycle 3,681 M 489  6,339  13.28  172.21  
Walk 1,921 M 717  4,203  37.31  218.71  
Total 208,636 M 3757  202,069  1.80  96.85  

Source: TxDOT (2020b), Bureau of Transportation Statistics (2020). 

Note: Walk PMT values do not include walking to and from one’s car or most bus stops, or between stores while 
shopping, etc. Much of that walking is not along public roadways, however, and it is not many more miles when 
adding a ¼ or ½ mile distance to all car trips in the US. 

In the period 2017–2018, US pedestrian deaths rose 3.4%, against a 2.4% decline across all crash 
fatalities (NHTSA 2019). This increase is concentrated in urban areas, with a 69% increase since 
2009 compared to a 0.1% increase in rural areas. The Insurance Institute for Highway Safety 
(IIHS) noted that two-thirds of US-reported pedestrian crashes occur in urban areas, with the most 
significant increases (of 7.5% between 2009 and 2019) in urban areas occurring on arterial roads 
(defined as nonresidential corridors of two or more lanes in each direction) and a 4.9% increase 
on freeways. Male and female pedestrian fatalities rose 3% and 4.8%, respectively. Nighttime 
fatalities rose 4.6%, and fatalities from alcohol-impaired driving rose 2.2%, showing across-the-
board increases in pedestrian fatalities as opposed to all crash fatalities (NHTSA, 2019).  

Pedestrians’ crashes tend to be more severe in rural areas, due in part to higher speeds and lack of 
sidewalks and/or protective longitudinal barriers (including medians). Stoker (2015) showed that 
risk for pedestrian injury on Dutch roads increased about 140% at night when lights were present, 
and 340% when lighting was not present. Urban areas, by contrast, typically have lower speeds, 
more sidewalks, and denser street networks, leading to lower rates of pedestrian death per person-
mile walked due to the lower speeds there (Stoker, 2015; Zegeer & Bushell, 2012). 

Data from IIHS (2018), as well as the Governor’s Highway Safety Association (GHSA, 2018) 
point to SUVs having a higher rate of involvement in pedestrian crash fatalities in recent years, 
with a 50% increase in SUV-caused fatalities in the period 2009–2016, and a 7.9% year-over-year 
increase in SUV-caused fatalities from 2017 to 2018. This comes as the market share of ‘light-
duty trucks,’ which encompasses SUVs, pickup trucks, minivans, and crossover utility vehicles 
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has increased, from less than 50% of vehicle sales in 2009 to 70% of new passenger-vehicle sales 
in the first half of 2019 (Ulrich, 2019). According to the GHSA study (2018), pedestrians struck 
by SUVs were about twice as likely to die as those struck by standard passenger cars, with 
significant increases in power-to-weight ratios at all vehicle weight benchmark percentiles (IIHS, 
2018).  

The WHO’s Global Status Report on Road Safety (WHO 2018) notes that a 1% increase in average 
speed translates to a 4% higher likelihood of deadly crash outcomes (across all manner of collision, 
not just pedestrians) and a 3% increase in serious crash risk. Thus, “a 5% reduction in average 
speed can reduce the number of fatalities by 30%”. The 5 “best practices” around the globe center 
on local authorities being able to set speed limits, city speed limits not exceeding 30 mph (and 
approximately 19 mph in residential areas), and the presence of national speed limits (which the 
US no longer has, alongside Russia, Brazil, and India, and unlike Mexico, Canada, Australia, 
Europe, and China). The US also does not demonstrate best practices for blood alcohol content 
(BAC) limits for ticketing “drunk drivers”. China, Australia, Canada, Brazil and most of Europe 
do demonstrate best practices on that metric, with BAC having to be below 0.05 gm/deciliter (of 
blood) for adults and less than 0.02 (!) for young and other new drivers.  

As the World Health Organization’s Global Status Report (WHO 2018) notes, a stunning 25% of 
the world’s public-roadway deaths are pedestrians (versus 17% in the US and 19% in Texas). Road 
traffic crashes are the 8th leading cause of death globally, and the leading cause of death for the 
world’s youth (i.e., those ages 5 to 29 years). Road crashes take more than 1.35 million lives a 
year, along with 50 million injuries. As the report authors note, “people are less likely to walk, 
cycle, or use public transportation when conditions are unsafe”, which then contributes to other 
leading causes of death, like “ischemic heart disease, stroke,  chronic obstructive pulmonary 
disease, and diabetes” (WHO 2018, p. 5) Vehicle emissions (especially diesel emissions) also 
contribute to lung dysfunction and early death (claiming tens of thousands of American lives early 
every year, or over 100,000 Americans when coupled with others sources of fine particulate matter, 
like coal-fired power plants) (Goodkind et al. 2019).  

They also note that “every one of those (crash) deaths and injuries is preventable” (WHO 2018, p. 
ix). Moreover, Canada, Australia, EU nations, and many others are quite far ahead of the US on 
various critical indicators for greater road safety. In other words, the US and Texas lag the world’s 
nations and cities in many ways, not just on pedestrian design and death statistics (per capita, per 
VMT, and per vehicle owned), especially given Americans’ relatively high income status (and 
decades of transportation system investment and vehicle safety testing). Americans’ culture of 
high-speed, motorized travel, with drivers focused on other cars and trucks, rather than other 
travelers, and low-density land use probably needs to change if we are ever going to achieve 
anything close to our state’s and nation’s Vision of Zero Deaths on public roadways. 
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1.2. Examining Crash Factors 
Many factors affect the likelihood of a pedestrian crash and pedestrian injury or death. These 
include demographic variables, whether or not a driver or pedestrian is distracted, roadway design 
details, traffic, lighting, weather conditions, and so forth. 

1.2.1. Age and Other Demographic Variables 
A pedestrian’s age typically appears as the most significant factor affecting his/her road-crossing 
speed, with slower speeds thus increasing exposure to traffic while crossing. An observational 
study in Tel Aviv, Israel, found that at a 10-meter-wide crossing, persons over 65 walked across 
at 1.05 meters per second (mps) (3.45 feet per second [fps]), compared to about 1.45 mps (4.75 
fps) for those aged 18 to 35, corresponding to a 28% decrease in walking speed for the older group. 
A fear of falling among older people has particularly worrisome affects. When controlled for age, 
interviewed crossers who reported a fear of falling spent more time looking at the pavement (and 
thus away from traffic) than those who did not report a fear of falling (26.4% vs. 14%) (Avineri et 
al., 2012). A study of crossing behavior in Utah also found a slower walking speed among seniors, 
especially those with canes or walkers (Berrett et al., 2020). The authors noted that the Utah 
Department of Transportation recommends a 3 or 3.5 fps crossing speed as opposed to the typical 
4.0 fps crossing speed recommended in the 2009 Manual on Uniform Traffic Control Devices 
(MUTCD) (Berrett et al., 2020).  

An analysis completed by the Massachusetts Department of Transportation (Dugan, 2019) found 
increases in pedestrian crashes among 55- to 74-year-olds in the period 2006–2015, with the 
proportion of deaths in this age group increasing from 18 to 27% in the same period, with people 
of color having higher death rates than white pedestrians. This study found that deaths peak during 
the evening rush hour for pedestrians aged 55 to 74 however, for those 75 or over, rates remained 
relatively flat, suggesting that older working adults of age group in 55-to-74 years are more at risk. 
Among drivers, the most frequently issued driver citation for those 25 to 54 and 55+ is for 
inattention, with 55+ drivers more frequently cited for attention and health-related issues. A 
hotspot analysis of crashes involving seniors in New Bedford, MA, showed that the majority of 
incidents happened on two-lane roads with a parking lane and were close to significant retail 
spaces/businesses. Two-thirds of these hotspots had crosswalks with faded striping, and several of 
these were the closest intersection to major apartment buildings catering to senior citizens (Dugan, 
2019). 

Furthermore, older adults are at a higher risk of death if they are involved in a crash. A 2013 study 
found that in any given crash scenario, a 70-year-old that was hit had the same risk of death as a 
30-year-old who was hit by a car going 11.8 mph faster (Tefft, 2013). Older adults in New York 
City were also overrepresented in pedestrian crash deaths, comprising 38% of crash fatalities but 
only 12% of NYC’s population (NYCDOT, 2010). These variables create a picture of 
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disproportionate vulnerability for older adults, with appropriate countermeasures needed to reduce 
vehicle speeds and increase visibility for older adults through dedicated crossing infrastructure.  

Lower-income people, people of color, and younger children living in urban areas are broadly at a 
higher risk of being involved in a crash as a pedestrian. A longitudinal study in Canada found that 
for every quintile (20% of population) decrease in income, a person’s crash risk rose 13% (GHSA, 
2018). Stoker (2015) estimated that Americans making $20,000 per year are around 7 times more 
likely to be injured as a pedestrian than someone making $30,000 per year. Furthermore, analyses 
of crash data have found urban schoolchildren of color to be at a disproportionate risk for crash 
deaths, resulting in targeted educational programs to improve pedestrian safety around these 
schools (Bachman et al., 2015; Mclaughlin et al., 2019). 

1.2.2. Distracted Drivers and Pedestrians 
Distracted driving as well as distracted pedestrians can be a significant factor in the prevalence of 
pedestrian crash injuries and fatalities. A 2014 study in Australia found that pedestrians under 31 
are more likely to be involved in automobile accidents related to their mobile phone use that result 
in injuries. Pedestrians observed in this age group were found to have a 16% higher propensity to 
answer a text while crossing the street and a 24.5% higher propensity to “monitor” or look at their 
phone while crossing the street. The study noted that pedestrians holding phones while crossing 
the street tended to cross more slowly, look around less, acknowledge others less, and look out 
towards vehicles less (Lennon et al., 2016).  

Erratic pedestrian behavior along with distracted driving together formed 67% of determined 
reasons for crash types that involve a vehicle going straight while the pedestrian is crossing the 
road. While causation patterns are heterogeneous overall, distracted driving was found to be the 
most common contributing factor (Yue, 2019). A broader pedestrian crash study conducted by the 
New York City Department of Transportation (NYCDOT) (2010) found crossing against a walk 
signal to be about 56% deadlier than crossing while the walk signal was activated. Overall, driver 
distraction was identified as a factor in 36% of crashes. 

The basic idea of “distracted pedestrians” remains contested, as is the threshold of external 
stimulation at which a pedestrian would be considered distracted. Existing literature on distracted 
pedestrians generally finds no significant difference in instances of looking both ways before 
crossing the street between pedestrians that were using a phone and those that were not, particularly 
pedestrians were talking on the phone or listening to music (Simmons et al., 2020). Furthermore, 
Simmons et al. (2020) found no significant link between distraction and walking speed, or between 
decision-making processes when timing crossing the street between passing cars.  

Ralph et al. (2020) examined broad trends in the literature and surveyed medical, planning, and 
engineering professionals at the 2019 Transportation Research Board (TRB) annual conference on 
their conceptions of distracted pedestrians and how large of a role they play in crash fatalities. The 
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survey of practitioners conducted by Ralph et al. (2020) finds differences between medical, 
engineering, and planning professionals in terms of attitudes surrounding distracted pedestrians 
and potential countermeasures. A “windshield bias” was displayed among those who used private 
car transportation to get to work, with that group on the whole believing that distracted walking 
was a large problem, coupled with a propensity to support lower-impact countermeasures, such as 
educational campaigns, rather than structural changes in the way infrastructure is developed.  
Ralph et al. (2020) attributed professional differences and windshield biases to two phenomena: 
1) “signature pedagogies,” or the distinct personality and values of a discipline/academic area, and 
2) an “illusory truth effect” that stems from media framing of distracted pedestrians as a legitimate 
issue. 

Finally, one’s walking direction (either with or against traffic) seems to influence the frequency 
and severity of pedestrian crash injuries and fatalities. A 2013 study in Finland suggested a 77% 
decrease in fatal and non-fatal accidents when walking against traffic versus walking with traffic 
(Luoma & Peltola, 2013). Pai et al. (2019) found a similar pattern when analyzing 5 years of crash 
data and about 14,000 incidents in Taiwan. Pedestrians walking with traffic were about 2.21 times 
more likely to sustain fatal injuries than those walking against traffic. Furthermore, the percentage 
of non-fatal head and neck injuries was significantly higher among individuals that were walking 
with traffic, as opposed to head-on (Pai et al., 2019). 

1.2.3. Presence of Signals, Crosswalks, and Other Facilities 
Multiple studies examine the presence of signals and crosswalks to help understand how pedestrian 
and driver behavior changes with the presence or absence of control for the pedestrian or the driver. 
The literature mostly seeks to compare crossing behavior with certain facilities (such as a signal) 
to those without facilities in similar contexts. 

Attitudes surrounding crossing at a crosswalk or crossing in the absence of a crosswalk are 
influenced by a variety of factors, including sex and age. A 2020 study from New Zealand found 
that 95% of that country’s pedestrian fatalities took place at uncontrolled intersections, and 
accompanying surveys about the issue found that the majority of the population saw nothing wrong 
with crossing at a location lacking pedestrian infrastructure of any kind if it seemed safe to do so. 
Additionally, respondents in this same group were more likely to agree that they crossed 
instinctively, while checking for cars on multiple occasions (Saethong, 2020). Further exploratory 
and observational surveys conducted in Wisconsin showed both pedestrians’ low propensity to 
believe that drivers would stop for them in the crosswalk as well as a low percentage of observed 
drivers yielding to someone crossing in the crosswalk. For unmarked crosswalks and marked 
crosswalks, about 22% and 36%, respectively, of those surveyed believed that a driver would yield; 
in observation studies, the average proportion for all intersections regardless of crosswalk status 
was 16% (Schneider et al., 2019).  
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The safety of unsignalized crosswalks seems dependent on which treatments they are combined 
with, rather than conditions such as the width of the road, presence or absence of a raised median, 
and presence of older pedestrians who cross more slowly. At large arterial roads, in excess of 
12,000 annual average daily traffic (AADT), unsignalized crosswalks that were marked had higher 
pedestrian crash rates when paired with no other treatments compared to those that were unmarked 
(Zegeer & Bushell, 2012). Treatments that improve upon unsignalized crosswalks also tend to 
involve changing road design in such a way that roadway speeds are reduced, further decreasing 
risk (Stoker, 2015). 

1.2.4. Speed 
Average traffic speeds and speed limits play an outsized role in pedestrian crashes and, in 
particular, fatalities. A 2013 study of crash fatality records in the United States, normalized to 
2007–2009 risk levels, found that the median impact speed for injured pedestrians was 14 mph, 
and for pedestrian fatalities, the median impact speed was 35 mph. The speed range at which the 
probability of a fatality increased most sharply was found to be between 25 to 40 mph, with a ~3% 
increase in the likelihood of a fatality with every 1 mph increase in speed. Furthermore, fatality 
risk at 54.6 mph was 90% (Tefft, 2013).  

Higher speeds manifest themselves in a variety of crash scenarios. NYCDOT concluded that 
pedestrians hit by cars turning left are significantly more likely to be killed than those hit by cars 
making right turns, due in part to higher average speeds involved in left turns (NYCDOT, 2010). 
Data collected in Washington D.C.’s Vision Zero report puts the survival likelihood for a 
pedestrian struck at 20 mph at around 94%; that likelihood falls to around 25% for pedestrians hit 
at 50 mph (dc.gov, 2019). While these data differ as to the exact likelihood of fatalities, they show 
consistently that higher speeds generally lead to higher rates of pedestrian fatalities. 

Analysts very rarely have access to actual speed (at time of collision) data when analyzing severity 
(or crash likelihood) data. The UK’s Department for Transport (DfT 2010) compiled a series of 
analyses with equations for predicting pedestrian crash outcomes across collision speeds, while 
controlling for pedestrian age, with the following results, for frontal collisions (the most common 
type of pedestrian-vehicle impact): “In all of the pedestrian datasets, the risk of fatality increases 
slowly until impact speeds of around 30 mph. Above this speed, risk increases rapidly—the 
increase is between 3.5 and 5.5 times from 30 mph to 40 mph. Although the risk of pedestrians 
being killed at 30 mph is relatively low, approximately half of pedestrian fatalities occur at this 
impact speed or below.” It should be noted that “fatal” means death within 30 days of the collision, 
due to being struck by the vehicle. Serious injury outcomes include “fractures, concussion, internal 
injury, crushing, severe cuts and lacerations, severe shock requiring medical treatment, or any 
casualty who was detained as an in-patient in hospital” (DfT 2010, p. 10), and slight injuries 
include minor sprains and non-serious bruises or lacerations. 
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Using Ashton and McKay’s 1970’s data set, with relatively current weight factors, the DfT (2010) 
report suggests a 9% of death for the pedestrian at 30 mph, rising to 50% at 40 mph, and 90% at 
50 mph, as shown below, in Figure 1.1. Current NHTSA safety expert Peter Martin (2022) suggests 
that many or most pedestrians are “vaulted over” the striking vehicle at speeds of 35 mph and 
above, and then probably most harmed by the ground impact (since pavement and curbs are very 
unforgiving obstacles).  Nevertheless, the type of vehicle striking the pedestrian (e.g., high or low 
bumper, tall or low, soft or hard hood), and his/her health condition (e.g., young or old, weak or 
strong bones) and motion (e.g., forward leg raised or lowered) during the collision are often 
extremely important for injury outcomes. Those age 0 to 14 years have estimated to have 
probabilities of fatality of 5, 30, and 75% at 30, 40 and 50 mph (as compared to 30, 50, and 90%, 
across all pedestrian-vehicle combinations), while those age 60 and up have fatal outcome 
probabilities of 60, 97, and 100% at those same 3 speeds! 

 

Figure 1.1 Pedestrian fatality risk 
 (and 95% confidence interval on those probabilities) at various vehicle approach speeds (in frontal 

collisions) (Source: DfT 2010 Figure 2.1) 

1.3. Countermeasures 
Countermeasures for pedestrian safety are broad and range from the installation of facilities for 
pedestrians to roadway improvements that enhance pedestrian visibility to education and 
automation. When understanding and evaluating the effectiveness of countermeasures, cost-
benefit analyses are important to understand the relative impact of a given countermeasure; 
therefore, methods of cost-benefit analysis as well as pedestrian count estimation are included. 
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1.3.1. Effectiveness of Physical Countermeasures 
Individual road treatments can be highly effective in determining pedestrian crash rates. A 2010 
NYCDOT report documented physical improvements made at intersections throughout the city, 
starting with the highest risk intersections and working towards those with fewer crashes and 
fatalities. This included prioritizing pedestrian countdown signals at the riskiest 1,500 intersections 
throughout the city, with the aim to provide treatments to 60 miles of road per year, beginning with 
arterial roads. This priority list was developed after finding that 47% of all fatalities happen on 
12% of roadways throughout the city (NYCDOT, 2010).  

In the New York City study, streets with bike lanes implemented were around 40% less deadly, 
with speed bump treatments in certain areas reducing speeds in those areas by around 19%. A Safe 
Routes to School (SRTS) program was rolled out to around 135 schools, instituting permanent 
school zones around them to reduce speeds (NYCDOT, 2010). As a result, New York City has 
seen the sharpest decline in pedestrian crash fatalities in the United States between 2009 and 2018 
(GHSA, 2018).  

Schools have introduced a combination of physical and non-physical countermeasures through the 
Safe, Efficient and Flexible Transportation Equity Act (SAFETEA-LU) of 2005, which had made 
improvements to crossings and signage at about 10,400 elementary schools as of 2012. In Texas, 
these interventions included significant additions to the SRTS program, which culminated in a 
42.5% decline in annualized rates of school-age pedestrian injuries in the pre- to post-SRTS 
intervention time period (2009–2010). This program specifically attempted to introduce crosswalk 
and signage improvements in the areas that had the highest risk, mainly at urban elementary 
schools (DiMaggio et al., 2015).   

Similarly, studies that model demand changes show that creating safer conditions for pedestrians 
will lead to an increase in the use of pedestrian facilities. A study of the Great Dublin areas in 
Ireland by Carroll et al. (2018) showed that widening footpaths, increasing street lighting, and 
reducing the speed of the adjacent road to 30 km/h (18 mph) would result in a 25% increase in 
walking speed and a 5% increase in walking trips. A level-of-service regression model found that 
vehicle turning and turning radii had the largest impact on pedestrian level of service, suggesting 
a higher level of protection is needed at intersections to meaningfully improve perceptions of 
pedestrian safety (Carroll et al., 2018). 

As noted earlier, speed kills. And cars and trucks can turn right (and left) at higher speeds, into 
crossing pedestrians, for example, when corner radii are longer. Fitzpatrick et al.’s (2022) recent 
FHWA report assigns a CMF of 1.0 to a tight corner geometry (curb radius of just 10 ft) and notes 
a 59% increase in pedestrian crashes at that same corner (CMF = 1.59) when the radius is widened 
to an excessive 70 ft (and right-turn average speeds went up just 4 mph). On-street parking helps 
moderate these crash counts, by slowing vehicles (due to sideswipe and open-door concerns) and 
reducing lines of sight (which also makes drivers more cautious). The authors also give a “general 
rule of thumb” that a 10% increase in traffic volumes (on either roadway) or pedestrian volumes 
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is associated with a 5% increase in pedestrian crash counts at that site. Moreover, a left-turn lane 
(or bay) without a raised pedestrian refuge (a raised median into the crosswalk area, for example) 
on the major street increased pedestrian crash frequency by 56 percent (!), compared to a no-left-
turn bay situation or a raised refuge/median. Their sample size was 299 corners (in OR, VI and 
WA states), so a larger database could result in more distinctions by median type and left-turn 
controls on cars and trucks. 

1.3.2. Effectiveness of Non-Physical Countermeasures 
The introduction of educational programs in schools, particularly those targeted towards younger 
children, as well as educational campaigns targeted at the broader public, can help to instill more 
responsible crossing behavior by pedestrians and more care on the part of drivers.  

A study of an educational program in Los Angeles elementary schools, conducted by a local 
hospital network in conjunction with police, used an in-class educational component and an 
observational component. Students were observed crossing before and after school one week 
before the education program was administered and one week afterwards. Scores on pedestrian 
safety knowledge tests, with questions asking, “how do you know a driver has seen you?” or “what 
should you do if you see a friend going after a ball in the street?” revealed answers that were 
significantly more conducive to safety after the educational programs were completed. The 
observational component also noted significant increases in those who looked both ways crossing 
the street, rising from 10% of children before the program to 41% afterwards. Schools that received 
the intervention had lower rates of pedestrian injury one year after the program (Mclaughlin et al., 
2019). There is further evidence that these school-hospital-police partnerships can deliver results 
by educating children about pedestrian safety, as a similar study on three different educational 
models (aimed at elementary, middle, and high schoolers) found significant increases in scores on 
pedestrian safety tests after the programs (Bachman et al., 2015). Table 1.2 summarizes the results 
of the study on elementary school students. 

Other examples of education include billboards and other out-of-home advertising models to 
increase awareness when crossing the street or at railroad crossings. One such example is 
Operation Lifesaver on the Minneapolis light rail system, which followed a year of 6 fatal 
pedestrian crashes there; in the year following the campaign, there were 7 total pedestrian crashes 
involving the rail system as compared to 14 in the year before the campaign (Conlon, 2017). 
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Table 1.2 Survey Results of Los Angeles Elementary School Students 

Comparison of pedestrian safety examination results before and after educational intervention (with 
values indicating number of students getting the correct answer) 

Question Pre 
(n=1424) 

Post 
(n=1522) P-Value** 

Q1: What sign do you look for to cross the street? 1182 (83) 1280 (84) 0.453 

Q2: Who should be with you when crossing the street? 1229 (86) 1365 (90) 0.006 

Q3: What is the first thing you do before crossing the street? 423 (30) 688 (45) <0.001 

Q4: Before taking your first step, which way should you look? 1131 (79) 1310 (86) <0.001 

Q5: A police officer’s job is to… 1101 (77) 1256 (83) <0.001 

Q6: How do you know if a driver has seen you? 339 (24) 904 (59) <0.001 

Q7: How do you feel when you see a police officer? 987 (69) 1143 (75) <0.001 

Q8: What should you do if you see a friend going after a ball in 
the street? 836 (59) 1273 (84) <0.001 

Q9: Who should you ask for help? 1224 (86) 1395 (92) <0.001 

Q10: Who is responsible for your safety? 98 (26)* 149 (40)* <0.001 

Results reported as N(%). 
Obtained from Bachman et al., 2015 
*n=672 (Pre) and n=374 (Post) children answered Q10 when it was added to the examination 
**Chi-square 

 

1.3.3. Crash Costs 
To value the cost-effectiveness of different treatments, one should estimate their costs and benefits. 
There are a variety of standards and methods for performing benefit-cost analyses for pedestrian 
countermeasures, and the USDOT offers a more uniform standard, which the Texas DOT uses, 
albeit in a modified format.  

A 2018 USDOT guide uses a KABCO scale for crash severity (Harmon et al, 2018). Crash unit 
costs are displayed based on the 2001 Consumer Price Index (CPI); the current cost can be obtained 
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by multiplying the cost by the ratio of the CPI for that year (CPI-U), and then dividing by the 2001 
CPI. Table 1.3 shows the breakdown of categories and costs. 

The USDOT document (Harmon, et. al, 2018) also includes a breakdown of comprehensive unit 
costs, including pedestrian and bike accident costs, along with certain types of auto accidents. 
Pedestrian comprehensive crash costs for non-intersection and intersection collisions are assumed 
to be $287,900 and $158,900, respectively. This document estimates $242 billion in overall U.S. 
crash costs. Similarly, it estimates that about 40% of non-fatal injury crashes are not reported to 
the police, which complicates understanding the crash costs at any geographic level (Harmon et 
al, 2018). 

Table 1.3 Breakdown of Crash Severity Ratings 

Category Severity of Injuries 
Crash Unit 
Costs 
(2001 CPI) 

Mean Person-
Unit Costs 
(2001 CPI) 

K Fatality/Fatalities within 30 Days $4,008,900 $7,119,608 

A Suspected Serious Injury $82,600 $611,932 

B Suspected Minor Injury $82,600 $137,117 

C Possible Injury $82,600 $55,993 

O No Apparent Injury $7,400 $11,539 
Note: Table obtained from USDOT report by Harmon et al. (2018) 

 

Texas employs a similar system to the KABCO system, utilizing K, A, and B in severity weighting. 
In general, higher severities add much more crash costs. Therefore, unweighted crash costs place 
a high cost on fatal and serious injury crashes, mostly due to short-term benefit-cost analyses being 
skewed by spikes in crashes. The USDOT report therefore recommends using long-term average 
predicted or expected crash frequency and applying unweighted crash costs to the estimates 
(Harmon et al., 2018).  

Beyond pricing crash costs, there is also the challenge of pricing specific treatments against the 
level of benefit in the form of reduction in pedestrian fatalities. Given that there are distinct 
construction and implementation costs for all 50 states, as well as differing crash estimations 
among the states, obtaining overall cost-benefit analyses can be difficult. 

1.3.4. Obtaining Pedestrian Counts and Usage 
Finally, understanding how many pedestrians are in a given space can be particularly challenging, 
given the relative dearth in permanent pedestrian counting stations. As of April 2020, there were 
only 86 permanent pedestrian count stations in Texas, with the majority in Houston and Dallas. 
Other spot counts have been taken, but they only give information over a short period of time in a 
very specific place, rather than, for example, all crosswalks at an intersection (Texas 
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Transportation Institute, 2020). However, a small-area estimation method can be used to estimate 
pedestrian activity within a given census tract. The 2009 National Household Travel Survey 
(NHTS) and 2010–2012 California Household Travel Survey data were used as the basis for 
patterns of movement among different transportation modes for each tract, including daily average 
miles walked. Small area estimates were calculated by summing the surveyed average miles of the 
gender-age group categories, and then multiplying this by the 2010 population of the given tract. 
This result is then measured against the direct estimates from the NHTS and California Household 
Travel Survey data; a correlation can then be calculated between the small-area estimation method 
and the direct estimates from the NHTS data (Salon, 2016). Also, in relation to how many 
pedestrians are present, a Norwegian student estimated the cost of a “barrier effect”, as 
nonmotorized trips shifted to motorized trips. Under the assumption that nonmotorized travel is 
systematically undervalued from a time perspective, costs were calculated in VMT, per person and 
per shift from a non-motorized mode to a motorized one (Victoria Transport Policy Institute, 
2020). Therefore, there are different approaches to assessing the costs of infrastructure and their 
effects on the environment for pedestrians. When combined with an understanding of where the 
highest demand (or potential demand) is present, localized estimation methods combined with 
cost-benefit analyses can indicate the countermeasures that will have the greatest impact and the 
locations that will most benefit. 

1.4. Conclusions 
Given the breadth and depth of the literature on pedestrian-involved crashes and fatalities, this 
review is meant to include only the most recent, salient information on the subject, and should be 
understood as a guide to overall trends in pedestrian crash fatalities as well as patterns in risk 
factors and effective countermeasures.  

As indicated by multiple studies of macro trends in the United States and in Texas, pedestrian 
crash fatalities are on the rise, both in number and as a percentage of total crash fatalities, even as 
overall traffic fatalities decline (NHTSA, 2019; GHSA, 2018). Key trends beyond the overall 
increase in pedestrian fatalities include faster rates of increases in fatalities at nighttime and in 
urban areas as opposed to rural areas, on a per capita basis (IIHS, 2019). Broadly speaking, as light 
trucks (including standard-sized trucks, crossovers, SUVs, and minivans) have become a larger 
share of new car sales since 2009 (Ulrich, 2019), pedestrian fatalities have increased, and analyses 
of accident records show that light-truck-involved pedestrian crash fatalities are about 50% more 
deadly than those accidents involving passenger cars (GHSA, 2018).  

Looking at crash factors, a few categories emerge as contributors to making a pedestrian crash 
event more likely or deadly. These include pedestrian age, distracted driving (and the idea of 
“distracted pedestrians,” but this is a highly contested idea), the presence or absence of pedestrian 
facilities, and vehicle speed. Age affects crossing speed, which can increase the exposure time of 
pedestrians in a marked or unmarked crosswalk (Avineri, 2012). Beyond increased exposure, older 
adults are also at an increased risk of injury and death when struck by a car, with the death risk for 
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a 70-year-old equivalent to the death risk for a 30-year-old who is hit by a vehicle traveling 11.8 
mph faster (Tefft, 2013). While overall crash fatality patterns are heterogeneous, distracted driving 
was found to be a contributing factor in most crash types (Yue, 2019). Regardless of other factors, 
speed plays an outsized role in the severity of crashes. Between 25 and 40 mph, each increase of 
1 mph was associated with a 3% increase in the risk of pedestrian death in any given crash. Death 
risk at 54 mph was 90% (Tefft, 2013).  

Countermeasures can be both non-physical and physical, with benefits and costs weighted based 
on a variety of factors. NYCDOT has one of the more comprehensive breakdowns of 
countermeasures taken to reduce pedestrian crash fatalities in their city but broadly focuses on 
improving pedestrian visibility, reducing speeds, and implementing more bike and pedestrian 
infrastructure as part of a “road diet” (NYCDOT, 2010). As a result of these measures, New York 
achieved the steepest decline in pedestrian crash fatalities in the United States for the period 2009–
2018 (GHSA, 2018).  

Non-physical countermeasures include educational campaigns in schools and advertisements. A 
study of an educational program conducted by police and hospital staff in Los Angeles elementary 
schools found higher rates of understanding of pedestrian safety on a written test when compared 
with scores from a test administered before the lessons (Bachman et al., 2015). Additionally, 
advertising has been used on billboards and transit stops to educate pedestrians and drivers on the 
importance of maintaining awareness, leading to a significant decrease in crash fatalities around 
light rail systems in Minneapolis (Conlon, 2017).  

Finally, assessing crash costs and usage are important in determining the salience of potential 
countermeasures. While the United States does not have a centralized system for assessing crash 
costs, the KABCO system provides a way to adjust crash costs for inflation and categorize by the 
scale and scope of the injuries and fatalities in a given crash (USDOT, 2018). While pedestrian 
count infrastructure in Texas is not yet comprehensive, small-area estimation methods can provide 
the basis for understanding where the demand for pedestrian facilities is the highest and where the 
needs for facilities are not being met (Salon, 2016).  All countermeasures should be assessed based 
on the benefits relative to the costs, understanding those costs in terms of both the infrastructure-
related expenses and any injuries and fatalities incurred, while assessing benefits in terms of 
fatalities and injuries prevented, as well as relative demand. 

  



18 

Chapter 2. Assemble and Prepare Relevant Crash 
Data 

This chapter documents the process of assembling multiple data sources for the analysis of 
pedestrian-vehicle crashes in Texas. The data sources include: 1) Texas Department of 
Transportation’s (TxDOT) Crash Records Information System (CRIS) records, 2) TxDOT 
Roadway Inventory with historic traffic flow, highway design, and geometric information, 3) 
detailed CR-3 police records for selected pedestrian crashes used for in-depth analysis, 4) National 
Household Travel Survey (NHTS) 2017 data to approximate walk distances for pedestrian 
exposure estimates across Texas, and 5) other relevant spatial and demographic data, including 
population, job, and rainfall, as well as important location features, such as schools, hospitals, and 
transit stops. All these datasets are spatially fused at the link and intersection levels using a map-
matching mechanism, so that crashes can be counted and compared to vehicle miles traveled 
(VMT) through each location type to generate appropriate rates. 

The sections can be summarized as follows: Section 2.1 describes data sources used for the project, 
including most prominently CRIS and the TxDOT Roadway Inventory. Section 2.2 explores key 
findings from looking at data from the census tract and county levels. Section 2.3 outlines 
challenges encountered, and mitigations developed when importing and beginning to analyze data 
sources for the project and concludes with an outlook on future project activities. Section 2.4 
summarizes the task findings and activities. Finally, several appendices describe data assembly 
processes and detail the codes used on these huge, complex crash and network files. 

2.1. Explaining Data Sources 
This section describes the data sources used for the project, including CRIS, road inventory data, 
or other data sources. 

2.1.1. CRIS: Crash Records Information System 
A key source of data for this study, the TxDOT CRIS system (TxDOT, 2020a) uses details in 
police reports generated across all 254 Texas counties and the thousands of municipalities therein. 
Variables within the database characterize crashes according to time, location, severity, and road 
conditions. The CRIS data are primarily organized under three files: 

• Crash file: Includes the variables explaining the crash event, e.g., crash location, date and 
time, road type, number of vehicles, crash severity, and other site-specific characteristics. 

• Person file: Includes characteristics of persons involved in the crash (pedestrians, drivers, 
and occupants), e.g., age, gender, drug and alcohol involvement, injury severity.  

• Vehicle file: Includes vehicle specific information such as vehicle type, make, model year.  
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Crash records are not guaranteed to have all variables defined, and many of these data are not 
provided. Further, not all crashes are reported. For example, if an officer determines that a crash 
does not incur at least $1,000 of damages, the incident can be left unreported. Relevant aspects not 
explicitly captured by CRIS records involving pedestrians include whether each pedestrian is 
experiencing homelessness or where the pedestrian resides, especially if that pedestrian is lacking 
identification at the time of the crash. Further, police records are written by officers who are 
sometimes unable to capture these factors for a variety of reasons. Although these gaps and 
inconsistencies present challenges to comprehensive crash analyses, CRIS records remain a 
valuable resource, and offer suitable sample sizes for creating useful prediction models. The CRIS 
data from 2010 through 2019 comprise the following information categories: 

• 5,631,223 crash records 

• 9,875,257 roadway vehicles that are explicitly recorded among all crashes 

• 4,756,671 crash records that have geographic coordinates, either from GPS 
latitude/longitude written in the crash record, or geocoded from street names or addresses 

• 78,497 crashes that are determined to involve collisions with or avoidance of pedestrians 

• 72,243 total pedestrians that are explicitly recorded among all crash records 

• 18,265 reported pedestrian-related crashes that occur at intersections 

• 5,674 reported pedestrian fatalities  

While CRIS data has been obtained for the years 2005 through 2019, the portion included in the 
database for active analysis is the 2010–2019 period because of the consistent data format used in 
these years and their relevance, given the data’s recency. 

2.1.2. Detailed Crash Records 
The publicly available crash records in CRIS do not include certain details about those involved 
for privacy reasons. Detailed police reports can offer useful information about victims and 
motorists, including blood-alcohol levels, prior health issues, vehicle movements, and pedestrians’ 
position and actions prior to the crash. To gather this more detailed information, the research team 
requested the full police crash reports from TxDOT, selecting 300 pedestrian crashes (n = 300), 
using the following selection criteria: 

• Pedestrian crashes that occurred in the last three years (2017, 2018, 2019) 

• 70% of the crashes that resulted in fatalities or serious injuries 
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• 20% of the crashes that could not be geolocated due to missing information in CRIS 
(latitude, longitude)  

• 70% of the crashes that occurred in major hotspot areas of 5 Texas regions (Houston, 
Dallas/Fort Worth, San Antonio, Austin, and El Paso) 

2.1.3. Road Inventory Data 
The TxDOT Roadway Inventory database was used to obtain road-specific attributes (TxDOT, 
2018). The database is available in GIS shapefile and tabular format. Both on-system (under the 
jurisdiction of TxDOT) and off-system roads (not under TxDOT jurisdiction) are included in the 
database. Expressway main lanes and frontage roads are presented as distinct road segments 
(Figure 2.1). For instance, if a road segment contains left and right frontage roads, then the main 
lane and frontage roads are usually represented as four unique road segments in the data because 
each represent a specific direction. The centerline miles show the mileage of a segment, regardless 
of the number of lanes, while the lane miles include the mileage of all lanes. Accordingly, the 
database contains a total of 80,455 centerline miles and 196,539 lane miles of highways in Texas 
(Table 2.1).  

Important road attributes include highway design and traffic characteristics such as VMT, 
average daily traffic (ADT), percentage of truck ADT, shoulder and median types and width, 
number of lanes, and speed limit. However, the road inventory database contains no geometric 
information such as curvature length and angle. To map road geometry, the horizontal curves 
(GEO-HINI) database was spatially matched with the road inventory database.  

Table 2.1 Mileage by Road Segments 

Road Segments Centerline 
Miles Lane Miles 

Mainlanes 72,885 180,669 

Left Frontage Road 3,833 8,029 

Right Frontage Road 3,737 7,840 

Total 80,455 196,539 
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a) from TxDOT Roadway Inventory              b) Matching Curvature with Road Segments 

Figure 2.1 Road Segment Types 

2.1.4. Other Data Sources and Walk-Miles Traveled 
The CRIS data were spatially matched with land use, population, job, rainfall, and other location 
features (schools, hospitals, transit stops) to examine the association between pedestrian crash 
counts and various contributing factors along Texas roads (Figure 2.2). Census tract-level 
population and job data were obtained from the 2010 US Census and Longitudinal Employer-
Household Dynamics (LEHD) dataset respectively. Road segments were matched with the closest 
census tract centroid using the ArcGIS spatial join routine. Data were normalized by the area of 
census tracts. Other data sources include annual rainfall data (1981–2010) from the Texas Water 
Board, school locations from the Texas Education Agency, hospital locations from the Homeland 
Infrastructure Foundation, and transit stop locations from OpenStreetMap. ArcGIS Spatial 
Analysis tools were utilized to calculate numbers of transit stops and Euclidean distances from 
each road segment to the nearest schools and hospitals. 

Walk-miles traveled (WMT) for pedestrian exposure measure was estimated using NHTS 2017 
Texas add-on data. The full NHTS Texas sample includes information for 42,747 respondents. 
The dataset is derived from a household travel survey where each respondent provided full details 
of their travel and activities for a 24-hour travel-day. The origins and destinations of individual 
trips are included in the dataset, where the trip distance is derived from route geometry returned 
by Google Maps API. WMT for the travel day was calculated for individual respondents. Next, an 
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ordinary least-squares regression model was developed for WMT, which includes the variables 
influencing the WMT such as respondent’s age, gender, ethnicity, household income, car 
ownership, educational attainment, and built environment characteristics such as population 
density and job density.  

Table 2.2 shows the model estimation results. Age shows non-linear association with WMT. WMT 
increases with age for younger travelers but the effect of age on WMT diminishes and starts to fall 
for older adults. Black and Hispanic people have lower WMT compared to White people. Students, 
people with higher educational attainment, and those without car have higher WMT. Walking 
tendency also varies depending on the day of week. People tend to walk more on weekends 
compared to weekdays. Among other variables, higher population density and job density show 
significant positive association with WMT as more destinations and opportunities are reachable 
within walking distance with increasing densities.  

In the next step, parameters estimated from the model were used to predict WMT at Public Use 
Microdata Areas (PUMA). PUMAs are contiguous geographic units that contain no fewer than 
100,000 people each. Public Use Microdata Sample (PUMS) contains individual demographic and 
housing information where each record corresponds to a single person. The most detailed 
geographical unit contained in the PUMS files is the PUMA. PUMS of an individual year for a 
particular state contains one percent of the state population. PUMS data includes person weight 
for each observation, which is equal to the number of people that the observation represents. Using 
the demographic information and person weights in the PUMS data, WMT for each PUMA was 
predicted based on the estimated model. Finally, PUMA-level WMT estimates were used to 
calculate county-level WMTs. WMT/capita for each PUMA was assigned to the census tracts 
contained in that PUMA. Tract-level WMTs were finally scaled up to generate county-level WMT 
(Figure 2.2). 
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Table 2.2 Ordinary Least-Squares Model Results for Predicting Y = WMT 

 Estimates Std. Error P-value 

(Intercept) 0.0628 2.52E-02 0.013 
Age 0.0032 9.04E-04 0.000 
Age2 -3.31E-05 8.84E-06 0.000 

Household size -0.0122 2.73E-03 0.000 
Male 0.0096 6.46E-03 0.136 
Race    

Black -0.0416 1.17E-02 0.000 
Asian 0.0182 1.39E-02 0.190 

Hispanic -0.0403 8.81E-03 0.000 
Other -0.0311 2.12E-02 0.144 

(Reference: White)    
Student 0.0786 1.32E-02 0.000 
No car 0.5198 2.47E-02 0.000 
Educational attainment   

College degree -0.0037 9.71E-03 0.701 
Bachelor’s degree 0.0712 1.01E-02 0.000 
Graduate degree 0.1045 1.08E-02 0.000 

(Reference: High school or 
lower)    

Weekends 0.0126 7.18E-03 0.078 
Population density 5.09E-06 2.47E-06 0.040 

Job density 1.21E-05 1.93E-06 0.000 
No of observations 43477   

R2 0.0212   

F-statistic: 57.77   

P-value < 2e-16   
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Figure 2.2 Demographic and Spatial Data  
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Figure 2.3 WMT by Texas Counties 
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2.2. Summary Statistics 
Over the last ten years (2010–2019), 5.6 million crashes were reported in Texas, resulting in 35,306 
traffic fatalities. Just 1.4% of all these reported crashes involved pedestrians, but 16.1% of all 
Texas’ crash fatalities were pedestrians (5674 pedestrian fatalities), as shown in Table 2.3. The 
number of pedestrian fatalities has also been rising at a much faster rate (86% over 10 years) than 
the number of Texas crash fatalities (19%), the statewide population (15%), and Texas VMT 
(20%). Figure 2.4 illustrates the increase in pedestrian fatalities in Texas. 

While Americans are walking somewhat more, their walking distances alone cannot explain this 
increase. The NHTS data suggest that from 2009 to 2017 WMT per capita rose 13.4% and walking 
trips per capita rose 6%—from 168.6 walk trips per capita per year to 179.21. Yet US pedestrian 
fatalities per capita rose 46% over that same 9-year period. In 2017, only 10.4% of US person-
trips involved walking a block or more (to one’s destination or a bus, for example), yet pedestrian 
deaths were 16% of all traffic fatalities and thus over-represented, regardless of how one examines 
the question2. Human bodies are simply no match for the weight and density of cars (and buses, 
trucks, and trains). Many vehicles’ hoods dwarf the humans alongside (and inside) them. 

Houston, Dallas, San Antonio, Austin, and Fort Worth are Texas’ 5 largest cities, accounting for 
36% of the state’s pedestrian fatalities (Table 2.4) while comprising about 24.3% of Texas’ 
population. Among these, Austin has the highest share of pedestrian deaths (versus all crash 
deaths), but 126 miles walked per person per year (versus 112 mi/year/person as the US average 
and values under 90 mi/year/person in other Texas cities) (Figure 2.5). Dallas has the most 
pedestrian deaths per capita (40 per 100,000 persons) among Texas cities with populations over 
100,000. 

As shown in Figure 2.6 and Figure 2.7, pedestrian crashes come with higher levels of injury 
severity, as compared to other motor-vehicle crashes. For example, 7.12% of pedestrian crashes 
result in fatalities, versus just 0.47% of all other crashes.  

Like many other travelers, pedestrians face elevated injury risk at night. As shown in Table 2.5, 
79.28% of Texas pedestrian deaths occurred at nighttime/without daylight. The highest percentage 
of fatalities occurred from 9 PM to 10 PM (Figure 2.8). There is also higher risk of severe injuries 
in early morning hours (5 AM to 7 AM). There might be several possible explanations: during 
these time periods (late night and early morning hours), traffic is lighter than usual, which might 
cause both pedestrians and drivers to ignore safety rules (drivers might travel at reckless speeds 
while pedestrians might choose to crossroads abruptly). Moreover, pedestrian activities early in 

                                                 
1 There was a major change in the method of collecting trip distance in the 2017 NHTS. Trip distance was calculated 
using the shortest path routes between geocoded origins and destinations in 2017. Previous surveys used self-
reported distances.  
2 A “trip” is defined as “from one address to another,” excluding short trips within the same address, such as going 
to the mailbox or parking. In 2017, NHTS changed the definition of trip to allow “loop trips” that started and ended 
at home.  
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the morning (walking, jogging, physical exercise) and alcohol/drug involvements at night 
combined with darkness might also contribute to high injury severity during overnight hours. 

As shown in Figure 2.9, fatality rate increases with speed limit. The median speed limit in locations 
of fatal pedestrian crashes is 45 mph, versus a median speed limit of 30 mph for locations of non-
fatal crashes. Although the posted speed limit usually influences vehicle speed on roads, a more 
appropriate indicator would be the actual speed of the vehicle at impact, which is difficult to obtain 
for many cases. 

Among different vehicle types, pickup trucks, sport utility vehicles (SUVs), vans, heavy-duty 
trucks, and buses significantly increase pedestrian injury severity in pedestrian-motor vehicle 
crashes. According to CRIS data, the number of light-duty trucks involved in pedestrian deaths is 
increasing at a fast rate in Texas: during the 2010–2018 period, the number of cars involved in 
fatal pedestrian crashes increased by 64.7% while the number of SUVs and pickup trucks involved 
in fatal pedestrian crashes increased by 98.6% and 92.9%, respectively. The growing popularity 
of SUVs, pickup trucks, and vans partly explains the high injury severity associated with these 
vehicles. Figure 2.10 indicates, from 2009 to 2016, the share of cars to the total number of light-
duty vehicles purchased in the US dropped from 60.5% to 43.8%, while during the same time 
period, share of SUVs, crossover utility vehicles (CUVs), pickup trucks, and vans increased from 
39.4% to 56.2% (EPA, 2017).  

Alcohol and/or drugs were involved in 37.6% of pedestrian deaths. As shown in Table 2.6, alcohol 
was involved in 24.4% of pedestrian deaths—the pedestrians themselves tested as positive for 
alcohol in 21% of those cases. Of these alcohol-involved fatalities 82% were at night (8 PM to 6 
AM), 55% were on weekends (Friday 7 PM to Sunday midnight), and 77.4% were male pedestrians 
or drivers under the influence. Another 20% of pedestrian deaths involved drugs in some fashion. 

Fifty-eight percent of pedestrians killed are 20 to 54 years old. Nearly one-third of the pedestrian 
fatalities were people 55 or older. As shown in Figure 2.11, the 5-year age group with the most 
pedestrian fatalities was 55–59. Male fatalities were higher than female: 72% of all the pedestrians 
killed in traffic crashes were male. 



28 

Table 2.3 Number of Crashes Over Time (2010–2019) 

Year Number of 
Crashes 

Total 
Fatalities 

Pedestrian 
Crashes 

Pedestrian 
Fatalities 

Percentage of 
Total Traffic 

Fatalities 

Population 
(in millions) 

Pedestrian 
Fatalities per 

100,000 people 

2010 472,440 3097 6207 374 12.08% 2.51 1.49 

2011 456,149 3119 6174 460 14.75% 2.57 1.79 

2012 495,890 3461 7418 514 14.85% 2.61 1.97 

2013 521,473 3436 7676 511 14.87% 2.65 1.93 

2014 555,293 3580 7826 514 14.36% 2.70 1.91 

2015 601,170 3625 8267 591 16.30% 2.75 2.15 

2016 632,282 3851 8759 715 18.57% 2.79 2.57 

2017 620,830 3762 8590 639 16.99% 2.83 2.26 

2018 627,760 3700 8521 658 17.78% 2.87 2.29 

2019 647,937 3675 9059 698 18.99% 2.90 2.41 

Total 5,631,224 35306 78497 5674  n/a  
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Figure 2.4 Number of Pedestrian Fatalities (2010–2019) 
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Table 2.4 Pedestrian Deaths in Texas Cities (of Population >100,000) 

Name Population Pedestrian 
Deaths 

Ped Death per 
100,000 Persons 

Dallas 1,197,816 478 39.91 
San Antonio 1,327,407 474 35.71 

Corpus Christi 305,215 106 34.73 
Austin 790,390 249 31.50 

Beaumont 118,296 37 31.28 
Fort Worth 741,206 231 31.17 

Houston 2,099,451 635 30.25 
El Paso 649,121 192 29.58 

McAllen 129,877 37 28.49 
Waco 124,805 34 27.24 

Lubbock 229,573 62 27.01 
Amarillo 190,695 46 24.12 

Brownsville 175,023 37 21.14 
Killeen 127,921 26 20.33 
Laredo 236,091 47 19.91 

Arlington 365,438 63 17.24 
Garland 226,876 39 17.19 
Mesquite 139,824 24 17.16 
Midland 111,147 19 17.09 
Abilene 117,063 20 17.08 
Irving 216,290 36 16.64 
Denton 113,383 18 15.88 

Wichita Falls 104,553 14 13.39 
Grand Prairie 175,396 21 11.97 

Carrollton 119,097 13 10.92 
Pasadena 149,043 15 10.06 

Plano 259,841 16 6.16 
McKinney 131,117 8 6.10 

Frisco 116,989 0 0.00 
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Source: NHTS, (2017) 
Figure 2.5 Walk-Miles Traveled per Resident per Year  

 

 

Figure 2.6 Injury Types Suffered in Texas’ Pedestrian Crashes3 

  

                                                 
3 SS Injury= Suspected Serious Injury; NI Injury= Non-Incapacitating Injury; Poss. Injury= Possible Injury 
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Figure 2.7 Most Severe Injury Suffered by Pedestrians in Texas 

Table 2.5 Pedestrian Crashes and Fatalities under Different Daylight Conditions in Texas 

 Number of 
Crashes 

% of Total 
Texas Ped 
Crashes 

Fatalities 
% of Total 
Ped Crash 

Deaths 

Daylight 46,350 59.05% 1167 20.72% 

Dark, Not 
lighted 10,476 13.35% 2250 39.95% 

Dark, Lighted 18,701 23.82% 2011 35.71% 

Dark, Unknown 
lighting 737 0.94% 57 1.01% 

Dawn 714 0.91% 55 0.98% 

Dusk 1148 1.46% 67 1.19% 

Other 89 0.11% 7 0.12% 

Unknown 282 0.36% 18 0.32% 

Total 78,497 100.00% 5632 100.00% 
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Figure 2.8 Pedestrians Fatalities by Time of Day 

 

 

 

 
Figure 2.9 Injury Outcomes for Pedestrians on Roadways with Different Speed Limits 
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Source: Energy Information Administration 

Figure 2.10 Light-Duty Vehicles Sales across US by Body Type, over Time 

 

Table 2.6 Alcohol Involvement in Crashes that Resulted Pedestrian Fatalities 

 Driver 
Positive 

Driver 
Negative 

Driver Result 
NA Total 

Pedestrian 
Positive 

59 
(1.04%) 

121 
(2.13%) 

1016 
(17.91%) 

1196 
(21.08%) 

Pedestrian 
Negative 

75 201 1303 1579 

(1.32%) (3.54%) (22.96%) (27.83%) 

Ped Result NA 
114 289 2496 2899 

(2.01%) (5.09%) (43.99%) (51.09%) 

Total 249 
(4.37%) 

623 
(10.77%) 

5392 
(84.86%) 

5674 
(100%) 
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Figure 2.11 Pedestrian Killed in Texas Traffic Crashes by Age Group 

2.3. Other Data Processes and Challenges 
Three important aspects of using CRIS data for analysis are knowing where a crash is located, 
determining whether a crash is pedestrian-related, and understanding crash density in a locality. 
For crash location, many CRIS records contain GPS coordinates that are derived by TxDOT 
personnel from street address information or GPS coordinates that were provided with the record. 
However, roughly 15% of all CRIS records over the past decade (2010–2019) contain no 
geographic information. An initial look indicated a few reasons. For example, street information 
is often missing or mislabeled (e.g., a street that should be labeled as a “Dr.” is labeled as “Rd.”). 
Some locations are listed in the CRIS record as a pair of intersecting street names, yet those streets 
do not actually intersect.  

Another challenge that plays into understanding location is in knowing the traffic direction of a 
divided road or highway on which a crash takes place (e.g., northbound versus southbound lanes). 
Further, there is sometimes ambiguity concerning whether a crash takes place on freeway 
mainlines or on the service roads. As researchers become more familiar with the datasets, hints 
concerning precise crash location continue to be discovered. Meanwhile, most analyses are 
expected to require less precision. 

Along the lines of crash location, understanding whether the crash takes place at an intersection 
aids analysis. Although CRIS contains the “AT_INTRSCT_FL” and “INTRSCT_RELAT” fields, 
it is also helpful to consider the crash location with respect to the TxDOT Roadway Inventory. 
Unfortunately, the Roadway Inventory does not contain intersection information or locations, 
requiring a derivation of intersections from the roadway line segments themselves. The first 
attempt at this involved identifying where TxDOT Roadway Inventory geometry crisscrosses 
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(while filtering out conditions where we do not want to assume the presence of an intersection, 
such as places that are likely to be grade-separated), and then do a proximity match with crash 
records. This commonly misclassified crash locations around grade separations and directions of 
divided highways. A subsequent effort described in Chapter 5 leveraged crowd-sourced 
intersection locations within OpenStreetMap to map intersections in terms of TxDOT Roadway 
Inventory (Perrine and Zuniga-Garcia, 2021). 

CRIS records do not have a single mechanism for identifying whether a crash is a “pedestrian 
crash.” Several field values in various portions of a crash record can indicate pedestrian 
involvement. Another element of uncertainty stems from the possibility of varying consistency 
among personnel who create the crash reports in terms of how pedestrian involvement is reported. 
To illustrate the overall complexity, consider that the “harmful event” field can indicate only one 
value for a given crash, while the actual events could have been more complex. Several hints occur 
within the CRIS records that can be queried to arrive at a “yes/no” categorization on whether the 
crash is a “pedestrian crash.” The solution proposed in this chapter is to query for criteria and store 
those results into a table that can be leveraged for filtering. Several criteria are identified here: 

• One or more Units are identified as a pedestrian. 

• One or more Persons/Primary Persons are identified as a pedestrian. (This offers an 
indication, too, of whether there is a pedestrian fatality). 

• The “harmful event” of a crash is a pedestrian injury. 

• The “other factor” involves a swerve or slowing down because of a pedestrian. 

These criteria may or may not be mutually exclusive, and the “yes/no” indication of “pedestrian 
crash” is determined by the presence of one or more of these criteria. 

For determining crash density with respect to TxDOT Roadway Geometry, a process was devised 
for matching crashes to nearby geometry. However, subsegments in the Roadway Geometry may 
range from 0.001 miles long to over 50 miles long. This can create high- or low-density 
measurements that are not accurate or useful. A solution is to resample to a uniform distance. A 
caveat to remember is that the only CRIS records that can be matched are those that have 
geographic coordinates—approximately 85% of all records and 74% of the pedestrian-related 
crash records. While this is a subsample of all records, it still represents a large contingent that is 
useful for the project’s analysis tasks. 

2.4. Conclusions 
The dataset constructed in this project provides valuable information about the trend and risk 
factors associated with pedestrian crashes in Texas. Over the last ten years (2010–2019), traffic 
fatalities in the state of Texas increased by 19%. By contrast, pedestrian fatalities rose by a 
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stunning 86%, and their share of deaths went from 12% to 19%. While Americans are walking 
more (NHTS data suggest that from 2009 to 2017, WMT per capita rose 13% and walking trips 
per capita rose 6%), their walking distances cannot explain these fatality numbers. Simply put, 
pedestrians experience dramatically higher risk than those seated inside vehicles (as shown in 
Table 1.1). 

Preliminary data analysis identifies several risk factors. Pedestrians face elevated risk of fatality at 
night. Seventy-nine percent of Texas pedestrian deaths occurred at nighttime/without daylight. 
There is also high risk of severe injuries in early morning hours (5 AM–7 AM). Walking and 
driving under the influence, particularly at night, is another of the major causes of pedestrian 
fatalities. Alcohol and/or drugs were involved in 37.6% of pedestrian deaths. Both age and gender 
are pedestrian characteristics having significant correlation with fatality rates. Injury severity 
increases with most any crash victim’s age (inside or outside the vehicle). And male pedestrian 
deaths are much higher than for females: 72% of all the pedestrians killed in Texas’ traffic crashes 
were male.  

Roadway speed limit and vehicle types also influence death rates. Higher speed limits are 
associated with more severe injuries and deaths. Median speed limit in locations of fatal pedestrian 
crashes is 45 mph versus 30 mph for non-fatal crashes. Another major concern is the growing 
popularity of SUVs, pickup trucks, and vans. During the 2010–2018 period, the number of 
passenger cars involved in fatal pedestrian crashes in Texas increased by 64.7% while the number 
of SUVs and pickup trucks involved in fatal pedestrian crashes increased by 98.6% and 92.9%, 
respectively. 

Despite the shortcomings noted in the earlier section, the CRIS and TxDOT Roadway Inventory 
datasets are ready to be used alongside the other datasets described in this chapter for activities 
that support future project tasks. These include continuing initial analyses and visualizations of the 
datasets including heat maps and regressions. These efforts lead to the development of crash rate 
and injury severity prediction models, the building of decision trees to categorize crashes, as well 
as analyses of countermeasure cost-effectiveness.  
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Chapter 3. Identify Analysis Methodology and Key 
Results 

This chapter provides a review of the data analysis processes, including models used, 
methodology, results, and a discussion on the practical significance of results. These various 
interpretations of the Crash Records Information System (CRIS) data serve to further 
understanding of trends and patterns of pedestrian crashes and fatalities in the period 2010–2019 
and will help to develop specific countermeasures to reduce their frequency and severity. The team 
conducted analyses such as negative binomial (NB) operations on pedestrian crashes and fatalities 
and ordered probit (OP) and heteroskedastic ordered probit (HOP) models on a variety of factors, 
such as roadway geometry, vehicle type, and the presence or absence of roadway lighting. The 
chapter also includes ordinary least-squares regressions (OLS) on crashes and fatalities per walk-
miles traveled (WMT) and per 1 million vehicle-miles traveled (VMT). Additionally, heat maps 
and cluster analyses show spatial trends among pedestrian crashes and fatalities across Texas. 
These data analysis techniques are meant to reflect different ways of looking at and thinking about 
the structure of and trends within the CRIS data.  

The rest of the chapter is structured as follows: Section 3.1 presents summary statistics of 
pedestrian crashes, WMT, and roadway characteristics. Section 3.2 examines the characteristics 
of individual attributes of the CRIS data, such as crash speed and time of day. Section 3.3 is a brief 
overview of an ongoing cluster analysis that examines the spatial characteristics of crashes, 
including heat maps to visualize the spatial distribution of crashes. Analysis methodologies for 
crash counts in the NB, OP, and fatality count analysis using OP and HOP models are included in 
Section 3.4, along with an overview of the methodology for the ordinary least-squares regression. 
Section 3.5 contains zonal statistical regressions utilizing OP and HOP models, as well as ordinary 
least-squares regressions for crashes and fatalities per WMT and per 1 million VMT. Section 3.6 
is a discussion of the results obtained from the methodologies in Sections 3.4 and 3.5. 

3.1. Summary Statistics for Pedestrian Crash Variables 
Different statistical models help to draw different types of conclusions when analyzing CRIS data. 
The OLS model, measured at the county level, helps to discern broader trends across variables, 
particularly socioeconomic variables, and help to understand why pedestrian crashes and fatalities 
may play out in different types of roadway environments (i.e., urban, suburban or rural). The NB, 
OP and HOP models provide greater detail through analysis at the link level, allowing for analysis 
on factors that would otherwise be too noisy at the county level, such as the distance to the nearest 
hospital or school. Analysis at the segment level also allows for analysis of lane counts and AADT 
that are not aggregated over potentially hundreds of thousands of lane-miles, allowing the 
researchers to zero in on potential hotspot segments. OLS models are preferable for describing the 
rate of change, while the OP and HOP models are preferable for describing the level of variation 
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to show the strength of the relationship. Overall, the different model estimation approaches used 
here shed light on specific factors driving the number and severity of pedestrian crashes. 
Countermeasures can subsequently be developed that target those factors deemed most important 
or having the strongest relationship to driving up the numbers of pedestrian crashes and fatalities. 

3.1.1. Data Details for CRIS and TxDOT Roadway Inventory 
A key source of data for this study is TxDOT’s CRIS (Texas Department of Transportation, 2020). 
These records come from police reports generated in all 254 Texas counties and thousands of 
municipalities therein. Variables within the database characterize crashes according to time, 
location, severity, and road conditions. Crash records are not guaranteed to have all variables 
defined, and many of these data are not provided. A relevant aspect not consistently captured by 
CRIS records involving pedestrians is whether each pedestrian is experiencing homelessness. 

Although these characteristics of the database present challenges when performing an analysis on 
crashes, CRIS remains a valuable resource, and offers suitable sample sizes for creating useful 
prediction models. Following is a summary of the dataset used for this analysis (encompassing the 
years 2010 through 2019): 

• 5,631,223 crash records are logged 

• 9,875,257 roadway vehicles are explicitly recorded among all crashes 

• 4,756,671 crash records have geographic coordinates, either from GPS latitude/longitude 
written in the crash record, or geocoded from street names or addresses 

• 78,497 are determined to involve collisions with or avoidances of pedestrians 

• 72,243 total pedestrians are explicitly recorded among all crash records 

• 5674 pedestrian fatalities are reported 

Road-specific attributes were obtained from the TxDOT Roadway Inventory database (Texas 
Department of Transportation, 2018). The horizontal curves (GEO-HINI) database was spatially 
matched with the road inventory database to map road geometry. Census-tract-level population 
and job data were obtained from the 2010 population census and the Longitudinal Employer-
Household Dynamics program, respectively. Road segments were matched with the closest census 
tract centroid using the ArcGIS spatial join routine. All data were normalized by the area of census 
tracts. Other data sources include annual rainfall data (1981–2010) from the Texas Water Board 
(the most current available), school locations from the Texas Education Agency, hospital locations 
from the Homeland Infrastructure Foundation-Level Data catalog, and transit stop locations from 
OpenStreetMap. Numbers of transit stops and Euclidean distances from each road segment to the 
nearest schools and hospitals were calculated using ArcGIS Spatial Analysis tools. Table 3.1 
provides summary statistics of roadway characteristics from the TxDOT segment dataset.  



40 

Table 3.1 Summary Statistics of Variables for Road Segments across Texas 
 Mean Std. Dev Min Median Max 
Number of pedestrian crashes 0.080 0.653 0 0 115 
Number of fatal pedestrian crashes 0.007 0.102 0 0 10 
Segment length (in miles) 0.43 0.81 0.00 0.19 44.24 
Number of lanes 2.234 0.784 1 2 14 
Median width (in feet) 1.741 11.789 0 0 519 
Average shoulder width (in feet) 1.407 3.621 0 0 42 
On-system road 0.225 0.417 0 0 1 
Indicator of curvature 0.110 0.313 0 0 1 
Curve length (in meter) 21.676 125.770 0 0 9630.572 
Curve angle (degrees) 3.538 12.954 0 0 331.8 
Average daily traffic (ADT) per lane 888.4 2366.0 0.0 165 92090 
Percentage of truck ADT 5.960 7.217 0 3.2 95.8 
Daily VMT (DVMT) 1035.4 7319.4 0.0 54.4 793941.6 
Speed limit (mph) 20.998 28.687 0 0 85 
Rural (pop. < 5000) 0.407 0.491 0 0 1 
Small urban (pop: 5000–49999) 0.098 0.297 0 0 1 
Urbanized (pop: 50000–199999) 0.092 0.288 0 0 1 
Large urbanized (pop: 200000+) 0.404 0.491 0 0 1 
Population density (per sq. mile) 1671.5 2274.9 0.0 635.8 55239.7 
Job density (per sq. mile) 805.0 3285.3 0.0 139.6 130011.1 
Average yearly precipitation (1981–2010) 
(inches) 36.481 11.516 8 37 61 

Distance to nearest hospital (miles) 6.822 7.276 0.0018 3.968 98.208 
Distance to nearest school (miles) 2.084 3.086 0.01 0.741 53.952 
Presence of transit stop within 100-meter buffer 0.006 0.075 0 0 1 
Number of transit stops within 100-meter buffer 0.011 0.200 0 0 27 

3.1.2. OLS Regression Data Description 
The ordinary least-squares regression of CRIS data for 2010–2018 considers a wide variety of 
demographic, climatological, and roadway factors across the 254 Texas counties to examine their 
associations with pedestrian crashes and pedestrian fatalities. This model is developed from 78,497 
pedestrian crash records in the CRIS system, with county-level covariates on climate, 
demographics, and geography pulled from a variety of databases, including the US Census Bureau, 
the 30-year climate normal for Texas from the PRISM Climate Group, and the Texas Association 
of Counties. Additionally, covariates pulled directly from the CRIS data itself, such as Truck Daily 
Vehicle Miles Traveled (DVMT) and Annual Vehicle Miles Traveled (AVMT), provide overall 
DVMT/AVMT with per capita rates for both.  

To obtain figures for the homeless population, the study team used point-in-time (PIT) counts (a 
PIT count is the number of sheltered and unsheltered people experiencing homelessness on a single 
night). Homeless PIT counts were obtained from Department of Housing and Urban Development 
(HUD) databases for the areas in which information was available—roughly 100 of the 254 Texas 
counties. These counts were then divided across the survey area, which often spanned multiple 
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counties, and then weighted by population, as a county-by-county breakdown was not available 
for most areas outside of the core urban counties. Climate data were obtained from the US 
Geological Survey, and the remainder from TxDOT databases updated in 2020. With nearly 30 
initial covariates, highly insignificant variables were removed to find the variables of statistical 
and/or practical significance, defined in this model as variables that had a final p-value below .20; 
if these variables had high p-values (>.20) in the second run of the model, they were removed from 
the third and final model even if they had p-values below .20 in the initial model. WMT data were 
gathered from the 2017 National Household Travel Survey (NHTS) and aggregated up to the 
county level for the purposes of this model. Table 3.2 provides the summary statistics for all 
variables used in the ordinary least-squares regression and analysis. 

Table 3.2 Summary Statistics for 254 Texas Counties, OLS Regression 
Covariate Mean Std. Dev Min Max Median 
Crashes per 1 million VMT 0.130 0.312 0 4.581 0.0721 
Fatalities per 1 million VMT 0.013 0.016 0 0.194 0.0145 
Crashes per WMT 0.014 0.02 0 0.203 0.0169 
Fatalities per WMT 0.002 0.004 0 0.058 .00134 
WMT per Capita (2017) 0.122 0.011 0.11 0.189 0.122 
Overall WMT 14,627 58,162 9.85 688,117 2235 
Total Crashes 309 1453 0 16,904 19.5 
Fatal Crashes 22 90 0 1063 4 
Total Daily VMT (DVMT) 3,042,147 9,838,223 51,339 116,251,701 856,479 
Centerline Miles 2682 3313 155 35,928 1995 
Centerline Miles per Capita 0.185 0.243 0.006 2.182 0.1 
Job Density (per sq. mi, 2017) 46.69 175.08 0.03 1879.94 6.0323 
Pop Density (per sq. mi, 2017) 124 384 0.22 3086 21.563 
Homeless Per 1,000 people 0.357 0.792 0 7.411 0 
VMT-weighted Average Speed Limit 59.98 8.21 37.47 77.66 61.15 
VMT-weighted Average Lane Count 3.01 0.66 2 5.40 3.07 
DVMT per Capita 76 207 8 3008 39 
Truck DVMT Per Capita 17 41 1 495 6.931 
% Age 17 and Under 24.219 3.822 8.51 35.99 23.963 
% Age 65 and Older 17.822 5.234 8.61 35.61 17.215 
Median Age (2017) 39 6 27 58 38.2 
Growth Rate (2010–2020) 4.376 10.817 -18.6 80.952 2.118 
Median Household Income (2017) 51,302 12,196 30,076 102,858 48,542 
% of Population in Poverty (2017) 13.76 4.11 13.76 24.60 15.752 
Annual Precipitation (in.) 31 12 10 60 29.578 
Mean Maximum Temp (°F) 77 3 70 86 77.237 
Mean Minimum Temp (°F) 53 5 40 65 52.942 
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3.2. Key Crash Factors 
Minimal cleaning of the data (e.g., standardizing location reporting) was required to perform 
robust analysis, including generating summary statistics. Additionally, it should be noted that 
around 48.5% of pedestrian crashes across the United States go unreported, either due to the police 
not being involved, a failure to disclose hospital or insurance records, or some combination of 
these factors; this figure has also been anecdotally quoted in Texas as around 50% (Davis, 2015; 
Oborski, 2020). While many of these unreported crashes ostensibly do not result in injuries, they 
may still serve to mask potential hotspots where there are more frequent but less severe collisions, 
such as in residential neighborhoods or parking lots (Reyna, 2020). 

3.2.1. Pedestrian Crash and Fatality Trends 
In the period 2010–2019, there were 5.6 million reported crashes on Texas roads; of these, 1.4% 
were pedestrian crashes. In total, there were 35,306 fatalities in the same period, with 5,674 or 
16% pedestrian crash fatalities. Pedestrians are therefore disproportionately likely to be killed 
compared to other road users, excluding cyclists. Furthermore, the per capita rate of pedestrian 
crash fatalities (per 100,000) has increased in the state from 1.49 in 2010 to 2.41 in 2019, and their 
percentage of total traffic fatalities has also increased from 12.08% in 2010 to 18.99% in 2019.  

The five largest cities in Texas—Houston, Dallas, San Antonio, Austin, and Fort Worth—
accounted for 36% of all pedestrian fatalities in Texas within their city limits, while comprising 
approximately 24.3% of the population. Of Texas cities, Austin led the way in pedestrian fatalities 
as a proportion of total traffic deaths, with around 33% of traffic fatalities accounted for by 
pedestrians. 

3.2.2. Time of Day 
The CRIS data reflect time of day as an important indicator of crash frequency and severity. 
Perhaps most notably, a roughly inverse relationship is observed between the pedestrian crash 
frequency and severity. There is some overlap between an elevated risk of fatality and higher 
numbers of crashes in the hours of 6–10 PM, with the highest frequency of crashes happening in 
the 6–7 PM hour, and the highest fatality count in the 8–10 PM hours. An overview of the data 
regarding crash frequency and severity across Texas is featured in Figure 3.1. These patterns in 
Texas reflect the national trend identified in the literature, which shows an increase in fatalities 
and crashes at night (NHTSA, 2019; Welch, 2016), although CRIS data is inconsistent when it 
comes to indicating whether street lighting was present or not. Overall, there are significantly 
heightened pedestrian fatalities in the nighttime hours over the daytime hours. 
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Figure 3.1 Distribution of Pedestrian Fatalities in Texas by Time of Day, 2010–2018 

3.2.3. Speed 
Speed has more of an impact on crash severity and is less predictive of crash frequency, possibly 
due to higher posted speed limits on limited access roads on which pedestrian activity is much 
lower (Tefft, 2013). Generally, the proportion of uninjured pedestrians remains similar across all 
speed categories, but non-incapacitating injury crashes decline as speed increases, as do crashes 
where an injury was possible but not confirmed at the time the police report was created.  

Deaths increased from near zero on roads with speed limits below 30 MPH to 5% in the 30-to-45-
MPH range before climbing significantly to 35% at crashes on roads with speed limits above 60 
MPH. The latter category includes, but is not limited to, most limited-access freeways and tollways 
in Texas, while the under-30-MPH category includes most residential streets and most central 
business district streets. While this complements the idea that speed is analogous with an increase 
in fatal crash percentages as outlined in Tefft (2013), these CRIS data are referring to the 
roadway’s posted speed limit rather than impact speed. Generally, the proportion of uninjured 
pedestrians remains similar across all speed categories, but non-incapacitating injury crashes 
decline as speed increases, as do crashes where an injury was possible but not confirmed at the 
time the police report was created. Nonetheless, the results here support the conclusion put forth 
in both dc.gov (2018) and Tefft (2013): impact speed increases the likelihood of a pedestrian 
fatality. Figure 3.2 shows a comprehensive breakdown of the pedestrian injury severity across 
roadways of given speed limits across Texas. 
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Figure 3.2 Distribution of Injury Severity and Fatalities in Texas by Roadway Speed Limit, 2010–2018 

3.3. Heat Maps and Lat-Long Analysis 
Heat maps can help determine the spatial patterns of crashes. These patterns reveal the areas that 
have higher rates of pedestrian crashes and deaths, including intersections, corridors, and even 
stretches of limited-access highway where individuals routinely attempt to cross. Heat maps from 
the metropolitan areas of Texas for 2010–2019 total pedestrian crash data, including a few inset 
maps of downtown areas in Dallas, Houston, San Antonio, and Austin, are provided below in 
Figures 3.3-3.10. The heat maps section is followed by a short report on missing latitude-longitude 
data, including the potential reasons why these data were excluded and the temporal distribution 
of the data.  

These heatmaps were created using the online TxDOT CRIS query builder, then displaying the 
data as a heatmap rather than as discrete crashes. For all maps, pedestrian-involved crashes in the 
period 2010–2019, resulting in more than $1,000 in damage and an injury were used as parameters 
in the query. The scale of all maps, in terms of the concentration of crashes relative to the color on 
the heatmap can be assumed to be the same, with a red-zone representing multiple injurious crashes 
over the 10-year period.  

The hotspots can be separated into three categories. Those that are located along major commercial 
corridors, with many driveways and few marked pedestrian crossings, those that are located in 
high pedestrian and vehicle traffic central business district areas, and those that are located near to 
major freeways, especially along frontage roads. Major shopping centers invite more pedestrian 
traffic, and often these hotspots are located at the nexus of one or more of these factors. 
Additionally, homelessness could play a significant but unproven role in these crashes, as homeless 
encampments in Texas cities tend to be located in freeway right-of-way (Reyna, 2020; Lee, 2020). 
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Some of these hotspots, such as in Austin along Ben White Blvd (US-290) and Research Blvd 
(US-183), or along Webb Chapel Road in Dallas, also coincide with the location of major transit 
stations or transfer points, with heavier pedestrian traffic along arterial roads. Each of the inset 
maps below provides a caption describing the locations of several of the top hotspots for each map. 

 

 

Figure 3.3 Heatmap of Pedestrian Crashes in Downtown Houston 
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Figure 3.4 Heatmap of Pedestrian Crashes in Central Houston 

 
 

 
Figure 3.5 Heatmap of Pedestrian Crashes in Downtown Austin 
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Figure 3.6 Heatmap of Pedestrian Crashes in Greater Austin 
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Figure 3.7 Heatmap of Pedestrian Crashes in Downtown Dallas 
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Figure 3.8 Heatmap of Pedestrian Crashes in Central Dallas 
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Figure 3.9 Heatmap of Pedestrian Crashes in Downtown San Antonio 
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Figure 3.10 Heatmap of Pedestrian Crashes in Greater San Antonio 

3.3.1. Investigating the Factors for Missing Geographic Location of 
Pedestrian Crash Events 
About 29% of the records among the 78,497 crash events of CRIS dataset that involved one or 
more pedestrians do not have geographical location recorded in the database. To investigate this 
issue a binary logit model has been developed. In this model each crash event has been coded as 
‘1’ if it has geographic location recorded in the database and ‘0’ otherwise. 

Table 3.3 is showing the estimation results of the final model after trying several model 
specifications. From the outputs we can conclude that the probability of having geographic 
location decreases on an average by 26.24% if the crash event occurred outside city limit (Table 
3.3). Figure 3.11(C) supports this claim by showing that very high proportion of such events took 
place outside city limits. Monetary damage of the crash events does not make it more likely to 
have geographic coordinates in the database. From the model results, the crash events for which 
the property damage were $1,000 or more, are on an average 2.7% less likely to have geographic 
coordinates than a crash event which caused property damage of less than $1,000.  
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Table 3.3 Summary statistics of variables used in binary logit model to investigate contributing 
factors in records lacking geographic location (lat/long) details 

Lat-Long_Status (1 = Yes/available, 0 = No lat/long info) 

Predictors Estimate Odds 
Ratios 

Marginal 
Effects z value p 

(Intercept) 0.8921 2.44  5.53 0.000 
Outside City Limit [no] Reference     
Outside City Limit [yes] -1.898 0.15 -0.2624 -51.17 0.000 
$ Thousand Damage [no] Reference     
$ Thousand Damage [yes] -0.3795 0.68 -0.0279 -10.49 0.000 
Private Drive/Property [no] Reference     
Private Drive/Property [yes] -8.0325 0.00 -0.7576 -11.34 0.000 
TxDOT Reportable Flag [no] Reference     
TxDOT Reportable Flag [yes] 5.50 244.31 0.7226 66.78 0.000 
Crash Severity [killed] Reference     
Crash Severity [not injured] 0.806 2.24 0.0026 5.11 0.000 
Crash Severity [non-incapacit. injury] -2.807 0.06 -0.0648 -20.70 0.000 
Crash Severity [possible injury] 2.9727 0.05 -0.0760 -21.76 0.000 
Crash Severity [suspected serious injury] -3.2401 0.04 -0.0975 -20.43 0.000 
Crash Severity [unknown] 0.3797 1.46 0.0014 1.30 0.194 
Suspected Serious Injury 0.3796 1.46 0.0272 4.62 0.000 
Year [2019] Reference     
Year [2018] -0.2016 0.82 -0.0053 -2.52 0.012 
Year [2017] -0.2948 0.74 -0.0081 -3.81 0.000 
Year [2016] -0.0218 0.98 -0.00053 -0.27 0.788 
Year [2015] 0.1703 1.19 0.0038 2.03 0.043 
Year [2014] -0.6008 0.55 -0.0192 -8.23 0.000 
Year [2013] -1.0603 0.35 -0.0427 -15.28 0.000 
Year [2012] -1.01398 0.36 -0.0398 -14.35 0.000 
Year [2011] -1.0366 0.35 -0.0412 -14.35 0.000 
Year [2010] -1.2415 0.29 -0.0547 -17.56 0.000 
Vehicle Body Style [other] Reference     
Vehicle Body Style [motorcycle] -0.3792 0.68 -0.0308 -2.09 0.037 
Veh. Body Style [passenger car 4 door] -0.0875 0.92 -0.0063 -2.66 0.008 
Vehicle Body Style [police car/truck] -0.514 0.60 -0.0440 -2.95 0.003 
Crash Speed Limit 0.0056 1.01 0.0004 5.13 0.000 
Observations 78497 
McFadden R2 0.713 
AIC 29188.751 

 

The fact that crash events occurred in a private drive, road or property decreases the probability of 
the events to have their geographic location recorded in the database on an average by 75.7% 
(Figure 3.11(B)). The crash events which are categorized as reportable to TxDOT based on certain 
criteria are highly likely to have their geographic coordinates recorded in the database. TxDOT 
Reportable Flag indicates whether a crash occurred on a trafficway and resulted in injury or death 
or $1,000 damage. Such crash events are 244 times more likely to have geographic coordinates 
recorded in the crash database. Having a TxDOT reportable flag increases the probability of a 
crash event to have geographic coordinate by on an average 72.26% than a pedestrian crash event 
that is not flagged as TxDOT reportable. Figure 3.11(D) supports this claim. There is a general 
tendency that the higher the level of crash severity the more likely it is to have its geographic 
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coordinates recorded in the database. Crash events which are labeled as ‘non-incapacitating injury’ 
for the involved people have on an average 6.5% less probability to have geographic coordinates 
than a crash event in which someone has been killed.  

 

Figure 3.11 Status of Recorded Geographic Location of the Crash Events for Selected Factors 

An increase of the number of suspected serious injury in a crash event makes it more likely to have 
geographic coordinate. Increase of suspected serious injury by 1 person increases the probability 
of having geographic coordinates by 2.7%. From the model outputs, older crash events are less 
likely to have geographic coordinate in the database. For example- crash events in year 2010 have 
on an average 5.5% less probability to have geographic coordinate than crash events in 2019. 
Figure 3.11(F) shows this trend. If the crash involved motorcycle or police car/truck, then it is less 
likely to have geographic coordinate. For example- pedestrian crashes involving motorcycle have 
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on an average 3% less probability to have geographic coordinate recorded. Higher speed limit has 
very little or no impact on having a crash event geographic location in the database. 

In sum, by observing the model outputs it can be concluded that recording of geographic coordinate 
of a crash event mainly depends on whether it gets the TxDOT reportable flag or not and whether 
the crash event occurred in a private drive/property or not. Both odds ratios and the marginal 
effects of the selected contributing factors on geographic location being recorded shows similar 
results (Table 3.3). ‘TxDOT Reportable Flag’ and ‘Personal Drive/Property’ have the highest 
marginal effects on the probability of a crash event having geographic location recorded. Figure 
3.11 supports the findings from estimated binary logit model. 100% of the pedestrian crash events 
occurred in a private drive, road or property and about 89.7% of the pedestrian crash event that 
have not been flagged as TxDOT reportable do not have geographic coordinate recorded in the 
database. 

3.4. Methodologies for Prediction of Crash Counts and Injury 
Severity 
This section discusses the methods used for crash counts and injury severity models. Negative 
binomial models are used for crash counts, while ordered probit and heteroskedastic ordered probit 
are used for injury severity. 

3.4.1. Analysis of Pedestrian Crash Counts – NB Models 
The CRIS data that contained GPS coordinates were spatially matched with the road segments 
along with land use, population, job, rainfall, and other location features (schools, hospitals, and 
transit stops) to examine the association between pedestrian crash counts and various contributing 
factors along Texas roads. A total of 708,738 road segments were included in the analysis. Table 
3.1 lists the summary statistics of the roadway segments.  

An NB model was used to predict pedestrian crash counts along roadway segments. The expected 
number of counts 𝐸𝐸(𝑌𝑌𝑖𝑖) along the ith segment is expressed as follows: 

𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝛼𝛼exp (𝛽𝛽0 + �𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖 + 𝜀𝜀𝑖𝑖
𝐾𝐾

)                                                    (1) 

VMT denotes vehicle miles traveled along the ith segment; parameter 𝛼𝛼 shows potential non-linear 
relationship between crash count and VMT. 𝛽𝛽𝑖𝑖 is the kth covariate, 𝜀𝜀𝑖𝑖 is the random error that 
follows gamma distribution 𝜀𝜀𝑖𝑖 ~ gamma(𝛾𝛾, 𝛾𝛾). 𝑌𝑌𝑖𝑖 represents crash counts with mean 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜇𝜇𝑖𝑖 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝛼𝛼exp(𝛽𝛽0 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖 + 𝜀𝜀𝑖𝑖)𝐾𝐾  and variance Var(𝑌𝑌𝑖𝑖) =  𝜇𝜇𝑖𝑖 + 𝜌𝜌𝜇𝜇𝑖𝑖2 . Here, 𝜌𝜌  is the dispersion 
parameter, which collapses to a Poisson model when 𝜌𝜌 = 0. 
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3.4.2. Analysis of Pedestrian Injury Severity – OP and HOP Models 
Injury severity was analyzed at the individual crash level. Both standard OP and HOP models were 
used to account for the ordinal nature of injury severity. The model specification follows a latent 
variable framework: 

𝑦𝑦𝑖𝑖∗ = 𝛽𝛽𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖                                                                                 (2) 

𝑦𝑦𝑖𝑖∗ is the underlying continuous latent variable representing injury severity of the ith pedestrian. 
𝑋𝑋𝑖𝑖 is the vector (k×1) of explanatory variables; 𝛽𝛽 is the vector (k×1) of unknown parameters to be 
estimated that is associated with explanatory variables; 𝜀𝜀𝑖𝑖  is the random error term that is 
unobserved. In probit, 𝜀𝜀𝑖𝑖 is assumed to be normally distributed with mean zero and unit variance.  

In any given pedestrian crash, we only observe the injury severity 𝑦𝑦𝑖𝑖 as reported by police in crash 
records. The relationship between the observed discrete variable 𝑦𝑦𝑖𝑖 and the latent variable 𝑦𝑦𝑖𝑖∗ is 
expressed as follows:  

𝑦𝑦𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

0, 𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖∗ ≤ 0  (Not injured)                                                  
1, 𝑖𝑖𝑖𝑖 0 < 𝑦𝑦𝑖𝑖∗ ≤ 𝜇𝜇1 (Possible injury)                                   
2, 𝑖𝑖𝑖𝑖 𝜇𝜇1 < 𝑦𝑦𝑖𝑖∗ ≤ 𝜇𝜇2    (Non-Incapacitating Injury)        
3, 𝑖𝑖𝑖𝑖 𝜇𝜇2 < 𝑦𝑦𝑖𝑖∗ ≤ 𝜇𝜇3  (Suspected serious injury)            
4, 𝑖𝑖𝑖𝑖 𝜇𝜇3 < 𝑦𝑦𝑖𝑖∗ ≤ ∞   (Killed)                                                

 
   

𝜇𝜇0 = 0 and 𝜇𝜇𝑗𝑗  (𝑗𝑗 = 1,2,3) are threshold parameters (to be estimated) that align with one of five 
observed values of injury severity, 𝑦𝑦𝑖𝑖. In general, the probability of 𝑦𝑦𝑖𝑖 taking on injury severity j 
on ith pedestrian can be expressed as follows: 

Pr(𝑦𝑦𝑖𝑖 = 𝑗𝑗 | 𝑋𝑋𝑖𝑖) =  𝛷𝛷 �
𝜇𝜇𝑗𝑗 − 𝛽𝛽𝑋𝑋𝑖𝑖

𝜎𝜎𝑖𝑖
� − 𝛷𝛷 �

𝜇𝜇𝑗𝑗−1 − 𝛽𝛽𝑋𝑋𝑖𝑖
𝜎𝜎𝑖𝑖

�                                           (3) 

𝛷𝛷 is the standard normal cumulative distribution function, and 𝜎𝜎𝑖𝑖 is variance of the error term. In 
standard OP models, it is assumed that the variance of error term is constant across all observations. 
However, the error term can vary across observations: for instance, there can be unobserved 
heterogeneity in terms of vehicle attributes such as vehicle type, weight, and footprint (Wang and 
Kockelman, 2005; Chen and Kockelman, 2012; Lemp, Kockelman and Unnikrishnan, 2011) and 
in terms of pedestrian characteristics (health, weight, and initial response to crashes) (Kim et al., 
2010). Failure to account for heteroskedasticity can lead to biased parameter estimates in probit 
analysis. To overcome this limitation, a HOP was used where variance of the error term is allowed 
to vary. We follow a flexible specification for the HOP model where 𝜎𝜎𝑖𝑖 is determined as a function 
of observed attributes associated with variance as the following equation (Wang and Kockelman, 
2005): 

𝜎𝜎𝑖𝑖= exp(𝑍𝑍𝑖𝑖𝛾𝛾)                                                                             (4) 
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𝛾𝛾 is the coefficient for variable 𝑍𝑍𝑖𝑖 . If 𝛾𝛾 is not significantly different from zero for all 𝑍𝑍𝑖𝑖, then it 
implies no heteroskedasticity and HOP takes the form of OP. On the other hand, if 𝛾𝛾  is 
significantly different from zero, it shows the presence of heteroskedasticity for that particular 
variable.  

The parameters in Equation 3 were estimated by maximizing the log-likelihood function; a sample 
consisting of n observations would appear as shown in Equation 5: 

L (β, μ, γ) =  ∑ ∑ 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑗𝑗) ln �𝛷𝛷 � 𝜇𝜇𝑗𝑗−𝛽𝛽𝑋𝑋𝑖𝑖
exp(𝑍𝑍𝑖𝑖,𝛾𝛾)

� − 𝛷𝛷 �𝜇𝜇𝑗𝑗−1−𝛽𝛽𝑋𝑋𝑖𝑖
exp(𝑍𝑍𝑖𝑖,𝛾𝛾)

�  �𝑗𝑗=𝐽𝐽
𝑗𝑗=0

𝑛𝑛
𝑖𝑖=1                                        (5)  

3.4.3. Ordinary Least-Squares Regression 
The WMT models utilize a job density variable that controls for the strong collinearity that would 
be expected for jobs and population. This new “job density residuals” variable takes the residual 
of the actual versus expected jobs to account for varying job concentrations. For the VMT models, 
crashes and fatalities per 1 million VMT was chosen as the operational variable to clarify the data, 
given the high VMT numbers. WMT per capita, similarly, is the operational variable used to 
partially correct for a modifiable areal unit problem—a challenge that arises when using divisions 
as large as counties.  

3.4.4. Limitations 
With the 254 Texas counties as datapoints, there are some limitations to using an ordinary least-
squares model, in addition to the geographic issues associated with using county-level data. Given 
that only county-level, aggregated counts were used, data with a finer resolution was aggregated 
to the county level, primarily through ArcMap. Recent PIT homelessness count data was recorded 
for around 100 counties, including all metropolitan statistical areas (MSAs) in Texas. Outside of 
these areas, it can be assumed that homelessness is at trivially low levels compared to counties 
within MSAs. Although HUD regulations theoretically require a count in these areas each year, 
specific methodology is nonbinding (Texas Homeless Network, 2020). Finally, given that around 
40 to 50% of pedestrian crashes go unreported in Texas, the CRIS data should be regarded as a 
dataset that favors severe crashes, and those that occur on public roads (Reyna, 2020; Yang & 
Diez-Roux, 2012). Crashes that take place on private roads (such as a private parking lot) are often 
not counted, and crashes that are not reported to the police for any reason are not counted, as CRIS 
relies primarily on police reports. 

3.5. Results from Crash Count and Injury Severity Models 
The following tables show the results from 1) NB models for segment wise pedestrian crash counts, 
2) OP and HOP models for injury severity and 3) OLS models for county level pedestrian crash 
counts. Discussion of these results can be found in Section 3.6.  
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Table 3.4 Estimation Results of NB for All Pedestrian Crashes and Fatal Pedestrian Crashes 
  All Ped Crashes Fatal Ped Crashes % of Change 
  Coeff Std. 

Error Pr>|z| Coeff Std. 
Error Pr>|z| All ped 

crashes 
Fatal ped 
crashes 

Ln (DVMT)  0.7390 0.0039 0.000 0.8730 0.0115 0.000   
 Highway Design Variables       

Number of lanes  0.0316 0.0060 0.000 0.0459 0.0121 0.000 2.50% 3.60% 
Median width  -0.0052 0.0005 0.000 -0.0033 0.0007 0.000 -5.93% -3.86% 

Shoulder width  -0.0187 0.0020 0.000 -0.0164 0.0036 0.000 -6.55% -5.76% 
On-system roads  0.3564 0.0273 0.000 0.8678 0.0617 0.000 42.81% 136.53% 

Indicator of 
curvature  0.0064 0.0281 0.820 -0.0576 0.0524 0.272 0.64% -3.65% 

Curve angle  -0.0047 0.0008 0.000 -0.0028 0.0014 0.044 -5.95% -2.88% 
Speed limit  -0.0093 0.0004 0.000 -0.0024 0.0012 0.037 -23.46% -6.43% 

 Traffic Attributes       
ADT per lane  -5.5E-05 2.25E-06 0.000 -3E-05 3.84E-06 0.000 -12.26% -6.95% 

% of truck AADT  0.0054 0.0012 0.000 0.0056 0.0024 0.020 3.95% 4.14% 
 Land Use Variables       

Population 
density  0.0001 0.0000 0.000 0.0001 4.89E-06 0.000 35.78% 17.46% 

Job density  3.19E-05 7.35E-07 0.000 0.0000 2.07E-06 0.001 11.06% 2.35% 
Rural (pop<5000)  -0.6061 0.0321 0.000 -0.6200 0.0746 0.000 -45.45% -46.20% 
Small urban (pop: 

5000–49999)  -0.1213 0.0278 0.000 -0.1917 0.0774 0.000 -11.42% -17.44% 

Large urbanized 
(Pop: 200000+)  0.2074 0.0199 0.000 0.1366 0.0545 0.000 23.05% 14.63% 

 Ref: Urbanized (pop: 50000–
199999)       

 Climate and Proximity Factors      
Rainfall  -0.0041 0.0005 0.000 0.0024 0.0014 0.000 -4.63% 2.80% 

Distance to the 
nearest school  -0.2730 0.0083 0.000 -0.0958 0.0137 0.604 -52.45% -22.92% 

Distance to the 
nearest hospital  -0.0227 0.0021 0.000 0.0022 0.0043 0.000 -15.24% 1.70% 

Transit stop 
indicator  0.6706 0.0484 0.014 0.4290 0.1116 0.339 95.54% 53.46% 

Number of transit 
stops  0.0372 0.0151 0.000 0.0269 0.0281 0.000 0.75% 0.53% 

(Intercept)  -7.3860 0.0448 0.000 -11.7900 0.1237 0.000   
No. of 

observations  708738        

Dispersion 
Parameter: 𝜌𝜌  2.01   1.39     

McFadden’s R2:  0.278   0.335     
LR chi2  89206   17945     

Prob > chi2  0.0000   0.0000     
2x log-likelihood  -231909.99   -35603.96     

Continuous variables show the percentage change for a one-SD increase. Binary variables show the percentage change 
from 0 to 1. Bolded percentages indicate more practically significant variable.
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Table 3.5 Injury Severity Results: OP versus HOP Models 
 OP HOP 
 Estimate P-value Estimate P-value 
Vehicle Type     
Pickup trucks 0.0945 0.000 0.1559 0.000 
SUV 0.1042 0.000 0.1566 0.000 
Heavy-Duty Truck 0.0479 0.029 0.1054 0.001 
Van 0.0927 0.000 0.1435 0.000 
Bus 0.1883 0.000 0.2665 0.001 
Motorcycle -0.1497 0.011 -0.1452 0.124 
Others (ambulance, fire truck, police vehicle, etc.) 0.0159 0.404 0.0262 0.270 
(Reference vehicle = Passenger Car)     
Model Year     
After 2016 0.0268 0.200 0.0268 0.315 
2011–2015 0.0245 0.045 0.0296 0.056 
2005–2010 0.0818 0.000 0.1099 0.000 
Unknown 0.0492 0.000 0.0579 0.001 
(Reference Data = Before 2005)     
Pedestrian Age 0.0071 0.000 0.0083 0.000 
Pedestrian Gender (1=Male) 0.1218 0.000 0.1537 0.000 
Driver Age     
Driver Age (<24 years) 0.1550 0.000 0.2139 0.000 
Driver Age (>65 years) 0.0357 0.013 0.0493 0.006 
Driver Gender (1=Male) 0.1477 0.000 0.1861 0.000 
Pedestrian/Driver Intoxicated 1.4382 0.000 2.8614 0.000 
Speed Limit (MPH) 0.0171 0.000 0.0215 0.000 
Hit-and-Run (1=Yes) 0.1353 0.000 0.1381 0.000 
Crash Took Place at Intersection (1=Yes) -0.1146 0.000 -0.1369 0.000 
Road Type     
County Road 0.1097 0.000 0.1560 0.000 
Farm-to-Market 0.1247 0.000 0.1597 0.000 
Interstate 0.1087 0.000 0.1556 0.000 
Non-Trafficway 0.1005 0.000 0.1846 0.000 
Other Roads 0.4114 0.000 0.5482 0.000 
Tollway/Toll Bridge -0.4073 0.000 -0.3737 0.011 
US State 0.1460 0.000 0.1867 0.000 
(Reference type = City Streets)     
Crash Location     
Off Roadway -0.1564 0.000 -0.0758 0.005 
Shoulder -0.1876 0.000 -0.1338 0.024 
Median -0.4384 0.000 -0.4544 0.000 
(Reference location = On Roadway)     
Road Geometry     
Straight Grade 0.1426 0.000 0.2149 0.000 
Curved 0.1939 0.000 0.2763 0.000 
(Reference = Straight & Level)     
Control Type     
Traffic Sign 0.0224 0.044 0.0423 0.003 
Traffic Signal -0.0786 0.000 -0.0887 0.000 
Other (human control, rail gate etc.) -0.0131 0.556 -0.0034 0.896 
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 OP HOP 
 Estimate P-value Estimate P-value 
(Reference = No Control)     
Area Population     
<5000 0.2085 0.000 0.2833 0.000 
5000–9999 0.1466 0.000 0.1942 0.000 
10000–24999 0.1394 0.000 0.2009 0.000 
25000–49999 0.1132 0.000 0.1474 0.000 
50000–99999 0.1012 0.000 0.1389 0.000 
(Reference = 100000+)     
Crash Time     
5AM–7AM 0.3164 0.000 0.3959 0.000 
7AM–11AM 0.1837 0.000 0.2190 0.000 
4PM–8PM 0.1963 0.000 0.2349 0.000 
8PM–11PM 0.2559 0.000 0.3166 0.000 
11PM–5AM 0.2863 0.000 0.3799 0.000 
(Reference = 11 AM–4PM)     
Lighting Condition     
Dark Lighted 0.1152 0.000 0.1329 0.000 
Dark Not Lighted 0.2721 0.000 0.3599 0.000 
(Reference = Daylight)     
HOP’s Variance Equation     
Intercept   -6.0259 0.000 
Pedestrian Age (Years)   0.0008 0.000 
Pedestrian Gender (Male)   0.0515 0.000 
Crash Speed Limit (MPH)   0.0052 0.000 
Pickup Truck Indicator   0.0601 0.000 
SUV   0.0337 0.000 
Heavy-Duty Truck   0.1458 0.000 
Van   0.0277 0.079 
Bus   0.1966 0.000 
Motorcycle   0.1717 0.000 
Other Vehicle Type   -0.0161 0.223 
Intersection   -0.0506 0.000 
Traffic Sign   -0.0186 0.037 
Traffic Signal   -0.0450 0.000 
Other Control Type   -0.0258 0.140 
Population: <5000 persons   0.0814 0.008 
Population: 5000–9999   0.0678 0.004 
Population: 10000–24999   0.0535 0.001 
Population: 25000–49999   0.0007 0.966 
Population: 50000–99999   -0.0666 0.000 
Time: 5 AM–7 AM   0.0687 0.000 
Time: 7 AM–11 AM   -0.0246 0.024 
Time: 4 PM–8 PM   0.0061 0.532 
Time: 8 PM–11 PM   0.0217 0.132 
Time: 11 PM–5 AM   0.0415 0.006 
Dark & Lighted   0.0456 0.000 
Dark & Not Lighted   0.0972 0.000 
Threshold Parameters     
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 OP HOP 
 Estimate P-value Estimate P-value 

𝜇𝜇0 0 - 0 - 
𝜇𝜇1 1.1813 0.000 1.4569 0.000 
𝜇𝜇2 2.2264 0.000 2.7943 0.000 
𝜇𝜇3 3.1568 0.000 4.1406 0.000 

Number of Observations 66,419  66,419  
Model Fit Statistics OP  HOP  
Log-Likelihood -88505.78  -87224.93  
Mcfadden’s R2: 0.0601  0.0737  
AIC 177111.6  174603.9  
LR Test Χ2 = 2561.7 (P<0.0001)   

 

Table 3.6 Marginal Effects of Risk Factors Associated with Pedestrian Injury Severity (HOP Model) 

 No 
Injury 

Possible 
Injury 

Non-
Incapacitating 
Injury 

Suspected 
Serious 
Injury 

Killed 

Car vs. Vehicle Type      

Pickup Truck -0.0034 -0.0305 -0.0172 0.0277 0.0234 
SUV -0.0084 -0.0299 -0.0080 0.0277 0.0186 
Heavy-Duty Truck 0.0190 -0.0256 -0.0470 0.0168 0.0368 
Van -0.0081 -0.0271 -0.0068 0.0251 0.0169 
Bus 0.0139 -0.0500 -0.0632 0.0328 0.0665 
Motorcycle 0.0541 0.0049 -0.0612 -0.0170 0.0192 
Others -0.0056 -0.0042 0.0065 0.0039 -0.0007 
Model Year: 2005/Older Model vs. Newer Model    

After 2016 -0.0044 -0.0085 0.0014 0.0079 0.0035 
2011–2015 -0.0049 -0.0094 0.0015 0.0088 0.0039 
2005–2010 -0.0170 -0.0348 0.0038 0.0327 0.0154 
Unknown -0.0093 -0.0183 0.0027 0.0172 0.0078 
Pedestrian Age 
(One SD Increase) -0.0148 -0.0338 0.0000 0.0316 0.0169 

Pedestrian Gender 
(1=Male) -0.0053 -0.0315 -0.0121 0.0294 0.0196 

Driver Age: 25-65 Years vs. Other Age Groups  

Driver Age (<24) -0.0303 -0.0677 0.0015 0.0635 0.0330 
Driver Age (>65) -0.0079 -0.0156 0.0023 0.0146 0.0066 
Driver Gender (1=Male) -0.0288 -0.0588 0.0063 0.0552 0.0261 
Pedestrian/Driver 
Intoxicated -0.0497 -0.2467 -0.2673 0.0059 0.5578 

Crash Speed Limit 
(One SD Increase) -0.0174 -0.0682 -0.0174 0.0634 0.0397 

Hit and Run (1=Yes) -0.0208 -0.0438 0.0037 0.0411 0.0199 
Crash Took Place at 
Intersection 0.0040. 0.0289 0.0117 -0.0271 -0.0175 
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 No 
Injury 

Possible 
Injury 

Non-
Incapacitating 
Injury 

Suspected 
Serious 
Injury 

Killed 

City Street vs. Road Types     

County Road -0.0226 -0.0495 0.0022 0.0464 0.0234 
Farm-to-Market -0.0231 -0.0507 0.0022 0.0475 0.0240 
Interstate -0.0226 -0.0494 0.0023 0.0463 0.0233 
Non-Trafficway -0.0269 -0.0585 0.0030 0.0549 0.0276 
Other Roads -0.0531 -0.1612 -0.0541 0.1470 0.1214 
Tollway/Toll Bridge 0.0881 0.1023 -0.0592 -0.0995 -0.0318 
US State -0.0269 -0.0592 0.0024 0.0555 0.0282 

On Roadway vs. Other Location    

Off Roadway 0.0136 0.0236 -0.0061 -0.0221 -0.0090 
Shoulder 0.0254 0.0409 -0.0130 -0.0386 -0.0148 
Median 0.1143 0.1175 -0.0795 -0.1168 -0.0355 
Curvature + Grade + Traffic Control    

Straight Grade -0.0295 -0.0680 -0.0004 0.0637 0.0341 
Curved -0.0355 -0.0869 -0.0058 0.0813 0.0469 
Traffic Sign -0.0076 -0.0071 0.0079 0.0067 0.0002 
Traffic Signal 0.0002 0.0194 0.0120 -0.0183 -0.0132 
Other (human control, rail 
gate etc.) -0.0046 0.0019 0.0090 -0.0019 -0.0044 

Population   

<5000 -0.0101 -0.0509 -0.0265 0.0449 0.0425 
5000-9999 -0.0051 -0.0363 -0.0208 0.0323 0.0299 
10000-24999 -0.0084 -0.0374 -0.0157 0.0341 0.0274 
25000-49999 -0.0133 -0.0275 0.0028 0.0258 0.0122 
50000-99999 -0.0268 -0.0221 0.0282 0.0212 -0.0005 
Crash Time: 11 AM–4 PM vs. Other Times of Day   

5 AM–7 AM -0.0210 -0.0701 -0.0245 0.0633 0.0523 
7 AM–11 AM -0.0240 -0.0411 0.0129 0.0384 0.0138 
4 PM–8 PM -0.0208 -0.0438 0.0034 0.0411 0.0201 
8 PM–11 PM -0.0240 -0.0587 -0.0038 0.0548 0.0317 
11 PM–5 AM -0.0253 -0.0694 -0.0123 0.0642 0.0427 
Lighting Conditions    

Dark + Lighted -0.0041 -0.0262 -0.0124 0.0241 0.0185 
Dark + Not Lighted -0.0142 -0.0652 -0.0305 0.0581 0.0518 
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Table 3.7 OLS Regression – Results for All and Fatal-only Pedestrian Crashes Per 1 M VMT for the 254 Texas Counties 

 
Y = Crashes Per 1 Million VMT, 2010–2018 Averages Y = Crashes Per 1 Million VMT, 2010–2018 Averages  

Initial Model Final Model Initial Model Final Model 
Coefficient Std. Error P-value Coefficient P-value Std. Coef. Coefficient Std. Error Std. Coef. Coefficient P-value Std. Coef. 

Intercept -1.593 0.878 0.0709 -1.635   -0.0513 0.0444 0.249 -0.0575   
Lane Miles per Capita 0.0530 0.0941 0.574    0.00513 0.00476 0.282    
Average Speed Limit 5.167E-04 0.00242 0.832    7.506E-06 0.000123 0.951    
Average Lane Count 0.0113 0.0310 0.717    0.000348 0.00157 0.824    
Job Density Residuals 1.025E-04 2.386E-04 0.669    6.696E-06 1.206E-05 0.579    
Homeless Per 1,000 0.0667 0.0238 0.00543 0.0567 0.014 0.144 0.00446 0.00120 2.587E-04 0.00369 0.00173 0.185 
% Age 17 and Under 0.00568 0.00692 0.412    3.502E-04 3.502E-04 0.318    
% Age 65 and Older 0.00520 0.00568 0.360    3,389E-04 2.873E-04 0.240    
Growth Rate 0.00367 0.00195 0.0610    1.991E-04 9.874E-05 0.0451 1.245E-04 0.149 0.085 
Median HH Income 8.291E-06 2.550E-06 0.00132 7.509E-06 0.003 0.293 4.621E-07 1.290E-07 4.168E-04 4.320E-07 9.073E-04 0.334 
% of Pop. in Poverty 0.0187 0.00658 0.00478 0.0210 0.001 2.811E-04 0.00115 3.334E-04 6.391E-04 0.00139 2.910E-05 0.465 
Precipitation -0.00111 0.00243 0.650    -1.774E-04 1.234E-04 0.153 -1.147E-04 0.145 -0.086 
Mean Max. Temp -0.0146 0.0147 0.320    -9.294E-04 7.411E-04 0.211    
Mean Min Temp 0.00497 0.00989 0.615    5.271E-04 5.001E-4 0.293    
Truck DVMT -7.539E-08 3.912E-08 0.255    -2.080E-09 1.979E-09 0.295    
DVMT per Capita -6.553E-05 7.896E-05 0.407    -4.508E-06 3.996E-06 0.260    
WMT per Capita 12.866 3.307 1.301E-04 8.290 0.001 0.281 0.432 0.167 0.0105 0.234 0.0736 0.157 
nobs = 254 R2 = 0.223 Adj. R2 = 0.171 R2 = 0.182 Adj. R2 = 0.166 R2 = 0.222 Adj. R2 = 0.170 R2 = 0.161 Adj. R2 = 0.143 
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Table 3.8 OLS Regression – Results for All and Fatal-only Pedestrian Crashes per WMT for Texas’ 254 Counties 

 
Y = Pedestrian Crashes per WMT, 2010–2018 Averages Y = Fatal Pedestrian Crashes per WMT, 2010–2018 Averages 

Initial Model Final Model Initial Model Final Model 
Coef. Std. Error P-value Coef. P-value  Std. Coef. Coef. Std. Error P-value Coef. P-value Std. Coef. 

Intercept -0.0321 0.0389 0.413 
 
-0.0145 
 

  0.0227 0.0121 0.063 
 
0.010 
 

  

Lane Mi. per Capita 0.00527 0.00417 0.215    0.00155 0.00130 0.234    
Average Speed -1.920E-04 1.070E-04 0.074 -1.556E-04 0.12 -0.0624 -1.276E-05 3.349E-05 0.703    
Average Lanes 2.780E-04 0.00137 0.84    -2.291E-04 4.287E-04 0.594    
Job Density Residuals 6.312E-06 1.057E-05 0.55    -6.229E-09 3.298E-06 0.985    
Homeless Per 1,000 0.0115 0.00105 6.77E-23 0.0112 0.000 0.433 5.991E-04 3.287E-04 0.069 7.525E-04 0.017 0.143 
% Age 17 and Under 5.260E-04 3.060E-04 0.088 5.111E-04 0.016 0.0955 -3.335E-05 9.568E-05 0.728    
% Age 65 and Older 2.390E-04 2.526E-04 0.344    -7.671E-05 7.851E-05 0.330    
Growth Rate 9.860E-05 8.646E-05 0.255    -7.803E-06 2.701E-05 0.772    
Median HH Income 1.750E-07 1.130E-07 0.123 1.444E-07 0.191 0.0861 3.331E-08 3.532E-08 0.346    
% Pop. in Poverty 3.750E-04 2.916E-04 0.199 5.860E-04 0.023 0.151 1.983E-04 9.105E-05 0.030    
Precipitation -9.238E-05 1.083E-04 0.394    -5.501E-05 3.374E-05 0.104 -4.184E-05 0.048 -0.118 
Mean Max. Temp -5.141E-05 6.941E-04 0.937    -2.272E-04 2.202E-04 0.180    
Mean Min. Temp 9.237E-05 4.382E-04 0.833    1.482E-04 1.368E-04 0.280    
Truck DVMT per capita 2.472E-09 1.733E-09 0.255    4.123E-10 5.238E-10 0.454    
DVMT Per Capita 5.783E-05 3.499E-06 2.41E-41 5.754E-05 0.000 0.581 6.008E-07 1.092E-06 9.79E-08 5.823E-06 1.41E-07 0.288 
WMT per capita 0.129 0.147 0.378    -0.0661 0.0457 0.149    
nobs = 254 R2 = 0.645 Adj. R2 = 0.621 R2 = 0.623 Adj. R2 = 0.615 R2 = 0.168 Adj. R2 = 0.112 R2 = 0.138 Adj. R2 = 0.120 
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3.6. Key Results 
The key results of the models developed in Section 3.5 are discussed in this section. 

3.6.1. NB & OP Models Results Discussion 
Table 3.4 (above) shows the parameter estimates of the NB models. Two models were estimated: 
one for all pedestrian crashes and another for fatal pedestrian crashes. The dispersion parameters, 
Ρ, for both models are greater than zero, implying that the data are over-dispersed (the variance 
exceeds the mean of crash counts), and the NB model is preferred over the Poisson regression 
model.  

The association between VMT and pedestrian crash frequencies is positive and non-linear 
(exponents α = 0.7390 for all pedestrian crashes and α = 0.8730 for fatal pedestrian crashes), 
consistent with the expectation that crash frequencies increase with VMT but crash rate effectively 
falls as VMT of the segment rises. Among highway design variables, on-system roads (state-
maintained arterials), median width, shoulder width, and speed limit were found to be practically 
significant. On-system roads show strong association with fatal crashes: a 42.81% increase of all 
pedestrian crashes versus 136.53% increase of fatal crashes only. As per CRIS data, two-thirds of 
all fatal pedestrian crashes in Texas (2010–2019) occurred on on-system roads. Other variables 
such as shoulder width, median width, and speed limit are negatively associated with pedestrian 
crashes. Higher speed limit roadways usually have fewer pedestrian activities that might contribute 
to lower numbers of pedestrian crashes; however, pedestrian crashes on high speed segments are 
associated with more severe injuries, discussed later in the injury severity analysis.  

Surprisingly, ADT per lane is estimated to have negative effects on pedestrian crashes when other 
variables are controlled (population and job density). Percentage of Truck ADT, however, shows 
positive association. This might be because the impact of high ADT per lane is captured by 
population density and job density. Previous studies also found a weak effect of ADT on pedestrian 
crashes when other variables are controlled (Huang et al., 2017; Pandey and Abdel-Aty; 2009; 
Zajac and Ivan, 2003).  

Population density, job density, and types of urban areas were used as proxies for land use. All of 
these variables were found to be strong predictors of pedestrian crashes. Pedestrian crashes, 
including fatal crashes, increase with population and job density, with very high crash rate 
percentage change (35.78% for population density and 11.06% for job density). This might be 
partly due to high variance-to-mean ratios for both of these variables; thus, a one-SD change 
implies a substantial shift. The effect of urbanization should be interpreted with urbanized areas 
having population 50,000–200,000 as a baseline. Compared to the baseline, large urban areas with 
populations greater than 200,000 are expected to have 23.05% and 14.63% more pedestrian 
crashes and fatal pedestrian crashes, respectively. By contrast, small urban areas and rural areas 
have fewer numbers of crashes. This is consistent with expectations because more dense locations 
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in large, urbanized areas usually have higher traffic volumes and pedestrian activities, thus 
increasing the exposure of pedestrian crashes.  

Climate, proximity, and transit-related variables—such as rainfall, distance to the closest schools 
and hospitals, and the number of transit stops—were also included in the model. Among these 
variables, distance to the closest schools, distance to the closest hospitals, and the presence of 
transit offer practical significance, although these variables are rarely considered in pedestrian 
safety literature. Results from the model estimation show that a one-SD decrease in nearest school 
distance (1 SD = 2.72 miles) is associated with a 52.45% increase in pedestrian crashes and a 
22.92% increase in fatal pedestrian crashes. Similarly, hospital distance also shows strong 
association (except fatal crashes) but is less significant than school distance. Finally, the presence 
of transit stops along the segments was found to be strongly significant (95.54% increase in 
pedestrian crashes and 53.46% increase in fatal pedestrian crashes), presumably due to high 
pedestrian activity near transit stops. 

3.6.2. Pedestrian Injury Severity 
Both the OP and HOP were estimated using the “oglmx” package in R (Carroll, 2017). Results 
from the likelihood ratio test suggest that heteroskedasticity exists (χ2 = 2561.7; P<0.0001), and 
therefore the HOP model was preferred over the OP model (Table 3.3). The coefficients of both 
models show consistent estimates; however, the main difference is observed in terms of variance 
components. The HOP model shows significant variance for pedestrian age, gender, speed limit, 
vehicle type, traffic control type, population of the area, time of day, and lighting condition, 
suggesting that these variables can affect the spread of latent severity. 

Other variables that do not show significant impacts are discarded from the variance equation. The 
following section discusses details about the impacts of explanatory variables on pedestrian injury 
severity. Among different vehicle types, pick-up trucks, sport utility vehicles (SUVs), vans, heavy-
duty trucks, and buses significantly increase pedestrian injury severity in pedestrian-motor vehicle 
crashes (Table 3.5). Previous studies also reported similar findings, particularly high injury 
severity associated with light-duty trucks (SUVs, pickup trucks, and vans) (Lefler & Gabler, 2004; 
Pour-Rouholamin and Zhou, 2016; Anarkooli et al., 2017; Liu et al., 2019). These vehicles pose 
higher risks due to heavy mass, higher bumpers, and a more geometrically blunt frontal profile 
(Lefler & Gabler, 2004). The model also predicts significant variance for vehicle types, suggesting 
that impacts of unobserved attributes are associated with vehicle types (e.g., shape, stiffness, 
frontal profile) that increase the range of injury severity prediction. Marginal effects (Table 3.5) 
show that compared to passenger cars, light-duty trucks (pickup trucks, SUVs, and vans) increase 
the probability of being killed or seriously injured by 13.9%. According to CRIS data, the number 
of light-duty vehicles involved in pedestrian deaths is increasing at a fast rate in Texas: during the 
period 2010–2018, the number of cars involved in fatal pedestrian crashes increased by 64.7% 
while the number of SUVs and pickup trucks involved in fatal pedestrian crashes increased by 
98.6% and 92.9%, respectively. The growing popularity of SUVs, pickup trucks, and vans partly 
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explains the high injury severity associated with these vehicles. From 2009 to 2016, the share of 
cars to the total number of light-duty vehicles purchased in the US dropped from 60.5% to 43.8%, 
while during the same time period, share of SUVs, pickup trucks, and vans increased from 39.4% 
to 56.2% (EPA, 2017).  

Two pedestrian characteristics—age and gender—are found to be significant. Injury severity 
increases with pedestrians’ age, suggesting that older people are vulnerable to more consequential 
outcomes. An increase of pedestrian age by one SD increases the risk of fatality by 1.69% and 
serious injury by 3.16%. Male pedestrians are also more likely to sustain severe injury. CRIS data 
shows that 72.38% of the pedestrians killed in motor-vehicle crashes in Texas from 2010 to 2019 
were male. The effect of pedestrian age and gender on injury severity is consistent with the 
previous findings of Kim et al. (2008), Zhu et al. (2013), and Pour-Rouholamin and Zhu (2016). 
The model also predicts significant heteroskedasticity for pedestrian gender and age. The 
unobserved effects of pedestrians on injury severity vary more widely as the age of the pedestrian 
increases.  

Drivers’ characteristics also affect pedestrian injury severity. The involvement of younger drivers 
(aged less than 24) significantly increases the risk of pedestrian injury compared to drivers of the 
middle-age group (25–64). Male drivers are also more likely to be involved in pedestrian crashes 
than female drivers. Previous studies also had similar findings regarding male and younger drivers 
(Kim et al., 2008, Kim et al., 2010; Pour-Rouholamin and Zhu, 2016); however, the effect of older 
drivers (aged 65 or above) is mixed (Kim et al., 2008; Siddiqui et al., 2006; Mohamed et al., 2013). 
The results show that drivers aged 65 or above increase injury severity for pedestrians; however, 
it should be noted that the effect size is small. Wood et al. (2014) found that older drivers (age 
range 63–80) recognize pedestrians at approximately half the distance required for younger drivers 
(age range 18–38), which gives less response time to pedestrians.  

Among different explanatory variables in the model, intoxication (in drivers and pedestrians) is 
found to have the strongest effect on pedestrian injury severity. Alcohol- or drug-related crashes 
are more likely to result in serious injury or deaths for pedestrians. According to CRIS data, alcohol 
and/or drugs were involved in 37.6% of pedestrian deaths. In most of these cases (33.38% of 
pedestrian deaths), pedestrians tested positive in alcohol and/or drug screens. Most (88.84%) of 
alcohol/drug-related pedestrian deaths occurred after dark. Walking under the influence, 
particularly at night, is one of the major causes of pedestrian fatalities.  

Regarding time of day, crashes occurring from 8:00 PM to 5:00 AM showed an increase in the 
probability of severe pedestrian injuries. Most (79.22%) pedestrian deaths occur at nighttime. This 
finding is consistent with previous studies (Pour-Rouholamin, 2016; Aziz et al., 2013; Kim et al., 
2008). The results also show higher risk of severe injuries in early morning hours (5AM–7AM). 
There might be several possible explanations: during these time periods (late night and early 
morning hours), traffic is lighter than usual, which might cause both pedestrians and drivers to 
ignore safety rules (drivers might travel at reckless speeds while pedestrian might choose to cross 
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roads abruptly). Moreover, pedestrian activities early in the morning (walking, jogging, or other 
physical exercise) and alcohol/drug involvements at night (discussed earlier) combined with 
darkness might also contribute to high injury severity during overnight hours. Lighting conditions 
also have a separate and significant influence, as a difference in probabilities of severe injuries 
between lighted roads and unlighted roads is also observed. Roads without streetlights after dark 
significantly increase the risk of pedestrian fatalities.  

Roads with higher speed limits also lead to more severe pedestrian injuries. Table 3.4 shows the 
change in predicted probabilities by injury severity levels due to a one-SD increase of speed limit. 
The positive association between speed limit and injury severity is consistent with previous studies 
(e.g., Halem et al., 2015; Chen and Fan, 2019). Although the posted speed limit usually influences 
vehicle speed on roads, a more appropriate indicator would be the actual speed of the vehicle at 
impact, which is difficult to obtain for many cases. Speed limit increases the variance and outcome 
uncertainty: the unobserved effect varies more widely as the speed limit increases. Hit-and-run 
crashes increase injury severity levels. Almost 20% (19.4%) of pedestrian deaths are hit-and-run 
cases. Fleeing drivers increase the risk of pedestrian fatality because this often causes a delay in 
emergency service arrival and there is also the possibility that a pedestrian might get hit again by 
another vehicle after the first impact. 

With regard to roadway characteristics, compared to city streets, the risk of severe pedestrian injury 
increases if a crash takes place on interstate, US, and state highways; county roads; and other types 
of roads not classified. Generally, city streets have lower speed limits and incorporate traffic 
controls, which reduces pedestrian crash severity. Analyzing CRIS data, we find that interstate 
highways account for 5.5% of pedestrian crashes but 20.6% of pedestrian fatalities in Texas. This 
percentage becomes higher when restricted to major urban areas. For instance, IH-35 alone 
accounts for 28.2% of pedestrian deaths in Austin over the last ten years. Higher speeds, poor 
lighting conditions, pedestrians entering to the highways, and lack of countermeasures might 
contribute to the severity of crashes on highways. Road geometry also affects crash severity: 
pedestrian-involved crashes on curved roads are more likely to result in more severe injuries than 
those on straight roads. The marginal effect shows that curved roads increase the probability of 
fatal crashes by 4.7% and serious injury by 8.1%. The location of the crash affects the type of 
injury. Crashes that occur at an intersection are associated with less severe injuries. Most 
pedestrian fatalities (89.16%) occur at non-intersection locations. The probability of severe injury 
decreases when the crash takes place on non-roadway sites (e.g., parking lots, driveways), 
shoulders, and medians, as compared to on roadways. Vehicle impact speed is usually lower in 
these locations, decreasing the likelihood of severe injury. The presence of traffic controls, such 
as traffic signals, reduces the probability of fatal and severe injuries. Pedestrians and drivers are 
better informed of each other’s right of way and expected movements when there are traffic signals 
or traffic signs. As seen in studies on traffic calming in urban areas, drivers are usually more 
cautious and drive at lower speeds in the presence of traffic controls, as compared to places where 
there are no such controls (Ewing, 1999). 
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3.6.3. OLS Regression Model Results Discussion 
Tables 3.7 and 3.8 contain a column of standardized coefficient values, which can help in 
comparing the relative predicted impacts of each explanatory variable, implying the practical 
significance of a variable. Since the final model specification includes variables that are 
statistically significant at the 90% confidence level, this approach can show the relative efficacy 
of certain predictor variables. This standardized coefficient is the estimate of how much change in 
crashes or fatalities per 1 million VMT or crashes or fatalities per WMT will result from an 
increase of one standard deviation (one-SD) in the explanatory variable, with all else constant.  

For crashes per 1 million VMT (Table 3.7), the strongest relationships are between median 
household income and per capita WMT, for which there are positive relationships, with a 
practically significant relationship for rates of homelessness as well. Literature has shown that 
higher-income persons tend to walk longer distances (Yang & Diez-Roux, 2012), although the 
county level is at a far more aggregate level than the NHTS data from which the WMT figures are 
sourced, which is primarily at the census tract level. Thus, higher rates of WMT would, in this 
case, point to higher rates of pedestrian crashes per 1 million VMT. For fatalities per 1 million 
VMT, the picture is a bit clearer in terms of practical relationships. Median household income and 
the percentage of population in poverty both display stronger, positive relationships, pointing to 
more urban counties where both median income and the population in poverty tend to be higher in 
Texas. This may be due to a larger wealth gap within urban areas as opposed to suburban counties, 
which are more uniform in income; lower-income people also tend to walk for longer durations 
(and less distance), which may also increase exposure time among those who cannot own a car 
due to the financial burden (Yang & Diez-Roux, 2012). A weaker but still statistically significant 
relationship exists between growth rate and fatalities; in the VMT crash model, growth rates 
initially displayed a low p-value, but had a much higher p-value in the final model, suggesting that 
growth rates play only a minor role in rates of pedestrian crashes and fatalities. Exurban Texas 
counties, such as Hays, Kaufman, and Montgomery, would be areas that could shine more light on 
this through tract-level analysis.   

The crashes per WMT model (Table 3.8) also shows a strong, positive relationship with 
homelessness rates and poverty, but has a weaker relationship with household income, as well as 
the curious addition of a positive relationship with the percentage of the population under the age 
of 17. Tract-level analysis would be helpful here, as this could further be broken down among 
school-age children to show where the strongest relationships lie. Studies in Los Angeles schools 
show that there are risks for children walking to school (Bachman et al., 2015), which can be 
ameliorated through pedestrian safety educational programs and improved pedestrian 
infrastructure (DiMaggio et al., 2015). The weak, negative relationship with average speed limit 
would also point to urban counties having higher rates of crashes per WMT, as the lane-miles of 
rural roads is more limited to trunk highways that have higher speed limits than many urban and 
suburban roads, particularly residential streets.  
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Fatalities per WMT results are less conclusive. There continues to be a positive, practical 
relationship with homelessness rates, as well as daily VMT per capita, suggesting that counties 
with higher VMT per capita experience higher rates of fatalities. Fatality rates in rural counties 
would seem to reinforce this, as pedestrian crashes there tend to be less frequent but more fatal 
(Hall et al., 2004). Notably absent from the final model for either WMT model is WMT per capita, 
which has a far higher p-value in the final model for both crashes and fatalities per WMT. This 
provides some evidence against the ‘safety in numbers’ idea behind pedestrian safety, particularly 
in terms of crash rates. Higher WMT rates do not necessarily move crash and fatality rates among 
pedestrians in either direction, at least at the county level. Tract-level analysis may also be useful 
for examining this issue in-depth, particularly in areas of exceptionally high foot traffic, such as 
university campuses, central business districts, and entertainment districts. 

3.7. Conclusions 
A wide variety of data analysis methods can examine the characteristics of a litany of impacts on 
pedestrian crashes and fatalities. The NB, OP, and HOP models can reveal the effects of lighting, 
vehicle type, size, environmental variables, and crash time. Furthermore, heat maps and cluster 
analysis can show the spatial patterns of crashes, helping practitioners prioritize sites for 
countermeasures and showing, from a practical perspective, which types of roadway designs and 
factors may lead to higher rates of pedestrian crashes and fatalities.  

Findings from the NB model indicate the practical significance of micro-level variables in 
predicting pedestrian crashes. Proximity to schools, hospitals, and transit lines are associated with 
higher crash frequencies, although these variables are rarely included in pedestrian crash frequency 
models. Total crash rates and fatal crash counts rise with number of lanes and population and job 
densities, while greater median and shoulder widths provide some protection. Higher speed limits 
are associated with lower crash frequencies but increase the likelihood of more severe injuries, as 
shown by the HOP model. 

Results from the HOP model identified several risk factors at the pedestrian, driver, roadway, and 
vehicle levels that significantly affect pedestrian injury severity. Crashes occurring at night (8 PM–
5 AM), without overhead lighting, involving intoxicated pedestrians or drivers, and light-duty 
trucks (SUVs, pickup trucks, CUVs, and vans) are associated with more severe injuries. In 
contrast, being a younger and female pedestrian, on a straight segment off the state (and interstate) 
highway systems, in the presence of a traffic control device (stop sign or signal) lowers the 
likelihood of pedestrian injury. The involvement of vehicles from more recent model years was 
not found to lower pedestrian injury; instead, increasing SUV and CUV purchases in recent years 
further raises concerns about pedestrian safety. Findings from this study underscore the importance 
of enhanced vehicle safety features for pedestrians, campaigns against driving and walking while 
intoxicated, improved roadway design, enforcement of safety countermeasures near schools and 
bus stops, and installation of additional traffic controls and streetlights where there are more 
pedestrian activities.  
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The results of the ordinary least-squares regression point to a practical, positive relationship 
between crash rates and both household income and homelessness, with a weaker positive 
relationship to the growth rate. Income, poverty, and homelessness rates all have significant 
impacts in crash and fatality rates per WMT models, as does percentage of young people; a greater 
proportion of individuals under 17 within a county corresponded with increased crash rates. 
However, there was no strong relationship between crash rates and WMT per capita in either 
model. In practical terms, future census tract–level models should closely examine income as a 
predictor of pedestrian injury and death and clearly define urban, suburban, and exurban tracts to 
reveal the individual patterns within these areas. 

The rise of pedestrian crashes and fatalities across the United States is a worrying trend (NHTSA, 
2019), and one for which there is no one specific answer. Policymakers may consider faster-acting 
countermeasures to lower speeds and educate drivers and pedestrians alike on safe driving and 
walking behaviors, such as those described in Tefft (2013) and Bachman et al. (2015). They may 
then turn to design investments that have been shown to reduce the risk for pedestrians, such as 
the path widening and path segregation discussed in Carroll et al. (2019), as well as improved 
lighting and signage (Welch, 2016; DiMaggio et al., 2015). In this way, policymakers and DOT 
leaders can address the issue on both ends, creating a more welcoming environment for pedestrians 
while simultaneously working to curb the factors that lead to greater pedestrian injury severity. An 
analysis of the CRIS data shows that nighttime and higher speed are two major drivers of 
pedestrian crashes and fatalities, mirroring national trends; these may be two good frameworks 
around which to build effective countermeasures.  

Further work on understanding how homelessness plays into the bigger picture of pedestrian 
crashes and fatalities is important to advance the understanding of pedestrian crash trends, given 
the limited existing research conducted and data collected by governments across Texas and the 
United States. While a stronger relationship than many other variables was found between the 
prevalence of homelessness and rates of pedestrian crashes in this model, only anecdotal 
evidence—provided by DOT officials, law enforcement, and city transportation and safety staff in 
conversations regarding this issue—supports the idea that homelessness is a major contributor to 
pedestrian crash counts (Oborski, 2020; Lee, 2020). This model was derived by piecing together 
HUD PIT count data with TxDOT data; independent data on pedestrian crashes collected by cities 
would be a good first step towards better understanding the nature of the interactions between 
homelessness and pedestrian crashes and fatalities. For example, the City of Austin only started 
collecting data on homelessness and pedestrian crashes in 2019, so a comprehensive dataset on 
pedestrian crashes involving suspected homeless individuals remains a distant goal. 
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Chapter 4. Develop Decision Trees to Classify 
Crashes across Contributing Factors 

Decision trees are a relatively transparent form of machine learning (ML) or artificial intelligence 
(AI) for data analysis. They break a dataset or observational records into smaller and smaller 
subsets, to illustrate likely outcomes from different values of input variables (or branching 
“decisions”/directions that are based on explanatory variable values). This chapter uses pedestrian-
crash data from TxDOT’s Crash Records Information System (CRIS) over the years 2010 through 
2019 to develop a series of simple-to-use decision trees to classify various human factors (both 
pedestrian and driver), vehicle factors, roadway variables, and environmental factors associated 
with pedestrian crashes. These simple trees visually highlight influential factors to assist in 
understanding cause-and-effect relationships across a potentially wide set of contributing factors. 

Although decision trees are intuitive, they do not have the same predictive accuracy as other 
statistical modeling approaches (like ordered probit models for severity and negative binomial 
models for crash count prediction) or ML methods. By aggregating many decision trees, using 
methods like bagging, random forest, and boosting, tree-based ML methods can substantially 
improve their predictive performance. Therefore, an analysis using tree-based methods is also 
developed to help improve the models. Methods such as random forests, gradient boosting, and 
Bayesian additive regression trees are applied and compared using pedestrian crash data. For 
estimates based on ordered probit and negative binomial models, please see a paper by Rahman et 
al. (2020) using these same data and predictors.  

This chapter is organized into the following sections: Section 4.1 introduces the use of decision 
trees to develop pedestrian severity models and presents findings based on the 66,245 crash-
involved pedestrians in CRIS records over the 10-year period. Section 4.2 describes tree-based 
methods for analyzing both pedestrian crash severity and crash count models across Texas using 
more than 700,000 roadway segments from TxDOT roadway inventory. Sections 4.3 and 4.4 
conclude the chapter by summarizing the main findings. 

4.1. Decision Trees 
The method used to estimate best-fit decision trees is known as recursive partition (Therneau and 
Atkinson, 1997), which is a modification of the Classification and Regression Trees (CART) 
method (Breiman et al., 1984). Decision trees are a type of supervised learning algorithm that can 
be used in both regression and classification problems (where the response variable is cardinal 
[like crash cost or crash count], ordinal [like severity], or categorical [like vehicle type]). Relevant 
terms are as follows: 

• Root node represents the entire population or sample. It is divided into two or more 
homogeneous sets. 
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• Splitting is a process of dividing a node into two or more sub-nodes. 

• When a sub-node splits into further sub-nodes, it is called a decision node. 

• Nodes that do not split are referred to as terminal nodes or leaves. 

• Pruning is the process of removing sub-nodes of a decision node. The opposite of 
pruning—adding sub-nodes to a decision node—is splitting. 

• A sub-section of an entire tree is called a branch. 

• A node divided into sub-nodes is called a parent node of the sub-nodes, whereas the sub-
nodes are called the child of the parent node. 

Regression trees are used to predict quantitative responses (like crash count or crash cost), while 
classification trees predict categorical or qualitative responses (like vehicle type). Both methods 
use a recursive binary splitting algorithm to develop the tree. The recursive partition is used for 
regression trees to minimize the Residual Sum of Squares (RSS), which is the sum of squared 
differences in predicted versus actual/observed values. The process can be summarized as follows: 
first, the data are divided into two branches based on different criteria using the input variables. 
The method creates a partition of two spaces, and the resulting two-prediction RSS is estimated. 
The method finds the variable split criteria that minimize the (current) RSS. Finally, a pruning 
process is applied, introducing tuning parameters that balance the tree’s depth (number of 
branches) and overall goodness of fit (RSS). Figure 4.1 illustrates the results of such a method, 
using a five-branch (maximum depth) tree based on two variables (x1 and x2) to predict y values, 
with samples represented as dots within the predator’s spaces. 

 
Source: Torgo, 2017 

Figure 4.1 Example of a Regression Tree  
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The recursive partition method also uses a two-stage process to build trees for classification of 
categorical response (like vehicle type). As with a regression tree, the single best variable to split 
the data into two groups is sought, the data are separated, and this process is applied again and 
again, to each sub-group, recursively, as illustrated in Figure 4.2 until no improvements can be 
made. The splitting criteria are based on a measure of impurity or diversity within nodes (rather 
than RSS, since the Y variable is not cardinal or ordinal in nature). The most popular impurity 
measure is the Gini index, calculated by subtracting the sum of the squared probabilities of each 
class from one (the Gini index is zero if all the nodes are perfectly classified). In the case of 
categorical responses with m categories, the split criteria are tested using 2m-1 comparisons, while 
for ordinal responses, only m-1 comparisons are tested. For example, for an ordinal response with 
three categories (small<medium<large), two comparisons are tested: {small} vs. {medium, large}, 
{small, medium} vs. {large}). If these categories were treated as unordered, the caparisons would 
include {small, large} vs. {medium} as well. The second stage of the procedure consists of using 
cross-validation to trim back the full tree (pruning). 

 

Source: Le, (2018) 

Figure 4.2 Example of a Classification Tree 

4.1.1. Data and Method Description 
In this chapter, the recursive partition method was used to develop decision trees to classify 
pedestrian crash severity levels. The data used consists of CRIS records from 2010 to 2019. 
Additional vehicle information (such as weight and dimensions) was provided by the Insurance 
Institute for Highway Safety (IIHS) using the reported vehicle identification number (VIN) for 
each vehicle involved in pedestrian crashes. 
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a) Annual pedestrian crashes b) Total crashes in Texas 

Note: results reported by police. 

Figure 4.3 Texas’ Annual Crash Counts 

During the period of study, 66,245 crashes involved a pedestrian. Figure 4.3 shows a distribution 
of the annual count of pedestrian crashes compared to the total annual count of crashes in Texas. 
On average, pedestrian crashes represent 1.2% of the total crashes. Recent years show a significant 
increase in the number of both pedestrian and total crashes. For example, the total number of 
crashes in Texas increased 37% over 10 years, while pedestrian crashes increased 47% in the same 
period. The pedestrian severity level is divided into five categories: 

• Not injured 

• Possible injury 

• Non-incapacitating injury  

• Incapacitating injury 

• Killed 

Figure 4.4 shows the distribution of the data into pedestrian severity levels. Most crashes (69.1%) 
correspond to possible and non-incapacitating injuries; incapacitating injuries correspond to 
15.8%. Of the pedestrians involved in crashes, 90.9% survived, 7.7% were killed, and the injury 
status of the remaining 1.5% is unknown (that percentage is omitted in the modeling section). 

 
 

Figure 4.4 Pedestrian Injury Severity Distribution 
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After processing the dataset, invalid and extreme values are removed from the analysis. The data 
is divided into a training set, consisting of 80% of the sample, and a testing set (20% of the sample) 
to be used for the accuracy estimates. The models are estimated using R software and the “rpart” 
library (Therneau and Atkinson, 1997) for the recursive partition estimates. 

The decision trees are divided into four categories:  

• Highway design characteristics 

• Pedestrian and driver characteristics 

• Environmental, temporal, and locational conditions 

• Vehicle characteristics 

A final decision tree is developed using all the variables in the previous four categories to analyze 
their interaction. Table 4.1 describes the variables’ uses in each of the decision trees. 

Table 4.1 Variable Description 

Variable name Variable type Description 

Highway design characteristics 

Road_Type Categorical  Interstate, US state, farm to market, county road, 
non trafficway, city streets, others 

Speed (limit) Continuous Range: 10 to 80 mph 
Geometry Categorical  Curved, straight grade, straight & level 
Control Categorical  Traffic signal, traffic sign, other, no control 
Located Categorical  Intersection, roadway segment 

Pedestrian and driver characteristics 
Ped_Age Continuous  Range: 0 to 100 years 
Dr_Age Continuous  Range: 16 to 100 years 
Ped_Gender Categorical  Male, female 
Dr_Gender Categorical  Male, female 
Ped_Intoxicated Categorical  Intoxicated (equal to 1), non-intoxicated (0) 
Dr_Intoxicated Categorical  Intoxicated (equal to 1), non-intoxicated (0) 

Environmental, temporal, and locational conditions 
Time Categorical  Night, morning, afternoon 
Location Categorical  Median, off roadway, shoulder, on roadway 
Lighting Categorical  Dark lighted, dark not lighted, daylight 
Weather_Fog Categorical  Yes, no 
Weather_Rain Categorical  Yes, no 
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Variable name Variable type Description 

Vehicle characteristics 
Vehicle_Type Categorical  Car, SUV/CUV, pickup, van 
Curb_Weight Continuous  Range: 2000 to 8600 pounds 
Height Continuous  Range: 40 to 100 inches 
Model_Year Continuous  Range: 1980 to 2020 

4.1.2. Data and Method Description 
A decision tree was estimated for each category, and graphical descriptions are presented in 
Figures 4.5 to 4.9. The decision trees are color-coded based on the pedestrian injury level 
classification within each node. This classification was made based on the level with the highest 
amount of data within each node. The nodes show the distribution of the data across the different 
injury severity levels represented as four decimal numbers for (1) possible injury, (2) non-
incapacitating injury, (3) incapacitating injury, and (4) killed, respectively. They also show the 
percentage of data within the node as a single percentage number located at the bottom of the node. 
The splitting criteria are shown under the description of the node, and the decision is explained in 
the root node: the right node indicates that the data does not follow the splitting criteria (“no”), 
and the left node indicates that the data follows the criteria (“yes”). This logic continues until the 
terminal nodes are reached. 

In addition to the decision trees, Figure 4.10 shows the variable importance for each of the models. 
The variable importance is estimated by calculating the relative influence of each variable and how 
much the impurity was improved as a result of introducing it into the model. Finally, as a measure 
of goodness of fit, Table 4.2 shows the model accuracy estimate using the test dataset. 

The decision tree for highway design characteristics (Figure 4.5) shows that the speed and roadway 
type criteria are determinants in the classification of the injury severity levels. The variable 
importance indicates that these two features account for 98.3% of the importance metric. Similar 
results were obtained by (Rahman, M. and Kockelman, 2020) and presented in Chapter 3 for this 
project. The authors developed ordinal probit (OP) and heteroskedastic ordinal probit (HOP) 
models for pedestrian injury severity using the same dataset and found that more severe pedestrian 
injuries occur on roads with higher speed limits. Furthermore, the authors found that, compared to 
City Streets, the risk of severe pedestrian injury is higher if a crash takes place on interstates, US 
and state highways, or country roads.  

The decision tree allows for observation of the interaction between speed limits and other variables 
such as roadway type. For example, 11% of the crashes were located on city streets, county roads, 
non-trafficways, and other roadways (refer to Table 1) with speed limits between 48 and 58 mph. 
Among these crashes, 38% resulted in a pedestrian being killed. Similarly, 89% of the crashes 
happened in areas with speed limits lower than 48 mph. Among these, 40% of the crashes had non-
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incapacitating injuries. Furthermore, variables such as geometry (curved, straight grade, straight 
& level), and location (intersection, roadway segment) were not highly influential for the 
classification of the injury severity level. 

In terms of driver and pedestrian characteristics, pedestrian intoxication is the most relevant 
variable for the classification of injury severity levels. The variable importance metric ranks this 
variable at an importance level of 89.9%. Similar results were found by (Rahman and Kockelman, 
2020). However, the authors did not separate intoxication according to affected party (whether 
pedestrian and driver). Instead, they used a single variable for these characteristics. Their results 
showed that intoxication had the strongest effect on pedestrian injury severity. The decision tree 
(Figure 4.6) shows that 3% of the crashes involved intoxicated pedestrians, and 94% of those 
individuals were killed. The results suggest that young male and female pedestrians have less 
likelihood of suffering severe injury. The results do not indicate the effect of driver age; however, 
literature shows that, generally, older drivers tend to be more experienced and cause less severe 
injuries than young drivers.  

Variables representing environmental, temporal, and locational conditions are also used for the 
development of a decision tree. Results shown in Figure 4.7 indicate that an interaction between 
lighting conditions and time of day significantly affect the severity of the crashes. Specifically, 
61% of the pedestrian crashes occurred during daylight. Among those crashes, 42% were non-
incapacitating and 3% resulted in a fatality. In contrast, 39% of the crashes occurred in dark and 
not lighted conditions, where 34% were non-incapacitating and 16% were fatal crashes. The 
variable importance suggests that weather conditions (rain and fog) and crash location (median, 
off roadway, shoulder, on roadway) did not greatly influence the severity of the crashes.  

Vehicle characteristics such as model year, weight and dimensions, and vehicle body style also 
influence the pedestrian crash severity levels. Figure 4.8 shows that cars, SUVs, and vans have a 
lower severity than pickups. The resulting tree suggests that 11% of pickup crashes were fatal 
while only 8% of the crashes involving the other vehicle types were fatal. Newer vehicles (2006 
and later) represent 9% of fatalities while older vehicles represent 7% of fatalities. However, in all 
the cases, the percentages are similar, and further analysis is required to understand the true effect 
of the model year. The variable importance for the decision tree of vehicle characteristics shows 
that the variables have similar weight in defining the model. Vehicle model year and type have 
importance in a range of 34% to 35%. Compared to the other models, where only one or two 
variables defined the importance, the vehicle characteristics show a more uniform distribution of 
the variable importance. Also, this model uses less data than the other estimated models because 
it does not include trucks, motorcycles, and other special vehicles, as their dimension and weight 
information was not available. 

A final decision tree is modeled using all the variables described previously to understand the 
interaction across the different categories analyzed. The results of this model, shown in Figure 4.9, 
indicate that the most significant variable is pedestrian intoxication. Interestingly, this variable has 
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an importance of 60.8%, the highest among all the other variables included. The speed limit is also 
a relevant variable in determining the severity of the crashes. Crashes in locations with high-speed 
limits tend to be more severe, as expected. Other relevant variables include lighting conditions. As 
described previously, crashes in dark conditions cause more severe pedestrian injuries. Time of 
day, roadway type, and pedestrian age are also relevant for determining the severity of the crash. 

Figure 4.5 Decision Tree for Highway Design Characteristics 
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Figure 4.6 Decision Tree for Pedestrian and Driver Characteristics 
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Figure 4.7 Decision Tree for Environmental and Other Conditions 

 

Figure 4.8 Decision Tree for Vehicle Characteristics 
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Figure 4.9 Model with All Variables 
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(a) Highway design characteristics (b) Pedestrian and driver characteristics 

   
(c) Environmental, temporal and 

locational conditions 
(d) Vehicle characteristics 

 
(e) Model with all variables 

Figure 4.10 Variable Importance 

The model accuracy is estimated using the test dataset, representing a random sample of 20% of 
the total sample size. As shown in Table 4.2, results indicate a model accuracy between 38% and 
43% for all the decision trees. This accuracy level is expected in decision trees. Furthermore, as 
mentioned before, the main disadvantage of the decision tree is the lack of robustness in the results 
and the high variance. 
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Table 4.2 Model Accuracy 

Description Sample Size Decision Tree Accuracy 

Highway design characteristics 47,349 41.5% 
Pedestrian and driver 
characteristics 

47,163 41.6% 

Environmental and other 
conditions 

58,747 39.1% 

Vehicle characteristics 42,591 38.9% 
Model with all variables 33,079 43.2% 

4.1.3. Summary 
Five decision trees were developed to model different characteristics influencing pedestrian crash 
severity levels. The decision trees provide an interpretable and visual analysis of the main variables 
affecting the severity of the crashes. However, decision trees tend to have high variance and low 
accuracy. To address this limitation, the research team also calibrated and evaluated tree-based 
ML models, which can help reduce the variance and increase model accuracy significantly while 
taking advantage of the flexibility provided by the decision trees. The following section presents 
the results using different tree-based models. 

4.2. Tree-based Methods 
In this section, tree-based methods are applied and compared using pedestrian crash data. An 
extended version of this section can be found at: 

https://www.caee.utexas.edu/prof/kockelman/public_html/TRB22MLpedcrashes.pdf 

Tree-based models use a series of if-then rules to generate predictions from one or more decision 
trees. Various methods combining a set of tree models, i.e., ensemble methods, have attracted 
much attention and have been widely used for supervised learning tasks. These include random 
forests (Breiman, 2001; Liaw and Wiener, 2002), gradient boosting (Chen and Guestrin, 2016; Ke 
et al., 2017), and Bayesian additive regression trees (Chipman et al., 2012; He et al., 2018), each 
of which uses different techniques to fit a linear combination of trees. This section investigates the 
performance of different tree-based ML models in predicting pedestrian crash occurrence and 
injury severity in Texas. The following subsections briefly introduce the investigated tree-based 
models.  

4.2.1. Background 
Four different tree-based methods will be described in this section: random forest, extreme 
gradient boosting, efficient gradient boosting decision tree, and accelerated Bayesian additive 
regression trees. 

https://www.caee.utexas.edu/prof/kockelman/public_html/TRB22MLpedcrashes.pdf


84 

4.2.1.1. Random Forest (RF) 
An RF model comprises decision trees constructed by splitting each node using the best among a 
subset of predictors randomly chosen at that node with a different bootstrap sample of the data 
(Breiman, 2001). Running an RF algorithm can be described as follows (Liaw and Wiener, 2002): 
(1) draw 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 bootstrap samples from the original data; (2) for each bootstrap sample, grow an 
unpruned tree using the following procedure: at each node, randomly sample 𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡  of the 
predictors and choose the best split from among those variables; and, (3) predict new data by 
aggregating the prediction of the 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  trees, i.e., majority votes for classification, average for 
regression. With the two layers of randomness, i.e., random feature selection and 
bootstrap/bagging, RF is powerful at handling complex and non-linear relationships. RF can also 
be trained quickly since the trees do not rely on each other and thus can be trained in parallel. 
However, RF is known to be less accurate for regression problems as it tends to overfit. 

4.2.1.2. Extreme Gradient Boosting (XGBoost) 
XGBoost is a scalable ML system for gradient tree boosting, which gives state-of-the-art results 
on a wide range of problems (Chen and Guestrin, 2016). Boosting is an ensemble tree method that 
builds consecutive small trees with each tree focused on correcting the net error from the previous 
trees. For example, the first tree is split on the most predictive feature, and then the weights are 
updated to ensure that the subsequent tree splits on whichever feature allows it to correctly classify 
the data points that were misclassified in the initial tree. The next tree will then focus on correctly 
classifying errors from that tree, and so on. The final prediction is a weighted sum of all individual 
predictions. Gradient boosting is the most popular extension of boosting and uses the gradient 
descent algorithm for optimization. 

4.2.1.3. Efficient Gradient Boosting Decision Tree (LightGBM) 
LightGBM is another popular gradient boosting tree (GBT) model. Compared with XGBoost, 
LightGBM incorporates gradient-based one-side sampling (GOSS) to improve computational 
efficiency (Ke et al., 2017). The basic assumption behind GOSS is that those samples with larger 
gradients, i.e., under-trained instances, will contribute more to the information gain. Therefore, to 
retain the accuracy of information gain estimation, GOSS keeps all the instances with large 
gradients (e.g., larger than a pre-defined threshold or among the top percentiles) and only randomly 
drops those instances with small gradients. It was shown that LightGBM could lead to a more 
accurate gain estimation than uniformly random sampling, with the same target sampling rate, 
especially when the value of information gain has a large range. 

4.2.1.4. Accelerated Bayesian Additive Regression Trees (XBART) 
XBART is a variant of the Bayesian additive regression tree (BART) model with improved 
computational efficiency (He et al., 2018). Conceptually, BART is a Bayesian nonparametric 
approach that fits a parameter-rich model using a strongly influential prior distribution (Chipman 
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et al., 2012). BART is similar to GBT models, i.e., XGBoost and LightGBM, in that they all sum 
the contribution of sequential weak learners. However, BART weakens the individual trees using 
a prior, instead of multiplying each sequential tree by a small constant, i.e., the learning rate, as in 
GBT models. Additionally, BART performs the iterative fitting by using the back-fitting Monte 
Carlo Markov Chain (MCMC) algorithm rather than using gradient descent algorithms. The 
Bayesian perspective yields a number of practical advantages of BART, including the robustness 
to hyperparameter settings, more accurate predictions, and the inherent Bayesian measure of 
uncertainties. On the other side, the incorporation of the MCMC algorithm also imposes severe 
computational demands, especially in the application of high-dimensional large datasets. XBART 
improves the computational efficiency by adopting the novel stochastic hill-climbing algorithms, 
which follow the Gibbs update framework in BART but replace the Metropolis-Hasting updates 
of each tree with a novel grown-from-root back-fitting strategy (He et al., 2018). XBART is shown 
to yield very similar results to BART, but with much higher computational efficiency (He et al., 
2018). 

4.2.2. Model Fit Evaluation 
Several metrics are used to evaluate and compare the performance of the models described above. 
The choice of evaluation metrics differs in crash occurrence and severity prediction models 
because crash occurrence models are regression models where the response variable is the total or 
fatal pedestrian crash occurrence, while crash severity models are classification models where the 
response variable is the severity of the crash as represented by categorical values. The following 
two sections discuss model evaluation metrics for crash occurrence and severity prediction models, 
respectively. 

4.2.2.1. Crash Occurrence Prediction Model 
The crash occurrence prediction models are formulated as regression problems, where the 
independent variables are the characteristics of roadway segments, and the response variable is the 
total or crash pedestrian crash occurrence on that roadway segment. R-square and root mean square 
error (RMSE) are adopted in this project as evaluation metrics for regression models. R-square 
represents the proportion of variance in the response variable that has been explained by the 
independent variables in the model. It provides an indication of goodness of fit and therefore a 
measure of how well unseen samples are likely to be predicted by the model, through the 
proportion of explained variance. The RMSE is a measure of how spread out these residuals are. 
It evaluates how concentrated the model-predicted response values are around the true response 
values. Lower RMSE scores indicate better model performance. 

4.2.2.2. Crash Severity Prediction Model 
The output of classification models can be class labels or the probability for the class membership. 
The discrete outputs of class labels form a confusion matrix, on which accuracy, precision, recall, 
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and F1 score are constructed (Tharwat, 2018). Accuracy is measured as the percentage of time for 
which the predicted labels for samples exactly match the corresponding true labels. Accuracy 
sometimes is sensitive to imbalanced dataset. Therefore, the geometric mean (GM) is also used as 
an evaluation metric. The precision measures the proportion of positive identifications that are 
actually correct, while the recall measures the proportion of actual positives identified correctly. 
The F1 score is a function of precision and recall, typically used in unbalanced samples (a large 
number of actual negatives) and seeks to provide a balance between precision and recall.  

The area under the curve (AUC)—specifically under the Receiver Operating Characteristic (ROC) 
curve—is a widely used measure of performance of classification (Hand and Till, 2001). The ROC 
is a two-dimensional graph that plots the false positive rate (FPR) on the x-axis and the true 
positive rate (TPR) on the y-axis according to the discrete classification outputs. The continuous 
probability output can be discretized with a threshold to plot ROC. The value of AUC is between 
0.0 and 1, and a higher AUC suggests better classification. AUC is equivalent to the probability 
that a classifier ranks a randomly chosen positive sample higher than a randomly chosen negative 
sample (Fawcett, 2006). The margin of a classifier was proposed by (Breiman, 2001). It measures 
the extent to which the classifier votes an instance to the correct class rather than to an incorrect 
class. The margin is in [0,1], and the larger the margin is, the more confidence there is in the 
classification. 

4.2.3. Hyperparameter Tuning 
The aim of hyperparameter optimization is to find the hyperparameters of a given ML algorithm 
that return the best performance as measured by the specified evaluation metric. The optimization 
of hyperparameters (𝜃𝜃) can be represented in equation form as: 

𝜃𝜃∗  =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝜃𝜃∈𝛩𝛩𝑓𝑓(ℳ,𝜃𝜃)                                                                            (1) 

where, ℳ is the ML model; f(x) represents an objective function to minimize, such as RMSE for 
regression models or F1 score for classification models, evaluated on the validation set; 𝜃𝜃∗ is the 
set of hyperparameters that yields the lowest value of the score; and 𝜃𝜃 can take on any value in the 
domain Θ . Bayesian hyperparameter optimization methods build a probability model of the 
objective function, i.e., 𝑃𝑃(𝑓𝑓(ℳ,𝜃𝜃)|𝜃𝜃), by tracking the past evaluation results and using them to 
select the most promising hyperparameters to evaluate in the true objective function (Klein et al., 
2017). Specifically, the process of Bayesian hyperparameter tuning can be described as follows: 
(1) build a surrogate probability model of the objective function; (2) find the hyperparameters that 
perform best on the surrogate; (3) apply these hyperparameters to the true objective function; (4) 
update the surrogate model incorporating the new results; and (5) repeat steps 2–4 until the 
maximum number of iterations or specified time is reached. 
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4.2.4. Sensitivity Analysis 
ML models excel at capturing complex relationships between input independent and output 
response variables. However, they can be less intuitive in explaining how and why such 
relationships are captured. Several sensitivity analysis methods were developed to mitigate the 
interpretability deficiency, aiming to unveil the cause-and-effect relationship between the input 
and output variables. Sensitivity analysis is a simple yet powerful way to understand an ML model 
by examining what impact each feature has on the model’s prediction. The feature value was 
changed to calculate feature sensitivity, while all the other features stay constant, and the output 
of the model was recorded. If the model’s outcome has been altered drastically by changing the 
feature value, it means that this feature significantly impacts the prediction. 

Specifically, given a test set 𝑋𝑋 , the process of evaluating the sensitivity of feature 𝑋𝑋𝑖𝑖  can be 
described as follows: (1) train the baseline model on X and denote the prediction vector as 𝑦𝑦; (2) 
create a new set 𝑋𝑋∗ where a transformation was applied, such as reshuffling or dropping, over 
feature 𝑋𝑋𝑖𝑖; (3) perform prediction on 𝑋𝑋∗ and denote the prediction vector as 𝑦𝑦∗; (4) measure the 

change in the outcome using the percentage change in the prediction mean, i.e., 𝑦𝑦
∗����−𝑦𝑦�
𝑦𝑦�

× 100%. In 

pedestrian crash occurrence prediction, the transformation is defined as in Li and Kockelman 
(2020): an increase of one standard deviation for continuous input variables and binary (0 to 1) 
change for binary input variables. Specifically, for each input variable, one standard deviation or 
binary change is applied to each data point. The modified variables are passed to the model to 
calculate the prediction, i.e., permuted prediction. Then, the difference between the mean of 
original prediction and permuted prediction is calculated to represent the contribution of that 
feature. In injury severity prediction, the probability of each class was obtained for every single 
data point. The same imputation and computation approach was used to analyze the marginal 
effects, as in pedestrian crash occurrence prediction, except that each class’s probability is used 
instead of class values. 

4.3. Results 
Results of pedestrian crash occurrence and severity prediction models are discussed in this section. 

4.3.1. Pedestrian Crash Occurrence Prediction 
Four tree-based ensemble ML models were developed to predict pedestrian crash occurrence: RF, 
XGBoost, LightGBM, and XBART. For each model configuration, two models were trained—one 
for total pedestrian crashes and another for fatal pedestrian crashes. The optimal hyperparameters 
for each model were obtained using Bayesian optimization. 
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4.3.1.1. Model Performance Evaluation 
Table 4.3 summarizes the model performance measured by R-square and RMSE on the testing set 
to predict total and fatal pedestrian crash occurrence. For the total pedestrian crash occurrence 
prediction model, LightGBM achieves the best performance in terms of both R-square and RMSE, 
while RF yields the best performance for fatalities. For fatalities, R-square values are lower than 
the values for the total pedestrian crashes, which can be related to the significantly low number of 
fatal pedestrian crashes. The computation times, including training and testing after the optimal 
hyperparameters are also obtained. LightGBM is the most computationally efficient model due to 
the efficient GOSS optimization algorithm. XBART is the most computationally expensive model, 
which can be explained by the expensive MCMC connection between the trees. 

Table 4.3 Comparison of Model Performance and Computation Time 

Model 
Total pedestrian crash occurrence Fatal pedestrian crash occurrence 
R-square RMSE Time [s] R-square RMSE Time [s] 

RF 0.359 0.242 216 0.148 0.008 278 
XGBoost 0.318 0.258 126 0.070 0.009 133 
LightGBM 0.363 0.241 43 0.133 0.009 25 
XBART 0.351 0.245 354 -0.001 0.010 5110 

4.3.1.2. Feature Sensitivity Analysis 
The practical importance of input variables can be estimated using the proposed sensitivity analysis 
approach. The value of continuous features is increased by one standard deviation, and binary 
changes are made on binary features for each data point in the dataset. Then the percentage change 
in the mean of the model prediction is estimated. The estimated feature importance for total and 
fatal pedestrian crash occurrence are shown in Figure 4.10. The y-axis shows the name of the input 
variables. The x-axis represents the percentage change in the mean of model prediction, i.e., total 
or fatal pedestrian crash occurrence, after applying the proposed transformation on the 
corresponding input features. Different colors represent different ML models: blue for RF, orange 
for LightGBM, green for XGBoost, and red for XBART. 

As shown in Figure 4.11, the VMT figure has the most significant impact on total and fatal 
pedestrian crash occurrence. One standard deviation increase on VMT can lead to around a 270% 
and more than 300% increase in the total number and number of fatal pedestrian crash occurrences 
per roadway segment, respectively. However, one standard deviation increase of VMT (7,319) on 
all roadway segments is not practical, considering the capacity limit of segments. Therefore, the 
process was repeated considering a double VMT on each segment. The results indicate that the 
total and fatal pedestrian occurrence will increase by 50%, which is still a significant impact. These 
results, consistent with literature findings (Nashad et al., 2016), represent the higher crash risk 
faced by pedestrians with increasing VMT, which is consistent with the expectation that crash 
frequencies increase with the increase in pedestrian exposure to motorized vehicles. 
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(a) Total pedestrian crash occurrence prediction 

 
(b) Fatal pedestrian crash count prediction 

Figure 4.11 Sensitivity Analysis for Crash Occurrence Predictions 
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The number of transit stops within a buffer of 100 meters is a relevant variable in predicting total 
and fatal pedestrian crashes in roadway segments, according to the results of the LightGBM and 
XBART models. This variable is an indirect measure of pedestrian exposure as pedestrian activity 
surrounding transit stops is high. Similarly, variables for the distance to nearest school and distance 
to nearest hospital offer a practical significance. The number of pedestrian crashes increases in 
areas near schools and decreases as distance from schools increases, consistent with literature 
findings (Warsh et al., 2009). Interestingly, the hospital proximity is particularly significant for 
fatal crashes, where the frequency increases as the distance to the hospital increases, possibly 
related to the response time of emergency services. Although relevant, these variables are rarely 
considered in pedestrian safety literature (Rahman, M. and Kockelman, 2020). 

Highway design variables such as on-system roads (or state-maintained arterials), number of lanes, 
curve angle, curvature indicator, and curvature length have a significant positive impact on 
pedestrian crash frequencies. One standard deviation increment on the number of lanes can lead to 
more than a 25% increment in total or fatal crash counts. On-system roads are found to be strongly 
correlated to the number of total crashes. The speed limit is found to be negatively correlated to 
the number of crashes. This can be related to the reduced exposure of pedestrians to high-speed 
roadway segments. However, high speed limits lead to more severe injuries, as discussed in the 
following section. Variables such as median and shoulder widths show diverse variations across 
the different models, limiting the conclusions for these variables. 

Land use characteristics are described by variables such as population, job density, and types of 
urban areas. These metrics are directly related to pedestrian exposure. For example, dense urban 
areas with high job density usually have higher traffic volumes and pedestrian activity. Changes 
in one standard deviation led to a positive, significant increment in pedestrian crash frequencies, 
as expected. The number of pedestrian occurrences increases by approximately 50% for total 
counts and 30% for fatal counts when the population and job density are increased by one standard 
deviation. Large urbanized, urbanized, and small urban locations have more conservative 
increments of 10% for the total pedestrian crashes. However, for the fatal count model, the effect 
differs significantly across models, possibly related to the low count number within the different 
categories. 

The four different models come to a similar conclusion about the significance of some features, 
such as distance to the nearest school, job density, population density, and VMT. However, the 
results diverge on other features, such as the number of transit stops within a 100-meter buffer. 
XBART and LightGBM consider the number of transit stops a very important feature in predicting 
the total pedestrian crash occurrence. One standard deviation increases on the transit stop variable 
can lead to an increase of 150% and 300% of total pedestrian crash occurrence, respectively. 
However, results from LightGBM and XGBoost show that the number of transits stops has little 
impact on the total pedestrian crash occurrence. This observation indicates that different ML 
models interpret the significance of the input features differently. It might make more sense to 
look only at the model that yields the best performance, i.e., prediction accuracy. Noticeably, the 
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discrepancies in the results from different models are even more obvious in fatal pedestrian 
occurrence prediction as compared with total pedestrian occurrence. This again stresses the 
importance of choosing the best performing model when comparing the evaluation metrics and 
then analyzing the feature importance using the chosen optimal model. 

4.3.2. Pedestrian Crash Injury Severity Prediction 
To estimate the crash injury severity models, first, the complete dataset was randomly split into 
training and testing datasets to predict crash injury severity. Then, four models (RF, XGBoost, 
LightGBM, and XBART) were fitted on the training dataset and tested on the testing dataset. 
Before model fitting, parameters for each model were tuned with the Bayesian optimization 
method to obtain optimal parameters. The simulation was repeated ten times. 

4.3.2.1. Model Performance Evaluation 
Table 4.4 summarizes model performance on model running time, accuracy, precision, recall, F1 
score, and GM. In general, RF, XGBoost, and LightGBM behave similarly in terms of these 
classification metrics, but LightGBM runs much faster than the other two GBT models. Even with 
higher precision, XBART shows lower recall and F1 and it is heavily time-consuming.  

Table 4.4 Summary of Model Performance on Injury Severity Prediction 

Models Time(s) Accuracy Precision Recall F1 score GM 
RF 36.55 0.42 0.49 0.33 0.34 0.53 
XGBoost 75.17 0.42 0.43 0.33 0.34 0.53 
LightGBM 18.59 0.42 0.45 0.34 0.34 0.53 
XBART 1447.56 0.42 0.53 0.31 0.32 0.51 

 

The crash injury data is imbalanced with 7%, 33%, 36%, 17%, and 7% of class 0 (not injured), 1 
(possibly injury), 2 (non-incapacitating), 3 (incapacitating) and 4 (killed), respectively. The GM 
metric is less sensitive to an imbalanced dataset (Tharwat, 2018). Results show that RF, XGBoost, 
and LightGBM achieve the same GM value of 0.53, which is higher than XBART with a 0.51. 
This indicates that XBART may be more sensitive to imbalanced data. 

The model margins show the confidence of a classifier making a correct classification. A positive 
margin value means the classifier voted for the right classification (Breiman, 2001), and a negative 
margin value indicates the classifier voted incorrectly. Figure 4.12 shows ten-time repeated results 
plotted in a bar graph; model margins are affected by the injury class. For example, all four models 
achieve higher margins on class 2 and class 4 (around 0.2), while the margin values for class 0 and 
class 3 are negative (-0.4 and -0.6), indicating a high discrepancy between true class and predicted 
class. This discrepancy is not necessarily related to data imbalance as class 3 makes up a greater 
proportion of the data than class 4, which has a higher margin. Also, XBART shows a much greater 
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capacity for correctly classifying class 2, while for other classes XBART is limited to a weak 
classification capacity.  

 

Figure 4.12 Margins of Classification Models on Different Classes 

The ROC curve is one of the most important metrics to visualize the performance of multiclass 
classification models. It quantifies the extent to which the model is able to distinguish between 
classes (Narkhede, 2018). The AUC is the quantitative measure of ROC. The point (0,1) in the 
ROC curve represents the prefect classifier, meaning no false-positive error happens (Fawcett, 
2006). The ROC curve of one simulated result is presented in Figure 4.13 to analyze how those 
models behave in the different classes. Based on the results, RF, XGBoost, and LightGBM are 
capable of classifying on class 4 while achieving an AUC around 0.9. However, XBART shows 
less ability to vote for the right classification on class 4 (AUC = 0.72). For other injury classes, 
RF, XGBoost, and LightGBM obtain an AUC value ranging from 0.59 to 0.67, which exceeds that 
of XBART. 
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a) RF b) XGBoost 

  
c) LightGBM d) XBART 

Figure 4.13 ROC Curve of Different Classification Models 

4.3.2.2. Marginal Effects 
The marginal effects of each variable are analyzed by data imputation to identify the most 
important factors that contribute to fatal pedestrian injury. First, the data is randomly split for 
training and testing data. Then, the hyperparameters are optimized on the training data, and models 
are trained on training data with optimal hyperparameters. Finally, the model is used for prediction 
on the testing dataset before and after one variable is imputed, and the probability difference 
between two times of prediction is defined as the marginal effect for that imputed variable. This 
process is repeated ten times, and the results are summarized in Figure 4.14. 

The variables are classified into ten categories. In terms of driver and pedestrian characteristics, 
driver age seems to have both positive and negative marginal effects. This can be related to the 
impact of driver age observed in some literature, with the involvement of younger drivers 
increasing the risk of high severity as compared to the presence of middle-aged drivers (Kim et 
al., 2010; Pour-Rouholamin and Zhou, 2016). One study found that drivers aged 65 and older also 
increase the risk for pedestrian injury severity (Mohamed et al., 2013). However, some researchers 
have found that this is not always the case, as older drivers may also be more experienced (Wood 
et al., 2014). Furthermore, a high value for pedestrian age has a high likelihood of increasing injury 
severity, which might be due to the greater physical vulnerability of older people. 
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Several human violation variables were tested to analyze the effect of pedestrian and driver 
intoxication. Figure 4.14b shows that the intoxicated pedestrian variable is the most important 
factor that contributes to fatal pedestrian injury among those variables. The probability of a 
pedestrian fatality shows significant positive changes after data imputation, indicating that 
pedestrian intoxication greatly increases the risks of pedestrian death in a crash. When pedestrian 
intoxication is imputed, the probability of pedestrian death increases by 15% on average in RF, 
XGBoost, and LightGBM models, and XBART shows a probability change as great as 30%. 
Driver intoxication also leads to an increase in pedestrian death probability change. Intoxication is 
more likely to cause pedestrian fatality in a crash, and this result is also supported by the CRIS 
dataset, where intoxication is involved in 38% of fatal crashes. The simulation result is consistent 
with the previous report that intoxication has the strongest effect on pedestrian death (Rahman, M. 
and Kockelman, 2020). Hit-and-run accidents are also related to a high pedestrian severity level. 
In the CRIS data, 19% of the pedestrian deaths are hit-and-run cases, highlighting the relevance of 
this variable. The high severity is largely due to the time delay incurred when the driver leaves the 
crash location, which delays emergency services and prompt attention to the pedestrian. 

Speed limit contributes significantly to the probability of pedestrian death, and the marginal effect 
ranges from 2% to 6% among these classification models. As expected, roads with higher speed 
limits led to higher pedestrian injuries, consistent with previous studies (Chen and Fan, 2019). 
However, crash frequency is reduced as speed limit increases, as found in the analysis of the 
previous section. Approximately 21% of the crashes were located at intersections. The results 
indicate that those crashes have a lesser risk of pedestrian fatalities than mid-segment crashes, 
likely due to reduced speed at these locations. Traffic control, including traffic signs and traffic 
signals, can help to reduce the probability of a crash and thus pedestrian death. Results suggest 
that traffic control is predicted to reduce pedestrian death probability on average by 3% in 
LightGBM, 2% in XGBoost, 1% in XBART, and 0.5% in RF. Also, data imputation on traffic 
signals decreases the pedestrian death probability by as much as 2% on average in LightGBM. 

Roadway functional classification is also an important factor. Different road types (such as country 
roads, city streets, and interstate roads) also play distinct roles in fatal pedestrian injury. For 
example, city streets and non-trafficways help reduce the marginal effect in RF, XGBoost, and 
LightGBM models, while the interstate seems to increase the marginal impact on all models. In 
Texas, interstate highways account for 6% of pedestrian crashes but 21% of pedestrian fatalities. 
This outcome is likely related to the speed of the crash. As analyzed previously, high-speed 
roadway segments tend to have fewer pedestrian crashes, but the severity is higher due to the speed 
of impact. The crash location analysis seems to indicate that crashes occurring on the roadway 
shoulder have a higher risk of causing pedestrian fatalities compared to crashes on the roadway 
and in the median area. 

The area type is also an important factor for injury severity. The results suggest that rural and small 
urban areas present a higher risk for pedestrian fatalities. Factors such as distance to hospitals and 
speed limits can influence this finding. Rural and small urban areas tend to be less dense, and the 
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emergency response time is higher than in urban areas. However, results from the previous section 
indicate that pedestrian activity is lower in these areas compared to large urban areas.  

In terms of vehicle types, research in the field indicates that high injury severity is associated with 
light-duty vehicles, such as SUV/CUV, pickup trucks, and vans, due to the heavy mass involved 
in the collision (Anarkooli et al., 2017; Liu et al., 2019; Pour-Rouholamin and Zhou, 2016; 
Rahman, M. and Kockelman, 2020). However, this study shows that trucks involved in a crash are 
more likely to cause the death of pedestrians, but the effects of vans and SUV/CUVs are not 
significant. Busses also have a significant effect, but it is important to mention that the number of 
crashes involving buses is low compared to other vehicle body types.  

Environmental factors such as crash time and lighting condition strongly affect the pedestrian 
injury severity (Aziz et al., 2013; Pour-Rouholamin and Zhou, 2016). The time of day is found to 
influence its marginal effect. Specifically, the period after 8 PM and before 7 AM (under dark 
conditions) has a positive effect on pedestrian deaths. Approximately 80% of pedestrian deaths 
occurred at this time. In contrast, in the daytime, the probability of pedestrian death is reduced in 
all models. Similarly, the brighter daytime conditions significantly help to lower the likelihood of 
pedestrian death in all models, but not the other light types. This finding highlights the importance 
of streetlight improvements to reduce pedestrian crashes. 

  
a) Demographic characteristics b) Human violations 

  
c) Roadway characteristics d) Traffic control 
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e) Roadway functional 

classification 
f) Crash location 

  
g) Area type h) Vehicle type 

  
i) Time of the day j) Lighting conditions 

Figure 4.14 Parallel Coordinate Plots of Marginal Effects for Fatal Crashes 

4.3.3. Summary 
In addition to the decision tree analysis, tree-based ML methods were applied to provide robust 
analysis and improve the accuracy of the estimates. Tree-based ML models are popular methods 
for making predictions. Ensemble tree models implementing bagging or boosting approaches 
usually outperform traditional, statistically based prediction models due to the informative and 
deliverable prediction. Methods such as RF, gradient boosting (Light GBM and XGBoost), and 
BART were applied and compared. This modeling included pedestrian severity classification and 
pedestrian crash counts (total counts and fatal counts). The pedestrian severity models developed 
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using tree-based models offered an improvement in the precision metric, with values ranging 
between 43% and 53%. 

4.4. Conclusions 
This chapter develops decision trees to classify pedestrian crash severity using a recursive partition 
algorithm. Furthermore, different tree-based models are developed to describe pedestrian crash 
counts and severity levels. Although the two approaches yield similar findings, decision trees 
provide intuitive and easy-to-explain results while tree-based models attain greater accuracy. The 
graphical representation of the decision tree models facilitates understanding. However, decision 
trees present a low accuracy and high variance. Tree-based models using ML algorithms provide 
more robust results. But, due to the lack of transparency, these methods are more difficult to 
interpret. 

The main results suggest that pedestrian characteristics and highway design characteristics are the 
most significant variables influencing pedestrian crash severity. The most relevant variable to 
determine severity levels was pedestrian intoxication, with almost all the crashes involving an 
intoxicated pedestrian resulting in fatalities (although these represent only 3% of the sample). In 
terms of highway design, the speed limit significantly influenced the crash severity, with findings 
indicating that high-speed roadways increase the risk of pedestrian fatalities. Results also indicate 
that pedestrian crash frequencies are lower in these locations. Lighting conditions were also 
relevant, with more fatal crashes occurring in dark conditions. Other factors such as vehicle type, 
crash location, and traffic control type were also analyzed in the models. In terms of pedestrian 
crash counts, VMT was the most significant variable correlated to pedestrian crash frequencies. 
Other factors, such as the number of transit stops, the distance to the nearest school, and the 
distance to the nearest hospital, offer practical significance; more crashes occur near transit stops 
and schools. Results also indicate that highway design variables such as on-system roads (or state-
maintained arterials), number of lanes, curve angle, curvature indicator, and curvature length have 
a significant positive impact on pedestrian crash frequencies. 

This study also showed a comparison across the tree-based models analyzed. In the pedestrian 
crash occurrence prediction, the principal results showed that all four models perform similarly, 
with close root mean square error (RMSE) and R-square for total crash occurrence. Still, 
LightGBM exceeds the other three models in terms of computational efficiency. For fatal crash 
occurrence, LightGBM and RF have comparable performance. However, XGBoost and XBART 
showed significantly lower goodness of fit values. Also, XBART is more sensitive to imbalanced 
data than are the other models. In the injury severity prediction, RF, XGBoost, and LightGBM 
achieved similar goodness of fit performance, evaluated by the metrics’ accuracy, precision, recall, 
F1, and geometric mean. XBART obtained a higher precision value, but the other metrics were 
lower, with a significantly high computational time. 
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Findings from this study underscore the importance of campaigns against driving and walking 
while intoxicated, installation of streetlights in pedestrian-active areas, improved roadway design, 
and enforcement of safety countermeasures in areas where pedestrians are more vulnerable (such 
as near bus stops and schools). It also highlights the importance of detailed police reports to 
develop analyses of this type that can be used to improve pedestrian safety. 
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Chapter 5. Evaluate Value and Cost-Effectiveness of 
Treatments 

This chapter provides an overview of the benefit-cost ratios (BCRs) of certain suggested treatments 
as applied to corridors and intersections throughout Texas. Since pedestrian crashes have been 
increasing in the state over the last 10 years (TxDOT, 2021), it is important to understand, at a 
micro level, where these crashes are occurring, and which specific corridors are experiencing 
disproportionate rates of pedestrian crashes and fatalities.  

Using a novel clustering methodology, this chapter describes several of the highest-crash 
segments and intersections in the state, along with benefit-cost calculation methods. This 
chapter is arranged as follows: an overview of cost and benefit calculation models, along with 
definitions of terms used throughout this chapter. An overview of the corridor ranking 
and creation methodology is provided next, which creates a list of ranked corridors by total 
comprehensive costs for pedestrian crashes and fatalities. A comprehensive breakdown of 
estimated costs and crash modification factor (CMF) estimates follows. Lastly, the research team 
presents an overview of the 10 highest-crash corridors as provided by the clustering model, with 
BCRs for selected treatments.  

5.1. Segment Ranking and Creation Methodology 
To perform an effective BCR analysis, the research team needed to generate a corridor-based 
representation of the worst segments and intersections. The solution was to create groupings of 
combinations of intersections and 0.1-mile segments along individual high-ranking roadways, 
using the KABCO scores. This score was developed by the National Safety Council (NSC) and is 
frequently used by law enforcement for classifying injuries: K – Fatal, A – Incapacitating injury, 
B – Non-incapacitating injury, C – Possible injury, and O – No injury. (See Section 1.3.3 for an 
introduction). 

5.1.1. Dataset Preparation 
To prepare for building up representative corridors, the entire 2018 version of the TxDOT 
Roadway Inventory was resampled at 0.1-mile increments, producing about 3.4 million segments 
available for analysis. This resampling is available online (Perrine and Zuniga-Garcia, 2021). 
Along with this, crash records from the Texas Crash Records Inventory System (CRIS) were 
matched with each 0.1-mile incremental segment according to these criteria: 

• The crash record has geographic coordinates. (About 83% of all crash records satisfy this
criterion.)
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• The record is not marked to have occurred at an intersection. (About 72% of all records
meet this criterion.)

• The record is classified as a pedestrian-related crash. (About 1.4% of all crash records are
determined to be predominantly pedestrian-related as explained in Section 2.3.)

• The record’s geographic coordinates sit within 329 feet (100 meters) of a TxDOT Roadway
Inventory segment.

• Once a crash is matched with the nearest segment, it is not eligible to be matched to any
other segments.

The end result was that 41,131 crash records (0.7% of all of CRIS within the 2010–2019 analysis 
period) were matched to roadway segments for the purpose of finding and ranking crash-prone 
corridors for BCR analysis. 

In a related effort, intersections were derived from OpenStreetMap and matched to corresponding 
locations within the TxDOT Roadway Inventory; a dataset is available online (Perrine and Zuniga-
Garcia, 2021). (The TxDOT Roadway Inventory on its own does not explicitly represent 
intersections.) Similar to the process used on segments, CRIS crash records were matched to these 
intersections according to these criteria: 

• The crash record has geographic coordinates, is marked to occur at an intersection, and is
classified as a pedestrian-related crash.

• The record’s geographic coordinates sit within 329 feet (100 meters) of a derived
OpenStreetMap intersection.

• Once a crash is matched with the nearest intersection, it is not eligible to be matched to any
other intersection.

This produced 16,502 crash records available for the purpose of finding and raking crash-prone 
corridors. 

5.1.2. Finding Corridors 
These 0.1-mile segments, OpenStreetMap-derived intersections, and selected crash records were 
then used as inputs to generate analysis corridors. The algorithm for performing this followed a 
“greedy” pattern of picking up the worst intersections first and building off of them: 

• Pick the next worst intersection in terms of the number of pedestrian-related crashes that
are matched with it.

• For each cross street, “walk” down each direction of eligible 0.1-mile segments from the
starting intersection until:
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ο 3 successive segments and intersections that coincide with them each have fewer than 5 
pedestrian-related crashes, or 

ο The end of the street is reached. 

• Record all segments and intersections traversed as a new corridor. Include the cumulative
KABCO score for all of the pedestrian crashes therein and make those segments ineligible
for inclusion in future corridors.

• Loop again until no more intersection/cross street combinations remain.

• Rank all the corridors according to decreasing KABCO score.

At the completion of this algorithm, 7,945 corridors were discovered. However, corridors beyond 
the 500 highest scoring are considered insignificant for this study, as most are composed of a small 
handful of intersections. In looking at just the top 100, 1,274 intersections and 1,116 0.1-mile 
segments comprise the 100 corridors, encompassing 4,295 crash records. 

Figure 5.1 Corridors Among the Texas “top 100” That Exist within the Central Austin Area 

5.2. Crash Count Estimation Model 
CRIS contains records from police crash reports across Texas’ 254 counties and 268,597 square 
miles (Texas Department of Transportation, 2020). Crash variables include time and location, 
persons and vehicles involved, injury severities, and road conditions. Many crashes are never 
reported to police or are not flagged for CRIS inclusion. These are typically property-damage-only 
or no-injury crashes, but drivers and pedestrians will leave the scene for other reasons as well. And 

Texas
top 100
ranking

Corridor “seed”

Member intersection
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police who deem a reported crash to be worth less than the $1,000 minimum crash cost threshold 
(for recording purposes) often do not record the crash formally. 

5.2.1. Negative Binomial Count Model 
A negative binomial (NB) count model was used for pedestrian crash counts. The expected number 
of pedestrian crash counts 𝐸𝐸(𝑌𝑌𝑖𝑖) along the ith intersection or mid-block segment is expressed as 
follows: 

E(𝑌𝑌𝑖𝑖)  = exp(𝛽𝛽0 +  ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖) (1) 

where 𝛽𝛽𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ covariate, 𝜀𝜀𝑖𝑖  is a random error term that follows a Gamma distribution 
𝜀𝜀𝑖𝑖~Gamma(𝛾𝛾, 𝛾𝛾), 𝑌𝑌𝑖𝑖 represents the average daily e-scooter trip count with mean E(𝑌𝑌𝑖𝑖) = 𝜇𝜇𝑖𝑖 and 
variance Var(𝑌𝑌𝑖𝑖) = 𝜇𝜇𝑖𝑖 + 𝜌𝜌𝜇𝜇𝑖𝑖2, and 𝜌𝜌 is the dispersion parameter (𝜌𝜌 = 0 for a Poisson model). 

5.2.2. Model Results 
The results from the NB model are summarized in Table 5.1 (Texas) and Table 5.2 (Austin). The 
dispersion parameter (𝜌𝜌) of the two models is greater than one, indicating that the data is over-
dispersed, and an NB model is preferred over a Poisson model. 

The Texas model (Table 5.1) shows a positive correlation between the walk-miles traveled (WMT) 
and the number of pedestrian crashes across intersections and mid-block-segment models, likely 
due to increased exposure levels. However, previous research also found that the relationship 
between crash exposure and crash rates is non-linear. It has rates falling off dramatically as walk 
levels rise, presumably due to drivers expecting more pedestrians in high-WMT zones and safer 
pedestrian environments that encourage walking (Wang and Kockelman, 2013).   
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Table 5.1 Estimation Results of NB for Pedestrian Crashes, Texas 
Intersections Mid-block Segments 

Coeff. Std. 
Error P-value Coeff. Std.

Error P-value

(Intercept) -8.694 0.216 0.000 -8.035 0.098 0.000 
WMT per pop dens. (log) 0.335 0.013 0.000 0.305 0.007 0.000 
Signalized intersection 
(ind.) 1.426 0.032 0.000 

Number of approaches 0.398 0.019 0.000 
Intersections crossed 0.093 0.002 0.000 
DVM (log) [major] 0.195 0.008 0.000 0.522 0.006 0.000 
Speed limit (mph) [major] -0.020 0.002 0.000 -0.013 0.001 0.000 
Number of lanes [major] 0.132 0.012 0.000 0.217 0.010 0.000 
Lane width (ft) [major] 0.033 0.004 0.000 0.041 0.003 0.000 
Median width (ft) [major] -0.006 0.001 0.000 -0.014 0.001 0.000 
One-way road (ind.) 
[major] 0.095 0.052 0.068 -0.906 0.048 0.000 

DVM (log) [minor] 0.136 0.008 0.000 
Speed limit (mph) [minor] -0.021 0.002 0.000 
Number of lanes [minor] -0.004 0.018 0.842 
Lane width (ft) [minor] 0.040 0.005 0.000 
Median width (ft) [minor] -0.027 0.005 0.000 
One-way road (ind.) 
[minor] -0.211 0.063 0.000 

AADT per lane [major] 1.76E-
05 

4.53E-
06 0.000 -7.67E-

05 
4.19E-

06 0.000 

Truck percentage [major] 0.020 0.003 0.000 0.003 0.002 0.100 
Arterial (ind.) [major] 0.444 0.037 0.000 0.198 0.028 0.000 
On system roadway (ind.) -0.230 0.036 0.000 0.209 0.028 0.000 
Rural (ind.) -0.107 0.087 0.218 -0.339 0.041 0.000 
Small urban (ind.) -0.108 0.055 0.050 0.049 0.034 0.154 
Large urbanized (ind.) 0.171 0.037 0.000 0.170 0.025 0.000 
Distance to nearest 
hospital (mi) -0.023 0.006 0.000 -0.009 0.003 0.002 

Transit stops (ind.) 0.525 0.047 0.000 0.526 0.033 0.000 
Number of stops 0.042 0.008 0.000 0.049 0.004 0.000 
City of Austin (ind.) 0.327 0.047 0.000 -0.392 0.042 0.000 

No. of observations 699,954 574,910 
Dispersion Parameter 
(ρ): 0.393 0.575 

McFadden's R2: 0.483 0.543 

Likelihood ratio test (χ2) 32,515 62,980 
Prob > χ2 0.000 0.000 

2 x log-likelihood -86,105 -
161,539 
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Table 5.2 Estimation Results of NB for Pedestrian Crashes, City of Austin 
Intersections Mid-block Segments 

Coeff. Std. 
Error P-value Coeff. Std.

Error P-value

(Intercept) 0.360 0.061 0.000 -5.098 0.473 0.000 
WMT per pop. dens. (log) 1.671 0.103 0.000 0.068 0.043 0.114 
Signalized intersection 
(ind.) 0.123 0.067 0.067 

Number of approaches 
Intersections crossed 0.001 0.012 0.904 
DVM (log) [major] 0.166 0.028 0.000 0.245 0.024 0.000 
Speed limit (mph) [major] -0.007 0.006 0.248 -0.036 0.004 0.000 
Number of lanes [major] 0.375 0.046 0.000 0.411 0.033 0.000 
Lane width (ft) [major] 0.030 0.011 0.009 0.081 0.010 0.000 
Median width (ft) [major] 0.001 0.002 0.726 -0.017 0.004 0.000 
One-way road (ind.) 
[major] 0.159 0.175 0.735 -1.437 0.160 0.000 

DVM (log) [minor] 0.145 0.029 0.000 
Speed limit (mph) [minor] -0.012 0.009 0.177 
Number of lanes [minor] 0.057 0.063 0.359 
Lane width (ft) [minor] 0.036 0.013 0.006 
Median width (ft) [minor] -0.049 0.020 0.013 
One-way road (ind.) 
[minor] -0.458 0.182 0.012 

AADT per lane [major] 4.45E-
05 

1.17E-
05 0.000 2.02E-

05 
9.70E-

06 0.038 

Truck percentage [major] -0.019 0.037 0.610 -0.049 0.029 0.084 
Arterial (ind.) [major] 0.229 0.141 0.105 -0.167 0.085 0.049 
On system roadway (ind.) -0.231 0.131 0.077 -0.010 0.108 0.923 
Distance to nearest 
hospital (mi) 0.089 0.046 0.050 0.035 0.031 0.252 

Transit stops (ind.) 0.378 0.116 0.001 0.647 0.091 0.000 
Number of stops 0.028 0.016 0.070 0.013 0.012 0.275 

Population density (sq mi) 2.11E-
05 

7.41E-
06 0.005 5.30E-

05 
6.30E-

06 0.000 

Employment density (sq 
mi) 

-1.59E-
06 

1.61E-
06 0.324 3.33E-

05 
6.82E-

06 0.000 

Median income ($10k) -0.099 0.015 0.000 -0.119 0.011 0.000 
CBD (ind.) 0.738 0.182 0.000 1.453 0.157 0.000 

No. of observations 19,194 41,107 
Dispersion Parameter 
(ρ): 0.821 0.430 

McFadden's R2: 0.616 0.370 

Likelihood ratio test (χ2) 2,808 2,718 
Prob > χ2 0.000 0.000 
2 x log-likelihood -5,618 -10,567
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The Austin-specific model in Table 5.2 shows an intersection model that is less sensitive to WMT 
and signalized intersections than the Texas model but still shows a significant value. It is likely 
that pedestrian crashes in non-signalized intersections are more frequent in this area compared to 
the state of Texas. The number of approaches also shows a positive coefficient. In terms of mid-
block segments, the number of intersections crossed is not significant, possibly due to the size of 
the segments. In this case, the segments are 0.1-mile long, and the number of intersections crossed 
is significantly lower than the case where 1-mile segments were used in the Texas model. 

5.3. Treatments by Category 
These treatments were taken from a variety of sources across the internet and highway safety 
manuals, including the Crash Modification Factor (CMF) Clearinghouse, and the report by UNC 
Highway Safety Research Center by Bushell et al. (2013). The highlighted cells are based on 
estimates for these treatments, as there is either too small of a sample size to obtain a high or low 
CMF, or there is no applicable data available for that treatment. In this case, estimates were made 
based on similar treatments or other studies that reported results but did not provide a CMF. For 
some treatments, enough data is available to give an average CMF, but not enough to provide a 
high or low number.  

The treatment list is broken up into seven categories; these are arranged based on general purpose 
of the treatment, as well as which roadway users are primarily affected. Traffic calming is included 
as it has a special role in determining speed. Following are the seven categories: 

• Basic roadway treatments

• Roadway treatments – traffic calming

• Pedestrian-specific infrastructure

• Street furniture

• New sidewalks

• Education

• Homelessness-centric treatments, direct outreach to pedestrians

Treatments in Table 5.3 primarily involve adding treatments to the roadway that do not affect the 
material roadway conditions for drivers. For the most part, these treatments include enhanced 
signage, attention-getting measures such as the rectangular red flashing beacon and pedestrian-
hybrid beacons. These treatments can typically be applied at the corridor level along corridors 
experiencing high rates of crashes. 
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Treatments in Table 5.4 primarily relate to traffic calming measures, which reduce vehicle speed. 
As speed is a major factor in pedestrian crashes that involve fatalities (Tefft, 2013; Bernhardt & 
Kockelman, 2021), these treatments seek to limit the impact of speed and narrow the roadway so 
that pedestrians have less exposure time when crossing. While the cost of implementing these 
treatments varies widely, from roadway reconfiguration to simple signage, their impacts can be 
significant when implemented in high pedestrian traffic areas. Examples of methods to reduce 
speed include speed table, center rumble strips, and zigzag pavement marking (Boodlal et al., 
2015), and 1 or a combination of 2 or more methods can be used to reduce the vehicle’s speed.  

The addition of infrastructure, as Table 5.5, that tends to pedestrian needs ranges from signage to 
barriers and signal improvements. A few of these treatments can limit pedestrian contact with 
vehicles altogether, such as pedestrian bridges, but these are typically very high cost. Additionally, 
traffic signals can help provide a controlled crossing at an intersection where a treatment such as 
a pedestrian-hybrid beacon would not be appropriate, and some of these treatments also have 
crossover safety improvements with drivers. Treatments such as signal re-timings, leading 
intervals, and scramble intervals can increase driver delays, but lead to positive outcomes in 
pedestrian safety. 

Street furniture, as Table 5.6, is another potential option that can help both with traffic calming 
and provide additional services to pedestrians. As the studies on the crash reduction effects are 
limited, these estimates are provided by Bushell et al. (2013). The presence of street furniture can 
also communicate to drivers that they are entering a crowded area, or one with high pedestrian 
activity, and in response drivers are more likely to reduce their speed, improving pedestrian safety 
outcomes (Bushell et al., 2013). For instance, although Table 3.4 implied that the existence of 
transit stops may increase pedestrian crashes due to high pedestrian activity near that transit stop, 
installing street furniture (e.g., bus shelter) can contribute to improving pedestrian’s safety and can 
help to get the driver's attention. 

New sidewalks, as Table 5.7, are among the most basic treatments available to improve pedestrian 
safety in areas where they currently do not exist. While grade separation can be costly, even 
providing a basic sidewalk can lead to reductions in crashes by 75% or more (CMF Clearinghouse, 
2021).  

The efficacy and cost-effectiveness of education programs, as Table 5.8, is disputed (Arellano, 
2021; Bachman et al., 2015), but they can be an option when implemented alongside roadway 
safety improvements. Specifically, increased traffic law enforcement alongside treatments, such 
as prohibiting right turns on red or lowering the speed limit through certain corridors, may be an 
effective countermeasure to bring lasting improvements in pedestrian safety.  
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Table 5.3 Basic Roadway Treatments 

N = Cost 
(median) 

Cost 
(average) Cost (min/max) Cost Unit (i.e., 

linear foot) 
Avg. 
CMF Hi/Lo CMF 

Basic curb and gutter4 108 $20 $21 $1.05/$120 Linear foot 0.89 
“Daylighting” left turns & crossing 
locations4 2 $300 $300 $50/$250 Each 0.75 0.52/1.49 

Gateway signage (see examples)4 6 $15,350 $22,750 $5,000/$64,330 Sign + structure (each) 0.83 0.68/0.98 

Reduced curb radii4 12 $32,500 $15,000/$40,000 Per corner 0.81 

Pedestrian-hybrid beacons4 9 $51,460 $57,560 $21,440/$128,660 Each 0.71 0.63/0.84 

Prohibition of left turns4 6 $800 Per sign 0.28 0.23/0.36 

Prohibition of right turn on red4 4 $800 Per sign 0.77 0.70/0.97 
Crosswalk (hi-vis; see citation for 
specs)4 4 $3,070 $2,540 $600/$5,710 Each 0.63 

Raised crosswalk4 6 $18,995 $7,110/$30,080 Each 0.64 0.55/0.7 

Flashing beacon5 25 $5,170 $10,010 $360/$59,100 Each 0.85 

Rectangular red flashing beacon5 4 $14,160 $22,250 $4,520/$52,310 Each 0.53 

Raised median (controlled)6 9 $22,500 $15,000/$30,000 100 ft. 0.6 0.33/0.75 

Raised center medians (uncontrolled)4 30 $6 $7.26 $1.86/$44 Square foot 0.93 0.61/1.94 

Freeway fencing (both sides)4 $25 $1/$100 Linear foot 0.63 0.10/0.87 

Advanced stop/yield sign7 $520 $570 $100/$1150 Each 0.75 

Install crosswalk sign7 23 $520 $570 $100/$1150 Each 0.91 0.86/0.95 
Narrow roadway from 4 lanes to 3 
lanes8 $20,000 $12,500/$50,000 Per mile 0.71 

4 CMF Clearinghouse, 2021 
5 Bushell et al., 2013 
6 FHWA, 2018b 
7 CMF Clearinghouse, 2021 
8 FHWA, 2018b 
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Table 5.4 Traffic Calming Treatments 

Treatment N = Cost 
(median) 

Cost 
(average) Cost (min/max) Cost Unit (i.e., 

linear foot) 
Average 
CMF 

Hi/Lo 
CMF 

Speed humps7 14 $2,130 $2,640 $690/$6860 Each 0.64 0.73/0.55 

Speed limit reductions - 15% decrease7   $135  Each (sign) 0.89 0.83/0.95 

Speed limit reductions - 10% decrease7   $135  Each (sign) 0.79 0.68/0.9 

Speed limit reductions - 5% decrease7   $135  Each (sign) 0.705 0.56/0.85 

Chicanes7 9 $8,050 $9,960 $2140/$25,730 Each 0.69 0.64/0.75 

Diverters7 6 $22,790 $26,040 $10,000/$51,460 Each 0.69 0.64/0.75 

Curb extensions (bulb-outs)7  $10,150 $13,000 $1070/$41,170 Each 0.75 0.51/1.07 

Traffic circle7 14 $27,190 $85,370 $5,000/$523,080 Each 0.75 0.51/1.07 

Road diet9 10  $40,000 $25,000/$100,000 Per mile 0.71  

Hardened left turns10 20 $2,500 $2,500.00 $2000/$3000 Each 0.65  

Table 5.5 Pedestrian-specific Treatments 

Treatment N = Cost 
(median) 

Cost 
(average) Cost (min/max) 

Cost Unit 
(i.e., linear 
foot) 

Average 
CMF 

Hi/Lo 
CMF 

Streetlight11 17 $3,600 $4,880 $310/$13,900 Each 0.44 0.19/0.69 

In-pavement lighting (flashing crosswalks)11 4 $18,250 $17,260 $6,480/$40,000 Complete system 0.71  

Pedestrian leading intervals11 4 $1,750 $1,750 $0/$3500  0.85 0.71/1.48 

Crosswalk signage (for road users)12  $30 $30 $25/$35 Square foot 0.84 0.75/0.88 

Bollards (at crossing points)11 42 $650 $730 $62/$4,130 Each 0.93  

                                                 
9 Fitzpatrick et al., 2014 
10 https://www.autoblog.com/2020/04/12/iihs-left-turn-pedestrian/ 
11 CMF Clearinghouse, 2021 
12 http://www.trafficsign.us/signcost.html 
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Treatment N = Cost 
(median) 

Cost 
(average) Cost (min/max) 

Cost Unit 
(i.e., linear 
foot) 

Average 
CMF 

Hi/Lo 
CMF 

Curb ramps (to crossings)11 74 $740 $810 $89/$3,600 Each 0.95 

Pedestrian refuge islands11 15 $9.80 $10 $2.28/$26 Square foot 0.44 0.25/0.76 

Fence (general purpose)11 7 $120.00 $130 $17/$370 Linear foot 0.63 0.10/0.87 

Pedestrian overpass (wooden)13 8 $122,610.00 $124,670 $91,010/$165,710 Each 0.63 0.10/0.87 

Pedestrian overpass (steel)11, 13 5 $191,400 $206,290 $41,580/$653,840 Each 0.63 0.10/0.87 

Pedestrian underpasses11, 13 $120 Square foot 0.63 0.10/0.87 

Sidewalk railings11 33 $95 $100 $7.20/$690 Linear foot 0.83 0.52/1.18 
Access management improvements (esp. at 
commercial centers)14 3 $4,000 $4,000 $3000/$5000 Per driveway 

removed 0.5 

Full street closure (one city block)11 $500/$120,000 0.05 

Partial street closure (depends on treatment)11 $37,500 $10,290/$41,170 0.71 

Ped detection - detector (actuate)15 14 $180 $390 $68/$1330 Each 0.55 

Ped detection - push button15 34 $230 $350 $61/$2510 Each 0.83 

Audible pedestrian signal15 4 $810 $800 $550/$990 Each 0.72 

Increase crossing time15 10 $1,750 Per re-timing 0.49 

Countdown timers15 18 $600 $740 $190/$1930 Each 0.48 0.3/0.75 

Pedestrian signal (complete)15 70 $2,680 $3,260 $850/$13,410 Each 0.6 0.45/0.85 

Traffic signal (new)16 25 $90,000 $80,000/$100,000 Each 0.44 0.5/1.48 

Dedicated pedestrian interval15 4 $1,750 $0/$3500 Per re-timing 0.41 0.16/0.49 

Speed trailers15 6 $9,480 $9,510 $7000/$12,410 Each 0.95 0.93/0.95 

13 Fitzpatrick et al., 2014 
14 https://mobility.tamu.edu/mip/strategies-pdfs/system-modification/technical-summary/Access-Management-4-Pg.pdf 
15 CMF Clearinghouse, 2021 
16 https://ftp.txdot.gov/pub/txdot-info/pio/casbrochures/pub_signals.pdf 
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Table 5.6 Street Furniture Treatments 

Treatment N = Cost (median) Cost 
(average) 

Cost 
(min/max) 

Cost Unit (i.e., 
linear foot) 

Average 
CMF 

Hi/Lo 
CMF 

Street trees15 7 $460 $430 $54/$940 Each 0.82 

Bench15 17 $1,660 $1,550 $220/$5750 Each 0.82 

Bus shelter15 4 $11,490 $11,560 $5,230/$41,850 Each 0.82 

Trash/recycling receptacle15 13 $1,330 $1,420 $310/$3,220 Each 0.82 

Table 5.7 New Sidewalk Treatments 

Treatment N = Cost (median) Cost 
(average) Cost (min/max) Cost Unit (i.e., 

linear foot) 
Average 
CMF 

Hi/Lo 
CMF 

Widen paved shoulder15, 17 4 $5.81 $5.56 $2.96/$7.65 Square foot 0.72 0.54/1.01 

Asphalt sidewalk15 11 $16.00 $35.00 $6.02/$150 Linear foot 0.26 

Concrete sidewalk18 164 $27 $32 $2.09/$410 Linear foot 0.26 

Concrete sidewalk w/curb18 7 $170 $150 $23/$230 Linear foot 0.26 

Multi-use trail - paved18, 19 42 $261,000 $481,140 $64,470/$4,228,520 Mile 0.14 

Multi-use trail - unpaved18, 19 7 $83,870 $121,390 $29,520/$412,720 Mile 0.14 

17 Fitzpatrick, et al., 2014 
18 CMF Clearinghouse, 2021 
19 Fitzpatrick, et al., 2014 
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Table 5.8 Education Treatments 

Treatment N = Cost 
(median) 

Cost 
(average) 

Cost 
(min/max) 

Cost Unit (i.e., 
linear foot) 

Average 
CMF 

Hi/Lo 
CMF 

“Be safe, be seen”20 1   $18,000 Campaign 
implementation 0.93  

Primary school training from local police 
department21 1   $18,000 Campaign 

implementation 0.9  

Out-of-home advertising campaigns22 1   $18,000 Campaign 
implementation 0.93  

Anti-distracted driving campaign22 1   $18,000 Campaign 
implementation 0.93  

Increased traffic law enforcement23 1   $18,000 Campaign 
implementation 0.77 0.60/1.28 

Safe Routes to School - educational programs24 5  $10,298  Curriculum 
implementation 0.93  

Table 5.9 Homelessness-centric Treatments, Direct Outreach to Pedestrians 

Treatment N = Cost 
(median) 

Cost 
(average) 

Cost 
(min/max) 

Cost Unit (i.e., 
linear foot) 

Average 
CMF 

Hi/Lo 
CMF 

Hi-vis vests25 40 $12 $10 $4/$50 Each 0.85  

Tiny housing to decrease freeway camps26 5 $60,000 $45,000 $7500/$150,000 Each 0.9  

Lights for pedestrians27 10 $20 $40 $7.50/$60 Lights + 
implementation 0.79  

Flags for pedestrian crossings28 3 50 cents (unit) 500 (total) $50/$18,000 Total program cost 0.9  

                                                 
20 Arellano, 2021 
21 Bachman et al., 2015 
22 Cantulupo, 2021 
23 FHWA, 2018b 
24 Muennig et al., 2014 
25 https://www.homedepot.com/b/Safety-Equipment-Safety-Vests/N-5yc1vZc29h 
26 Nowacki, 2021 
27 Madsen et al., 2013 
28 Davis, 2014 
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In Table 5.9, since persons experiencing homelessness are often present in freeway right-of-way, 
as well as along arterial roads, they are important to address when addressing pedestrian safety 
(Bernhardt & Kockelman, 2021). While these treatments have also had mixed success, and 
“treatments” such as housing or connecting those experiencing homelessness to institutional 
resources is often preferable (Arellano, 2021), these treatments should be examined in the context 
of addressing the structural issues that create higher rates of persons experiencing homelessness.  

5.4. Cost and Benefit Calculation Models 
A benefit-cost ratio (BCR) is simply a measurement of a specific countermeasure’s benefits, 
measured in the anticipated reduction in crash costs multiplied by the treatment’s CMF, divided 
by the sum of countermeasure implementation plus the costs from the preceding 10 years at the 
affected part of the intersection.  

Although Texas already uses Safety Improvement Index (SII) for identifying, ranking, and 
selecting eligible projects by comparing its benefit and cost, it is outdated (developed in 1974), 
assumes too high annual inflation rate (8%), and requires too many variables (e.g., projected ADT 
for all future years). Thus, in this project, a rather straightforward approach of relying on benefits 
coming from crash reduction, delay cost, and construction cost is proposed to estimate a 
treatment’s benefit-cost ratio. 

The BCRs constructed from the BCA and CMFs have a few underlying assumptions. Crash costs 
were derived using TxDOT’s most recent Highway Safety Improvement Program manual from 
2020 (TxDOT, 2020a). In the KABCO system, when adjusted for inflation to 2021, the average 
comprehensive cost (which includes quality-of-life costs and lost productivity) of a non-
incapacitating injurious crash (B) was approximately $500,000 and the average incapacitating 
crash injury (A) and average fatal crash cost (K) is around $3,500,000. Estimated future crash costs 
for each individual intersection in the corridor were determined through an NB model using CR-3 
Texas Peace Officer’s Reports through the CRIS database and determining the severity of the 
injury and location of the crash. Specific countermeasure recommendations are based on the 
problem areas within each intersection, defined as one or more instance of a particular event within 
the same part of the intersection in the next 10-year period. For benefits measuring, CMFs were 
taken primarily from the CMF Clearinghouse and the UNC Highway Safety Research Center’s 
2013 report on CMFs (Bushell et al., 2013). Highway Safety Improvement Program (HSIP) in 
Texas also provides some CMFs (Texas Department of Transportation, 2021), but HSIP 
emphasizes physical features including barriers, lighting, signage, and pavement markings. 
Unfortunately, some benefits are difficult to measure, such as an ensuing mode shift from private 
cars to walking or other active modes because of improved pedestrian safety and comfort and the 
resultant improvements in greenhouse gas emissions and air quality. These benefits are left out of 
the calculations for the purposes of this chapter but should be considered when evaluating BCRs 
for pedestrian safety. Ranges for CMFs, as calculated, can be found starting at Table 5.3 in this 
chapter. 
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The United States Department of Transportation (2021) assumes a cost of $15 per vehicle delay 
hour. A cost of $14.14 per vehicle delay hour was used in this study.  Delay costs use relatively 
conservative delay assumptions across all vehicles in the affected travel lanes, such as the average 
delay for the entire leading interval or lack of right turn on red (1 seconds and 10 seconds for a 
cycle, respectively), as well as a 2-second average delay for pedestrian-hybrid beacons. 
Calculations for each BCR can be found in Section 5.5 of this chapter, as well as a comprehensive 
list of treatments considered with costs and CMFs. 

5.4.1. BCR Calculation Example 
Below is an example of a calculated BCR for an intersection in Austin that is one of the 50 most 
crash-prone in Texas. These BCR calculations are written out in full, showing each step 
and mirroring the calculation logic used for the large-scale treatment recommendations seen in 
Section 5.5. Additional detailed calculations can be found in later sections, when looking at 
Texas’ 10 corridors with the highest pedestrian crash rates, as well as in Appendix A.  

Congress Avenue and Cesar Chavez Street – Austin  

Treatment: Pedestrian Leading Interval (1 second for all crossings) 

Cost of installation: $1,750, CMF: 0.8529 

Delay costs = (ADT on Cesar Chavez (28,625) + ADT on Congress (15,785)) × 365 days in 
the year = 16,202,350 vehicles (162,023,500 in the 10-year period) 

Assuming that each vehicle is delayed by 1 second, there will be 162,023,500 seconds of delay 
overall and, when divided by 3,600 seconds in an hour, 45,007 hours of delay. 

Assuming of a cost of $14.14 per vehicle delay-hour, the total cost of delay is as follows: 

$14.14 × 45,007 delay hours = $636,939 + $1,750 = $638,689 in total costs 

Benefits:  

Costs of 7 non-incapacitating injuries and 1 incapacitating injury in the period 2010–2019 = 
($500,000 × 7) + $3,500,000 = $7,000,000 in crash costs 

CMF = 0.85  

$7,000,000 × 0.15 (the CRF, or crash reduction factor) = $1,050,000 in benefits 

BCR = $1,050,000 / $638,689 = 1.65 

BCR (without delay costs) = $1,050,000 / $1,750 = 600 

29 CMF Clearinghouse, 2021 
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5.5. Recommendations for Texas’ Highest-Crash Corridors 
Based on the ranking methodologies described in Section 5.2, following is a comprehensive 
ranking of the 10 corridors with the highest pedestrian crash frequency and crash costs across 
Texas, along with recommended treatments. Detailed calculations can be found in 
Appendix A.  

5.5.1. I-35 Southbound Frontage Road – Martin Luther King Jr. 
Boulevard to Holly Street – Austin 
6th Street and SB I-35 Frontage Road - Pedestrian Leading Interval (1 second average delay 

for all crossings) 

Cost of installation: $1,750, CMF: 0.8530 

Delay Costs = ADT on I-35 SB Frontage Road (30,614) + ADT on 6th Street (11,695) × 365 days 
= 15,442,420 vehicles × 1 second × 10 years = 154,424,200 seconds of delay over 10 years 

154,424,200 vehicle delay-seconds / 3600 seconds in an hour = 42,896 vehicle delay-hours 

42,896 × $14.14 (discounted average over 10 years) = $606,544 

Total Costs = $606,544 + $1,750 = $608,294 in total costs 

Benefits:  

5 non-incapacitating injuries, 2 incapacitating injuries 2010–2019 

($500,000 x 5) + ($3,500,000 × 2) = $9,500,000 

CMF = 0.85; 0.15 (CRF) × $9,500,000 = $1,425,000 benefits 

BCR = $1,425,000 / $608,294 = 2.34 

BCR, without delay costs = $1,425,000 / $1,750 = 814.29 

5.5.2. Tomball Parkway (SH-249) – Sam Houston Tollway (SL-8) to 
Breen Road – Houston 
Tomball Parkway (SH-249) - Speed Limit Reductions - 10% decrease 

Cost of installation: $135 per speed limit sign × 10, CMF: 0.7930 

Speed limit from 35 mph to 30 mph results in travel time increasing from 838 seconds to 977seconds for 43,000-foot segment =139 seconds lost per vehicle 

30 CMF Clearinghouse, 2021 
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Delay Costs = ADT on SH-249 (27,040) × 139-second delay × 365 days = 1,371,874,400 seconds 
delay 

1,371,874,400 seconds delay / 3,600 seconds in an hour = 381,076 hours delay 

381,076 hours × $14.14 per vehicle delay-hour = $5,388,417 

$5,388,417 + $1,350 = $5,389,767 in total costs 

Benefits:  

9 non-incapacitating injuries, 11 incapacitating injuries for 2010–2019 

($500,000 x 9) + ($3,500,000 × 11) = $43,000,000 

CMF = 0.79; 0.21 (CRF) × $43,000,000 = $9,030,000 

BCR = $9,030,000 / $5,389,767 = 1.67 

BCR, without delay costs = $9,030,000 / $1,350 = 6,689 

5.5.3. Westheimer Road – Fondren Road to Chimney Rock Road – 
Houston 
Westheimer Road - Speed Limit Reductions - 10% decrease 

Cost of installation: $135 per sign × 10, CMF: 0.7931 

Speed limit from 35 mph to 30 mph results in travel time from 292 s to 340 s for 15,000 ft segment. 

48 second loss per vehicle 

Delay Costs = ADT on Westheimer Road (15,211) × 48 second delay × 365 days = 266,496,720 
seconds delay 

266,496,720 seconds delay / 3600 seconds in an hour = 74,026 hours delay 

74,026 hours × $14.14 per vehicle delay-hour = $1,046,727 

$ 1,046,727 + $1,350 = $1,048,077 in total costs 

Benefits:  

10 non-incapacitating injuries, 2 incapacitating injuries for 2010–2019 

($500,000 x 10) + ($3,500,000 × 2) = $12,000,000 

31 CMF Clearinghouse, 2021 
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CMF = 0.79 → $ 2,520,000 

BCR = $2,520,000 / $1,048,077 = 2.40 

BCR, without delay costs = $2,520,000 / $1,350 = 1,867 

5.5.4. Congress Avenue – 12th Street to Barton Springs Road – Austin 
Congress & Cesar Chavez: Prohibit Right on Red 

Cost of installation: $800, CMF: 0.7732 

Delay costs = ADT on Congress (11,157) × 365 days = 4,072,305 vehicles delayed in a year 

40,723,050 vehicles delayed in 10 years / 3 lanes = 13,574,350 vehicles likely to be impacted in 
one lane (prohibition of right turn only applies to right lane) 

Each vehicle is delayed by an average of 10 seconds. 13,574,350 × 10 seconds = 135,743,500 
seconds of delay 

135,743,500 vehicle delay-seconds / 3600 seconds in an hour = 37,706 hours 

37,706 hours × $14.14 per vehicle delay-hour = $533,162 

$533,162 + $800 = $533,962 in total costs  

Benefits:  

4 non-incapacitating injuries + 3 incapacitating injuries for 2010–2019 

($500,000 × 4) + ($3,500,000 × 3) = $2,325,000 

CMF = 0.77 → $2,875,000 

BCR = $2,875,000 / $533,962 = 5.38 

BCR, without delay costs = $2,875,000 / $800 = 3,594 

Congress Avenue and 6th Street: Pedestrian Leading Interval 

Cost of Installation: $1,750, CMF: 0.8532 

Delay Costs = ADT on Congress (11,157) + ADT on 6th (7,706) × 365 days in the year = 6,884,995 
× 10 years = 68,849,950 vehicle delay-seconds 

32 CMF Clearinghouse, 2021 
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68,849,950 / 3600 hours = 19,124 vehicle delay-hours  

19,124 vehicle delay-hours × $14.14/hour = $270,413 in delay costs  

$270,413 + $1,750 = $272,163 in total costs  

Benefits: 

3 non-incapacitating injuries, 1 incapacitating injury for 2010–2019 

($500,000 x 3) + ($3,500,000 × 1) = $5,000,000 

CMF = 0.85 → $750,000 

BCR = $750,000 / $272,163 = 2.76  

BCR, without delays = $750,000 / $1,750 = 428 

 

Congress Avenue & 6th Street: Prohibit right-turn on red  

Cost of installation: $800, CMF: 0.7733 

ADT on 6th (7,706) × 365 days in the year × 10 years = 28,126,900 vehicles over 10 years 

1 of 4 lanes is impacted = 7,031,725 vehicles delayed  

7,031,725 vehicles × 10 seconds average delay = 70,317,250 seconds of delay 

70,317,250 vehicle delay-seconds / 3600 seconds in an hour = 19,533 hours  

19,533 hours × $14.14/hour = $276,197 

Total Costs = $276,197 + $800 = $276,997 

Benefits: 

3 non-incapacitating injury, 1 incapacitating injury for 2010–2019 

($500,000 × 3) + ($3,500,000 × 1) = $5,000,000 

CMF = 0.77 → $1,150,000 

BCR = $1,150,000 / $276,997 = 4.15 

BCR, without delays = $1,150,000 / $800 = 1,437 

                                                 
33 CMF Clearinghouse, 2021 
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5.5.5. Lamar Boulevard – Masterson Pass to Payton Gin Road – 
Austin 
Rundberg Ln. and Lamar Boulevard – Pedestrian Refuge Islands 

Cost of installation (average): $9.80/square foot, CMF: 0.4434 

4 refuge islands, 2 @ 108 square feet (crossing Rundberg), 2 @ 67 square feet (crossing Lamar) 

(108 × 2) + (67 × 2) = 350 square feet total, × $9.80 = $3,430 in total installation costs 

Benefits: 

1 non-incapacitating injuries, 1 incapacitating injury for 2010–2019 

($500,000 × 1) + ($3,500,000 × 1) = $2,185,000 

CMF = 0.44 → $2,240,000 

BCR = $2,240,000 / $3,430 = 653 

Payton Gin Road and Lamar Boulevard - Refuge Island & Streetlight – Northern Crosswalk 

Cost of installation, refuge island (average): $9.80/square foot, Cost of installation (streetlight): 
$4,880, CMF (for both treatments): 0.4434 

1 refuge island @ 131 square feet (can use the entire width of the turn lane if acceptable; a left-
turn lane is not necessary as this is a three-way intersection) 

131 square feet × $9.80 = $1,283 

Total cost of installation = $4,880 + $1,283 = $6,163 

Benefits:  

6 non-incapacitating injuries, 2 incapacitating injuries for 2010–2019 

(6 × $500,000 + 2 × $3,500,000) = $10,000,000 

CMF = 0.44 → $5,600,000 

BCR = $5,600,000 / $6,163 = 908 

34 CMF Clearinghouse, 2021 
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5.5.6. Congress Avenue – Woodward Street to St. Elmo Road - Austin 
Congress Avenue - Speed Limit Reductions - 10% decrease 

Cost of installation: $135 per sign × 10, CMF: 0.7935 

Speed limit from 25 mph to 20 mph results in travel time from 129 s to 165 s for 4,800 ft segment. 

36 second loss per vehicle 

Delay Costs = ADT on Congress Avenue (12,437) x 36 second delay × 365 days = 163,422,180 
seconds delay 

163,422,180 seconds delay / 3600 seconds in an hour = 45,395 hours delay 

45,395 hours × $14.14 per vehicle delay-hour = $641,886 

$ 641,886 + $1,350 = $643,236 in total costs 

Benefits:  

3 non-incapacitating injuries, 3 incapacitating injuries for 2010–2019 

($500,000 × 3) + ($3,500,000 × 3) = $12,000,000 

CMF = 0.79 → $ 2,520,000 

BCR = $2,520,000 / $643,236 = 3.92 

BCR, without delay costs = $2,520,000 / $1,350 = 1,867 

5.5.7. E. Riverside Drive – Pleasant Valley Road to Faro Drive – Austin 
E. Riverside Drive and Pleasant Valley Road - Speed Limit Reductions - 10% decrease

Cost of installation: $135 per sign × 5, CMF: 0.7935 

Speed limit from 35 mph to 30 mph results in travel time from 49 s to 56.8 s for 2,500 ft segment. 

7.8 second loss per vehicle 

Delay Costs = ADT on Pleasant Valley Road (18,134) × 7.8 second delay × 365 days = 51,627,498 
seconds delay 

51,627,498 seconds delay / 3600 seconds in an hour = 14,340 hours delay 

14,340 hours × $14.14 per vehicle delay-hour = $202,767 

35 CMF Clearinghouse, 2021 
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$202,767 + $675 = $203,442 in total costs 

Benefits:  

1.29 non-incapacitating injuries, 0.48 incapacitating injuries predicted for 2020-2029 

($500,000 × 1.29) + ($3,500,000 × 0.48) = $2,325,000 

CMF = 0.79 → $488,250 

BCR = $488,250 / $203,442 = 2.40 

BCR, without delay costs = $488,250 / $675 = 723 

E. Riverside Drive and Wickersham Lane - Pedestrian Leading Interval (1 second average
delay for all crossings)

Cost of installation: $1,750, CMF: 0.8536 

Delay Costs = ADT on E. Riverside Drive (11,871) + ADT on Wickersham Lane (5,599) × 365 
days = 6,376,550 vehicles × 10 years = 63,765,500 seconds of delay over 10 years 

63,765,500 vehicle delay-seconds / 3600 seconds in an hour = 17,712 vehicle delay-hours 

41,199 × $14.14 (discounted average over 10 years) = $ 250,448 

Total Costs = $ 250,448 + $1,750 = $ 252,198 in total costs 

Benefits:  

3 non-incapacitating injuries, 1 incapacitating injury predicted for 2020-2029 

($500,000 × 3) + ($3,500,000 × 1) = $ 5,000,000 

CMF = 0.85 → $750,000 

BCR = $750,000 / $ 252,198 = 2.97 

BCR, without delay costs = $750,000 / $1,750 = 429 

36 CMF Clearinghouse, 2021 
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Zarzamora Street – Cincinnati Street to Delgado Street – San Antonio 
Zarzamora Street and Culebra Road – Pedestrian Leading Interval (1 second average delay 

for all crossings) 

Cost of installation: $1,750, CMF: 0.8537 

Delay Costs = ADT on Zarzamora Street (5,352) + ADT on Culebra Road (3,636) × 365 days = 
3,280,620 vehicles × 10 years = 32,806,200 seconds of delay over 10 years 

32,806,200 vehicle delay-seconds / 3600 seconds in an hour = 9,112 vehicle delay-hours 

9,112 × $14.14 (discounted average over 10 years) = $128,843 

Total Costs = $128,843 + $1,750 = $130,593 in total costs 

Benefits:  

3 non-incapacitating injuries + 3 incapacitating injuries for 2010–2019 

($500,000 × 3) + ($3,500,000 × 3) = $12,000,000 

CMF = 0.77 → $2,760,000 

BCR = $2,760,000 / $130,593 = 21.13 

BCR, without delay costs = $2,760,000 / $1,750 = 1,577 

5.5.8. Fannin Street – Commerce Street to Jefferson Street – Houston 
Fannin Street and Walker Street – Pedestrian Leading Interval (1 second average delay for 

all crossings) 

Cost of installation: $1,750, CMF: 0.8537 

Delay Costs = ADT on Fannin Street (12,542) + ADT on Walker Street (1,019) × 365 days = 
4,949,765 vehicles × 10 years = 49,497,650 seconds of delay over 10 years 

49,497,650 vehicle delay-seconds / 3600 seconds in an hour = 13,749 vehicle delay-hours 

13,749 × $14.14 (discounted average over 10 years) = $194,415 

Total Costs = $194,415 + $1,750 = $196,165 in total costs 

Benefits:  

1 non-incapacitating injuries + 2 incapacitating injury for 2010–2019 

37 CMF Clearinghouse, 2021 
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($500,000 × 1.64) + ($3,500,000 × 0.60) = $7,500,000 

CMF = 0.77 → $1,725,000 

BCR = $1,725,000 / $196,165 = 8.79 

BCR, without delay costs = $1,725,000 / $1,750 = 986 

Fannin Street and Congress Street – Pedestrian Leading Interval (1 second average delay 
for all crossings) 

Cost of installation: $1,750, CMF: 0.8538 

Delay Costs = ADT on Fannin Street (12,542) + ADT on Congress Street (9,681) × 365 days = 
8,111,395 vehicles × 10 years = 81,113,950 seconds of delay over 10 years 

81,113,950 vehicle delay-seconds / 3600 seconds in an hour = 22,531 vehicle delay-hours 

22,531 × $14.14 (discounted average over 10 years) = $318,588 

Total Costs = $318,588 + $1,750 = $320,338 in total costs 

Benefits:  

1 non-incapacitating injuries + 2 incapacitating injury for 2010–2019 

($500,000 × 1.64) + ($3,500,000 × 0.60) = $7,500,000 

CMF = 0.77 → $1,725,000 

BCR = $1,725,000 / $320,338 = 5.38 

BCR, without delay costs = $1,725,000 / $1,750 = 986 

5.5.9. Milam Street – McGowan Street to Alabama Street – Houston 
Milam Street – McGowan Street to Alabama Street – Road Diet 

Cost of installation: $4,000 × 0.6 mi, CMF: 0.7139 

Delay costs = ADT on Milam Street (14,530) × 365 days = 5,303,450 vehicles delayed in a year 

From 4 lanes to 3 lanes results in 25% decreased capacity. 

38 CMF Clearinghouse, 2021 
39 Fitzpatrick et al., 2014 
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Current travel time through corridor = 4 min 

Assuming 25% longer travel time after road diet, 5 min required. 

Each vehicle is delayed by an average of 60 seconds. 5,303,450 × 60 seconds = 318,207,000 
seconds of delay 

318,207,000 vehicle delay-seconds / 3600 seconds in an hour = 88,390 hours 

88,390 hours × $14.14 per vehicle delay-hour = $ 1,249,834 

Total cost of installation = $2,400 + $1,249,834 = $1,252,234 

Benefits:  

5 non-incapacitating injuries + 4 incapacitating injuries for 2010–2019 

($500,000 × 5) + ($3,500,000 × 4) = $16,500,000 

CMF = 0.77 → $3,795,000 

BCR = $3,795,000 / $1,252,234 = 3.03 

BCR, without delay costs = $3,795,000 / $2,400 = 1581 

5.6. Recommendations for Pedestrian Safety in Texas 
Below is a comprehensive BCR analysis of applying select treatments to the Texas segments and 
intersections with the highest pedestrian crash risks to reduce such crashes. While Section 5.5 
was focused on site-specific treatments, this section aims to apply four design treatments to all 
segments in Texas and deliver the top 100 hotspots’ average BCR. The treatments applied 
in Section 5.6 includes pedestrian leading interval, speed hump, raised median (signalized / 
unsignalized), and 10% speed limit reduction. These treatments generally do not have site-specific 
restrictions and can be applied to any place in Texas. Four design treatments are applied, and the 
average of the top-100 highest BCR results out of the top-10,000 deadliest hotspots in Texas for 
all four treatments are presented below. The results suggest that the average BCR ranges 
from 0.82 to 19.20, implying that meaningful crash reductions can be expected with these 
treatments. 

5.6.1. Pedestrian Leading Interval 
Cost of installation: $1,750 × 699,594, CMF: 0.8540 

Delay cost = Assume 1 second of delay per vehicle, using AADT of each intersection. 

40 CMF Clearinghouse, 2021 
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Total cost = cost of installation + delay cost 

Benefit = $500,000 × estimated non-incapacitating injuries & $3.5M × estimated incapacitating 
injuries predicted for 2020-2030, for each intersection. Assume CMF = 0.85. 

Top 100 hotspots’ average BCR = 0.82 

5.6.2. Speed Hump 
Cost of installation: $2,640 × 699,594, CMF: 0.6441 

Delay cost = Assume 3 seconds of delay per vehicle, using AADT of each segment. 

Total cost = cost of installation + delay cost 

Benefit = $500,000 × estimated non-incapacitating injuries & $3.5M × estimated incapacitating 
injuries predicted for 2020-2030, for each segment. Assume CMF = 0.64. 

Top 100 hotspots’ average BCR = 4.72 

5.6.3. Raised Median 
Cost of installation: $22,500 (signalized) & $18,000 (unsignalized)42 

CMF: 0.6 (signalized), 0.94 (unsignalized) 

Delay cost = # of vehicles affected is estimated using AADT of each segment. 

Total cost = cost of installation + delay cost 

Benefit = $500,000 × estimated non-incapacitating injuries & $3.5M × estimated incapacitating 
injuries predicted for 2020-2030, for each segment. Assume CMF = 0.6 / 0.94. 

Top 100 hotspots’ average BCR = 11.19 

5.6.4. Speed Limit 10% Reduction 
Cost of installation: $67541 

Delay cost = 2500-feet length and calculate the delay per vehicle using AADT of each segment. 

CMF: 0.79 

Total cost = cost of installation + delay cost 

                                                 
41 CMF Clearinghouse, 2021 
42 FHWA, 2018b 
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Benefit = $500,000 × estimated non-incapacitating injuries & $3.5M × estimated incapacitating 
injuries predicted for 2020-2030, for each segment/intersection. Assume CMF = 0.79 

Top 100 hotspots’ average BCR = 19.20 

5.7. Policy Implementations for Vehicles Sold in the US 
The United States National Highway Traffic Safety Administration (US NHTSA) has a “5-Star 
Safety Ratings” program to measure crash safety. It conducts frontal, side, and rollover tests on 
vehicles, with a total of four distinct tests. All test scenarios evaluate the injuries of dummies in 
the driver’s seat and passenger’s seat. They are concerned with collisions involving moving and 
fixed barriers, poles, and rollover events. The NHTSA rating standard does not consider collisions 
involving pedestrians (NHTSA, 2021).  

The Insurance Institute for Highway Safety’s (IIHS) testing is more elaborate than that of NHTSA. 
Its six tests examine frontal collisions with moderate overlap (40% of the total width of the 
vehicle), driver-side overlap (25%), and passenger-side overlap (25%) along with side impact, roof 
strength for rollovers, and head restraints or seats. IIHS also assesses headlight systems and child 
seat attachment hardware. Several of their tests involve barriers and measure vehicle and driver 
impact. The IIHS does have three vehicle-to-pedestrian tests. These evaluate vehicles’ speed 
reduction capabilities for vehicles with autobrake when the vehicle is travelling perpendicular to 
an adult pedestrian, perpendicular to a child pedestrian, and when parallel to an adult pedestrian. 
However, it does not measure pedestrian injury (IIHS-HLDI, 2021).  

The European Union provides the European New Car Assessment Programme (Euro NCAP) to 
evaluate the safety of vehicles sold in Europe. Euro NCAP issues star ratings based on five criteria: 
frontal impact test results (using barriers), a side impact test, pole test, child protection protocol, 
pedestrian protection tests, and electronic stability control. The pedestrian protection tests look at 
how vehicles’ bumpers and hoods (leading edge and top area) protect pedestrians’ lower legs at 
40 kph (24.85 mph) for both children and adult pedestrians (ECMAT, 2021).  

In the US, only the IIHS includes a test involving pedestrians, and this test evaluates the quality of 
vehicles’ autobrake rather than its ability to protect pedestrians in the event of a collision (IIHS-
HLDI, 2021). In the US, OEMs need not protect pedestrians in the case of an impact. Like the US, 
the EU assesses autobrake systems. EMCAT examines performance when a pedestrian crosses in 
front of the vehicle, is walking in the same direction, crosses a road in which the vehicle is turning, 
and when it is reversing. There are conditions with adults and children and in low light. However, 
Euro NCAP runs these tests only when the vehicle performs well in the 40 kph pedestrian impact 
tests. The Euro NCAP measures injuries to a pedestrian’s head, upper leg, and lower leg for both 
adults and children using head form and leg form impactors. Ratings are given based on damages 
to dummies, hoods, and bumpers. Vehicles with energy-absorbing structures, deformation 
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clearance, and deployable protection systems for pedestrians are encouraged for better Euro NCAP 
ratings. 

American vehicle brands specifically score very poorly in pedestrian safety according to Euro 
NCAP. For example, Chevrolet vehicles like the Malibu, Trax, and Captiva were rated less than 
70% as of 2013. They received good ratings on other factors, such as adult occupant and child 
occupant safety and safety assist. Jeep has models whose Euro NCAP crash ratings have fallen 
over time. The Jeep Renegade and Cherokee showed lower ratings over six years. These vehicles 
score poorly in all categories of adult occupant, child occupant, safety assist, and pedestrian safety. 
Most notably, they rated in the 50s for vulnerable road user safety. Still, these vehicles received 
mixed ratings from the IIHS, ranging from ‘good’ to ‘poor’ for crashworthiness and crash 
avoidance across scenarios (front, side) (IIHS-HLDI, 2020a, 2020b). 

In order to improve the pedestrian safety, the focus should be moved from testing the vehicles’ 
quality of autobrake to the actual ability to protect pedestrians in the event of a collision. The 40 
kph speed limit suggested by Euro NCAP’s vehicle test should be increased to a higher value that 
may result in severe pedestrian injuries. OEMs’ responsibilities and obligations should incorporate 
the duty to protect pedestrians in case of an impact, which are currently not included. 

5.8. Conclusions 
This chapter provides algorithms to identify the Texas corridors, and intersections within 
those corridors, with the highest pedestrian crash risks, a list of treatments to improve 
pedestrian safety by decreasing the number of crashes, and the BCRs for application of those 
treatments to the corridors and intersections. Historical crash counts from 2010–2019 are used 
to assess the impact of each treatment on reducing potential threats to the pedestrians. 
Additionally, a negative binomial model to predict crash count estimates is suggested. 
Recommendations for Texas to apply the four different treatments are made with a BCR 
analysis 

The BCR analyses show that the analyzed treatments—including prohibited right turns on red, 
speed limit reductions, pedestrian leading intervals, road diets, pedestrian refuge islands, and 
streetlights—have BCRs ranging from 1.67 to 5.38 when the delay costs are added, and from 
428 to 6,689 when delay costs are ignored. Since a BCR greater than 1 indicates that the 
treatments are cost effective, implementation of the suggested treatments should lead to a cost 
savings while also increasing the safety conditions for pedestrians on otherwise high-risk 
corridors in Texas. A comprehensive BCR analysis of applying four design treatments 
(pedestrian leading interval, speed hump, raised median, and 10% speed limit reduction) to all 
segments in Texas suggests that the average BCR ranges from 0.82 to 19.20, implying that under 
most circumstances, meaningful crash reductions can be expected with these treatments. These 
treatments generally do not have site-specific restrictions and can be applied to any place in 
Texas. 



127 

A comparison of policies for promoting pedestrian safety in the US to European regulations was 
conducted, which found that a transition from testing vehicles’ autobrake to testing the actual 
ability to protect pedestrians (e.g., the ability to stop properly before crashing with pedestrians) is 
needed. The speed limit of 40 kph (24.85 mph) used in the vehicle test should be increased, and 
the OEM’s responsibilities to protect pedestrians should be clearly defined. 

The strategies used in this chapter have been concisely formulated into the 35-page guidebook 
Developing Countermeasures to Decrease Pedestrian Deaths that is targeted at practitioners, 
managers, and other who have a vested interest in pedestrian safety. It is Product P1 of this project. 
The guidebook’s methodology was piloted through a workshop presented to an audience of 
relevant professionals and enthusiasts at state and local levels of government. The video recording 
of the workshop is Product P2 of this project. Researchers recommend further work to find 
opportunities to more closely tie the guidebook into existing TxDOT road safety guidance and 
BCR methodologies, such as those documented within the Highway Safety Improvement Program 
Manual (TxDOT, 2015). 
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Appendix A. Additional Examples of BCR 
Calculations 

S. 1st Street at William Cannon Boulevard – Austin  

Refuge Islands 

CMF = 0.4443 

Cost of installation: $9.80 per square foot  

4 refuge islands, two @ 36 sq feet (crossing S. 1st), two @ 64 square feet (crossing William 
Cannon) = 100 sq ft.  

100 sq. ft x $9.80 = $980 

Benefits 

3 non-incapacitating injuries  

3 x $500,000 = $1,500,000 

CMF = 0.44 → $840,000 

BCR = $840,000 / $980 = 857 

 

Oltorf Street and Pleasant Valley Road – Austin  

Refuge Islands 

CMF: 0.4443 

Cost of installation: $9.80 per square feet 

3 refuge islands @ 40 square feet 

120 sq. ft. x 9.80 = $1,176 

Benefits 

Three non-incapacitating injuries  
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3 x $500,000 = $1,500,000 

CMF = 0.44 → $840,000 

BCR = 840,000 / 1,176 = 714 

 

Pedestrian Hybrid Beacon – west of western crosswalk approx. 800 feet  

CMF = 0.7144 

Cost of installation (avg): $57,000 

Delay Costs 

ADT on Oltorf: 18,894 

18,894 x 365 = 6,896,310 vehicles delayed x 10 years = 68,963,100 vehicles 

Average delay: 2 sec  

68,963,100 x 2 seconds delay = 137,926,200 seconds delay 

137,926,200 / 3600 seconds in an hour = 38,313 hours of delay  

38,313 x $14.14/hour = $541,743 

$57,460 + $541,743 = $599,203 

Benefits 

10 years – 2 non-incapacitating injuries, 1 incapacitating injury  

($500,000 x 2) + $3,500,000 = $4,500,000 

CMF = 0.71 → $1,305,000 

BCR = $1,305,000 / $599,203 = 2.18 

BCR, without delay = $1,305,000 / $57,460 = 22.7 

 

William Cannon Drive and Bluff Springs Road – Austin 

                                                 
44 CMF Clearinghouse, 2021 
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Reduction in Speed Limit, 10% (2500 ft. of William Cannon between I-35 and Elm Creek Drive) 

CMF = 0.7945 

Installation Cost: $135/sign  

Est. signs needed = 5 x $135 = $675 

Delay Costs:  

Travel time increased by 10% 

45 mph is 66 fps 

40 mph is approximately 59 fps  

Travel time over the 2,500 ft segment is about 38 seconds at 66 fps 

Travel time over the 2,500-foot segment is about 42.6 seconds at 59 fps 

4.6 second loss per vehicle 

ADT on William Cannon: 34,131 x 365 days x 10 years x 4.6 second delay = 573,059,490 seconds 
delay 

573,059,490 seconds delay / 3600 seconds in an hour = 159,183 hours delay  

159,183 hours delay x $14.14 per vehicle-hour = $2,250,850 

$2,250,850 + $675 = $2,251,525 

 

Leading Interval 

CMF = 0.8545 

Installation cost: $1750 

Delay Costs 

ADT on William Cannon: 34,131 

ADT on Bluff Springs: 14,352 

AADT: (34,131 + 14,352) x 365 = 17,696,295 x 10 years = 176,692,950 

                                                 
45 CMF Clearinghouse, 2021 
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176,692,950 vehicles delayed x 1 second delay = 176,692,950 seconds delayed 

176,692,950 / 3600 seconds in an hour = 49,081 hours delayed 

49,081 hours x $14.14 (discounted cost of delay over 10 years) = $694,005 

$694,005 + $1,750 = $695,755 

Benefits 

8 non-incapacitating injuries,1 incapacitating injuries, 1 fatality  

(8 x 500,000) + (2 x 3.5m) = $11,000,000 

CMF = 0.85 x $11,000,000 = $1,650,000 or more in benefits 

BCR = $1,650,000 / $695,755 = 2.37 

BCR, without delay = $1,650,000 / $1,750 = 942.85 

 

Manor Road and Susquehenna Ln. – Austin 

Leading Interval  

CMF = 0.8546 

Installation cost: $1750 

Delay Costs:   

ADT on Manor: 16,815 

ADT on Susquehanna (unknown; comparable streets in the area have around 3,000 ADT)  

AADT (16,815 + 3,000) x 365 = 7,232,475 x 10 = 72,324,750 

72,324,750 vehicles delayed x 1 seconds delay = 72,324,750 seconds delayed 

180,811,875 / 3600 seconds in the hour = 20,065 hours delayed  

20,065 x $14.14 (discounted cost of delay over 10 years) = $283,722 

$283,722 + $1,750 = $285,472 

Benefits:  

                                                 
46 CMF Clearinghouse, 2021 
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8 non-incapacitating injuries, 2 incapacitating injuries 

(8 x $500,000) + (2 x $3,500,000) = $11,000,000 

CMF = 0.85 x $11,000,000 = $1,650,000 

BCR = $1,650,000 / $285,472 = 5.78 

BCR, without delays: $1,650,000 / $1,750 = 942.85 

 

Pedestrian Refuge Island – southern and northern crossings (of Manor Road)  

CMF = 0.4447 

Installation cost: $9.80/sq. ft.  

2 @ 80 square feet = 160 square feet 

$9.80 x 160 = $1568  

6 non-incapacitating injuries, 1 incapacitating injury (difference from above: the two others were 
not caused by left-turners and leading intervals could have improved visibility, theoretically) 

(6 x $500,000) + $3,500,000 = $6,500,000 

CMF = 0.44 = $3,640,000 in benefits  

BCR = $3,640,000 / $1568 = 2080 

 

6th Street and Lamar Boulevard – Austin 

Leading Interval  

CMF = 0.95 CMF47 

Installation costs: $1750  

Delay Costs 

ADT on Lamar: 33,757 

ADT on W. 6th: 17,223 

                                                 
47 CMF Clearinghouse, 2021 
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AADT: (33,757 + 17,223) x 365 = 18,607,700 x 10 = 186,077,000 vehicles delayed over 10 years 

186,077,000 vehicles delayed x 1 seconds delay = 186,077,000 seconds of delay  

186,077,000 / 3600 seconds in an hour = 51,688 hours of delay  

51,688 hours x $14.14 (discounted cost of delay over 10 years) = $730,869 

$730,869+ $1,750 = $732,619 

Benefits 

6 non-incapacitating injuries, 1 incapacitating injuries  

($500,000 x 6) + $3,500,000 = $6,500,000 

CMF = 0.85 x $6,500,000 = $975,000 

BCR = $975,000/ $732,619 = 1.33 

BCR, without delays: $975,000 / $1750 = 557.14 
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Appendix B. CRIS Online Hot Spot Analysis Tool’s 
Intersection Evaluations 

All images in this appendix have been obtained from Google Maps. 

Hopkins Street, San Marcos 
Description: Major entertainment corridor in downtown San Marcos, popular with Texas State 
University students. Controlled crosswalks at either end of the block but a lack of pedestrian space 
in front of the bars, no mid-block crossings.  

Recommendations: Eliminate parking in front of bars (and replace with curb extensions), 
create dedicated pedestrian intervals on adjacent blocks to ensure safe access to and from the area 
as well as barriers on any new curb extensions to prevent unauthorized mid-block crossings.  

 
Figure B. 1 Hopkins Street, San Marcos 

Commerce Street & N. St. Mary’s Street, San Antonio 
Description: This intersection sits in the middle of downtown San Antonio, a very high pedestrian-
traffic area for both businesspeople as well as tourists. Both intersecting streets are one-way. 

Recommendations: Dedicated pedestrian interval to give pedestrians more visibility, longer 
pedestrian signal times to handle the volume of pedestrians close to tourist sites and downtown 
businesses, “watch for pedestrians” signs at left turns (as these are two one-way streets, left turns 
are made close to the curb) AND/OR no left/right on red 

https://goo.gl/maps/QBufFdXS3yDvZe1U8
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Figure B.2 Commerce Street & N. St. Mary’s Street, San Antonio 

Zarzamora Street & Culebra Road, San Antonio 
Description: This intersection is in a dense urban neighborhood and is abutted by public transit 
stops and commercial development with numerous driveways. 

Recommendations: Given the width of the street and volume of pedestrian traffic, refuge islands 
and a leading pedestrian interval would be appropriate for this intersection. The ability for VIA 
buses to utilize their own light controls may also help exiting passengers. 

 
Figure B.3 Zarzamora Street & Culebra Road, San Antonio 
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Paisano Drive & Oregon Street, El Paso 
Description: This intersection lies in a commercial corridor near the Mexican border, as well as a 
regional bus terminal, and has higher levels of pedestrian activity. Families (including those with 
young children) will come from Mexico for the day to shop in this area. 

Recommendations: Leading or dedicated pedestrian intervals will help to move larger amounts 
of pedestrians across the intersection without conflict from vehicles. The median can also be 
extended to create a refuge island and decrease the left turn radius (and speed). 

 
Figure B.4 Paisano Drive & Oregon Street, El Paso 

Zarzamora Street & Guadalupe Street, San Antonio 
Description: This intersection lies in a dense urban residential neighborhood with multiple 
schools, commercial buildings, and public transit stations. 

Recommendations: As this intersection is located in a school zone, a dedicated pedestrian cycle 
(in which only pedestrians are allowed to negotiate the intersection) during before- and after-
school hours would be helpful, along with a crossing guard presence. 
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Figure B.5 Zarzamora Street & Guadalupe Street, San Antonio 

Voss Road/Hillcroft Avenue & Westheimer Road, Houston 
Description: This is a very typical intersection for Houston: two wide arterial roads surrounding 
by commercial driveways and high-density apartment complexes. 

Recommendation: Pedestrian refuge islands would be particularly helpful on Westheimer Road 
(the horizontal street), along with dedicated left-turn cycles that preclude the possibility of 
pedestrians legally crossing while cars are making left turns. Elimination of the channelized right 
turn present at the NW corner would also prioritize pedestrian visibility and decrease right-turn 
traffic speeds. 

 
Figure B.6 Voss Road/Hillcroft Avenue & Westheimer Road, Houston 
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Callaghan Road & Ingram Road, San Antonio 
Description: This intersection is bounded by commercial centers, a church, and the entrance to a 
single-family residential neighborhood. A transit station abuts two of the corners.  

Recommendations: A center median with a refuge island would help reduce the amount of 
roadway pedestrians need to cross at once while decreasing the left-turn radius, slowing speeds, 
and discouraging vehicles from cutting corners. Additionally, access management improvements 
could be made to the NE corner, as there are multiple driveways close to the corner.  

 
Figure B.7 Callaghan Road & Ingram Road, San Antonio 

Westheimer Road & Sage Road, Houston 
Description: This intersection is located in a very busy shopping corridor in Uptown Houston. 
Despite the ornamentation of the intersection, this is a very wide crossing, especially on the Sage 
Road axis, which lacks refuge islands.  

Recommendations: Given the heavy volume of traffic here, a leading interval would be useful to 
increase pedestrian visibility. Given that there is a dedicated left-turn cycle, refuge islands would 
also help to split up the crossing of Westheimer Road, especially for slower walkers.  
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Figure B.8 Westheimer Road & Sage Road, Houston 

Riverside Drive & Lancaster Avenue, Ft. Worth 
Description: This section lies in between downtown Ft. Worth and a large area of homeless 
shelters along Lancaster avenue Two sides of the intersection come from limited-access highways.   

Recommendation: A refuge island, coupled with dedicated intervals for pedestrians and left-
turners, will help to minimize conflict between pedestrian and vehicle traffic. Additionally, 
lighting at the refuge islands, lowering speed limits along Lancaster avenue, and clearly posting 
the speed limits could be helpful, as the speed limit is not signed along Lancaster avenue after the 
freeway off-ramp.  

 
Figure B.9 Riverside Dr. & Lancaster Avenue, Ft. Worth 
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Congress Avenue & Cesar Chavez Street, Austin 
Description: This intersection lies at the heart of downtown Austin, between the central business 
district and the South Congress Avenue bridge, a popular tourist attraction. 

Recommendations: Improving lighting conditions along the channelized right turn, as well as 
requiring right-turning vehicles to stop for pedestrians, rather than yield, would help to slow down 
speeds at this crossing. Additionally, given the high volume of pedestrian traffic, a dedicated 
pedestrian interval would help to keep pedestrian and vehicle traffic separate, especially during 
the frequent special events that downtown Austin sees.  

 
Figure B.10 Congress Avenue & Cesar Chavez Street, Austin 
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Appendix C. Vehicle Make/Model Obscurity 

A preliminary hypothesis was considered postulating that a vehicle’s shape or type affects 
pedestrian crash severity. CRIS data from the 2010–2019 analysis period reveals that pickup 
vehicles are associated with more fatal pedestrian-related crashes than passenger cars, even though 
cars are represented in approximately twice as many crashes as pickup trucks, as shown in Figure 
C.1.

a) Pedestrian crash severity by vehicle body type

b) Percentage of pedestrian crashes by vehicle type
Figure C.1. Analysis of vehicle type relative to pedestrian crashes 

The analysis of the impact location, shown in Figure C.2, suggests that this factor also affects the 
severity of the pedestrian crash. Impacts in the front areas are significantly more frequently 
observed than other locations. More than half of all crashes have a front impact location. The 
undercarriage is the most dangerous location, with nearly 30% of these crashes ending in a fatality, 
although the number of crashes with this type of impact is low (less than 1%).  
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a) Pedestrian crash severity by impact location 

 
b) Percentage of pedestrian crashes by impact location  

Figure C.2. Analysis of impact location relative to pedestrian crashes 

Percentage Obscured 
Head injuries are the dominant cause of fatality, followed by chest injuries (Ruikar, 2011). The 
effect of the vehicle front-end shape suggests that different vehicle types have different effects on 
the impact to the head and chest, as shown in Figure C.3. In efforts to characterize vehicle type’s 
effect on pedestrian crash severity, a simple measurement of “vehicle obscurity” was devised. This 
measurement is expected to vary between different vehicle types, covering the area of the vehicle 
that would most likely collide with the head and chest of a pedestrian. As such, through regression 
analysis, it can be a possible predictor for severity. For these preliminary efforts, vehicle obscurity 
was obtained for about 60% of all vehicle makes/models involved in Texas pedestrian crashes, 
accounting for 66% of the total US VMT. 
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Figure C.3. Head dynamic kinematics in collisions with different vehicle types (Han et al., 2012) 

The vehicle obscurity “%obscured” was estimated as the percentage of a vehicle image occupied 
by black pixels using a scaled profile picture of each vehicle and a selection of a 7-foot-square 
area, as exemplified in Figure C.4. On average, the vehicles analyzed have 49.8% obscurity with 
a standard deviation of 5.8%. Table C.1 shows descriptive statistics of the estimates. 

 
Figure C.4 Vehicle obscurity measure example for a pickup truck 

Table C.1. Percentage obscure descriptive statistics 
Description Estimates 

Minimum 36.7% 
Median  44.6% 
Mean  49.8% 
Standard Deviation 5.8% 
Maximum 61.0% 

 
Figure C.5 provides a description of the distribution of the percent obscured by injury severity and 
vehicle type. The results suggest that, on average, a higher front percent obscured is related to an 
increase in fatal accidents. The distribution by vehicle type suggests that pickup vehicles have the 
highest values, followed by vans, SUVs, and passenger vehicles.  
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a) Distribution of percentage obscured by injury severity

b) Distribution of percentage obscured by vehicle type
Figure C.5. Analysis of front percentage obscurity relative to crash severity and vehicle type 

Most notably, vehicle obscurity for pickup trucks and SUV is higher than for sedans. For example, 
a Ford F250 pickup truck has a vehicle obscurity of 57.1%, while a Honda Accord sedan has a 
vehicle obscurity of 42.9% (refer to Figure C.6). Figure C.7 shows a summary of vehicle 
makes/models along with vehicle representation on Texas roadways in terms of VMT, the vehicle 
obscurity measure, and percentage of pedestrian-related crashes that result in fatalities and severe 
injuries. 

a) Ford F250
%Obscured = 57.1% 

b) Honda Accord
%Obscured = 42.9%

c) Acura Legend
%Obscured = 37.7% 

Figure C.6. Examples of specific vehicles’ obscurity estimates 



154 

Figure C.7. Vehicle make/model characteristics pertaining to fatalities and severe injuries 

Modeling Results 
It is possible to investigate the use of vehicle obscurity and other factors such as impact type and 
location in the prediction of pedestrian crashes’ severe injury or fatality likelihood. Injury severity 
models were constructed using ordered probit (OP) and heteroskedastic ordered probit (HOP) to 
understand the effects of different variables. Results are shown in Table C.2 along with a marginal 
effect analysis in Table C.3. A summary of the main results is as follows: 

• A high front percentage obscured generally increases pedestrian severity.

• Newer car models generally lead to more severe injuries.

• An increase of 19.5% (3.36 standard deviations) in the front percentage obscured increases
the probability of a pedestrian being killed or seriously injured by 0.43%.

• The front and top impact locations increase pedestrian severity compared to impacts on the
back end (5 to 11%).

• Left front impacts increase severity compared to the right front.

• Undercarriage damage area collisions are significantly more severe.
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• Compared to back-end collisions, undercarriage damage leads to a 36% increase in the
probability of being severely injured or killed.

• Pedestrian and driver intoxication is the most significant variable. The probability of
pedestrian fatality in these crashes is 69% greater.

• The severity increases with the pedestrian’s age (vulnerability) and decreases with the
driver’s age (experience).

• Male pedestrians experience more severe injures compared to women.

• Male drivers tend to cause crashes with higher severity of injuries.

• Hit-and-runs result in higher severity of injuries.

• Compared to city streets, crashes on interstate, US state, and farm-to-market highways are
more severe.

• Interstate crashes increase the probability of being killed or seriously injured by 14.3%.

• County road and non-traffic ways tend to have crashes with lesser injury  severity.

• Irregular geometry and speed increase the likelihood of severe pedestrian injuries.

• Crashes at intersections are more likely to be less severe.

• Areas with traffic control are less likely to be locations of severe crashes.

• Urban areas tend to have less severe pedestrian crashes.

• The probability of crashes in the early morning hours leading to death or serious injury is
5.5% greater compared to night hours.

Summary and Future Work 
An exploratory creation of OP and HOP models shows promise for predicting injury severity using 
both vehicle obscurity and model year. Both of these demonstrated a significantly positive 
relationship with increased injury severity; in addition, undercarriage crash damage was closely 
associated with severe injuries. 

This exploration was not pursued further within this project, which prioritizes reducing pedestrian 
crash likelihood through roadway treatments. However, further work, especially in formalizing the 
model and validating results, could significantly aid in policy creation around and general 
awareness of how vehicle design impacts pedestrian crash outcomes. 
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Table C.2. Injury severity models 
OP HOP 

Estimate p-value Estimate p-value
Vehicle Information 
Front percentage obscured 0.0055 0.0000 * 0.0071 0.0000 * 
Model year 0.0004 0.0000 * 0.0005 0.0000 * 
Impact Location 
Front end concentrated & distributed 0.2456 0.0000 * 0.2733 0.0000 * 
Front end left/right damage partial 0.3325 0.0000 * 0.3793 0.0000 * 
Right back/side & top/side angular -0.0886 0.0243 * -0.0548 0.2319 
Right front quarter angular 0.0451 0.2547 0.0768 0.0966 
Left back/side & top/side angular -0.0436 0.3025 0.0006 0.9911 
Left front quarter angular 0.1301 0.0016 * 0.1791 0.0002 * 
Undercarriage damage 0.9731 0.0000 * 1.2897 0.0000 * 
Top damage 0.3443 0.0024 * 0.3794 0.0028 * 
Unknown 0.0202 0.5459 0.0325 0.3937 
(Reference type = Back end) 
Pedestrian & Driver Characteristics 
Pedestrian age 0.0040 0.0000 * 0.0043 0.0000 * 
Pedestrian gender (Male = 1) 0.0328 0.0142 * 0.0355 0.0298 * 
Driver age -0.0013 0.0004 * -0.0015 0.0009 * 
Driver gender (Male = 1) 0.0436 0.0012 * 0.0548 0.0010 * 
Pedestrian/driver intoxicated (Yes = 1) 1.7354 0.0000 * 3.7812 0.0000 * 
Hit-and-run (Yes = 1) 0.0987 0.0006 * 0.0732 0.0532 
Roadway Type 
Interstate 0.3418 0.0000 * 0.4591 0.0000 * 
U.S. State 0.1906 0.0000 * 0.2361 0.0000 * 
Farm to market 0.1528 0.0000 * 0.1749 0.0000 * 
County road -0.0904 0.0283 * -0.1342 0.0199 * 
Non-traffic way -0.1663 0.0000 * -0.2059 0.0000 * 
Other (e.g., tollway, toll bridges) 0.0945 0.3703 0.1374 0.3089 
(Reference type = City streets) 
Road Geometry & Speed 
Straight grade 0.1648 0.0000 * 0.2128 0.0000 * 
Curved 0.2199 0.0000 * 0.2755 0.0000 * 
(Reference type = Straight & level) 
Intersection (Yes = 1) -0.3418 0.0000 * -0.2514 0.0000 * 
Speed limit (mph) 0.0103 0.0000 * 0.0110 0.0000 * 
Control Type 
Traffic sign -0.1099 0.0000 * -0.1353 0.0000 * 
Traffic signal -0.1917 0.0000 * -0.2174 0.0000 * 
Other (e.g., human control, rail gate) -0.0444 0.2062 -0.0479 0.2364 
(Reference type = No control) 
Area Population 
Rural 0.0826 0.0031 * 0.1278 0.0013 * 
Small town (500 - 100k) 0.0854 0.0000 * 0.1061 0.0000 * 
Large town (100k - 250k) 0.0690 0.0003 * 0.0878 0.0001 *
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OP HOP 
(Reference type = Urban > 250k) 
Crash Time 
Early morning (12 AM to 6 AM) 0.0928 0.0007 * 0.1673 0.0000 * 
Morning (6 AM to 12 PM) -0.0368 0.0892 -0.0539 0.0432 * 
Afternoon (12 PM to 6 PM) -0.0469 0.0280 * -0.0555 0.0324 * 
Reference (Night from 6 PM to 12 
AM) 
Lighting Condition 
Dark lighted 0.1199 0.0000 * 0.1303 0.0000 * 
Dark not lighted 0.3092 0.0000 * 3.75E-01 0.0000 * 
(Reference type = Daylight) 
Threshold Parameters 
μ1 1.3429 0.0000 * 1.6294 0.0023 * 
μ2 2.4319 0.0000 * 2.9940 0.0023 * 
μ3 3.3754 0.0000 * 0.4088 0.0023 * 
Model Fit Statistics 
Log-Likelihood -34,920 -34,495
McFadden's R2 0.0944 0.1055 
Akaike information criterion (AIC) 69,922 69,138 
χ2 Likelihood ratio test (LRT) 849.40 0.0000 * 
Sample size 31,772 31,772 
*Note: conditions to reject the null hypothesis with a 95% confidence level. 
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Table C.3. Marginal Effects (HOP) 

    
No  Injury Possible 

Injury 

Non-
Incapacitating 

Injury 

Suspected 
Serious 
Injury 

Killed 

Vehicle Information             
Front percentage obscured  * -0.05% -0.15% 0.01% 0.13% 0.00% 
Model year * 0.00% -0.01% 0.00% 0.01% 0.06% 
Impact Location             
Front end concentrated & distributed   -1.04% -5.49% -1.71% 4.76% 3.48% 
Front end left/right damage partial   -1.60% -7.65% -1.98% 6.61% 4.62% 
Right back/side & top/side angular   -0.12% 1.17% 1.06% -1.13% -0.97% 
Right front quarter angular   -0.53% -1.61% 0.12% 1.37% 0.66% 
Left back/side & top/side angular   -0.12% -0.02% 0.27% -0.01% -0.12% 
Left front quarter angular   -1.10% -3.72% -0.07% 3.18% 1.71% 
Undercarriage damage   -3.27% -18.55% -14.38% 11.43% 24.77% 
Top damage   -3.09% -9.37% 3.18% 7.65% 1.64% 
Unknown    -0.13% -0.67% -0.17% 0.59% 0.38% 
(Reference type = Back end)             
Pedestrian & Driver Characteristics             
Pedestrian age * -0.02% -0.09% -0.02% 0.08% 0.05% 
Pedestrian gender (Male = 1)   0.46% -0.72% -1.60% 0.77% 1.08% 
Driver age * 0.01% 0.03% 0.00% -0.03% -0.01% 
Driver gender (Male = 1)   -0.26% -1.15% -0.19% 1.00% 0.60% 
Pedestrian/driver intoxicated (Yes = 1)   -3.83% -27.73% -32.41% -5.09% 69.06% 
Hit-and-run (Yes = 1)   0.96% -1.42% -3.15% 1.23% 2.38% 
Roadway Type             
Interstate   -0.87% -7.97% -5.45% 6.29% 8.00% 
U.S. State   -0.33% -4.53% -2.88% 3.91% 3.83% 
Farm to market   -0.61% -3.47% -1.26% 3.01% 2.32% 
County road   0.96% 2.84% -0.29% -2.39% -1.10% 
Non-traffic way   0.85% 4.47% 0.85% -3.92% -2.25% 
Other (e.g., tollway, toll bridges)   -0.04% -2.64% -2.02% 2.29% 2.40% 
(Reference type = City streets)             
Road Geometry & Speed             
Straight grade   -1.99% -7.14% -0.53% 6.14% 3.53% 
Curved   -2.39% -9.11% -1.22% 7.86% 4.87% 
(Reference type = Straight & level)             
Intersection (Yes = 1)   1.27% 5.41% 0.53% -4.68% -2.54% 
Speed limit (mph) * -0.05% -0.23% -0.04% 0.20% 0.12% 
Control Type             
Traffic sign   0.91% 2.85% -0.18% -2.42% -1.17% 
Traffic signal   1.42% 4.63% -0.22% -3.93% -1.90% 
Other (e.g., human control, rail gate)   0.12% 1.02% 0.41% -0.91% -0.63% 
(Reference type = No control)             
Area Population             
Rural    1.83% -2.46% -5.65% 1.83% 4.45% 
Small town (500 - 100k)   0.73% -2.07% -3.18% 1.87% 2.66% 
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No  Injury Possible 

Injury 

Non-
Incapacitating 

Injury 

Suspected 
Serious 
Injury 

Killed 

Large town (100k - 250k)   -0.62% -1.85% 0.18% 1.56% 0.73% 
(Reference type = Urban > 250k)             
Crash Time             
Early morning (12 AM to 6 AM)   -0.23% -3.24% -2.03% 2.82% 2.68% 
Morning (6 AM to 12 PM)   0.26% 1.14% 0.18% -0.99% -0.58% 
Afternoon (12 PM to 6 PM)   0.21% 1.17% 0.30% -1.02% -0.66% 
Reference (Night from 6 PM to 12 
AM)             
Lighting Condition             
Dark lighted   -0.20% -2.61% -1.49% 2.32% 1.98% 
Dark not lighted   -1.29% -7.18% -2.91% 6.12% 5.26% 
(Reference type = Daylight)             
* Note: continuous variables include the effect of one standard deviation change. 
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Appendix D. CR-3 Training Results 

CR-3 forms are instrumental in facilitating the collection and filing of information for each 
reported crash in Texas. TxDOT needs accurate CRIS data for good analysis, appropriate funding, 
and public information campaigns. For each reported crash, the peace officer or other qualified 
crash reporter that visits the crash site to report it fills out a CR-3 form. While the CR-3 form 
requires the entry of narrative text to describe the crash, as well as a sketch depicting an overhead 
view of vehicle positions and movements that contribute to a crash, most of the CR-3 involves 
entering distinct pieces of information into a series of fields, including a number of fields that 
request numeric codes that signify categorical, predefined answers. 

Because it is a high priority for TxDOT to store most of the contents of CR-3 fields in a database 
for future analysis, it is important to ensure a high degree of accuracy. Much of this accuracy 
comes from a consistent understanding among all who are qualified to fill out CR-3 forms. For 
example, for the “At Intersection” field to be trustworthy in queries, all personnel should have a 
common understanding of what exactly an “intersection-related crash” is, including where to 
delineate an intersection on roadways. To address the most common mistakes seen in reporting, 
TxDOT offers a free 2-hour interactive training class called “On the Road to Zero: How to Best 
Complete a Texas CR-3” that covers a number of key factors in consistently filling out a CR-3. 

Researchers have found that this training is instrumental for them in properly interpreting fields 
found within the CRIS database. Not only do researchers better understand the purpose of various 
fields, they also have realistic ideas on where inconsistencies caused by variations in understanding 
or common mistakes may occur within crash records. Researchers also learn the data entry and 
cleaning process that TxDOT utilizes when CR-3 submissions are processed, and how the CRIS 
“interpreted fields” (or those that are derived from narrative, drawings, and other information) are 
provided. 

These are key takeaways researchers have noted from attending the training: 

Ground Rules 

• By law, officers must report within 10 days to TxDOT. But many agencies have a close-
of-business-day or next-day requirement. Most reports are done offsite. TxDOT also 
provides an online app for CRIS reports (called “CRASH”), to make reporting and editing 
more accessible. Every report is reviewed by TxDOT staff. 

• When a CR-3 form is coded and analyzed by TxDOT, it is subjected to a series of business 
rules to check for correctness and consistency. If flags arise, the officer is informed of these 
and is requested to submit a supplemental report to correct those flags. When such a request 
is issued, the report has the “Open ETL” status. 
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• Fatalities must have occurred within 30 days of a crash. A 31-days-post-crash death cannot
be labeled as a fatal crash.

• Non-collision events are reportable.

• For fields that allow for numeric, categorical entry (e.g., contributing unit factor), the
option to enter “98 Other” is provided to cover situations where no other option is
appropriate, and explanation must be put into the narrative. Officers are strongly
encouraged to only use “98 Other” as a last resort, as it greatly reduces the usefulness of
the crash record in the database.

• There are about 33,000 crashes that are reported each year in Texas (leaving the possibility
of many others not being reported or recorded). Average number of reports per eligible
officer per year is 1. This underscores the challenge for all officers to fill out the CR-3 form
properly when many are reporting very few crashes per year.

Locations 

• In cases where the crash reporter does not know the date and time (or even exact location)
of a crash, the discovery time and location should be reported.

• Highway number is preferred over the street name.

• To distinguish between a frontage road and mainline, the “street description” field should
be used, as well as “roadway part.”

• A crash is only to be regarded as “at intersection” if the crash occurs inside the “box” of
an intersection. If the crash occurs in a separate right-turn yield section of roadway near an
intersection, or in a roundabout, this is not to be regarded as “at intersection”

• If the crash even partly occurs on a public roadway, the “private drive” box should not be
checked. A crash is to be regarded as “on a private drive” if the crash originated on a private
drive (including a driveway or parking lot).

• A crash originating in a publicly owned parking lot, such as at a state university or
government building, should be marked as occurring “on a private drive.” The main
distinction is that a public right-of-way is not involved in the crash.

• Geographic coordinates (e.g., GPS lat/lon) are not often reported by officers. The officer
provides distances to mile markers, or nearby intersections or addresses. There are 33,000
officers in Texas, and many don’t have internet access. As a result, they can’t locate the
crash sites with GPS unless they use their own phone, which then opens them up for FOIA
requests.
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• Crash locations are often pinned to the centerline, because roads’ alignments are altered, 
roads are widened, etc., which would require “re-pinning” the crash, a time-consuming task 
that is not undertaken. This also reduces the risk that crash locations would be lost as GIS 
layers are updated year by year. This project’s researchers devised a process for improving 
this that is documented in Appendix E (“Crash Direction” tech doc), but the process has 
not yet been implemented. 

Units 

• All vehicles involved in a crash, including parked and hit-and-run vehicles, are to be 
recorded as “units.” 

• It is usual but not necessary that Unit #1 is what the officer suspects to be the “at fault” 
vehicle. However, Unit #1 must be a vehicle in motion, never parked. Unit #1 also cannot 
be a train. 

• People in a parked vehicle should not be listed as a driver (even if they’re in the driver’s 
seat), since they’re not driving at the time. 

• Everyone’s address must be provided. Registered owner’s address can be retrieved via the 
license plate in the Texas Law Enforcement Telecommunications System (TLETS). 

• VIN numbers preceding 1980 are shorter than the VIN numbers seen today. 

• There are a number of subtleties around proper vehicle classification: 

ο A truck (which must be marked as either a medium-duty truck or heavy-duty truck, 
MDT or HDT respectively) is to be reported as a different vehicle type than a 
pickup truck (<8500 GVWR, a light-duty truck or LDT). 

ο A FedEx delivery vehicle is a MDT, but it should be listed as a “box truck.” 

ο Any school transport should be coded as a “yellow school bus.” 

ο If an emergency response vehicle is involved in a crash, the CR-3 field having to 
do with “emergency response vehicle” should only be checked if the emergency 
response vehicle was actually en route to an emergency. 

• Items involved in a collision that don’t have an owner should not be listed as units. But, 
they should be described in the narrative. For example, a tree in a right-of-way or an 
alligator that crawled from a nearby swamp don’t have owners. Correspondingly, items 
that do have owners (such as a tree that is a prominent fixture in a property owner’s front 
yard or a pet alligator) should be listed if there is consequential monetary damage to the 
owner. 
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• An “automation” field now exists in the CR-3 form. This is appropriate for vehicles that 
have some degree of driving automation enabled at the time of the crash. 

What to Report 

• The training offers a number of uncommon use cases in order to exemplify correct 
reporting. In some instances CR-3 reporting is not necessary, e.g., when a crash occurs off 
of a roadway. If a crash occurs off the roadway with a train, and the train hits a parked 
vehicle, it is not reported in a CR-3, or it is classified as non-reportable by the agency at a 
later time. 

• Tractors with trailers should not list the trailer as a separate unit (so the commercial driver 
doesn’t have his/her record suggest two crashed units by him/her). It is to be regarded as 
an added towed unit that is part of the main (power) unit. 

• If a vehicle that is parked on top of something else is hit (e.g., a flatbed trailer), that vehicle 
is considered property, not a separate driving unit. 

Any records that can’t be properly coded are put into an “unprocessed queue” for review 
by TxDOT. The officer should submit a supplement, and the report will be kept for 10 
years. (An example that would cause this: a parked car is hit and mentioned in the narrative, 
but not entered as a separate unit.) 
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Appendix E. Datasets and Technical Documentation 

Technical documentation outlining data processing aspects of the project, including database 
creation, data importing, algorithms, data table creation, etc., are provided as Markdown 
documents hosted in the GitHub “ped-crash-techvol” repository. This is titled “Texas Ped Crash 
Tech Volume Pack.” This is also where datasets produced through the course of the project that 
are to be publicly shared are referenced, including the “Texas Top 100” most crash-prone 
corridors, as well as the Python code that created them. The following is a reprint of the 
repository’s “readme” file. All contents are accessible at https://github.com/ut-ctr-nmc/ped-crash-
techvol 

Introduction 
This repository contains technical documentation and source code that were used to analyze data 
from TxDOT's Crash Records Information System (CRIS) and other sources to determine causes 
of pedestrian-related crashes, and to assist in determining the best roadway treatments for 
mitigating the most severe pedestrian injuries and fatalities. While this was a project using Texas 
data, the processes and results may be applicable to other locations. 

Another repository “peds-midblocks-intersections” (https://github.com/ut-ctr-nmc/peds-
midblocks-intersections) had been created that contains the results of the methods described for 
finding intersections and 0.1-mile resampled roadway segments from the TxDOT Roadway 
Inventory. 

This documentation was written by Kenneth Perrine, Research Associate at Center for 
Transportation Research at The University of Texas at Austin. Licensed under the MIT License. 

Contents 
Database Preparation 

• Database Functions: Outlines database tables, queries and access 

• Importing Major Data Files: Importing CRIS Share and TxDOT Roadway Inventory into 
the database 

• Crash Statistics for 2010–2019: Summary queries for crash data 

• Other Lookup Tables: Preparing for queries around vehicle make/model 

Initial Crash Matching and Analysis 

• Crash Stats Segments Breakdown: Queries for summarizing crash-prone areas of TxDOT 
Roadway Inventory data 

https://github.com/ut-ctr-nmc/ped-crash-techvol
https://github.com/ut-ctr-nmc/ped-crash-techvol
https://github.com/ut-ctr-nmc/peds-midblocks-intersections
https://github.com/ut-ctr-nmc/peds-midblocks-intersections
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• Clustering: A first attempt at grouping clusters of crashes around intersections for hotspot 
analysis 

Roadway Inventory 

• Uniform Segments: First round of resampling TxDOT Roadway Inventory to 1-mile 
segments, plus crash-matching 

• 0.1-mile Uniform Segments: Second round of resampling 0.1-mile segments plus crash-
matching 

• Intersection: Strategies for mapping intersections to TxDOT Roadway Inventory, 
including the use of OpenStreetMap 

• Multi-Year Intersections: Processing multi-year AADT estimates from TxDOT Roadway 
Inventory for intersections 

Subsequent Analysis 

• BCR Corridors: Documents the final “Top 100 worst corridors” ranking strategy used in 
the project 

• Analysis that Includes Sidewalks: Further statistics on Roadway Inventory plus use of 
sidewalk data 

Supporting Activities 

• GitHub Preparations: Instructions for preparing the “peds-midblocks-intersections” 
(https://github.com/ut-ctr-nmc/peds-midblocks-intersections) dataset 

• VIN Testing: Additional analysis that uses VIN numbers as recorded in CRIS 

• Crash Direction: Documents future work that would be needed to more positively 
position crashes relative to roadway geometry 

 

https://github.com/ut-ctr-nmc/peds-midblocks-intersections
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