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Chapter 1. Introduction 
Data analytics, automation, artificial intelligence (AI), and machine learning (ML) are changing 
transportation operations and service delivery. As the transportation enterprise becomes more 
data-driven and automated, there is the potential to realize greater safety and efficiency 
benefits for the traveling public (Merrefield, 2019). With the availability of richer, vast streams 
of data from Intelligent Transportation Systems (ITS), smart vehicles, connected infrastructure 
sensors, mobile phones, and more, the expected impacts on the ability to better manage 
roadways are considerable.  

Given the volume and heterogeneity of currently available transportation data, traditional data 
analysis tools are often not sufficient to realize its potential. AI can drastically increase the 
ability of agencies to derive value from collected data. AI is a term that defines the design of 
computer systems or agents that can receive inputs from the environment and perform actions, 
behaving similarly to human agents (Rusell et al., 2016). From uncovering patterns in the 
system conditions that may lead to designing better operational strategies, to supporting 
enhanced decision making in complex situations, AI techniques may transform existing 
practices (FHWA, 2018). However, successfully selecting and implementing an AI approach for a 
specific use case requires careful consideration. Using out-of-the-box techniques without a 
proper understanding of the underlying assumptions and limitations may not lead to the 
expected results. Further, it is important to consider AI in the context of other modeling and 
analysis techniques available in the transportation industry, understand how they may 
complement each other, and assess when it is appropriate or beneficial to choose AI over other 
methods. The Performing Agency has conducted previous research that suggests that using a 
more complex model does not always guarantee better results (Boyles and Ruiz Juri, 2019). 

AI techniques have been available since the 1950s, and applications in the transportation 
domain have been explored in the literature (Nguyen, Hoang, et al., 2018; Abduljabbar, Rusul, 
et al. 2019, Sadek, 2007, Zheng et al. 2008). However, advances in computing and 
communications along with an unprecedented availability of traffic data make the study of AI 
particularly relevant today. 

The goal of this project is to summarize recent advances in AI as they are relevant to the 
receiving agency, and to demonstrate the potential benefits of these techniques through 
impactful use cases. Given the broad range of potential applications of AI, focus will be placed 
on those that may support Integrated Corridor Management (ICM). ICM is a suite of growing 
strategies to address roadway management and dependencies, and it is becoming more 
powerful as ITS data grows. The combination of ICM strategies with new data will present 
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opportunities to better manage traffic congestion and more effectively move people and goods 
through metropolitan networks and the system as a whole. Proactive ICM strategies enabled 
through AI may allow public agencies to use mechanisms such as managed lanes, alternate 
routing, and dynamic traffic control to achieve significantly greater levels of utilization of the 
existing roadway capacity, improve travel times, enhance safety, and increase reliability of 
travel. Some of the expected benefits from this project include: 

Manage Data Better. Artificial intelligence is a complex and rapidly evolving 
field. Equipped with an understanding of basic concepts, data management 
systems, and advanced techniques, TxDOT can integrate artificial 
intelligence best practices into its Enterprise Information Management 
strategy. 

Map AI Techniques to Transportation Challenges. By connecting 
transportation challenges directly to a suite of AI techniques, TxDOT will 
prioritize areas of high impact such as congestion relief or incident 
management for further development and investment. 

Leverage Data to Gain Insights. TxDOT manages a significant amount of data 
and has the opportunity to apply artificial intelligence to predict commuter 
travel times, improve real-time decision-making for major events such as 
hurricane evacuations, or move freight more efficiently. 

Improve Integrated Corridor Management. Many urban areas in Texas are 
facing gridlock, and TxDOT can apply artificial intelligence techniques to 
coordinate operational decisions across state and local networks and 
measure the quantifiable benefits for Texas travelers. 

Learn and Scale. Starting with a basic application such as integrated corridor 
management offers TxDOT the ability to learn in a small-scale environment 
before expanding to a larger scope. As a result, TxDOT can maximize the 
value of its investment and decide how to guide future activities. 

Data generated from Intelligent Transport Systems combined with advances in artificial 
intelligence will almost certainly advance ICM goals. Data complexity and volume will increase 
as ITS continues to develop, and that trend will make competence in the latest data analysis 
techniques even more crucial than it is today. Deep learning techniques are the state of the art 
when it comes to data analysis; they outperform all other methods at every machine learning 
task and AI task, and, on top of that, offer more capabilities. It will be essential to have 
experience with deep learning techniques in order to find patterns and features in data that will 
support more efficient and connected transportation systems, as other methods may not be 
able to keep up with the complexity of the data. 

In order to realize the benefits of the latest in AI and machine learning research, it’s important 
to understand the concepts that underlie AI tools, as well as the availability of alternative 
methods that AI may complement and/or replace. It is also critical to be aware of the 
characteristics, potential, and limitations of available data sources. The Performing Agency has 
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expertise in both the use of large and complex transportation data sets and the implementation 
of AI techniques. By learning from and optimizing an experience with one experimental AI ICM 
application, we can determine how to approach future applications, how many such 
applications we need, and what other infrastructure and technical improvements our system 
needs before broader application. As promising as deep learning techniques are, it’s important 
to establish a system that can support complex AI applications end to end, so that they produce 
smart, actionable results to the right people.   

With the maturation and deployment of ITS, opportunities will arise to investigate and prove 
the usefulness of artificial intelligence, machine, and deep learning for ICM and applications 
such as traffic-flow forecasting, traffic signal control, automatic vehicle detection, traffic 
incident processing and analysis, travel demand prediction, autonomous driving, route 
diversion and driver awareness, and driver behavior.  

Value to TxDOT: With the significant volume of data being generated in transportation today 
and the advancements in data science, TxDOT has an opportunity to leverage the tools and 
techniques of artificial intelligence in order to remain at the cutting edge. In particular, there is 
an opportunity to apply artificial intelligence to complex transportation problems like 
congestion, traveler information, emergency response planning, and safety. These applications 
will enable TxDOT to find optimal solutions for making transportation systems and technologies 
more reliable and efficient.  

The following chapters cover the activities conducted for this project, which include a literature 
review, a workshop, a data survey, the development of three prototype ML models for four 
high priority use cases, and the field testing of one of the prototyped models. The latter 
included the development of a framework to streamline data access, archiving, and results 
sharing. Initial tasks were exploratory in nature and led to a better understanding of the current 
and prospective uses of ML in transportation, corresponding data needs, and specific use cases 
of interest to TxDOT. Pathways to implementation are proposed for several of the prototyped 
models, and we also include the results of a TxDOT survey intended to provide insights into the 
development of a strategic data collection plan. 
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Chapter 2. Literature Review 
Advances in computing and information technology are making possible more high-
performance computing and applications in artificial intelligence (AI) which could offer many 
benefits to the transportation sector. These benefits include optimizing signal phasing and 
timing plans, understanding travel behavior, detecting incidents and managing response 
strategies, discovering and predicting travel trends, and sharing critical information in network 
users in real time.  

To better understand the opportunities to realize these benefits, the research team in 
collaboration with TxDOT seeks to understand the capabilities, applications, and tools that 
enable the utilization of AI. The research team and TxDOT have developed a project plan and 
timeline that begins with a knowledge discovery phase and the development of this chapter 
and literature review, which will lead to the development of a Prospectus of AI in 
Transportation. The literature review presents a broad overview of subtopics related to the 
application of AI in transportation and is organized into the following sections: 1) the state of 
AI, 2) transportation data sources, 3) strategic initiatives, 4) applications of AI in transportation, 
and 5) technical tools and platform for AI applications. 

Information from the literature review was used to form the basis of the Prospectus of AI in 
Transportation. The Prospectus will serve as a reference for transportation system owners and 
operators when exploring AI solutions to transportation network challenges, selecting software 
tools to be used in-house, or evaluating commercially available platforms. It will also be of 
assistance when assessing potential benefits of collecting and archiving transportation data. 
The latter may also be of interest to information and technology teams, which may use the 
Prospectus to inform some decisions related to data sharing and accessibility, and potentially 
data services to be offered to public agency partners and across departments.  

2.1. The State of Practice in Artificial Intelligence 
Artificial intelligence can be loosely interpreted as a process to incorporate human intelligence 
into machines, and it is an entire field of study that encompasses simple logic to far more 
complex statistical deep learning. AI ranges from simple “if-then” statements that are hard-
coded and compiled for performing very narrow tasks to complex statistical models mapping 
raw sensory data into symbolic categories (Copeland, 2016).  

AI underlies many existing technologies, including virtual assistants and driverless vehicles. Two 
popular AI techniques include deep learning (DL) and machine learning (ML). Figure 1 shows the 
relationship among AI, ML, and DL. ML techniques train computers to parse and discover 
hidden patterns within data and make actionable predictions without explicit programming. DL 
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enables applications that require fast processing and discovery on big data sources such as 
video processing and autonomous driving. These techniques hold new potential to provide 
insights for understanding the systematic design of transportation systems and pinpointing key 
situations that have propagating effects on entire networks.  

Figure 1. Relationship of AI, ML, and DL (Argility, n.d.). 

Robotic process automation is typically rule-based and therefore a more primitive form of AI. It 
is realized in the form of business process automation software that can dramatically reduce 
the time spent on traditional workflows in a user interface such as creating or updating 
accounts, appointments, or other essential but tedious tasks. A promising emerging application 
of robotic process automation could encompass data restructuring, as increasingly complex but 
highly repetitive tasks can be automated. Another prominent subclass of AI contains the 
branches of natural language processing and natural language generation. These functional 
classifications rely on some combination of human speech recognition, natural language 
understanding that extracts information from written text, natural language generation that 
can produce narratives, and speech synthesis that speaks or reads out text. Advances in this 
branch of AI provide the backbone for simple, rule-based chatbots that can provide generalized 
responses to public inquiries, as well as more intelligent virtual agencies that can contextualize 
human questions and responses and respond specifically and appropriately. Computer and 
machine vision, a relatively computationally expensive class of AI, relies on images and video 
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captured by cameras. Algorithms to process these images enable outcomes such as object 
detection. For instance, traffic counts through an intersection can be estimated by identifying 
and tracking vehicles’ trajectories through that intersection. Similarly, sound classification and 
audio recognition require more computational power on the back end and the installation of 
mobile or fixed sensors. However, such infrastructure can enable unprecedented quality of 
environmental monitoring, automatically identifying and classifying emergency or unusual 
events with new accuracy and speed. A synergistic but independent branch of AI is predictive 
and prescriptive analytics. This branch is built upon statistical algorithms that are becoming 
increasingly accurate at forecasting the probabilities of an array of physical, behavioral, and 
economic outcomes. At the predictive level, this can enable predictive maintenance and more 
cost- or time-efficient scheduling of resources to achieve the same or better outcomes in long-
run infrastructure conditions. At the prescriptive level, a vast array of scenarios can be 
evaluated under different policy and operational decisions in order to assist decision-makers in 
identifying a context-sensitive, feasible course of action. 

Advanced approaches to analyzing and understanding data, in order of increasing specificity, 
are ML, DL, and artificial neural networks (ANN). These fields and models underpin all of the 
most advanced realizations of the AI classifications described above. Computer scientists use 
these types of models and enormous quantities of data to observe and classify features of 
physical objects, the built environment, or spatiotemporal patterns and processes, and abstract 
them to recognize when a new data input is not identical to previously observed ones, but of 
the same class. The new level of abstraction achieved algorithmically is what enables counting 
vehicles, which are not identical in shape or size, understanding speech or text written by 
different individuals, or interpreting and assigning risk to different environmental signals. 

More details on the capabilities and identification of the overlap between ML and DL are 
provided below.  

2.1.1. Machine Learning 
ML methods involve programing computers to learn semi-autonomously from data inputs in 
such way that they can make inferences and produce highly accurate predictions. Some of the 
most common ML techniques are described in the following paragraphs. 

Supervised learning involves the use of human input—often in the form of classified images—to 
“teach” a machine how to identify or treat certain objects like images or words. For example, a 
human might label a string of images as “car” if the series contains a car and “not a car” if it 
doesn’t contain a car. The computer can then analyze an image and guess between car and not 
a car and learn immediately if its strategy resulted in a success. This process allows the machine 
to learn how to change the way it analyzes images. Not all supervised examples have such clear 
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definitions of success, however; DL and regression scenarios can involve far more complex 
numerical definitions of success, depending on what the machine needs to learn. 

• Classification algorithms label data records to categorize them into different classes.
• Regression algorithms return a numerical target or quantity for each data record.

Transportation application examples include predicting mode choice using non-parametric 
decision tree methods (Bhavsar, Parth, et al., 2017), as well as predicting link speeds using 
ANNs (Bhavsar, Parth, et al., 2017), or the number of trips that will originate or end in a 
particular place (Rodrigues, Francisco. & Ben-Akiva, 2013).  

Unsupervised learning is a class of algorithms that take a set of data that contains only inputs 
and finds structure in the data, like grouping or clustering of unlabeled data points. Examples of 
unsupervised learning include:  

• Clustering or automatically separating data set into groups according to similarity.
• Anomaly detection or automatically discovering unusual or unexpected data points or

events.
• Association mining, which identifies sets of items or events that frequently occur

together.
• Latent variable analysis, which is often used for data preprocessing to reduce data

dimensionality or decompose the data set into multiple components.

Transportation application examples include clustering roadway segments or drivers into 
typologies based on similar characteristics (Júnior et al., 2017) or finding associations in driver 
behaviors and environments with crashes (Nandurge & Nagaraj, 2017).  

Reinforcement learning (RL) is an area of ML concerned with how software agents take action 
in an environment so as to maximize the notion of total reward. This method directs 
unsupervised ML through rewards and penalties and is often modeled as a Markov Decision 
Process.  

Compared to unsupervised learning, RL is different in terms of objectives. While the objective 
of unsupervised learning is to find similarities and differences between data points, the 
objective of RL is to find a suitable action model that would maximize the total cumulative 
reward of an agent.  

One such useful transportation application example is the use of an RL-based multi-agent 
system for network traffic signal control where researchers have designed a traffic light 
controller to minimize delay and improve congestion in a five-intersection corridor. Although it 
was designed and tested only through a simulated environment, this method shows more 
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promising results compared to traditional methods of signal control design and illustrates the 
potential uses of multi-agent RL in designing traffic system and corridor management (Arel et 
al., 2010).  

2.1.2. Deep Learning 
DL is the most recent advancement of ML, and it can be applied to supervised, unsupervised, 
and RL. A differentiator of DL is its role in processing high dimensionality data through 
automatic feature selection. These capabilities enable video, audio, and text analysis in high 
dimensions. The following paragraphs provide an overview of current use cases of DL in 
transportation applications.  

Transportation network representation: The optimal representation of constrained spatial 
networks that depicts dependent structures and flows can be aided by AI. DL methods have 
been applied to transportation network representation challenges by modeling spatial and 
temporal dependencies to represent the traffic conditions on links across a network in future 
time intervals (Ma, Yu, Wang, et al., 2015).  

Travel choice prediction: Wang and Zhao implemented a deep neural network (DNN) for a 
discrete choice model that could be extended to travel mode choice, travel frequency, travel 
scheduling, destination and origin choices, and route choice problems. Results from their 
analysis showed that DNNs can out-perform traditional discrete choice methods. With DNN’s 
high prediction accuracy, these methods are recommended when accuracy is of highest 
importance; however, it is cautioned that DNNs were shown to lose interpretability (Wang & 
Zhao, 2018).  

Traffic flow prediction: Traffic flow prediction is a common goal in transportation modelling 
that aims to estimate the number of vehicles on a road segment for several time intervals in 
the future. Promising DL applications in this area include using DL techniques to predict traffic 
flows on links at future states, cluster dependent links, and cluster dependent flows (Huang, 
Hong, et al., 2014; Jin & Sun, 2008). 

Traffic signal control: Increasing the efficiency of corridor management systems, including 
traffic signal controllers, can help to optimize vehicle flow in order to reduce congestion and 
emissions. Applications of RL have helped to design traffic signal control with limited data input. 
Deep ANNs have been shown to add capabilities to the RL method by leveraging big data to 
build adaptive signal control agents. The agents in RL combined with abilities of DL to handle 
big data have enabled a method that can more efficiently develop optimal traffic control 
policies (Liang, et al., 2018)  
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Automatic vehicle detection through video analytics: Convolutional neural networks (CNN), an 
application of DL, have been successfully used to identify objects in video data streams (Wang 
et al., 2015). Automated video detection is currently available in ITS devices, which often 
require dedicated hardware. The Performing Agency has participated in research that leverages 
video data streams from traffic monitoring cameras to estimate metrics of vehicular 
performance and pedestrian safety (Huang et al., 2017) using CNNs and custom algorithms for 
object tracking. Jidong et al. (2018) explore using a DL approach for the study of traffic safety at 
signalized intersections.  

Travel demand prediction: Researchers have proposed that deep multi-view spatial-temporal 
network analysis could be conducted with DL to capture the spatial-temporal correlation of taxi 
demand in New York. This methodology could be extended to ride-hailing and ride-share 
services for predicting demand based on data on recent demand, drop-offs, weather, time, and 
area of city. Other adaptations have been used for predicted transit service demand based on 
historical and near-real-time data (Yao et al., 2018). 

Traffic incident processing: Understanding the main cause of incidents and their impact on a 
traffic network is critical for a modern transportation management system. DL for traffic 
incident processing holds potential to help design response strategies for incidents, helping 
address network disruptions. DL has been applied to network and incident data to develop real-
time network incident risk maps and predict certain types of collisions (Chen et al., 2017).  

2.1.3. Evolving AI 
AI in concept and implementation has been around since the mid-parts of last century. 
Subfields like ML and DL have seen major advancements in the past few decades. While today’s 
AI is miles ahead of what it used to be, it will continue to evolve along with advances in 
computing, hardware, telecommunications, and more. With advancements, AI is set to become 
more powerful and efficient. Some predictions about the future of AI include the notion that AI 
models will become more like programmatic software with less human intervention for 
calibration and present as more blended algorithmic and geometric modules (Chollet, 2017). 

2.2. Transportation Data Sources 
When it comes to building a successful AI or ML system, data is as important as algorithm or 
model code. While higher processing power can train machines faster, it won’t change the 
quality of results. Data is the foundation of ML, and the lower the quality of the data for 
training, the worse the result of the AI is. On the other hand, the better quality the data, the 
better the result can be. While AI can be applied to any data type, the specific type and amount 
that is required is highly dependent upon the problem that is being solved. Data management 



10 

and utilization strategies need to consider items such as relevancy, formatting and 
interoperability, accessibility, ownership, and more as the amount of data grows.  

Globally, the amount of new data generated each year is growing exponentially; 90 percent of 
all of the world’s data has been created in just the last two years alone (Marr, 2018). Some 
experts are now advising that that connected vehicles will be the most important new digital 
platform in the short term with 220 million on the road by 2020 (Stack, 2018). Equipment 
manufacturers, like Hitachi, have estimated that one connected vehicle will send 25 gigabytes 
of data to the cloud every hour (Hitachi, 2018). According to Cisco Systems, Internet-of-Things 
(IoT) devices produce 5 quintillion bytes of data every day and more than 30 billion connected 
IoT devices are expected to be online by 2020 (Stack, 2018). Finally, autonomous vehicles are 
expected to utilize 40 terabytes of data for every eight hours of operations (Winter, 2017).  

In transportation, advances in the information, communication, and technology sectors have 
increased the availability of transportation data for both public and private entities. Data 
streams may be available to transportation owners and operators either through direct 
collection or partnership. Data streams can originate from sensors on two primary sources: 
either from fixed infrastructure sensors or mobile sensors inside a vehicle or mobile device. 
Sensor data can further be broken into three categories, further described below, relating to 
passive, semi-passive, and active data capture.  

Other sources of data are useful when cross-examined with the data sources listed above. For 
example, incident reports, events schedules, weather data, or construction and lane closure 
plans may be mined and analyzed along with transportation sensor data. Furthermore, the 
implementation of high-resolution data logging in traffic signal controllers has made high-
quality data available on signal phasing and performance, which can be useful for cross-
validation of flow data on signalized corridors. 

2.2.1. Passive Sensors 
Passive sensors do not require direct communication with a vehicle. Examples include 
inductive-loop detectors, radar, camera or computer vision, and license-plate readers. These 
sensors are typically used to obtain information on traffic counts, lane utilization, speed, vehicle 
type, and speed. Table 1 provides a description of infrastructure sensor data from passive 
sensors.  
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Table 1. Data Elements from Passive Sensors 

Inductive Loop 
Detectors 

Roadway sensors that capture vehicle counts, speed, lane occupancy 

Microwave 
Radar 

Mounted radar sensors to detect vehicle presence, speed, and capabilities to 
detect pedestrians  

Magnetometers Provide information on traffic volume, lane occupancy, speed as well as 
vehicle length 

Video Use of video analytics, license plate recognition, and infrared technology for 
detection with some systems able to determine vehicle type, color, license 
plate number, intersection turn movements, near-collisions, etc.  

Environmental 
Sensors 

Laser, infrared, and video sensors, which are mounted on infrastructure to 
detect weather events such as rain, fog, and ice or snow, as well as high and 
low temperatures, and to measure visibility 

Infrared sensors 
 (passive) 

Detection of energy that is emitted or reflected from vehicles, road surfaces, 
and other objects measuring speed, vehicle length, vehicle counts, and 
occupancy  

Infrared sensors 
 (active) 

Vehicle passage, presence, speed, and vehicle classification information and 
infrared can be used for safety purposes to detect overheating vehicles or 
fire 

Acoustic 
Detectors 

Acoustic sensors can be used to measure speed, volume, carriageway 
occupancy, and presence 

2.2.2. Semi-Passive Sensors 
Semi-passive sensors require participation from drivers’ devices without their knowledge and 
can include applications such as roadside Bluetooth®, Wi-Fi, tire-pressure sensor sniffers, radio-
frequency identification (RFID), cellular hand-off signals, and applications on smartphones. 
Table 2 provides a description of infrastructure sensor data from semi-passive sensors. 
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Table 2. Data Elements from Semi-Passive Sensors 

Bluetooth Include capabilities for link-link journey tracking and data on average speed, 
travel time, route choice, and trips trend data 

Wi-fi Similar to Bluetooth capabilities and often used to detect transit traveler wait 
times and travel times 

RFID RFID has many applications and can provide detailed information for 
truckling, airport, tolling, and rail applications 

Cellular 
handoff 

By monitoring usage of cellular handoff data, approximate locations can be 
inferred, and route choice can be estimated 

2.2.3. Active Sensors 
Active sensors require that travelers participate knowingly and typically have a personal 
interest in providing data. Some example applications for these sensors include fleet-tracking 
networks (such as automatic vehicle location) and mobile applications that allow users to 
report scenarios such as accidents and construction. Table 3 provides a description of 
infrastructure sensor data from passive sensors.  

Table 3. Data Elements from Active Sensors 

Automatic 
Vehicle 
Location 

Used to determine the geographic location of a vehicle by placing a GPS 
electronic device on-board a vehicle (typically a fleet vehicle) 

Mobile Devices 
and/or Mobile 
Apps 

Gathers information from applications that users elect to install and use 
from their mobile devices. Typically used for navigation purposes, to receive 
real-time information, find and secure a travel reservation, finalize a 
transaction, or track deliveries. Typically, a user location needs to be shared 
through GPS. Crowdsource apps can gather information on events such as 
traffic jams, incidents, police presence, etc.  

2.2.4. Non-Sensor Data (Contextual Data) 
Non-sensor, contextual data can be combined with data from the categories above to enhance 
insights and analysis. This data is important for providing a broader understanding of specific 
types of information and placing them in a larger picture—for example, using social media 
posts to understand transportation network events. While this data may be systematically 
collected by transportation (and transportation-related) agencies, it may not easily be 
structured or digitized. Table 4 shows examples of useful non-sensor data.  
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Table 4. Example Data Elements from Non-Sensor Data 

Crash Records Includes descriptive information about incidents, including locations, 
surrounding environment, severity of injuries and fatalities, estimated speed, 
estimated trajectory, and other relevant factors 

Construction 
& Lane 
Closures 

Include information on number of lanes closed, location (mile marker 
beginning and end), type of work being formed, duration, contact 
information, and more  

Social Media Includes sentiments about current network conditions, level of services, 
identification of special events, and more 

Weather 
Event Data 

Includes information on temperature, wind speed, weather events such as 
heavy rain or floods, air quality, and more  

2.3. Strategic Initiatives 
A limited number of strategic initiatives are currently underway to bring together 
transportation stakeholders to advance the state of knowledge and practice of AI in 
transportation. These few initiatives that primarily focus on data management are summarized 
below.  

USDOT’s ITS Joint Program Office (ITS-JPO) Enterprise Data Initiatives focus on enabling 
effective data capture from ITS-enabled technologies, including connected vehicles 
(passenger, transit, and commercial vehicles), mobile devices, and infrastructure, in ways that 
protect the privacy of users (ITS JPO, n.d.). Key goals of the initiatives include: 

• Enable, develop, and share data visualization techniques and tools
• Develop traffic analysis and management techniques that take advantage of crowd-

sourced data
• Coordinate the operation of mobile devices to be carried by transit passengers, which

are themselves generating connected vehicle messages
• Develop techniques, such as dynamic interrogative data capture, that will reduce the

amount of data that needs to be stored

USDOT’s Safety Data Initiative was developed to advance integration of existing data sources 
and new sources of big data, advance data analytics, and create data visualizations to help 
policymakers with safety solutions. Since the inception of the Safety Data Initiative, USDOT 
has worked on several pilot projects that explore the possibilities of using data for safety 
applications. Examples include exploring the opportunity to estimate police-reported traffic 
crashes in near-real time by combining crowdsourced crash data from Waze with crash data 
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provided by the State of Maryland via the National Highway Traffic Safety Administration’s 
Electronic Data Transfer pilot. 

IEEE’s Big Data Governance and Metadata Management (BDGMM) was developed under the 
IEEE Big Data Initiative, an effort funded by the IEEE New Initiative Committee to lead efforts in 
big data standardization. The program goal is to enable data integration and fusing among 
heterogeneous data sets from diversified repositories through a machine-readable and 
actionable standard data infrastructure (IEEE SA, n.d.).  

2.4. Applications of AI in Transportation 
Results of the literature review and scan of industry activities have been organized into the 
following six categories: 1) system and service planning, 2) asset management, 3) system 
operations, 4) communication and information, 5) business administration, and 6) public safety 
and enforcement.  

2.4.1. System and Service Planning 
This includes a comprehensive consideration of service and infrastructure development 
scenarios and strategies, such as determining transit routes, added capacity needs, signal 
phasing and timing plans, funding allocation, etc. Application examples include using sensors 
and telecommunications to determine route choice, travel behavior, origins and destinations, 
transit wait times, etc. Below is summary of applications and use cases of AI in transportation 
system and service planning.  

Telecommunications call data record (CDR) for transit service planning: In partnership with 
the City of San Francisco, AT&T is tracking and analyzing CDR to determine trip-making 
patterns. The data reveals activity centers of work, shopping, and recreation, tracking when 
users go there and via which routes. This information is being used by the transit authority for 
service planning (Morris, 2015). 

Wi-fi and Bluetooth tracking for transit wait times, station arrivals, and origin-destination 
(OD) determination: An experiment in New York City is looking at Bluetooth and wi-fi data to 
enhance public transit service by analyzing pings from cellphones and other devices to such 
sensors.  

Air quality forecasting: IBM researchers have developed an ML system that can analyze data 
about pollution levels in Beijing to forecast changes to air quality up to 72 hours in advance. The 
system’s forecasts are 30 percent more accurate than traditional predictions and have a 
resolution of one kilometer. The researchers are further developing the system to forecast 
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hypothetical scenarios, such as changes in the number of drivers on the road, and to extend the 
forecasts up to 10 days in advance (Knight, 2015). 

Call data records for OD planning: AT&T and the City of Rio de Janeiro, Brazil, are analyzing big 
data for transportation system planning, and in one use case are using data from user CDRs for 
travel analysis within the city of Rio de Janeiro. Call records belong to the increasing set of 
“passive data” information sources that are generated by daily transactions performed by 
ordinary people and have applications beyond their original use. Each time a call is made on a 
mobile phone, the mobile tower associated with that call—usually the closest tower—is 
recorded for billing purposes. CDRs provide information on location, time, and duration of 
every call, generating huge databases that are being used to produce a citywide OD matrix at a 
lower cost than the  traditional OD survey methods (Mehndiratta and Alvim, 2014).  

Route choice and system utilization monitoring: Verizon is using a combination of CDR analysis 
and a proprietary ML algorithm to develop unique roadway signatures of city streets to more 
precisely determine vehicle route choice and real-time roadway link performance.  

Driver Behavior Profiling: Júnior et al. (2017) investigated different Android smartphone 
sensors and classification algorithms to assess which sensor and classification method 
combination enabled driver characteristic classification with the highest performance. Results 
show that specific combinations of sensors and intelligent methods allowed classification 
performance improvement. Authors compared the performance of four algorithms: ANNs, 
Support Vector Machines (SVM), Random Forest (RF), and Bayesian Network. As a result, 
authors found the top-five performing assemblies for each driving event type. Results showed 
that (i) larger time-window sizes perform better; (ii) Android gyroscope and accelerometer data 
are the best to detect driving events; (iii) as general rule, using all sensor axes perform better 
than using a single one except for aggressive left-turn events; (iv) RF is by far the best 
performing, followed by multilayer perceptron networks; and (v) the performance of the top 35 
combinations is both satisfactory and equivalent, varying from 0.980 to 0.999 mean AUC 
values. 

Mode choice and mode detection: Jahangiri and Rakha (2015) applied different supervised 
learning methods from the field of ML to develop multiclass classifiers to predict transportation 
modes, including driving a car, riding a bicycle, riding a bus, walking, and running. Supervised 
learning methods that were considered included K-nearest neighbor, SVMs, and tree-based 
models that comprise a single decision tree, bagging, and RF methods. For training and 
validating purposes, data was obtained from smartphone sensors that included device 
accelerometer, gyroscope, and rotation vector sensors. K-fold cross-validation as well as out-
of-bag error was used for model selection and validation purposes. Several features were 
created from the data, and a subset was identified for prediction through the minimum 
redundancy maximum relevance method (mRMR). 
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Data obtained from the smartphone sensors were found to provide important information to 
distinguish between the various transportation modes. The performance of different methods 
was evaluated and compared and showed that RF and SVM methods were found to produce 
the highest prediction accuracy.  

Transportation mode identification and real-time CO2 emission estimation: Manzoni et al. 
(2010) proposed and tested an approach to estimate the individual carbon footprint of trips on 
various modes. The authors developed an application that could be run on standard 
smartphones for long periods of time. Given that that application could run on existing 
platforms (smartphones) that are already widely adopted, the method could have the potential 
for unprecedented data collection of mobility patterns. Specifically, the application could 
estimate real-time CO2 emissions using inertial information gathered from mobile phone 
sensors. In particular, an algorithm automatically classifies user transportation modes into eight 
classes using a decision tree. The algorithm has been trained on features computed from the 
Fast Fourier Transform coefficients of the total acceleration measured by the mobile phone 
accelerometer. A working smartphone application for the Android platform has been 
developed and experimental data have been used to train and validate the proposed method. 

2.4.2. Asset Management 
Asset management includes using sensors and data analytics to gather and predict insights 
about infrastructure and vehicle assets, their management and utilization strategies, long-term 
expenditure forecasts, and business management processes. Application examples include 
automated systems to identify pavement conditions such as cracks, ruts, and potholes, and 
signage and striping conditions. Other applications include automated fleet vehicle diagnostics 
and predictive maintenance.  

Infrastructure maintenance and condition monitoring: The Georgia Department of 
Transportation in collaboration with Georgia Tech developed an automated system to identify 
pavement conditions such as cracks, ruts, and potholes. The system can also catalogue and 
assess other roadside infrastructure such as signs. The system employs lidar, GPS, and 
cameras—as well as AI in the form of machine vision—to outfit a sensing vehicle that can 
rapidly assess pavement conditions as it drives down a highway or road (Tsai et al., 2017). 

Real-time truck parking: Researchers at the University of Minnesota have developed a 
computer-vision system that analyzes truck parking lots along the highway to automatically 
detect when a spot is available and notify approaching truckers. Roadside parking for long-haul 
truckers is limited and often crowded, making it difficult for them to plan ahead for where they 
can sleep and increasing the risk of overtired drivers staying on the road longer than they 
should. The system analyzes videos of truck stops and can distinguish between open and 
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occupied spaces with 95 percent accuracy, which is more reliable than systems that rely on 
sensors embedded in pavement (Marshall, 2017).  

Street Bump in Boston, Massachusetts: This innovative project by staff in the City of Boston 
has found a way to address roadway maintenance by strategically identifying potholes through 
a big data and crowdsourcing approach. Boston sought a proactive and more cost-effective 
way to maintain and fix the city’s roads using smartphones to identify and locate roadway 
maintenance issues. The result is an app called Street Bump, which utilizes the accelerometers 
and GPS of a driver’s smartphone to identify potential infrastructure quality issues and 
associated location as the user drives. Data from the app can be aggregated by the city to map 
both urgently needed fixes, as well as areas in need of long-term investment. 

Real-time monitoring and maintenance of full transit assets: Yarra Trams, the largest tram 
system in the world, is looking to big data, cloud computing and storage, mobile devices, and 
advanced analytics to transform its services. The agency is aiming to dramatically improve 
service on its 250 kilometers of double tracks by reconfiguring routes on the fly, pinpointing 
and fixing problems before they occur, and responding quickly to challenges, whether it’s 
sudden flooding, major events in the city, or simply rush hour traffic. Yarra Tram’s data-driven 
system works by tracking every one of the 91,000 different pieces of equipment that make up 
the tram network—from tram cars to power lines to tracks—using intelligent sensors and 
information from employee and passenger reports about service and equipment. For example, 
an automated wheel-measuring machine built into the track at the tram depot detects the 
condition of a tram’s wheel when it rolls over it. The abundance of insights is collected and 
hosted on the cloud, where analytics are applied to help the Yarra Trams’ operations team 
quickly respond to, prioritize, and coordinate maintenance and pinpoint future problems. As an 
example, data analysis identifies trends or patterns in tram and infrastructure repair history, 
using them as a guide for scheduling predicted maintenance. Maintenance crews receive work 
orders remotely on mobile devices, tackling repairs and potential disruptions before service is 
delayed. An app, meanwhile, gives passengers the latest information about track tram arrival, 
departures, or delays and alternative routes.  

2.4.3. System Operations 
Using technology and data to inform and automate strategies can optimize the safe, efficient, 
and reliable use of infrastructure for all modes. Application examples include intersection 
monitoring via camera, sensors, and telecommunications for conflict warning, pedestrian 
detection and notification, level-of-service monitoring, dynamic signal timing, and emergency 
response. 
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Network traffic signal control: Arel et al. ( 2010) introduced a novel use of a multi-agent system 
and RL framework to obtain an efficient traffic signal control policy. This approach aimed at 
minimizing the average delay, congestion, and likelihood of intersection cross-blocking. A five-
intersection traffic network was studied in which each intersection was governed by an 
autonomous intelligent agent. Two types of agents, a central agent and an outbound agent, 
were employed. The outbound agents scheduled traffic signals by following the longest-queue-
first (LQF) algorithm, which has been proven to guarantee stability and fairness, and 
collaborating with the central agent by providing it local traffic statistics. The central agent 
learned a value function driven by its local and neighbors’ traffic conditions. The methodology 
proposed utilized the Q-Learning algorithm with a feedforward neural network for value 
function approximation. Experimental results demonstrated the advantages of multi-agent RL-
based control over LQF-governed isolated single-intersection control, thus paving the way for 
efficient distributed traffic signal control in complex settings. Careful integration of the adaptive 
RL system with static LQF-based controllers was studied as both a developmental process and a 
gauging mechanism for indicating the degree of improvement that can be expected. 
Performance improvement was observed with respect to both average vehicle delay and cross-
blocking likelihood, particularly in the context of high traffic scenarios.  

Intersection monitoring, operations, and safety: Flir’s TrafiRadar uses a Doppler radar and a 
camera to monitor vehicles at and approaching intersections to predict conflicts and traffic 
incidents. Using the machine vision enabled by both apparatuses, this product can actuate 
signal phase changes to mitigate predicted conflicts or alter phase timing in response to real-
time traffic demand (ITS International, 2016). Miovision, a transportation analytics company, 
provides a cloud-based traffic management system that uses machine vision outfitted at 
intersections to measure traffic flows and intersection level of service, and detect near-miss 
traffic incidents to efficiently identify high risk intersections (Galang, 2017). 

Intelligent streetlights: The city of Jacksonville’s intelligent streetlights collect and analyze real-
time usage data. Cameras connected to the lights can track traffic and pedestrian movements 
and decide when to dim or brighten each lamp. Sensors in the lights connected to a “smart 
parking” application can alert citizens to available parking spots—or even warn them when 
their parking meters are running out. This program is run in partnership with the GE Intelligent 
City Initiative (Cope, 2015). 

Optimal work-zone operations: The operator of the Hong Kong subway system implemented 
cognitive technologies to automate and optimize the planning of engineering works. The 
planning system encodes rules of thumb learned by experts over years of experience, plus 
constraints such as schedules and regulations about maximum noise levels allowed at night. It 
employs a genetic algorithm that pits many solutions to the same problem against each other 
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to find the best one, producing an optimal engineering schedule automatically and saving two 
days of planning work per week. Though it automates the work of experts, it doesn’t replace 
them (Shatsky, 2019; Hodson, 2014).  

Dynamic Signal Control: Liang et al. (2018) proposed a solution to a traffic light control 
problem using the deep RL model. Data was gathered from vehicular networks and utilized 
information on two states: the vehicles’ position and speed. Traffic control actions were 
modeled as a Markov decision process with a reward set on the cumulative waiting time 
difference between two cycles. Authors used a double dueling deep Q network (3DQN) with 
prioritized experience replay. The model proved to learn a good policy under both the rush 
hours and normal traffic flow rates with results showing a 20 percent reduction of the average 
waiting timing from the starting training. The proposed model also outperformed others in 
learning speed, which is shown in extensive simulation in SUMO software and TensorFlow.  

Intersection safety and object identification: The Georgia Department of Transportation 
(GDOT) along with researchers from Kennesaw State University conducted a study into 
monitoring and assessing traffic safety at signalized intersections using live video images (Yang 
et al., 2018). The research team used DL for multiple object detection and tracking to explore 
and test the domain of traffic conflict monitoring and assessing. As a result, an AI-enhanced 
computational system was developed to automate the detection and quantification of traffic 
conflict events as they occurred in real time using traffic monitoring cameras already installed 
by transportation agencies. In alignment with the GDOT Vision Zero program, the research 
team developed surrogate safety measures such as time-to-collision, post-encroachment time, 
potential time to collision, difference in speeds (DeltaS), initial deceleration rate of the second 
vehicle, the maximum deceleration of the second vehicle (MaxD), difference in velocities 
(DeltaV), and safe stopping distance. To select the appropriate neural network architectures for 
the detection task, accuracy and speed were considered. Vehicles were detected using a DNN 
(i.e., Single Shot MultiBox Detector architecture) and tracked by an intersection-over-union-
based method, which required minimal computation resources. Based on observed and 
predicted trajectories of vehicles in the study, a novel method was proposed to detect and 
quantify conflict events. Although the study has been focused on identifying and tracking 
vehicles at major signalized intersections, where a CCTV camera is typically installed for traffic 
monitoring, the proposed method can be generalized and employed at any locations with 
assistance of a high-resolution camera. Tensorflow Object Detection API (Huang et. al., 2017) 
was used for implementation. 

Traffic flow prediction: Huang et al. (2014) proposed a DL architecture to predict future traffic 
flows on roadway links. The proposed framework consisted of two parts: a deep belief network 
(DBN) at the bottom and a multitask regression layer at the top. A DBN was employed for 
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unsupervised feature learning to find effective features for traffic flow prediction in an 
unsupervised fashion. This method has been examined and found to be effective for many 
areas, such as image and audio classification. To incorporate multitask learning (MTL) in the 
deep architecture, a multitask regression layer was used above the DBN for supervised 
prediction. The authors investigated homogeneous MTL and heterogeneous MTL for traffic flow 
prediction. To take full advantage of weight sharing in the deep architecture, the authors 
proposed a grouping method based on the weights in the top layer to make MTL more 
effective. Experiments on transportation data sets showed good performance of the deep 
architecture. Experiments showed that the approach achieved close to 5% improvements over 
other state-of-the-art methods. It was also presented that MTL can improve the generalization 
performance of shared tasks. These positive results demonstrate that DL and MTL are 
promising in transportation research. Two data sets were used in this study. One benchmark 
data set was the California PeMS data set, which collects information from inductive loops for 
more than 8100 freeway locations throughout the State of California. The other data set was 
from the highway system of China (the entrance–exit station of a highway—EESH). In each 
EESH, there was a station for charging and recording related information. From experiments on 
these two real traffic flow data sets, authors demonstrated that the proposed deep 
architecture can improve the accuracy of traffic flow prediction. With limited prior knowledge, 
it can learn effective feature representations. Both homogenous MTL and heterogeneous MTL 
can improve the generalization performance. The result of the approach can outperform the 
state-of-the-art approach with near 5% improvements in prediction accuracy.  

Traffic flow prediction: Wu et al. (2018) implemented a DNN-based traffic flow prediction 
model (DNN-BTF) to improve the prediction accuracy for estimating traffic flow. The DNN-BTF 
model makes full use of weekly/daily periodicity and spatial-temporal characteristics of traffic 
flow. Inspired by recent work in ML, an attention-based model was introduced that 
automatically learned to determine the importance of past traffic flow. The CNN was also used 
to mine the spatial features and the recurrent neural network (RNN) to mine the temporal 
features of traffic flow. We also showed through visualization how the DNN-BTF model 
understands traffic flow data and presents a challenge to the conventional thinking about 
neural networks in the transportation field that neural networks represent purely a “black-box” 
model. Data from open-access database PeMS (described above) was used to validate the 
proposed DNN-BTF model on a long-term horizon prediction task. Experimental results 
demonstrated that this method outperformed the state-of-the-art approaches and that DL-
based traffic flow prediction still needs more studies for finer-tuning. 

Travel demand and congestion detection: Ma et al. (2015) extended DL models into large-scale 
transportation network analysis for predicting congested links in future states. Congestion was 
determined by setting a minimum speed threshold. A deep Restricted Boltzmann Machine and 
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RNN architecture was utilized to model and predict traffic congestion evolution on a network-
based on GPS data from taxis trips. A numerical study in Ningbo, China was conducted to 
validate the effectiveness and efficiency of the proposed method using 4000 GPS-equipped 
taxis traveling from April 13, 2014, to May 9, 2014. Results showed that the prediction accuracy 
could achieve as high as 88 percent within less than six minutes when the model is 
implemented on a graphics processing unit (GPU)-based parallel computing environment. The 
predicted congestion evolution patterns were visualized temporally and spatially through a 
map-based platform to identify the vulnerable links for proactive congestion mitigation. The 
algorithm was implemented using Python Theano and was executed on a desktop computer 
with Intel i7 3.4GHz CPU, 8GB memory and NVIDIA GeForce GTX650 GPU (2GB RAM). 
Takeaways included that the overall algorithm prediction performance improved as the data 
aggregation level increased due to less data fluctuation and as the modeled time interval 
becomes longer. Data aggregated to the one-hour level led to 95 percent accuracy and only 43 
percent of congested links could be correctly predicted when the aggregation level was set at 
10 minutes. This implies that the data aggregation level influences the prediction outcomes and 
should be carefully selected.  

2.4.4. Communications & Information 
This includes using ML and natural language processing to transform unstructured data into 
structured data or mined insights. Application examples include scanning Twitter feeds to 
target disaster and hurricane response efforts, identifying traffic patterns associated with 
dangerous road conditions or incidents, and forecasting dangerous levels of air pollution. 

Social media analytics for emergency response: AI for disaster response has been 
implemented around the world to classify tweets during natural disasters. The ML algorithm 
employed sorts through thousands of tweets to deliver information about areas in need of aid 
and that have experienced damage and can bypass non-informative tweets based on user-
specified criteria. This application can save officials and emergency responders crucial time and 
resources during disaster scenarios (AIDR, n.d.).  

Social media analytics for incident detection: Zhang et al. (2015) proposed a hybrid 
mechanism based on latent Dirichlet allocation and document clustering to identify and mine 
incident-level semantic information, while spatial point pattern analysis was applied to explore 
the spatial patterns and to assess the spatial dependence between incident-topic tweets and 
traffic incidents. Authors assessed the potential of using processed social media for traffic 
incident detection. Twitter (now known as X) in Seattle, Washington, was chosen as a 
representative sample environment for this work. A global Monte Carlo K-test indicated that 
the incident-topic tweets were significantly clustered at different scales up to 600 meters. The 
nearest neighbor clutter removal method was used to separate feature tweet points from 
clutter; then a density-based algorithm successfully detected the clusters of tweets
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posted spatially close to traffic incidents. In multivariate spatial point pattern analysis, K-cross 
functions were investigated with Monte Carlo simulation to characterize and model the spatial 
dependence, and a positive spatial correlation was inferred between incident-topic tweets and 
traffic incidents up to 800 meters. Finally, the tweet intensity as a function of distance from the 
nearest traffic incident was estimated, and a log-linear model was summarized. The 
experiments supported the notion that social media feeds acted as sensors, which allowed 
enhancing awareness of traffic incidents and their potential disturbances. 

Assisted Intelligence in application sorting and approval: Hong Kong’s Immigration 
Department was processing more than 4 million visa applications in 2004. The department 
processed about 100 different application forms related to visas, travel documents, identity 
cards, and other issues. To streamline the process, in 2007 the Hong Kong Immigration 
Department invested in developing an algorithmic system that sorted passport applications and 
was trained to classify applications into three broad categories: approved, denied, and a gray 
area. Once the algorithm classified visa applications, the system would transfer the data to a 
visa officer, who reviewed the documents to make the final decision (Desouza, 2018). 

Translation services: AI translation startup Unbabel offers a translation service that uses a 
combination of crowdsourcing and ML to translate businesses’ customer-service operations 
into 14 different languages substantially faster and cheaper than traditional translation 
services, which can make it easier for businesses to reach international audiences. Unbabel’s 
algorithm automatically translates web pages, customer service emails and chats, and social-
media posts for as little as $0.02 per word, and a team of human editors reviews the 
translations for grammar and consistency (Mehr, 2017). 

Vehicle image classification and video querying: Huang et al. (2017) proposed a framework to 
process large-scale traffic data from monocular traffic cameras and an implementation of a 
prototype application to classify images. This prototype enabled users to conduct dynamic 
analysis tasks on the content of video feeds through a query interface. Candidate objects in 
each frame were detected and identified, and then these objects were merged and filtered 
based on their previous appearance to generate a trajectory of those objects throughout the 
video. This enabled structured data that could be processed and analyzed through novel 
database architecture—HiveQL backed up by Hive/Spark cluster. The scalability of the 
application was realized through a distributed object recognition and tracking algorithm 
implementation, using Hive/S-park programming models. Usability was demonstrated with two 
use cases: counting vehicles on an arterial street and identifying potential pedestrian-vehicle 
interactions with real video feeds. Experimental results proved to be encouraging, with vehicle 
counts being more than 85 percent accurate in the analyzed videos. Sample queries to identify 
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turning vehicles and measure the proximity of pedestrians to vehicles were presented and their 
performance validated. The results show the usability of the application for real-world 
problems. The proposed approach effectively transformed digital video data into queryable 
information. Thus, it formed a sharp contrast with the traditional analysis methods used in 
studying traffic camera video within the transportation research field. Most traffic management 
centers control several monocular traffic cameras that are often used only for monitoring 
purposes. This approach has the potential to enable new data workflows that require minimal 
human intervention to generate valuable data sets that complement information from other 
fixed and mobile sensors. This work demonstrated performance optimization and extending 
parallel computations from using GPU only to using multiple CPUs and many-core hardware.  

2.4.5. Business Administration 
Business administration applications use ML, data mining, and natural language processing and 
generation to optimize typical administrative functions, such as sorting, formatting, cleaning 
data, populating forms, scheduling appointments, and responding to routine public inquiries. 
Application examples include machine vision that reads handwriting and automates sorting, 
software that can manage complex scheduling tasks, and chatbots that can engage in and 
respond to simple requests and questions from the public. 

Drafting of documents and contract templates: This type of application uses natural language 
generation (NLG) AI, which is already being used in dozens of newsrooms, including Bloomberg 
and the Associated Press, to mine data, create text for data sets, and write at a pace of 2,000 
stories per second. In these scenarios, NLG can also help non-data-science employees better 
and more efficiently understand the data. Lawyaw is building software to automate the process 
of drafting similar but custom contracts by letting lawyers turn previously completed 
documents into smart templates (Tepper, 2018). 

Virtual assistant: Startup X.ai offers a virtual-assistant service named Amy that can analyze 
employee calendars and emails to automatically schedule meetings and adjust calendar 
appointments. Users can copy Amy in emails when they want to set up meetings, and Amy will 
analyze email text to determine the topic and time of a meeting, determine if there are any 
conflicts, and automatically schedule calendar appointments. Amy can also search for and add 
relevant phone numbers, reschedule meetings by conversing with users, and learn users’ 
preferences over time (Popper, 2016).  

Automated industrial design generation: Engineering software company Autodesk has 
developed computer-aided design and drafting software called Dreamcatcher that uses AI to 
automatically generate industrial designs based on a designer’s specific criteria, such as 
function, cost, and material. Dreamcatcher can generate multiple alternative designs that meet 
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the same criteria and provide designers with performance data for each design, alter designs in 
real time based on designer feedback, and export finalized designs into formats used for 
fabrication (AutoDesk, n.d.). Workforce analytics company Kanjoya uses natural language 
processing and ML to analyze language used in the workplace, such as employee performance 
evaluations, interview notes, and office communications, to identify signs of implicit gender 
bias, so companies can treat employees more fairly. Kanjoya’s software can identify potentially 
discriminatory or abusive language and emotions or intent in language, as well as identify 
biased decision-making, such as by revealing that “assertiveness” is often associated with 
positive reviews and promotions for men, but negative reviews for women (Giang, 2015). 

Hardware and equipment performance, alerts, and optimization: Google has implemented AI 
software developed by fellow Alphabet subsidiary DeepMind in one of its data centers to 
automatically optimize energy efficiency while responding to factors such as increased usage 
and changing weather. The system constantly monitors 120 variables, including server usage 
and windows, and learns how to adjust equipment performance and cooling systems to run the 
data center as efficiently as possible. The system has reduced the data center’s energy 
consumption by 15% (Clark, 2015).  

Hardware and cognitive predictive maintenance: Analytics company DataRPM has developed a 
tool called Cognitive Predictive Maintenance that uses ML to monitor machine-component 
performance through networked sensors in real time to detect early warning signs that a 
machine might be breaking down to prompt preventative maintenance. Servicing machines 
before they break down is more cost effective than fixing them after they break, and DataRPM 
can predict when maintenance is needed 300 percent more accurately and 30 times faster than 
traditional methods, saving its customers 30 percent in maintenance costs (Progress, n.d.).  

Data management: Sorting through dark data by using ML and combining its power with 
algorithms that address how to sort and handle different types of emails, documents, images, 
etc., stored on servers, ML, AI, and analytics can go to work on this disparate data and pre-sort 
it. Humans can then review what the automation recommends as a data classification scheme, 
tweak it, and perform the scheme. Part of the process could also address data retention, with 
the analytics producing a set of recommendations on which data could potentially be purged 
from files. Discarding un-needed or obsolete data by objectively identifying data that is seldom 
or never used and recommending what to discard (but it doesn't automatically discard and 
defers to discernment of employees). For instance, these processes can pick out pieces of data 
or records that haven't been accessed for more than five years, indicating that the data could 
be obsolete. This saves an agency time hunting down this potentially obsolete data, because 
now all employees need to do is to determine whether there is any reason to keep it.  
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Aggregating data: When analytics developers determine the kinds of data they need to 
aggregate for queries, they often produce a repository for the application, and then pull in 
various types of data from different sources to make up an analytics data pool. To do this, they 
must develop integration methods to access the different sources from which they pull data. 
ML can make this still very manual process more efficient by automatically developing 
"mappings" between data sources and the application's data repository reducing integration 
and aggregation times. Organizing data storage for best access using technology advances to 
enable IT departments to use "smart" storage engines that use ML to see which types of data 
are used most often, and which are seldom or never used. The automation can be used to 
automatically store data in fast or slow storage, based on the business rules inserted into 
machine algorithms. The automation saves storage managers from having to address storage 
optimization manually. 

2.4.6. Public Safety and Enforcement 
Public safety applications use advanced analytics, data mining, computer vision, and other 
innovations to enhance the safety and security of citizens. Applications serve the mission of 
keeping physical spaces and communities safe, but also our virtual ones. Applications will help 
direct police and emergency services units in the event of a crime or an accident, improve 
accuracy, and boost the rate of response.  

Safe routes for hazardous materials transport: Matias et al. (2006) proposed a methodology to 
model the degree of remedial action required to make short stretches of a roadway suitable for 
dangerous goods transport, particularly pollutant substances, using different variables 
associated with the characteristics of each segment. Thirty-one factors determining the impact 
of an accident on a particular stretch of road were identified and subdivided into two major 
groups: accident probability factors and accident severity factors. Given the number of factors 
determining the state of a particular road segment, the only viable statistical methods for 
implementing the model were ML techniques, such as multilayer perceptron networks, 
classification trees, and SVMs. The results produced by these techniques on a test sample were 
more favorable than those produced by traditional discriminant analysis, irrespective of 
whether dimensionality reduction techniques were applied. The best results were obtained 
using SVMs specifically adapted to ordinal data. This technique takes advantage of the ordinal 
information contained in the data without penalizing the computational load.  

Incident analysis: Nandurge and Nagaraj (2017) conducted a study to help determine the main 
factors associated with road traffic accidents, which is a critical objective of accident data 
analysis. Due the heterogeneous nature of road accident data, this can be a complex task. 
Partitioning (clustering) was used to help overcome heterogeneity of data and finding 
similarities among crashes. The method proposed utilized the k-means clustering method as the 
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main task of segmentation of road accident data. Further, association rule mining was applied 
to discover situations related with the occurrence of the whole data set and the occurrence of 
clusters recognized by the k-means clustering algorithm. The study used accident data from the 
Maharashtra (India) road network in 2015 and 2016. K-means clustering resulted in five clusters 
based on attribute accident type, road type, light condition, and road characteristics. 
Association rule mining was applied to every cluster as well as the whole data set to create 
rules (or common causes or characteristics to the incidents). Strong rules were used for analysis 
with high lift values. The rules of each cluster provide insights into situations related to 
incidents.  

Traffic analysis during inclement weather: Koesdwiady et al. (2016) applied DL to traffic and 
weather data to improve traffic flow estimation during weather events. The study had two 
objectives: first, to investigate a correlation between weather parameters and traffic flow and, 
second, to improve traffic flow prediction by proposing a novel holistic architecture. It 
incorporated DBNs for traffic and weather prediction and decision-level data fusion scheme to 
enhance prediction accuracy using weather conditions. The experimental results, using traffic 
and weather data originated from the San Francisco Bay Area of California, validated the 
effectiveness of the proposed approach compared with the state of the art. Experiment results 
show that the data-driven urban traffic system prediction outperforms comparable state-of-
the-art techniques. This higher traffic prediction accuracy ensures better operation and 
management traffic strategies. 

Audio-recognition for safety analysis: One Llama Labs has developed a smartphone app called 
Audio Aware that uses ML to identify sounds associated with dangerous situations, such as 
sirens or squealing tires, and warn hard-of-hearing users about the noise. Audio Aware can 
identify a variety of dangerous sounds through a smartphone’s microphone, as well as allow 
users to record and share their own, and when it detects one, it will play an amplified version of 
the noise through headphones, which can help partially deaf users stay more aware of their 
surroundings (Metz, 2014).   

Disaster response: The Qatar Computing Research Institute has developed an open-source tool 
called Artificial intelligence for Disaster Response (AIDR) that uses ML to monitor and analyze 
Twitter posts and automatically compile Twitter activity related to a particular crisis to aid 
humanitarian response. In a test during the 2013 flooding in Pakistan, volunteers trained AIDR 
on tweets related to the crisis, and it could determine if new tweets were related to the 
Pakistan floods, based on their text, time stamp, and geotag, with 80 percent accuracy (Collins, 
2013).  

Explosive device detection: An EU-funded project called the Autonomous Vehicle Emergency 
Recovery Tool (AVERT) uses a system of four autonomous robotic platforms that coordinate 
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with each other to position themselves under a vehicle suspected of having an explosive device 
and move it to a safe location. AVERT uses sensor technology called LIDAR to map its 
environment and automatically develop an extraction route for suspicious vehicles in situations 
where it is too dangerous or difficult to use normal bomb-disposal tools (Moren, 2019).  

Deep web analysis: The U.S. Defense Advanced Research Projects Agency’s (DARPA) Memex 
program has developed a tool that scans pages on the deep web—websites that are not 
indexed on search engines—and analyzes their contents for signs of illegal solicitations of sex, 
which are often linked with human trafficking, to aid investigations. Because pages on the deep 
web can be difficult to access and navigate, they can be attractive covers for criminal activity. 
With Memex, authorities can gain new insights into specific investigations as well as broad 
trends about human trafficking, such as by generating heat maps of regions with a high density 
of illegal solicitation (Greenemeier, 2015). 13,  

Identifying intoxicated individuals from cell phone data: Uber has developed technology using 
AI to identify levels of intoxication of potential passengers before picking them up. The system 
uses a computer model to identify user and trip characteristics indicative of the uncharacteristic 
user states. Historic data about past trips is used to train a computer model to predict 
intoxication of the user submitting a trip request. Ride-requester activities, such as how many 
typographical errors are made requesting a ride, the amount of time it takes for the person to 
interact after receiving new information via the mobile app, the angle at which the phone is 
being held, movement of the device during the request entry, or a user’s travel speed can be 
factored in. The system then analyzes the data and generates a prediction about the state of 
the user, such as whether the person appears to be drunk. The system can compare past trip 
behaviors of the person to identify any deviation. Based on the results, the system could match 
the person with certain drivers and modify pickup or drop-off locations. 

2.5. Methods and Tools 
Tools, languages, libraries, databases, and architecture should be considered for optimal 
implementation of ML and DL. Each should be carefully considered, as each has implications for 
computation time, hardware needed, etc. This section provides an overview of libraries, 
platforms, and tools for AI implementation, as well as an overview of database and data access 
tools that support data ingestion and management. Finally, considerations on computing 
resources and environments will be provided.  

2.5.1. Libraries, Platforms, and Tools 
The following provides an overview of available libraries, platforms, and tools that can be 
openly accessed for the implementation of ML and DL algorithms.  
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2.5.1.1. Scikit-Learn 

Scikit-learn is a free and open-source library for ML that works with NumPy, SciPy, and 
matplotlib within Python. The Scikit library contains tools that can be used for various ML and 
statistical modeling techniques, including supervised learning, cross-validation, unsupervised 
learning, and feature extraction. As Scikit is an open-source library, there is a large community 
involved in developing and refining its features, with around 35 contributors (Jain, 2015). 

2.5.1.2. Tensor Flow 

Developed as a library for numerical computation and large-scale ML applications, Tensor Flow 
is an open-source library created by Google. Using Python to build the application, it utilizes 
C++ to execute the programming. Tensor Flow can be used for DNNs, with applications of image 
recognition, word embeddings, RNNs, sequence-sequence models for machine translation, and 
natural language processing. The same models that are used for training can also be used for at 
scale prediction (Yegulalp, 2019).  

2.5.1.3. Theano 

Another open-source library, Theano is designed to be used as a compiler for mathematical 
expression within Python (Theano, n.d.). Working with NumPy and native code, Theano is 
designed to make code run as efficiently as possible. One of the first libraries to be developed, 
it is used as an industry standard for DL applications, such as large neural network algorithms 
(Brownlee, 2019). 

2.5.1.4. Caffe 

Caffe is a DL framework developed by Berkeley AI Research along with community contributors 
(Caffe (a), n.d.). Caffe can be used in either Python or Matlab, as both have interfaces (Caffe (b), 
n.d.). Caffe can be used to perform image classification and filter visualization, object detection, 
and neural networks, among other DL applications (Shelhammer et al., n.d.).

2.5.1.5. Keras 

Built with the focus on fast experimentation capabilities, Keras is a high-level neural network 
API written in Python. With it being written in Python, it can run on top of other Python-based 
libraries (TensorFlow, CNTK, and Theano). Keras is designed to support both convolutional 
networks and recurrent networks, and combinations of the two, while providing easy and fast 
model prototyping through user friendly modules that can be easily added and modified to 
construct increasing complex networks (Keras, n.d.).  
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2.5.1.6. PyTorch 

PyTorch is a Python-based library for scientific computing and is a preferred DL research library 
due to its speed and flexibility. Allowing for easy use and model building of complex neural 
networks, it can be used to run and test parts of the code in real time versus having to execute 
the entire code. PyTorch’s functionalities can be extended with the use of other Python 
packages (NumPy, SciPy, and Cython) (Shetty, 2018).  

2.5.1.7. Google ML Kit 

Google ML Kit allows for ML within Android and iOS apps. ML Kit APIs can run on the cloud or 
run on-device, with cloud APIs offering higher levels of accuracy. Cloud-based APIs can perform 
text recognition, image labeling, and landmark recognition, whereas the on-device APIs provide 
applications like face detection, barcode scanning, object detection and tracking, language 
identification, translation, and smart reply, as well as the features that are available on the 
cloud-based APIs (Firebase, n.d.).  

2.5.2. Databases & Data Access 
When it comes to building a successful AI or ML system, data is as important as algorithm or 
model code. It’s not only the volume of data or data quality that matters, although both are 
very important. It is equally critical to have efficient ways to manage data at scale, particularly 
for the special needs of ML, such as data versioning for training models, loading streaming data, 
and maintaining reliable event-by-event history, as well as a way to archive data for training 
and testing. The following provides an overview of database tools and data access and 
management tools.  

2.5.2.1. Databases: Relational and NoSQL databases 

Relational databases have been a foundation of modern computing over the past couple of 
decades. Examples of such databases include versions of SQL (Structured Query Language) 
MySQL, SQL Server, and SQLite. With the rise of the internet, networked systems, and big data, 
the quantity, scale, and rapidly changing nature of data being stored has not landed itself to 
easy storage in these traditional databases. Relational databases have struggled to adapt to the 
complexity and ever-changing nature of modern computing and its high volume of data. As a 
result, NoSQL (Not Only SQL) databases are replacing relational databases in many enterprises 
and modern applications as its design emphasizes non-relational data storage. Relational and 
NoSQL databases can be characterized and compared in many dimensions. See Figure 2 for 
such a comparison.  
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Relational databases are an organized set of data with pre-defined relationships. Data is 
organized into structured sets organized into related tables. Relational data can be accessed in 
many different ways without reorganizing the database tables themselves. SQL is the primary 
interface used to communicate with relational databases and became a standard of the 
American National Standards Institute (ANSI) in 1986. The standard ANSI SQL is supported by all 
popular relational database engines (mentioned above), and some of these have extension to 
support functionality that is specific to that engine. SQL is used to filter, add, update, delete 
(and otherwise manage) data. 

NoSQL systems are non-relational, distributed databases that configured for large-scale data 
storage and for massively parallel, high-performance data processing across a large number of 
servers. These systems we created to meet the need for flexibility, performance, and scale, and 
to support a large variety of use cases, including real-time computation and analytics. These 
systems have origins in large internet companies that needed to manage high velocity data and 
to scale quickly.  

Figure 2. Comparison of NoSQL & Relational Databases (Bispo and Andres). 

Extract, Transform, and Load (ETL) 

This shift to real-time processing generated a major change in system architecture: from a 
model based on batch processing (where a set of data is collected over a period of time an 
input in a “batch”) to a model based on distributed message queues and stream processing 
(involving continual input). Apache Kafka (an open-source tool developed at LinkedIn) is one 
example of distributed message queue that has emerged for modern data applications to 
process real-time data feeds.  
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2.5.3. Computer Resources and Environments 
During the traditional development phase of a programming project (developing, testing, and 
refining code) developers often program on their local computer, typically a desktop that runs 
on a non-server operating system (e.g., macOS, Windows, Ubuntu). Developers can also 
implement on a virtual machine, which is virtual/remote environment that behaves like an 
actual computer. Remote access, control, and computing is possible with technologies such as a 
remote desktop or virtual network machine. The benefit of remote development and 
computing is that it offloads the system memory (RAM), processing (CPU) requirements, and 
load to a more powerful machine. In instances of virtual machines hosted on cloud-based 
Infrastructure-as-a-Service (IaaS) platforms such as Amazon Web Services and Microsoft Azure, 
they can be easily configured to handle a large variety of memory, processing, and data storage 
requirements. 

An additional benefit of remote development is that remote machines are loaded onto 
commercial servers, which means that they are running highly optimized operating systems 
that are meant for server-like usage, as opposed to personal desktop operating systems. 

Remote development may be necessary in many cases when the data set being used is larger 
than the local machine’s available system memory (RAM), or the processing requirements for a 
given task are greater than the local machine’s capability. When limited by either RAM or CPU, 
it can result in extremely slow or impossible computations. If this happens, developers use a 
smaller subset of the data for local development and prototyping purposes. 

Current trends in graphics processing units (GPU) design and configuration have enabled larger 
dedicated memory, higher bandwidth for graphics memory, and increased internal parallel 
processing. Increasingly, GPUs are designed with increasing degrees of programmability that 
extends to applications outside graphics processing. 

GPUs can greatly accelerate the training process for deep learning models. Training models for 
tasks like classifying images, conducting video analysis, and natural language processing 
involves compute-intensive matrix multiplication and other operations that can take advantage 
of a GPU's massively parallel architecture. Training a deep learning model that involves 
intensive compute tasks on extremely large datasets can take days to run on a single processor. 
Developers can design programs to offload those tasks to one or more GPUs, thereby reducing 
training time from days to hours.  
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2.6. Conclusions 

This literature review provides a background on artificial intelligence techniques and tools, and 
explores transportation applications in system and service planning, operations, asset 
management, public safety and enforcement, communications, and business 
administration. Researchers found that there is significant potential for the application of AI to 
help transportation system operators and owners to advance their goals. Existing applications 
range from less sophisticated algorithms with simple logic to cutting-edge DL methods. But 
even the most sophisticated algorithms cannot produce novel insights without well curated 
data. Our literature review includes a summary of typical AI data sources used in transportation 
and their challenges and limitations. The research team prepared a Prospectus of AI in 
Transportation to summarize the gathered knowledge (Product 1). 
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Chapter 3. Data Survey 
This chapter provides an overview of transportation data available to TxDOT, focusing on data 
that may support enhanced transportation network operations, and integrated corridor 
management in particular. The goal of this data survey is to provide a systematic description of 
available information in order to facilitate the effective selection of use cases to be tested later 
during this project. 

Since there is no single centralized repository of statewide data, we have organized this 
chapter based on known data access points/streams, including some that are available only to 
specific TxDOT districts.  

This data survey also includes a separate description of two third-party data types, probe-based 
speeds and Waze for Cities Data, which are available to TxDOT to some degree. Some of the 
probe-based and Waze data is shared through the access points described earlier, but given the 
dynamic nature of the agreements between TxDOT and the data providers, we are not able to 
present a final description of coverage and access.  

The data streams described in this data survey became known to CTR through previous 
research and implementation work for TxDOT, and by reaching out to individuals within TxDOT 
on the recommendations of project team members. This document is not expected to cover all 
data sources available to TxDOT. 

3.1. Overview of Data Access Points and Data Streams 
This data survey is centered on identifying versatile data sources to support transportation 
network planning and operations. CTR considered mostly datasets/data streams that are a) 
available or likely to become available statewide, and b) maintained and updated 
systematically. We considered datasets that are generated by TxDOT’s Intelligent 
Transportation System (ITS) devices and other agency workflows, as well as proprietary 
datasets to which TxDOT has access. Table 5 presents the major data streams/access points to 
be discussed in this data survey. 
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Table 5. Data considered in Data Survey 

The following sections provide additional information about each proposed data stream/access 
point. We also briefly discus additional data sources that are of interest and which may be 
further explored in the final version of this document pending feedback from the project team 
and the data owners. 

3.2. Lonestar 
The Lonestar system is an advanced traffic management system (ATMS) developed and 
maintained by the Southwest Research Institute (SwRI) on behalf of TxDOT. A fork of the 
software has also been deployed in Florida for FDOT under the label SunGuide. 

The Lonestar system is mainly designed to share data from intelligent transportation systems in 
near-real time both within TxDOT, and between TxDOT and partner agencies/consultants. 
Lonestar data, provided in XML format, may be accessed programmatically using a center-to-
center (C2C) application program interface (API). The API implements standards from the 
National Transportation Communications for ITS Protocol, or NTCIP.1 A superset of the data 
types that may be communicated using the C2C protocol is presented in Table 6.2

1 https://www.ntcip.org/center-to-center/ 
2 Texas Department of Transportation. 2017.“Center-to-Center Communications Status Interface Control 
Document - C2C-SICD-6.1.4.”. Available from TxDOT. 

https://www.ntcip.org/center-to-center/
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Table 6. Lonestar XML data types 

Network Data
Traffic Condition Data
Incident Data
Lane Closure Data
Special Events Data
Emergency Management Data
DMS Data
ICS Data
CCTV status Data

Park and Ride Data
Vehicle Priority Data
Remote Message Data

Parking Lot Data
Rail Crossing Data
Bus Stop Data
Bus Location Data
Rail Stop Data
Rail Location Data

CCTV snapshot Data
HAR Data (Radio)
Ramp Meter Data
Traffic signal Data
HOV Data
School Zone Data
Rev. Lane Data
Dyn. Lane Data
ESS Data (Weather)

Most of the data available through Lonestar is updated every few minutes/hours. Users may 
access the XML at appropriate time intervals to retrieve data in near-real time or to archive it 
for future use. Users may also request that any data stream broadcasted through Lonestar to 
be archived in TxDOT’s Data Lake.  

Data availability in Lonestar varies by district. As an example, the following data streams are 
available in the Austin District (among others): 

• CCTV (closed-circuit television) snapshots and status
• DMS (dynamic message sign) data
• LCS (lane control signal) data
• Network data (e.g., roadway lengths and directions)
• Traffic conditions data from multiple sources, such as travel times on I-35 based on Bluetooth 

data

3.3. TxDOT Data Lake 
The Data Lake is a data repository maintained by TxDOT’s Information Technology Division 
(ITD), which may be used to maintain long-term access to data streamed in real time (such as 
that provided through Lonestar). Users may request for specific data streams to be archived in 
the Data Lake, and ITD can provide customized API data access to such datasets.  

A data dictionary describing data currently available in the Data Lake is currently in 
development by ITD and will be incorporated into the final version of this document. As of 
February 2020, there are thirty-six databases in the Data Lake, spanning more than 1,200 
tables.3 These include C.R.I.S. data (Section 7), Lonestar C2C data (Section 3), and INRIX data 

3 Tentative list of data tables provided by Ross Alaspa on February 2020. 
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(Section 9). The latter has been archived since 2018 for selected freeways in Texas, and data 
gaps may be present due to communications issues.  

3.4. Highway Condition Reporting System 
The Highway Condition Reporting System (HCRS) provides real time information concerning 
traffic conditions on Texas highways.  Drive Texas is a friendly user interface to HCRS data that 
displays conditions for roadways on the TxDOT-maintained system, including interstates, US 
highways, state highways, and farm- (FM) and ranch- (RM) to-market roadways (Figure 3).4

Figure 3. Drive Texas User Interface (http://drivetexas.org/) 

TxDOT also provides API access to the HCRS on request.5 The API is intended to support 
communications and inter-agency coordination during emergencies. Information is provided in 
GeoJSON, KML, and text (.csv) formats, which are popular data types that can be easily used for 
mapping reported conditions. A data dictionary for the HCRS is in development,6 and further 
integration with other systems, including Lonestar (Section 3) is envisioned in the 
short/medium term.7

4 https://drivetexas.org/faq 
5 https://api.drivetexas.org/ 
6 As per communications with Sarah Berryhill on February 2020. 
7 As per feedback from James Kuhr on January 2020. 

https://drivetexas.org/faq
https://api.drivetexas.org/
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3.5. Statewide Traffic Analysis and Reporting System (STARS) 
The Statewide Traffic Analysis and Reporting System (STARS) is used by TxDOT to comply with 
federal requirements for DOTs to develop, establish, implement, and operate a traffic 
monitoring system (TMS).8

Midwestern Software Solutions (MS2), the designer of the current STARS deployment, has 
implemented a software package called Traffic Count Database System (TCDS) to generate a 
data portal that allows for data exploration and download (Figure 4). 

Figure 4. STARS II user interface. 

The publication database, available since 2021, facilitates data querying and retrieval.9

The STARS system provides access to the following data, some of such data is collected at 
permanent count stations, which report data per lane and hour (Table 7).  

• Pneumatic Tube Counts
• Manual and Automated Vehicle Classification Counts
• Weigh-in-Motion (WIM) Data

8 https://www.law.cornell.edu/cfr/text/23/part-500/subpart-B 
9 As per communications with David Freidenfeld on February 2020. 

https://www.law.cornell.edu/cfr/text/23/part-500/subpart-B
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TPP operates approximately 425 permanent traffic data collection devices across the 
state. Thirty-six sites are weigh-in-motion sites that collect truck axle weight; the remaining 
sites collect either total volume or volume-by-class.  

3.6. Crash-Records Information System (C.R.I.S.) 
The Crash-Records Information System (C.R.I.S.) contains detailed information on traffic 
accidents that have occurred in Texas.10 C.R.I.S. data can be accessed via the following 
methods: 

• Annual Summary Reports (PDF)
• Automated Crash Data Extract Files (XML)
• An Interactive Query Tool (Figure 3)
• An On-Line Request Form
• The CRASH (Crash Reporting and Analysis for Safer Highways) System

In the Austin District, the City of Austin (CoA) is post-processing raw C.R.I.S. records daily to 
ensure the accuracy of critical information, such as the latitude and longitude of an incident, for 
specific incident types. Such data will be shared back with the public through the CoA open data 
portal.11  

10 https://www.txdot.gov/inside-txdot/division/traffic/crash-statistics.html 
11 https://data.austintexas.gov/Transportation-and-Mobility/-UNDER-CONSTRUCTION-Crash-Report-Data/y2wy-
tgr5 

http://www.txdot.gov/inside-txdot/forms-publications/drivers-vehicles/publications/annual-summary.html
http://www.txdot.gov/inside-txdot/division/traffic/data-access.html
https://cris.dot.state.tx.us/public/Query/#/public/welcome
http://www.txdot.gov/apps-cg/crash_records/form.htm
http://www.txdot.gov/government/enforcement/crash-system.html
https://www.txdot.gov/inside-txdot/division/traffic/crash-statistics.html
https://data.austintexas.gov/Transportation-and-Mobility/-UNDER-CONSTRUCTION-Crash-Report-Data/y2wy-tgr5
https://data.austintexas.gov/Transportation-and-Mobility/-UNDER-CONSTRUCTION-Crash-Report-Data/y2wy-tgr5
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Figure 5. User interface for online C.R.I.S. data query tool. 

C.R.I.S. data includes:
• Crash location (county, city, highway, etc.)
• Crash details (drug-related, speed-related, construction-related, etc.)
• Unit details (car, bus, bike, train, etc.)

Additional C.R.I.S. documentation is available through the TxDOT website: 
• http://www.txdot.gov/inside-txdot/division/traffic/crash-statistics.html
• https://cris.dot.state.tx.us/
• http://www.txdot.gov/driver/laws/crash-reports.html
• https://cris.dot.state.tx.us/public/Query

3.7. TxDOT Open Data Portal 
The TxDOT Open Data Portal (Figure 6) is a web-based ESRI ArcGIS site that provides access to a 
wide variety of geospatial data. 

http://www.txdot.gov/inside-txdot/division/traffic/crash-statistics.html
https://cris.dot.state.tx.us/
http://www.txdot.gov/driver/laws/crash-reports.html
https://cris.dot.state.tx.us/public/Query
http://gis-txdot.opendata.arcgis.com/
http://www.esri.com/software/arcgis/arcgisonline
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Figure 6. Landing page of TxDOT’s Open Data Portal. 

The data on the Open Data Portal can be accessed via the interactive web interface or via the 
ArcGIS web APIs. The latter provide access to data including: 

• Traffic count locations and AADT
• Statewide analysis model
• C.R.I.S. Data
• Drive Texas Line Data
• Drive Texas Point Data

The Open Data Portal contains information on categories including traffic, safety, 
infrastructure, assets, planning, and roadway network and system performance.  

3.8. Third-Party Traffic Speeds and Travel Times 
A number of vendors offer traffic speed/travel time data based on GPS information from 
participating vehicles, which is usually processed and, in some cases, combined with other data 
sources. 

3.8.1. Inrix 
Inrix provides a suite of data products and tools to support traffic analysis and management.12 
A number of transportation agencies use INRIX travel time estimates within their traffic 

12 https://inrix.com/products/ai-traffic/ 

https://developers.arcgis.com/web-api/
https://inrix.com/products/ai-traffic/
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operations workflows, including TxDOT. Some INRIX data is currently archived in TxDOT’s Data 
Lake (Section 4). 

Inrix data consists of one-minute probe-based speeds, reported for segments of varying length.  
In this context, probe-based speeds refer to an average speed value for each segment, which is 
computed by sampling individual vehicle speeds within the segment. Inrix defines the geometry 
of the segments and includes it in the metadata provided along with the data and updated four 
times a year. Inrix data includes information that may be used to understand how 
representative the reported values are, based on sample size and other data characteristics. 
While the data can potentially cover the entire network, the sample size on some roads is likely 
to be insufficient to generate reliable estimates.  

The Federal Highway Administration makes a subset of Inrix data available at no cost to 
transportation agencies through its National Performance Metrics Research Data Set.13 The 
data is available at five-minute intervals, and it covers the National Highway System only. The 
data is updated monthly, rather than in real time. Transportation agencies and their 
partners/consultants may request access to this dataset and download data periodically. 

Similar data is available from other vendors, including HERE.14 Google hosts an API that may be 
used to extract point-to-point travel time data, and various vendors offer products built based on 
Google’s platform. 

3.8.2. Waze for Cities Data 
Waze for Cities15 Data is a platform that provides participating agencies with access to crowd-
sourced data, such as the location of incidents and bottlenecks (Figure 7). Cities may use such 
data in their network planning, management, and operation workflows. Participating agencies 
are expected to reciprocate data of their own, including street closures and construction 
information. 

13 https://npmrds.ritis.org/analytics/help/#npmrds 
14 https://www.here.com/products/traffic-solutions 
15 https://www.waze.com/ccp 

https://npmrds.ritis.org/analytics/help/#npmrds
https://www.here.com/products/traffic-solutions
https://www.waze.com/ccp
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Figure 7. Data shared through the Waze data feed. 

Waze shares its data in real time through an API, and it has recently enabled access to historical 
data through Google Cloud. The new data access option also makes available data analysis tools 
for participating agencies (Figure 8). The first 10 GB of data storage and one TB of resources for 
data analysis are free to Waze's "Connected Citizens" program participants, but there will be a 
fee for additional data storage and analysis needs.  

Figure 8.  Example of Waze for Cities Data Dashboard. 
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TxDOT is part of the Connected Citizens Program, which grants access to the Waze for Cities 
Data. CTR is still investigating current data access/sharing protocols within TxDOT, and between 
TxDOT and its partners, and will report on it in the updated version of this document.16

3.9. Transit Data 
In recent years, transit agencies have started using widely accepted data standards to share 
information concerning their systems, including routes layout, fares and schedules, as well as 
real-time vehicle location and ridership data. Figure 9 describes transit data types and potential 
uses in the context of transportation network planning and operations. 

While not all agencies make their data publicly available, many medium/large urban areas in 
the United States share at least basic system information using GTFS. In Austin, Capital Metro 
provides the following data: 

• GTFS: Updated periodically throughout the year
• AVL: Streamed in real time in two formats
• APC: Updated twice a year

Figure 9. Transit data standards. 

16 Researchers are working with Brent Eastman to better understand TxDOT’s access and use of Waze data. 
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3.10. Experimental/Project-Specific Data with Limited Availability 
Aside from the data sources described in previous sections (which are expected to be available 
to some degree throughout Texas), some districts/divisions may have access to data from ITS 
devices that are associated with specific projects, or that are being tested in a research project. 
While such data is not necessarily streamed through Lonestar or even easily accessible, it may 
be of interest in the context of this effort. Further, the analysis of experimental data sources to 
support specific use cases may lead to valuable insights when considering promoting their 
wider adoption and use with TxDOT. Some examples of available data based on ongoing CTR 
research include: 

Austin District smart work zone trailers (SWZT): Trailers devices have been deployed alongside 
the roadways at more than fifteen locations along I-35 and US 183 through Austin. They 
capture vehicle volume and speed. While SWZTs are mobile, selected units have been placed at 
fixed locations for the last 12+ months, allowing for an understanding of recurrent and non-
recurrent traffic conditions. The data is streamed through Lonestar and is also being archived to 
support the analysis of work zone impacts and the planning of future construction work. During 
important closure events, additional trailers are deployed for 24–48-hour periods to extend the 
system coverage. Their data is incorporated in the corresponding work zone impact estimation.  

Austin District ITS sensors: There are several semi-permanent sensors placed on poles/signs 
that collect vehicle volumes, speeds, and type by lane every minute.  

Weather sensors: TxDOT RTI Project 0-7007, "Weather-Responsive Management Strategies," is 
evaluating sensor technologies with low-cost weather stations (Abilene District), bridge deck 
surface characterization (Austin District), on-vehicle roadway surface characterization in both 
districts, and passive infrared surface temperature and vehicle counting sensors. While these 
data sources are separate from systems that tie in with Lonestar, a major effort within the 
project seeks to successfully integrate with Lonestar, and to deploy the emerging online GIS 
toolset within the TxDOT summary. 

3.11. Conclusions 
This chapter presents an outline of data sources currently available to TxDOT, which were 
considered for use in the context of Project 0-7034 to support specific use cases of interest to 
TxDOT by leveraging artificial intelligence techniques.  

This effort is centered on applications that may enhance transportation network operations, 
and integrated corridor management in particular, and emphasis has been placed on data 
sources that can describe traffic conditions, safety, and the roadway network. There is 
additional information that would be beneficial from the perspective of corridor management, 
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such as the time and location of planned and unplanned roadway closures, and traffic signal 
timing plans. The performing agency did not find a standardized source for such data at the 
time of this report.  

CTR coordinated a facilitated roundtable discussion among third party data providers in 
collaboration with TxDOT’s Texas Technology Task Force in April 2020. The roundtable explored 
how emerging transportation data sources can be used for a wide range of applications. 
Participating data providers included telematics and mapping companies, telecommunications 
companies, sensor and Internet-of-Things (IoT) companies, vehicle manufacturers, and tier one 
automobile part suppliers. Each participant was asked to provide an overview of data sources, 
opportunities for collaboration, and information on use cases. CTR also conducted a survey to 
provide insights into the desirable characteristics and components of a successful data 
procurement strategy, reported in Chapter 4. 
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Chapter 4. Use Case Prioritization 
This project aimed to provide a demonstration and understanding of the concrete and tangible 
benefits that artificial intelligence (AI) may offer to transportation system owners and operators 
when considering the vast volumes of data currently and prospectively collected. The project 
focused on understanding methodologies ranging from simply AI algorithms to more advanced 
machine learning and deep learning methods. This project identifies both traditional and 
prospective data sources and maps them to meaningful applications that are utilizable to 
transportation agencies. The research team, along with TxDOT, explored possible applications 
of AI in transportation and organized them into the following six categories: system and service 
planning; asset management; system operations; communication and information; business 
administration; and public safety and enforcement.  

Preliminary work focused on developing a broad, high-level summary of the state of the 
art/practice in AI and its relevance to TxDOT and forming the basis for conducting in-depth 
analyses of one or two selected applications. The applications selected for this effort are based 
on the priorities identified by the research team after meeting with the project team and 
following the discussions held during a workshop organized for this project (P2). 

An AI strategy that prioritizes use cases that are directly linked to agency goals is helpful for 
allocating limited resources, driving toward outcomes that are actionable in advancing the 
agency mission, and gaining leadership support. The following categories of use cases have 
been identified as priorities and need further refinement. 

• Traffic Management: Applications would use collected data to analyze traffic patterns, 
generate solutions and optimal control policies, and establish rules for applying them to 
the transportation system.

o Detecting non-recurring congestion: Data from hard-braking events, adverse 
weather, crowdsourced data, and queue warnings can be used to detect real-
time traffic information and notify traffic management centers of anomalies. 
With this additional information, TMCs can automatically adjust their signal 
timing plans along adjacent corridors to alleviate the congestion.

o Integrated corridor management (ICM): A combination of cameras, vehicle 
detection systems, and vehicle probe data could be used to improve signal timing 
along frontage road intersections and nearby arterials for major corridors. A use 
case with indicated higher interest from TxDOT staff invokes reinforcement 
learning (RL) techniques to learn optimal traffic signal timings based on observed 
roadway conditions. By providing multiple examples of simulated data



47 

that reflects conditions encountered over a wide variety of traffic scenarios, an 
RL agent should learn the traffic signal configurations which maximize the 
rewards given to the agent. To do so, the RL agent is trained using state data on 
the roadway's speeds,17 volumes, and capacities, and rewards based on volume 
data. The model is developed such that it should provide a straightforward 
transition to implementation with real-world traffic signal controller meeting 
the relevant NTCIP standards. 

o Comparative travel times: A combination of historic and real-time vehicle probe 
data can be used to evaluate travel times along major corridors, enabling TMCs 
to update their dynamic message signs to publish comparative travel times and 
enable drivers to make informed routing decisions.

• Safety and Incident Management: Applications that can make emergency services and 
public transportation safer and more efficient.

o Identifying safety hotspots: Data from crash records, crowd-source platforms, 
roadway configuration data, weather and event data, and social media can be 
used to identify areas with relatively high incident rates. Verification of incident 
reporting data from crowd-source platforms such as Waze could help validate 
the utilization of this information in public agencies.

o Detecting incidents and improving clearance times: Additional analysis with data 
above could identify leading indications for incident occurrence, factors 
contributing to incidents, and design response strategies such as optimal 
rerouting.

o Analyzing work zone impacts: Analyses could help to understand the work zone 
safety and mobility impacts of their roadway projects. Results could help 
agencies better design work zones or analyze impacts across multiple work zone 
and design strategies.

• System Resiliency and Pandemic Impacts: Given the timing of current events, it may be 
of interest to use data and analytical methods to assess the impact on the system from 
developments such as the COVID19 pandemic or other events, such as Hurricane 
Harvey, flash flooding, etc.

17  Initially, space-mean speeds are used in training, but spot-mean speeds could be substituted later. 
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o Travel behavior trends: Data from cameras, probe vehicle data, transit 
authorities, and more could help to understand household travel behavior 
trends during the pandemic.

o Impact on freight and supply chain: Roadway sensor data and data from truck 
fleets could help to understand the impacts on freight operations, including 
travel times, routing, trip frequency, and origin and destination trends.

o Adverse weather events: Using historical travel and system data, analysis could 
discover and characterize the impacts to travel due to events such as 
evacuations, road closures, and emergency response strategies.

Based on the identified priorities and considering current data availability and CTR team 
expertise, the three use cases were selected for prototype implementation: safety hotspot 
detection and evaluation of traffic pattern changes due to the Pandemic, real-time traffic signal 
optimization, and real-time short-term travel time prediction. The three prototype machine 
learning models implemented by CTR span three of the most popular types of machine learning 
techniques: supervised, unsupervised, and reinforcement learning. The first two methods are 
implemented on a connected vehicle (CV) dataset provided by Wejo and focus on 
understanding the impacts of the pandemic on trip-making patterns and safety, respectively. 
The third model is tested on a simulation environment and is designed to support the 
optimization of signal timing plans in response to prevalent traffic conditions, using speed and 
volume data comparable to that collected by ITS sensors. 
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Chapter 5. A Strategic Approach to Data Acquisition  
Information technology and computing have been advancing rapidly in recent years, translating 
into opportunities for various sectors. In particular, artificial intelligence (AI) applications can 
significantly improve upon existing transportation engineering methods.  These benefits include 
improvements to corridor management, understanding traveler behavior, detecting incidents, 
and distributing information to road users. Rapid technology advancements have made it 
difficult for public agencies, such as the Texas Department for Transportation (TxDOT), to stay 
up to date. Among the larger field of AI applications, there is a subset that can serve TxDOT and 
provide a positive return on investment. The research team has been working collaboratively 
with TxDOT to identify and prioritize applications based on the organization’s needs, 
capabilities, and priorities.  

This process of identifying and prioritizing use cases is one component of a larger process 
where TxDOT is working to advance their use of data. The Data Acquisition Plan proposed in 
this chapter may act as a foundation for the development of a formal data strategy. The 
research team developed a survey because TxDOT personnel are likely to have the best insight 
on how the organization can progress and where change is most needed. The core goals of the 
survey were the need to identify high priority applications, to understand internal TxDOT 
sentiments about current data practices, and to learn about barriers for implementing new 
methods.  The results of the survey have been translated into a number of key insights and 
recommendations for TxDOT. This is an exploratory effort that provides TxDOT ideas on how to 
build out a more comprehensive data acquisition strategy to serve the organization.  

The chapter is organized into the following sections: 

• Survey Development: This section provides background on why a survey was needed 
and how the team went about building it.

• Survey Results: This section details the results gathered from survey participants and 
identifies some key takeaways.

• Data Acquisition Strategies: This section translates the insights gained from the survey 
into actions that TxDOT can take.

• Conclusion: This section provides a summary of key findings and identifies next steps.
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5.1. Survey Development 
The research team’s survey creation process has been broken down into design considerations, 
question refinement, and distribution methods.  

5.1.1. Design 
The data acquisition survey was created to leverage the existing knowledge base within TxDOT, 
the personnel who are working with data on a frequent basis. The research team opted for a 
survey because of the ability to gather information from a larger group of people. TxDOT is a 
large organization, it is important to get input from people working in various Districts and 
Divisions to identify unique and/or collective experiences, challenges, and sentiments. One goal 
of the survey was identifying high priority applications that are implementation ready, so that 
TxDOT has an idea of projects to pursue that are expected to have a high payoff and grow 
support for future efforts. In addition, it was important to understand how TxDOT personnel is 
interacting with and thinking about data. This can be used to identify strengths and limitations 
in the existing system. From start to finish, the survey design process consisted of question 
drafting, refinement, survey distribution, and follow-up interviews. 

Going into question development, the research team made it a priority to align their objectives 
with the construction of the survey. The team wanted to gather a variety of information and 
was able to leverage question structuring to generate valuable results. To gather background 
data, respondents were asked to rate their data expertise and evaluate TxDOT’s relative 
standing in their use of innovative data methods. These questions were meant to provide high-
level information, so a single-choice format was appropriate. Single-choice questions are easy 
to participants to understand and yield results that are easy to interpret, making them valuable 
in situations where more detail is not needed. Next, it was important to get an understanding 
of what applications are the highest priority. In designing this, it was challenging because 
ranking provides relative measure but is ineffective on a large list of options. The solution was 
to ask respondents to select three top applications, then use a follow-up question to rank these 
three applications. This allowed the research team to have a larger initial list of applications and 
still get insights about the relative priority of the top three applications. To understand 
sentiments and decision-making influences, multiple-choice questions were more appropriate. 
Multiple-choice allows for more variation in responses, but still limits responses to a designated 
list. These questions allowed the research team to identify broad trends without requiring in-
depth responses from participants. Throughout the survey, text-entry questions were included 
to provide an opportunity for respondents to share more details. All of these entries were 
optional, due to the way that response rate drops off with the inclusion of numerous text-entry 
questions.   
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Thoughtful design is key to the success of a survey, as results are only as good as the questions 
from which they are derived. Survey design goes beyond the questions being asked and 
considers how the structure of a survey can influence the quality of responses. Questions that 
were not essential were made optional, with some requesting a response if left blank. In the 
event of a response request, the survey software would pop-up a notification that the 
participant has not answered a question before allowing them to advance, but this could be 
dismissed. The research team understood that surveys are best suited to provide a high-level of 
understanding that can reveal common sentiments among participants, but they are not well 
suited to providing detailed insights. The research team kept this in mind during development 
and focused on questions that provide a broad sense of data at TxDOT. As a supplement to the 
survey results, participants were able to opt-in for a brief one-on-one interview where they 
would be able to elaborate on their answers and provide feedback on draft strategies. These 
discussions allowed time to dig into details that were not captured in the survey and rounded 
out the research team’s understanding. 

5.1.2. Refinement 
Knowing that the survey should be brief to be effective, the research team developed an initial 
set of questions before refining to what was distributed. To avoid abandonment and rushed 
responses, the survey was kept short—containing 10 questions, not including the entry of 
contact details. The questions around priority applications required particular attention in this 
process. The information gathered for TM2.1—Literature Review was used to generate a list of 
applications that TxDOT could implement in the near-future. Asking respondents to rank these 
applications is made difficult by the fact that they are often known by many names and the 
names may not fully communicate their purpose. To account for this, each application was 
accompanied by a brief, non-technical description, roughly a sentence long. The refinement 
process also included the removal of any questions that were redundant or likely to confuse 
participants. During this process, the research team worked closely with TxDOT’s Strategic 
Planning (STR) Division. Insights from this collaboration helped the research team to strike 
questions that were unlikely to yield valuable results, to reword questions that were confusing, 
and to add more options in sentiment questions that could reflect some nuances. The full list of 
questions asked within the survey is provided in Appendix A.  

5.1.3. Distribution 
The target audience for this survey is someone within TxDOT who works with data on a 
frequent basis and/or has some knowledge of the subject. To reach this group, the research 
team leveraged existing mailing lists within TxDOT. The survey was sent out to the Connected 
and Autonomous Vehicle (CAV) Workgroup, the Tableau Community of Practice, and others 
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involved in GIS mapping or road data usage. In addition, the research team identified a handful 
of knowledgeable individuals, with roles that allow them to implement new technologies, and 
sent them the survey directly. This process yielded 32 responses and provided enough 
information for the research team to close the survey. 

5.2. Survey Results 
The results of the survey provide insights across a few categories. Reporting of result has been 
broken down into background data on survey performance and participant information, the 
selection of priority applications, and insights pertaining to participant sentiments and opinions. 

5.2.1. Background Data 
The survey was completed by 25 TxDOT employees working across a variety of divisions and 
districts within the organization. Among these respondents, there was representative from ten 
different divisions and four districts. Divisions represented include Strategic Planning (STR), 
Traffic Safety (TRF), and Planning (TPP). The districts that participated ranged from rural 
(Odessa and Brownwood) to urban (Houston and Austin). The diversity of districts and divisions 
represented translates into a confidence that a variety of perspectives are reflected in these 
survey results. While the respondents work in a variety of roles, over 85 percent indicated some 
level of knowledge and experience with regard to data. Figure 10, below, shows the full 
breakdown of expertise levels concerning TxDOT data reported by respondents. The responses 
from individuals that indicated a lack of expertise did not significantly differ from the full group, 
except a higher frequency of selecting lack of skillset and authority as barriers to 
implementation.  

Figure 10. Experience and knowledge levels among respondents. 

% 

% 

% 



53 

The research team wanted to know how TxDOT personnel perceives the standing of the 
organization in comparison to its peer states. Participants were asked to rate Texas as ahead, 
on par with, or behind other states with regard to innovative data methods. If the participants 
had frequently rated the state as behind other states, this may reflect a dissatisfaction with 
TxDOT’s data advancements. However, this question did not yield clear results with over 55 
percent of respondents saying they are not sure where Texas ranks. Of those who did provide a 
rating, it was more likely to be ahead of or on par with—indicating a lack of TxDOT employees 
that think the state is lagging behind in their data related efforts. A better sense of internal 
sentiment would require further surveying, but it was not critical for the purpose of this survey. 

5.2.1.1. Metadata Gathered 

While reviewing the results, four responses were removed because they only answered the first 
question. Three more responses were incomplete, but the answers they did provide are 
included. The other 25 surveys were fully completed, a promising sign that most survey 
respondents engaged with the survey. All respondents that fully completed the survey provided 
a TxDOT email address which allowed the team to verify their role at the organization. During 
the design phase, the research team estimated that the survey would take 5–10 minutes to 
complete thoughtfully. The available metadata suggest that most durations lined up with this. 
However, many values were likely an inaccurate reflection of time spent taking the survey. 
Qualtrics, the survey platform used, measures duration as the time between starting the survey 
and finishing the survey without accounting for any breaks. Many participants had duration 
times that suggest they do not reflect time spent focused on the survey—a handful of times 
upward of one to two hours were reported. 

5.2.2. Priority Applications 
One goal of this survey was to understand what applications TxDOT prioritizes most highly so 
they could feed into pilot efforts and/or implementation research. The list is meant to 
encompass applications that are relevant to TxDOT and could be deployed in the next one to 
three years. Looking to the results from applications that were included in the list generated by 
the research team, there are a several levels of priority that can be identified. Figure 11, below, 
shows the breakdown of responses with values that can range from 0 to 28. Figure 12 shows 
the breakdown of how the top three applications were ranked relative to each other. The 
applications were broken down into three tiers of priority level (high, middle, low), so the 
graphs in Figures 11 and 12 have been sorted and color-coded to reflect these tiers. Breaking 
the results down by these tiers: 
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• Identification of Safety Hotspots and Integrated Corridor Management are the high
priority applications among this list and, therefore, could be strong candidates for
implementation.

o They were selected as a top three application the most often.
o Both were more likely to be ranked first priority, rather than second or third.

• Applications of mid-level priority were Incident Detection, Asset Management, Travel
Trends & Forecasting, and Disaster Response.

o These applications were selected less often and less likely to be ranked first
priority.

• The lowest priority were Flood Detection and Truck Parking availability—likely a
reflection of the situational importance of these applications.

o Respondents from the Houston region selected Flood Detection more often.
o When selected, these applications were ranked second or third.

Figure 11: Priority application choices. 
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Figure 12: Relative priority rankings of top applications (darker shade indicates a higher ranking). 

The list of applications in the survey was not comprehensive, so the survey included an 
opportunity to identify other applications. Respondent suggestions included predictive travel 
time, project management tracking, and resource optimization tools. In a follow-up discussion, 
the research team was able to talk to the respondent who suggested the project management 
tool. They elaborated on this concept as a tool for generating estimates to provide to contractors 
during the project letting process, leveraging historic data of project performance to provide an 
idea of how this project will fare. The research team is not aware of tools that currently target 
this challenge, but the respondent stated that centralization of data and development of data 
standards could be a big help. In terms of predictive travel time, this is a promising application 
that could be implemented by TxDOT to improve the information provided on dynamic 
messaging signs (DMS) during periods of congestion. The resource optimization tool was a 
suggestion for a scenario-planning application that would allow someone to allocate resources 
(funding, staffing, etc.) across a number of scenarios and predict the outcomes. It would be a 
great tool for asset management and maintenance planning efforts.  

5.2.3. Respondent Sentiments 
The survey contained a set of questions that were aimed at learning about underlying 
perceptions. These questions provide insight into what challenges are occurring or, at the very 
least, are perceived to be occurring. Also, they provide a look into what employees value—
information that is helpful for members of the private sector who want to highlight features of 
their work that matter to the public sector. Since these results are generated from a list of 
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options, they should be not thought of as comprehensive and there are likely factors that were 
not revealed here. The results that were gathered do show trends that are helpful in developing 
programs and strategies for the future.  

In the first sentiment question, respondents were asked to identify up to three factors that 
played a large role in their decision of what applications to prioritize and their relative ranking. 
The results, shown in Figure 13, reveal a high number of participants selecting the impact and 
alignment factors. This can be translated into a preference for applications that will create a 
noticeable difference from traditional methods and for applications that are aligned with 
existing priorities. Equally interesting, is the fact that funding was one of least selected factors. 
Funding is often seen as a significant barrier to change, but this reveals there is still a stronger 
preference for applications that can make a difference, regardless of any difficulty relating to 
funding. The stronger preference for readiness and sustainability versus novelty can be 
interpreted as support for applications that are shown to yield consistently strong returns, 
instead of an attraction toward novel concepts or techniques that are less proven.  In sum, 
these selections reflect a desire to invest in applications that will provide strong results and can 
be sustained over time. Applications will need to be thoroughly tested and show promising 
results before there will be broad acceptance of incorporating new tools or techniques.  

Figure 13: Factors that influenced top application selection and ranking. 

Next, respondents were asked to identify up to two barriers they had experienced in working to 
improve TxDOT’s data tools or management. Efforts that they have engaged with previously did 
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not need to be connected to AI. The breakdown of barriers identified by respondents is shown 
in Figure 14, the most common barriers were a lack of skillset and a lack of awareness. The 
barriers of skillset and awareness reflect a trend that can be seen across transportation 
agencies and many other fields. Technology is advancing quickly, making it time consuming to 
keep up with advancements. Having the awareness that data analysis tools and techniques are 
advancing is not the same as having the ability to implement changes. Some respondents 
indicated a challenge with understaffing, a factor that further restricts the ability to explore 
new methods. The other common barriers, limited funding and lack of authority, add further 
complications to these scenarios. In the realm of funding, it can be hard to justify these efforts 
when competing with requests for funding required to maintain the costs of current methods. 
Lack of authority is a common challenge for an organization the size of TxDOT, it is often hard 
for employees to know who they should talk to for help. During a follow-up conversation, a 
participant elaborated on the challenge of being ‘bounced’ between various contacts and losing 
time from the lack of clearly delineated roles. These challenges do not reflect poorly on TxDOT; 
they instead illustrate the level of difficulty that surrounds the process of modernizing a large 
organization.    

Figure 14: Results for barriers to implementation. 

The last quantitative question in this subsection pertained to the evaluation of new tools and 
techniques. Respondents were asked to consider a hypothetical situation wherein they were 
analyzing a private sector solution and identify up to three things that would factor heavily in 
their decision. The most common selections, by a significant margin, were evidence and 
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visualizations. These selections reflect a high value placed on proven solutions that provide a 
user-friendly interface. The preference for visualizations is well-aligned with the fact that TxDOT 
employs a lot of people that are not, and do not need to become, data experts. Visualizations 
quickly translate data into easy-to-interpret formats that can be shared and discussed. While 
tables are compact and easy to construct, they require significant mental energy to translate 
into concise insights. This difference is magnified as the quantity of data grows. The support for 
evidence reflects a preference for tools that can be trusted to provide a return on investment 
and, possibly, consideration that evidence can be used to support a request for funding. There 
is also a notable interest in endorsements, pilots, and evaluations. Pilots often offer an 
opportunity to work through any integration complications and provide a chance to work with 
the solution before committing to a longer contract. Endorsements and evaluations come from 
trusted sources, providing a sense of confidence. Interestingly, there was limited value placed 
on the maturity of an application. This survey is unable to reveal if maturity is valued more 
generally, but it was not a significant factor in these results. Similar to the responses from the 
earlier question about decision-making factors, cost was not identified as a priority. Considering 
the insights on barriers to implementation, it can be said that the cost of new solutions is not a 
driver in identifying what should be implemented but, instead, is a barrier to putting that 
solution into practice.  

Figure 15: Factors when evaluating new data source or analysis tool. 

At the end of the survey, before opting in or out of a follow-up, participants were offered a 
chance to provide some general input into putting together a data acquisition strategy. The full, 
unedited responses are available in Appendix A, but here they may be paraphrased or 
combined to highlight key insights. A common refrain, reiterated in the follow-up interviews, is 
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a need for centralization of data and governance of data. Without a central hub and 
standardized data formats, much time and energy are lost to converting or creating data sets. 
There may be more use cases that TxDOT can support, but it is nearly impossible to identify 
them without bringing together the existing data—both that being stored and the streams 
actively generating data. Another key message was the importance of holistic strategies that 
target high impact use cases and implement them in a timely manner. Implementing solutions 
that are well-aligned with existing priorities and high impact can be low-hanging fruit—
providing high returns with little investment. The time to develop and deploy a solution should 
be considered, as a project that takes too long may result in a loss of momentum. In terms of 
personnel management, there were requests for better access to training and coordination of 
communication between divisions and districts. Employees often feel they are left to navigate 
with little guidance, so it is important that TxDOT provide continued support across the 
organization that enables collaboration and growth.  

5.3. Data Acquisition Strategies 
The survey results provided a set of valuable insights, next these insights need to be translated 
into actionable strategies. The research team’s recommendations have been broken down into 
three categories: (1) assets, (2) personnel, and (3) policy and planning.  

5.3.1. Digital Infrastructure and Data Assets 
The success of innovative data analysis applications is built upon effective data storage and up 
to date hardware. TxDOT is generating more data than ever, with this volume of data expected 
to continue growing in the coming years. To keep up, TxDOT will need to build out their data 
storage capacities to some extent. The primary options include: 

o Localized hardware: TxDOT can invest in their own servers for data storage. This 
approach would allow greater control over data management, particularly important in 
the realm of data security. The drawback being a higher upfront investment and 
continued cost of maintenance. 

o Cloud storage: TxDOT can outsource much of their data storage needs. There are 
numerous cloud storage options, TxDOT already uses SharePoint for some of their 
needs. This requires less investment, but it involves security risk and increased latency 
to access data. 

Likely, the ideal solution for TxDOT will be a combination of the above. Local storage can be 
used for data that needs higher security and low latency, with other needs served by cloud 
storage options.  
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For TxDOT to leverage their data assets, they need an Enterprise Information Management 
strategy in place. Data needs to be easy to access and work with, as friction in this process 
results in wasted resources spent integrating data sources. Personnel in various divisions and 
districts would benefit from access to TxDOT’s data inventory. The success of this concept will 
also require TxDOT to implement more data governance: 

o Centralized Repository: TxDOT has begun efforts to develop a data warehouse that will 
improve storage of and access to data. The central storage solution will need to support 
queries that allow personnel to easily access samples for analysis. Districts and Divisions 
can maintain smaller storage of recent, granular data that is not used by others. For 
frequently accessed data, the hub can reduce redundant storage and make data easier 
to find. Improved storage and access will allow TxDOT to better leverage their data.

o Standardized Formats: Data streams need to have defined formatting to ensure 
consistency across efforts. TxDOT has already done great work in furthering this with 
their role in developing the Work Zone Data Exchange (WZDx). This mindset can be 
applied across data sources and improve the ability to analyze data across time, 
Divisions, etc. It may not be feasible to standardize all of TxDOT’s data immediately, so 
they may need to work with personnel to identify low-hanging fruit (data that can easily 
be standardized and will provide noticeable improvement to operations).

5.3.2. Personnel 
In the survey, there was a high percentage of respondents who reported a lack of authority to 
make changes. The distributed power structure of TxDOT enables it to operate efficiently, but it 
can make it harder to navigate. This difficulty manifests internally and externally: 

o Internally: Individuals struggle to identify the appropriate individual when trying to
interact with other divisions and/or districts.

o Challenge: In a follow-up interview, a participant recounted a time where
personnel within a district was trying to collect data by hand using an ArcGIS
map. The division that manages this map was able to write a query and pull the
needed data within minutes, but the individual assigned the task was not aware.
This story illustrates how individuals can spend time performing tasks
inefficiently when intra-agency contact is not well established.

o Solution: TxDOT can create a directory that identify point(s) of contact for
various needs—i.e., manager of an internal tool. To develop an effective tool,
personnel across multiple districts and divisions should be consulted. This
resource will need to be easy to access and updated regularly.

o Externally: Many private sector companies that want to work with TxDOT have difficulty
identifying the appropriate contact within a division or district.
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o Challenge: Companies do not know the best point of contact within the
organization. This results in two ways: (1) emails are never sent, TxDOT may miss
out on a valuable opportunity or (2) emails are sent to whomever they can
reach, resulting in many emails to those who are not responsible for these
efforts.

o Solution: Divisions and districts that interact with the private sector on a regular
basis (i.e., TRF and STR) can collate a list of contacts. This can be made available
on the TxDOT website and would help to streamline communication.

The survey results showed a high proportion of respondents feel a lack of relevant skills 
presents a barrier to implementing new data analysis tools and techniques. TxDOT can address 
this by providing training and/or an information repository that makes knowledge more 
accessible. In survey responses and during a follow-up interview, participants requested that 
training be designed thoughtfully and to fit the needs of those who need it. Training may cover 
a range of topics from more introductory information (What is AI? How can it be used in 
TxDOT?) to practical use of tools and techniques in practice at TxDOT (What are the capabilities 
of INRIX? When should I use Tableau?). Training should be designed to suit the needs of 
personnel. This may come in the form of modularity, an ability to select what training is 
applicable; flexibility, allow training materials to be accessed at any time; and variety, present 
the information across multiple formats. TxDOT may not be able to eliminate the skillset 
limitations through training, but it is possible to reduce the gap.  

Respondents reported a similar issue in lack of awareness surrounding new technologies and 
solutions available. It does not make sense for all TxDOT personnel to spend large quantities of 
time learning about each new technology or technique, yet without knowledge of these new 
opportunities they cannot be pursued. TxDOT can build upon their existing success with 
communities of practice. In a follow-up interview, the participant said they really enjoy the 
community of practice they have joined for Tableau and would like to see TxDOT expand this 
concept to encourage more conversation around data. TxDOT could create a community of 
practice or otherwise facilitate conversation on the topic of new data analysis tools and 
innovative solutions. Creating this forum would allow people to come together and leverage 
their collective knowledge. By collaborating, individuals often come away with ideas they would 
not have come up with on their own.  

5.3.3. Policy and Planning 
The large size of TxDOT can make implementing new solutions a slow process, but this pace 
needs to accelerate and there must be room for innovation. The research team recommends 
that TxDOT develop a streamlined pilot and/or evaluation process for new data sources and 
analysis tools. Pilot projects provide an opportunity to explore the value of a new solution to 
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TxDOT that is difficult to measure otherwise. Recently, a group within TxDOT worked to 
develop the INRIX contract that has provided easy access to an immense pool of data. The 
INRIX contract should be seen as a valuable precedent, as it made access ubiquitous across the 
organization and extended to their public partners. TxDOT can use this as a base to develop a 
more streamlined process, allowing this model to extend beyond the INRIX contract. These 
pilots can focus on high impact investments that can show results within a small timeframe, 
solutions that show promise can then be evaluated for a larger implementation where it makes 
sense to do so. By streamlining the process, TxDOT can trial more new technologies instead of 
spending time investigating many different options without being able to conclusively 
understand how it would operate. The pilot strategy limits the risk taken on by TxDOT, the 
short length of the contract means that costs can be kept low and there are limited loses from 
any effort that does not succeed. TxDOT can engineer this process to focus on proven solutions 
that have demonstrated some promise and applicability, aligning with the priorities identified in 
the survey. It could translate into rapid-paced improvements that inspire further changes. 

5.4. Conclusion 
The results of this survey and insights from follow-up interviews show that TxDOT has made 
great strides in using data and pursuing innovative solutions. This progress can be built upon to 
further progress and help the organization transition into a holistic data strategy. TxDOT will 
need to expand upon their efforts to formalize data standards, efforts to bring personnel 
together, and efforts to create contracts that enable innovation. The key takeaways for TxDOT 
can be summarized as: 

• Pipeline Process: Create a procedure where priority applications can be identified and
explored in a pilot project. Building upon progress from the INRIX contract, TxDOT can
create a streamlined method for scaling new solutions. The priority applications from
this survey, safety hotspot identification and integrated corridor management, could be
a jumping off point for this concept.

This process should include development of evaluation criteria for private sector data
sources and analysis tools. Standardized criteria will improve efficiency and fairness.

• Internal Collaboration. Build on existing successes, create a new working group that
focuses on data and implementing new solutions. Working groups and other facilitated
conversations enable individuals to come together and share their collective knowledge.
Make it easier to communicate across divisions and districts by clearly designating
authority and point(s) of contact.
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• Data Policy: Establish clear data governance policies to centralize data management
and standardize data formats. The array of data generated and managed by TxDOT
must be centralized to enable ease of use and efficient analysis. Well governed data
makes it easy to perform internal analysis and generate insights. Establishing standards
early on, such as in the WZDx project, allows TxDOT to set a standard for their peers.
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Chapter 6. Data Collection for Prototypes 
This document describes the data that CTR will use in the practical applications to be conducted 
for this project. The following sections present the general characteristics of each dataset, 
corresponding spatial and temporal coverage, and how the researchers will access, process, 
and stage the data. The final datasets will be put together after the prototype model 
development phase is completed, at which point CTR may update this technical memorandum 
with information specific to each use case. Alternatively, such information may be provided in 
the technical memorandum describing the model validation and refinement for each use case. 

6.1. Data from Smart Work-Zone Trailers 
The Austin District uses smart work-zone trailers (SWZT) to collect speed and volume traffic 
data during lane closures related to work zones. These devices collect one data point per 
minute, which indicates the spot-speed (in miles per hour) and the volume at the location of 
the sensor. The data is streamed in real time by two different providers, and then broadcasted 
through Lonestar. In collaboration with the Austin District’s GEC, CTR has developed a data 
pipeline to store all streamed data in a relational database. 

Figure 16 presents the location of 33 SWZTs for which data is available starting on November 4, 
2018, plus permanent ITS sensors. Table 7 presents the data tables used to maintain the SWZT 
data. 

Table 7. SWZT Data Tables 

Table Field Comments 
sensor_location sensor_name 

lat 
long 
Net_ID Internal identification, not used. 

Sensor_archive Volume 
Stores last 72 hours of 
data 

Sensor_name 
Net_ID Internal identification, not used. 
XML_Header For debugging, not used. 
Occupancy 
Speed 
Direction 
Agg_type For internal reference. Set to average for all ro
Archive_time Timestamp including date and time.  

Sensor_archive_history Same fields as sensor archive but storing data older than 72 hours. 
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Figure 16. Location of SWZTs and selected permanent ITS sensors in the Austin District. 

CTR has analyzed the collected data, and identified some issues that must be considered when 
using this data: 

Missing data: Each sensor should produce one data point per minute; however, there are 
occasionally hours of the day for which the sum of received data points is less than 60. 
Although on average most sensors collect 90 percent or more of the data they are expected to, 
data points may be missing from the data sample used in our applications. Missing data is 
typically the result of sensor malfunction, and it may affect the calculation of total throughput 
and bias our estimates of average speeds. Appropriate methods will be used to minimize the 
impact of any missing data, such as imputing missing volumes based on neighboring data. 

Repeated records: A single data point is expected for every minute in which sensors are active. 
However, when a momentary loss of communications between the sensors and Lonestar 
occurs, several data points may be broadcasted simultaneously, all of which are assigned to the 
same minute. While the data in each of these points is valid, the timestamp is incorrect, which 
may lead to small errors when aggregating the data for the analysis of a specific time interval. 
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Repeated records represent less than 1 percent of the data collected in each sensor up to 
October 2010. While these errors are not expected to be significant, repeated records will be 
corrected in the data sample used in this project. 

Constant speed values: We have observed that occasionally the reported speed values do not 
change for several consecutive minutes, which is likely to reflect a sensor error. For this project 
we will try to avoid including days where the standard deviation of the reported speed values is 
zero for one or more hours. 

6.1.1.  Data Sampling and Processing 
Data from SWZTs will be used to test and validate the reinforcement learning application for 
optimizing traffic signals. This data may also support the development of supervised learning 
methods to understand the impact of freeway closures on arterial streets, and to predict the 
impact of freeway closures. CTR may also consider testing classification models to identify 
abnormal traffic conditions. 

CTR has received samples of incident reports from CTECC and is expecting to select a subset of 
such incidents for the development and testing of the algorithms. Based on the dates and times 
of the selected incidents, CTR will select a subset of records in the existing database and create 
files or a project-specific database for the purpose of testing and validation. 

Some of the considered applications may require further data cleaning, and the research team 
will describe such methods in TM 4 (or amend this document). 

6.2. Probe-based Speed Data 
CTR has access to probe-based speed data from two sources: the National Performance 
Management Research Data Set (NPMRDS) and INRIX. 

Probe-based speed data consists of average speed values on pre-defined roadway segments, 
obtained by analyzing the position and speed of in-vehicle devices for a set of participating 
vehicles. The data is often streamed in real time and updated every minute.  

Both datasets used in this project are collected by INRIX; the NPMRDS data is made available 
for free to transportation agencies and their consultants by the FHWA through RITIS (ritis.org). 
The NPMRDS data is not provided in real time, but rather updated monthly. The data is 
aggregated to five-minute intervals and mapped to segments denoted TMCs (Traffic Message 
Channels), which are an industry standard to convey location information to communicate 
traffic information. 
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The NPMRDS data cover only roadways in the National Highway System. INRIX data obtained 
through the provider is streamed in real time every minute, and it covers most of the roadway 
system in urban areas (Figure 17).  Further, the data is reported over segments defined by the 
provider, called SD segments, which are typically smaller than TMCs. 

Probe vehicle data has some limitations: the measured speeds do not correspond to any 
particular vehicle, and they may not reflect the conditions throughout the segment (e.g., a 
segment may be congested on one end and free flowing on the opposite end). Nevertheless, 
the extensive spatial and temporal coverage and ease of access makes this type of data a 
valuable tool to support network management and decision-making.  

Figure 17. Example of availability of probe-based speed data along I-35 when accessed through the 
NPMRDS (a) and when purchased from the provider (b). 

6.2.1. Data Sampling and Processing 
Probe-based data will be used to test and validate the reinforcement learning application for 
optimizing traffic signals. This data will also support the development of supervised learning 
methods to understand the impact of freeway closures on arterial streets, and to predict the 
impact of freeway closures. CTR may also consider testing classification models to identify 
abnormal traffic conditions. 

For this project, CTR has gained access to NPMRDS data, and also received permission from 
the City of Austin to use a data sample of INRIX data on the arterial system. 

Data samples will be downloaded through the web interface based on the availability of 
incident/lane closure data. We expect to download at least one month of data from both 
datasets, spanning the entire city of Austin, and use 15-minute-level data. The data will be 
staged in a database, and it is not likely to require additional processing or cleaning, since the 
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provider performs quality analysis and control. Table 8 describes the tables to be used to 
store INRIX data. 

Table 8. INRIX Data Tables 

Table Field Comments 
segment _geom Seg_ID 

O_lat Latitude of start point. 
O_long Longitude of start point. 
D_lat Latitude of end point. 
D_long Longitude of end point. 
Seg_dir Direction of travel. 
Street_name 
length_mi Segment length in miles 
seg_geometry Geometry of straight line between start and end 

visualization 
segment _data Seg_id 

Date_time Timestamp 
Speed_mph 
Ttime_min 

6.3. Data from Permanent ITS Sensors 
The PM has access to sample data from permanent ITS sensors placed on TxDOT’s 
infrastructure. These sensors collect vehicle speeds and traffic counts by lane, and also perform 
vehicle classification. CTR has identified 12 sensors on I-35, which cover a section of the 
freeway not monitored by SWZTs (Figure 17).  

ITS sensor data is affected by similar limitations to those described in Section 2, although the 
volume and speed data collected by these sensors is expected to be more reliable than the data 
from SWZTs due to the sensing technology.  

6.3.1. Data Sampling and Processing 
ITS sensor data will be used to complement SWZT data if needed. CTR has explored the 
availability of data using a one-month sample and the data seems promising. There’s currently 
not a pipeline in place to collect this data continuously, and CTR will request samples based on 
the need of specific applications. 
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6.4. High Frequency Connected Vehicle Data | Basic Safety 
Message 
CTR has negotiated access to a dataset collected by Wejo, a United-Kingdom-based company 
with a US presence. Wejo has agreements with US automobile companies to share and mine 
high-frequency connected-vehicle data for insight on travel demand, behavior, system 
operations, and more. The shared data is similar to the basic safety message (BSM) standard 
developed by SAE J2735 BSM. BSM has two parts. Part 1 contains the core data elements, 
including vehicle size, position, speed, heading, acceleration, and brake system status; this data 
is to be transmitted approximately 10 times per second. BSM part 2 contains a variable set of 
data elements drawn from many optional data elements (availability by vehicle model varies) 
and is transmitted less frequently.  

The Wejo data represents one in every 28 vehicles in the US. Its coverage is approximately 95 
percent of US roads. It is transmitted every one to three seconds from the vehicles, and 95 
percent of it is sent to customers in less than 32 seconds. Finally, the data is accurate within a 
three-meter radius. Examples of Wejo data collected include:  

• latitude

• longitude

• speed

• direction of heading

• ignition status

• timestamp

• state code

• country code

• vehicle make and model

• acceleration

6.4.1. Data Sampling and Processing 
CTR received two weeks of data for the Austin area: one week before social distancing orders, 
and one after.  



70 

The data was be received through a safe FTP transfer and staged in a database to facilitate data 
manipulation. The database schema, along with any necessary data aggregation and processing 
methods is described in TM 4, or in a revision to this document. 

  Potential applications and use cases fall into two categories that are described below. 

• COVID-19 pandemic travel patterns, including an analysis of travel behavior, traffic
volumes, and trends in the weeks leading up to social distance orders and compared to
patterns after social distance orders. More specifically, there is interest in analyzing
travel speeds on various roadway types, as traffic incidents and their severity have
increased since social-distance orders were issued. Additionally, there is interest in
understanding trip purpose trends (e.g., recreational, work, essential service, etc.).

• Connected vehicle data for corridor management, including exploration of data for
applications such as incident detection, advanced detection and prediction of roadway
interruptions, ramp metering, queue detection, lane management (managed lanes),
wrong-way driving, and more. An area of interest may include estimation of minimum
connected-vehicle penetration for accurate parameter estimates (speed, volume, etc.)
so that other sensors can be phased or complemented. Other areas of interest may
include development of methods to predict future travel conditions based on real-time
information, dynamic signal timing, developing traffic smoothing strategies, and
intersection safety analysis.

6.5. Additional Data on Austin’s Arterial System 
CTR is familiar with a number of datasets curated by the City of Austin that may be used to 
support some of the proposed use cases. These include turning movement counts at 
intersections collected by Gridsmart cameras, traffic speeds and volumes collected by 
Wavetronix sensors, and travel time data that may be obtained by analyzing Bluetooth sensor 
readings.  

6.5.1. Data Sampling and Processing 
CTR has developed the workflows used by the City of Austin to publish the above datasets in its 
open data portal and will use the established pipeline to download adequate samples as 
required by specific use cases. Corresponding data structure, as well as processing and cleaning 
needs, will be described in TM 4 if these data sources are used in the project. 
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Chapter 7. Safety Analysis Using Unsupervised 
Learning 
This chapter describes the first of three prototypes developed by CTR based on the use cases 
identified in collaboration with TxDOT. The first prototype represents an application of a 
clustering analysis (an unsupervised learning algorithm) to identify safety hotspots along the I-
35 corridor in Austin, Texas. The analysis uses high-frequency CV data from Wejo, roadway 
geometry information, and crash reports from the Crash Records Information System (CRIS) 
database to develop a roadway typology and compare characteristics before and after stay-at-
home orders were issued in March 2020 due to the COVID-19 pandemic. The cluster analysis 
proved useful, identifying five major clusters in March and April 2020 each, which 
demonstrated the value of AI techniques to characterize roadways based on different driving 
behaviors and safety risks. The following describes the data, methodology, and key findings 
from the cluster analysis. 

7.1. Background 
Safety remains a significant priority at TxDOT, and new data sources as well as data science 
methods are becoming available to enable the agency to more readily identify its challenges 
and allocate its resources accordingly. Current safety analysis relies upon crash reports 
inventoried by the CRIS database. This information, however, is historic and typically used to 
conduct analyses once a crash has occurred. TxDOT is seeking opportunities to approach safety 
more proactively.  

Furthermore, the COVID-19 pandemic brought forth new challenges for transportation 
agencies. Stay-at-home orders were issued on March 24, 2020, and as a result, traffic volumes 
dropped significantly. Unfortunately, speeding increased and traffic fatalities even increased in 
some cities. With such a significant disruption to typical travel patterns, it became important to 
study how different traffic conditions were related to different sets of safety challenges. 

CVs are an emerging technology capable of generating high-frequency data that provides 
insights into driver behavior, trip patterns, and traffic conditions. The data typically includes 
basic information on the time and position of the vehicle, along with its speed, heading, 
braking, and acceleration, and additionally other optional information such as windshield wiper 
status. While the potential value for this data is clear, much remains to be learned about data 
management, skills and training requirements, and its efficacy for different use cases.  

The prototype selected for development represents an opportunity to demonstrate an 
application of an unsupervised learning algorithm while assessing the value of CV data. 
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7.2. Research Question 
Based on input from TxDOT, the research team focused its analysis on identifying safety 
hotspots before and after COVID-19 stay-at-home orders were issued. Using a CV data sample, 
the research team devised a methodology to classify roadways based on different 
characteristics—driving behaviors, roadway geometry, and crash information—and identify 
significant safety hotspots. As a proof of concept, the research team chose a limited geographic 
area and time period for the basis of the prototype. 

7.2.1. Geography 
The analysis efforts focus on Interstate Highway 35 (I-35) main lanes and service roads from 
Cesar Chavez to US 290. This scope covers the dense urban environment near the river, but also 
extends up to a less congested portion of I-35. This allows for some range in driver behaviors, 
which bears out in the results. Along this stretch, 113 road segments are used for analysis from 
the Street Centerline file. The cluster analysis could be extended further along I-35 or to other 
highways but this was not feasible within the time and resource constraints of the project. 

7.2.2. Time Period 
The analysis was temporally restricted to the evening rush period on weekdays. The rush period 
was designated as 4:00 to 6:00 PM with data pulled from Monday to Friday in the first full week 
of March (March 2–6, 2020) and April (April 6–10, 2020). Restricting to this period allowed for 
the expectation of similar traffic flows across the analysis period. Additionally, limiting the 
scope of analysis made it feasible given project constraints. Other time periods of interest may 
be the morning peak period, event traffic (SXSW or ACL), or late evening (higher fatal crash 
rate). 

7.3. Data Collection & Management 
This project utilized data provided by Wejo, a connected car data company, to assess the value 
of artificial intelligence (AI) techniques for analyzing large datasets. A sample dataset was 
provided for use in this project, but the full catalog of data owned by Wejo is much larger, 
spanning a broader physical scope and temporal scope. For the purpose of this report, 
references to Wejo data are tied to the two-week subset of data within the Austin region 
provided for analysis. 

7.3.1. Wejo Data 
Wejo data is generated by connected cars that are equipped during the manufacturing process, 
instead of using aftermarket devices. Data collection is triggered by starting the vehicle and 
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ended by turning off the vehicle. All data collected provides no direct information about the 
operator of the vehicle or any passengers. 

Wejo maintains two datasets: (1) Movement, which contains records of each ping from a 
connected car while in operation and (2) Event, which tracks identified behaviors according to 
specified metrics. The data is generated by the same set of vehicles and one could theoretically 
derive the Event dataset from the Movement dataset by hand. 

7.3.1.1. Movement Data 

The Movement dataset consists of pings sent approximately every three seconds while the 
vehicle is turned on (Figure 18). While this project used historical data, Wejo also has real-time 
data with a latency of roughly 30–60 seconds. The time between pings and latency of 
transmissions means this data does not meet the requirements of CV data, but in non-safety 
critical applications it can provide comparable value. Each ping contains information on time, 
speed, heading, and location of the vehicle, which is called the basic safety message (BSM). 

In addition, data is connected by a journey ID from the time a car is turned on to when it is 
turned off. Multiple journeys by the same car are not connected to each other. Finally, each 
ping has information on the make, model, and year of the car in operation. A sample data point 
is shown in Figure 19.  

Figure 18. Movement Data Diagram. 

Since Movement pings are sent every three seconds, the dataset is massive: approximately 80 
GB for two weeks of data. This fine-grained data can be used for in-depth analysis of travel 
behavior and is particularly valuable for real-time analysis of road conditions (i.e., congestion 
detection). However, the large volume of data can be cumbersome to work with across longer 
spans during historical analysis. In these scenarios, the Event data collected by Wejo can be 
particularly valuable. 
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Figure 19. Example of movement data point. 

7.3.1.1. Event Data 

The Event dataset contains pings sent when a trigger behavior occurs. In the Wejo data, triggers 
include hard braking, hard acceleration, speeding (travelling at more than 80 mph), seatbelt 
status (latched/unlatched), and ignition status (on/off). Each data point contains information on 
the type of trigger event occurring, the BSM for the moment when the event occurred, location 
data, and timestamp (Figure 20). This dataset is available only in historic batches and not 
broadcast in real time.  

This project makes use of the Event data because, at roughly 4 GB, it was manageable within 
the timeframe for analysis and better suited to historic analysis. The work done in this project 
used the ignition status in one case study and the hard braking, hard acceleration, and speeding 
events in another case study. For this project, seatbelt status was not used, but in combination 
with more demographic information it could be used as an unsafe driver indicator.  
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Figure.20: Example Event Data Point. 

7.3.1.2. Data Management 

Data was received from Wejo and a database was staged on a server for easy remote access. 
Event data was staged in a single table while Movement data was split by month to make it 
more manageable to work with. Data was accessed using PgAdmin where SQL queries were 
used to navigate the database. Subsets of the data could easily be downloaded and 
manipulated to allow for exploratory analysis with a limited sample. The numeric format of the 
timestamp in the Event dataset was much easier to work with than the text string format used 
in the Movement dataset. Once data was refined down to temporal scope of the case study, it 
was downloaded as a .csv file to be uploaded to ArcGIS for mapping and spatial analysis. 

7.3.2. Roadway Geometry Data 
To perform spatial analysis, the project team used the GIS shapefiles made available by the City 
of Austin (CoA). In particular, the team used the street centerline file to align the Wejo data to 
roadway corridors. The CoA data was used because it included information about arterial 
streets which were used in this analysis. The shapefile contained information on the road type, 
speed limit, and length of the segment used in the case study. This data is easily accessible to 
TxDOT, which the team considered an important factor in the event that the agency wishes to 
recreate or expand the efforts of the case study.  
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7.3.3. CRIS Data 
The analysis also incorporated data from the Crash Records Information System (CRIS). This 
database is managed by TxDOT and includes information on historic crashes from 2010 to 
present. In particular, the analysis used information on the total number of historic crashes, 
crashes that occurred during the time period of analysis, crash severity, and contributing 
factors. 

The CRIS data for the City of Austin limits was mapped to the street centerline file and 
aggregated for each roadway segment used in the case study. Three metrics were obtained for 
each roadway segment: 1) total number of historic crashes, 2) crashes that occurred from 
March 2 to 6, 2020, and 3) crashes that occurred from April 6 to 10, 2020. 

Next, the team analyzed the crash severity along each roadway segment in the case study. 
Crash reports typically indicate the crash severity of an incident according to the scale in Table 
9, where Crash Severity Code 1 represents “Fatality” and Crash Severity Code 5 represents “No 
Injury.”  

Table 9. Crash Severity Codes 

#Crash Severity Codes 
1 Fatality 
2 Incapacitating Injury 
3 Non-Incapacitating Injury 
4 Possible Injury 
5 Not Injured 
0 Unknown 

Finally, the team analyzed contributing factors for each roadway segment. Crash reports 
contain fields for officers to report up to two contributing factors. New codes have been added 
over the course of the historic time period—in particular, more detailed codes 7X-7Y, which 
describe cell/mobile device usage in greater detail. It should also be noted that contributing 
factors are not always reported. Since this information is still valuable for safety analysis, the 
team grouped similar contributing factors together and identified the top six major 
contributing factors, as shown in Table 10. 

Table 10. Top Six Contributing Factors 
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Top Six Contributing Factors 
ID Contributing Factor Code Name 
A 19-20, 72, 74-77 Distracted driving 
B 22, 60-61 Speeding 
C 44 Followed too closely 
D 45, 67-68 Driving under the influence (drug and 

alcohol) 
E 4 Changed lane when unsafe 
F 41 Faulty evasive action 

7.4. Analysis

7.4.1. Spatial Analysis 
To complete a spatial analysis, the project team used ArcGIS Online. The Wejo data within the 
defined scope was pulled from the database and saved to a .csv file that was then uploaded. 
Since each data point contains latitude and longitude, it was simple to map the events. In 
addition, the Street Centerline file from the City of Austin data portal was uploaded to the same 
map. Once the data was all added to the map, the project team generated heat maps to 
identify spatial trends and changes between March and April.  

The project team created two forms of heat maps, with one using 50’ x 50’ squares to 
aggregate the data, and the other using road segments buffered by 25’ to either side of the 
centerline. The grid heat map allowed for analysis across a broader region, but they were not 
conducive to cluster analysis. This is because many grid squares contained more than one road 
with different speed limits, number of lanes, and other inconsistencies. The road segments 
ensured that analysis was constrained to an individual road with consistent geometry. The 
buffer of 25’ was chosen because the portion of I-35 analyzed never has more than four lanes in 
either direction, so the 25’ buffer was able to capture the activity on each direction of I-35 
without overlapping onto the service roads or the other direction of travel.  

7.4.2. Cluster Analysis 

7.4.2.1. Normalization 

Prior to conducting the cluster analysis, the team normalized the data to compare metrics of 
different scales. In particular, roadway segments have highly variable lengths; some are longer 
and thus inherently see more events. To account for this variation, the team normalized hard 
braking, hard acceleration, speeding, and crash events on a per-mile basis—that is, the number 
of events was divided by the segment length. 
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To normalize the crash severity and contributing factors, the team was interested in which 
characteristics dominated each roadway segment. Therefore, for each roadway segment the 
team calculated crash severity and contributing factors as a percentage of the total for each 
roadway segment. This enabled the team to, for example, readily identify segments that 
contained a high percentage of fatal crashes and recognize segments where distracted driving 
factored into a high percentage of crashes.  

7.4.2.2. Outliers & Data Selection 

The team identified two segments that were considered outliers. To carry out the analysis and 
identify robust clusters, the following two segments were removed from the analysis: 

Segment #30558. Only two crashes occurred on this segment historically. Both were Crash 
Severity Code 2 and one was due to Contributing Factor E (changed lane when unsafe). 
Consequently, the segment was unique and would form its own unique cluster. 

Segment #35995. There were 18,617 speeding events per mile in March on this particular 
roadway segment. Since this metric was significantly greater than (more than six times) other 
segments, it would also form its own unique cluster.  

7.4.2.3. Cluster Analysis 

For the cluster analysis, the team chose the hierarchical clustering method. Hierarchical 
clustering is an unsupervised learning algorithm that groups similar objects based on their 
characteristics and can fall into two categories: 1) agglomerative (build-up) methods and 2) 
divisive (split-down) methods. The agglomerative method was selected for this cluster analysis 
and follows this procedure: 

• Each object is considered to be its own cluster.
• The two objects that are closest to one another are joined to form a cluster.
• The next two closest objects (individual objects or clusters) are joined together to form

a new cluster or attach an object to an existing cluster.
• Return to Step 3 until all objects are clustered.

Closeness may be defined in many ways. For this analysis, Ward’s procedure (1963) was used to 
minimize the loss of information associated with grouping individual objects into clusters. The 
loss of information is calculated by summing the squared deviations of every object from the 
mean of the cluster to which it is assigned. Ward’s procedure assigns clusters in an order that 
minimizes the error sum of squares (ESS) from among all possible assignments, where ESS is 
defined as: 
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where Xij is the value of the object for the ith individual in the jth cluster; k is the number of 
clusters at each stage; and nj is the number of individuals in the jth cluster. 

To perform the cluster analysis, the team used an Excel add-in developed by DecisionPro, Inc. 
The software enables an analyst to input data, perform a cluster analysis, and readily interpret 
the results. The software also produces a dendrogram, which depicts the hierarchical 
relationship between clusters. 

For the case study, Table 11 shows a sample of the data used for the cluster analysis in March. 
The segments are considered the objects to be clustered, and the data—driving behavior, 
roadway geometry, and safety information—are considered the characteristics. 

Table 11: Sample Table of Data 

ID Wejo Event Data Roadway Characteristics 

Segment 

Hard 
Braking 

(per 
Mile) 

Hard 
Acceleration 

(per mile) 

Speeding 
(per mile) 

Speed 
Limit 

No. of 
Intersections 

No. of 
Lanes 

3312 291.53 69.41 0 50 1 2 
5717 851.03 602.82 0 50 1 4 
7777 547.53 8.93 0 65 0 4 

… … … … … … … 

ID CRIS 

Segment 
Historic 
Crashes 

(per mile) 

CS 
1 

CS 
2 

CS 
3 

CS 
4 

CS 
5 

CF 
A 

CF 
B 

CF 
C 

CF 
D 

CF 
E 

CF 
F 

3312 1193.88 0.02 0.14 0.24 0 0.59 0.02 0.01 0 0.01 0 0 

5717 567.36 0.00 0.22 0.44 0 0.33 0.06 0.00 0 0.06 0.06 0 

7777 1032.58 0.04 0.22 0.20 0.01 0.54 0.10 0.01 0.02 0.02 0.01 0.01 

… … … … … … … … … … … … … 
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7.5. Results & Key Findings 

7.5.1. Comparison of Before and After Stay-at-Home Order 
On March 24, 2020, the City of Austin issued a “Stay Home – Work Safe” order that closed all 
non-essential businesses and shifted the vast majority of Austin residents to working from 
home. Since the Wejo sample pulls from three weeks before and two weeks after this order, it 
provides a look into how the order impacted travel patterns. In the following months, traffic 
has returned to volumes that are close to levels observed before the pandemic, but the results 
of the data analysis confirm that a significant shift occurred in travel behavior as a result of the 
order. For example, more than 650,000 trips took place in March, but just over 300,000 trips 
occurred in April. The frequency of hard braking and hard acceleration dropped in 
correspondence with this trend, but the occurrence of speeding became much more common 
in April. The project team expects the rise in speeding to be a result of reduced congestion 
providing the opportunity for drivers to speed on the interstate corridor. 

The project team generated a series of grid heat maps to visualize the frequency of each event 
across the downtown area in March and April. The grid stretches from around 1st Street to 15th 
Street with I-35 running down the middle. Beginning with hard acceleration, events occurred 
more frequently in March, with 2,044 events across the analysis period. April had less than half 
the number of acceleration events, with a total of 888 events. Figure 21 and Figure 22 show 
heat maps of the hard acceleration events in March and April, respectively, with the scale for 
each reflecting the reduction in activity in April. The April hard acceleration events are also 
more concentrated than those in March, which have a more diffuse pattern.  
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Figure 21: Heat Map of March Hard Acceleration Events. 

Figure 22: Heat Map of April Hard Acceleration Events. 

Hard braking was the most common event analyzed, with almost 25,000 events shown in the 
heat map area during March. Hard braking declined sharply in April; just under 6,000 events 
occurred in the same area during April. During March, hard braking was common in the 
downtown area where congestion is particularly bad during peak periods (Figure 23). In April, 
hard braking was less common downtown, and a higher portion of the hard braking events took 
place on the interstate (Figure 24). Since congestion was much lower in April, the reduction in 
hard braking downtown could be interpreted as easier driving conditions without crowded 
roadways. In contrast, the increase in hard braking on the interstate could be tied to the rise in 
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speeding and a need to slow down for other vehicles or to exit the interstate. Since events are 
not connected to a unique vehicle, it is not possible to link the behaviors together.  

Figure 23: Heat Map of March Hard Braking Events. 

Figure 24: Heat Map of April Hard Braking Events. 

The speeding heat map was generated for the same grid area as other events, but the trigger of 
80 mph meant that events only occurred on the interstate (Figure 25). In March, there was only 
one location with any speeding events. However, April saw congestion levels fall and speeding 
events increase, with 233 speeding events total.  
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Figure 25: Heat Map of Speeding Event (L: March, R: April). 

Crash data pulled from the CRIS database was also mapped to identify any changes between 
March and April. Collisions were not common in either month, with 20 crashes in March and only 
three crashes in April (Figure 26 and Figure 27). Since crashes were so uncommon during the 
period of analysis, the project team decided to supplement with historic crash data along I-35.  

Figure 26: Heat Map of March Collisions. 
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Figure 27: Heat Map of April Collisions. 

7.5.2. Cluster Analysis Results 
Ultimately, the models that identified five clusters in both March and April were selected. 
These models were chosen based on their usefulness and robustness of the clusters. The 
following describes the results for March and April as well as key findings, summarized in Tables 
12 and 13. Lows are denoted in red, while highs are denoted in green. Figure 28 provides the 
March dendrogram. 

7.5.2.1. March Analysis 

In March, traffic patterns were typical, with the usual evening rush hour and congestion. 
Therefore, a higher number of hard braking and hard acceleration events occurred than in April. 
Segments averaged 349 hard braking events per mile and 129 hard acceleration events per 
mile—nearly two times and four times the averages of April, respectively. The cluster analysis 
identified the following five clusters: 

• Cluster 1: Roadways with Low Crash Risk
• Cluster 2: Service Roads with Speeding
• Cluster 3: Service Roads with Elevated Crash Risk
• Cluster 4: Freeways with Elevated Crash Risk
• Cluster 5: Service Roads with Stop and Go Driving
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The dominant characteristics in the March cluster analysis were hard braking and hard 
acceleration events. Clusters 2 and 5 exhibited higher than average hard braking and hard 
acceleration events, with Cluster 2 distinctly including a significant number of speeding events. 
Of the other clusters, Cluster 3 represents service roads with a higher number of historic 
crashes per mile; Cluster 1 includes both service roads and freeways with few historic crashes 
per mile; and Cluster 4 includes both service roads and freeways with a high number of historic 
crashes per mile. 

Clusters 2, 3, and 4 represent safety concerns for TxDOT. Cluster 2 is noteworthy for its high 
speeding activity, indicating areas where TxDOT could implement speed management measures 
as well as coordinate with law enforcement. Cluster 3 includes roadways with higher 
percentages of fatal crashes and a higher percentage of incidents involving distracted driving. 
Cluster 4 has the highest number of historic crashes per mile and crashes involving a faulty 
evasive action. Most likely, these are instances where a rear-end collision occurs due to an 
abrupt change in the traffic pattern. Connected and automated vehicle technologies such as 
speed harmonization, hard brake warning, and automatic emergency braking may assist with 
reducing incidents in these high-crash corridors. 

Table 12: March Results Summary 

MARCH 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Hard Braking Low High Average Average High 
Hard Acceleration Low Average Average Average High 
Speeding Low High Average Average None 
Roadway Type Mixed Service Service Freeway Service 
Crashes per Mile Low Average High High Low 
Crash Severity Moderate Moderate High Moderate Low 
Contributing 
Factors A C, D, E A F B 

Table 13: March Results 

Segmentation variable / 
Cluster Overall Cluster 

1 
Cluster 

2 
Cluster 

3 
Cluster 

4 
Cluster 

5 
Hard Braking (per mile) 349 156 623 294 472 951 
Hard Acceleration (per 
mile)

129 57.5 281 151 101 547 
Speeding (per mile) 82.1 7.39 632 48.8 45.3 0 
Speed Limit 54.5 54.4 50 50 59.1 50 
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No. of Intersections 0.316 0.235 1.27 0.438 0.0606 0.333 
No. of Lanes 2.88 2.75 3.64 2.56 2.91 3.33 
Historic Crashes (per mile) 681 199 679 1200 1260 229 
CS 1 0.12 0.03 0.21 0.56 0.03 0.00 
CS 2 0.15 0.18 0.14 0.05 0.18 0.11 
CS 3 0.15 0.15 0.21 0.02 0.20 0.03 
CS 4 0.03 0.01 0.00 0.16 0.01 0.00 
CS 5 0.43 0.36 0.44 0.15 0.58 0.87 
CF A 0.09 0.06 0.05 0.16 0.11 0.15 
CF B 0.02 0.00 0.02 0.02 0.03 0.19 
CF C 0.01 0.00 0.04 0.01 0.01 0.01 
CF D 0.02 0.01 0.07 0.01 0.02 0.02 
CF E 0.00 0.00 0.02 0.00 0.01 0.00 
CF F 0.00 0.00 0.00 0.00 0.01 0.00 
Number of Observations 117 51 11 16 33 6 
Proportion 1 0.436 0.094 0.137 0.282 0.051 

Figure.28: March Dendrogram. 

7.5.2.2. April Analysis 

In April, stay-at-home orders remained in place and people were traveling far less. As a result, 
fewer vehicles were on the roadway and people took advantage of the opportunity to travel at 
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higher speeds. This shift is reflected in the number of speeding events: an average of 219 
speeding events per mile in April, as compared to the 82 speeding events per mile that 
occurred in March. When the cluster analysis was performed, the following five clusters were 
identified: 

• Cluster 1: Typical Service Roads
• Cluster 2: Service Roads with Low Hard Braking and Low Crash Risk
• Cluster 3: Service Roads with Aggressive Driving
• Cluster 4: Service Roads with Low Hard Braking and Elevated Crash Risk
• Cluster 5: Typical Freeways

The dominant characteristics in the April cluster analysis were hard braking events and fatal 
crashes (Crash Severity 1) dominated. Clusters 2 and 4 exhibited lower than average hard 
braking and a higher percentage of fatal crashes, with Cluster 4 in particularly having a 
significantly high number of historic crashes per mile. Of the other clusters, Cluster 3 represents 
aggressive driving patterns with increased levels of hard braking, hard acceleration, and high 
speeding events; Clusters 1 and 5 exhibit more typical driving behaviors—breaking into subsets 
of service roads and freeways, respectively. 

Clusters 3 and 4 represent safety concerns for TxDOT. In free-flow conditions such as those 
experienced in April, Cluster 3 identifies three service road segments where excessive braking, 
acceleration, and speeding occur: two consecutive service roads (NB) at the intersection of US 
290, and one service road (SB) from 9th Street to 8th Street. Cluster 4 reveals five segments 
where historic crashes per mile are significantly elevated and high fatalities occur: service road 
(SB) from 4th Street to 3rd Street, service road (NB) from 7th Street to 8th Street, service road 
(NB) at the intersection of MLK Blvd., and two consecutive service roads (NB) from 5th Street to 
7th Street. These segments are all located in the downtown area where pedestrian, cyclist, and 
vehicle activity is higher. Also, the primary contributing factor is “Following too closely,” which 
could potentially be alleviated by CV technology and heads-up displays. Tables 14 and 15 
summarize the April results; Figure 29 provides the April dendrogram. 

Table 14: April Results Summary 

APRIL 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
Hard Braking Average Low High Average Average 
Hard Acceleration Average Average High High Low 
Speeding Average High High Low Average 
Roadway Type Service Service Service Service Freeway 
Crashes per Mile Average Low High High Average 
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Crash Severity Low Moderate Moderate High Moderate 
Contributing 
Factors B A D, E, F C A 
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Table 15: April Results 

Segmentation variable / 
Cluster Overall Cluster 

1 
Cluster 

2 
Cluster 

3 
Cluster 

4 
Cluster 

5 
Hard Braking (per mile) 187 186 74.6 741 162 233 
Hard Acceleration (per 
mile) 66.3 65.2 47.5 591 121 15.2 

Speeding (per mile) 219 99.7 574 1110 6.8 99.4 
Speed Limit 54.5 51.8 51.9 50 50 64.4 
No. of Intersections 0.316 0.39 0.208 1 1.2 0 
No. of Lanes 2.88 2.73 2.58 4 3 3.35 
Historic Crashes (per mile) 681 672 167 911 3010 699 
CS 1 0.12 0.07 0.18 0.07 0.95 0.02 
CS 2 0.15 0.15 0.15 0.20 0.00 0.19 
CS 3 0.15 0.15 0.01 0.27 0.05 0.29 
CS 4 0.03 0.02 0.08 0.00 0.00 0.00 
CS 5 0.43 0.59 0.03 0.47 0.00 0.50 
CF A 0.09 0.09 0.08 0.08 0.08 0.10 
CF B 0.02 0.04 0.00 0.01 0.02 0.01 
CF C 0.01 0.01 0.00 0.02 0.06 0.01 
CF D 0.02 0.03 0.00 0.05 0.01 0.01 
CF E 0.00 0.00 0.00 0.04 0.01 0.00 
CF F 0.00 0.00 0.00 0.01 0.01 0.00 
Number of Observations 117 59 24 3 5 26 
Proportion 1 0.504 0.205 0.026 0.043 0.222 

Figure 29: April Dendrogram. 
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7.5.2.3. Cluster Mapping 

Once the cluster analysis was complete, the clusters were mapped to look for any patterns and 
understand what may contribute to the challenging driving segments. In March, Clusters 2, 3, 
and 4 were identified to have elevated risk (Figure 30). Cluster 2 (CL_2) is a collection of service 
roads with more aggressive driving behaviors, such as speeding, and a moderate crash risk. 
Clusters 3 and 4 (CL_3 and CL_4) both have elevated crash risk with Cluster 3 containing service 
roads that have relatively normal hard braking and hard acceleration counts and Cluster 4 
containing freeway segments that have an increased number of hard braking occurrences, 
which could suggest heavier traffic. Cluster 3 would be of particular interest to investigate and 
understand why crashes are occurring here with relatively low speeding, hard braking, and hard 
acceleration, because it may suggest that a factor not considered in the cluster analysis is 
playing a role. Clusters 1 and 5 (CL_1 and CL_5) contain relatively low risk road segments that 
do not seem to have safety concerns to be addressed. 

Figure 30: March Clusters (L: 1st to 15th St, R: Airport to US290). 

Mapping the April clusters, results showed that some segments have shifted to a new cluster, 
which suggests that the changes in driving behavior that occurred during lockdown have some 
impact on road safety. For April, Cluster 3 and 4 are the high-risk road segments that have a 
higher volume of crashes (Figure 31). Cluster 3 (CL3) contains road segments that have a large 
number of hard acceleration and speeding events. These segments may be a good place for 
stronger enforcement effort and may benefit from coordination with law enforcement. Cluster 
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4 (CL4) has particularly high historic crashes with a large spike in crashes occurring where I-35 
meets 11th Street. It would be interesting to investigate why these crashes are occurring, but 
this was out of scope for the case study. Clusters 1, 2, and 5 (CL1, CL2, and CL5) are all relatively 
low-risk road segments with Clusters 1 and 5 being average service road and freeway segments, 
respectively. Cluster 2 contains low-risk road segments, with fewer hard braking incidents and 
fewer historic crashes. It may also be helpful to evaluate these low-risk segments and see if 
there is anything to learn about why they tend to be safer. 

Figure 31: April Clusters (L: 1st to 15th St, R: Airport to US 290). 

Figures 32 and 33 show zoomed-in views of two sections of I-35 to illustrate some more 
detailed results. The section running from 1st Street to 11th Street reflects how some segments 
switched into new clusters and their risk assessment changed. Many of the stop-and-start 
segments transitioned to lower-risk segments with the reduced congestion of April. However, 
some of the higher-risk segments persisted and this may be helpful in identifying higher-risk 
segments that require more immediate attention. The US 290 Interchange is interesting 
because it contains a variety of clusters in a small area. The clusters suggest that the 
interchange does have some moderate- to high-risk segments that would benefit from 
attention. This aligns with the fact that many drivers find interchanges confusing and 
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challenging to navigate. Additionally, the main lanes of I-35 go from stop-and-go conditions in 
March to low-risk free flow in April, reflecting the reduced traffic on the roadways. 

Figure 32: Clusters from 1st St to 11th St (L: March, R: April). 
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Figure 33: Clusters at US 290 Interchange (L: March, R: April). 

7.6. Conclusions 
In developing the prototype, several key findings are identified: 

• Cluster analysis is a useful AI technique for classifying roadway segments based on their
characteristics as well as identifying challenging driving environments. Clustering
enables TxDOT to identify patterns of driving behavior (e.g., areas with high hard
braking, high acceleration, and/or speeding events), compare service roads with
freeways, and recognize major crash-contributing factors.

• CV data is a valuable source of information for providing insights into safety, planning,
and operations. Event data that has already undergone processing to identify instances
of hard braking, hard acceleration, and speeding is extremely useful to a transportation
agency. For example, hard braking can identify bottlenecks, stop lights, or queuing from
a crash. Hard acceleration can indicate signalized intersections that are close to one
another or on-ramps to freeways. This type of information that is packaged in a way to
be readily consumable can save a transportation agency significant time and money on
computational resources. The data was found to be most useful in conjunction with
other data sources, such as roadway geometry and crash reports.

• Results confirmed observations of lower traffic volumes and higher instances of
speeding after stay-at-home orders were issued. Prior to the stay-at-home order,
speeding typically occurred outside of downtown on some segments in the northern
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stretch of the study area. Following the stay-at-home order, speeding events increased 
throughout the study area and most drastically near downtown.  

• Crashes that occurred during the time period did not prove useful due to limitations in
scope. Using crashes during the time period was not helpful due to low sample size,
whereas the analysis of historic crashes was. Sometimes the crashes mapped to a
centerline, and made it difficult to know the lane positioning and the NB or SB.

7.7. Opportunities & Recommendations 
The research team identified several opportunities and recommendations: 

Expand scope of the analysis: To make the model more robust, the research team 
recommends expanding the analysis to include a wider geographic area as well as time period. 
More information could be learned by including local arterials as well as other large facilities, 
such as MoPac or SH 71, for example. Additional research could also be performed to compare 
peak and off-peak times, weekday versus weekend, as well as track how traffic patterns 
evolved over the course of the COVID-19 pandemic. 

Incorporate other data sources: There is an opportunity to enhance the cluster analysis with 
additional datasets, such as work zone information, weather, and other probe vehicle datasets. 

Integrate CV data into safety, planning, and operations: This information provides significant 
insights and can be used to optimize TxDOT resources. As part of evaluating different CV data 
sources, TxDOT should determine what data frequency is necessary for its desired applications. 
For example, the Wejo data is generated once every three seconds, while standard CV data is 
generated at a rate of ten times per second. Comparing different frequencies and assessing 
what information is lost would be worthwhile to guide TxDOT’s data investments. 

Consider real-time data analysis: While this prototype was used to perform cluster analysis 
using historic data, a model could be developed for real-time data analysis that could detect 
driving behavior patterns and safety concerns as they happened. This information could enable 
TxDOT traffic management centers to communicate travel conditions to the public, coordinate 
with law enforcement and emergency responders, and integrate corridor management. 

Refine speeding events: Speeding, as defined by Wejo, is an event triggered when a vehicle 
exceeds the 80-mph threshold. Some facilities in Texas, namely SH 130, have a speed limit of 80 
mph or higher, meaning that the event threshold needs to be calibrated for those facilities.  

Improve crash reporting: The crash reports in the CRIS database were not always complete or 
as accurate as a CV data source. In particular, the contributing factors were not always provided 
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by the reporting officer. This information can be incredibly valuable in identifying underlying 
causes of crashes and can assist agencies in achieving their goal to end all traffic fatalities. 
Furthermore, crash locations are often identified as where the incident is reported as opposed 
to where the incident occurred. Additionally, some crash locations were positioned on the I-35 
centerline and it was unclear if they occurred on a northbound or a southbound segment. CV 
data presents an opportunity to map with high accuracy when and where crashes occur, as well 
as provide additional context on contributing factors.  
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Chapter 8. Travel Patterns Using Supervised 
Learning 

The study described in this chapter explores the use of machine learning methods to 
understand changes in trip-making behavior that occurred during the COVID-19 lockdown. A 
dataset of trip events registered by CVs was used for this study. The trip data was aggregated to 
determine the number of trips originating and terminating in each census-block-group on an 
average weekday before the lockdown and on an average weekday after the lockdown. A 
variety of supervised machine learning techniques were employed to model the relationship 
between the trip-making behavior and socio-economic characteristics of census-block-groups. 
The developed models were then used to make inferences on the changes in trip-making 
patterns during the lockdown. 

8.1. Data 

8.1.1. Wejo CV Data 
The primary dataset used for the study was the Wejo CV dataset. This dataset contained 
records of all the trip events registered by a sample of CVs in the Austin metropolitan area over 
a one-week period before the lockdown and a one-week period after the lockdown. The data 
collected on the weekdays between March 2 and March 6 of 2020 was used to analyze trip-
making before the lockdown. Data collected between April 6 and April 10, 2020, was used to 
analyze trip-making during the lockdown. The trip events that were registered include change 
in seatbelt status, speed crossing a certain threshold, acceleration crossing a certain threshold, 
and change in journey status. Each event record was associated with location coordinates, time, 
device ID, and journey ID. Only the events pertaining to change in journey status were of 
interest for this study. The JOURNEY: START event was registered whenever the vehicle’s 
ignition was turned on and the JOURNEY: END event was registered when the ignition was 
turned off. These events could be used to identify the beginning and end of trips. Some cases of 
duplicated records were identified in the dataset and removed before further processing.  

8.1.1.1. Generating the Dataset of Trips 

The JOURNEY: START and JOURNEY: END events that had the same journey ID were used to 
identify the beginning and end of individual trips. The trip origin, destination, start-time, and 
end-time could be extracted from the time and location data associated with these journey 
events. Multiple start and end events had been recorded for a few journey IDs, possibly 
because of errors in the data collection process. An inspection of these journey IDs revealed 
that in most cases only one pair of the journey start and end events could be real, as the other 
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pairs would result in unreasonably high or unreasonably low travel times. Therefore, for these 
journey IDs, only the pair of journey events that would result in a travel time that is closest to 
30 minutes was used. 

The number of trips in the dataset after executing the aforementioned data processing steps 
was 1,278,738. The spatial and temporal distribution of the trip origins were checked. It was 
noted that the number of trips tended to spike around auto-repair shops and vehicle 
showrooms. This spike was probably caused by the vehicle repair and testing activities that 
occur at these locations and not because of actual trip-making. To eliminate these invalid trips, 
the dataset was further filtered to include only the trips where the origin and destination points 
are at least 400 meters (~¼ mile) apart in terms of straight-line distance. This step would also 
remove other trips made for trivial reasons, such as changing parking locations. Few genuine 
trips would also be removed where the trip origin and destination happened to be nearby. 
However, since actual short-distance trips by car are relatively uncommon, it should not 
significantly impact the analysis. 

Figure 34 Trip Frequency (trips/h) Plotted at 15-minute Intervals for March and April 

The filtered dataset had a total of 996,908 trips. Of these, 659,564 of the trips were made in 
March and the rest (307,344) were made in April. The temporal distributions of the trips in 
March (pre-lockdown) and the trips in April (during lockdown) are provided in Figure 34 In the 
plots for the month of March, the three peaks that occur in each day approximately 
correspond to the times of 7:00 AM, 12:00 noon, and 5:00 PM respectively. As expected, a 
much smaller number of trips were generated in April. Interestingly, the AM peak is much less 
prominent or not present in April. The spatial distribution of trip origins is shown Figure 35. 
Once again, it is clear that the number of trips made in April is much lower than the number of 
trips made in March. The concentration of trip origins seems to be highest in the Austin 
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downtown area and around The Domain.  

8.1.1.2. Block-Group Level Aggregation 

The dataset of census-block-group level socio-demographic characteristics was obtained from 
the 2018 American Community Survey (ACS) Database (US Census Bureau, 2021). The ACS data 
from 2018 was used because this was the most recent dataset available at the time the 
analysis was conducted. Only the data from the counties of Bastrop, Caldwell, Hays, Travis, and 
Williamson were selected because all the trips occurred within these counties. The counties 
consisted of 967 census-block-groups, henceforth referred to simply as block-groups. The 
shapefile of the block-groups was also obtained, and the trip origin and destination locations 
were mapped on to the block-groups. The mapped data was then aggregated to determine the 
total number of trips generated from each block-group during March and April. The number of 
trips in the block-groups were divided by the duration of five days to compute the frequency of 
trips generated in the block-groups. These frequencies are plotted in Figure 36. The absolute 
and percentage change in trip frequencies is displayed in Figure 37. The block-groups that 
produced fewer than 50 trips during the one-week period in March has been grayed out as the 
percentage change in trips in these block-groups would be unreliable.  

Figure 35. Locations of Trip Generation. 
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Figure 36. Census-Block-Group Level Trip Frequency (h-1). 

Figure 37. Change in Trip Frequency per Block-Group – Absolute (Trips/mi2/h) and Percentage. 

The socio-demographic data from the ACS database was supplemented with the data on 
employment locations in Austin. The employment dataset was obtained from the Capital Area 
Metropolitan Planning Organization. The dataset consisted of locations, employment type, and 
number of employees of businesses in Austin. This employment dataset was mapped onto the 
block-group shapefile and aggregated to obtain the total number of basic, retail, service, and 
education employment opportunities in each block-group. 
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8.2. Analysis Methodology 
The strategy for analysis involved the development of models that can predict the number of 
trips generated in any block-group based on the socio-demographic and employment 
characteristic of the block-group. Separate models would be developed for March and April. 
The sensitivity of the models to socio-demographic and employment characteristics would help 
us understand the effect these characteristics have on trip generation. The target variable or 
dependent variable of the models is the frequency of trips generated in a block-group. The 
number of households having different household sizes and the number of employment 
opportunities of each category were used as predictors or independent variables.  

Models of this type, where the travel demand of an area is modeled directly as a function of 
factors such as socio-demographic characteristics, employment opportunities, and built-
environment characteristics, are referred to as direct demand models (Ortúzar and Willumsen, 
2011). The modeling framework most commonly used for direct demand analysis is the 
multivariate linear regression model. The multivariate linear regression model, henceforth 
referred to simply as linear regression, provides the advantage of an intuitive model structure 
where the estimated parameters directly indicate the sensitivity of the target variable towards 
the predictors. A disadvantage of linear regression is that the model is inflexible in the sense 
that if the predictors and target variable do not have a linear relationship, the prediction 
accuracy tends to suffer. This inflexibility also causes linear regression models to perform 
poorly when outliers are present in the dataset. Outliers are records where the value of a 
predictor variable or the target variable is significantly different from the values in all the other 
records in the dataset. 

Recently, supervised machine learning methods have been gaining more traction in direct 
demand modeling. These methods are generally more capable of incorporating nonlinearities in 
the relationship between the predictor variable and the dependent variable. As a result, 
machine learning methods are generally more accurate than the Linear Regression models 
(Ding et al., 2019; Yan et al., 2020). A disadvantage of the more complex non-linear machine 
learning methods is that the model structure is less intuitive, and as a result, making inferences 
on the effects of changes in the predictor variables is more challenging. In this study, we 
develop models using the Linear Regression approach as well as two machine learning 
approaches: random forest and multilayer perceptron. The accuracy of each of these models 
was evaluated in terms of their coefficient of determination (𝑅𝑅2). The sensitivity of the models 
to block-group characteristics was also investigated. 
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8.2.1. Measure of Fit 
The coefficient of determination or 𝑅𝑅2 is the proportion of variance in the target variable that is 
explained by the predictors. Consider 𝑁𝑁 records of the outcome variable indexed as 
𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, … ,𝑦𝑦𝑁𝑁. Let the predicted outcome for these records be 𝑦𝑦�1,𝑦𝑦�2,𝑦𝑦�3, … ,𝑦𝑦�𝑁𝑁. Then 𝑅𝑅2 is 
computed as follows, 

𝑅𝑅2 = 1−
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆 (1) 

𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑛𝑛)2
𝑁𝑁

𝑛𝑛=1

 (2) 

𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑦𝑦𝑛𝑛 − 𝜇𝜇)2
𝑁𝑁

𝑛𝑛=1

 (3) 

where 𝜇𝜇 is the mean of the target variable, SSR is the sum of squared residuals, and SST is the 
sum of squared totals. 

8.3. Dataset Preprocessing 
The block-group level trip frequency data was further preprocessed. These preprocessing steps 
would enable the models to produce more accurate and more generalizable results. 

8.3.1. Removing Outliers 
The initial analysis using the block-group level trip frequency dataset resulted in poor prediction 
accuracies from the linear regression model. On further investigating the dataset, few outliers 
were identified. A block-group covering a portion of the downtown area had a much higher 
number of service employment opportunities than the other block-groups. Similarly, a block-
group partially covering the University of Texas at Austin main campus area had more than 20 
times the number of education employment opportunities in the next highest block-group. 
These block-groups and two other block-groups with a significantly high number of 
employment opportunities were removed from the dataset. In practice, these locations would 
be marked as special generators and would not be handled in models like the linear regression 
model in a conventional manner. The non-linear machine learning methods are usually more 
robust to outliers. Nevertheless, these block-groups were not included in the analysis for a fair 
comparison between the models. 

8.3.2. Removing Biased Records 
The trip data was collected only from a sample of all the vehicles in Austin. If the sampling is 
biased towards any of the predictors, the sensitivities computed with respect to that predictor 
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may not be generalizable to the case when all vehicles are considered. For example, if the 
proportion of retail employees whose vehicles are included in the sample is much higher than 
the proportion of other sectors’ employees whose vehicles were sampled, the analysis would 
likely overestimate the effect of retail employment on trip-making. This is because the trips 
made from retail employment locations are more likely to be recorded in our dataset than the 
trips made from other locations.  

In the dataset, one block-group had one of the major offices of the OEM of the vehicles for 
which the data was collected. For this block-group, the random sampling assumption would not 
hold because a disproportionately large share of the employees in these offices owned the 
vehicles for which the data was collected. This block-group was removed from the analysis so 
that the oversampling of trips from this block-group would not bias the model estimates. 

It needs to be noted that, at this stage of the study, removing the block-group with the OEM’s 
offices was the only step taken to avoid sampling bias. A more thorough investigation on the 
exact extent of bias in each of the block-groups may be warranted if these models are to be 
developed further.  

8.3.3. Removing Block-Groups with Low Trip Counts 
The trip frequencies in some of the block-groups were zero or quite low. The data on trip 
origins from these block-groups would not be reliable for assessing the change in trip-making 
behavior before and after the lockdown. This is because even a small change in the number of 
trips at these block-groups would represent a large change in terms of percentage. Therefore, 
the block-groups where the number of trips made on an average day in March was 20 or less 
was removed. After all the preprocessing steps, 792 block-groups remained in the dataset.  

8.4. Training and Testing Method 
An issue faced when developing non-linear machine learning models with a large number of 
degrees of freedom (high flexibility) is that the model may precisely fit the dataset used for 
training, but the trained model may not produce accurate results for records that were not 
used for training. This phenomenon is referred to as overfitting. Since machine learning models 
are prone to overfitting, it is not recommended to test the accuracy of the model with respect 
to the dataset used for training. Therefore, the complete dataset was split into two groups in an 
80:20 ratio. The larger subset of data containing 80 percent of the records was set aside for 
training the models. The model accuracy was tested on the other subset containing 20 percent 
of the records. 
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To avoid overfitting, the degree of freedom used by the machine learning model needs to be 
high enough that the nonlinearities in the relationship between the target variable and 
predictors are captured but not so high that it fits to the noise in the training dataset. The 
degrees of freedom of a machine learning model are controlled by special types of model 
parameters called hyperparameters. These hyperparameters can be adjusted to provide the 
optimal amount of flexibility to the model. The process of setting the optimal hyperparameters 
is referred to as hyperparameter tuning. Hyperparameter tuning is essentially a trial-and-error 
approach to find the best set of values for the hyperparameters. In the hyperparameter tuning 
process, the training dataset is further split into two parts, usually in an 80:20 ratio or 2:1 ratio. 
The larger of these subsets is used for training the model with a specific set of hyperparameter 
values and the accuracy of the resulting model is evaluated with respect to the smaller subset. 
The hyperparameter values that produce the best results in this process are identified as the 
“tuned” hyperparameters values. This process of splitting and evaluation may be done several 
times with the same set of hyperparameter values but with different sets of records in each of 
the split groups. After hyperparameter tuning, a model with the tuned hyperparameters is 
estimated using the full training dataset; Figure 38 illustrates the data split. 

Figure 38 Dataset Split into Training, Testing, and Validation Datasets. 

8.5. Modeling Frameworks 

8.5.1. Linear Regression 
In a linear regression model, the target variable is expressed as a linear function of the 
predictors. Consider a vector of the target variable for the 𝑁𝑁 records: 𝑦𝑦1, 𝑦𝑦2,𝑦𝑦3, … , 𝑦𝑦𝑁𝑁. Let the 
vector of predictors corresponding to the 𝑛𝑛th record be 𝑥𝑥𝑛𝑛1, 𝑥𝑥𝑛𝑛2, 𝑥𝑥𝑛𝑛3, … , 𝑥𝑥𝑛𝑛𝑛𝑛. Then, in linear 
regression, the value predicted for the 𝑛𝑛th dependent variable will be of the form, 

𝑦𝑦�𝑛𝑛 = 𝛽𝛽0 + �𝑥𝑥𝑛𝑛𝑛𝑛𝛽𝛽𝑖𝑖

𝐼𝐼

𝑖𝑖=1
 (4) 

where 𝛽̅𝛽 = (𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝐼𝐼) are the vector of parameters to be estimated during model 
training. These parameters are determined by minimizing an objective function that is 
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correlated with the error in predicting the target variable. The ordinary least squares (OLS) 
method is among the simplest methods used for estimating the parameters. In this method, the 
estimated parameters are such that the sum of squared errors from prediction is minimized. 
That is, 

𝛽𝛽� = argmin
𝛽𝛽

⎝

⎛��𝑦𝑦𝑛𝑛 − �𝛽𝛽0 + �𝑥𝑥𝑛𝑛𝑛𝑛𝛽𝛽𝑖𝑖

𝐼𝐼

𝑖𝑖=1
��

2
𝑁𝑁

𝑛𝑛=1
 

⎠

⎞ (5) 

8.5.2. Decision Tree Regression 
In a decision tree model, the records in the training dataset are divided into groups based on a 
set of yes-or-no conditions on the predictor variables. The conditions will be such that the set of 
records that fall within the same group will have similar values for the target variable. The set 
of yes-or-no conditions that are used to group the records can be represented in a tree format 
and hence the name decision tree model. Each internal node of the tree represents a 
comparative condition on a predictor of the dataset and will have two child nodes 
corresponding to whether the condition evaluates to true or false. The terminal nodes or leaf 
nodes of the decision tree hold the value to be predicted for any record that reaches the node. 
This value will be the mean of all the records in the training dataset that reach the node. Since 
the use of a large number of conditions on the predictors can result in overfitting of the 
decision tree to the training dataset, the maximum depth of the tree (𝑑𝑑) and the minimum 
number of records from the training dataset that should reach an internal node (𝑠𝑠) are 
considered as the hyperparameters of the model. An example of a decision tree is visualized in 
Figure 39. 

Figure 39 Example Decision Tree. 
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Note that model results from the decision tree model are not included in the results section. 
Instead, results from the random forest regression model (explained in the next section), which 
is a more generalized version of the decision tree model, are provided.  

8.5.3. Random Forest Regression 
The decision tree model is prone to overfitting even when the hyperparameters are 
appropriately tuned. An extension (ensemble version) of the decision tree model that generally 
produces better predictions is the random forest regression model. In random forest 
regression, multiple decision trees are trained on random samples drawn with replacement 
from the training dataset. The random samples have the same size as that of the original 
training dataset. The final prediction will be the average of the prediction made by each of the 
component decision trees. The accuracy of random forest regression tends to increase with the 
number of component trees, along with computational cost. In this model, each random forest 
model was generated with 200 component decision trees. The hyperparameters of the decision 
tree model—the maximum depth of the trees (𝑑𝑑) and the minimum number of records 
reaching an internal node (𝑠𝑠)—are also hyperparameters of the random forest model. An 
additional hyperparameter used in random forest is the maximum number of predictors 
allowed per tree (𝑓𝑓). The number of predictors that can be used for branching by any one 
decision tree in the random forest is limited to 𝑓𝑓. The tuned values for the hyperparameters 
were 𝑑𝑑 = 10, 𝑠𝑠  = 6, 𝑓𝑓 = 3 for March and 𝑑𝑑 = 8, 𝑠𝑠  = 12, 𝑓𝑓  = 5 for April. 

8.5.4. Multilayer Perceptron Regression 
The multilayer perceptron regression model is a type of neural network model. This model is 
structured by stacking together multiple computational units called perceptrons. The 
perceptron is a computational unit that accepts an input vector 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛 and applies a 
nonlinear monotonically increasing function over it to produce the result. The computation that 
occurs in a perceptron can be expressed as, 

𝑎𝑎 = 𝑓𝑓(𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝐼𝐼) (6) 

where 𝑎𝑎 is the output from the perceptron, and 𝑓𝑓 is the nonlinear function. 𝑤𝑤0,𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛 
are parameters that need to be estimated. In multilayer perceptrons and neural networks, 
several of these perceptrons are stacked together in layers such that the output from the 
perceptron in one layer is passed as input to the perceptrons in the next layer. The final output 
of the model is the output from the perceptrons in the last layer of the network. The number of 
layers (hidden layers) between the input layer and the output layer and the number of 
perceptrons present in each layer are hyperparameters. Neural networks in general have a 
large number of hyperparameters and parameters, which allows the networks to map the 
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relation between an extremely diverse range of inputs and outputs. What has been mentioned 
above is only one possible way of configuring a neural network. In this network we use only one 
extra layer between the input and out layer. The number of perceptrons in this layer is kept the 
same as the number of predictors (inputs). The activation function 𝑓𝑓 is set as the sigmoid 
function 𝜎𝜎. 

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
(7) 

The early-stop approach was used to avoid overfitting. The training of neural networks involves 
progressively updating the parameters such that the resulting network more closely matches 
the relationship between the predictors and the target variable. In the early stop approach, 
after every few iterations, the accuracy of the neural network is evaluated with respect to a 
dataset that is not used for training called the validation dataset. Once the predictive accuracy 
on the validation dataset stops increasing, the training is stopped. 

8.6. Model Results and Discussion 
Separate prediction models were estimated for March and April. The coefficients estimated 
using the Linear Regression model are given in Table 16. These coefficients represent the 
sensitivity of the Linear Regression model to the change in corresponding predictors. The 
standard errors of the estimated coefficients are also provided. The coefficients of all the 
predictors except that of Education Employment in April are different from zero at a 95 percent 
confidence level. The coefficient estimated for a predictor can be interpreted as the extra trip 
frequency that would be “observed” for a unit increase of that predictor. Note that this is not 
the actual number of extra trips that would be caused by a unit increase of the predictor 
because the estimation is based on only an observed fraction of all the vehicles. If we assume 
that the fraction of observed vehicles is the same for each of the household categories and for 
each of the employment categories (that is, if the random sampling assumption holds), the 
estimated coefficient will be directly proportional to the actual number of trips made by that 
category. 

Table 16: Coefficients Estimated Using Linear Regression and the Percentage Change in Coefficients 
between March and April 

Block-Group Feature / 100 March April % 
Change Coeff. Std. Err. Coeff. Std. Err. 

(Intercept) -0.2057 0.237 -0.0388 0.138 -- 
Household Size 1 or 2 0.1371 0.046 0.0733 0.027 -46.54%
Household Size 3 0.6536 0.195 0.4306 0.114 -34.12%
Household Size 4+ 1.0274 0.094 0.5712 0.055 -44.40%
Basic Employment 0.1269 0.037 0.0685 0.022 -46.02%
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Block-Group Feature / 100 March April % 
Change Coeff. Std. Err. Coeff. Std. Err. 

Educ. Employment 0.5078 0.122 0.0895 0.071 -82.37%
Retail Employment 1.0296 0.032 0.4137 0.019 -59.82%
Service Employment 0.1363 0.017 0.0247 0.010 -81.88%

The coefficients for the household size variables show the expected pattern of being higher for 
larger households in both March and April. Among the employment variables, retail 
employment produces the largest number of trips. The percentage change in coefficients 
provides an estimate of the percentage change in trip generation in each of the categories after 
the lockdown. The highest percentage reduction in trip rate is observed in locations with more 
service and education opportunities. Among the household categories, the percentage 
reduction in number of trips was higher for household with sizes 1 or 2 and households with 
size greater than 4. Despite the uneven percentage reduction in trips, larger households 
continued to make more trips than smaller households. 

As described earlier, the machine learning models do not have parameters that are as easily 
interpretable as the parameters of the linear regression model. However, inferences can be 
drawn from the predictions made by the model. To understand the sensitivity of the machine 
learning models, an average block-group was considered where the value of each of the 
predictors was set as the average value over all the block-groups. Then, to understand the 
sensitivity of a predictor 𝑥𝑥𝑖𝑖, the value of 𝑥𝑥𝑖𝑖 was iterated over a range of values between 0 and 
the 99th percentile value of the predictor and the trip frequency was predicted in each 
iteration. Plotting this predicted frequency with respect to the values of the altered predictor 
would give a sense of the effect the predictor has on trip generation in an average block-group. 
The sensitivity plots generated in this manner are provided in Figure 40.  

As expected, generally the trend seems to be that as the number of households and the 
number of employment opportunities increase, the number of trips generated also increases. 
Larger households generated more trips both before and during the lockdown. Similarly, retail 
locations generated the most trips before and during the lockdown. During the lockdown, 
among the employment categories, only retail employment locations seem to contribute to a 
reasonable extent to the number of trips made (displaying a higher slope than other 
employment categories). Increase in other employment opportunities barely resulted in any 
higher number of trips. This could be because individuals employed in the education and 
service industries were most allowed to work from home and the extent of basic employment 
activity was considerably reduced.  
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Figure 40 Effect of Predictor Variables on an “Average” Block-Group. 

Among all the models, the random forest model seems to be the most flexible based on the 
rapid changes in slopes exhibited by its predictions. This also makes the random forest model 
likely to overfit to the training dataset. The predictions made by the multilayer perceptron and 
the linear regression model seem mostly similar except for the retail employment and service 
employment cases. The predictions made by the random forest method seem to diverge from 
the predictions made by other models, especially at large values of retail employment and 
household size. This could be because the random forest model and the other models use 
different approaches to make predictions for records outside of the range of records in the 
training dataset. While the Random Forest model, by design, cannot produce predictions that 
are higher than the maximum for similar records present in the training dataset, the linear 
regression model and multilayer perceptron model can extend the predictor-target relationship 
outside the range of the training dataset. An oddity observed is that the random forest predicts 
relatively higher frequencies for low number of households of sizes 1 and 2. While 
understanding the exact reason for this deviation would require further investigation, such 
issues are commonly caused because of the presence of other effects or factors that are 
simultaneously related to the number of small households and the trip frequency. 

To understand the accuracy of the models and the extent of overfitting, the R2 of the models 
were computed with respect to the training dataset and testing dataset. The computed R2 
values are displayed in Figure 35. The model that produced the best fit was the random forest 
model based on the R2 values with respect to the testing dataset. The multilayer perceptron 
model performed similarly well while the fit of the Linear Regression model was slightly worse 
especially for the month of April. Note that the equivalent performance of the Linear 
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Regression model, when compared to the other models, was possibly partly because of the 
removal of outliers in the preprocessing step.  

Figure 41 R2 for Estimated Models with Respect to Training and Testing Datasets. 
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8.7. Conclusions 
The use of machine learning techniques for the implementation of a direct demand model was 
discussed. The methods for extracting and aggregating the data from CV event logs were 
explained in detail.  

The highest percentage reduction in the number of trips was observed at location with higher 
service and education opportunities. During lockdown, among the employment categories, only 
retail employment locations seemed to make a reasonable contribution to the number of trips. 
Households also made a reduced number of trips during the lockdown. Households that are 
larger tended to produce more trips than smaller households both before and during the 
lockdown. 

Overall, more complex machine learning methods performed better than linear regression 
when there were outliers in the dataset. Once these outliers were removed, the performance 
of the linear regression model was similar to that of other machine learning models. This 
suggests that if the goal is to develop a “one size fits all” model that is robust to outliers, the 
random forest approach is recommended. However, a drawback of the random forest model 
that must be kept in mind is that the model may not produce reasonable predictions for 
records outside of the range of records that the model was trained on. The multilayer 
perceptron model is not recommended even though it performed almost as well as the random 
forest model because training a multilayer perceptron is usually more involved and therefore 
more challenging to automate. The analysis of changes in trip-making patterns after the 
lockdown is only an example use case of direct demand models developed using CV data. More 
generally, the development and maintenance of such models based on a live stream of CV data 
will allow for the rapid analysis and identification of changes in travel patterns that occur in any 
novel situation.  
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Chapter 9. Traffic Signal Timing Using Reinforcement 
Learning 
Chapter 9 investigates the application of reinforcement learning (RL) techniques to the traffic 
management scenario. In particular, the goal of integrated corridor management (ICM) is in 
focus, in hopes of enabling advanced control techniques that can respond to observed roadway 
conditions faster and more effectively than current practices, which focus primarily on human 
design choices. Given the myriad data sources available to transportation management centers 
(TMCs), we assume that a plausibly accurate representation of a roadway network’s congestion 
conditions can be developed. Furthermore, standardized mechanisms of traffic control exist, 
including the National Transportation Communications for Intelligent Transportation Systems 
Protocol (NTCIP), thus providing a unified framework for influencing roadway traffic levels. 

We aim to leverage the available technology to develop an RL agent that can observe roadway 
conditions through the data sources identified in other sections of this project and respond 
appropriately once trained in a simulated environment. This arrangement allows for safe 
testing of potentially dangerous control policies in a sandboxed environment as the agent 
learns to function properly. We next discuss the common components of a RL agent model, 
including how each component ties to the experiment at hand. In this chapter, we discuss the 
initial proof-of-concept model that was developed, including the scenario generation technique 
and development of a training environment. In addition to the results from this model, we 
further detail in Section 4.3 a series of alterations made to the simulated environment to 
decrease the artificiality associated with the training environment, as well as the implications of 
those changes. We conclude with a discussion of further steps we aim to undertake in 
improving the RL agent. 

9.1. Components of Reinforcement Learning 
RL agents are typically represented as consisting of five key components—three under the 
influence of the agent (the environment, the performance element, and the learning 
mechanism), and two independent components (the problem generator and the evaluation 
standard).  

9.1.1. Environment 
TMCs have at their disposal a series of sensors through which they observe the state of traffic 
on roadways, as well as multiple actuators that allow them to exert influence on the roadways’ 
traffic state. Current practice utilizes inductive loop and other magnetometers, traffic cameras, 
probe travel time data, and CV data to provide TMCs with an understanding of the state of 
traffic; operators can then adjust actuators such as traffic signal timings, variable lane usage 
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signs, and toll rates to drive traffic to more optimal or safer routes. These sensors and actuators 
thus define an environment in which an RL agent can operate, moving throughout the state 
space via the actuators available to it. However, without further structure, the agent will be 
unable to make intelligent decisions as to how to move about the state space. 

9.1.2. Performance Element 
In RL environments, the performance element chooses what next action(s) should take place 
based on the knowledge it has gleaned through its training. This policy determines the 
perceived optimal action(s), and by repeated interaction with the environment, the agent’s 
performance will approach true optimality. Since this element is independent from the learning 
element, the RL agent can evolve to understand complex relationships between its choices in 
actions and the results that arise from them. This, therefore, distinguishes learned behavior 
from simpler behavior more akin to reflexes in humans. 

9.1.3. Learning Mechanism 
Given the extreme combinatorics of traffic states across an entire network, it becomes 
necessary in the traffic management scenario for an agent to learn more through practice than 
through brute-force sampling of every policy option. This is because time will be a limiting 
factor in searching the simulated state spaces. For such a complex problem, it is common to see 
RL strategies such as Q-learning and SARSA employed. These methods allow an agent to gain 
direct feedback on the evolution of the environment following the agent’s action choice. Q-
learning, an off-policy technique, recommends a policy but is indifferent as to whether the 
policy is followed. In contrast, SARSA learns based not only on the prior state and the 
recommended action(s), but also from the action(s) that are, in fact, implemented, and the 
state that results therefrom. This ability to reflect on the actual behavior is termed an on-policy 
learning method. A multitude of other learning algorithms exist that build on these 
fundamentals, and we review a limited exploration of these mechanisms in our experiments. 

9.1.4. Problem Generation 
In nearly all nontrivial environments, RL performance depends on a balance between the goals 
of the agent—the drive to perform optimally in the current state given the available knowledge, 
as well as the desire to find new strategies that may offer better rewards. This is referred to as 
the exploration-vs.-exploitation balance. An independent problem generator can randomly 
select instances where new action settings should be used. By choosing a fixed frequency of 
these random deviations from the prototypical policy, an 𝜀𝜀-optimal selection strategy is 
defined, allowing for a variable rate of exploring new options relative to the policy’s 
predetermined actions and other policy choices available. Another approach, selecting 
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randomly based on the amount of prior explanation from a given state, allows for an awareness 
of the “known unknowns” in an RL agent’s policy design. Other design options include basing 
the exploration rate on the number of times a given state scenario (or an approximately 
identical one) has been encountered. 

9.1.5. Evaluation Standard 
The independent critic is possibly the most important module for an RL agent to truly develop 
optimal behavior, as it provides feedback to the learning element describing the agent’s 
performance based on the sensor data available to it. For the agent to understand the benefits 
and costs of its actions, it must be able to receive external metrics on the value of its 
performance. The agent will then seek out the policy decision(s) that maximize the reward from 
such a critic, regardless of unmeasured side-effects thereof. It is necessary for the feedback 
element to be defined outside the learning mechanism, as agents must not be able to arbitrarily 
determine the value associated with states in a sycophantic attempt to further the reward it is 
given. In the transportation environment, multiple metrics exist for evaluating performance, 
including total system travel time, levels of service (LOSs), and many others. We later discuss the 
implications of the performance metrics chosen for our experiments and illustrate just how 
critical an apt reward evaluation mechanism is in designing RL agents for ICM. 

9.2. Initial RL Model 
To prove the applicability of the RL mindset to the traffic control problem, a toy model was 
developed that gave an RL agent control over an intersection’s operations. This section details 
the resources available to the RL agent, the training environment to which it was connected, 
and the results of the initial experiments therefrom. In the next section, we detail 
improvements made over the initial design and the implications these modifications had for 
agent performance. 

9.2.1. Scenario Development 
The initial test scenario models a pair of frontage roads along a freeway, as well as a cross 
street that intersects the frontage roads at a pair of signalized intersections. An example 
illustration is shown in Figure 42. Traffic flow was modeled using the cell transmission model 
(CTM), a micro-to-mesoscopic method for modeling traffic density using discretized sections of 
each modeled roadway. While CTM does not perfectly model traffic behavior, it provides a solid 
means for describing vehicle trajectories in a dynamic environment. In each training scenario, 
traffic was randomly generated on the roadways in the network, drawn from a normal 
distribution with mean conditions providing oversaturated demand levels for the intersections. 
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Furthermore, a characteristic of each scenario was that the distributions for the frontage roads 
had higher mean volume than the distributions of the side street. 

Every five simulated minutes of traffic, an updated state description is provided to the agent, 
detailing each link’s CTM density adjacent to the intersection, and the agent is then afforded an 
opportunity to modify its control scheme.18 The actuators available to the agent control what 
portion of each five-minute increment is dedicated to serving traffic from the frontage roads 
versus traffic on the cross street, with no constraints on the time allocations. While these 
scenarios do not encompass the full spectrum of traffic conditions, and do not provide a 
realistic set of policy constraints, the experiments conducted on these scenarios nonetheless 
provide strong takeaways as to further design considerations, which will be discussed later. 

Figure 42: Example Scenario Illustration. 

9.2.2. Training Environment Development 
To avail ourselves of common and well-researched RL algorithms, an interface was developed 
that allows our experiments to be conducted in the OpenAI framework. By adapting our 
scenarios to fit this interface, we can utilize prepackaged and validated algorithms, known as 
the stable baselines, in training an RL agent. Since our state space representation (i.e., the 
roadway densities) and the actuators available to the agent are both continuous in nature, we 
selected the soft actor-critic (SAC) learning algorithm as our performance and learning 
algorithm. 

For our evaluation standard, we selected total intersection delay to measure the agent’s 
performance. While such a metric would not be terribly practicable in real-world trials, it serves 
as a good intuitive goal for our agent to minimize the amount of delay it causes. In the next 

18 Density on a roadway uniquely describes the traffic conditions present, so this provides an excellent 
representation of a given link’s congestion level. 
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section, we discuss why this goal, while superficially agreeable, induces a policy that is far from 
desirable in practice.  

9.2.3. Results and Discussion 
Training of the initial RL agent resulted in the development of a consistent and definitive 
strategy that the agent deemed optimal given its reward function—to simply allocate all time to 
the (higher-volume) frontage roads and none to the cross street. The reasoning behind this is 
easy to understand: given that all the agent cares about is total delay, it sees no reason to 
provide preferential treatment to the vehicles on the side street. The agent can minimize delay 
by simply focusing on the roadway with higher volume—the demonstrable unfairness of never 
serving the crossing traffic is lost on the agent. 

Results clearly illustrate the criticality of care in designing a reward mechanism. While an 
evaluation function such as total delay may seem, at a high level, like an obvious choice, the 
repercussions of such a policy are often severe and highly undesirable. This is due to the 
evidence that an RL agent will, after sufficient training, develop a strategy to perform its task 
exceedingly well, subject to whatever may define performing the task “well.” Equity 
considerations are necessary in the design of proper reward functions.  

In the next section, we discuss a variety of improvements that will allow for more realistic TSC 
interaction, traffic flows, and sensor data. These steps create a more realistic and, thus, more 
challenging training environment, in which more care will be taken in creating a performance 
metric to alleviate the non-egalitarian difficulties imposed by a pure reward-driven agent. 

9.3. Further RL Modeling 
Despite the core takeaways of testing in the toy intersection, it does not reflect a realistic 
application in the field. In this section, we detail a more appropriate testbed for training an RL 
agent in traffic management, one that better reflects the conditions and resources available in 
a field experiment. As a proof-of-concept demonstration of the proposed RL methods, we 
developed an experiment in which an intersection was modeled with four approach directions, 
each having the movement of vehicles modeled in the PTV VISSIM traffic microsimulation 
application. The approaches were of unequal demand, with two directions (the “main road”) 
featuring volumes of 2,200 vehicles per hour and the remaining directions (the “side street”) 
featuring a volume of 800 vehicles per hour. Traffic on the main road was divided roughly into 
60 percent through-traffic and 20 percent each for left and right turns. Side-street traffic was 
divided evenly among through, left-turning, and right-turning traffic, with no slip lanes through 
which right-turning traffic could avoid the impacts of the simulated traffic signal. Pedestrian 
phases were modeled as running concurrently with the through movement of the parallel 
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roadway. Minimum phase recall was active during the experiments for all approaches, and 
pedestrian recall was active for all through movement phases. Figure 43 provides an illustration 
of the test intersection. 

Figure 43: PTV VISSIM Microsimulation Software. 

The signal simulation at this intersection was handled by an emulated, NTCIP-compliant 
Econolite ASC/3-2100 model traffic signal controller, with simulation time divided into green-
time allotments for the main road and side street, as well as split settings for left turns vs. 
opposing through movements.19  This reflects a simple ring-barrier control schema with 
minimum timings for any single phase, including pedestrian timing intervals. To develop a 
suitable initial condition on the roadway (i.e., one in which the agent does not start controlling 
the network when the roads are devoid of cars), an initial warmup period was conducted in 
which the signal control policy was held constant.  

This configuration was used for the first fifteen minutes of the simulation before control of the 
signal timing policy was turned over to the RL agent. A full hour of traffic conditions was 
simulated, yielding forty-five minutes in which the agent could train and modify the TSC 
configuration. Each simulated hour was divided into five-minute periods or timesteps, after which 
the agent would receive state information from the environment and, in turn, make adjustments 
to the TSC configuration. The overall length of the simulation, the length of the warmup period, 
and the resolution of the timesteps (i.e., the amount of time each timestep lasts) are adjustable, 
and future work may investigate the impacts of changes to these variables. 

19 Datasheet: http://www.econolite.com/wp-content/uploads/sites/9/2018/10/LEGACY-controller-asc3-
datasheet.pdf 

http://www.econolite.com/wp-content/uploads/sites/9/2018/10/LEGACY-controller-asc3-datasheet.pdf
http://www.econolite.com/wp-content/uploads/sites/9/2018/10/LEGACY-controller-asc3-datasheet.pdf
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9.3.1. State evaluation 
To simulate data that can be collected from sensors along a corridor, VISSIM’s data collection 
measurement functionality was incorporated into the gym environment. Data collection points 
(the simulated equivalent of field sensors) were placed approximately 350 feet upstream of the 
stop bar, collecting data from each lane of the intersection (left turn bays excluded). From 
these points, aggregated data was calculated in VISSIM for each approach’s volume, average 
arithmetic speed, and average harmonic speed within the last five-minute simulation period. 
This data was retrieved through VISSIM’s common object model (COM) application 
programming interface (API). In addition, the agent received information from the virtual traffic 
signal controller reflecting its current cycle length and split configurations. These values 
constitute the agent’s state space, in which the agent explores which policy options perform 
best in maximizing its reward function. However, our gym environment has been developed 
with extensibility in mind. Any number of sensors can be developed that can provide 
information on the state of traffic at the intersection by following a lightweight and 
straightforward interface. It should be noted that, as the state space grows in dimensionality, 
learning for the agent will slow due to an inundation of data and an increase in combinations of 
state data for which the agent may explore action policies. 

9.3.2. Action choice 
Three varieties of controls (actuators) were developed for the RL agent: a cycle length actuator, 
a barrier-split actuator, and a phase-split actuator. For the first of these, the agent can choose 
the amount of time between the start of a given cycle (i.e., when a particular phase turns 
green) and the start of the next cycle (when the same phase turns green again after serving all 
other phases). This actuator is bounded on the lower end by the minimum amount of time that 
can be served without disrupting any of the phase’s minimum timing requirements, including 
the minimum amount of green, yellow, and all-red time, plus pedestrian walk and clearance 
intervals, if applicable. Minimum values are fixed at the start of the simulation and must be 
held constant during training to preserve a fixed action space for the cycle length actuator. 
Additionally, the programmatic upper bound on the cycle length for the Econolite ASC/3-2100 
controller is 255 seconds.20  

20 Note that this is not a constraint of the experiment itself and can be relaxed using other controller software. 
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Figure 44. Ring-barrier timing plan visualization (credit: Federal Highway Administration). 

The barrier-split actuator defines the amount of cycle time served to the major street vs. the 
minor street, as illustrated in Figure 44. In practice, this actuator is implemented by providing 
the agent a choice of percentages of time that will be allocated to the major street, in 
increments of 2 percent. The amount of time allocated by this actuator is that which is in 
addition to the required minimum timings for each street’s phases. In initial experiments, the 
minimum time for each street was thirty seconds, so the cycle length actuator was bounded on 
the lower end at sixty seconds. If this was the value chosen by the cycle length actuator, the 
barrier-split actuator would have no impact, as there is no additional time that can be allocated 
to either street. For all other values, the agent can select to allocate 0 percent, 2 percent, 4 
percent, etc., up to 100 percent of the excess cycle time to the main street, and the remainder 
is added to the side street. Rounding errors are handled by rounding down any fractional 
seconds, then allocating any leftover time randomly between the two streets. 

Figure 45. Econolite ASC/3-2100 virtual traffic signal controller 
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The phase-split actuators behave similarly to the barrier-split actuator. A “subring” is a grouping 
of phases in a timing plan which share a common ring and barrier. In the timing plan illustrated 
in Figure 44, as well as in our experiments, there are four subrings in the timing plan. For each 
subring, the minimum time of the subring is calculated at the start of the simulation, and at 
each timestep the minimum value is subtracted from the amount of time allocated by the cycle 
length and barrier-split actuators. The remaining time is to be allocated between the phases of 
the subring, and, just as with the barrier-split, the agent chooses a percentage (in increments of 
2 percent) of the excess time to be allocated to each phase. Rounding is handled identically to 
the barrier-split actuator. To some extent, the phase-split actuators can be seen as adaptations 
of the barrier-split actuator, however the barrier-split actuator seeks to split time between two 
streets, the phase-split actuator seeks to allocate time between, for example, a through 
movement and its opposing left turn phase. 

It should be noted that no two intersections are exactly alike, and many TSCs feature timing 
plans that deviate from the traditional eight-phase ring-barrier timing plan format illustrated in 
Figure 45. To that end, we have designed these actuators to be as extensible and 
accommodating of signal timing plan variations as possible. As such, the number of phases, 
their order, and the number of streets that can be controlled by this agent are limited only by 
the practical requirements for their scenario, either by the fundamentals of traffic signal 
control, or by the implementing TSC. 

9.3.3. Performance 
As discussed previously, it is evident from initial testing that a well-designed performance 
metric is essential to achieving good performance for an RL agent, especially in a traffic control 
scenario. In this phase of testing, we first developed a critic that reflects the critic used in prior 
testing—overall delay induced by the TSC. To achieve this, at the end of each time interval, the 
agent retrieves VISSIM-collected measurements of the number of vehicles 𝑣𝑣 and the average 
per-vehicle delay 𝑑𝑑 encumbered by vehicles along each approach during the interval. These 
values are multiplied to get the amount of delay incurred during the interval on each approach 
𝑎𝑎, and the negated sum is provided as the reward21 𝐷𝐷 for the RL agent for that timestep: 

𝐷𝐷 = −�𝑑𝑑𝑎𝑎 ∙ 𝑣𝑣𝑎𝑎
𝑎𝑎

 

21 Recall that, since the agent wishes to maximize its reward, a well-designed environment will provide a reward 
that is more negative as the performance degrades. Therefore, the higher delay induced by a poorly performing 
agent must be more negative, so the negation of the total delay is selected as the reward function rather than 
simply the overall delay. 
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Upon completing implementation of this critical functionality, testing was performed to 
validate that the agent was, in fact, learning to perform better over time. A randomized sample 
(𝑛𝑛 = 30) of episodes’ TSC delays was drawn in which the controller was operated under four 
timing plan configurations:  

• an untrained agent which had not learned at all controls the timing plan
• an agent controls the timing plan after experiencing 500 simulation hours22 of training23

• a fixed timing policy chosen at random which includes a ninety-second cycle length, and
• a fixed timing policy designed in accordance with the ubiquitous Webster minimum-delay

formula, 𝐶𝐶𝐿𝐿 = 1.5𝐿𝐿+5
1−∑

𝑣𝑣𝑖𝑖
𝑠𝑠𝑖𝑖
𝑖𝑖

 (Webster, 1958), which yielded a 78-second cycle when given the

expected hourly roadway volumes 

Figure 46: Reward distribution boxplots for four timing policies. 

As illustrated in the boxplot in Figure 46, and as should be expected, the untrained 
reinforcement learning agent performed significantly worse on average than the other three 
designs. A comparison example of the pre- and post-training cycle length selection behavior is 
shown in Figure 47. Note that, after training, a narrow band of cycle lengths has emerged that 

22 Note that this amount of training, yielding 6,000 training steps, is not considered extensive, and is chosen to 
reflect an approximation of what could be computed in an average calendar day. This test is designed to 
measure learning momentum rather than fully learned behavior. 

23 Upon terminating agent training, the policy is held fixed, i.e., given an identical set of state observations (data 
from sensors), an identical timing plan should result for the ensuing time interval. The timing plan can, however, 
change based on the most recent sensor data. 
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the agent favors. This trained agent, while not matching the constant-time policy or the 
Webster-based policy in performance, shows promise when compared to the untrained agent 
and utilizes policies that are quite close to the chosen constant cycle length. As a result, it can 
be concluded that the agent is learning better policies to improve its performance. 
Furthermore, it should be noted that this relatively low amount of training yields results that 
are, while not as good as those from Webster’s formula, are competitive in nature and provide 
hope for an agent that can outperform traditional techniques.  

Figure 47. Comparison of selected cycle lengths during fifteen episodes before and after training. 

9.3.4. Extended testing 
In the previous section, we adapted a VISSIM environment to meet the interoperation needs of 
an RL agent and performed limited training to validate the agent was able to learn a policy that 
competes with standard fixed timing models. We now turn our attention to a larger challenge—
responding to changes in traffic conditions due to an incident. After confirming the functionality 
of the constructed gym environment, the environment was extended to present a more 
significant challenge to the RL agent. This included extending the roadway network to include a 
model of a freeway segment parallel to the major road. On- and off-ramps were added to 
connect the freeway links to the major road, similar to the design of a frontage road-based 
interchange.24 The test network is illustrated in Figure 48.  

24 One key difference between the experiment design and a standard frontage road interchange is that the at-
grade intersection as well as entrance and exit ramps are located in the median in this simulation, rather than on 
the outside shoulder. This design was chosen to simplify the design of NTCIP-compliant actuators. 
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Figure 48. VISSIM network model with freeway and "frontage road" in median intersecting a cross street. 

For this experiment, stochastically generated hourly traffic volumes for the freeway links 
average 6,500 vehicles per hour per direction, and the “frontage roads” each have an additional 
400 vehicles per hour in each direction. The cross-street traffic volume averages 600 vehicles 
per hour per direction. On average, 7.5 percent of stochastic freeway traffic exits to the 
frontage road in each direction. Of that volume, 25 percent turns left at the traffic signal, 25 
percent turns right, and the remaining half continues on the frontage road. For cross-street 
traffic, 20 percent turns left, 20 percent turns right, and 60 percent continues straight on the 
cross-street. 

As a further challenge to our agent, 15 percent of all simulated scenarios (in training as well as 
evaluation) generate a complete blockage of one direction of the freeway links, diverting all 
traffic to the frontage road for approximately twenty minutes. During this time period, the 
volume of traffic on the frontage roads causes the traffic signal to be well over capacity in one 
direction. The blockage begins five minutes after the agent takes control of the timing plan.25 
The goal of this challenge is for the agent to recognize, based on its sensor data, that there is 
anomalous demand, and to respond by altering the signal timing plan accordingly. 

Given the extended use case in this experiment, the sensor set available to the agent was 
extended to include sensor data for the freeway links as well as the exit ramps from the 
freeway. The additional sensors detect the state of freeway traffic downstream of any 
blockage, so the effect of such a blockage would be a dramatic drop in volumes and a lack of 

25 Due to the Markovian nature (sometimes called the “memoryless” property) of our RL environment, there is no 
impact of time on policy choice. Therefore, the agent cannot “predict” the arrival of a blockage. 
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available speed data. On the other hand, the upstream ramp would reach capacity quickly and 
speeds would then drop. 

9.3.4.1. Performance 

To avoid the unintended behavior witnessed in earlier experiments, the performance metric 
was adapted to include an equity component. While it is still desirable to minimize delay, the 
performance of a traffic signal should also attempt to distribute the delay it creates in a way 
that is fair to drivers from all directions of travel. To do this, we incorporate a linear scaling 
coefficient to our critic function: 

𝑅𝑅 = 𝐷𝐷(1 + 𝐺𝐺𝐷𝐷) 

The coefficient 𝐺𝐺𝐷𝐷 is a measure of statistical dispersion of delays amongst the vehicles traveling 
through the intersection. This approach is based on the Gini coefficient (Gini, 1921), a measure 
of income or wealth inequality that ranges from zero to one, in which a value of 1.00 represents 
complete inequality in a population of 𝑛𝑛 (i.e., one person having 100 percent of the wealth). For 
our purposes, we adapt the notion to measure the dispersion of delay 𝑑𝑑 incurred by each 
vehicle. The metric is defined as: 

𝐺𝐺𝐷𝐷 =
∑ ∑ �𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑗𝑗�𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

2𝑛𝑛𝑑̅𝑑

With this modification to our reward function 𝑅𝑅, we increase the penalty when delay is 
distributed unevenly, but it remains the same if delay is dispersed equitably. 

The modified agent was trained for approximately 80,000 simulation steps, totaling 
approximately 7,200 simulated training hours. This has led to significant performance in the 
reward collected, as illustrated in Figure 49. A randomized sample (𝑛𝑛 = 30) of traffic conditions 
for a simulated hour were used to evaluate our four timing policies in scenarios in which no 
blockage occurred, and another randomized sample was drawn for scenarios in which the 
freeway was blocked. We again compare against two baselines: a randomly selected policy with 
a 240-second cycle length, and a timing plan devised in accordance with Webster’s formula, 
with cycle length of 109 seconds, and allocating splits based on relative volume. Here, we see 
the trained agent performs significantly better than the two baselines and the untrained agent. 
We also see this in the overall delay accumulated, as shown in Figure 50. However, this is not 
the only improvement we see in the agent’s performance, as it also outperforms all other 
tested timing policies in terms of equity, as illustrated in the boxplot in Figure 51.  
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Figure 49. Reward collected in simulations without a blockage. 

Figure 50. Delay accumulated in simulations without a blockage. 
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Figure 51. Equity (Gini) coefficient for simulations without a blockage (lower is better). 

We further compare the two agents and baselines in the scenario in which a blockage has 
occurred on the freeway link, leading to oversaturation on one approach. As can be seen in 
Figure 52, the trained RL agent policy once again is the best performing of the group, although 
this time in a much more tailored fashion. While the median scenario is handled better than the 
Webster-based timing plan, on average the Webster-based timing plan reduces the delay, 
illustrated in Figure 53, by a margin of approximately 100 vehicle-seconds. The equity of the 
trained agent is also slightly improved compared to the Webster-policy, as shown in Figure 54.  

Figure 52. Reward collected in simulations with a blockage. 
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Figure 53. Delay accumulated during scenarios with a blockage. 

Figure 54. Equity (Gini) coefficient for simulations with a blockage (lower is better). 

9.4. Conclusions 
To demonstrate the applications of reinforcement learning in an integrated corridor 
management scenario, we first showed that an essential aspect of designing such an 
application is the reward function. In initial experiments, an agent with wide liberty to decide 
signal timing policy and a focus solely on minimizing delay achieved this goal by creating timing 
plans that were distinctly unfair to users of a lower-volume street. Thus, a modified reward 
function would be developed to account for this. In addition, the interface through which the 
RL agent interacted with the initial experiment environment is decidedly not standards 
compliant. To address this, a new action interface which complies with NTCIP standards 
became necessary.  
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In building such an interface, a new traffic simulation environment was required to replace the 
initial cell transmission model for traffic propagation. The PTV VISSIM micro-simulation package 
not only offers emulation capabilities for several modern traffic signal controller models, but 
also provides more accurate vehicle dynamics and more powerful and realistic tools in 
measuring the performance of the network. We are able through VISSIM to more accurately 
replicate the real-world sensor data that would be available to a field implementation of this RL 
model. In these experiments, we see that training an RL agent to manage a TSC is a significant 
task, one which will take hundreds of simulated training hours to compete with fixed signal 
timing plans. 

However, the key advantage of an RL traffic management agent is the ability to respond in 
near-real time to anomalies and variations in roadway conditions. To illustrate this, we 
extended our roadway network to include a simulated freeway on which blockages may occur 
and which will drive significantly higher traffic through the RL agent’s intersection.  

We see from the results that the trained agent is superior in terms of equity, delay, and 
combined reward in an everyday scenario, and is competitive with the Webster-based timing 
plan when facing a large obstruction. We also see, however, that in instances in which the 
agent must respond to a blocked roadway, there is a significant increase in the variance of all 
metrics.  

From this, we observe that while an RL agent may take significant training to compete with 
fixed-time policies, its ability to rapidly respond to changing conditions without human 
intervention is an asset that warrants further testing in the field. Alhough the increased 
variance from the trained agent is notable, it has yet to be determined if the variance can be 
reduced with further training. Nonetheless, the agent has effectively proved to be a suitable 
agent for managing traffic signal timing plans in simulation, and its practical effects in the field 
pose an exciting area for future study. 

9.5. Pathway to Implementation 
This document outlines a series of considerations and steps that should be taken to conduct a 
field experiment that trains a reinforcement learning agent to automatically detect traffic 
conditions and respond to them by adjusting an intersection’s traffic signal timing plan. This 
experiment will perform initial training for the agent in a simulated environment that closely 
reflects the chosen testbed location. The agent will learn from the data it obtains from real-
world sensors and adapt a signal controller to respond to its observed traffic conditions. The 
agent will train to maximize a predetermined reward function that characterizes its 
performance based on traffic conditions that result from the agent’s choices and external 
factors such as human behavior.  
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The goal of this experiment is to develop an agent that can respond intelligently to changes in 
traffic conditions and provide suitable signal timing configurations without human intervention. 
To accomplish this, several preparations must be made before the experiment can begin, and 
we document these herein. A field implementation pathway, illustrated in Figure 55, can be 
broken into independent pieces, each requiring distinct data. The first phase entails modeling 
the geometry and behavior of traffic at the selected test intersection, followed by adapting the 
available sensor outputs to meet the needs of the learning agent. We then simulate these 
characteristics and outputs to train the agent offline to give the agent some degree of 
experience prior to implementation in the field. Once the agent has been connected to field 
equipment and allowed control of the traffic signal controller, its performance will then be 
evaluated to confirm proper operation in line with prior simulated behavior. 

Figure 55. Field implementation pathway. 

Sensor Adaptation Agent Offline 
Training Model Deployment Performance 

AssessmentTest Site Modeling

9.5.1. Site Location 
Given the relatively high frequency with which they are implemented in the field, an ideal 
testbed for our reinforcement learning agent would be a four-way, eight-phase intersection 
that provides four through-movements and four left-turn movements. The traffic signal would 
preferably be one in which a standard ring-barrier timing pattern is the default, with no phase 
reservice or other atypical timing plan features. The virtualized experiment showed success in 
operating such a traffic signal, including the pedestrian phases; however, these pedestrian 
phases, if included, would ideally be non-actuated, as current design does not include a 
mechanism for handling adjustments to phase length caused by pedestrian phase calls. 

An ideal testbed location would also be sufficiently distant from other signals, so as to reduce 
the influence of one signal’s timing plan on another’s performance. While this is not a 
requirement for implementation testing, should a poorly performing signal timing plan be 
implemented by the learning agent, a risk of causing queue spillbacks through nearby 
intersections is present. Therefore, isolating the testbed will provide a means to reduce this 
risk. In further experiments, this constraint may be relaxed in order to train a reinforcement 
learning agent to adapt coordinated corridor timing plans. 



128 

9.5.2. Hardware 

9.5.2.1. Traffic sensing 

For a quality implementation of this experiment, sensors must be deployed in the vicinity of the 
test site to measure both the state of traffic to which the reinforcement learning agent will 
respond, as well as the agent’s performance in responding to its observed states. In measuring 
the state of traffic, simulated training depends on vehicle counts and average speeds (both 
harmonic and arithmetic) to define the scenario on which the agent should base its policy 
choices. To replicate this in the field, vehicle counters that can provide real-time (or near-real-
time) data should be made available, and a module should be provided that describes the 
average vehicle speed on approach roadways. Possible choices include radar-based sensors, like 
Wavetronix or camera-based techniques such as GRIDSMART, to provide volume data. INRIX 
may be a good source for speed on approaches. This data will be used in deployment to reflect 
the state of traffic in which the agent is operating and will mirror the simulated data used in 
initial training. 

Additionally, the agent must also be able to receive sensed feedback that evaluates its 
performance. In initial experiments, the agent performance was measured according to the 
amount of delay incurred per vehicle. In later stages, this was expanded to include an equity 
metric that accounted for how equally the agent treated each direction of traffic. This 
modification was necessitated by the agent’s reaction to the perverse incentive of minimizing 
total delay—when demand is present from each direction, the delay-minimizing strategy simply 
serves as much green time to the busier roadway while ignoring the other.  

To recreate this measure in the field, it is unlikely that per-vehicle delays can be reliably 
obtained. However, if an average delay value can be obtained and volume data is readily 
available for each movement, an approximation of such a method becomes available. INRIX is 
currently testing signal performance measurement tools that include data on volume and 
delays per turning movement. This may be sufficient to replicate a measurement of 
performance for the agent that was previously trained in a high-resolution simulator that 
provides per-vehicle data. Requirements for communication of sensor data to the management 
engine are not yet defined and will depend on the hardware implementation chosen. 

9.5.2.2. Traffic signal control 

For this experiment, a traffic signal controller that is capable of NTCIP communication is 
required, specifically one that can send and receive SNMP (the protocol underlying NTCIP) 
packets via a networking connection. Such a network connection need not be of excessively 
high speed, but a minimum performance metric would be 1 Mbps up/down, and higher-speed 
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connections would come with faster performance. To facilitate ancillary functions of the traffic 
signal controller such as status and error reporting, a network switch may be necessary to 
provide communications not only to the experiment management computer but also to a 
supervising traffic management center or other facility. 

9.5.2.3. Experiment Implementation 

As discussed in the next section, the experiment requires the ability to simulate the test site 
intersection in a reasonably realistic microsimulator such as PTV VISSIM. To do so, a computer 
must be available that can perform these simulations quickly. Initial experiment testing used an 
Intel Xeon four-core processor running at a clock rate of 3.6 GHz, with eight logical processors 
and 64 GiB of physical memory.  

The storage space required for this experiment is not particularly high, as, excluding installed 
software and operating system usage, project resources require less than 256 MiB of on-disk 
storage. Therefore, a low-cost storage device with 256 GiB or more would be sufficient for the 
test computer. However, given the performance impact, a solid-state drive would be preferred 
(but not required) over a spinning-disk hard drive. 

9.5.3. Software 

9.5.3.1. Traffic signal control 

The traffic signal controller that implements this experiment must feature NTCIP support, 
specifically compatibility with the NTCIP 1202 specification. While initial testing was conducted 
with a simulated Econolite ASC/3-2100, any controller capable of implementing these features 
should suffice. As of this writing, testing is incomplete to determine which version of NTCIP 
1202 is required for compatibility with the learning agent as configured, but it is the general 
belief that 1202v02 support should be sufficient.  

To further limit potential compatibility conflicts, it is recommended that the selected traffic 
signal controller be available in simulated form within the microsimulator used for offline 
training, and a basic configuration of a signal timing plan should be provided both in the 
simulated and field controllers upon which the reinforcement learning agent can train and 
adapt. This includes configuration details such as phase minimum recalls, detector locking 
status, and others. By only exploring a limited subset of the parameters of a preconfigured 
timing plan, learning will proceed at a faster and more reliable pace. 
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9.5.3.2. Reinforcement learning agent 

To develop test policies for the learning agent, a simulated environment should be established 
in a microsimulator. In initial-phase testing, this was completed in PTV VISSIM, version 2021. 
The microsimulator provided a simulated traffic signal controller meeting the specifications 
discussed previously, as well as an interface for obtaining simulated sensor data. As PTV VISSIM 
is only available for computers running Microsoft Windows operating systems, this forms a 
constraint if VISSIM is chosen as the preferred simulation software. 

While VISSIM provides a set of sensor data that meets the requirements mentioned earlier, the 
data is provided at a level of reliability that exceeds real-world capabilities. As such, prior to 
beginning field testing of the reinforcement learning (RL) agent, an investigation should be 
undertaken to determine the reliability of the chosen field sensor hardware. Once the sensors’ 
reliability is determined, a software module will be developed that postprocesses the 
simulator-provided sensor data and adds noise to better reflect real-world hardware 
conditions. 

In addition to a microsimulator package, the implemented reinforcement learning framework 
depends on a Python interpreter (version 3.7 or higher) as well as several external library 
packages that are not included by default. These packages each serve a distinct purpose and 
are enumerated below, along with their dependencies: 

• gym – provides a framework for reinforcement learning environments
o Dependencies: scipy, cloudpickle, future, pyglet, Pillow, numpy

• numpy – provides array computing functionality
o Dependencies: none

• pandas – provides data structure capabilities
o Dependencies: numpy, pytz, python-dateutil, six

• pysnmp – provides SNMP communication functionality
o Dependencies: ply, pyasn1, pysmi, pycryptodomex

• pywin32 – provides Common-Object Model communication with Windows software
such as PTV VISSIM

o Dependencies: none
• stable_baselines3 – provides stable implementations of reinforcement learning

algorithms
o Dependencies: cloudpickle, numpy, matplotlib, torch, pandas, gym,

typing-extensions
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9.5.4. Training 

9.5.4.1. Environment 

Since a key implementation detail is being able to perform initial RL training without negatively 
impacting the actual state of traffic with poor policy choices, it is imperative that a simulated 
model of the testbed intersection be developed. This model should include both roadway (plan) 
geometry, speed and routing choices, and volume data for the period(s) in which the agent will 
eventually operate online (i.e., with control of real signal timing plans). As discussed previously, 
sensor data from the microsimulation software should be adapted from its “omniscient” data 
quality to reflect potentially noisy measurements from real-world sensors more accurately, 
providing lower-quality data to the RL agent.  

In designing our simulated environment in this way, the simulated environment will more 
closely reflect the real test environment, providing a sandboxed learning environment in which 
the agent may perform initial testing that may result in poorly performing timing plans being 
evaluated. This reduces the likelihood that such timing plans would be selected in later training 
when the agent is given control over a real-world intersection controller. 

9.5.4.2. Scenarios 

To properly train the RL agent in simulation, a wide variety of traffic scenarios should be 
provided by varying the volumes of traffic on each approach and in each turning movement. To 
do this, a statistical distribution of travel demand should be developed that details the 
likelihoods of various volumes for the study period(s). From these distributions, a wide variety 
of traffic profiles can be developed programmatically and used as training scenarios for 
simulated RL. Based on the input distributions, these scenarios will provide scenarios that are 
more likely to occur to the simulator more frequently, while still giving examples of rare traffic 
patterns for which the agent can develop signal plan policies. 

9.5.4.3. Learning 

The RL agent will require an extensive amount of training in the simulated environment before 
being allowed to modify a real-world traffic signal timing plan. The scenarios, as detailed above, 
should cover a wide variety of potential traffic patterns, including accidents, blockages, and 
special high-volume events, while still providing a strong focus on typical conditions that the 
agent will encounter more frequently. 

As of this writing, it is unknown the amount of learning time required to reduce the likelihood 
of exceptionally poor policy performance in the field, and there is no guarantee that an agent 
can avoid attempting such policies in the field as part of the continued exploration of new 
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policy options. However, to rein in both the learning time and the amount of poorly performing 
policies the agent can choose from, constraints can be defined for the actions from which the 
agent can choose.  

For example, if a cycle length parameter can range from 30 seconds to 255 seconds, but it is 
unrealistic to expect good performance outside the range of lengths from 100–160 seconds, the 
agent can be artificially limited to only choose from policies in the 100–160 second range. 
Consequently, though, if a better policy could theoretically be found outside this range, it will 
not be discovered by the agent and will not be deployed. 

9.5.5. Experiment Monitoring 

9.5.5.1. Error/conflict handling and reporting 

Given the experimental nature of the automated timing plan strategy of this proposal, careful 
attention must be paid to the actual timing plans that are chosen by the agent once it is 
connected to a real-world signal controller. Not only is it possible that a poorly performing 
timing plan is chosen, thus causing severe traffic backups, it is also possible that the controller 
or learning agent may malfunction, leading to even more serious issues such as a flashing-all-
red controller configuration. 

To avoid this, several strategies are available. Initially, it is recommended that the learning 
agent be enabled only for a portion of each day. This will allow for optional human monitoring 
of the experiment in real time without dedicating considerable human resources to the 
experiment. In pursuing this, the time periods in which the agent is enabled should be rotated 
to provide the agent opportunities to train on the wide variety of conditions that may arise. 

In concert with rotating the agent’s active schedule, a fault-monitoring system should be 
actively monitored to ensure malfunctions are corrected in a timely manner. Most modern 
signal controller models feature some sort of fault monitor module, and the agent itself 
provides a basic level of fault reporting as well. These two together will provide a basic 
reporting mechanism that can be monitored by human supervisors, either in real time or as a 
responsive strategy. 

One further option for ensuring minimal errors or malfunctions is proactive approval of all 
timing plans to be tested. While this is potentially resource-consuming and may limit the ability 
of the agent to respond to unusual conditions with customized timing plans, it ensures the 
safety of the experiment’s real-world rollout. This strategy can take two forms: the agent may 
suggest a timing plan that could be approved or rejected by a supervisor before being loaded 



133 

into the signal controller, or the agent may select from a set of timing plans that have been pre-
approved as being safe for implementation.  

The former method will considerably slow training and may require modifications to the 
learning agent to handle situations in which the suggested policy is rejected; however, it retains 
the ability to provide custom timing plans that may not have been considered by human 
operators. The latter method will constrain the agent considerably in terms of the flexibility it 
allows in choosing timing plans, but it will both speed up training and provide stronger 
guarantees against poor performance. Nonetheless, the constraints imposed are somewhat 
antithetical to the experiment’s purpose, as the selection set available to the agent is reduced 
to plans of human design and does not provide for exploration of untested plans. 

9.5.5.2. Performance monitoring 

To properly evaluate the performance of the learning agent, good records must be maintained 
for the inputs and outputs of the agent. This includes the sensor data provided to the learning 
agent, the NTCIP communications from agent to controller, signal controller warnings or errors, 
and any identified external data such as weather conditions, special events, or other 
information that may skew performance. Since this data can be expected to be large in 
magnitude, a dedicated storage device independent from the agent may be necessary. 
Independent storage of historical data not only provides a potential performance boost to the 
learning agent’s host device, it also provides a more resilient storage solution, as we will discuss 
momentarily. Even if an independent storage device is not implemented, the computer hosting 
the historical data will require significant storage capacity to maintain records during the course 
of the experiment. 

9.5.5.3. Traveler feedback 

One additional aspect that may prove valuable in collecting experimental results is the impact 
on travelers’ evaluations of the signal performance. Providing drivers with a means to report 
complaints regarding the experiment may provide key insights that may not be evident from 
the more empirical data collected. A potential downside to this includes a skewed sense of the 
experiment’s functionality, as it may be impossible for travelers to know the rotating schedule 
implemented, and may provide complaints that are, in fact, not caused by the experiment at 
all. Additionally, given that humans tend to report complaints far more than compliments, it is 
possible that this feedback mechanism will not record that experiment performs well. 
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9.5.6. Evaluation 

9.5.6.1. Performance metric 

As the most important component of a reinforcement learning agent, monitoring changes in 
the chosen performance metric is imperative. From initial results, a long-term improvement in 
the reward function should be observed, leveling off once peak performance has been attained. 
This data will, of course, experience fluctuations due to ever-changing traffic conditions and 
continued exploration of policy choices by the agent. Additionally, poor performance may be 
expected in situations in which the agent cannot determine the traffic state accurately, such as 
when sensors fail, or when conditions change more rapidly than the agent can respond to 
them. Since, as of this writing, the agent modifies its timing plans once every five minutes, 
there is a considerable delay window between a change in conditions, such as a wreck, and the 
system’s response to it. Nonetheless, if the agent performs well, it is expected that it will 
respond to such incidents quickly and will not, to the extent it is capable, allow conditions to 
remain for extended periods of time. This is, however, subject to externalities such as the 
response time to clean up an accident located in or adjacent to the intersection. 

Additionally, while only one performance metric can be utilized during training, attention 
should be paid to whether the initial choice was well-suited to the experiment. It remains to be 
seen whether a per-vehicle or per-movement equity metric is a better choice and including 
equity as a component in the reward function can increase delay or other key performance 
indicators such as greenhouse gas emissions. Therefore, after some period of experimentation 
with a given metric, the choice should be reevaluated to determine if a better choice can be 
made for future experimentation. This will depend significantly on any observed side-effects. 

9.5.6.2. Side effects 

It is highly likely that, given a chosen performance metric, the agent will yield a policy that aims 
to maximize the reward it obtains from that metric. However, this metric will be the only 
objective the agent considers, and it may not yield exactly intuitive results. As initial testing 
showed, a metric that focuses on minimizing overall delay can cause the side effect of under-
serving a lower-volume street when constant demand exists from each direction, creating 
lengthy delays for some while others encounter very little delay. This condition motivated the 
inclusion of an equity component in the performance metric and illustrates the possibility for 
unexpected consequences of the design of the metric. 

Therefore, it is important to monitor the testbed environment for such troublesome incentives. 
If some unexpected consequence arises that must be accounted for in incentivizing good 
timing-plan behavior, the performance metric must be adapted, and training must begin anew. 
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To limit the impact of such side effects, if they are determined to be of high severity, the agent 
should be taken offline, and a normal signal timing plan should be put into place while 
simulated training is conducted with the modified metric. Once sufficient training has been 
conducted in a simulated environment, real-world testing can resume. 

9.5.7. Resiliency 
To ensure the integrity of this experiment, resilient infrastructure should be provided for the 
experimental hardware used in training the agent. While many signal control cabinets already 
feature a backup power supply and redundant network connections, it is important that these 
also be made available to the agent’s host computer. Doing so will allow for continued 
operation when a partial failure is detected, and a safe shutdown of the experiment can be 
completed when a larger failure occurs. This will, in turn, protect the integrity of experiment 
records and ensure that the signal controller does not receive incomplete configuration data 
from the agent if power is lost or communication is severed. 

In addition to resilient power and communications components, this document has detailed 
several other steps that can be taken to provide a reliable experiment setup. These include 
providing bounds on the explorable action space for the agent, proactive or reactive fault 
monitoring and correction, and providing ample initial training in a simulated environment. 
While these are by no means guaranteed to ensure a high safety or performance level for the 
experiment, they will reduce the risks posed by the experiment considerably. 

9.5.8. Conclusion 
As the primary motive in engineering is creating a safe environment, several considerations are 
needed to ensure this experiment is conducted without severely hampering the safety of the 
testing environment. While the technology and human effort we detail in this document goes 
beyond the typical level required for an experiment in traffic signal timing, it is hoped that 
these will act as suitable guardrails to provide a reliable experiment that can improve 
conditions without further human intervention. Vigilant monitoring and evaluation of the 
agent’s performance and the conditions that arise in the field are essential to conducting this 
experiment successfully and safely, and providing the resources needed to establish a suitable 
testbed will significantly reduce the risks faced throughout the experiment. 
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Chapter 10. Short-term Travel-time Prediction 
The goal of the models presented in this chapter is to estimate the travel time that drivers will 
experience along a freeway corridor based on the traffic conditions at the time they start their 
trip on the corridor. This work uses speeds and traffic volumes as indicators of prevalent traffic 
conditions. 

Estimating experienced travel times accurately based on traffic conditions at the departure 
time requires considering the spatial and temporal variation of traffic conditions along a 
corridor: 

• Spatial variability is typically captured by reporting traffic conditions for sub-sections of
the corridor over which such conditions are likely to be homogeneous. Corridor travel
time is obtained by adding up the travel time on each corridor sub-section.

• Temporal variability refers to the evolution of traffic conditions as drivers move through
the corridor. In order to accurately estimate the travel time to be experienced by
travelers entering the first corridor subsection at time t it is necessary to forecast what
travel times they will encounter at times t+1,t+2….t+d (where d is the duration of the
trip) on downstream segments.

Short-term travel-time prediction (STTTP) on freeway corridors involves forecasting travel 
times on corridor sub-segments one to two hours into the future at fine-grained temporal 
resolution (five to 15 minutes). Predictions are often updated every few minutes and are 
necessary to estimate realistic end-to-end travel times along freeway sections, particularly 
when some sub-segments in the analyzed section experience congestion. The aggregation of 
forecasted travel times across segments is often done using a dynamic approach. In such 
approach the travel time used for each segment corresponds to the arrival time at that 
segment based on the travel time experienced up to that point. 

The following sections describe two studies conducted during this project to understand the 
potential and value of machine learning (ML) models in short-term travel time prediction. 
Section 10.1 presents a preliminary analysis conducted on I-35 using one year of traffic speed 
and volume data. Section 10.2 presents the results of a larger study that considered eight 
corridors on two different sites and explored different model specifications and the challenges 
of field deployment in real time. Training and real-time performance is analyzed in depth and 
the model value is quantified relative to naïve methods. Section 10.5 provides additional 
information about data pipelines, code and database documentation, and introduces a web-
based application deployed in order to share these models with TxDOT.  
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10.1. Preliminary Model Development 
This section introduces and assess the performance of two types of short-term travel-time 
prediction models, a time series approach, and a recurrent neural network (RNN) method 
developed for a 23-mile section of I-35 in Austin, Texas. 

The models utilize volume data streamed from sensors on the road and probe-based speed 
data provided by INRIX to estimate corridor travel times in real time, considering forecasts of 
the evolution of traffic conditions along the analyzed freeway section. The live predictions may 
be used to display travel time updates on variable message sign (VMS) boards or to support 
traffic management.  

A common approach to corridor travel-time estimation involves dividing the corridor under 
study into homogenous sub-segments, measuring segment travel time/speeds at small time 
increments, and adding the measured segment travel times in order to produce a corridor-level 
travel-time estimate. The estimate produced using such approach (referred to as static travel-
time estimation in this work) reflects the total travel time at the time that the trip begins and 
assumes that traffic conditions do not change as travelers move through the corridor. The 
travel time experienced by drivers may be very different from the static travel time, particularly 
during times of day in which traffic conditions evolve rapidly.  

In this study, we seek to improve corridor-level travel-time estimation by computing dynamic 
travel times. Dynamic travel times are computed by considering, for each segment along the 
corridor, the travel time corresponding to the arrival time at the beginning of the segment. 
Such travel time may be different from the travel time measured at the beginning of the trip, 
and it is not known a priori.  

To further illustrate the difference between dynamic travel times and static travel times, 
consider a corridor that is split into five segments. Table 17 illustrates segment-level travel 
times along the corridor over five timesteps. The travel times are expressed in terms of number 
of timesteps, which may have any pre-defined duration. The static travel time for a vehicle 
starting at the beginning of segment 1 at timestep 0 is 3.8 timesteps. This is the sum of the 
travel times of all the segments at the starting time of the trip. The dynamic travel time is 3.3 
timesteps because conditions change as time proceeds and the travel time of a particular 
segment when the vehicle reaches it may not be what it was when the trip started. In the case 
shown in Table 17: Example of static and dynamic travel time computation, the vehicle takes 
1.5 timesteps to traverse the first segment by which time the travel time of segment 2 would 
have changed to 0.4 timesteps. The vehicle finishes traversing segment 2 at 1.9 timesteps and 
segment 3 at 2.6 timesteps at which point the travel time of segment 4 would have become 1.1 
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timesteps. Similarly, the travel time of the last segment would have become 0.1 when the 
vehicle reaches it. 

Table 17: Example of static and dynamic travel time computation 

Timestep Segment Travel Time (in timesteps) 
Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

1 1.5 0.2 0.6 0.9 0.1 
2 1.7 0.4 0.7 1 0.2 
3 1.5 0.4 0.8 1.1 0.2 
4 1.4 0.3 0.6 1 0.1 
5 1.2 0.2 0.6 1 0.1 

Cumulative Travel Time 
  Static 1.5 1.9 2.6 3.7 3.8 
  Dynamic 1.5 1.7 2.3 3.2 3.3 

Travel time for traversing segment based on static and dynamic approaches 
Travel time for traversing segment based on static approaches 
Travel time for traversing segment based on dynamic approaches 

The approach proposed in this study uses machine learning models to make short-term 
segment-level travel-time forecasts for each segment along the corridor and uses them to 
estimate corridor-level dynamic travel times. The following sections present the experimental 
design, introduce the data sources used in this study, describe model development and 
training, and provide a detailed analysis of model results. 

10.1.1. Experiment design 
The short-term segment-level travel-time forecasts necessary for approximating the corridor-
level dynamic travel times were made using an auto-regressive timeseries (TS) model and a 
recurrent neural network (RNN) model. The dynamic travel times computed using the forecasts 
from these models were compared against the static travel time and the ground-truth travel 
time. We assume the ground-truth travel times to be the dynamic travel times computed using 
the actual segment-level travel-time data for each timestep. Note that the ground-truth travel 
times computed in this manner may not be the actual corridor-level travel times because there 
will be some error introduced due to the discretization of timesteps and, more importantly, the 
readings from the sensors may not be accurate. In this study, we attempt to keep the errors 
due to discretization to a minimum by using a small timestep size of five minutes. Identifying 
and rectifying the errors in the sensor readings is beyond the scope of this project and 
therefore the speeds recorded by the sensors were all assumed to be perfectly accurate. Based 
on these considerations, we assume that the ground-truth travel times are the same as the 
actual travel times. 
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10.1.2. Data 
This study considers data collected on a 23-mile stretch of I-35 through Austin, Texas, in the 
year 2019 (Figure 56). Travel-time data was obtained from INRIX, while traffic volume data was 
provided by smart work zone trailers which were deployed throughout the corridor at positions 
that remained fixed between 2018 and 2020. While the temporal resolution of the data was as 
fine as one minute, a five-minute aggregation was used to define both the predictors and target 
variables of the models. The following sections describe both data sources. 

Figure 56.  INRIX segments and smart work zone trailer location. 
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10.1.2.1. INRIX Dataset 

The INRIX dataset provides speed and travel-time data on pre-defined segments of varying 
length. The data is collected from a subset of vehicles that share their positions through in-
vehicle GPS systems. INRIX uses the shared data to infer vehicle speed from several points 
within each segment, and further aggregates it to determine segment-level speeds. The 
northbound stretch of I-35 under study consists of 42 segments, while the southbound 
direction includes 43 segments. The segments are not of the same length. Figure 57 shows the 
distribution of segment lengths in each direction. Counts for the northbound and southbound 
segments are stacked. While INRIX data is provided in real time, TxDOT has access to archived 
data. For this effort, researchers downloaded one year of data for 2019.   

Figure 57.  Histogram of segment lengths. 

The heatmap in Figure 58 illustrates dynamic travel-time patterns for every five minutes of 
every day in 2019 where data was available and computed as described in the previous section. 
Average daily travel times in both directions are 30 minutes (weekdays) and 25 minutes 
(weekends) in both directions, with standard deviations in the order of ten (weekdays) and five 
(weekend) minutes. The heatmap clearly shows a morning and peak period in both directions; 
the northbound (NB) direction exhibits a more pronounced morning peak than the southbound 
(SB) direction and a severe evening peak period. Morning peak periods in both directions are 
shorter and more consistent than evening peaks. The banded appearance in Figure 58 is a 
result of weekends having overall lower travel times, which are reflected in darker bands every 
five days.  
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Figure 58. Dynamic travel time patterns in 2019 using INRIX data. 

Given that travel times vary by day of week and time of day, we compute average travel times 
for every 15-minute interval throughout the day using one year of five-minute data.  

Figure 59 illustrates such travel times and corresponding standard deviations for one weekend 
and one weekday. In the context of this study, we consider that the travel time on a particular 
timestep is “typical” when it falls within one standard deviation from the corresponding mean 
value (based on time of day and day of week).  

Days and times with “atypical” travel times are somewhat noticeable in Figure 58, and are 
explicitly illustrated in Figure 60. In this heatmap we classify timesteps based on their distance 
from the mean, measured in standard deviations. We observe atypically high travel times after 
10 PM on several days, with a cluster in late September-early October that likely correspond to 
construction work. Figure 60 also shows periods of atypically low travel times during the 
morning and evening peaks, some of which are clusterd around the Thanksgiving and Christmas 
holidays, while some happen during the summer. Overall, approximately 80 percent of the time 
intervals corrspond to typical conditions as defined above. Figure 61 presents the distribution 
of atypical values. 
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Figure 59. Average 15-minute travel-time and corresponding standard deviation for 2 days of the week 
(2019). 

Figure 60. Difference between average five-minute travel times in 2019 and corresponding mean values 
for 2019. Negative values reflect day/time combinations in which travel times are lower than expected; 

positive values represent times during which travel times exceeded typical values.  
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Figure 61. Distribution of 5-minute travel times based on their proximity to the corresponding average 
(expected) value in 2019. The "0" category corresponds to travel times that are within one standard 

deviation of the expected value and may be considered “typical” values. 

10.1.2.2. Smart work zone trailer data 

TxDOT’s Austin District placed smart work zone trailers (SWZT) along I-35 to support 
construction work starting in late 2017. Researchers began archiving the corresponding data in 
early 2018 for a separate research effort. The archived dataset includes speed and volume 
information at the location of each sensor, provided every minute. This study considers 2019 
data for 17 sensors in the northbound direction and 16 sensors in the southbound direction 
(Figure 56). Only volume data was considered. There were some missing data points in the 
dataset due to sensor/communication malfunctions. Intervals with missing data were identified 
and discarded in the training process.  

10.1.2.3. Data preprocessing 

The 85 INRIX sensor readings, 33 SWZT sensor readings, and 33 SWZT sensor data availability 
indicators were tabulated for the 105,120 five-minute intervals in 2019. For the purposes of 
model development, a day was assumed to start at 3 AM and end at 3 AM the next day. Because 
traffic tends to be the lightest and most people tend to be at home, 3 AM is generally considered 
the beginning of the daily traffic cycle in most travel demand modeling studies at this time. This is 
relevant in the context of travel time prediction because the predictions made closer to 3 AM 
would be least dependent on the earlier travel times, an assumption that formed the basis for 
structuring the inputs of the Recurrent Neural Network (RNN) model. Records from the days of 
March 9, March 10, November 2, and November 3 were removed from the dataset because the 
time changes for daylight saving time occur on March 10 and November 3 and there was not a 



144 

consistent way of using data from these dates with the RNN model. Data from December 31 was 
also removed because data until 3 AM the following day was not available. 

10.1.2.4. Train-test split 

Since models that have a very high number of parameters tend to overfit to the data used for 
training, the available data was split into two subsets in a 4:1 ratio. The larger of the subsets 
was used for training and validating (if required) the models. The smaller subset was set aside 
for evaluating the model accuracy. The dataset was split at the day level and not at the five-
minute timestep level. Splitting at the day level was deemed necessary because the travel-time 
patterns do not vary much between nearby five-minute timesteps. Therefore, randomly 
splitting the data at the timestep level would cause the records in the testing dataset to be very 
similar to the records in the training dataset, which was not desirable. Therefore, the data from 
the 360 (365–5 days removed) days in the dataset was split randomly into a training and 
validation dataset that has all the records from 288 of the days and a testing dataset that has all 
the records from the other 72 days. 

10.1.3. Model development and training 
A time series (TS) model and a recurrent neural network (RNN) model were trained to forecast 
the segment-level travel times up to twelve timesteps (one hour) into the future using only the 
data available until the current timestep. Separate models were estimated for forecasting the 
travel times for each of the 85 road segments for each of the twelve future timesteps. That is, 
for each model type (TS and RNN) a total of models were estimated. The segment-level travel 
times were assumed not to vary after the twelfth timestep. The forecasts were then used to 
compute the dynamic corridor-level travel times.  

10.1.3.1. Auto-regressive timeseries 

The autoregressive timeseries model expresses the target variable—the travel time of a 
segment at a future timestep—as a linear function of all the predictors. Predictors include INRIX 
segment travel times and SWZT volume data and corresponding data availability indicators 
from the most recent six timesteps (30 minutes). For each travel direction we consider data 
from all sensors on the same direction as the target segment. Additionally, dummy variables 
denoting the day of the week were also used as predictors. They included binary indicators for 
each five-minute timestep of Friday, Saturday, and Sunday. The dummy variables encoded for 
the other four weekdays did not distinguish between days of the week. That is, each five-
minute timestep in either Monday, Tuesday, Wednesday, or Thursday had the same dummy 
variable. The dummy variables for the first four weekdays were collapsed in this manner 
because the travel-time patterns for these days were relatively similar. The time series model 
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for each northbound segment had a total of 6 timesteps x (43 INRIX sensors + 16 SWZT sensors 
+ 16 SWZT sensor availability) + 4 days x 24 x 60/5 = 1608 predictors. The timeseries model for
each southbound segment had a total of 6 timesteps x (43 INRIX sensors + 16 SWZT sensors +
16 SWZT sensor availability) + 4 days x 24 x 60/5 = 1602 predictors. The coefficients of the
predictors were estimated using the scikit-learn package in Python (Pedregosa et al., 2011).

10.1.3.2. Recurrent neural network model 

The recurrent neural network model belongs to a class of neural networks called sequence 
networks (Sherstinsky, 2020). As the name suggests, these networks are used to make 
predictions when an ordered sequence of data is provided as an input. Each set of inputs in the 
sequence is passed through the same network. The activations of the hidden nodes or hidden 
states in the network after the passage of one set of inputs is used as input for the next forward 
pass through the network. The basic RNN architecture can be schematically represented as 
shown in Figure 62. In this figure, x1,x2,…,xt are the inputs in sequence. For the travel time 
forecasting RNN, each xtwould be the sensor readings, sensor availability indicators and the 
time-of-week variable at timestep t. yt is the target variable at timestep t which in this case 
would be the travel time of a segment f timesteps into the future (segment-level travel time at 
timestep t+f). The hidden states ht store information from the past timesteps that would be 
relevant for making predictions in future timesteps.  

Figure 62.  General structure of recurrent neural networks. 

While the sequence of inputs provided to an RNN can be arbitrarily long, training RNNs with 
lengthy sequences can be computationally intractable. Therefore, we trained the RNN using data 
over a 27-hour period. Each sequence consisted of data over the 24-hour period of a day (which 
starts at 3 AM) and a three-hour period before the start of the day. That is, for each day, the 
inputs are supplied from midnight until 3 AM the next day. The hidden states of the network at 
the timestep corresponding to midnight are all set to zero. The outputs produced by the RNN for 



146 

the first three hours are not used because the hidden states at these timesteps may not have 
captured enough past information to make accurate predictions. At 3 AM (the same day), the 
hidden states are considered to be set and the predictions from the RNN are used. 

10.1.3.3. Training and hyperparameter tuning 

A large number of hyperparameters are available that control the RNN architecture and the 
training process. To determine reasonable network architectures and training 
hyperparameters, the data that was not used for testing was further split into a smaller training 
dataset and a validation dataset. The training dataset included data from 230 randomly 
selected days and the validation dataset included the data from 58 randomly selected days (4:1 
split). Several combinations of network architectures and training parameters were tested. 
Each hyperparameter combination was used to train a subset of the networks (corresponding 
to a few of the future timesteps) on the training dataset and their prediction accuracy was 
evaluated against the validation dataset. The set of hyperparameters that produced good 
results across the subset of networks was used to train all the networks corresponding to the 
different segments and future timesteps. 

The Adam optimization algorithm (Kingma & Ba, 2017) was used to estimate the weights of the 
network. In each iteration of the Adam optimizer, one day’s (27 hours of input and 24 hours of 
output) data was passed through the network and the network weights were adjusted. An initial 
learning rate of 0.001 was used for training. The beta hyperparameters of the Adam optimizer 
were not changed from the default values of 0.9 and 0.999. The model is considered to have been 
trained for one epoch when all the data in the training dataset has been iterated once. After each 
epoch of training, the model accuracy was tested against the validation dataset. The training of 
each network was continued until the network failed to show any improvement in accuracy with 
respect to the validation dataset over several epochs. 

Figure 63. RNN architecture. 
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The finalized RNN network architecture is shown in Figure 63. The time-of-week is indicated by 
a single integer variable with 2016 () possible values each of which represents a 5-minute 
period in a week. The day-of-week variable is passed through an embedding layer, which 
produces a single scalar output. The output produced by passing a categorical variable through 
this embedding layer would be equivalent to the output produced by a linear function on the 
dummy variables of the categorical variable. The sensor inputs (42+17 for northbound 
segments and 43+16 for southbound segments) and the sensor availability data are also passed 
as input. Overall, the input to the RNN at a single timestep has 76 (northbound) or 75 
(southbound) numerical predictors and 1 categorical predictor with 2016 categories. These 
inputs are in addition to the hidden states that are passed over from the previous timestep. 

The inputs after embedding the time-of-week pass on to a hidden layer which consists of 200 
hidden nodes. The tanh activation function is used for this layer. The activations of these nodes 
are passed on to the output layer which performs a linear operation on the activations and 
produces a single output. The activations are also passed as hidden states to the RNN for the 
next timestep. 

Recently, more advanced sequential network architectures, such as the long short term 
memory (LSTM) and gated recurrent units (GRU), have gained traction in the deep learning 
literature (Cho et al., 2014; Sherstinsky, 2020). We evaluated the performance of an LSTM 
architecture in the initial tests. Although the LSTM network produced slightly more accurate 
results with respect to the validation dataset, the increased time required for training LSTM 
networks led us to prefer the RNN architecture for the final model. 

The RNN model was developed and trained using the PyTorch library in Python (Paszke et al., 
2019). An Nvidia GeForce RTX 3090 graphics processing unit (GPU) was used to accelerate the 
training process. The initial training was completed in approximately eight hours. To fine tune 
the model weights further, training was continued at a reduced initial learning rate of 0.0001. 
This fine-tuning step took another nine hours. In hindsight, this fine-tuning step may not have 
been necessary since much of the model improvement occurred in the first eight hours. 

10.1.4. Model evaluation 
The prediction accuracy of the models developed in the previous section was evaluated on the 
test dataset. The models were compared in terms of the accuracy of their short-term segment-
level forecasts as well as their corridor-level dynamic travel-time predictions. 

10.1.4.1. Short-term segment-level travel time forecasts 

The static RNN and TS models were used to produce segment-level travel-time forecasts for the 
85 time segments for up to twelve timesteps into the future. The forecast produced by the 
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static model for a segment was simply the last recorded travel time of the segment. The mean 
squared errors (MSE) of the predictions are plotted in Figure 64. The MSEs of the segments with 
the same direction were averaged. The MSE was computed as 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
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where 𝑛𝑛 is the number of timesteps in the test dataset, 𝑦𝑦�𝑖𝑖 is 𝑖𝑖th travel time forecast, 𝑦𝑦𝑖𝑖 is 𝑖𝑖th actual 
travel time. 

Figure 64.  Short-term segment-level forecast MSE comparison 

The RNN and TS models have much lower MSEs than the static model. While the RNN model 
produces marginally better results than the TS model for the northbound segments, the 
opposite is true for the southbound segments. As expected, all the models produce worse 
predictions for timesteps that are further into the future. 

10.1.4.2. Corridor-level dynamic travel times 

Using the short-term segment-level travel-time forecasts, the corridor-level dynamic travel 
times were computed. The dynamic travel times were compared against the actual travel times 
computed using the known travel times of each segment at each timestep. The MSE and the 
mean absolute error (MAE) of the dynamic travel times computed using forecasts from the 
different models are shown in Figure 65. The MAE was computed as  

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
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, 

where 𝑛𝑛 is number of data points, 𝑦𝑦�𝑖𝑖 is 𝑖𝑖th travel time prediction, 𝑦𝑦𝑖𝑖 is 𝑖𝑖th travel time. 
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For a sense of scale, the average travel time along a direction of the corridor was around 1700 
seconds. Once again, the RNN model performs slightly better than the TS model in the 
northbound segments while the TS model performs slightly better in the southbound segments. 
The MSEs of the TS and RNN models are more than 40 percent lower than that of the static 
model. The MAE is more than 20 percent lower. 

Figure 65. Dynamic travel-time mean squared error and mean absolute error. 

The differences between the prediction accuracies are even starker when considering only the 
timesteps in the peak period between 6:30 AM and 9:30 AM and the period between 3:00 PM 
and 7:00 PM on weekdays (see Figure 66). In this case, the reduction in MSE from the static 
model is more than 50 percent and the reduction in MAE is more than 35 percent. 
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Figure 66.  Dynamic travel-time mean squared error and mean absolute error during peak periods. 

10.1.4.3. Analysis of model forecasts over one year of data 

This section discusses the accuracy of model forecasts when all the days in 2019 for which data 
is available are considered. Some of these days were part of the training dataset, but the 
purpose of this section is not to evaluate model performance but rather to identify trends and 
patterns in the observed performance that may support future model improvement and 
refinements.  

Figure 67 presents the prediction error for all considered five-minute intervals in 2019 in the 
northbound direction (similar patterns are observed in the southbound direction). The figure 
illustrates that both analyzed machine learning models perform better than the static 
approach, which has a strong tendency to underestimate travel times as congestion builds and 
to overestimate travel times when congestion dissipates. Figure 67 also show clusters of 
intervals during which prediction errors are very high across methods. Many of these coincide 
with the atypical traffic conditions illustrated in Figure 60. 
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Figure 67. Prediction error by five-minute interval for all analyzed methods (northbound). 

Figure 68 further illustrates how the static model fails to anticipate peak-period traffic patterns by 
presenting the northbound travel times on January 29, 2019. There are two peak periods 
centered around 8 AM and 5 PM respectively. The static model underestimates the travel times 
at the beginning of these peak periods because the model does not anticipate the increase in 
traffic. Similarly, the static model overestimates travel times toward the end of the peak periods 
because the model does not anticipate dissipation of traffic. The RNN and TS models can account 
for the time-based traffic characteristics because time-of-week variables were used as predictors. 
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Figure 68. Travel times on January 29, 2019. 

Figure 69.  Travel times on January 9, 2019. 

In general, the static model fails to anticipate the dissipation of traffic after a period of 
unusually high travel times. For example, consider the predictions made for January 9, 2019, for 
segments in the northbound direction (see Figure 69). The high travel times that occur around 5 
PM on this day is unusual. Once these high travel times are recorded, the static model expects 
the high travel volumes to persist into the future while the RNN and TS models can recognize 
that the travel times are likely to reduce especially since the peak period would also be coming 
to an end. However, note that none of the models are able to anticipate the initial occurrence 
of the unusually high travel times at around 4 PM. 

Figure 70. Travel times on December 25, 2019. 

Figure 71 and Figure 72 present the distribution of prediction errors during typical and atypical 
conditions, respectively. These figures correspond to the northbound direction, but similar 
patterns are observed in the southbound direction. During typical traffic conditions, which 
represent 80 percent of the observed conditions in 2019, prediction errors are centered around 
zero for all models. The static model has heavier tails, which indicate a larger number of 
instances on which prediction errors are far from zero.  
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Figure 71. Distribution of prediction errors during "typical" traffic conditions. 

The patterns for atypical conditions are different depending on whether travel times are higher 
or lower than typical. When travel times are higher, the distribution becomes flatter; it remains 
centered on zero when the deviation from average remains below two standard deviations. 
Forecasts for time intervals during which the travel time exceeded typical values by more than 
two standard deviations exhibit higher errors, with all models being more likely to overestimate 
travel times under these conditions. 

Figure 73 illustrates an instance in which the RNN and TS models performed poorly. On January 
15, 2019, around 6:45 AM, a fatality caused by the collision of an 18-wheeler and a pedestrian 
caused all lanes along portions of the road to be temporarily closed (Kamath, 2019). During this 
incident, the static model produced much better predictions than the timeseries model, which 
tended to overestimate the travel time, and the RNN model that underestimated travel times.  
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Figure 72. Distribution of prediction errors during "atypical" traffic conditions. 

Figure 73. Travel times on January 15, 2019. 

Static and RNN models perform well when travel times are atypically low, but TS models tend 
to overestimate travel times. TS models are also observed to forecast travel time increases 
because of peak traffic even on national holidays (note that the models do not use any 
predictors that explicitly indicate holidays). Consider the predictions made for Christmas day in 
2019 (see Figure 70). The TS model continues to predict a slight increase in travel time around 7 
AM and 4 PM corresponding to the peak travel times that typically occur around those times on 
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a Wednesday. The static model performs well in this case because there is hardly any variation 
in travel times throughout the day. The RNN does not predict peak traffic despite the day being 
a Wednesday probably because the RNN model can handle non-linearities and has short-term 
memory. Therefore, the model probably realizes that travel times will not increase suddenly in 
the peak period if travel times have been lower relatively throughout the rest of the day. 

Figure 74 summarize the root mean squared error during typical and atypical traffic conditions 
by time of day. The atypical conditions visualized in this figure correspond to cases in which 
actual travel times are between one and two standard deviations from the corresponding 
average value in 2019. Results suggest that during typical conditions RNN and TS models 
perform very similarly and lead to lower errors than the static approach, particularly during the 
peak periods.  When traffic conditions are milder than usual (i.e., actual travel times are lower 
than average) RNN models perform very well, but TS models and the static approach tend to 
overestimate experienced travel times. Prediction errors are larger for all models when actual 
travel times are higher than average, but RNN and TS models perform better than a static 
approach.  

Figure 75 analyzes the distribution of actual error values by time of day in the northbound 
direction (similar patterns are observed in the southbound direction). This figure reflects the 
patterns observed in Figure 67, suggesting that the static method tends to underestimate travel 
times during congestion build-up and to over-estimate them during congestion dissipation. The 
errors are larger during atypical conditions, particularly when travel times are higher than 
usual. The error patterns are similar for RNN, but error values are significantly lower. TS models 
tend to overestimate travel-time predictions during atypically low congestion.  
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Figure 74. Average prediction error by time of day under different typical (actual travel times within one 
standard deviation from the mean) and atypical (actual travel times between one and two standard 

deviations from the mean) traffic conditions on weekdays. 
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Figure 75. Prediction error by time of day for typical and atypical traffic conditions (northbound direction, weekdays). 
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10.1.5. Discussion 
A methodology for computing corridor-level dynamic travel times using short-term forecasts of 
segment-level travel times was developed. The short-term travel-time forecasts were made 
using recurrent neural networks (RNN) and time series (TS) models. The accuracy of the 
forecasts and the resulting dynamic travel times were compared against that produced by the 
static model, which does not consider the temporal variability of segment-level travel times. 
Overall, the travel times predicted by the TS and RNN model were more accurate than the 
static travel times. The mean squared error of the TS and RNN models were more than 40 
percent lower than that of the static model. Also, the mean absolute errors of the TS and RNN 
models were more than 20 percent lower. There was no clear winner between the TS and RNN 
models. While the RNN model performed slightly better on the northbound segments, the TS 
model was better on the southbound segments. On public holidays, the RNN model performed 
better than TS. But training the RNN model required more of the modeler’s time to identify a 
suitable network architecture and acceptable hyperparameters.  

This document also investigates model performance by time of day, and on days with atypical 
traffic conditions. Our findings suggest that the benefits of TS and RNN models with respect to a 
static approach are more obvious during the peak periods and when traffic conditions are 
atypically high. When conditions are atypically low, RNN models provide accurate travel-time 
estimates, while TS models tend to overestimate expected travel times, particularly during the 
peak period.   

The large number of hyperparameter values, network architectures, and high training times 
make a comprehensive evaluation of neural network approaches impossible in a limited 
timeframe. A few promising avenues for further improving the accuracy of the neural network 
model would involve: (1) using different variants of RNN, such as long-short-term-memory 
(LSTM) and gated-recurrent-unit (GRU), and (2) training with more than one year of data. More 
advanced timeseries models such as the seasonal auto-regressive integrated moving average 
(SARIMA) model may also be tested. Additionally, including indicators that reflect the deviation 
of observed travel times with respect to average conditions, or the presence of traffic incident 
or other type of roadway closures, may improve model performance under atypical conditions, 
which account for approximately 20 percent of the observed conditions in 2019. Data from 
more years may be necessary so that a good number of days with special conditions are 
present in the training dataset. Another important consideration to evaluate is the potential 
benefits of the proposed models for TxDOT planners and operators is the frequency at which 
forecast will be updated, which is highly dependent on the specific use case.  
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10.2. Development of Models for Field Testing 
This section describes the development, testing and prototype real-time deployment of 
machine-learning (ML) models for short term travel time prediction on eight bi-directional 
corridors at two test sites. One of the goals of the work presented in this chapter is to 
understand how some of the models evaluated in Section 10.1 perform at different locations 
with varying data availability, and to gain further insights into the value of short-term travel 
time prediction models.  Another important objective of the work presented here is to 
prototype a feasible implementation framework that can be replicated at multiple sites. 
Researchers developed partially automated workflows to streamline model development and 
testing and built a prototype data pipeline to deploy the models and share real-time results 
with TxDOT using a web-based application. The software tools, data pipelines and web-based 
application are described in detail and documented in Products 5, 6, 8 and 9. 

Section 10.1.10 presents the experimental design and Section 10.1.3 describes model 
development and testing, which includes two phases that use slightly different assumptions for 
models specification. Section  10.3 describes the evaluation framework and provides a 
summary of the overall findings. We provide a qualitative and quantitative assessment of the 
value of short-term travel time prediction models in Section 10.3.7 and propose a pathway to 
implementation in Section 10.5.  

10.2.1. Experimental Design 
This section introduces the sites selected by CTR for the deployment and testing of short-term 
travel-time prediction models and provides an overview of the experimental design and 
workflow. 

In the context of this project, model deployment involves training previously developed 
machine learning (ML) models at new sites and developing data pipelines to produce real-time 
travel time estimates using such models. Travel times will be computed using CTR resources 
and delivered through a web interface that may be accessed by TxDOT.  

Section 10.2.1.1 describes the selected sites; Section 10.2.1.2 provides an overview of the 
required data workflows and framework components. 

10.2.1.1. Site selection and data sources 

CTR identified two sites for model testing in collaboration with the TxDOT project team, one in 
Austin and one in El Paso. At each site, models are trained and tested for one main corridor. 
Once the workflows for model training and testing were streamlined, CTR performed a similar 
analysis on a second corridor. At both sites, secondary corridors act as an alternative route to 
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the primary corridor. TxDOT is currently providing (or planning to provide) comparative travel-
time information between each pair of corridors at critical decision points to support travelers’ 
route selection process. In this context, travel-time estimates that are close to experienced 
travel times may be particularly important to encourage drivers to trust and act on the 
provided information. Figure 76 and 77 present the primary and secondary corridors at each 
site. In El Paso, CTR analyzed I-10 between Horizon Boulevard and Antonio Street as the 
primary corridor. The secondary corridor on this site is FM 375 between Gateway Boulevard 
and Desert Boulevard. In Austin, CTR analyzed SH 130 between its intersection with I-35 near 
FM 1375 in Buda and its intersection with I-35 north of Georgetown. I-35 between Turnersville 
Road in Buda and SH-195 near Georgetown acts as a secondary corridor at this site. 

Figure 76. Primary and secondary corridors in El Paso. 
Figure 77. Primary and secondary 

corridors in Austin. 

Figures 78 and 79 illustrate the current position of dynamic message signs (DMS) on the 
two sites considered for implementation.   
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The main data source to be used at both test sites consists of probe-based speeds, currently 
available to TxDOT through INRIX. It is also desirable to include traffic volume data in the model 
specification, although such data is not as widely available as speed information and is also 
relatively less standardized. This project utilized data from permanent and semi-permanent 
(e.g., smart work zone trailers) ITS devices that stream data through Lonestar. Challenges with 
the use of this data will be discussed later in this report.  

Figure 78. Location of existing DMS on I-10 and FM 375 through El 
Paso District. 

Figure 79. Location of Existing 
DMS on I-35 and SH 130 in 

the Austin District. 

10.2.1.2. Data Workflows and Framework Components 

One of the goals of this chapter is to develop workflows to support systematic model 
development and testing, and to create a prototype framework to support real-time 
deployment.  

The following steps are required for model development and testing and were partially 
automated by CTR: 
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• Collect/retrieve historical data for model training.
o INRIX data:

 Identify INRIX segments corresponding to all selected corridors and 
obtain their metadata. This step is done manually using INRIX web 
interface.

 Download data samples for model training. CTR developed an automated 
process to download data using an API provided by INRIX and 
downloaded segment metadata. The API was discontinued in August 
2023, and this process will have to be conducted manually through the 
web interface.

o Volume data: CTR developed workflows to archive volume data from Lonestar. 
This data has been used for model refinement, though there are outstanding 
issues with data quality.

• Train models
o Most trained models use one year of historical probe-based speed data and 

traffic volume data, where available.
o Models are trained and tested using the same process implemented for the 

experiments reported in Section 10.1. Models are trained using scripts that are 
run manually and use data staged on a database. Training results can be stored 
in the database to support performance evaluation.
 Where both volume and travel time data are available, multiple ML 

models were developed—one using only probe-based speed, and one 
using both data types—and their performance was compared. This 
approach is used to understand the limitations of models if deployed at 
locations where traffic volume data is not available.

 For model testing and training, CTR assumed that experienced travel 
times are given by the dynamic travel times computed using probe-based 
speeds (see Appendix B).

o CTR explored different levels of spatial aggregation for model training, ranging 
from segment-level models (such as the ones describes in Section 10.1) to 
models that span the entire corridor.

• Develop a framework to streamline model training, evaluation and real-time 
deployment, thus facilitating model use at new sites. Framework components 
developed by CTR include:

o Database schema to efficiently store metadata defining analyzed corridors, 
segments and sub-sections, along with real-time data and model predictions.
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o Data pipelines to retrieve speed and volume data in real-time using appropriate
API calls and automated methods to produce travel-time estimates for selected
origin-destination combinations using trained ML models. Workflows to evaluate
model performance in real-time and over user-defined performance periods.
 Model evaluation includes a comparison of predicted and experienced

dynamic travel times.
o Prototype web interface to share real-time travel time predictions and

performance evaluation.

10.2.2. Model Development and Training 
The models developed in this effort to forecast travel times on segments along a corridor use 
segment-level speed data at five-minute intervals (as provided by INRIX) and traffic volume 
data at five-minute intervals collected permanent count stations. Models with different level of 
spatial aggregation have been tested in this study, ranging from INRIX segment-level 
predictions to route level forecasts. 

When segment-level predictions are used, real-time speed and volume data retrieved every five 
minutes are used to forecast segment-level travel times on downstream segments for up to one 
hour into the future. Using such forecasts, origin-destination travel time estimates for time step 
t are computed using forecasted segment-level travel times that correspond to the arrival time 
at each segment along the corridor, which cannot be measured at time t. 

Route-level level predictions use real-time segment-level data to predict total origin-destination 
travel time directly. We also define an intermediate level of spatial aggregation for predictions 
denoted paths, which are non-overlapping sets of segments that span the desired origin-
destination route. When models are trained to generate predictions at the path level, route-
level travel times are obtained using the same approach proposed for segment-level 
predictions. 

This study uses recurrent neural networks (RNN), which can capture temporal dynamics. Using 
the standard Torch Python library, our model creates a RNN for each unit of prediction 
(segment, path or route) in a corridor for twelve (or more) timesteps into the future, each 
containing a single hidden layer with 200 nodes. Each of these separately trained models takes 
as input the per-segment INRIX travel time estimates for all segments in the same travel 
direction, a vector of volume data along the corridor, indicator variables for the 
availability/reliability of said sensor data, plus an embedded categorization of the hour of the 
week from which the data was drawn. These models are then trained on a subset of the 
available data to minimize the mean squared error (MSE) of the output predictions when 
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compared to the ground truth, assumed to be the dynamic travel time as determined from 
INRIX historical data. 

The general procedure of developing predictions for the RNN and time-series models is 
illustrated in Figure 80. The live stream of INRIX travel-time data and Lonestar C2C sensor data 
is stored in a PostgreSQL database for reference, and the catalogued data is used as training 
and evaluation data for model development. Additionally, after training has progressed to 
develop sufficiently performing models, the most recent input data is fed to these models to 
generate predictions in real time. 

For our experiments, we aim to train and test each corridor’s models on a year-long collection 
of data to provide the models with a firm sense of typical traffic dynamics, as well as individual 
instances of traffic anomalies. Segment-level speed data will be provided by INRIX; CTR has 
already confirmed access to historical and real-time data, identified the segment IDs 
corresponding to each corridor, and downloaded data for model training. Traffic volume data is 
highly desirable, but the availability of live data streams (and corresponding archived data for 
model training) on the sites selected for this project is limited.  

Figure 80: Model training and execution workflows. 

Trained models are evaluated by using live-stream data from the INRIX and C2C feeds as inputs 
to generate real-time origin-destination travel-time estimates. Model outcomes can be 
archived in a database for model performance analysis and made available in real-time to 
TxDOT through a simple interface. Travel-time estimates are evaluated against a posterior 
ground truth obtained from INRIX data. A comparison of the accuracy of the model predictions 
will be developed, and performance will be evaluated both for long-term accuracy as well as 
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the ability to accurately predict the onset and dissipation of traffic anomalies. The evaluation 
process may include comparing model results to the predictions of both our naïve models and 
to the current estimates provided on dynamic message signs. The model sensitivity to input 
data quality and availability will also be reported as part of the evaluation process. 

The input data received from INRIX and the Lonestar C2C feed require a degree of 
preprocessing, which we handle in bulk for the RNN model training datasets. Among the critical 
steps in this is the determination of the UTC and local time at which each data point was 
collected. This is essential to prevent errors caused by time-zone variability across a given 
dataset, for example due to daylight saving time. We further embed the timesteps into five-
minute bins which reflect the point of time in the current week (“weekpoints”), thus 
incorporating the cyclic nature of traffic as well as its dependence on daily patterns. This, 
however, does not include an indicator for longer-term seasonality; thus, the models may not 
be able to effectively recognize patterns caused by, say, shorter daylight hours in winter. 

10.2.2.1.  Computational Considerations 

While trained models can produce travel-time estimates almost instantaneously, the training 
process is resource intensive. Given the high quantity of nodes not only in each individual RNN, 
but also the total number of nodes among all RNNs, it should come as no surprise that the 
computational complexity of the RNN training task is substantial. The number of parameters to 
be estimated for a single corridor pair approaches 60 million parameters, which, if trained on a 
CPU, would require months of wall-clock time to complete. To improve training speed, we 
offload training to a GPU capable of performing floating point operations at a much higher rate. 
This reduces the training time for RNNs to a matter of hours. CTR acquired a computer 
equipped with a high-end GPU capable of reducing training runtimes from days to hours. We 
further note that the computational complexity of the training appears to scale approximately 
linearly with both the amount of training data used as well as the number of INRIX segments 
which make up the corridor for which the RNNs are being trained. 

To continue automating the procedure of training and predicting travel times, we developed 
modularized source code that can be ran as a continuous process (a daemon or app) or on a 
schedule to further train the model as new datapoints become available, as well to provide an 
updated travel time upon demand. These processes will communicate with a database to 
provide data reliability, and a front end will provide predictions to end-users. 
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10.2.3. Data 
The training runs reported in this section considered two data types: segment-level travel times 
from INRIX and volume data provided by El Paso District from the C2C data feed. Models were 
trained using either twelve months of INRIX data or six months of both INRIX and C2C traffic-
volume data.  

For training RNN models in this section, we study the secondary routes along the two 
bidirectional corridors of focus—I-10 through El Paso and SH 130 bypassing Austin. The 
development of reliable models for predicting travel times across these four corridors will 
provide important information for drivers transiting the two studied areas and may influence 
their route choice significantly. The SH 130 corridor encompasses 109 discrete segments in 
each direction, with each segment providing independent travel time data. The I-10 corridor 
provides the same for 60 and 55 segments for the east- and westbound directions, respectively. 

INRIX datasets feature incomplete data on occasion, but this is quite rare—less than 0.25 
percent of datapoints are missing across all corridors, as shown in Figure 81. Nonetheless, 
missing data must be accounted for to provide sufficient data for the RNN training. To do this, 
we make two data manipulations. First, we exclude dates for which a large period of data is 
missing for all segments in the corridor. These dates tend to involve major events such as the 
beginning or ending of daylight saving time, or the February 2021 winter storm and ensuing 
electricity crisis. Second, for data where only a select number of points are missing, we replace 
missing values with the mean value for the missing segment-weekpoint combination. That is, if 
a datapoint for segment 100 is missing at weekpoint 20 for a given day, we provide a 
replacement value calculated as the mean value for all records of segment 100 at week point 
20. We further provide to the RNN a Boolean (true or false) variable indicating that this
datapoint is unreliable.
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Figure 81: Share of INRIX data missing for each corridor. 

Additionally, the C2C data feed also provides volume, occupancy, and speed data at three 
detector locations, disaggregated across four lanes at each location, for both directions of the I-
10 corridor in El Paso. This dataset also includes missing datapoints, with per-lane data 
availability ranging from 84 percent to 95 percent of datapoints provided depending on 
detector location and lane. Missing datapoints must also be accounted for, so we preprocess 
this dataset by replacing missing values with the mean value for that data source across 
available data for the same weekpoint. 

To properly train the RNN models, the utilized dataset must be split into three distinct classes 
of records: training data, which is fed to the RNN models to develop their parameters in each 
epoch; validation data, which is fed into the RNN models while holding the parameters constant 
and provides a scoring metric (in this case, mean squared error) which the RNN seeks to 
minimize; and testing data, which is only fed into the model upon completion of training as a 
means to confirm the generalizability of the models. For our models, 20 percent of dates were 
withheld from the model as the testing dataset; of the remaining data, 80 percent (64 percent 
of the whole dataset) was provided for training and the other 20 percent (16 percent of the 
whole dataset) was provided for validation. The dataset was split by date, with each day’s data 
provided from 3 AM to 3 AM the next morning. 
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The following scenarios were evaluated for route -level predictions (Phase I): 

• I-10 Eastbound with 12 months (2021-01–2021-12) of INRIX travel time data
• I-10 Westbound with 12 months (2021-01–2021-12) of INRIX travel time data
• SH 130 Northbound with 12 months (2021-01–2021-12) of INRIX travel time data
• SH 130 Southbound with 12 months (2021-01–2021-12) of INRIX travel time data
• I-10 Eastbound with 6 months (2021-12–2022-05) of INRIX travel time data and

C2C volume and occupancy data
• I-10 Westbound with 6 months (2021-12–2022-05) of INRIX travel time data and

C2C volume and occupancy data

Based on Phase I results, a second set of models was trained considering different levels of 
spatial aggregation.  

• I-10 Eastbound with 12 months (2022-01–2022-12) of INRIX travel time data
• I-10 Westbound with 12 months (2022-01–2022-12) of INRIX travel time data
• SH 130 Northbound with 12 months (2022-01–2022-12) of INRIX travel time data
• SH 130 Southbound with 12 months (2022-01–2022-12) of INRIX travel time data
• SL 375 Eastbound with 12 months (2022-01–2022-12) of INRIX travel time data
• SL 375 Westbound with 12 months (2022-01–2022-12) of INRIX travel time data
• I-35 Northbound with 12 months (2022-01–2022-12) of INRIX travel time data
• I-35 Southbound with 12 months (2022-01–2022-12) of INRIX travel time data

10.2.4. Phase I Models 
The output of the RNN training process is a set of models that take in datapoints for the current 
timestep and output a prediction of segment-level travel times at a given timestep in the 
future. These models are iteratively improved by evaluating the change in prediction MSE for 
the validation dataset as a function of the input training data. The MSE acts as the objective 
function of the optimization problem which we seek to minimize, but we aim to avoid 
overfitting (the process of training a model to predict the input training data alone, without 
good generalizability). To do so, we follow the standard procedure of withholding the validation 
and testing datasets discussed earlier and penalize the RNN parameter optimizer for models 
that predict these withheld datasets poorly—this avoids letting the RNN train over the full 
dataset so as to enforce the aim of developing a model that generalizes to all data rather than 
the training dataset alone. 

We further evaluate the predictive strength of our models using the coefficient of 
determination (R2) and mean absolute error (MAE) metrics.  
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In general, we see these error metrics degrade as we forecast further into the future, but near-
term results show promise. While they are not yet strong in their predictive power (e.g., R2 
does not exceed 0.6 for the studied corridors), we believe further training and model 
refinement may improve performance. 

Figure 82 presents the R2 as a function of the number of timesteps into the future for which 
predictions are generated. In general, results show a trend across all corridors in which 
predictive power drops considerably as we predict further and further into the future. While 
this is not unexpected, the predictive power of the models falls significantly after two 
timesteps. Potential issues for the observed fit include: 

Limitations in input data. Our models were trained using data for year 2021, and traveler 
behavior may have changed considerably throughout the year due to the impacts of the COVID-
19 pandemic, leading to poorer results (given that we are not including data which could 
predict changes in behavior in response to local outbreaks). Additionally, annual seasonality has 
not been explicitly considered. Future work may address this by adding more years’ data to the 
training dataset and/or providing an input variable indicating the week or day of the year at 
which the input datapoint was collected. 

RNN design. The training experiments described in this document used the same RNN design 
used in our initial protype for I-35 through Austin. While in the Austin case the single-hidden-
layer RNN led to very promising results, adding hidden layers is often better suited to 
approximating complex nonlinearities such as weekly or seasonal patterns in input data. Future 
work may investigate the benefits of adding both additional records (i.e., adding more than one 
year of data) and/or reshaping the structure of the RNN, as both would be expected to improve 
model generalizability. 
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Figure 82: R2 values for models trained on a full year's data. 

Figure 83: Mean squared error for models trained on a full year's data. 
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Figure 84: Mean absolute error for models trained on a full year's data. 

R2 values on the testing dataset were in the same range as those observed in the training 
dataset, indicating relatively good generalizability of the model and a lack of overfitting. 

Figure 85 provides an additional illustration of the model performance on the I-10 eastbound 
corridor. In this figure, read left to right then top to bottom, each graph shows the true 
segment travel times (X axis) compared to the predictions from the models (Y axis) for the 
testing dataset. Each subsequent graph is forecasting travel times a further five-minute 
timestep into the future. What we generally see is that the model has difficulty predicting 
conditions of high travel times, most likely caused by non-recurring congestion such as is 
caused by accidents. We also see a tendency to underestimate travel times, possibly due to the 
lack of volume data in these models to indicate how susceptible each segment is to being 
oversaturated. 
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Figure 85: Correlation plot of testing data for I-10 eastbound forecasts. 

Figure 86 through Figure 88 compare the performance of models trained with and without 
volume data using R2, MSE, and MAE. All other experimental parameters being held constant, 
we see somewhat similar performance between the models in terms of predictive power. 
Results show a decline in predictive accuracy as we look further ahead into the future for both 
models. We also see that, in most cases, further into the future, the models with volume and 
occupancy data show an improvement over the model without the added data. 
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Figure 86: Testing R2 values for models with (orange) and without (blue) C2C data. 

Figure 87: Figure 10: Testing MSE values for models with (orange) and without (blue) C2C data. 
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Figure 88: Testing MAE values for models with (orange) and without (blue) C2C data. 

In the nearer-term predictions, inclusion of volume and occupancy do not necessarily improve 
predictions.  We suspect this may be caused by a combination of factors. First, while the model 
is being trained using additional data sources, no compensation was made in model or training 
design to account for this data. Generally, it is advisable to increase the RNN size and/or 
prolong training when additional data dimensions are provided. As a result, the model without 
C2C data may have been able to discern more clearly the importance of the individual data 
points it received due to not expending computation time determining the importance of the 
added points as well. Second, in this experiment, we train the model only on data ranging from 
December 2021 to May 2021, due to limited data availability from the Lonestar C2C data 
source. This in turn may cause a severe impact on predictive power due to the seasonality of 
traveler behavior and lack of sufficient examples to train the model. 

Initial models developed on the secondary corridors allowed researchers to refine the code 
base used for model-developed tools that may be more easily extended to the analysis of new 
sites and datasets. The results obtained using a simple RNN design are encouraging, given the 
low MAE values. However, the predictive power of the models is improved in later iterations of 
the training process (Phase II). 

10.2.5. Phase II Models 
The tests on previous ML models demonstrated value and built a robust environment to train 
and test new models. Though some initial models did not show significant benefits over current 
practice, their development and testing suggested avenues for improvement. In addition, 
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previous models demonstrated that models trained on the segment level performed better 
than those on the route level. Building on this framework, a new set of ML models was 
developed using several different spatial aggregation methods. These models are analyzed in 
depth in this section and their value for practice is explained.  

The automated workflows developed in this project allow for the travel times on small paths to 
be predicted and then aggregated up to the route level. For each route, three levels of spatial 
aggregation were estimated. The single segments model estimates the travel time on each 
INRIX segment separately (with lengths less than a mile) and then aggregates these estimates 
up to an estimate of the total corridor travel time. In previous sections, we presented low MAE 
on the I-10 EB corridor, while this section extends the findings to additional corridors. The pair-
segments model does the same, but predicts travel times for paths consisting of two 
consecutive segments. Finally, the route-level model utilizes all the data for the corridor and 
uses a single ML model to make a forecast. We will demonstrate that even though the models 
with less spatial aggregation (single segments and pair segments) are more computationally 
expensive (since many ML models need to be run), they have much better performance than a 
single ML model predicting travel times for the entire corridor. Finally, another set of models 
(referred to as congestion models) was developed where subsets of each corridor were 
identified and expected to have similar patterns of congestion propagation. These slightly 
longer paths were developed to be an intermediate aggregation option. These models were 
developed and run only for the I-35 and SL 375 corridors.  

10.2.5.1. Training Results 

This section utilizes the MAE and R2 as the primary evaluation tools. Researchers examined the 
other metrics developed in previous sections, including the MAE, R2, MSLE, MDAE, and MAPE. 
These other metrics followed the trends of the MAE and R2, so they are omitted for concision. 
We note that for shorter segments it is possible for the ML model to predict a negative travel 
time. Future research should develop optimization methods to ensure this does not occur. 
However, when predicting travel times on an entire corridor (or segments longer than one mile) 
this is not an issue. For the purposes of this study, negative travel times are allowed but are set 
to zero for the MSLE calculation (the negative values are included in the evaluation of the route 
level travel times).  

Figures 89 and 90 depicts the travel time prediction MAE and R2, respectively, for step 0 
(departure time). For disaggregate modes, the reported value is the average across all 
considered spatial units (e.g., segments). The training, validation, and testing data match well 
across all models and corridors. The route-level model error is significantly larger because the 
corridor-level travel time is longer. Similarly, longer routes/paths are expected to exhibit larger 
errors. 
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Figure 89: Average MAE by route for predictions zero timesteps ahead (time t). 

a) Route-level models. b) Congestion paths models.

c) Segment-level models. d) Segment pair level models.

Figures 91 and 92 examine the performance further into the future on the I-35 SB routes. These 
figures depict the MAE and demonstrate increasingly poor performance further into the future. 
This trend is most pronounced for the congestion paths model, where there is a very sharp 
increase in MAE for the route-level model after 25 minutes. The other two models are more 
stable in time and have substantially lower MAE. Again, this is in part due to the shorter length 
of the paths. Unfortunately, even accounting for this, more aggregate models still do not 
perform as well.  
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Figure 90: R2 by route for predictions zero timesteps ahead (time t). 

a) Route-level models. b) Congestion paths models.

c) Segment-level models. d) Segment pair level models.

a) Route-level model. b) Congestion paths model.
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Figure 91: MAE (min) for timesteps t+0 to t+30 on I-35 SB. 

c) Single segment model d) Pair segment model.

a) Route-level model. b) Congestion paths model.



179 

Figure 92: R2 for timesteps t+0 to t+30 on I-35 SB. 

c) Single segment model d) Pair segment model.

10.3. Continuous Evaluation Framework and Results 
The performance of the machine-learning-based dynamic travel-time models will be compared 
against two simpler models: a dynamic model that forecasts downstream segment travel times 
using weakly mean values, and a static model that implicitly assumes that travel times in 
downstream segments will not change from the previous timestep (which is consistent with 
current practice).  

This section documents the measures proposed by CTR to evaluate deployed travel time 
prediction models in real time and periodically. The goal of real-time evaluation is to support 
decision-makers in their use of the model outputs, providing a means to decide if (and which) 
information should be provided to drivers, and whether it may be appropriate to take proactive 
measures to alleviate forecasted traffic conditions. Periodic model evaluations are intended to 
assess long-term model performance, guide model improvement and refinement tasks 
(including any need for re-training) and support the estimation of the value of trained models.  

Our performance evaluation approach uses archived real-time travel time predictions from 
deployed models, which are stored in a relational database hosted by CTR. The same database 
is used to archive realized travel times, computed using INRIX data and a dynamic approach 
further described below, and two “baseline” travel times that represent current practice and 
average conditions. 

Average results on a testing dataset that consists of 71 days (42 days for C2C-enabled models) 
that were not used in model training are used to exemplify the proposed metrics for our INRIX-
only models, while those incorporating C2C data withheld 42 days’ records. CTR has also 
deployed workflows to visualize some of these metrics in real time through the web application 
and to download periodic reports (Product 6). The evaluation framework has been refined and 
extended based on TxDOT’s feedback. 

10.3.1. Performance Evaluation Approach 
In this effort the performance of machine learning models for the prediction of expected travel 
times along selected origin-destination paths (or corridors) is based on comparing model 
forecasts to realized travel times at 5-minute timesteps. In the context of this project, realized 
travel times are obtained dynamically using INRIX data and the workflow presented in Figure 
93. Dynamic corridor travel times for start time t are obtained by traversing the segments of a 
corridor and adding their individual travel times, with the first segment in the sequence
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evaluated at t and the remaining segments evaluated at the observation closest to the time at 
which a traversing vehicle would have entered it. These segment-level travel times are summed 
to provide a path travel time indexed by the time at which the traversal began. Incomplete 
traversals (those whose travelers have not yet  traversed the complete sequence of segments) 
are left undefined until the traversal can be completed. 

Start Get path segment 
sequence, INRIX records

Get first segment in 
sequence

Add segment travel 
time to accumulated 

travel time

Get segment travel time 
at entry time

Get next segment in 
sequence

Set entry time to 
traversal start time plus 

accumulated time

Path has more 
segments?

Yes

Store accumulated 
travel time

No

Set entry time to 
traversal start time, set 

accumulated time to 
zero

Figure 93: Path travel time calculation algorithm. 

We also compare the experienced travel times estimated using machine learning models to two 
baselines: the instantaneous travel time and the mean travel time at that time of week. The 
instantaneous travel time is used as the current practice by most agencies and assumes that the 
travel time for each roadway segment will remain the same as it was when measured at the 
beginning of a roadway traversal (this is referred to elsewhere in the report as the naïve 
model). The mean travel time, by contrast, calculates the average travel time for the full path 
across past records and does not consider real-time data. 

Additional data sources may be used in the future to supplement the proposed evaluation 
approach. Current limitations are mostly related to the computation of actual experienced 
travel times and include the potential presence of biases in INRIX data that would not be 
captured by our method (e.g., systematic over or under estimation of segment-level travel 
times). Realized travel times used in this effort may also be affected by the use of spatially 
aggregated data for their calculation. Using aggregate segment-level data to reconstruct the 
travel time experienced by individual travelers may fail to capture delays that are specific to a 
particular type of movement, such merging into/out of an access ramp, which in some cases 
may lead to biased estimates of experienced travel times for specific origin-destination pairs. 
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10.3.2. Lookback Windows 
The proposed performance evaluation metrics are computed using data that is 
collected/generated in real time when models are deployed. Figure 94 provides a schematic 
description of the data structures used to archive relevant information in a relational database 
for this project. CTR has identified a series of lookback windows across which to evaluate 
deployed models, consisting of the following time periods: one hour, three hours, six hours, 12 
hours, one day, and one week, with each window ending with the most recently completed 
traversal travel time and its accompanying predicted value. We also calculate our summary 
metrics for the model’s performance since its inception and provide monthly performance 
reports. In providing a variety of lookback windows, we can determine any changes in 
performance in response to recent changes in corridor traffic, whether related to incidents or 
longer-term changes in roadway characteristics. We can also provide insight on the quality of 
the model outputs for a specific time step to support decision making. 

corridors

-corridor_name

inrix_paths

-corridor

inrix_segments

-segment_id

-path_name
-sequence_starting_segment
-sequence_ending_segment

inrix_sequences

-corridor
-sequence
-segment_id

lonestar_paths

-corridor
-node_id

lonestar_nodes

-node_id
-name
-district

predictive_models

-modelid
-path_id
-model_data
-uses_c2c

predictions

-modelid
-traversal_start
-prediction

realized_travel_times

-traversal_start
-path_id
-travel_time

-direction

-corridor_geometry

-inrix_metadata

Figure 94: Simplified database schema. 

10.3.3. Metrics 
As a means to evaluate the performance of our models along multiple dimensions, we calculate 
a series of metrics for each corridor’s lookback windows. These each provide distinct insights 
into the performance of the model, with attributes that are not incorporated into the other 
metrics. In this section, we define and discuss each of the metrics we evaluate. Throughout this 
section, we denote the predicted travel times as, the observed true travel times as, and the 
mean of all predictions as.  

The metrics discussed below will be used in three ways: 
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 To provide insights into the quality of travel time predictions in real-time to support
decision makers in their use of the data.

 To evaluate and refine long-term model performance by conducting analyses that
consider variability across hours of the day, days of the week, and between
typical/atypical traffic conditions.

 To identify deterioration/improvement of the model performance over time,
understand when re-training may be necessary, and assess the benefits of new/re-
trained models.

10.3.3.1. Mean Squared Error 

For a series of estimated values and their corresponding true values, the mean squared error 
(MSE) statistic takes the squared errors across all data points and averages them. MSE acts as a 
means to evaluate risk associated with our models, as the values are strictly non-negative and 
therefore represent the quality of the model as a measure of the Euclidean distance from the 
true values. The units of the metric are the squared units of the data points (in our case, travel 
time in minutes). The mathematical definition of MSE for a set of  data points is shown below: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
In our experiments, we select this metric as the performance evaluation metric during model 
training so the models learn how to best predict data points in order to minimize the MSE.  

10.3.3.2. Mean Absolute Error 

Mean absolute error (MAE) is similar in nature to the MSE metric but does not square the error 
terms of each prediction. While this metric provides the advantage of providing error in units 
identical to the data points being evaluated, it creates a shortcoming in that it does not provide 
as strong a disincentive for estimates that are far from the true values as MSE. The formulation 
of MAE is shown below: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

10.3.3.3. Coefficient of Determination – R2 

The coefficient of determination for a predicted and true data set is a goodness of fit metric 
and defines the proportion of variation in the true values explainable by the predictive model. It 
can be visualized as the slope of a regression line in which the dependent variables are the true 
values, and the independent variables are the predicted values, with values typically falling 
between 0 and 1. An R2 value of 1 indicates that the model perfectly predicts the true values, 
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while a value of 0 represents a distinct lack of predictive capabilities—that is, the model is 
completely unable to predict the true values relative to the worst-possible least-squares 
predictor (i.e., simply using the mean of the estimates, as each data point estimate). We use 
the following definition of R2 in our models: 

𝑅𝑅2 = 1 −
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2𝑛𝑛
𝑖𝑖=1

10.3.3.4. Mean Squared Log Error 

The mean squared log error (MSLE) is similar to the MSE metric but is designed to penalize a 
low estimate more than a prediction that is too high. This can be useful in circumstances where 
providing a conservatively high prediction is useful. The definition we use for MSLE is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �ln(1 + 𝑌𝑌𝑖𝑖) − ln�1 + 𝑌𝑌�𝑖𝑖��

2𝑛𝑛
𝑖𝑖=1
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10.3.3.5. Median Absolute Error 

The median absolute error (MdAE) metric is similar to the MAE metric but is more robust to 
outliers. By incorporating a median function, the magnitude of each outlier is strongly 
diminished in significance. The mathematical formula is not easily expressible in closed form, 
however, due to the median function, taking the central value from the ordered set of absolute 
errors, i.e.,  ��𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖� ∀ 𝑖𝑖�. 

10.3.3.6. Mean Absolute Percent Error 

Much like the MAE metric, mean absolute percent error (MAPE) is sensitive to the absolute 
error of predictions, but specifically considers the size of the error relative to the mean value. 
This allows for direct comparison of models that may have different scales of their target 
variables (for example, 2 corridors with different free-flow travel times). The definition of MAPE 
is: 

∑ 𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖
|𝑌𝑌𝑖𝑖|

𝑛𝑛
𝑖𝑖=1

𝑛𝑛

As a note, when  is zero, the value must be treated as an arbitrarily small positive number. 
Given the application of the models we are using, this is generally not relevant, as travel time 
predictions ideally should never be zero. 
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10.3.4. Sample of Performance Metric Computation 
To illustrate the use of the metrics proposed in Section 10.3.3, we have computed their value 
using a 2021 dataset that was withheld from the model during training. We also illustrate their 
value when computed for a single point in time. Future work will consider the performance 
evolution over longer time periods (the models evaluated in this section were only run for two 
weeks). In the analyses below we compare the performance of our trained machine learning 
models to two baselines: 

 A naïve model, which assumes that current travel times will not change as travelers
traverse the corridor. This model is typically used in practice by most agencies and
predicts the experienced travel time to be the sum of current travel times on all
segments.

 The typical travel time value for the specific timestep. Typical travel times for each 5-
minute time step and day of the week are computed using the training dataset.

10.3.4.1. Evaluation of average model performance 

Table 18 presents the results for six trained models initially deployed, which were retrained as 
of September 2021. Results suggest that trained models can forecast experienced travel times 
on the selected corridors, with the C2C-enabled models providing the most explanatory 
capabilities, as shown by the highest R2 values. The MAE suggests that model predictions are, 
on average, within one minute of the true values for most models and are a good indicator of 
the real-world promise of these models. In addition, all trained models exhibit MAPE values 
under 3 percent and a strong predictive power based on the R2 values, which exceed 0.75. The 
latter suggests that trained models are expected to provide significantly better estimates of 
experienced travel times than a model which simply uses the mean observed value. 

Table 18: Testing metrics for the trained models 
Model MSE MAE R2 MSLE MdAE MAPE 
I-10 EB w/ C2C 1.163 0.765 0.925 0.001 0.570 0.025 
I-10 WB w/ C2C 3.400 1.024 0.893 0.002 0.449 0.029 
I-10 EB w/o C2C 1.405 0.635 0.799 0.001 0.400 0.021 
I-10 WB w/o C2C 1.418 0.675 0.859 0.001 0.378 0.022 
SH 130 NB 1.961 0.693 0.687 0.001 0.469 0.014 
SH 130 SB 1.530 0.685 0.761 0.000 0.446 0.013 

10.3.4.2. Assessment of the quality of specific travel time estimates 

CTR deployed the trained models to predict the corridor travel time at 5-minute intervals, and a 
separate module to evaluate their performance for each of the lookback windows defined in 



185 

Section 10.3.3. Table 19 presents an example of the metrics for the southbound SH 130 corridor 
across all lookback windows from a single point in time corresponding to an evening rush hour. 

Table 19: Metrics for the Southbound SH 130 model 
Timesteps Hours MSE MAE R2 MSLE MdAE MAPE 

12 1 2.123 1.392 -5.613 0.001 1.339 0.028 
36 3 0.870 0.690 -0.401 0.000 0.450 0.014 
72 6 0.698 0.642 -0.476 0.000 0.466 0.013 

144 12 0.985 0.684 0.607 0.000 0.466 0.014 
288 24 1.841 0.993 0.620 0.001 0.691 0.020 

2000 166.6667 5.654 1.222 0.467 0.002 0.756 0.023 
3655 304.5833 3.975 1.127 0.458 0.001 0.741 0.022 

The goal of computing these metrics at each time step is to assess the quality of a specific travel 
time prediction, and to support decision makers in their use of the data. Table 19 suggests that 
the model performance over the last hour is significantly worse than the average performance 
observed during training. Further, Table 20 suggests that a naïve model may provide a better 
estimate at the considered point in time. The average performance of the RNN model over the 
preceding 12 hours is close to the performance observed during training, but the 24-hour 
performance is again below expectations. The latter, in combination with the observed 
performance over longer lookback windows, is an indication of potential issues in a deployed 
model. CTR has used the insights from this analysis to identify a problem in the models initially 
deployed, which is addressed in future model refinements. 

Table 20: Metrics for the Southbound SH 130 naïve prediction method 
Timesteps Hours MSE MAE R2 MSLE MdAE MAPE 

12 1 0.1182 0.2832 -0.2491 0.0001 0.297 0.0059 
36 3 0.2492 0.3998 -0.1415 0.0001 0.3575 0.0084 
72 6 0.4954 0.5051 0.4436 0.0002 0.3975 0.0105 

144 12 0.7446 0.6053 0.6586 0.0003 0.4125 0.0123 
288 24 1.3537 0.8248 0.3181 0.0005 0.5535 0.0167 

2000 166.6667 4.6295 1.0837 0.5569 0.0013 0.565 0.0207 
125633 10469.42 2.3367 0.8384 0.7861 0.0007 0.52 0.0162 

A decision maker faced with these results may choose to display only the naïve prediction, the 
model forecast prediction, or some combination of the two such as a range. During the 
remainder of this project, CTR will monitor model performance using the proposed metrics 
and develop guidelines to support the use of the data. 



186 

10.3.4.3. Discussion 

This section described a set of performance metrics and a framework to compute them in real 
time and over extended time periods. The proposed metrics may be used to assess the quality 
of model predictions in real time, to evaluate and refine long-term model performance, and to 
identify changes in the model performance over time that may suggest the need for re-training. 

CTR demonstrated the use of the proposed metrics to evaluate deployed models using a testing 
dataset. This effort suggests that trained models have good predictive power and lead to 
experienced travel time estimates that are within one minute (and 3 percent) of measured 
travel times. CTR also illustrated how to use real-time metric values to support the use of 
travel-time predictions by decision makers. The framework can provide indication of whether a 
model should be used to forecast travel times rather than current state-of-the-art practices. If 
predictions are found to be accurate, they may aid decision makers in determining whether to 
take proactive  measures to alleviate anticipated congestion. Proposed metrics can also be used 
to identify potential issues in a model deployment and the need for further training.  

CTR has developed a software application that provides the proposed metrics for a model 
across a set of lookback windows, starting with the most recently completed traversal and 
extending backward across several spans of time. CTR has also extended the web-based 
application to compute and visualize real-time and aggregated metrics of performance. The 
research team has continued to monitor these metrics throughout the project to improve the 
performance of deployed models and provide guidelines to TxDOT in the use of the generated 
data.  

Preliminary results from this framework helped CTR notice an issue in the models initially 
deployed. The team has identified approaches to address observed discrepancies between the 
model performance on the testing dataset and the performance observed during real-time 
estimation. 

10.3.5. Real Time Evaluation of Phase I Models 
This section describes the selected approach to evaluate the real-time performance of the 
machine learning models deployed by CTR for the estimation of experienced travel times on 
selected freeway and highway corridors in Texas. The results presented here include updated 
real-time performance metrics for models that have been running since November 2022 and a 
description of new models deployed in March 2022, including a summary of their performance 
on the testing dataset when available.  

The following sections describe the types of models tested by CTR in this section, the corridors 
analyzed and the selected metrics for real-time performance evaluation.  
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10.3.5.1. Overview of models under testing 

A variety of dimensions have been explored through which we can modify models to evaluate 
their efficacy. We first compared two separate corridors (SH 130 in Austin and I-10 in El Paso) 
for their relative predictive power, with comparable results in both. This is promising, as it 
shows that the model setup is transferrable to different corridors with different characteristics. 

We further analyzed the effect of providing C2C volume, speed, and occupancy data to the 
models for I-10. While the models incorporating the additional data performed better in 
training, they have underperformed relative to the simpler models while testing in real time. 
This may be due to changes in sensor availability or accuracy or may reflect a change in travel 
behavior in the El Paso area since the initial training occurred. Future analysis aims to 
determine a path forward to improve the usage of C2C data in these models, as this 
theoretically should provide better results given relatively accurate input data. 

Finally, in conjunction with the future forecasting models, we explored the impact of 
subdividing corridors into components (hereafter referred to as paths) which are predicted 
independently. These models require, for the purpose of constructing an overall corridor 
traversal time, future forecast models for each component path, as the forecast travel time for 
a component path may change between when a corridor traversal starts and when a traveler 
reaches the start of a component path. 

Next, we evaluated models’ predictive power looking further into the future than an immediate 
forecast. That is, while initial models predicted corridor traversal time if traversal was begun at 
the time of the forecast, the new models predicted later. Specifically, we trained models to 
predict up to an hour into the future relative to the latest data point. Unsurprisingly, these 
models show a generally worse predictive capability as they look further ahead, with immediate 
forecasts generating R2 values in the vicinity of 0.8 and hour-later forecasts closer to 0.25. 
Despite this, we still see the later forecasts holding MAE to within 1.5 minutes of the true travel 
time along the corridor. 

For future forecasting and multi-path corridor models, we were predictably met with an 
increase in time and memory required for training these models, so much so that the models 
were unable to be trained simultaneously due to the diseconomies of these model structures. 
To remedy this, we trained each future forecast separately, as these structures are 
independent, though the forecast for each component path for a given time occurs within the 
same model.  

An area for future study may involve switching these two dimensions—having a model that 
predicts, for a given component path, the travel time at each timestep in the future, and 
multiple such models being stitched together to predict for a full corridor. Intuition would tell 
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us that this approach may be less effective, as traffic is somewhat Markovian in nature, 
depending less on the state of traffic in the distant past but heavily dependent on the 
immediate past. By comparison, spatial relationships in traffic are well studied, and any attempt 
to split corridors may introduce arbitrary boundaries near which predictive power is 
significantly different than the rest of the path. 

Considering the increase in needed resources for training models that forecast for multiple 
paths, future work will explore taking this approach to its logical extreme—modeling the travel 
time on each INRIX segment in the component corridor. This will provide the highest-resolution 
forecasts possible but will require even more resources to train. 

10.3.5.2. Analyzed corridors and deployed models 

We have focused on four corridors in our preliminary experiments: SH 130 and I-35 through the 
Austin metro area and I-10 and SL 375 in the El Paso area. The table below details the routes 
tested in experiments to date. 

Table 21: Route testing summary. 

Corridor Start End Length Path Start Path 
End Length 

SH 130 
NB I-35 @ SH 45 I-35 @ SH 130 55 mi 

SH 130 SB I-35 @ SH. 130 I-35 @ SH 45 55 mi 
I-10 EB SL 375 @ I-10 SL 375 @ I-10 32 mi 
I-10 WB SL 375 @ I-10 SL 375 @ I-10 32 mi 

I-35 NB SH 130 @ I-35 Riverside @ I-
35 33 mi 

Riverside US 183 7 mi 
US 183 FM 734 8 mi 
FM 734 SH 45 8 mi 
SH 45 US 79 3 mi 
US 79 SH 130 12 mi 

I-35 SB Riverside @ I-
35 SH 130 @ I-35 33 mi 

SH 130 US 79 12 mi 
US 79 SH 45 3 mi 
SH 45 FM 734 8 mi 

FM 734 US 183 8 mi 
US 183 Riverside 7 mi 

For the above routes, we developed a variety of models that are summarized in the table 
below: 
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Table 22: Model testing summary. 
Corridor Number of 

Paths 
Uses 
C2C? 

Training 
MAE

Training 
MSE 

Training 
MAPE 

Deployed 

SH 130 
NB 

1 No 0.83 2.66 1.62% Sep 2022 

SH 130 
SB 

1 No 0.69 1.57 1.36% Sep 2022 

I-10 EB 1 Yes 0.13 0.20 0.42% Sep 2022 
I-10 WB 1 Yes 0.12 0.36 0.36% Sep 2022 
I-10 EB 1 No 2.19 9.63 7.30% Sep 2022 
I-10 WB 1 No 1.75 9.24 5.50% Sep 2022 
I-35 NB 5 No N/A N/A N/A No 
I-35 SB 5 No N/A N/A N/A No 

10.3.5.3. Evaluation Approach 

The evaluation approach proposed in this document is intended to evaluate three major 
aspects of the real-time performance of the deployed ML models: 

Consistency with the model performance observed during training, testing, and validation. 
Magnitude of the error by time of day.  
Relative performance when compared to non-predictive methos to estimate experienced 

travel time (baseline models described in previous TMs). 
We use the metrics described in previous sections to measure the performance of deployed 
models by comparing estimated and realized values of the experienced travel time. Given the 
fine temporal resolution at which travel time estimates are produced it is important to 
consider different strategies for aggregation to derive meaningful insights. We propose three 
analysis approaches, which may be further extended and refined: 

Aggregate performance: This approach computes the average performance using the 
entire training, testing, validation, and real-time data sets. This type of analysis will be 
used to understand whether the models are performing as expected based on the 
training process. Discrepancies may lead to the identification of issues such as 
overfitting, live data errors, and potential deployment errors/inconsistencies. While we 
use the entire datasets described earlier in this analysis, results are also provided for 
meaningful subsets of the data. The following three categories are currently being 
considered. 

Average results: computed using entire dataset (24 hours of data for each analyzed day) 
AM/PM peak period results: computed using data between 6 AM and 9 AM (AM) and 4 

PM and 7 PM (PM) 
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Typical/atypical traffic results: distinguish between data points that correspond to 
typical and atypical traffic conditions (traffic conditions are defined based on realized 

travel times as defined in previous TMs) 
Performance by hour: This analysis is conducted using the real-time data set, and it 

consists of comparing ML models to baseline estimation approaches. The approach is 
expected to aid in the quantification of the value of ML models, and to provide a more 
detailed understanding of performance pattern. The latter can support further model 
refinements and the development of guidelines for their use. 

Disaggregate Performance: This approach consists of a visualization of the error of 
individual datapoints in a heatmap. The results provide a detailed picture of ML and 
baseline methods by time of day and day of week and will support the identification of 
error patterns that may be corrected by adjusting models’ specification and/or training 
processes. This analysis will also inform the development of guidelines for the use of 
the final models. 

10.3.5.4. Example of analysis 

CTR analyzed model performance using the approach described in the previous section for all 
models deployed in November. The analysis uses training, testing, and validation data along 
with real-time data. The latter was collected after fixing all known issues in the real-time data 
pipeline (November 17, 2022). Data is available for two bi-directional corridors, SH 130 in 
Austin and I-10 in El Paso. The subsections below briefly discuss the observed performance on 
I-10 EB for the machine learning (ML) model that uses only speed data as an input (rather than 
speed and volumes) to illustrate our evaluation approach. The results for all models considering 
MAE, MAPE, and RMSE are provided in separate documents included with this technical 
memorandum and discussed in the summary section.  

10.3.5.4.1. Aggregate Performance 

Figure 95 presents the aggregate performance on the analyzed corridor for each considered 
dataset, and the number of days used to calculate the reported values (sample size). In general, 
it is desirable for trained models to exhibit similar performance across the testing, validation, 
and real time datasets, which would suggest that over-fitting is not likely and rule out 
deployment issues/errors. Figure 95 suggests that, on average, the real-time model is 
performing as expected. Performance is worse during atypical conditions and on the PM peak 
period, and in both cases the real-time performance drops with respect to 
training/testing/validation results. In the case of atypical conditions, the small sample size is 
likely the reason for the observed discrepancy. The performance deterioration during the PM 
peak period is interesting and may require further investigation, since it may inform the training 
process and potentially the model specification. 
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Figure 95: Aggregate performance of selected ML model on I-10 EB. Real-time metrics computed 
between 11/17/2022 and 03/20/2023. Dots represent the number of data points in each dataset. 

10.3.5.4.2. Performance by hour 

Figure 96 describes the performance by hour of all models trained on the analyzed corridor 
and compares it to that of two baseline models: a naïve approach (current practice), which 
uses observed travel times at time t as the estimator of the travel times to be experienced by 
all travelers departing at time t, and “typical” travel times. The latter consists of a static value 
computed using the training dataset for each 5-minute interval, which represents average 
conditions. The goal of this research project is to improve upon the performance of baseline 
models, and this analysis is intended to evaluate the extent to which such goal is met. All 
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models are clearly better than the use of typical travel times at most hours. ML models are not 
significantly better than current practice in the observed results, with the exception of some 
hours during the PM peak period for typical traffic conditions. Errors are fairly small during 
typical conditions for all models (under two minutes), and very large during atypical 
conditions. 

Figure 96: Performance by hour on I-10 EB for real-time models (11/17/2022-03/20/2023). 

10.3.5.4.3.  Disaggregate performance 

Figure 97 illustrates the performance pattern of all models currently running on I-10 EB. 
Negative error values (in grey) represent an underestimation of experienced travel times, while 
positive values indicate an overestimation. For all models the pattern suggests under-
estimation during congestion build-up in the AM and PM peak periods, and overestimation 
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when congestion is dissipating. This suggests that the models are not able to anticipate the 
evolution of traffic quickly enough and may be improved by using a different model 
specification that breaks down the corridor in smaller sub-sections. Errors in the PM peak 
period are more pronounced than in the AM peak period for all models, with the ML models 
being more prone to under-estimation. This visualization also highlights specific dates in which 
the performance of ML was poorer; it can also identify weekly variations in performance (which 
are not observed in this corridor but are present in others). 

Figure 97: Disaggregate performance (MAE) on I-10 EB 11/17/2022-03/20/2023. 
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10.3.5.5. Discussion 

This section summarizes the approach to be used in the performance evaluation of all initially 
deployed models and illustrates the computation of mean absolute error (MAE) for one 
corridor. Results for MAE, MAPE, and RMSE were computed for all models and are provided in 
separate documents. Our approach is intended to provide a comprehensive understanding of 
the performance of the model to support model refinement and the development of guidelines 
for their use. We propose analyses that compare the model performance during the training 
process to that observed in real time to identify issues such as overfitting and deployment 
errors. We also compare the performance of ML models to that simpler “baseline” models to 
better understand the value of the new approach. A visualization of disaggregate data is used 
to illustrate performance patterns, which is expected to be useful for model refinement and 
guideline development. This document discusses the results for one corridor in order to 
illustrate the evaluation approach. The trends observed during our preliminary data analysis 
consisting of one month of data are consistent with the results observed using four months of 
data, which suggests that one to two months of data are sufficient to conduct a preliminary 
assessment of the value of a trained model.  

The performance observed up to this point, while promising, does not suggest significant 
benefits with respect to current practice. In response to the results, CTR identified promising 
paths to improve performance and trained new models. The data pipelines, database schema, 
and automated workflows already deployed for this project have been tested and refined 
through the development of new models. The framework allows for streamlined access to 
corridor-level metrics and data including travel times and traffic volumes, when available. 
Besides streamlining the testing and deployment of new ML models, this framework can 
facilitate the use and interpretation of data by TxDOT for corridors where ML models are not 
trained or in use, and may be used to visualize and access data using third-party applications 
similar to the web-based application deployed by CTR. 

10.3.6. Real-time Evaluation of Phase II models 
As with the training results, we present only results for the I-35 SB route. Results from the other 
routes are provided in Appendix C. We examine the MAE since it is the easiest metric to 
visualize (figures including the MAPE and an analysis by time of day are provided in the 
appendix). The plots in Figure 98 show that for this route, the ML models with smaller levels of 
spatial aggregation are preforming better than the route-level or congestion paths models. The 
congestion paths model matches the naïve model most closely, suggesting that it is indeed able 
to capture broad patterns of congestion but less able to predict rapid changes in travel time 
than the single or pair segments models. The MAE for the best performing ML model (the single 
segments model) is consistently below three minutes and is also lower at timesteps further into 
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the future. This is an unexpected behavior that needs to be examined more closely. The other 
three models follow the typical trend of worse performance as predictions progress further into 
the future.   

There are times when all models struggle. During the PM peak period and at times when 
conditions are atypical, all models tend to have MAE values that are three or more minutes 
longer than average. The AM peak period also has slightly worse performance, though not 
nearly as poor as the PM peak. In addition, it is notable that as conditions worsen (become 
more atypical, congested, or predict further in the future) the spread in the models becomes 
larger. The worst-case performance is seen by the route-level model during the PM peak with 
MAE values of almost 20 minutes (for predictions 20 minutes ahead). At that same time, the 
single segments model has a MAE of only 1.66 minutes, and the naïve model has an MAE of 
8.44. This spread shows the importance of choosing the correct model and the potential 
benefits of the best ML model over the naïve approach.  

Figure 99 shows the performance of all models by time of day at Step 0 on the selected 
corridor. While on average the Naïve model is comparable to the segment-level ML model, the 
performance of the ML model during the morning and peak period is significantly better.  
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Figure 98: MAE for naive and ML predictions using real-time data from January 2 - May 31, 2023. 

e) I-35 SB average real-time MAE (min).

f) I-35 SB real-time MAE (min) for typical
conditions. 

g) I-35 SB real-time MAE (min) for atypical
conditions. 

h) I-35 SB real-time MAE (min) for the AM
peak period. 

i) I-35 SB real-time MAE (min) for the PM
peak period. 
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Figure 99. Average Real Time Performance on SB I-35. 

10.3.7. Predicting Travel Time Differences Across Competing Routes 
For this section, we implement a data-driven approach to quantify the potential benefits of 
improvements in travel-time predictions in the context of a specific application: providing 
travel-time information to drivers along alternative routes. Our selected use case is based on 
the findings of a literature review  which suggest that the use of VMS to provide travel times 
along alternative routes has been observed to provide the most significant benefits (Product 7). 

Our evaluation of the value of precise travel-time estimations is based on historical data along 
the analysis corridors. The historical data is used to compute the travel times that would be 
predicted using a naïve approach (current practice) and realized travel times, which would 
correspond to a perfect estimation of experienced travel times. The difference between the 
naïve model results and realized travel times quantifies the potential benefits of improved 
travel-time prediction methods. This project developed several ML models to improve upon 
naïve predictions. Section 9.3.7.2 will demonstrate that models calibrated using the correct 
level of spatial aggregation can reduce the errors in travel time predictions that we 
demonstrated for the naïve model.  

10.3.7.1. Evaluating the Potential Benefits of Accurate Travel Time Predictions in Selected 
Corridors 

Based on review of recent literature, one of the most common and valuable uses of real-time 
travel-time information provision is assisting drivers choosing between alternative routes. In 
cases where 2 routes diverge and then converge again there is utility in accurately predicting 
which route will be faster. The 2 sites examined in this study are the El Paso (ELP) corridors (I-10 
and SL 375) and the Austin (AUS) corridors (I-35 and SH 130). Each corridor can have traffic in 
both directions (EB and WB for El Paso and NB and SB for Austin). See these routes in Figure 76 
and Figure 77. 
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While the overall goal of this project is to use machine learning models to improve existing 
travel-time prediction practices, this analysis focuses on identifying the maximum possible 
improvements, which would be attained if travel-time predictions were perfect. Our discussion 
involves two types of travel times for each corridor, naïve (current practice) and realized travel 
times (proxy for perfect travel time prediction). The naïve travel-time prediction method 
involves taking current travel time information on each roadway segment and adding it up 
along a corridor. The underlying assumption is that segment travel times at the time that a trip 
starts will remain constant as drivers move through the corridor. The naïve method is typical of 
models used in practice and predicts that the experienced travel times will be the sum of the 
current travel times on all segments. We compare this model to the realized travel times, which 
we compute using historical data and considering the arrival time to each segment along the 
corridor. We use 5-minute travel times, which implies that drivers arriving at a segment at 9:05 
AM may experience a different travel time that those arriving at the same segment at 9:10 AM, 
which in turn will affect their arrival time to the next segment along the corridor. Comparing 
naïve and realized travel times allows us to approximate the maximum possible benefits of a 
machine learning model.  

Two approaches are used to analyze the differences between predicted and realized travel 
times: 

Performance by time of day: This analysis aggregates travel times by time of day allowing 
us to demonstrate that there are important temporal patterns in travel time prediction 
that can cause systematic errors when using the naïve approach. This analysis will 
suggest certain times of the day during which machine learning models can provide the 
most value. This will also have implications for calibration of the models as these times 
of day often experience the most erratic changes in travel times.  

Aggregate performance: This approach computes metrics of the average performance 
over the entire day. Most importantly we report the percentage of the time the 
realized and naïve travel times would suggest that different routes are faster along the 
same corridor. This is very important in practice because a VMS reporting these times 
would misdirect traffic if travel times were not well calibrated, potentially leading to 
additional congestion. 

Results by Time of Day 

Each corridor study consists of two routes. We will focus our discussion on the difference 
between travel times on each route as estimated by the naïve method and the realized travel 
times. Figure 100 depicts the predicted and realized travel times in the AUS corridor, 
northbound (NB) direction, on April 1, 2023. There are several notable issues with these 
predictions. First, around 2 PM there is a major drop and spike in the predicted travel times 
that is exaggerated in 
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comparison with realized times. Empirical observations of additional days suggest that this 
pattern is common, especially as travel times begin to fall after peak periods. The other 
concern is the period when the two different routes cross; these are times when drivers may be 
unsure which route to take. A clear example is at 7 PM when the green line for the realized I-35 
travel times drops below the SH 130 line but the predicted line does not. In this case drivers 
would be better off switching from SH 130 to I-35, but the prediction would advise them 
against this. These periods of inconsistency are critical to minimize and will be the focus of 
much of the remainder of this TM.  

Figure 100: Predicted and realized travel times along the AUS NB corridor on April 1, 2023. 

As discussed above, one of the most important reasons why travel-time data is used in practice 
is to determine the difference between competing routes. Figure 101, Figure 102, and Figure 
103 present the difference between travel times predicted using the naïve method (the most 
used in practice) and realized travel times, as proxy for perfect travel-time predictions. Figure 
104 provides a slightly different visualization of the same data that includes corresponding 
standard deviations. The averages across all days in the study suggest interesting differences 
and potential areas of improvements. In the El Paso corridors, the differences computed using 
realized travel times are, for most times of day, more significant than those reported by a naïve 
prediction method. Providing information that suggests bigger savings in travel times may be 
more effective when trying to influence driver behavior. Additionally, the predicted difference 
in travel time is highly variable at night for the El Paso EB corridor, even though the realized 
travel times are more consistent. In Austin the trend is different but also insightful, with 
realized travel time suggesting more marked difference during congestion build-up and 
dissipation periods, where accurate travel-time prediction may be more critical. It is also 
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interesting to note that at some times of day the direction of the difference in travel times 
between competing routes is reversed, which suggests that using a naïve prediction method 
would lead to providing the incorrect information to drivers. 

Figure 101: Comparison of travel-time differences between alternative routes computed using a naïve 
prediction method (current practice) and realized travel time (as a proxy for perfect travel time 

predictions). El Paso EB (negative means I-10 is faster, positive mean SL 375 is faster). 

Figure 102: Comparison of travel-time differences between alternative routes computed using a naïve 
prediction method (current practice) and realized travel time (as a proxy for perfect travel-time 

predictions). El Paso WB (negative means I-10 is faster, positive means SL 375 is faster). 
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Figure 103: Comparison of travel-time differences between alternative routes computed using a naïve 
prediction method (current practice) and realized travel time (as a proxy for perfect travel time 

predictions). Austin NB (negative means I-35 is faster, positive means SH 130 is faster).  
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a) El Paso EB travel-time difference
(negative means I-10 is faster, positive

means SL 375 is faster) 

b) El Paso WB travel time difference
(Negative means I-10 is faster, positive

means SL 375 is faster) 

c) Austin NB travel-time difference (negative
means I-35 is faster, positive means SH

130 is faster) 

d) Austin SB travel-time difference (negative
means I-35 is faster, positive means SH

130 is faster) 

Figure 104: Mean and standard deviation of naïve prediction vs. realized travel-time differences between 
routes on each corridor. 

Though Figure 104 is informative, comparing individual predictions with realized travel times is 
better. In Figure 105, points are grouped by timestamp and the difference between travel times 
on the two routes is compared. The plot shows the mean absolute error in the predicted 
difference in travel times between the two routes for all four routes. Note that this is a different 
metric than the MAE in travel time itself. The plot demonstrates that there are errors in 
prediction of travel-time difference between routes in excess of seven minutes during the 
evening peak period. This suggests that as volumes increase (during the morning and evening 
peaks) the travel times get more difficult to predict. Unfortunately, from a congestion 
prevention perspective this is the time when it is most important to predict travel times 
accurately.  
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Figure 105: Mean absolute error in naive prediction of difference in travel time between routes. 

The results presented above consider a predicted travel time made in real time using the naïve 
model. Such predictions are generally accurate over short distances and for very short time 
windows. However, longer term predictions over long corridors are less reliable using the naïve 
method. We note that there is already an apparent lag between the actual and predicted travel 
times. This is due to differences at the far end of the corridors. With travel times on the order 
of 30–60 minutes (and higher during peak periods) there is a large delay between the naïve 
prediction and the experienced travel time at the end of the corridor. Averaging out these poor 
predictions with better predictions at the beginning of the corridor leads to the adequate (if 
slightly delayed) results shown above.  

Though there is clearly room for improvement even for real-time predictions, predictions even 
further in the future are less accurate. Figure 106 depicts the difference in travel time between 
routes for the naïve model predicted 30 minutes ahead and realized travel times. Average MAE 
in travel time difference between parallel routes predicted between zero and 30 minutes into 
the future are also included. Plots a, c, e, and g confirm that there is simply a 30-minute offset 
from the travel times predicted in Figure 104. In aggregate, the increase in MAE for predictions 
further into the future demonstrates significant room for improvement if ML models are used. 
In addition, since these are averages, on any individual day the differences tend to be worse. 
Section 0 outlines how these empirical observations can be quantified in terms of percentage of 
times when better predictions will lead to better choices of routes.  



204 

a) El Paso EB travel time difference
predicted 30 minutes ahead (Negative

means I-10 is faster, positive means SL
375 is faster). 

b) El Paso EB mean absolute error in future
naive predictions of difference in travel

time between routes. 

c) El Paso WB travel time difference
predicted 30 minutes ahead (negative

means I-10 is faster, positive means SL
375 is faster). 

d) El Paso WB mean absolute error in future
naive predictions of difference in travel

time between routes. 

e) Austin NB travel time difference predicted
30 minutes ahead (negative means I-35 is
faster, positive means SH 130 is faster).

f) Austin NB mean absolute error in future
naive predictions of difference in travel

time between routes. 
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g) Austin SB travel time difference predicted
30 minutes ahead (negative means I-35 is
faster, positive means SH 130 is faster).

h) Austin NB mean absolute error in future
naive predictions of difference in travel

time between routes. 

Figure 106: Mean and standard deviation of naïve prediction vs. realized travel-time differences between 
routes on each corridor with a 30-minute delay (left) and MAE in future naive prediction of difference in 

travel time between routes at several time increments. 

Aggregate Results 

Assuming drivers want to take the faster route, the best road to take can be determined each 
time travel times are predicted by taking the route with the lowest travel time. From the user 
perspective, the actual travel times predicted are less important than whether they are 
recommending the correct route. In this section, we determine the best route at each point in 
time using the naïve and realized travel times. We can then compute the percentage of the 
time that the naïve model is correctly sending travelers along the correct route.  

Table 23 shows the percentage of time the incorrect route was predicted to be the shortest. 
These percentages are split among times drivers were incorrectly directed to take the primary 
or secondary routes as defined in Figure 76 and Figure 77. 

Taking the Austin NB corridor as an example there were 55,884 total travel-time predictions for 
the routes along this corridor. Of those, 2,243 incorrectly suggested that I-35 was the faster 
route while 2,116 incorrectly suggested that SH 130 was faster. Though there are other times 
when travel-time predictions were incorrect, these cases are the most important because they 
can lead drivers to make poor decisions about which route to take. Also included are the same 
values for “atypical” periods when realized travel times were more than 2 standard deviations 
above or below the mean travel time. As demonstrated in Figure 105, differences between the 
naïve and realized travel times tend to be highest during peak periods. These periods tend to 
have a much larger variation in travel time (particularly at the onset and termination of 
congestion). The majority of atypical conditions happen during those peak periods when 
supplying accurate information to drivers is most critical.  
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Table 23: Percentage of time incorrect predictions of shortest route are made using naïve method. 

All Data Atypical High 
Travel Times 

Atypical Low 
Travel Times 

I-35 NB Predicted Faster 4.01 5.58 7.97 
SH 130 NB Predicted Faster 3.79 3.52 5.19 

Total AUS NB 7.80 9.10 13.16 
I-35 SB Predicted Faster 4.91 5.77 14.12 
SH 130SB Predicted Faster 5.00 1.34 10.96 

Total AUS SB 9.91 7.11 25.08 
I-10 WB Predicted Faster 3.32 8.42 10.00 
SL 375 WB Predicted Faster 3.20 3.48 4.12 

Total ELP WB 6.52 11.90 14.12 
I-10 EB Predicted Faster 2.23 7.77 0.00 
SL 375 EB Predicted Faster 2.28 3.74 0.00 

Total ELP EB 4.51 11.51 0.00 
As above, we can compare the numbers in Table 23 with number for predictions further in the 
future. Table 24 demonstrates that predictions 30 minutes into the future increase the 
percentage of incorrect routing guidance by 50–100 percent overall. Even higher increases 
are seen during periods with atypically high travel times, though fewer incorrect predictions 
are made in some cases when travel times are atypically low. These cases are dominated by 
cases with atypically high travel times (323 atypically low data points and 9829 atypically high 
data points).  

Table 24: Percentage of time incorrect predictions 30-minutes in the future of shortest route are 
made using naïve method. 

All Data 
Atypical 

High Travel 
Times 

Atypical Low 
Travel Times 

I-35 NB Predicted Faster 7.97 11.47 4.00 
SH 130 NB Predicted Faster 7.81 4.49 6.40 

Total AUS NB 15.78 15.96 10.40 
I-35 SB Predicted Faster 8.24 11.46 3.70 
SH 130 SB Predicted Faster 6.66 2.07 2.96 

Total AUS SB 14.90 13.53 6.67 
I-10 WB Predicted Faster 5.50 17.58 8.89 
SL 375 WB Predicted Faster 5.40 5.02 11.11 

Total ELP WB 10.90 22.60 20.00 
I-10 EB Predicted Faster 4.51 21.33 0.00 
SL 375 EB Predicted Faster 4.62 5.24 0.00 

Total ELP EB 9.13 26.57 0.00 
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The goal of this section was to acknowledge that an important use of real-time travel-time 
predictions is to provide information to drivers through active traffic management systems. 
Based on the literature review, we found that one of the most critical uses of such information 
is to help drivers decide between competing routes. Even for predictions made in real time 
using the naïve model we find that the incorrect route is determined to be faster between 4.5 
and 9.2 percent of the time. Predictions further into the future increase the errors, and we 
demonstrate that errors can happen up to 15.79 percent of the time for the worst performing 
corridor. There is substantial room for ML models to improve these predictions and better 
direct drivers about optimal routing.   

10.3.7.2. Evaluation the Actual Benefits of Improved Travel Time Predictions 

This project developed several ML models to improve upon naïve predictions. This section will 
demonstrate that models calibrated using the correct level of spatial aggregation can reduce 
the errors in travel time predictions that we demonstrated for the naïve model.  

Results by Time of Day 

As stated above, the naïve model does very well with predictions in real time or only a short 
time in the future. Figure 107 shows the same set of plots developed in the previous section, 
but with the inclusion of the ML models utilizing travel time data only. The plots of the MAE of 
difference in travel time predictions between competing routes shows that in general the naïve 
prediction is difficult to beat when predictions are made 0 timesteps ahead. The route-level ML 
model (which predicts travel times for the entire route) is generally not a good model 
compared to the other three. Less spatial aggregation tends to be better. Both the single 
segments and pair segments models perform very close to the naïve model except for the El 
Paso EB pair segments model. This is expected as each of these models predicts travel times for 
shorter sections of the corridor and then these predictions are aggregated up to a travel time 
for the whole route. These models use more computational resources since many ML models 
must be run and route-level travel-times constructed from the results. However, the process is 
still sufficiently fast to run in real time. The single and pair segments models better evaluate 
different patterns of congestion that appear, develop, and propagate separately at different 
locations.  

Figure 108 plots the same figures with predictions 30 minutes ahead. In these figures we can 
see clear improvements of the ML models over the naïve model. The 30-minute offset in the 
naïve model causes systematic underprediction of travel times at the onset of congestion and 
overprediction as congestion dissipates. This trend is shown in the plots of the MAE, where the 
MAE for the naïve model is generally higher than the pair or single segment models (particularly 
during and after peak periods). The biggest issue seen in the ML models is shown in Figure 108e 
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and Figure 108g. Though the MAE in Figure 108f and Figure 108h are low for the pair and single 
segment models, both models are shown to predict slower travel times on SH 130 relative to 
the travel times on I-35 than they should. This systematic favoring of one route over another 
due to incorrect predictions could have important routing implications and should be studied 
further. Regardless, even during these periods the MAE of these models is still significantly 
lower than the naïve model.  

a) El Paso EB ML model travel time
difference predicted 0 minutes ahead

(negative means I-10 is faster, positive
means SL 375 is faster). 

b) El Paso EB mean absolute error in ML
model predictions of difference in travel

time between routes predicted 0 minutes
ahead. 

c) El Paso WB ML model travel time
difference predicted 0 minutes ahead

(negative means I-10 is faster, positive
means SL 375 is faster). 

d) El Paso WB mean absolute error in ML
model predictions of difference in travel

time between routes predicted 0 minutes
ahead. 
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Figure 107: Mean of ML model prediction vs realized travel time differences between routes on 
each corridor with a zero-minute delay (left) and MAE in ML model prediction of difference in travel 

time between routes. 

e) Austin NB ML model travel time difference
predicted 0 minutes ahead (negative

means I-35 is faster, positive means SH
130 is faster). 

f) Austin NB mean absolute error in ML
model predictions of difference in travel

time between routes predicted 0 minutes
ahead. 

g) Austin SB ML model travel time difference
predicted 0 minutes ahead (negative

means I-35 is faster, positive means SH
130 is faster). 

h) Austin NB mean absolute error in ML
model predictions of difference in travel

time between routes predicted 0 minutes
ahead. 
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a) El Paso EB ML model travel time
difference predicted 30 minutes ahead
(negative means I-10 is faster, positive

means SL 375 is faster). 

b) El Paso EB mean absolute error in ML
model predictions of difference in travel

time between routes predicted 30 minutes 
ahead. 

c) El Paso WB ML model travel time
difference predicted 30 minutes ahead
(negative means I-10 is faster, positive

means SL375 is faster). 

d) El Paso WB mean absolute error in ML
model predictions of difference in travel

time between routes predicted 30 minutes 
ahead. 

e) Austin NB ML model travel time difference
predicted 30 minutes ahead (negative

means I-35 is faster, positive means SH
130 is faster). 

f) Austin NB mean absolute error in ML
model predictions of difference in travel

time between routes predicted 30 minutes 
ahead. 
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g) AUS SB ML model travel time difference
predicted 30 minutes ahead (Negative

means I-35 is faster, positive means SH
130 is faster). 

h) AUS NB mean absolute error in ML model
predictions of difference in travel time 
between routes predicted 30 minutes 

ahead. 

Figure 108: Mean of ML model prediction vs realized travel time differences between routes on each 
corridor with a 30-minute delay (left) and MAE in ML model prediction of difference in travel time between 

routes. 

Aggregate Results 
Finally, we discuss the same aggregate model of performance previously developed (the 
percentage of time travel times predictions indicate the incorrect route to be faster). Overall, 
these results confirm the findings above that the ML models represent an improvement over 
the naïve model. From Table 25, first note that these decisions are more difficult to predict in 
the Austin area (due to the high levels of congestion on I-35 during peak periods). As expected, 
predictions made more timesteps ahead are consistently less accurate. Unfortunately, the 
route-level model continues to perform poorly using the metric for the same reasons as above. 
The aggregate travel times across entire corridors incorporate more complicated interactions 
between different congestion propagation mechanisms.  

The single and pair segments models perform better, though the pair segments model fails for 
the El Paso EB corridor even with predictions closer in time. This is surprising as these 
predictions are generally easier. However, the single segments model performs better than the 
naïve model in almost every case. In every corridor the percentage of incorrect predictions is 
less than 10 percent for the single segments model, while the naïve model reaches an almost 
15 percent incorrect prediction rate for the Austin SB corridor 30 minutes ahead. Additional 
tables for atypical conditions are included in the appendix.  
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Table 25: Comparison of percentage of time incorrect predictions of shortest route are made using naive 
method versus ML models. 

M
od

el
 

Ti
m

es
te

p All Data 
EB WB NB SB 

I-10 SL 375 ELP I-10 SL 375 ELP I-35 SH 130 AUS I-35 SH 130 AUS 

N
aï

ve
 

0 2.23 2.28 4.51 3.32 3.20 6.52 4.01 3.79 7.80 11.23 5.00 9.17 

5 2.70 2.76 5.46 3.46 3.34 6.81 4.69 4.46 9.16 11.82 5.02 10.24 

10 3.10 3.17 6.27 3.94 3.81 7.75 5.41 5.20 10.61 12.11 5.30 11.45 

15 3.51 3.59 7.10 4.37 4.25 8.62 6.10 5.91 12.02 12.41 5.60 12.62 

20 3.90 3.98 7.88 4.76 4.65 9.42 6.75 6.58 13.33 12.75 5.94 13.72 

25 4.21 4.30 8.51 5.13 5.02 10.15 7.38 7.21 14.59 13.10 6.29 14.76 

30 4.52 4.62 9.14 5.50 5.40 10.90 7.97 7.81 15.78 13.48 6.66 15.78 

Ro
ut

e-
Le

ve
l 

0 10.97 0.03 11.00 1.57 8.71 10.28 12.20 1.80 13.99 19.54 1.99 9.53 

5 0.20 64.29 64.49 1.26 12.49 13.75 4.62 6.10 10.73 9.90 5.95 10.31 

10 0.42 63.64 64.06 12.93 0.00 12.93 8.20 3.16 11.36 15.37 3.23 10.62 

15 11.38 0.00 11.38 4.12 5.10 9.22 7.38 5.50 12.89 13.34 4.95 12.41 

20 11.38 0.00 11.38 12.93 0.00 12.93 10.50 3.93 14.43 16.68 3.67 40.94 

25 11.38 0.00 11.38 12.93 0.00 12.93 10.04 3.36 13.40 17.29 3.02 10.73 

30 11.38 0.00 11.38 12.93 0.00 12.93 13.57 9.44 23.01 16.12 11.24 50.06 

Si
ng

le
 S

eg
m

en
ts

 

0 3.44 2.44 5.88 5.16 1.68 6.85 4.04 3.15 7.19 11.84 3.68 7.04 

5 3.24 2.71 5.96 4.09 1.73 5.82 5.20 2.27 7.47 13.72 2.76 7.19 

10 3.29 2.36 5.65 2.41 3.57 5.98 6.72 1.79 8.51 14.30 2.55 7.78 

15 2.72 3.45 6.18 3.27 2.91 6.19 4.59 2.79 7.39 11.96 3.32 8.12 

20 3.59 2.39 5.98 4.47 1.96 6.44 4.43 2.74 7.17 11.86 3.29 8.28 

25 5.37 1.32 6.69 4.27 2.58 6.85 4.34 3.45 7.79 11.82 3.80 9.11 

30 4.94 1.68 6.63 5.47 1.92 7.39 3.53 5.46 8.98 11.21 5.06 10.04 

Pa
ir 

Se
gm

en
ts

 

0 1.50 39.80 41.31 3.85 3.26 7.11 3.84 3.92 7.76 9.61 4.44 7.59 

5 3.16 13.99 17.15 2.89 3.97 6.85 2.47 5.86 8.33 8.43 4.85 9.34 

10 2.41 23.30 25.71 4.01 3.54 7.55 4.51 3.44 7.95 11.89 3.10 11.37 

15 3.86 6.86 10.73 4.85 2.25 7.10 3.51 3.64 7.15 10.37 3.57 9.69 

20 6.20 3.27 9.47 5.25 3.14 8.39 2.69 4.96 7.64 9.09 4.14 9.96 

25 7.33 0.98 8.31 6.00 2.32 8.31 4.03 3.57 7.60 10.06 3.78 10.75 

30 5.41 2.10 7.51 8.03 1.43 9.45 4.10 4.73 8.83 10.57 4.30 10.79 

10.3.7.3. Summary 

This section provided a literature review on the use of VMS to communicate real-time 
information to drivers, which suggests that the provision of travel times along competing routes 
is among the most valuable applications. Though findings suggest that the precision of travel-
time information is not necessarily critical for all applications, it is important for it to be 
accurate when drivers are choosing between alternate routes. We use this as the primary 
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metric for assessing the value of high-precision travel-time estimates, which we expect can be 
provided using machine learning models. Our approach finds the maximum possible 
improvements by comparing naïve travel time predictions, commonly used in practice, to 
realized travel times, which would correspond to a perfect estimation of travel times. Results 
from1 year of historical data suggest that there are times of day (particularly peak periods and 
atypical traffic conditions) during which drivers may be directed onto incorrect routes using the 
naïve prediction method. Specifically, over 8 percent of all predictions using the naïve method 
directed drivers onto incorrect routes on the Austin NB corridor. This is a large number of 
drivers taking sub-optimal routes and suggests that better machine learning models are needed 
to more accurately predict travel times during windows of uncertainty.  

10.4. Conclusions 
This chapter describes the development and performance of three sets of models, including 
performance on the training dataset and when deployed in real time. 

• Preliminary models were developed as a proof of concept on I-35 using one year of 
probe-based speed data and traffic volumes available form smart work zone trailers
(which are no longer available). A recurrent neural network (RNN) model was trained for 
each INRIX segment in order to predict travel times up to one hour into the future at 
five-minute steps. Total corridor travel time was computed dynamically, by considering 
arrival time at each successive segment along the route. Results were very promising, 
with errors almost 40 percent lower than those that would result from using a naïve 
approach that simply adds the travel time along all segments at the time that the trip 
starts.

• Models at four additional sites were trained for field testing, which involved developing 
a framework to archive and efficiently access training data, real-time data, model 
predictions and realized travel times.  Limited volume data was available at the selected 
sites and the results obtained when using it did not show improvement upon models 
that used only probe-based data (Phase I models). Further research may consider 
additional analysis of the quality and aggregation of the volume data. In Phase II, 
researchers explore different levels of spatial aggregation for model training, seeking to 
reduce the associated computational effort while improving model fit. Models were 
trained at the route-level, sub-route level, segment level and pair-of-segments level.

o Smaller spatial aggregations led to better results in general, which in some cases 
outperformed the naïve approach. Improvements upon current practice were not 
as significant as those observed in the preliminary models, which suggest that the 
incorporation of volume data may be critical to maximize the value of
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these models. Location-specific traffic patterns may also play a role in the 
potential value of enhanced travel time prediction methods, which may be more 
valuable on longer corridors where traffic conditions may change rapidly.  

o Models developed to examine differences in spatial aggregation demonstrate
benefits of low levels of aggregation. Though the R2 values of training data are
lower for predictions at the lowest time (0.57 for the single segments model
versus 0.88 for the entire route) on I-35 SB, when predicting farther in the future
the accuracy of predictions is much more stable (0.33 versus 0.04 for the same
models).

o Machine learning models also showed benefits when used to provide
comparative travel times across routes. In every corridor the percentage of
incorrect predictions is less than 10 percent for the single segments model, while
the naïve model reaches an almost 15 percent incorrect prediction rate for the
Austin SB corridor 30 minutes ahead.

10.5. Pathway to Implementation 
The naïve model had a MAE in difference in predicted route travel times ranging from 1.11 
minutes on the ELP EB corridor to 3.58 minutes on the AUS NB corridor. For the best 
performing ML model (single segments), the range was smaller, but the values were 
comparable: 1.47-3.25 minutes on the same corridors. When predicting 30 minutes into the 
future, the naïve model is outperformed substantially by the ML models 1.98-5.63 minutes 
versus 1.47-2.80 minutes respectively.  As part of project 0-7034, the research team worked on 
the development of models for short-term travel time prediction (STTTP) on freeway corridors. 
STTTP involves forecasting travel times one or two hours into the future at a fine-grained 
temporal resolution (five to 15 minutes). Predictions are often updated every few minutes and 
are necessary to estimate realistic end-to-end travel times along freeway sections, particularly 
when some segments in the analyzed section experience congestion. The methods used in this 
project have been trained and tested on a section of I-35 through Austin using INRIX speeds and 
volume data collected by smart work zone trailers. Preliminary results based on one year of 
data from 2019 are very promising, with machine learning models outperforming traditional 
approaches by more than 40 percent during the AM and PM peak periods.  

The ability to accurately estimate experienced travel times in near-real time can support 
enhanced traffic management solutions for reducing congestion and user-delay cost. If the 
models are used to provide information through direct messaging signs (DMS), travelers may be 
diverted to less congested corridors more effectively, potentially improving travel times and 
safety. Traffic operators may also consider using real-time travel time predictions to adjust 
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signal timing plans during atypical traffic conditions, which may further improve speeds and 
safety. 

Therefore, further real-world environment testing of the machine-learning-based methods for 
STTTP developed in this effort is highly desirable. Successful implementation will include the 
following components: 

• Refining use cases for improved short-term travel time prediction, such as public
information dissemination and traffic operations support.

• Developing sustainable workflows for model training at new sites.
• Implementing the necessary pipelines to generate predictions in real-time.
• Developing a continuous evaluation framework to identify conditions under which

models should not be used and/or suggest model re-training based on changing
conditions.

• Evaluating the model performance over a prolonged period.

Specific tasks are summarized in Figure 109 and will be discussed in the reminder of this 
document.  

Figure 109. Implementation Tasks. 

Model 
Training

Data 
Pipelines

Model 
Deployment

Model 
Evaluation

10.5.1. Model Training 
For field implementation, the models developed in this effort should be trained following the 
methods already tested for project 0-7034 and using data corresponding to the selected 
implementation site. The training process considers two types of data: probe-based speed data, 
as provided by INRIX, and traffic volume data from several points throughout the analyzed 
corridor, which in this effort was obtained from smart work zone trailers. The training process 
involves collecting and processing historical data, running the training scripts to identify model 
parameters, and reviewing the final model performance to assess the need to further refine the 
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selection of hyper-parameters. The following section describes important considerations to 
develop a sustainable and replicable training process. 

10.5.1.1. Temporal and spatial resolution of data 

The temporal and spatial aggregation of training and deployment data is likely to have an 
impact on model performance. The data used to train the original models was available at one-
minute time intervals and was further aggregated for model training and testing. Probe based 
speed data is expected to be available for most of the facilities managed by TxDOT at the 
desired aggregation level. Automatically collected traffic volume data is likely to be available at 
a similar temporal resolution. We recommend aggregating data into five- to 15-minute intervals 
for model training and deployment, and if possible further exploring the impact of aggregation 
on model performance.  

The spatial aggregation of probe-based data is defined by the length of the segments (referred 
to as XD segments) over which INRIX speeds and travel times are reported. XD segments in 
rural areas may be longer than those used for original model training, and the impact of such 
difference on model performance requires further analysis. Continuously collected vehicular 
volume data is not as widely available as probe-based speed data. The models developed for 
project 0-7034 leveraged data from sensors that were placed one to two miles apart and 
covered most of the analyzed corridor. The availability of volume data at new sites may impact 
model performance. Models can be trained using speed data alone but are expected to 
perform better when using volume and speed data. 

10.5.2. Collection of historical data 
Probe-based speed data vendors often provide seamless access to historical data. The models 
developed for this project were trained and tested using one year of probe-based data, which is 
expected to capture a range of traffic conditions, along with daily and seasonal patterns. At the 
time this project was competed, researchers also had access to one year of traffic volume data, 
which was archived from a separate project. Traffic volume data collected by temporary or 
permanent ITS sensors is not necessarily archived, and historical data may not be available at 
new deployment sites. Researchers have started a conversation with TxDOT’s ITD in order to 
understand the prospective availability of historical ITS data, but near-term deployments may 
need to consider setting up a custom pipeline to archive ITS data at selected deployment sites. 
Models may be initially trained using only probe-based speed data and refined after sufficient 
volume data has been collected.   
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10.5.3. Automation and refinement of model training 
The scripts used to train the models developed in this project will be provided as a deliverable, 
along with documentation describing how the data should be pre-processed to be used with 
the scripts. Data pre-processing can be automated to support a fully automated training 
process. Model training involves identifying a set of parameters to be used with real-time data 
in order to produce accurate travel time forecasts. 

It is important to consider that the methods used for model training are controlled by a number 
of variables, or “hyperparameters.” The selection of hyperparameters plays a critical role in 
model performance. The training process proposed in this effort identifies hyperparameters by 
systematically testing model performance for a range of potential hyperparameter values. If 
model performance after training is not satisfactory, it may be necessary to adjust the 
hyperparameter selection process, which involves refining the scripts developed during 0-7034. 

10.5.4. Data Pipelines 
Model deployment will require access to archived data for training and to real-time data to 
generate travel time predictions. Predictions will be generated on a continuous basis and may 
be streamed in different ways depending on the specific implementation. Figure 110 provides a 
schematic description of the training and deployment data workflows. 

Figure 110. Data Workflows. 

The use of historical data for model training was described in the previous section and may be 
accomplished using a data sample consisting of one or more years of data provided by the same 
sources to be used after the models are deployed. Although a sample is sufficient for initial 
model training, the data pipeline suggested below also archives data which may be used to 
refine models after deployment.  
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Probe-based speed data is often accessed in real time using the application programming 
interface (API) available from the vendor. The pipeline development requires identifying the 
segments for which data is needed and developing the scripts to retrieve and archive it. 

Real-time access to volume data is expected to be site-dependent, with the center-to-center 
(C2C) feed maintained by TxDOT being a potential access point for data collected by permanent 
ITS sensors. Data collected by temporary sensors, such as smart work zone trailers, may also be 
streamed through the C2C feed if vendors are willing/able to use the protocol. The process of 
retrieving and archiving this data may be automated once access to the appropriate data 
stream is obtained. 

Travel time predictions will be generated in real time using speed and, potentially, volume data 
and they may be streamed via API or through a web interface for their use by relevant TxDOT 
staff. It is also desirable to archive predictions during a trial period for model evaluation and 
report generation.  

10.5.5. Model Deployment 
Model deployment involves using the data pipelines described in the previous section to 
produce travel time forecasts, which may be presented to travelers and/or decision makers. It 
is critical to clearly define the use case for the produced travel time forecasts in order to design 
an effective approach to deliver the information and a meaningful evaluation process. 

After the model predictions are made available in real time, a testing and evaluation process 
should be used to understand: 

• Average prediction accuracy and need for model refinements
• Scenarios under which predictions should not be used
• Benefits derived from improved predictions

10.5.6. Model Evaluation 
Researchers should define and compute metrics to evaluate the performance of the proposed 
algorithms over a three to six month period, considering factors such as varying traffic and 
weather conditions and the presence of data issues. In addition to evaluating prediction 
accuracy, the evaluation framework may include a component to assess the value of improved 
forecasts. Comparisons with predictions produced by simpler methods and/or other sources of 
similar data may be desirable in this context, along with other metrics specific to the selected 
use case. 
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In addition to assessing average model performance during a trial period, it is desirable to 
develop a workflow to continuously evaluate model performance in order to identify scenarios 
in which the models should not be used, as well as the need to re-train models to improve 
overall performance.   

10.5.7. Summary and Discussion of Required Computational 
Resources 
This document provides a high-level description of the steps and considerations needed to 
deploy the short-term travel time prediction models (STTTP) developed for project 0-7034 in a 
real-world environment.  

The development of adequate pipelines to retrieve and archive probe-based speed data and 
traffic volumes streamed in real time is a critical component of the implementation process. 
The effort involved in such a step will depend on the access to traffic volume data at the 
selected implementation site, since probe-based speed data is expected to be readily available 
from INRIX at most facilities managed by TxDOT. Model training requires access to historical 
data, which is also expected to be straightforward in the case of probe-based speed data but 
may be more challenging for traffic volume data. Users may need to consider training and 
deploying models using only speed data and begin the collection of historical volume data 
during the trial period. Models may be re-trained and refined based on performance after 
sufficient volume data has been collected. 

Model deployment involves providing access to travel time forecasts in real time; the approach 
used to provide such access will be dependent on the specific use case (e.g., public information 
dissemination or real-time traffic management). For model evaluation, we suggest a 
comprehensive approach that includes a continuous evaluation framework, as well as the 
definition of metrics that consider not only the accuracy of the travel time forecasts, but the 
value of more accurate forecasts in the context of the selected use case.  

Implementing the research conducted for project 0-7034 also requires adequate computational 
resources to support model training, data archival and analysis, and the generation of travel 
time predictions.  

• Model training will require the most computational resources and it will need to be
performed once at the beginning of the project and may be repeated again to address
observed issues, incorporate new data sources, or ensure optimal performance. Training
will be most efficient if it is performed on a system that can leverage graphic-
processing-units (GPUs).
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• While real time travel time predictions involve minimal computational effort, providing
access to forecasts will require developing an interface suitable to the selected use case.
Web-based interfaces, which will require access to a hosting service, are a convenient
way to provide data access to decision makers.

• Data archiving is recommended, including that of both real-time data and travel time
predictions. If storage space is a concern, travel time predictions may be re-created for
testing and evaluation purposes using archived input data. Historical probe-based speed
data is typically accessible on demand, which makes traffic volume data the only data
type that may require dedicated archival workflows. Relational databases may be used
to facilitate data analysis for all data types. A Postgres server was used for project 0-
7034.

Cloud-based services may be used to support all the necessary steps for model deployment. 
Some of the source code and scripts developed and documented in this effort may be used and 
refined for implementation. Data pipelines developed to manage INRIX data or data 
broadcasted through the C2C feed are likely to be straightforward and easy to replicate if 
properly documented during implementation, which is expected to facilitate further model 
testing and refinement.  

The implementation of the models developed in project 0-7034 can improve TxDOT’s ability to 
accurately estimate experienced travel times in near-real time, which may support enhanced 
traffic management solutions, mitigate congestion, and lead to significant user-delay cost 
reduction.  
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Chapter 11. Conclusions 
This project explored the use and value of artificial intelligence and machine learning (ML) in 
transportation taking a multi-pronged approach that includes a literature review, a workshop, a 
survey, the development of three prototype ML models for four high priority use cases, and the 
field testing of one of the prototyped models. Initial tasks were exploratory in nature and led to 
a better understanding of the current and prospective uses of ML in transportation, 
corresponding data needs, and specific use cases of interest to TxDOT. 

The literature review provided a background on artificial intelligence techniques and tools, and 
explored transportation applications in system and service planning, operations, asset 
management, public safety and enforcement, communications, and business 
administration. Researchers found that there is significant potential for the application of AI to 
help transportation-system operators and owners to advance their goals. Existing applications 
range from less sophisticated algorithms with simple logic to cutting-edge DL methods. But 
even the most sophisticated algorithms cannot produce novel insights without well curated 
data. Our literature review includes a summary of typical AI data sources used in transportation 
and their challenges and limitations. The research team prepared a Prospectus of AI in 
transportation to summarize the gathered knowledge (Product 1). 

Our data survey revealed a number of data sources that may be used to support TxDOT goals; 
this effort is centered on applications that may enhance transportation network operations, 
and integrated corridor management in particular, and emphasis has been placed on data 
sources that can describe traffic conditions, safety, and the roadway network. There is 
additional information that would be beneficial from the perspective of corridor management, 
such as the time and location of planned and unplanned roadway closures and traffic signal 
timing plans. CTR did not find a standardized source for such data at the time of this report. 
Samples of the most promising data sources identified in this effort given their availability and 
coverage are provided in Product 3. 

At a later project stage CTR conducted a survey to develop further insights into a strategic 
approach for data collection. The research team developed a survey because TxDOT personnel 
are likely to have the best insight on how the organization can progress and where change is 
most needed. The core goals of the survey were the need to identify high priority applications, 
to understand internal TxDOT sentiments about current data practices, and to learn about 
barriers for implementing new methods.  The results of the survey have been translated into a 
number of key insights and recommendations for TxDOT. 
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The results of this survey and insight from follow-up interviews show that TxDOT has made 
great strides in using data and pursuing innovative solutions. This progress can be built upon to 
further progress and help the organization transition into a holistic data strategy. TxDOT will 
need to expand upon its efforts to formalize data standards, efforts to bring personnel 
together, and efforts to create contracts that enable innovation.  

In order to prioritize use cases for prototyping and select models to be prototyped, the 
research team, along with TxDOT, explored possible applications of AI in transportation and 
organized them into the following six categories: system and service planning; asset 
management; system operations; communication and information; business administration; 
and public safety and enforcement. An AI strategy that prioritizes use cases that are directly 
linked to agency goals is helpful for allocating limited resources, driving toward outcomes that 
are actionable in advancing the agency mission, and gaining leadership support. The 
applications selected for this effort are based on the priorities identified by the research team 
after meeting with the project team and following the discussions held during a Workshop 
organized for this project (P2). Selected use cases for prototyping included: 

• Use of Wejo data to understand safety hotspots and gain insights on the impacts of the 
Pandemic: The team analyzed three weeks of data, two before and one after the 
pandemic-related shutdown using clustering techniques (unsupervised learning 
models). Key findings include:

o Cluster analysis is a useful AI technique for classifying roadway segments based on 
their characteristics as well as identifying challenging driving environments. 
Clustering enables TxDOT to readily identify patterns of driving behavior (e.g., 
areas with high hard braking, high acceleration, and/or speeding events), compare 
service roads with freeways, and recognize major crash-contributing factors.

o CV data is a valuable source of information for providing insights into safety, 
planning, and operations. In particular, event data that has already undergone 
processing to identify instances of hard braking, hard acceleration, and speeding is 
extremely useful to a transportation agency. For example, hard braking can 
identify bottlenecks, stop lights, or queuing from a crash. Hard acceleration can 
indicate signalized intersections that are close to one another or on-ramps to 
freeways. This type of information that is packaged in a way to be readily 
consumable can save a transportation agency significant time and money on 
computational resources. The data was found to be most useful in conjunction 
with other data sources, such as roadway geometry and crash reports.
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o Results confirmed observations of lower traffic volumes and higher instances of
speeding after stay-at-home orders were issued. Prior to the stay-at-home order,
speeding typically occurred outside of downtown on some segments in the
northern stretch of the study area. Following the stay-at-home order, speeding
events increased throughout the study area and most drastically near downtown.

• Use of Wejo data to understand changes in travel patterns during the pandemic by 
applying supervised learning techniques: Researchers used several techniques including 
linear regression, random forest and multilayer perceptron to generate and compare 
direct demand models before and after the stay-at-home order. The highest percentage 
reduction in the number of trips was observed at locations with higher service and 
education opportunities. During lockdown, among the employment categories, only 
retail employment locations seemed to make a reasonable contribution to the number 
of trips. Households also made a reduced number of trips during the lockdown. 
Households that are larger tended to produce more trips than smaller households both 
before and during the lockdown. Overall, more complex machine learning methods 
performed better than linear regression when there were outliers in the dataset. Once 
these outliers were removed, the performance of the linear regression model was 
similar to that of other machine learning models. The analysis of changes in trip-making 
patterns after the lockdown is only an example use case of Direct Demand models 
developed using CV data. More generally, the development and maintenance of such 
models based on a live stream of CV data will allow for the rapid analysis and 
identification of changes in travel patterns that occur in any novel situation.

• Real time traffic signal control plans using reinforcement learning models in a simulation 
environment: Researcher trained reinforced leaning (RL) agents using a simple 
mesoscopic model and a more complex simulation environment (VISSIM) which allowed 
to implement timing plans that reflecting protocols used in the field. Experiments 
suggest that training an RL agent to produce fixed timing plans comparable to those 
obtained from current approaches may take hundreds of simulated training hours. 
However, the key advantage of an RL traffic management agent is the ability to respond 
in near-real time to anomalies and variations in roadway conditions. To illustrate this, 
we extended our roadway network to include a simulated freeway on which blockages 
may occur and which will drive significantly higher traffic through the RL agent’s 
intersection. We see from the results that the trained agent is superior in terms of 
equity, delay, and combined reward in an everyday scenario, and is competitive with 
the Webster-based timing plan when facing a large obstruction. We also see, however, 
that in the instances in which the agent must respond to a blocked roadway, there is a 
significant increase in the variance of all metrics. From this, we observe that, 
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while an RL agent may take significant training to compete with fixed-time 
policies, its ability to rapidly respond to changing conditions without human 
intervention is an asset that warrants further testing in the field. While the increased 
variance from the trained agent is notable, it has yet to be determined if the variance 
can be reduced with further training. Nonetheless, the agent has effectively proved to 
be a suitable agent for managing traffic signal timing plans in simulation, and its 
practical effects in the field pose an exciting area for future study. 

An additional type of model was prototyped to consider the feasibility of providing more 
accurate travel time information to drivers, in such way that their experienced travel times 
matched more closely the values displayed in variable message signs. These models relayed 
in readily available speed and volume data and prototype results were very promising. They 
were selected for field testing.  

• Preliminary models were developed as a proof of concept on I-35 using one year of 
probe-based speed data and traffic volumes available form smart work zone trailers
(which are no longer available). A recurrent neural network (RNN) model was trained for 
each INRIX segment in order to predict travel times up to one hour into the future at 
five-minute steps. Total corridor travel time was computed dynamically, by considering 
arrival time at each successive segment along the route. Results were very promising, 
with errors almost 40 percent lower than those that would result from using a naïve 
approach that simply adds the travel time along all segments at the time that the trip 
starts.

• Models at 4 additional sites were trained for field testing, which involved developing a 
framework to archive and efficiently access training data, real-time data, model 
predictions and realized travel times.  Limited volume data was available at the selected 
sites and the results obtained when using it did not show improvement upon models 
that used only probe-based data. Further research may consider additional analysis of 
the quality and aggregation of the volume data. Researchers explored different levels of 
spatial aggregation for model training, seeking to reduce the associated computational 
effort. Models were trained at the route-level, sub-route level, segment level and pair-
of-segments level.

o Smaller spatial aggregations led to better results in general, which in some cases 
outperformed the naïve approach significantly, particularly during peak periods. 
Improvements upon current practice were not as significant as those observed in 
the preliminary models in all corridors, which suggest that the incorporation of 
volume data may be critical to maximize the value of these models. Location-
specific traffic patterns may also play a role in the potential value of enhanced
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travel time prediction methods, which may be more valuable on longer corridors 
where traffic conditions may change rapidly. 

o Models developed to examine differences in spatial aggregation demonstrate
benefits of low levels of aggregation. Though the R2 values of training data are
lower for predictions at the lowest time (0.57 for the single segments model
versus 0.88 for the entire route) on I-35 SB, when predicting farther in the future
the accuracy of predictions is much more stable (0.33 versus 0.04 for the same
models).

o Machine learning models also showed benefits when used to provide comparative
travel times across routes. In every corridor the percentage of incorrect
predictions is less than 10 percent for the single segments model, while the naïve
model reaches an almost 15 percent incorrect prediction rate for the Austin SB
corridor 30 minutes ahead.

o The naïve model had a MAE in difference in predicted route travel times ranging
from 1.11 minutes on the ELP EB corridor to 3.58 minutes on the AUS NB corridor.
For the best performing ML model (single segments) the range was smaller, but
the values were comparable: 1.47-3.25 minutes on the same corridors. When
predicting 30 minutes into the future the naïve model is outperformed
substantially by the ML models 1.98-5.63 minutes versus 1.47-2.80 minutes
respectively.

Overall, the findings of this project suggest that machine learning holds great promise to 
improve the analysis, planning an operation of transportation network using emerging data 
sources. Systematic access and analysis to the data to be considered is critical for 
implementation, and the implementation of some techniques such as the use of reinforcement 
learning for signal timing plan optimization may be too complex to implement in-house. 
Nevertheless, adequate commercial products may become available in the future that may 
warrant consideration, and further research on the topic is important to further understand 
potential benefits and limitations. The tools developed in the field-testing phase may be re-
deployed at new sites, where they would support a streamlined analysis of data sources in 
addition to provide access to results from alternative travel time estimation methods and 
corresponding evaluation. The products developed through this effort are expected to provide 
TxDOT with a more comprehensive understanding of the potential of machine learning 
methods and the value of emerging data sources, and to realize additional benefits form 
existing data sources and subscriptions.  
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Appendix A. Survey Results 

Note: Results are shown for the 25 respondents who fully completed the survey. Input from any 
partial completions is not included. Contact information has been omitted for anonymity 
purposes.  

Q1: This survey is part of a TxDOT RTI project where our research group is developing a data 
acquisition strategy for TxDOT. It includes prioritizing potential uses for new data sources and 
artificial intelligence (AI) tools. The goal of this survey is to understand what applications are 
most relevant to TxDOT in the near future (one to three years), so that TxDOT can prioritize 
their efforts. All results will be aggregated and your input will be anonymous. This survey will 
take roughly five to ten minutes to complete. We appreciate your input and value your 
thoughtful participation. 

Q2: Please provide your contact information (name, organization, and email) 

Q3: Do you have experience working with data (acquiring, analyzing, managing) or analysis 
tools to improve transportation planning, maintenance, operations, etc.? 
Results: 

Choice Percentage (%) Count 
Yes, I have significant experience and knowledge in this 
area. 48.00 12 

Yes, I have some experience and limited knowledge. 40.00 10 

No, I have no experience but I am still knowledgeable 
on the subject. 0.00 0 

No, I have neither experience nor knowledge on this 
subject.  12.00 3 
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Q4: We have listed eight areas where new data sources or AI tools/services could be used to 
enhance operations, safety, and planning. Please select three which you consider to be highest 
priority for TxDOT: 

Results: 
Choice Percentage(%) Count 
Incident Detection – 
Detect incidents faster and more accurately in order to aid 
emergency responders (improve incident response/clearance times). 

13.33 10 

Asset Management –  
Improve collection and accuracy of road condition data. Increase 
the availability of objective metrics, translate data into actions, and 
prioritize maintenance activities. 

12.00 9 

Truck Parking Availability – 
Provide truck drivers with predictive estimates of parking 
availability to reduce truck parking challenges. 

2.67 2 

Flood Detection –  
Detect flooding events earlier where flood sensors are not installed 
and improved travel recommendations during flooding events. 

6.67 5 

Integrated Corridor Management – 
Implement adaptive signal timing which improves throughput at 
signalized intersections and adjusts quickly during unexpected 
periods of congestion. 

18.67 14 

Identify Safety Hotspots –  
Leverage new datasets in tandem with existing resources (CRIS, 
intersection geometry, etc.) to help planners locate and address road 
segments with a high concentration of unsafe behaviors and 
collisions. 

25.33 19 

Disaster Response – 
Leverage social media posts for improved awareness of conditions, 
better understanding of community needs, and vast information 
input at a low cost. 

8.00 6 

Travel Trends & Forecasting – 
Use data from connected cars to understand travel behavior trends and 
connect this with other data to forecast expected future travel demand 
and behavior. 

13.33 10 
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Q5: Besides the eight applications in the previous questions, are there other AI/data 
applications that you would like TxDOT to explore? 

Results: 
1. travel time prediction
2. TP&D -data standards for developing projects, comparing it to when projects are in

construction -how 'well' the project did, and in the future, if you are developing a
project, how likely are you to have a change order, or addendum, etc.

3. Optimization of asset management resources to get the biggest benefit for the available
resources.

4. Project Management/ROW and Utilities Sections
5. Data management and data visualization
6. Don't know of any.
7. Not really sure
8. Similar to Asset management: Utility corridor management. Better ways to track and

lookup utility lines in our ROW for ease of design and prevent delay caused by surprise
conflicts in the field.

9. Factors leading to infrastructure projects to be on time and on budget. Identify and
predict to help w/ future outcomes from there.

Q6: Now, rank your top three applications from highest priority (top) to lowest priority 
(bottom): 

Results: 

Field 
Rank 1 

%           
Count 

Rank 2 
%           

Count 

Rank 3 
%           

Count 
Incident Detection 25.00 2 50.00 4 25.00 2 
Asset Management 14.29 1 42.86 3 42.86 3 
Truck Parking Availability 0.00 0 50.00 1 50.00 1 
Flood Detection 0.00 0 33.33 1 66.67 2 
Integrated Corridor 
Management 

53.85 7 7.69 1 38.46 5 

Identify Safety Hotspots 46.67 7 33.33 5 20.00 3 
Disaster Response 20.00 1 40.00 2 40.00 2 
Travel Trends & 
Forecasting 

28.57 2 42.86 3 28.57 2 
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Q7: When selecting and ranking applications, select up to three of the following that drove your 
decision: 

Results: 
Choice Percentage (%) Count 
Readiness: could be implemented quickly with existing 
technology 11.59 8 

Alignment: fits well with existing priorities and other projects 24.64 17 

Impact: could create a noticeable improvement 27.54 19 

Resilience: would improve reliability during unexpected 
conditions 13.04 9 

Novelty: innovative approach unlike any existing strategies 2.90 2 

Funding: feasibility of acquiring or allocating funds 4.35 3 

Sustainability: continued return on investment over time 14.49 10 

Other: “Efficient: funneling data sets, which enables insights, 
is more efficient process of what already occurs” 1.45 1 

Q8: In terms of their use of new data sources and AI tools, TxDOT is… 

Results: 
Choice Percentage (%) Count 
Ahead of most states. 12.00 3 
On par with most states. 28.00 7 
Behind most states. 4.00 1 
I'm not sure. 56.00 14 
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Q9: From this list, please identify up to two major barriers you experience when working to 
implement a new data source or analysis tool: 

Results: 

Choice Percentage 
(%) Count 

Funding, lack of available funds for this purpose. 17.39 8 

Skillset, our team does not have the expertise needed. 21.74 10 
Awareness, limited knowledge of existing tools and data 
sources. 19.57 9 

Authority, I am not in a position to make this decision. 15.22 7 

Priority, there are other initiatives that are more pressing. 10.87 5 

Unsure, I have not tried to implement something like this. 4.35 2 
Not applicable, I do not experience significant barriers in this 
process. 0.00 0 

Other: please specify. 10.87 5 

Text Entries from Other: 
1. Federal and state rules, policy and guidance direct environmental analysis. We are often

required to conduct worst case analysis that neither factors nor needs new and
emerging datasets. It often requires projections that are also worst case (e.g. assume
little to no market penetration overtime for electric vehicles).

2. Data Sets and Standards do not necessarily exist; conflict -different teams have different
ideas

3. Time; We are understaffed.
4. Administration does not understand the technical concepts to make it happen, and

therefore avoid going after these solutions with currently available tools and skillsets.
5. IT coordination, or lack thereof
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Q10: When evaluating a new data source and/or new analysis tool for acquisition, select up to 
three of the following that would drive your decision: 

Results: 

Choice Percentage (%) Count 

Cost: Preference for the lowest cost solution available. 1.37 1 

Data Format: Consideration of whether data is delivered 
raw or processed. 4.11 3 

Endorsement: An active community of practice or other 
form of division support to understand the tool. 13.70 10 

Visualizations: Ability of the product to translate results 
into key metrics and insights. 23.29 17 

Maturity: Age and experience of the company that is 
offering the product 4.11 3 

Pilot: A desire to test the benefit to TxDOT, District 
Operations or the Traveling Public 12.33 9 

Evidence: Successful use cases from other jurisdictions. 23.29 17 

Evaluation: A cost/benefit analysis which weighs in 
favor of the source/tool. 9.59 7 

Data Granularity: Preference for data that has low 
latency and high frequency. 8.22 6 

Q11: Is there any additional information or context that you think is important to include in a 
data acquisition strategy for TxDOT? 

Results: 
1. No
2. Needs to have a holistic vision in terms of data needs
3. Conflicts occur in Division, which presents different messages to districts. What message 

is presented to districts should be an enterprise strategy.
4. Look at the big picture and realize where we get the biggest impact. Go after those data 

sources and use them to create improvement.
5. N/A
6. Some amount of training from actual trainers. Some of the training is not helpful.
7. It must be paired with data governance. Otherwise there is no agreement on how to use 

the tool or data.
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8. Yes, slightly more centralization of data acquisition and consideration for how
governance will work. A central data warehouse continues to be a huge need for the
agency, which would lead to more use cases being discovered.

9. Use cases. Not too sure what the applications for my department will be, but I know
that there will be some good applications for my department

10. Speed of implementation. Some programs were announced years ago, yet to be
implemented, and enthusiasm has waned.

11. Goal alignment and how this new data/tool fits in w/ existing data and tools.

Q12: Thank you for providing your input. We would like to reach out to a handful of 
respondents to discuss their input and the overall results. Would you be interested in a 30-
minute follow-up meeting? 

Results: 

Choice Percentage 
(%) Count 

Yes 33.33 8 

No 66.67 16 
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Appendix B. Dynamic Travel Times 
Consider a freeway corridor that has been divided into segments . We assume that the travel 
time on each on these segments changes as a function of time, which is discretized in time 
intervals . In this context represents the travel time on segment  at time step . We define the 
instantaneous travel time on corridor  at time  as. The dynamic travel time is defined 
recursively as  

Where  is the partial dynamic travel time up to segment s-1. We assume that 
 for s=1. 

Figure 111 exemplifies the calculation of ITT and DTT for a hypothetical freeway corridor S 
consisting of 4 segments S={1,2,3,4} assuming that travel times are expressed in terms of time 
intervals (e.g.  corresponds to a travel time equal to 3 time steps). 

Figure 111. Example of Instantaneous and dynamic travel time computation. 



243 

Appendix C. Implementation Results of Phase II 
Models 

Figure 112: MAE by prediction time ahead for naive and ML predictions using real-time data from January 
2 - May 31, 2023 on I-35 SB. 

a) I-35 SB average real-time MAE (min).

b) I-35 SB real-time MAE (min) for typical
conditions. 

c) I-35 SB real-time MAE (min) for atypical
conditions. 

d) I-35 SB real-time MAE (min) for the AM
peak period. 

e) I-35 SB real-time MAE (min) for the PM
peak period. 
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Figure 113: MAE by prediction time ahead for naive and ML predictions using real-time data from January 
2 - May 31, 2023 on I-35 NB. 

a) I-35 NB average real-time MAE (min).

b) I-35 NB real-time MAE (min) for typical
conditions. 

c) I-35 NB real-time MAE (min) for atypical
conditions. 

d) I-35 NB real-time MAE (min) for the AM
peak period. 

e) I-35 NB real-time MAE (min) for the PM
peak period. 
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Figure 114: MAE by prediction time ahead for naive and ML predictions using real-time data from January 
2 - May 31, 2023 on SH 130 SB. 

a) SH 130 SB average real-time MAE (min).

b) SH 130 SB real-time MAE (min) for typical
conditions.

c) SH 130 SB real-time MAE (min) for
atypical conditions. 

d) SH 130 SB real-time MAE (min) for the
AM peak period. 

e) SH 130 SB real-time MAE (min) for the
PM peak period. 



246 

Figure 115: MAE by prediction time ahead for naive and ML predictions using real-time data from January 
2 - May 31, 2023 on SH 130 NB. 

a) SH 130 NB average real-time MAE (min).

b) SH 130 NB real-time MAE (min) for typical
conditions. 

c) SH 130 NB real-time MAE (min) for
atypical conditions. 

d) SH 130 NB real-time MAE (min) for the
AM peak period. 

e) SH 130 NB real-time MAE (min) for the
PM peak period. 
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Figure 116: MAE by prediction time ahead for naive and ML predictions using real-time data from January 
2 - May 31, 2023 on I-10 EB. 

a) I-10 EB average real-time MAE (min).

b) I-10 EB real-time MAE (min) for typical
conditions. 

c) I-10 EB real-time MAE (min) for atypical
conditions. 

d) I-10 EB real-time MAE (min) for the AM
peak period. 

e) I-10 EB real-time MAE (min) for the PM
peak period. 
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Figure 117: MAE by prediction time ahead for naive and ML predictions using real-time data from January 
2 - May 31, 2023 on I-10 WB. 

a) I-10 WB average real-time MAE (min).

b) I-10 WB real-time MAE (min) for typical
conditions.

c) I-10 WB real-time MAE (min) for atypical
conditions. 

d) I-10 WB real-time MAE (min) for the AM
peak period. 

e) I-10 WB real-time MAE (min) for the PM
peak period. 
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Figure 118: MAE by prediction time ahead for naive and ML predictions using real-time data from January 
2 - May 31, 2023 on SL 375 EB. 

a) SL 375 EB average real-time MAE (min).

b) SL 375 EB real-time MAE (min) for typical
conditions. 

c) SL 375 EB real-time MAE (min) for
atypical conditions. 

d) SL 375 EB real-time MAE (min) for the
AM peak period. 

e) SL 375 EB real-time MAE (min) for the
PM peak period. 
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Figure 119: MAE by prediction time ahead for naive and ML predictions using real-time data from January 
2 - May 31, 2023 on SL 375 WB. 

a) SL 375 WB average real-time MAE (min).

b) SL 375 WB real-time MAE (min) for
typical conditions. 

c) SL 375 WB real-time MAE (min) for
atypical conditions. 

d) SL 375 WB real-time MAE (min) for the
AM peak period. 

e) SL 375 WB real-time MAE (min) for the
PM peak period. 
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Figure 120: MAPE by prediction time ahead for naive and ML predictions using real-time data from 
January 2 - May 31, 2023 on I-35 SB. 

a) I-35 SB average real-time MAPE (%).

b) I-35 SB real-time MAPE (%) for typical
conditions. 

c) I-35 SB real-time MAPE (%) for atypical
conditions. 

d) I-35 SB real-time MAPE (%) for the AM
peak period. 

e) I-35 SB real-time MAPE (%) for the PM
peak period. 
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Figure 121: MAPE by prediction time ahead for naive and ML predictions using real-time data from 
January 2 - May 31, 2023 on I-35 NB. 

a) I-35 NB average real-time MAPE (%).

b) I-35 NB real-time MAPE (%) for typical
conditions. 

c) I-35 NB real-time MAPE (%) for atypical
conditions. 

d) I-35 NB real-time MAPE (%) for the AM
peak period. 

e) I-35 NB real-time MAPE (%) for the PM
peak period. 
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Figure 122: MAPE by prediction time ahead for naive and ML predictions using real-time data from 
January 2 - May 31, 2023 on SH 130 SB. 

a) SH 130 SB average real-time MAPE (%).

b) SH 130 SB real-time MAPE (%) for typical
conditions.

c) SH 130 SB real-time MAPE (%) for
atypical conditions. 

d) SH 130 SB real-time MAPE (%) for the
AM peak period. 

e) SH 130 SB real-time MAPE (%) for the
PM peak period. 
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Figure 123: MAPE by prediction time ahead for naive and ML predictions using real-time data from 
January 2 - May 31, 2023 on SH 130 NB. 

a) SH 130 NB average real-time MAPE (%).

b) SH 130 NB real-time MAPE (%) for typical
conditions. 

c) SH 130 NB real-time MAPE (%) for
atypical conditions. 

d) SH 130 NB real-time MAPE (%) for the
AM peak period. 

e) SH 130 NB real-time MAPE (%) for the
PM peak period. 
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Figure 124: MAPE by prediction time ahead for naive and ML predictions using real-time data from 
January 2 - May 31, 2023 on I-10 EB. 

a) I-10 EB average real-time MAPE (%).

b) I-10 EB real-time MAPE (%) for typical
conditions. 

c) I-10 EB real-time MAPE (%) for atypical
conditions. 

d) I-10 EB real-time MAPE (%) for the AM
peak period. 

e) I-10 EB real-time MAPE (%) for the PM
peak period. 
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Figure 125: MAPE by prediction time ahead for naive and ML predictions using real-time data from 
January 2 - May 31, 2023 on I-10 WB. 

a) I-10 WB average real-time MAPE (%).

b) I-10 WB real-time MAPE (%) for typical
conditions.

c) I-10 WB real-time MAPE (%) for atypical
conditions. 

d) I-10 WB real-time MAPE (%) for the AM
peak period. 

e) I-10 WB real-time MAPE (%) for the PM
peak period. 
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Figure 126: MAPE by prediction time ahead for naive and ML predictions using real-time data from 
January 2 - May 31, 2023 on SL 375 EB. 

a) SL 375 EB average real-time MAPE (%).

b) SL 375 EB real-time MAPE (%) for typical
conditions. 

c) SL 375 EB real-time MAPE (%) for
atypical conditions. 

d) SL 375 EB real-time MAPE (%) for the
AM peak period. 

e) SL 375 EB real-time MAPE (%) for the
PM peak period. 
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Figure 127: MAPE by prediction time ahead for naive and ML predictions using real-time data from 
January 2 - May 31, 2023 on SL 375 WB. 

a) SL 375 WB average real-time MAPE (%).

b) SL 375 WB real-time MAPE (%) for
typical conditions. 

c) SL 375 WB real-time MAPE (%) for
atypical conditions. 

d) SL 375 WB real-time MAPE (%) for the
AM peak period. 

e) SL 375 WB real-time MAPE (%) for the
PM peak period. 
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Figure 128: MAE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on I-35 SB. 

a) I-35 SB average real-time MAE (min).

b) I-35 SB real-time MAE (min) for typical
conditions. 

c) I-35 SB real-time MAE (min) for atypical
conditions. 

a) I-35 NB average real-time MAE (min).
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Figure 129: MAE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on I-35 NB. 

b) I-35 NB real-time MAE (min) for typical
conditions. 

c) I-35 NB real-time MAE (min) for atypical
conditions. 

Figure 130: MAE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on SH 130 SB. 

a) SH 130 SB average real-time MAE (min).

b) SH 130 SB real-time MAE (min) for typical
conditions.

c) SH 130 SB real-time MAE (min) for
atypical conditions. 
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Figure 131: MAE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on SH 130 NB. 

a) SH 130 NB average real-time MAE (min).

b) SH 130 NB real-time MAE (min) for typical
conditions. 

c) SH 130 NB real-time MAE (min) for
atypical conditions. 

a) I-10 EB average real-time MAE (min).
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Figure 132: MAE time of day for naive and ML predictions using real-time data from January 2 - May 31, 
2023 on I-10 EB. 

b) I-10 EB real-time MAE (min) for typical
conditions. 

c) I-10 EB real-time MAE (min) for atypical
conditions. 

Figure 133: MAE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on I-10 WB. 

a) I-10 WB average real-time MAE (min).

b) I-10 WB real-time MAE (min) for typical
conditions.

c) I-10 WB real-time MAE (min) for atypical
conditions. 
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Figure 134: MAE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on SL 375 EB. 

a) SL 375 EB average real-time MAE (min).

b) SL 375 EB real-time MAE (min) for typical
conditions. 

c) SL 375 EB real-time MAE (min) for
atypical conditions. 

a) SL 375 WB average real-time MAE (min).
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Figure 135: MAE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on SL 375 WB. 

b) SL 375 WB real-time MAE (min) for
typical conditions. 

c) SL 375 WB real-time MAE (min) for
atypical conditions. 

Figure 136: MAPE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on I-35 SB. 

a) I-35 SB average real-time MAPE (%).

b) I-35 SB real-time MAPE (%) for typical
conditions. 

c) I-35 SB real-time MAPE (%) for atypical
conditions. 
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Figure 137: MAPE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on I-35 NB. 

a) I-35 NB average real-time MAPE (%).

b) I-35 NB real-time MAPE (%) for typical
conditions. 

c) I-35 NB real-time MAPE (%) for atypical
conditions. 

a) SH 130 SB average real-time MAPE (%).
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Figure 138: MAPE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on SH 130 SB. 

b) SH 130 SB real-time MAPE (%) for
typical conditions.

c) SH 130 SB real-time MAPE (%) for
atypical conditions. 

Figure 139: MAPE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on SH 130 NB. 

a) SH 130 NB average real-time MAPE (%).

b) SH 130 NB real-time MAPE (%) for typical
conditions. 

c) SH 130 NB real-time MAPE (%) for
atypical conditions. 
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Figure 140: MAPE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on I-10 EB. 

a) I-10 EB average real-time MAPE (%).

b) I-10 EB real-time MAPE (%) for typical
conditions. 

c) I-10 EB real-time MAPE (%) for atypical
conditions. 

a) I-10 WB average real-time MAPE (%).
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Figure 141: MAPE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on I-10 WB. 

b) I-10 WB real-time MAPE (%) for typical
conditions.

c) I-10 WB real-time MAPE (%) for atypical
conditions. 

Figure 142: MAPE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on SL 375 EB. 

a) SL 375 EB average real-time MAPE (%).

b) SL 375 EB real-time MAPE (%) for typical
conditions. 

c) SL 375 EB real-time MAPE (%) for
atypical conditions. 
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Figure 143: MAPE by time of day for naive and ML predictions using real-time data from January 2 - May 
31, 2023 on SL 375 WB. 

a) SL 375 WB average real-time MAPE (%).

b) SL 375 WB real-time MAPE (%) for
typical conditions. 

c) SL 375 WB real-time MAPE (%) for
atypical conditions. 
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Appendix D. Incorrect Shortest Route Predictions 
(Atypical) 

Table 26: Comparison of percentage of time incorrect predictions of shortest route are made 
using naive method versus ML models (atypically high travel times). 

M
od

el
 

Ti
m

es
te

p Atypically High 
EB WB NB SB 

I-10 SL 375 ELP I-10 SL 375 ELP I-35 SH 130 AUS I-35 SH 130 AUS 

N
aï

ve
 

0 7.77 3.74 11.51 8.42 3.48 11.90 5.58 3.52 9.10 24.00 1.34 25.33 

5 10.17 4.19 14.36 9.65 3.79 13.44 6.31 3.73 10.04 24.19 1.47 25.66 

10 12.42 4.11 16.53 11.41 4.10 15.51 7.17 3.81 10.98 24.40 1.57 25.97 

15 15.26 4.79 20.04 13.06 4.45 17.51 8.37 4.11 12.48 24.61 1.70 26.31 

20 17.65 4.94 22.59 14.70 4.62 19.32 9.53 4.19 13.71 25.14 1.83 26.97 

25 19.45 5.09 24.53 16.13 4.70 20.82 10.72 4.42 15.14 25.53 1.90 27.44 

30 21.33 5.24 26.57 17.58 5.02 22.60 11.47 4.49 15.96 26.02 2.07 28.09 

Ro
ut

e-
Le

ve
l 

0 67.04 0.00 67.04 7.47 12.12 19.59 10.47 1.29 11.76 29.04 0.96 30.00 

5 2.22 27.58 29.80 6.26 13.83 20.09 4.76 2.38 7.14 18.65 2.47 21.12 

10 2.22 23.27 25.49 70.03 0.00 70.03 7.21 1.97 9.18 24.04 1.52 25.56 

15 67.58 0.00 67.58 16.03 8.56 24.59 6.46 13.53 19.99 17.87 9.61 27.47 

20 67.58 0.00 67.58 70.03 0.00 70.03 7.89 12.30 20.19 21.63 7.64 29.27 

25 67.58 0.00 67.58 70.03 0.00 70.03 9.45 2.72 12.17 27.02 1.63 28.65 

30 67.58 0.00 67.58 70.03 0.00 70.03 30.80 0.48 31.27 46.24 0.17 46.40 

Si
ng

le
 S

eg
m

en
ts

 

0 22.49 6.88 29.37 16.31 1.69 18.01 4.34 2.02 6.37 23.99 1.04 25.03 

5 23.43 6.29 29.72 14.03 1.82 15.84 4.76 2.02 6.78 24.86 0.96 25.82 

10 24.21 5.82 30.03 11.43 2.86 14.29 5.18 2.26 7.44 25.12 0.83 25.95 

15 24.06 5.50 29.56 13.12 2.47 15.58 4.71 1.79 6.49 22.23 1.09 23.32 

20 26.26 3.93 30.19 15.71 2.21 17.92 4.83 1.71 6.55 23.26 1.16 24.42 

25 35.69 2.36 38.05 18.70 1.43 20.13 6.34 2.38 8.71 26.35 2.18 28.53 

30 33.02 2.20 35.22 23.25 2.60 25.84 5.80 3.77 9.57 26.78 2.45 29.23 

Pa
ir 

Se
gm

en
ts

 

0 10.51 13.92 24.43 13.17 3.62 16.78 4.01 2.09 6.10 12.48 1.61 14.09 

5 23.02 5.18 28.20 10.65 3.11 13.76 3.49 2.70 6.19 11.49 1.45 12.94 

10 19.07 8.99 28.07 14.10 4.99 19.09 4.10 2.18 6.28 13.09 1.53 14.62 

15 30.65 5.99 36.65 15.87 4.33 20.20 3.92 2.09 6.02 12.71 2.22 14.93 

20 38.15 2.45 40.60 17.65 4.44 22.09 3.78 4.05 7.83 9.93 2.85 12.78 

25 42.78 0.27 43.05 19.87 4.88 24.75 4.71 3.41 8.12 10.49 2.62 13.11 

30 32.97 2.86 35.83 33.74 2.89 36.63 6.12 2.99 9.11 13.80 2.97 16.77 
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Table 27: Comparison of percentage of time incorrect predictions of shortest route are made 
using naive method versus ML models (atypically low travel times). 

M
od

el
 

Ti
m

es
te

p Atypically Low 
EB WB NB SB 

I-10 SL 375 ELP I-10 SL 375 ELP I-35 SH 130 AUS I-35 SH 130 AUS 

N
aï

ve
 

0 0.00 0.00 0.00 10.00 4.12 14.12 7.97 5.19 13.16 15.28 10.96 26.25 

5 0.00 0.00 0.00 13.33 6.67 20.00 3.15 3.94 7.09 5.26 0.00 5.26 

10 0.00 0.00 0.00 13.33 4.44 17.78 3.17 3.97 7.14 5.26 0.00 5.26 

15 0.00 0.00 0.00 11.11 4.44 15.56 4.00 4.00 8.00 5.26 0.75 6.02 

20 0.00 0.00 0.00 8.89 6.67 15.56 4.03 4.84 8.87 5.26 1.50 6.77 

25 0.00 0.00 0.00 8.89 11.11 20.00 4.03 5.65 9.68 4.48 2.24 6.72 

30 0.00 0.00 0.00 8.89 11.11 20.00 4.00 6.40 10.40 4.44 2.96 7.41 

Ro
ut

e-
Le

ve
l 

0 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.00 66.67 66.67 - - - 0.00 0.00 0.00 0.00 2.35 2.35 

10 0.00 50.00 50.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

20 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

25 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

30 0.00 0.00 0.00 - - - 0.00 38.89 38.89 0.00 76.47 76.47 

Si
ng

le
 S

eg
m

en
ts

 

0 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

20 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

25 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 2.35 2.35 

30 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 4.71 4.71 

Pa
ir 

Se
gm

en
ts

 

0 0.00 83.33 83.33 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.00 50.00 50.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 33.33 33.33 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

20 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

25 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 

30 0.00 0.00 0.00 - - - 0.00 0.00 0.00 0.00 0.00 0.00 
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Appendix E. Real-Time Model Performance 

Table 28: MAE for travel time predictions models run in real time. 
Route Model Step Average AM PM Typical Atypical 
I-10 EB Naive 0 0.89 0.61 2.04 0.74 3.14 
I-10 EB Naive 1 1.04 0.79 2.35 0.86 3.95 
I-10 EB Naive 2 1.18 0.94 2.64 0.97 4.47 
I-10 EB Naive 3 1.29 1.07 2.91 1.07 4.88 
I-10 EB Naive 4 1.39 1.18 3.16 1.15 5.24 
I-10 EB Naive 5 1.49 1.27 3.40 1.23 5.54 
I-10 EB Naive 6 1.57 1.34 3.63 1.30 5.79 
I-10 WB Naive 0 0.91 1.07 1.39 0.76 3.12 
I-10 WB Naive 1 1.01 1.29 1.60 0.83 3.58 
I-10 WB Naive 2 1.13 1.54 1.79 0.93 3.98 
I-10 WB Naive 3 1.24 1.77 1.98 1.02 4.35 
I-10 WB Naive 4 1.33 1.97 2.16 1.10 4.69 
I-10 WB Naive 5 1.42 2.15 2.32 1.18 4.93 
I-10 WB Naive 6 1.50 2.30 2.47 1.25 5.18 
I-35 NB Naive 0 7.05 9.08 10.30 8.15 6.86 
I-35 NB Naive 1 7.18 9.18 10.82 8.69 6.96 
I-35 NB Naive 2 7.43 9.46 11.32 9.41 7.17 
I-35 NB Naive 3 7.67 9.72 11.77 10.12 7.37 
I-35 NB Naive 4 7.90 9.98 12.20 10.79 7.56 
I-35 NB Naive 5 8.12 10.22 12.59 11.41 7.75 
I-35 NB Naive 6 8.33 10.43 12.95 11.99 7.93 
I-35 SB Naive 0 3.07 3.72 6.38 2.93 5.34 
I-35 SB Naive 1 3.40 4.25 7.00 3.20 7.15 
I-35 SB Naive 2 3.71 4.77 7.50 3.50 7.75 
I-35 SB Naive 3 4.02 5.26 7.98 3.79 8.35 
I-35 SB Naive 4 4.32 5.74 8.44 4.08 8.83 
I-35 SB Naive 5 4.61 6.22 8.85 4.36 9.37 
I-35 SB Naive 6 4.89 6.67 9.22 4.63 9.91 
SH 130 NB Naive 0 0.96 0.75 2.01 0.82 2.46 
SH 130 NB Naive 1 1.05 0.85 2.26 0.89 4.44 
SH 130 NB Naive 2 1.11 0.92 2.44 0.95 4.63 
SH 130 NB Naive 3 1.17 0.98 2.61 1.00 4.78 
SH 130 NB Naive 4 1.21 1.03 2.76 1.04 4.89 
SH 130 NB Naive 5 1.25 1.08 2.88 1.08 4.97 
SH 130 NB Naive 6 1.29 1.12 3.00 1.11 5.03 
SH 130 SB Naive 0 0.95 0.96 1.73 0.83 2.12 
SH 130 SB Naive 1 1.02 1.12 1.86 0.88 3.17 
SH 130 SB Naive 2 1.09 1.29 1.98 0.94 3.44 
SH 130 SB Naive 3 1.15 1.44 2.08 0.99 3.68 



273 

Route Model Step Average AM PM Typical Atypical 
SH 130 SB Naive 4 1.21 1.58 2.18 1.04 3.89 
SH 130 SB Naive 5 1.26 1.70 2.27 1.09 4.07 
SH 130 SB Naive 6 1.31 1.81 2.34 1.13 4.21 
SL 375 EB Naive 0 0.38 0.29 0.71 0.34 2.18 
SL 375 EB Naive 1 0.49 0.37 0.88 0.44 2.49 
SL 375 EB Naive 2 0.54 0.40 0.99 0.49 2.79 
SL 375 EB Naive 3 0.59 0.42 1.08 0.53 2.98 
SL 375 EB Naive 4 0.62 0.43 1.17 0.56 3.13 
SL 375 EB Naive 5 0.64 0.44 1.25 0.58 3.22 
SL 375 EB Naive 6 0.66 0.46 1.33 0.60 3.30 
SL 375 WB Naive 0 0.63 0.69 0.53 0.58 1.51 
SL 375 WB Naive 1 0.68 0.76 0.56 0.62 2.08 
SL 375 WB Naive 2 0.72 0.83 0.59 0.66 2.26 
SL 375 WB Naive 3 0.75 0.89 0.61 0.69 2.42 
SL 375 WB Naive 4 0.77 0.94 0.63 0.71 2.54 
SL 375 WB Naive 5 0.79 0.99 0.64 0.72 2.61 
SL 375 WB Naive 6 0.81 1.03 0.66 0.74 2.66 

I-10 EB
Route-
Level 0 3.16 3.14 5.24 2.94 8.13 

I-10 EB
Route-
Level 1 5.80 5.94 5.72 5.85 4.79 

I-10 EB
Route-
Level 2 5.46 5.46 5.26 5.47 5.33 

I-10 EB
Route-
Level 3 2.31 2.19 5.75 1.96 9.43 

I-10 EB
Route-
Level 4 2.42 2.29 5.71 2.09 9.25 

I-10 EB
Route-
Level 5 2.36 2.22 5.87 2.01 9.46 

I-10 EB
Route-
Level 6 2.19 2.00 6.04 1.81 9.90 

I-10 EB Pair 0 4.74 4.72 4.93 4.73 4.81 
I-10 EB Pair 1 3.52 3.56 4.03 3.44 5.43 
I-10 EB Pair 2 3.60 3.73 4.07 3.53 5.25 
I-10 EB Pair 3 3.41 3.35 4.22 3.32 5.55 
I-10 EB Pair 4 3.01 2.71 4.13 2.87 6.29 
I-10 EB Pair 5 2.69 2.55 3.92 2.53 6.41 
I-10 EB Pair 6 2.45 2.27 3.86 2.26 6.59 
I-10 EB Single 0 1.03 0.89 2.22 0.89 4.67 
I-10 EB Single 1 1.07 0.88 2.49 0.89 5.13 
I-10 EB Single 2 1.01 0.89 2.44 0.82 5.33 
I-10 EB Single 3 1.22 1.00 2.68 1.04 5.35 
I-10 EB Single 4 1.32 1.21 2.90 1.12 5.89 
I-10 EB Single 5 1.18 1.16 2.87 0.95 6.26 
I-10 EB Single 6 1.21 1.17 2.90 0.98 6.46 
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Route Model Step Average AM PM Typical Atypical 

I-10 WB
Route-
Level 0 2.50 2.71 2.76 2.39 4.21 

I-10 WB
Route-
Level 1 3.16 3.29 3.13 3.08 4.40 

I-10 WB
Route-
Level 2 3.04 3.81 4.13 2.73 7.99 

I-10 WB
Route-
Level 3 1.99 2.31 2.71 1.80 4.86 

I-10 WB
Route-
Level 4 2.91 3.70 4.18 2.58 8.14 

I-10 WB
Route-
Level 5 2.98 3.81 4.29 2.64 8.29 

I-10 WB
Route-
Level 6 2.41 3.28 4.62 1.98 9.07 

I-10 WB Pair 0 1.38 1.60 1.92 1.17 4.62 
I-10 WB Pair 1 1.87 2.05 2.25 1.69 4.46 
I-10 WB Pair 2 1.50 1.62 2.10 1.27 4.92 
I-10 WB Pair 3 1.43 1.68 2.04 1.19 4.90 
I-10 WB Pair 4 1.68 2.02 2.11 1.44 5.21 
I-10 WB Pair 5 1.49 1.95 2.13 1.20 5.68 
I-10 WB Pair 6 1.46 1.97 2.07 1.16 5.79 
I-10 WB Single 0 1.13 1.29 1.63 0.94 4.54 
I-10 WB Single 1 1.08 1.17 1.69 0.86 4.25 
I-10 WB Single 2 1.17 1.22 1.85 0.96 4.27 
I-10 WB Single 3 1.35 1.48 1.85 1.13 4.57 
I-10 WB Single 4 1.39 1.66 1.89 1.16 4.68 
I-10 WB Single 5 1.35 1.64 1.92 1.10 5.06 
I-10 WB Single 6 1.43 1.90 2.00 1.16 5.40 

I-35 NB
Route-
Level 0 4.85 6.75 7.47 4.80 4.82 

I-35 NB
Route-
Level 1 5.41 6.79 7.41 5.47 5.37 

I-35 NB
Route-
Level 2 4.82 6.57 7.43 4.82 4.78 

I-35 NB
Route-
Level 3 5.73 7.41 7.36 5.45 5.72 

I-35 NB
Route-
Level 4 5.31 7.14 7.76 5.02 5.30 

I-35 NB
Route-
Level 5 5.20 7.32 8.03 4.86 5.19 

I-35 NB
Route-
Level 6 9.27 11.82 12.15 7.97 9.35 

I-35 NB Pair 0 2.91 3.48 5.51 3.10 2.90 
I-35 NB Pair 1 2.88 3.40 5.55 2.95 2.87 
I-35 NB Pair 2 3.10 3.59 5.65 3.19 3.09 
I-35 NB Pair 3 3.02 3.88 5.81 2.96 3.03 
I-35 NB Pair 4 3.00 3.71 5.70 3.03 2.99 
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Route Model Step Average AM PM Typical Atypical 
I-35 NB Pair 5 2.31 2.57 2.81 2.76 2.27 
I-35 NB Pair 6 1.75 1.13 1.15 1.82 1.75 

I-35 NB
Congestion 
Paths 0 5.55 7.32 7.52 5.56 5.52 

I-35 NB
Congestion 
Paths 1 5.70 7.18 7.59 5.79 5.65 

I-35 NB
Congestion 
Paths 2 5.32 6.91 7.42 5.31 5.28 

I-35 NB
Congestion 
Paths 3 5.47 7.26 7.55 5.24 5.46 

I-35 NB
Congestion 
Paths 4 5.41 7.27 7.94 5.02 5.41 

I-35 NB
Congestion 
Paths 5 5.51 7.46 7.99 5.03 5.52 

I-35 NB
Congestion 
Paths 6 5.85 7.76 8.06 5.19 5.87 

I-35 NB Single 0 4.89 6.53 7.03 5.09 4.84 
I-35 NB Single 1 5.06 6.59 7.03 5.18 5.02 
I-35 NB Single 2 4.92 6.53 7.12 4.91 4.89 
I-35 NB Single 3 4.95 6.51 7.17 4.79 4.93 
I-35 NB Single 4 4.85 5.81 6.93 4.72 4.82 
I-35 NB Single 5 4.02 3.81 3.80 3.65 4.03 
I-35 NB Single 6 3.30 2.16 1.59 1.92 3.41 

I-35 SB
Route-
Level 0 3.96 5.04 7.54 3.83 5.83 

I-35 SB
Route-
Level 1 4.66 5.36 7.66 4.56 6.16 

I-35 SB
Route-
Level 2 4.08 5.06 7.41 3.93 6.35 

I-35 SB
Route-
Level 3 4.09 5.03 7.47 3.94 6.15 

I-35 SB
Route-
Level 4 8.90 11.23 18.33 8.70 11.81 

I-35 SB
Route-
Level 5 4.44 5.34 7.38 4.31 6.43 

I-35 SB
Route-
Level 6 10.55 11.17 13.61 10.57 10.64 

I-35 SB Pair 0 3.30 4.63 4.96 3.13 6.03 
I-35 SB Pair 1 3.03 4.39 5.08 2.83 6.02 
I-35 SB Pair 2 3.32 4.80 4.60 3.14 5.99 
I-35 SB Pair 3 3.45 5.06 3.01 3.32 5.44 
I-35 SB Pair 4 2.97 4.65 1.82 2.85 4.72 
I-35 SB Pair 5 2.38 3.22 1.15 2.28 3.72 
I-35 SB Pair 6 1.71 1.78 0.71 1.64 2.91 

I-35 SB
Congestion 
Paths 0 3.78 4.57 7.46 3.53 7.21 

I-35 SB
Congestion 
Paths 1 3.99 4.35 8.27 3.75 7.42 



276 

Route Model Step Average AM PM Typical Atypical 

I-35 SB
Congestion 
Paths 2 4.13 4.22 8.94 3.87 7.77 

I-35 SB
Congestion 
Paths 3 4.23 4.45 8.93 3.97 7.80 

I-35 SB
Congestion 
Paths 4 4.41 4.73 9.16 4.14 8.16 

I-35 SB
Congestion 
Paths 5 4.48 4.61 9.92 4.20 8.50 

I-35 SB
Congestion 
Paths 6 4.78 3.54 10.57 4.55 7.90 

I-35 SB Single 0 2.94 3.99 5.23 2.70 6.30 
I-35 SB Single 1 3.23 4.49 5.21 3.00 6.34 
I-35 SB Single 2 3.05 4.53 4.99 2.83 6.06 
I-35 SB Single 3 3.07 4.73 3.36 2.89 5.42 
I-35 SB Single 4 2.21 4.12 1.66 2.10 3.62 
I-35 SB Single 5 1.85 2.97 1.04 1.74 3.20 
I-35 SB Single 6 1.36 1.62 0.54 1.28 2.35 

SH 130 NB 
Route-
Level 0 1.04 0.97 1.59 0.92 4.10 

SH 130 NB 
Route-
Level 1 1.29 1.34 1.75 1.17 4.18 

SH 130 NB 
Route-
Level 2 1.06 1.02 1.54 0.93 4.29 

SH 130 NB 
Route-
Level 3 1.83 1.85 2.32 1.64 6.65 

SH 130 NB 
Route-
Level 4 1.70 1.60 2.20 1.49 6.90 

SH 130 NB 
Route-
Level 5 1.10 1.06 1.58 0.96 4.67 

SH 130 NB 
Route-
Level 6 1.45 1.60 1.87 1.32 4.60 

SH 130 NB Pair 0 1.02 0.98 1.51 0.84 4.87 
SH 130 NB Pair 1 1.06 1.07 1.54 0.88 5.03 
SH 130 NB Pair 2 0.98 0.94 1.52 0.79 5.20 
SH 130 NB Pair 3 1.13 1.12 1.62 0.94 5.37 
SH 130 NB Pair 4 1.15 1.15 1.65 0.95 5.56 
SH 130 NB Pair 5 1.16 1.11 1.69 0.95 5.71 
SH 130 NB Pair 6 1.15 1.10 1.67 0.94 5.76 
SH 130 NB Single 0 0.86 0.74 1.56 0.71 4.90 
SH 130 NB Single 1 0.87 0.75 1.56 0.72 5.02 
SH 130 NB Single 2 0.90 0.78 1.61 0.74 5.17 
SH 130 NB Single 3 0.91 0.78 1.66 0.75 5.31 
SH 130 NB Single 4 0.93 0.79 1.67 0.77 5.36 
SH 130 NB Single 5 0.96 0.83 1.72 0.79 5.47 
SH 130 NB Single 6 0.92 0.78 1.68 0.75 5.47 

SH 130 SB 
Route-
Level 0 1.50 1.91 2.16 1.35 4.15 
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Route Model Step Average AM PM Typical Atypical 

SH 130 SB 
Route-
Level 1 1.29 1.74 1.94 1.11 4.49 

SH 130 SB 
Route-
Level 2 1.44 1.94 2.02 1.28 4.44 

SH 130 SB 
Route-
Level 3 2.11 2.77 2.50 1.86 6.81 

SH 130 SB 
Route-
Level 4 2.01 2.68 2.43 1.74 7.00 

SH 130 SB 
Route-
Level 5 1.56 2.19 2.00 1.38 4.86 

SH 130 SB 
Route-
Level 6 1.27 1.82 1.89 1.07 4.85 

SH 130 SB Pair 0 1.30 1.62 1.80 1.12 4.08 
SH 130 SB Pair 1 1.57 1.98 1.88 1.40 4.23 
SH 130 SB Pair 2 1.72 2.14 1.98 1.55 4.46 
SH 130 SB Pair 3 1.90 2.39 2.14 1.73 4.70 
SH 130 SB Pair 4 1.75 2.36 2.06 1.55 5.07 
SH 130 SB Pair 5 1.53 2.21 1.96 1.29 5.44 
SH 130 SB Pair 6 1.56 2.29 2.03 1.30 5.70 
SH 130 SB Single 0 1.06 1.52 1.75 0.87 4.81 
SH 130 SB Single 1 1.11 1.55 1.89 0.91 5.05 
SH 130 SB Single 2 1.10 1.61 1.91 0.88 5.36 
SH 130 SB Single 3 1.11 1.72 1.96 0.88 5.59 
SH 130 SB Single 4 1.13 1.76 1.96 0.89 5.72 
SH 130 SB Single 5 1.16 1.81 1.96 0.91 5.87 
SH 130 SB Single 6 1.15 1.84 1.98 0.90 5.92 

SL 375 EB 
Route-
Level 0 2.40 2.91 2.41 2.38 3.06 

SL 375 EB 
Route-
Level 1 1.20 1.35 2.32 1.09 4.74 

SL 375 EB 
Route-
Level 2 1.18 1.33 2.32 1.08 4.74 

SL 375 EB 
Route-
Level 3 1.20 1.36 2.32 1.09 4.70 

SL 375 EB 
Route-
Level 4 1.19 1.33 2.33 1.08 4.78 

SL 375 EB 
Route-
Level 5 1.15 1.23 2.30 1.04 4.81 

SL 375 EB 
Route-
Level 6 1.48 1.95 2.32 1.39 4.30 

SL 375 EB Pair 0 1.89 2.10 2.12 1.86 3.02 
SL 375 EB Pair 1 1.54 1.89 1.95 1.50 3.00 
SL 375 EB Pair 2 1.44 1.73 1.90 1.38 3.15 
SL 375 EB Pair 3 2.10 2.43 2.26 2.07 3.10 
SL 375 EB Pair 4 1.60 1.98 1.92 1.56 3.22 
SL 375 EB Pair 5 2.01 2.43 2.19 1.98 3.21 
SL 375 EB Pair 6 1.56 1.88 2.12 1.50 3.58 
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Route Model Step Average AM PM Typical Atypical 

SL 375 EB 
Congestion 
Paths 0 2.44 2.84 2.45 2.41 4.19 

SL 375 EB 
Congestion 
Paths 1 1.43 1.68 1.97 1.38 4.31 

SL 375 EB 
Congestion 
Paths 2 1.42 1.69 1.99 1.36 4.38 

SL 375 EB 
Congestion 
Paths 3 1.73 2.02 2.07 1.68 4.18 

SL 375 EB 
Congestion 
Paths 4 1.40 1.67 1.94 1.34 4.42 

SL 375 EB 
Congestion 
Paths 5 1.57 1.87 2.04 1.52 4.42 

SL 375 EB 
Congestion 
Paths 6 1.39 1.76 2.05 1.32 4.92 

SL 375 EB Single 0 0.86 0.87 1.53 0.79 3.59 
SL 375 EB Single 1 0.75 0.63 1.47 0.67 3.29 
SL 375 EB Single 2 0.75 0.76 1.40 0.66 3.40 
SL 375 EB Single 3 0.79 0.77 1.45 0.70 3.58 
SL 375 EB Single 4 0.94 1.02 1.64 0.85 3.72 
SL 375 EB Single 5 0.89 0.94 1.61 0.81 3.61 
SL 375 EB Single 6 0.90 0.94 1.71 0.80 3.96 

SL 375 WB 
Route-
Level 0 0.95 1.28 0.76 0.89 4.69 

SL 375 WB 
Route-
Level 1 0.94 1.30 0.78 0.88 4.64 

SL 375 WB 
Route-
Level 2 1.91 2.07 2.00 1.90 2.95 

SL 375 WB 
Route-
Level 3 1.13 1.55 1.00 1.08 4.29 

SL 375 WB 
Route-
Level 4 1.18 1.61 1.07 1.14 4.23 

SL 375 WB 
Route-
Level 5 0.98 1.38 0.83 0.93 4.54 

SL 375 WB 
Route-
Level 6 1.17 1.60 1.05 1.13 4.25 

SL 375 WB Pair 0 1.08 1.38 1.09 1.05 3.01 
SL 375 WB Pair 1 1.10 1.36 1.11 1.07 3.31 
SL 375 WB Pair 2 1.09 1.38 1.10 1.06 3.24 
SL 375 WB Pair 3 1.24 1.52 1.28 1.21 3.46 
SL 375 WB Pair 4 1.07 1.39 1.02 1.03 3.72 
SL 375 WB Pair 5 0.89 1.21 0.86 0.85 3.87 
SL 375 WB Pair 6 1.49 1.83 1.50 1.46 3.73 

SL 375 WB 
Congestion 
Paths 0 1.93 2.02 2.03 1.92 2.77 

SL 375 WB 
Congestion 
Paths 1 1.78 1.91 1.86 1.77 2.84 

SL 375 WB 
Congestion 
Paths 2 1.76 1.96 1.91 1.74 3.05 
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Route Model Step Average AM PM Typical Atypical 

SL 375 WB 
Congestion 
Paths 3 2.45 2.60 2.67 2.45 3.10 

SL 375 WB 
Congestion 
Paths 4 2.17 2.30 2.37 2.16 2.96 

SL 375 WB 
Congestion 
Paths 5 1.65 1.86 1.79 1.63 3.07 

SL 375 WB 
Congestion 
Paths 6 1.21 1.42 1.25 1.19 3.23 

SL 375 WB Single 0 0.72 0.92 0.59 0.69 2.93 
SL 375 WB Single 1 0.86 1.08 0.76 0.83 3.21 
SL 375 WB Single 2 0.71 0.92 0.60 0.68 3.41 
SL 375 WB Single 3 0.70 0.91 0.56 0.66 3.53 
SL 375 WB Single 4 0.81 1.06 0.72 0.78 3.52 
SL 375 WB Single 5 0.71 0.95 0.60 0.67 3.62 
SL 375 WB Single 6 0.83 1.13 0.75 0.79 3.66 
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