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Chapter 1 Introduction 

Historically, highway safety efforts have focused on passive safety systems (such as 

airbags and road barriers) that attempt to reduce the severity of crash outcomes. With the 

advancement of technology, however, efforts have expanded to designing advanced driver 

assistance systems (ADAS), which have great potential to proactively anticipate and prevent 

crashes. In order to inform a vehicle’s driver (or autonomous system) of a potential crash, ADAS 

work to detect roadway objects and obstacles, predict the motion of the vehicles of interest, and 

compare the host vehicle’s own course to that of nearby vehicles to prevent conflicts. Currently, 

most existing ADAS rely exclusively on data collected from sensors—radars, cameras, and 

LIDAR (Light Detection and Ranging)—to detect objects and generate predictions. However, 

sensors are limited, both in range and in the ability to detect objects outside of the sensor’s line of 

sight. As such, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, 

which can function along a longer range and are unconstrained by line-of-sight considerations, 

offer further opportunities for ADAS. By exchanging real-time position information, such 

communication systems can identify a potential collision course well before the vehicles enter 

each other’s sensor range. The simultaneous use of communication and sensing technologies 

promises to accelerate the potential of ADAS.  

The mechanisms of communication and sensing work in fundamentally different technical 

ways. This is because communication is used to precisely exchange information (for instance 

position and speed) between vehicles (or between vehicle and infrastructure), while sensors are 

used to estimate the location of objects and motion trajectory of other vehicles relative to the 

sensing vehicle. While sensor-based ADAS offer great advancement over current roadway safety 

systems, there are limitations in what such a system can offer. For instance, in the context of urban 

intersections, sensors may have limited line-of-sight, and sudden stops or accelerations between 

two vehicles with pure sensor-based ADAS can result in a downstream (in time) cascading 

negative safety impact on other vehicle movements. This is where communication, in addition to 

sensors, may offer a substantial benefit as it can send and receive information even when line-of-

sight is blocked. Similarly, in overtaking maneuvers on rural roads sensors can help prevent some 

lower speed collisions between a passing vehicle and oncoming traffic. However, at high speeds, 

ADAS systems relying purely on sensors do not have enough time and space to brake within the 

window of time from detecting an oncoming vehicle. Alternatively, the longer range of 

communication between the passing vehicle and an oncoming vehicle can prevent vehicles from 

being on a collision course well before what can be discerned by radar and other sensing 

mechanisms alone. Communications may also aid sensing systems by providing a means for 

exchanging sensor data between vehicles or between vehicles and infrastructure. 

At the same time, sensing mechanisms can also be beneficial to communications systems, 

especially because beam alignment (basically speaking, the direction in which communication 

signals are shot for optimal latency and packet conveyance), which can be very time-consuming 
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in a pure communications-based ADAS, can be done much more quickly by narrowing the cone 

of communications transmissions through information on the environment provided by sensors. 

Sensors are also essential to complement communications because pedestrians and bicyclists will 

not have the appropriate communication devices. In all of these instances, the optimal fusion of 

information from different sources is a key issue to preventing communication data overload or 

overall detection and prediction failures.  

This project was proposed to advance research on the integration of cutting-edge 

developments in communications and sensing technology within transportation systems, with the 

goal to evaluate potential gains in traffic safety that the development and integration of these 

technologies may offer.  

The project was divided into three main tasks: 

1) Develop conceptual and functional frameworks for integrated wireless safety 

systems that incorporate information derived from both communication and radar 

platforms.  

2) Advance and develop a new combined communication-radar paradigm for 

automotive applications using next-generation millimeter wave (mmWave) 

communication. Consider different performance metrics of radar and 

communication systems and investigate security issues in vehicular environments. 

3) Conduct preliminary tests with real data, assess the performance of the proposed 

system, and develop a Concept of Operations (CONOPS) and requirements for 

technology deployment. 

 

The first task of the project developed conceptual and functional frameworks for 

integrating communications and radar technologies. It begins in Chapter 2 by implementing a 

collision avoidance system using available technologies such as camera, radar, LIDAR and DSRC 

(dedicated short-range communication). In Chapter 3, we develop the perception framework, 

which handles how objects are represented, tracking and how occlusion is dealt with. Chapter 4 

discusses how each specific sensor deals with perception. Chapter 5 contains the details 

surrounding the sensor fusion and its calibration. In Chapter 6 we apply these technologies and 

construct a collision warning/collision avoidance (CW/CA) system. Finally, Chapter 7 deals with 

the development of an algorithm for decision-making while driving and its application to five 

different scenarios. 

The second task starts in Chapter 8 by providing a framework for DSRC-aided mmWave 

communication systems vehicular environments. Then, in Chapter 9, we develop a framework for 

radar-aided mmWave communication systems for vehicle-to-infrastructure (V2I) 

communications. Chapter 10 provides an overview of advanced techniques that can further 

enhance joint mmWave communication and radar systems.  

In the final task, ADAS applications were developed for five specific scenarios: urban 

intersections, overtaking maneuvers on rural roads, pedestrian crossings or pedestrian/heavy areas, 
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highway merging from a standstill, and construction zones. We develop a data collection and 

analysis methodology to assess the performance of the ADAS, which is described in Chapter 11. 

We then collect and analyze field data to evaluate the ADAS performance in three of the 

applications: urban intersections in Chapter 12; overtaking maneuvers in Chapter 13; and 

pedestrian detection in Chapter 14. 

Chapter 15 describes the design of fully operational collision warning prototypes for three 

of the ADAS applications: construction zones, pedestrian warnings, and highway merging. These 

prototypes were tested and demonstrated in controlled but realistic environments. These 

applications are the result of a collective effort involving all three tasks. 

Finally, in Chapter 16 we present the overall conclusions of the project and discuss future 

research. 
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Chapter 2 Implementation of Collision Avoidance Technology 

2.1 Test Vehicles and Hardware 

Three vehicles were purchased to enable real-world testing: a Honda Accord sedan, a 

Toyota RAV4 SUV, and a Ford F-150 truck (Figure 2.1). This diversity of make and model enables 

the research team to test the sensing devices and computational units across a wide variety of 

common vehicles. The exact specs for these vehicles are given in Appendix A. In the sedan and 

SUV, connecting cables for the sensors were installed semi-permanently by ProCar Audio. This 

installation made the vehicles appear less cluttered, cleared space for spectating passengers, and 

protected against rainfall—our system is not waterproof, but will not be damaged by brief water 

exposure. 

 

 

Figure 2.1: Pictures of the three project vehicles 

2.1.1 Sensing Devices 

The initial research proposal emphasized the comparison of automotive radar and DSRC 

vehicular communication. However, the field of autonomous vehicles has steadily advanced and 

it became clear that other sensors have unique strengths and may be readily available. With 

TxDOT’s approval, the research team purchased one of each type of common automotive sensor 

associated with advanced driver assistant systems. 

Camera 

Cameras are appealing sensors for several reasons, the first being their extremely low cost. 

High quality and weather-robust cameras are readily available for hundreds of dollars and even far 

cheaper cameras (such as those on cell phones) can still provide recognizable video. We purchased 

four Logitech C920 webcams. Despite having potential difficulties with lighting responsiveness, 

the webcam offers high resolution and easy real-time data access through a USB for a price of $75 

or less. It is reasonable to assume that current vehicular cameras used for forward collision warning 

or automatic cruise control are of a similar cost. 

Another appeal of cameras is the intuitive connection to human drivers, who almost 

entirely rely on visual information to drive [2.1]. However, the translation from raw image data to 

meaningful information requires state-of-the-art algorithms and computational resources, with the 
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cost of the latter potentially offsetting the cheapness of the cameras themselves. These algorithms 

reliably locate objects within the image, but determining the distance and relative velocity of 

faraway objects is a separate and difficult task. This task requires either contextual knowledge (for 

instance the expected size of a truck relative to a car, or the relative distance of other objects such 

as buildings), or cooperation with other sensors. Finally, a single camera can only gather 

information in one direction. Multiple cameras are required for 360-view sensing. We have used 

a single camera at a time, focusing on applications where only objects in front of the vehicle are 

need to be detected. 

Radar 

Radar detects objects based on the reflections of a broadcast electromagnetic wave. Waves 

of the right frequency are less affected by precipitation or dust than cameras, and radar easily 

detects distances and even speeds of approaching objects. However, waves reflecting off an uneven 

ground or off other objects can cause false or misread object detections. Additionally, radar covers 

a similar horizontal range to cameras and an even smaller vertical range. The Delphi ESR is a 

standard radar for automated cruise control and was already purchased and used in Phase 1 of this 

project. The purchased version is the most open and flexible with respect to its output, but still 

returns processed detections rather than raw waveforms. This meant that our assessment of the 

radar’s performance was constrained by the ESR’s design choices. 

LIDAR 

Rotating LIDAR is capable of providing high-resolution distance data in 360 degrees, and 

is still instrumental to modern urban autonomous vehicles like those of Waymo and GM’s Cruise.  

However, the LIDARs used by these companies cost tens of thousands of dollars, putting them far 

beyond the cost of other sensors and the reasonable cost for consumer vehicles. The cost of a 

LIDAR unit is roughly proportional to the number of vertical lasers – more lasers equates to more 

reliable detection at long distances and more information on the shape of an object. We purchased 

two Quanergy M8 units and a Velodyne VLP16, which have 8 and 16 lasers respectively. These 

sensors are relatively accessible at around $5000 per sensor. However, they cannot capture the 

same level of detail that higher-laser LIDARs can, and so many conventional detection algorithms 

had to be modified for their use. LIDARs are also known have difficulty with weather and other 

forms of air obstruction [2.2]. 

DSRC 

Dedicated short-range communications (DSRC) is the North American standard for V2V 

and V2I communication. As DSRC operates at the same frequency as Wi-Fi, the hardware 

necessary to send and receive communications is widespread and inexpensive. Basic GNSS (global 

navigation satellite systems, including the USA-created GPS) receivers are similarly widespread 

in modern cell phones and cars. However, these low-accuracy GNSS receivers can have 



6 

positioning errors of over five meters, which is problematic for most safety applications. The 

Cohda DSRC unit includes differential GNSS, which has an error within several meters [2.3]. 

Three on-board units and one roadside unit were purchased in Phase 1, and were used in this project 

for both V2V and V2I. 

PPP-GNSS 

The only way to assess the quality of detection for each sensor is to determine the position 

of each vehicle with a guaranteed high accuracy. The multiple approaches used in this project are 

described in Section 4.2. One option for precise vehicle positioning is PPP-GNSS (precise point 

positioning GNSS), the most accurate form of GNSS. We purchased four Emlid Reach receivers. 

One receiver is kept stationary, and the other three can precisely determine their positions while 

within a few hundred meters of the stationary receiver. Unfortunately, the Reach GNSS receivers 

we purchased were heavily affected by obstruction from trees and buildings, so they were only 

reliable positioning tools in certain situations. 

IMUs 

Inertial measurement units (IMUs) give information about acceleration and rotation, and 

like GNSS are readily available on most cars and smartphones. The Reach GNSS unit came with 

an MPU9250, which is a common low-cost IMU. High-accuracy IMUs [2.4] were substantially 

more expensive and were not considered. We primarily use IMUs to improve self-tracking at low 

speeds in urban environments, as they can for instance distinguish between GNSS drift and slow 

motion at a stoplight. 

CAN Access 

Autonomous vehicles are typically controlled through the vehicle’s Controller Area 

Network (CAN). The configuration of this network is an international standard, but the accepted 

messages and commands vary from car to car and are typically not public. The exception is On-

Board Diagnostic (OBD-II) information, which includes basic information used to diagnose or 

adjust the engine and other basic vehicular sensors. These basic sensors include the steering wheel 

angle, engine throttle, and speedometer reading. This information is similar to the acceleration and 

rotation returned by an IMU and could potentially replace IMUs. 

While all vehicles provide this OBD-II information in some form, the way they do so can 

be kept informally secret. Some cars have access ports in hard-to-reach areas like the hood or 

multiple access ports. Some details of the communication format, such as baud rate, vary among 

car models and are not publicized for every model. We purchased two Panda OBD-II interfaces 

from comma.ai. We successfully connected to and read speed information from the Toyota RAV4, 

but were unsuccessful in reading anything from the 2017 Honda Accord. The next step to accessing 

OBD-II information, given insufficient online information, would be to take the car to a dealership 

for maintenance and ask/observe how they access this information. 
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Table 2.1 displays each variety of sensor and computer, its relative advantages and 

disadvantages, and the specific device purchased.  

 

Table 2.1: Sensing devices 

Sensor Pros Cons Chosen Device Price 

Camera Cheap, high-res 

data, details 
No distance info, 

needs fast 

computing Logitech C920     

$75 

Radar Weather resistant Noisy, low detail Delphi ESR 2.5 

 

$5000 

LIDAR 360 view, high 

resolution 
weather-prone Quanergy M8, Velodyne 

Puck 

 

$5000, $8000 

V2V 360 view, 

unobstructed, and 

accurate info 

Needs other 

vehicles to have 

V2V and GNSS 

Cohda MK5 (includes 

GNSS) 

 

(no fixed price) 

PPP-

GNSS 
High-accuracy 

absolute position 
Blocked by 

obstacles 

EMLID Reach  

$275 (locally 

operational unit, 

global units are > 

$1000) 

IMU Only source of 

acceleration and 

turning info 

 
MPU 9520 Included with 

EMLID Reach 

Computer 
  

Oryx Pro, Drive PX2 

  

$1700, $2500 

(our offer from 

Nvidia, no fixed 

price) 

 

2.1.2 Vehicle Setup 

The computational requirements of each sensor vary substantially. The GNSS and DSRC 

devices performed most of the computational work internally, while LIDAR and especially 

cameras require computers that handle large input data and perform complex algorithms at a high 
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speed. As this project involved testing and demonstrating several setups, computers that were 

easily movable and removable were also useful. Three System76 Oryx Pros were chosen as some 

of the few laptops with high-quality GPUs and sufficient input ports. In addition, two Nvidia Drive 

PX2s, high-power GPU-based computers that are used by companies such as Tesla [2.5], were 

purchased—their use is discussed in Section 2.4.2. 

As the cars purchased were hybrids, in-car battery access was more restricted than in 

traditional cars and could not source enough power for all the sensors during test runs. To 

overcome this, the team purchased extra deep-cycle vehicle batteries and placed them on the floor 

in front of the back seats of each vehicle. 400W adapters were sufficient to power all devices at 

once.  

Some external equipment was also necessary for tests and demonstrations. Calibration 

checkerboards were hand-constructed to properly position sensors, as discussed in Section 5.3.1. 

A tower that connects to the trailer hitch of the pickup truck was used to emulate sensing 

infrastructure, for instance for the demonstration in Chapter 15, and to measure pedestrian 

positions as described in Section 4.2.3.  

2.3 Prototype Software 

The software for collision avoidance is divided into sensor code and application code. The 

sensor code handles each of the hardware devices covered above. If run on its own, it visually 

displays the information from a sensor. The application code covers the five collision warning 

applications that were the focus of the project: rural-road overtaking, pedestrian, intersection 

crossing, highway merging from a stop, and construction zones. Each application has its own 

folder with implementations of tracking, collision detection, and an audio-visual warning. The 

applications can be run as a simulation, or in real-time using the sensors and sensor code. The 

simulated version uses the same collision detection and display format as the real version and 

provides a useful test. 

Most tasks in robotics can be divided into the subtasks of perception, prediction, and 

planning. Planning in CW/CA is generally simple, as the goal is simply to determine that the 

currently predicted future is dangerous enough to alert the driver (as diagrammed in Figure 2.2). 
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Figure 2.2: Diagram of the steps of CW/CA 

2.4 Prototype Computation 

The prototype collision avoidance system is performed primarily on the System76 laptops 

purchased for this purpose. The Python programming language was used with popular open-source 

packages such as OpenCV and Tensorflow [2.6]. The speed of the prototype varies depending on 

the sensor combination, the type of fusion, and the number of components passed by the tracker. 

It was designed to perform at 10 sensor updates a second or faster. Two design choices were 

investigated in detail but ultimately not adopted: parallel computation to increase speed and 

standard software platforms for easy modification and sharing. 

2.4.1 Parallel Computation 

By default, a program runs as a single thread and is performed in sequence by a single 

processor. Parts of the program that must be run simultaneously, such as storing the input from a 

sensor, are run as separate threads that communicate with the main thread. Much of the 

computation for multi-object tracking does not need to be performed sequentially. For instance, a 

matrix containing the likelihood of each object causing each measurement is used to determine 

which object is hypothesized to cause which measurement. This step is the most time-intensive for 

our LIDAR update algorithm, as shown in Table 2.2. Each object-measurement pair could be 

compared in parallel with no change to the rest of the update algorithm. Our laptop CPUs have 

four processors, so a highly parallel tracking algorithm could hypothetically run four times faster—

in practice, the gain from parallelizing is less.  

Future	Trajectory	
Predic on	

Detect	Poten al	
Trajectory	Conflict	

Collision	
Warning	
(CW)	

Collision	
Avoidance	

(CA)	

Current	State	
Es ma on	
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Table 2.2: Breakdown of computation time for example LIDAR tracking 

Method Parallelizable Time (seconds) 

Prediction Y 15 

Sensor Processing N 22 

Object-measurement Likelihood Y 157 

Data Association N 4 

Final Update Y 7 

Debug and Output N 1 

 

A GPU has hundreds or thousands of processors that perform simple parallel operations, 

such as operations that create or modify parts of an image. GPU computing is the key to rapid 

visual object detection and is used by our camera object detection system. We also implemented 

GPU-based multi-object tracking. The potential disadvantage of GPU computing is that the 

graphics processors are slower per sequential instruction than standard processors and have a 

smaller memory bank. Programs must ferry data back and forth between the CPU memory and 

GPU memory, incurring some time loss. 

The different tracking implementations were tested on the fourth video of the Multi-Object 

Tracking Challenge [2.7]. Figure 2.3 shows a snapshot of this video. The video contains over thirty 

pedestrians at any point in time, roughly as much as a vehicle is expected to handle. Thus, the 

benefit of parallelization for this video should be roughly as much as for vehicular applications. 

The different computational implementations perform the same operations and reach the same 

estimates, the only difference being the speed at which they do so. Table 2.3 shows the runtime of 

a single update step for each method. Multi-threading on a computer with four processors improves 

the average tracking speed by roughly 50%. The prototype does not currently use multi-threading 

as our speed requirements are already satisfied, but multi-threading is a clear option should higher 

speed be needed. GPU computation is a less valuable option, especially considering that any 

camera-based object detection method will already be utilizing the GPU. 

 

Table 2.3: Runtime of different computation methods on MOT Challenge video tracking 

Method 
Average Update Time 

(milliseconds) 

Max Update Time 

(milliseconds) 

Single-threaded CPU 28 69 

Multi-threaded CPU 18 52 

GPU 30 54 
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Figure 2.3: Snapshot of the MOT Challenge’s fourth video 

 

2.4.2 Alternative Platforms 

Several public codebases specifically for autonomous vehicles are in development. The 

educational startup Udacity has organized competitions for specific subtasks of autonomous 

driving [2.8]. Comma.ai has started OpenPilot, an open source framework for highway collision 

avoidance [2.9]. The Apollo project led by Baidu is the largest of these repositories, with over one 

hundred contributors and over one hundred partner companies [2.10]. It addresses all aspects of 

autonomous driving, from perception to planning and visual display, and at this point has several 

versions, each with its own focus application. Some companies are creating proprietary codebases. 

Nvidia has created a system called DriveWorks that facilitates use of autonomous technology on 

their car-oriented computer, the PX2 [2.11]. Two senior design projects for UT Electrical 

Engineering undergraduates in the 2017–2018 school year examined achieving collision avoidance 

with these public frameworks. One of the projects used the Apollo framework, while the other 

used Nvidia’s DriveWorks. 

The Apollo framework, in its current form, proved difficult to use for two reasons. Firstly, 

most of the perception code is designed specifically for particular sensors. Rather than extending 

or modifying parts of the code to incorporate new sensors, researchers are currently encouraged to 

write their own perception code and connect it to the other parts of the framework. For collision 

warning applications, the perception subtask is a major part of the work, so the current Apollo has 

little to offer other than a standardized graphical display. The framework is also under rapid 

development—Version 1.0 was released summer of 2017, and four distinct versions have been 

released since then with thousands of small updates in between. The senior design team had to 

choose between modifying their code to accommodate the updated platform and maintaining 

obsolete and possibly erroneous versions. Ultimately, the collision warning system they developed 

did not actually use any part of Apollo. Apollo is currently not a practical platform for collision 

warning, but has evolved quickly enough to warrant future examination. 

DriveWorks is a more stable framework and is marketed as being ready-to-use, even 

including on-call support from Nvidia. The senior design team completed a collision warning 
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assistant in this framework. Figure 2.4 shows a snapshot of their visualization, which is dense but 

combines all of the information DriveWorks offers. A variety of sensors can be practically 

incorporated into DriveWorks, though radar was still difficult to use. However, DriveNet is the 

piece of the DriveWorks that handles GPU computation such as camera-based object detection, 

and modifying or replacing this code was not well supported. The main draw of Nvidia’s vehicle-

oriented devices is their GPU and vision quality, so the limited flexibility of the DriveWorks in 

this regard does impede its usefulness. 

 

 

Figure 2.4: Screenshot of modified DriveWorks display, with bird’s-eye view LIDAR points 

over the video with detected objects marked. The bottom left states the velocity of each 

object. 
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Chapter 3 Perception Framework 

We refer to the vehicle in which the CW/CA prototype is installed as the host vehicle, and 

the other traffic participants that must be avoided as objects (unless a specific type of object, such 

as a pedestrian, is the focus). Perception can be further divided into self-tracking, which determines 

the position and current motion of the host vehicle, and multi-object tracking, which locates all of 

the other objects relative to the host vehicle and determines their position and current motion. 

Multi-object tracking includes the challenges of detecting all the relevant objects (and conversely, 

not falsely detecting objects that are not actually present), determining these objects’ location and 

shape, and determining their motion if relevant. These challenges are usually addressed 

simultaneously by maintaining a hypothesis of current objects and updating that hypothesis each 

time new sensor information is available. If the hypothesis includes the motion of all objects, then 

it is straightforward to predict their possible positions for the next several seconds. These possible 

positions can be used to detect a potential collision in the near future, which is the essential 

information for CW/CA. 

The first step in perception is to process raw sensor data into useable information about the 

host vehicle and relevant objects. However, these algorithms are highly dependent on the sensor 

in question and on the desired format of the information. Thus, we skip the detection step and 

describe its various implementations in Chapter 4. 

3.1 Probabilistic Multi-Object Tracking 

3.1.1 Explanation and Motivation 

Even with highly accurate sensors and predictive methods, the future state of a traffic 

environment will be uncertain. Drivers or pedestrians may change their motion arbitrarily, and 

new participants may enter the field of view. Similarly, all sensors suffer a certain degree of error 

in their ability to describe nearby objects. More cost-effective sensors generally have more error 

at a single point in time. Probabilistic multi-object tracking explicitly handles uncertainty in the 

objects and sensor readings by making the hypothesis a probability distribution across a set of 

objects. The sensor’s reading at a single point in time is expected to follow a joint distribution with 

the current hypothesis, and updating the hypothesis with the given readings results in a less varied 

distribution, rather than a single answer. That is, given a hypothesis across the state of objects P(X) 

and a model of the sensor output P(Z|X), the update solves for P(X|Z). 

In probabilistic single-object tracking, X is a single object and Z is a measurement of that 

object. The field has been heavily studied for over fifty years, and is covered for instance in [3.1]. 

The most popular solution applies when P(X) is a mixture of Gaussian distributions and P(Z|X) is 

also Gaussian. One of the benefits of probabilistic tracking is that any number of sensors can be 

used at any time. Assuming that each sensor model is independent of the others, the hypothesis 

can be updated with each sensor, one at a time. 
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In multi-object tracking, X is a set of objects {x1, x2,…xn}, where even the number of present 

objects n is uncertain. The sensor output comes in a set of measurements {z1,…}, wherein a single 

measurement (possibly) contains the sensor’s information for a single object [3.2]. Each object has 

a probability of detection PD(x), which is the probability that a measurement is created, and a 

distribution over a created measurement P(z|x). There may also be false measurements, which are 

errors by the sensor and do not correspond to objects. These have a false distribution PF(z). The 

standard multi-object measurement model can be written: 

 

𝑃(𝑍|𝑋) =  ∑ ( ∏ 𝑃𝐷(𝑥𝑖)𝑃(𝑧𝑗|𝑥𝑖)

𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑖,𝑗

∏ (1 − 𝑃𝐷(𝑥𝑖))

𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑖

∏ 𝑃𝐹(𝑧𝑗)

𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑗

)

𝑚𝑎𝑡𝑐ℎ𝑒𝑠

 

 

A specific matching between measurements and objects is referred to as a data association. 

The form of hypothesized objects, as well their motion and entry/exit from the scene, is the same 

for all sensors and described in Section 3.2. The measurement terms PD(x), P(z|x), and PF(z) are 

specific to each sensor. One common concern, line-of-sight limitations for sensors, requires 

particular care and is discussed in Section 3.3. 

3.1.2 Tracking Formats Chosen 

The necessary complexity of the tracking framework can depend on the application. For 

instance, V2V applications do not need to worry about data association because DSRC messages 

include unique identifiers for each vehicle, and there is essentially no chance of accidentally 

getting a measurement that was not sent by a nearby vehicle (outside of malicious attacks). For the 

demonstration in Section 15.3, the V2V-based tracking framework stored a list of relevant vehicles 

and deleted one when it had not been detected for ten seconds. Each relevant vehicle was tracked 

accounting for GPS errors. 

For most V2I or sensor-based detection and tracking applications, the project prototype 

uses a single hypothesis. This is represented as a multi-Bernoulli distribution for the set of tracked 

objects X. This stores P(X) as a finite set of potentially existing objects, where the state of each 

object is independent [3.3, 3.4]. That is, we keep a fixed-size list of distributions [P(x1), P(x2), 

P(x3), … P(xN)] and existence probabilities [r1, r2, r3, …, rN]. Any number of objects n ≤ N can be 

tracked; if there is definitely only n objects, the existence probabilities past rn will be very low. In 

practice, false detections add a certain number of possibly existing objects that should be 

considered. To update this type of distribution, a single data association is required. The 

theoretically best distribution update uses the marginal probability of each object matching each 

measurement, which can be exactly calculated [3.5] or quickly approximated [3.6]. However, we 

found that using the single most likely data association performed better—this has been 

corroborated by other researchers [3.7]. Using this data association technique, our update method 

is equivalent to a Multi-Bernoulli Mixture tracker [3.8] that maintains only a single mixture 
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component at a time. Single hypothesis techniques have been popular for autonomous vehicles 

such as [3.9, 3.10, 3.11, 3.12]. 

For particularly crowded scenes, the uncertainties in data association mean that the single 

most likely hypothesis may not ultimately be the correct one. Additionally, sometimes the 

distinction between two possible situations cannot be made yet, as with occluded objects. Multiple 

hypotheses can be stored at once while using the same list of object distributions [P(x1), …] but a 

more complex formulation of existence probabilities. The Multi-Bernoulli Mixture tracker [3.8] 

simply stores multiple lists of existence probabilities, each corresponding to a single hypothesis. 

When updating using a sensor’s information, each of the current hypotheses must be considered 

and several of the most likely new data associations for each are calculated. However, single 

hypothesis tracking was considered sufficient for our current prototype applications. 

3.2 Object Representation 

An object’s state includes its position on the ground, its shape, its current motion, and 

potentially other characteristics such as its identity (pedestrian versus cyclist, for instance). Shape 

and motion are generally unrelated as the shape can be assumed to stay constant. Boxes (or 

rectangles from a bird’s eye view) are a popular choice of shape. Queries such as the nearest point 

on an object, the visible parts of an object, and whether two objects are occupying the same space 

(collided) are relatively easy to calculate for rectangles. Boxes also closely match the shape of 

cars, trucks, and large stationary objects such as road barriers or nearby buildings. Common 

relevant objects that are shaped differently—people, bicycles, and signs—are much thinner than 

cars. The error in meters of a rectangular approximation of these objects is therefore also small. 

Finally, objects that are only partially observed can be represented decently with rectangles. 

3.2.1 Host Vehicle 

In addition to detecting nearby vehicles and obstacles, an effective CA/CW system will 

need to know the heading, speed, and possibly driver action (wheel angle, braking) of its host 

vehicle. On the other hand, the host vehicle’s shape and goal is known precisely beforehand. Thus 

self-tracking determines only the vehicle’s current location and motion. We assume motion 

follows the bicycle model. This model assumes that vehicles move in periods of steady 

acceleration and angular velocity—roughly corresponding to the driver applying the gas 

pedal/brakes at a steady rate and keeping the steering wheel at a fixed angle. The same approach 

can be used for vehicles in V2V communication with the host, if they broadcast their shape (which 

is not part of the standard BSM). 

3.2.2 Relevant Objects 

There are many slight variations of how to model measurements from rectangular objects 

and handle the nonlinearity of orientation, as described in the research literature [3.9, 3.13, 3.14, 

3.15]. We keep multiple potential samples for each object, each with a different fixed orientation. 
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Either one or two sides of the object are visible to a single sensor at a point in time. The height of 

each object is currently ignored, as it does not affect an object’s motion or potential danger. LIDAR 

is the only sensor whose detections may vary on object height. Relevant objects are assumed to be 

at least half a meter in height. The sensors and setup of the prototype will generally not detect 

objects smaller than this, nor do the applications usually require this. The velocity of the object is 

stored independently of the orientation, meaning each object has an east-west velocity and a north-

south velocity (Figure 3.1). Vehicles can be assumed to move only in the direction of their 

orientation, but pedestrians do not have this restriction because their rectangular fit is a loose 

approximation. A global representation of vehicle velocity is ultimately about as accurate as an 

orientation-based one, while neither has the predictive power of a road-based model (as seen in 

Phase 1 of this project). 

 

 

Figure 3.1: The parameters of a detected object 

 

3.3 Occlusion 

A key assumption of the standard measurement model is that, given a specific data 

association between hypothesized objects and observed measurements, each measurement is 

generated by its associated object with no dependence on other objects. This assumption is 

generally seen to conflict with the line-of-sight limitation of sensors. If an object is completely 

behind another object, or occluded, then it is unlikely to be detected by the sensor. This implies 

that the objects’ probabilities of detection PD(x) may be dependent on one or more other objects. 

Additionally, the sensor may detect part of an object but not its full extent. 

3.3.1 Partial Occlusion 

This phenomenon is considered for radar, LIDAR, and vision+LIDAR fusion methods. 

Vehicular communication returns complete information or nothing at all, and visual object 

detection methods do not find object distance accurately enough to determine whether there is 
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occlusion (though a human can recognize occlusion easily from images). Relevant objects are 

represented as rectangles in a bird’s eye view, so partially observed measurements are rectangles 

with an unknown extent. Figure 3.2 shows the representation of a rectangle measurement with 

minimum and maximum limits on its extent in every direction. This representation can 

conveniently limit objects to only be a certain size. To update objects, the midpoint between the 

minimum and maximum extent is used as a measurement of each edge, with a variance based on 

the difference between the two. This way, objects can still be represented with a singular (but 

uncertain) position and shape. For an object that is fully observed, the minimum and maximum 

extents will be nearly equal and the measurement is simply the detected rectangle. 

 

 

Figure 3.2: Example of partially occluded measurement, with minimum possible and 

maximum possible rectangles denoted with dashed lines. The gray regions are the regions 

that are undetectable due to the other objects. 

3.3.2 Full Occlusion 

When an object is fully occluded, it will not be detected by a sensor. However, it may still 

be important to still store the object and predict its motion. Thus it is important for the multi-object 

tracking framework to reason about full occlusion. The typical formulation is to split the present 

relevant objects X into visible and occluded subsets XV, XU. Only visible objects may create 

measurements. The probability that a hypothesized object is occluded is determined by integrating 

across the other objects. The research works [3.16, 3.17, 3.18] all describe fast approximate 

methods for this formulation. 

We discovered that a different descriptive model of occlusion is more realistic for many 

sensors, easier to compute, and compliant with the no-dependence assumption of the standard 

measurement model. Objects create measurements as in the standard measurement model, but the 
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resulting set of measurements Z is split into visible and occluded subsets ZV, ZU. This model is 

realistic for high-detail sensors whose measurements undergo heavy preprocessing, such as camera 

and LIDAR. This preprocessing often includes merging of overlapping measurements that are 

considered likely to have come from the same object, or removal of small measurements that may 

have been errors or are non-descriptive. Under this model, a hypothetical measurement is occluded 

if it is fully ‘behind’ any of the given measurements. The exact form of this check varies from 

sensor to sensor, but it is generally easier to perform than the equivalent check across hypothesized 

objects. 
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Chapter 4 Perception with Specific Sensors 

This chapter explains the methods developed to detect cars, pedestrians, or significant 

inanimate objects. Each sensor requires a different approach and is covered separately. Each 

sensor’s subchapter also describes methods needed to set up the sensors and important 

considerations when using the sensor for detection. 

4.1 Vehicle Self-tracking 

The host vehicle is tracked using GNSS location readings from the onboard Cohda DSRC 

and IMU motion information from the Reach unit. The Rao-Blackwellized particle filter single-

object tracking algorithm offers high accuracy at a flexible speed. The tracking required some 

specialization depending on the application. 

The application of the intersection collision avoidance should function with or without 

stuff. However, due to the amount of time needed to setup each test run, the research team only 

ran the algorithm at the start of the planned “maneuvers” of each test drive (details on these 

maneuvers are in Chapter 13). This often meant starting the algorithm as the vehicle was stopped 

at the intersection before the maneuver. Without dynamic car movements before the stop, 

determination of the heading (the direction the vehicle is facing) in these situations was difficult. 

The IMU’s internal compass was often affected too strongly by the presence of other electronic 

devices to provide reliable heading information when the vehicle was stopped. As such, the team 

initiated the tracking algorithm at the most recent time before a maneuver that the vehicle was in 

motion. Additionally, the algorithm itself was altered to distinguish between turning and 

steady/stopped vehicles, so that the heading was kept constant during long periods of waiting at 

an intersection. 

Figure 4.1 shows tracked positions, along with the estimated heading and speed, for a few 

example maneuvers. The background aerial images are from the US National Map database from 

2011 [4.1]. The tracked position is given as a line, while the GNSS measurements are marked as 

colored dots for comparison. Note that the estimated center of the vehicle is tracked, while the 

GNSS antennae are to the side and back of the vehicles; hence the tracking lines are not completely 

aligned with the measurements. 

  



20 

 
(a) 

 
(b) 

Figure 4.1: Comparison of raw GNSS measurements (dotted) to tracked vehicle positions 

(green line), as well as imputed speed and heading 

 

For the rural-road overtaking application, it was discovered that bumpy rides, caused by 

high speeds or less-maintained roads, increase the error of inertial motion detection. Figure 4.2 

shows reported acceleration and angular velocity for ten-second periods on an urban road and high-

speed rural road. Acceleration readings on the rural road are too varied to determine whether the 

vehicle is increasing or decreasing speed. 
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Figure 4.2: IMU readings from an urban road (left) and rural road (right) 

 

4.1.1 Location context 

Self-driving vehicles cannot operate without a high-resolution map covering all areas they 

might drive in. Collision avoidance technology does not make road decisions and can often 

function with low-resolution maps or without maps at all. Maps are not difficult to create for small 

areas, but difficult to create and maintain over large areas. Third-party map services like Google 

Maps API [4.2] are cost-effective solutions for large citywide or nation-wide mapping. This project 

did not use a third-party service, instead self-making maps for small test areas. The form of these 

maps varies by application. 

 Overtaking – Maps are useful for correctly assessing oncoming vehicles on curved rural 

roads, although most drivers may consider overtaking on curved roads risky in the first 

place. These maps can be low-resolution because of the distances and speeds considered 

in this maneuver. Standard third-party services or even free crowd-sourced services like 

OpenStreetMap would be sufficient. This project tested only the overtaking warning on 

straight roads, with no map use. 

 Highway merge – A map is useful to store the road curvature and the number of lanes. 

However, the map will likely only need to cover a small region near a designated 

merging zone, rather than a national or global map. Additionally, if the merge is taking 

place because of construction, the shape or number of lanes of the highway may be 

temporarily altered. Thus, a self-made map is more useful than a third-party map 

service. Our highway merge application requires a road model constructed out of a few 

key point coordinates, which can be obtained via GPS or a satellite image. Road models 

have been designed for a few example locations in Austin. 

 Intersection – A map is useful to accurately characterize legal maneuvers such as left 

turns. For most applications, this map would need to be citywide if not nation-wide, 

and of higher resolution than for the overtaking maneuver, so third-party services are 

appropriate. 
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 Pedestrian – Even on normal roads, pedestrian crossing zones are not necessarily 

annotated on available maps nor strictly followed by pedestrians. For off-road locations 

such as construction zones, there will likely be no specific path taken by pedestrians. 

Thus, maps are not useful for this application. 

 Off-road/construction zone – We assume that equipment and workers may be anywhere 

in the zone, so a map is not useful and was not created for this application. If a particular 

zone can benefit from a map of drivable or accessible areas, it would be simple to add 

this information to the infrastructure unit’s software. 

4.2 Ground Truth Methods 

Much of our analysis of the CW/CA applications was qualitative, but for certain tasks, a 

numerical verification of the perception algorithms was needed. Thus, we explored several ways 

to obtain highly accurate vehicle/relevant object positions. These methods differ from the 

perception methods discussed before in that they could be restricted to a small known area, and 

that they were only calculated after-the-fact on recorded data. 

4.2.1 PPP-GNSS 

The Emlid Reach units return normal GNSS output, latitude and longitude at five times per 

second. These position readings are more accurate because they are cross-referenced with a 

stationary Reach unit. The self-tracking algorithm is modified into a smoothing algorithm that 

bases each position estimate not only on past measurements but also on future measurements. 

Future measurements of up to one second were utilized. For the intersection application and tests, 

the IMU was used as in the self-tracking algorithm. 

4.2.2 Camera Localization 

Localization is a technique for self-tracking with a similar form to multi-object tracking. A 

large number of nearby objects are located, and the host vehicle’s motion is determined by 

assuming that most of these objects are stationary. Simultaneous localization and mapping 

(SLAM) is a long-term version of this technique that recognizes areas that have been seen before. 

Traditionally localization is performed with high-resolution sensors such as high-laser LIDAR or 

stereo cameras [4.3, 4.4, 4.5]. There are no conventional algorithms to perform localization or 

SLAM with the low-resolution LIDAR and radar used in this project. However, recently developed 

algorithms such as ORB-SLAM [4.6] perform successfully with a single camera. Figure 4.3 shows 

ORB-SLAM operating on recorded video from 27th Street in Austin. The right plot in each figure 

shows the estimated path of the vehicle, which at first is inaccurate. Once the vehicle turns and 

returns to a position it had previously seen, the estimates are corrected and appear to achieve lane-

level accuracy. Localization techniques were ultimately not incorporated in our current prototype, 

as the achieved accuracy was not high enough without long-term location memory. Localization 
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may also fail when many moving vehicles or pedestrians are nearby. SLAM will however be useful 

for future CW/CA application testing, as it provides highly accurate ground-truth positions if 

applied in a limited, controlled area. 

 

 
(a) 

 

 
(b) 

Figure 4.3: ORB-SLAM on collected vehicle video: (a) in an unexplored area, (b) after 

returning to an explored area. 

4.2.3 Overlooking Tower 

It is difficult to provide pedestrians with precise positioning devices. Therefore, stationary 

infrastructure was used to detect the pedestrians instead. We used a camera on top of a 2.5-meter 

tower to record video of the pedestrian crossing the road. Object detection code (SSD) was applied 

to the recorded video afterwards. The detections in video could then be transformed into locations 
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on the ground if the camera’s orientation and the sloping/elevation of the ground were known. The 

vehicle approaching the pedestrian was tracked with our self-tracking algorithm utilizing post-

processed GPS, as is performed in other tests. The ground positions of the pedestrians are 

converted to positions relative to the car’s view. Figure 4.4, Figure 4.5, and Figure 4.6 show the 

three formats of pedestrian position. Minor details of ground truth generation are discussed in 

Appendix B. 

 

 

Figure 4.4: Pedestrian detection using tower camera 

 

 

Figure 4.5: Overhead view of the experiment. Tower (far left - green), pedestrians (also on 

the left, red), and the approaching vehicle (far right - blue) 

 

 

Figure 4.6: Pedestrian detection using camera in approaching vehicle 
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4.3 V2V 

Most of the concern for vehicle-to-vehicle communication systems is on their 

completeness—that is, whether the adoption rate and the distance limits will ensure detection of 

every relevant vehicle to avoid collisions. In other ways, communication is an extremely simple 

and reliable technology: the chance of receiving a valid message out of thin air is essentially zero, 

meaning the reception of a message guarantees the presence of a vehicle. A well-designed system 

of unique IDs also ensures that any given message is attributed to the correct vehicle [4.7]. Thus, 

through monitoring of vehicle message broadcasts, standard single-target tracking algorithms like 

the one from the previous section (the Rao-Blackwellized particle filter) can be used to determine 

the heading and speed of each transmitting vehicle. The one notably difference between a vehicle 

tracking itself and tracking others via messages is that a series of messages must be analyzed to 

establish an accurate heading before course tracking and prediction can occur (in other words, 

prediction of an external vehicle movement cannot occur after receiving just one message). This 

may be somewhat negated if the broadcasting vehicle includes helpful information such as IMU 

readings or inferred heading and speed, but these are not guaranteed values. For this research, two 

types of V2V-based tracker were developed, one in which the complete tracked information of the 

other vehicle is received and one in which only GNSS positions are received. The former is an 

example of potentially beneficial communication not covered by the current BSMs. For the latter, 

the tracking algorithm was modified based on the number of messages received in the last ten 

seconds and each message was utilized as such: 

 1 Message: Place the vehicle at this GNSS position with no assumed movement but 

high uncertainty 

 2–3 Messages: Assume the vehicle is travelling in a straight line at a constant speed, 

infer the speed and heading from the points 

 4+ Messages: Perform tracking as in the previous section 

 

Figure 4.7 shows an example of inaccurate V2V tracking that results when too few 

messages are received. Chapter 12 includes a detailed performance analysis for both variants of 

V2V tracking. 
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(a) 

 
(b) 

Figure 4.7: Two examples of a vehicle tracking itself (green line) and being tracked by 

another vehicle via DSRC (red line). In the lower example, communication had only just 

been established—thus the speed is set to zero until more communication is received, and 

somewhat inaccurate in the short period afterward. 

 

4.4 Detecting and Tracking Relevant Objects 

The tracking of other vehicles and objects is more challenging than the tracking of the host 

vehicle for several reasons. For instance, the number of objects present, if any, is unknown, and 

false detections from sensors may suggest the presence of objects that are not there. Another 

challenge is found when multiple objects are close by the sensing unit, the sensing unit must 

determine which measurement corresponds to which object before measurements can provide 

valuable information. Yet another challenge is that objects in the foreground can block all sensors’ 

views of other objects. 

To help overcome these challenges, this project combines communication with onboard 

sensing to work towards technology that will vastly improve roadway safety. 
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4.4.1 Radar 

The Delphi ESR radar processes the reflected radio signal on its own and returns two-

dimensional points corresponding to places of reflection (in other words, detected objects). Larger 

objects will likely be detected multiple times, as in Figure 4.8, and false and missed detections are 

frequent. Additionally, the Delphi unit returns measurements twenty times a second, while the 

other sensors in the prototype operate at ten times a second. Radar detections from two consecutive 

returns are combined, and then grouped into measurement-clusters. Specifically, the DBSCAN 

algorithm [4.8] clusters measurements based on distance between measurements. Each 

measurement-cluster is treated like a single measurement for the purposes of tracking and matched 

to an object. This approach does not distinguish between closely spaced objects well, as they may 

be grouped in the same measurement-cluster, but it works better on average due to mitigating false 

positives and negatives. Each point in a measurement-cluster is assumed to be generated from 

somewhere on the rectangular boundary of the object, with Gaussian error. It is not enforced that 

this boundary is the visible boundary of the car, because radar is known to occasionally reflect off 

the ground or nearby obstacles and hit the far side of objects [4.9]. Full occlusion is not strictly 

enforced for radar for the same reason. Instead, objects behind visible measurements have a certain 

probability, less than one, of being occluded. 

 

  

Figure 4.8: Car crossing in front, and four corresponding radar points 

 

Radar units are more robust to weather and damage than LIDARs, as a thick, opaque cover 

can be used without blocking the sensor’s view. It should also be more robust to imperfect 

positioning or calibration, as the signals reflect off the ground and object height is not measured. 

If the radar were angled .1 radians downwards as opposed to directly horizontal, the ensuing error 

in position for a detected object would be at most half a meter. We have not explicitly tested the 

effect of poor radar calibration, however. 

Radar clusters that were unlikely to be associated with any existing object are treated either 

as noise or as the first detection of a new object. The overall performance of the algorithm cannot 

be fully quantified, because we lack true position information for most objects around the vehicle, 

such as other vehicles in traffic or objects like trees/streetlights. Qualitative video of this and other 

detection tests is available in Appendix C. 
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4.4.2 Camera 

Detecting objects such as vehicles or people within images is a classic problem in computer 

science, and deep convolutional networks represent the current state of the art. In Phase 1, a deep 

network was created in the Caffe software platform and used for joint LIDAR-camera object 

detection (see Phase 1 Final Report Chapter 3.3). In this phase, we used the You Only Look Once 

(YOLO) algorithm [4.10], which was trained on Microsoft’s Coco image database. This database 

includes thousands of annotated examples of cars, humans, buses, and bicycles and thus is more 

suited for the initial training of a vehicle detection algorithm than the data that we have collected 

[4.11]. The YOLO algorithm can operate on roughly three images per second on a decent CPU-

based computer, but can handle ten to twenty images per second with a GPU, putting it at the 

necessary speed for vehicle safety applications. Version 2 was used for the pedestrian warning 

application, while the slightly faster version 3 [4.12] was used in the construction zone application. 

The low-level fusion method discussed in Section 5.2.3 uses a newly designed convolutional 

network, constructed in the TensorFlow [4.13] platform. 

Note that visual object detection algorithms find the position of the object in the image—

not their real position. Further context is needed to infer the distance of an object from its position 

or extent in an image. For instance, the angle of the bottom of the detected object (in image) can 

be used to estimate their position on the ground (Figure 4.9). This requires careful calibration of 

the camera and knowledge of the surrounding elevation. Its accuracy also depends on camera 

resolution and object distance: for our 720p camera, the error due to resolution alone is over 2 

meters at 50 meters distance. This camera-only distance-estimation approach is tested on 

pedestrians in Chapter 14 and shown to be inferior to fusion with another sensor. 

 

 

Figure 4.9: How cameras may determine an object’s distance, if elevation is known 

Calibration 

Any camera lens has a slightly different thickness corresponding to a slightly wider or 

thinner view, as well as some distortion. For cheaper cameras, the variation between lenses is 

significant enough that the values of focus and distortion should be calculated. This process called 

internal calibration, and was performed by recording pictures of checkerboards (Figure 4.10) and 

applying standard calibration code [4.14]. 
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Figure 4.10: Checkerboard pictures used to determine internal camera parameters 

 

External calibration instead refers to calculating a sensor’s pose, or exact position and angle 

on the vehicle. It is not discussed frequently in academic research or by autonomy-aiming 

companies, as carefully designed research prototypes or factory-produced autonomous vehicles 

will have precisely installed sensors. However, both after-market vehicular sensors and sensing 

infrastructure will require calibration, possibly more than once if the devices can be moved. This 

is necessary, for instance, for the distance estimation technique discussed above. Camera external 

calibration can be performed by setting up a test area with objects of known length, like the ground 

truth area in Section 4.2.3 and the construction zone application. The most challenging calibration 

for our applications was a camera-LIDAR calibration, where the camera’s pose was found relative 

to the LIDAR’s detected points. This step was necessary for performing fused camera-LIDAR 

tracking, and thus is covered in Section 5.3. 

4.4.3 LIDAR 

The way that LIDAR is processed typically depends on its type and resolution. Non-

rotating LIDAR only provides information along a limited range. Alternatively, the high-resolution 

variants of fully rotating LIDAR provide too much data to be easily handled by a tracking 

algorithm. These are more often treated with image-style deep network object detection [4.15, 

4.16]. The Quanergy M8 and Velodyne PUC units are fully rotating but only offer 8 and 16 vertical 

lasers respectively. Many of these lasers are aimed too high or low to detect grounded objects, so 

in practice a nearby pedestrian will be detected by 1 to 4 lasers. This is too few to apply to a 

traditional deep network. 

Rectangular Segment Processing 

We previously used raw LIDAR points as input to the tracking algorithm, as by Scheel et 

al. [4.17], but this method ran at less than a twentieth of the necessary speed. We instead preprocess 

the LIDAR output into object-like measurements, and then update the distribution based on these 

measurements. Much of the pre-processing can be performed as each packet of LIDAR output 

arrives, instead of all at once when a rotation is completed. First, contiguous segments of each 

laser’s returns are detected, and segments of three or more are treated as measurements. For a new 

measurement segment, the best fitting straight-line segment or rectangular segment is chosen using 
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a RANSAC minimum-area-rectangle approach, similar to [4.18] and [4.19]. The segment is 

classified as closed or open on each end, depending on whether the previous or following segments 

are directly in front of this segment. This determines whether the detected object is partially 

occluded such that the measurement does not cover the object’s full extent. Unlike with radar, it 

is assumed that the rectangle segments given by LIDAR correspond to the visible side of an object. 

Figure 4.11 illustrates the measurement-processing step. 

 

 

Figure 4.11: Diagram of LIDAR preprocessing. The right segment is partially occluded, so 

its length is unknown. 

 

This method provides a much smaller set of relevant measurements to the tracking 

algorithm, while retaining most of the valuable information. There are a couple of practical issues 

with it. The first is that crowds of pedestrians are difficult to segment properly. Detected arms and 

legs may be classified as their own segments as seen in the upper image of Figure 4.12. However, 

nearby pedestrians may be merged into a single segment as seen in the lower image of Figure 4.12. 

This can be addressed by combining multiple laser’s detections. Because of the difference in 

vertical angle between two lasers, it is unlikely that both create two segments for a single 

pedestrian. Measurements that have been seen for more than one laser are considered definite 

measurements, while measurements that were only detected by one laser are possibly extraneous. 

The multi-object tracking paradigm can already account for less certain measurements by 

increasing the probability that these measurements are false positives. 

A final challenge for LIDAR tracking is non-solid objects that may not be detected 

contiguously, such as bushes or a chain-link fence. While these objects do not need to be tracked 

carefully, the algorithm has no way of knowing this and wastes computational power tracking 

many small objects. Fusion with camera can solve this problem by specifically locating cars and 

humans. 
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Figure 4.12: Preprocessed LIDAR measurements superimposed onto images. Top: 

Pedestrian’s arm is segmented as a separate measurement. Bottom: Two pedestrians are 

merged into a single measurement (middle pair, lower laser). 

Difficulties 

The predominant cited weakness of LIDAR is not its cost but its weakness to weather or 

damage. The lasers used for sensing are weak, partially because at higher strengths they could 

blind an onlooker. It is commonly stated that rain will block LIDAR, and even exhaust from 

another car has caused false detections [4.20]. We have not tested the LIDAR in rain or heavy fog 

because our devices are not waterproof. We have found a similar, if less-mentioned, problem. 

While performing overtaking maneuver tests (as covered in Chapter 13), the LIDAR was plastered 

with small bugs, shown in Figure 4.13. This degree of obstruction did not have a noticeable effect 

on the LIDAR’s performance. However, this obstruction was caused by two hours or so of driving 

on a rural road. It is likely that LIDAR will require frequent cleaning if used in areas with swarming 

insects (like Texas [4.21]). Finally, LIDAR may disperse on and fail to detect semi-transparent or 

absorbent surfaces, such as car windows. This does not necessarily invalidate LIDAR as a sensor, 

as other parts of the vehicles are detected well—but this behavior should be kept in mind when 

using LIDAR to detect relevant objects. 
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Figure 4.13: Picture of LIDAR with bugs attached, taken October 8, 2017 
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Chapter 5 Perception by Sensor Fusion 

Sensor fusion is a broad term referring to any use of multiple sensors to reach a single 

conclusion. While the form of each sensor’s update is unique, they each update the same multi-

object hypothesis. High-level fusion methods maintain each sensor’s unique update algorithm, for 

instance by updating the current hypothesis separately for each sensor. There are also more 

complex high-level fusion methods that accurately characterize the relationship between sensors. 

In low-level fusion, sensor information is fused before updating the hypothesis. Some types of 

information, such as video, are complex to process and benefit from having outside information. 

5.1 High-level Fusion with Correlation between Sensors 

Sensors can update the hypothesis separately if the sensors’ errors, including missed, 

inaccurate, and fake measurements, are independent of each other. This approach has been used in 

vehicular multi-object tracking in the research [5.1, 5.2, 5.3] among others. However, it makes 

sense that the independence assumption is not true for vehicle safety applications. Each sensor 

faces similar challenges in occlusion, weather, and small or strangely shaped obstacles. Errors 

from other inaccurate modeling assumptions, such as treating all objects as rectangular and 

processing all sensors at the same time, also manifest as shared sensor error. This is not to say that 

the independent errors assumption is the wrong choice for a practical sensor fusion application. 

The degree of correlation is difficult to quantify, and these correlations complicate the data 

association step as well. Instead of considering associations between sensor measurements and 

hypothesized objects, the system must consider three-way associations between sensor A’s 

measurements, sensor B’s measurements, and hypothesized objects. 

Little published research addresses the importance of sensor correlation in automotive 

applications. Before implementing correlation into our platform, we simulated several multi-

sensor systems to make sure that the addition was worthwhile. The first simulation is a single 

object moving in two-dimensional space. Two separate sensors report its position five times a 

second with a standard deviation of 2.5 meters, and 90% correlation in their error. The simulation 

is roughly based on a car tracking its position using GNSS in an area with poor satellite coverage. 

Figure 5.1 shows two examples of vehicle paths and measurements. The average positioning error, 

both considering and ignoring the poor correlation, is shown in Table 5.1. Even in this extreme 

simulation, the sensor independence assumption biases conclusions by a tenth of a meter or less. 
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Figure 5.1: Two example simulations with correlated sensor errors 

 

Table 5.1: Performance of tracking in first correlated sensor simulation 

Accounting for 

correlation 

RMS error in first 

second (meters) 

RMS error in first 

twenty seconds 

Yes 2.06 1.67 

No 2.17 1.70 

 

The first simulation can consider only positioning errors, not failed or false detections of 

objects. The second simulation tracks multiple objects in a fixed 3D area, with objects entering or 

leaving freely. Three dimensions were simulated rather than two to mimic previous simulations 

from [5.4], which were used to show the benefits of multi-sensor tracking. Three sensors detect 

the various objects with different strengths (each sensor gives accurate measurements in one 

dimension and weak measurements in the other two). Each object has a two-thirds probability of 

being detected by any sensor, but the sensor’s probability of detection is correlated such that an 

object that is detected by one is more likely to be detected by the others. Similarly, sensors are 

more likely to return false positive measurements in the same area. Figure 5.2 shows example 

results, and once again considering this correlation in the tracking algorithm does not significantly 

improve accuracy. Without evidence that sensor correlation has a major impact on tracking, the 

project prototype does not account for it. 
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Figure 5.2: Error of trackers on second sensor correlation simulation 

 

5.2 Low-level Fusion 

When using high-level fusion, the update step for each sensor will face the same challenges 

as when only that sensor is used. For instance, measurements from a camera do not have a distance 

associated with them and thus may have uncertain association with objects. Similarly, objects 

newly detected by radar or LIDAR may be stationary objects and will be tracked anyways until 

sufficient verification from the camera that these objects are not significant. In low-level fusion, 

the information from sensors is combined into new multi-sensor measurements before tracking. 

Accuracy and detailed information are potentially lost in the creation of these fused measurements, 

but fused measurements may allow simpler and faster updates than either original sensor 

individually. We focused on low-level camera/LIDAR fusion, with the goal of creating multi-

sensor measurements that correspond predominantly to cars and people and accurately report 2D 

position. 

5.2.1 Low-level Sensor Fusion of Camera and Radar 

The fusion between camera and radar is relatively high-level: objects are clustered and 

detected separately by radar and by camera, but the radar measurements and camera measurements 

are matched together before being used to update the hypothesis. This process is illustrated in the 

block diagram shown in Figure 5.3. Each subsystem and their respective inputs and outputs are 

described in detail in the following sections. 
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Figure 5.3: Block diagram of the camera-radar sensor fusion system 

 

Sensor Fusion Subsystem 

The goal of lower-level fusion is to combine the outputs of the radar and the vision modules 

to collect more comprehensive information about the vehicle’s surroundings than either could do 

alone. Camera detections lack any distance information, while radar detections lack any height 

information. The only information they both report is the lateral angle of objects with respect to 

the host vehicle’s orientation. We transform radar-reported angles into horizontal pixel coordinates 

for every object. After conversion, the heuristic equation is used to score each object from radar 

and vision. The best matching of radar-detected objects and camera-detected objects will maximize 

the sum of these scores—much like the data association step in tracking finds the hypothesis of 

highest probability. When the mapping is complete for each timeframe, we put bounding boxes 

around each object with its classification (from the vision subsystem) and distance (from the radar 

subsystem) from the vehicle in the output video feed. 

 

𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 =
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑜𝑓 𝑟𝑎𝑑𝑎𝑟 𝑎𝑛𝑑 𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 

𝑠𝑢𝑚 𝑜𝑓 𝑤𝑖𝑑𝑡ℎ𝑠 𝑜𝑓 𝑟𝑎𝑑𝑎𝑟 𝑎𝑛𝑑 𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑏𝑗𝑒𝑐𝑡
+

1

5√𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑟𝑎𝑑𝑎𝑟
+ 0.1 ⋅ 𝕝𝑖𝑠 𝑠𝑢𝑏𝑠𝑢𝑚𝑒𝑑 

Experimental Results 

Tests were performed on recorded data from a moving vehicle through the school. 10 

specific test time points were chosen. These test times included 30 objects in total, of which 27 

were detected by vision and 21 were detected by radar. However, both camera and radar return 
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false or irrelevant detections, and the fusion method often matched false or irrelevant detections 

from one sensor with true detections from the other, resulting in a fusion accuracy of 41.38%. 

A screenshot of the running object detection system is provided in Figure 5.4. The test situations 

were challenging for radar due to adjacent vehicles and frequent partial occlusion. 

 

 

Figure 5.4: Screenshot of the real-time sensor fusion system. Plot at the bottom left shows 

the detected radar points in front of the vehicle with clustered objects.  

Video screen includes the bounding box for detected objects (vehicle/pedestrian) 

with estimated distances from the car using our fusion algorithm. 

 

5.2.2 Shallow Low-Level Camera – LIDAR Fusion 

Much like radar, LIDAR and camera measurements can be combined to give the camera 

measurements accurate distance. LIDAR has height information and a higher resolution than radar, 

but processing its raw points into object-like measurements is more computationally expensive. 

Instead, we adopted the fully low-level approach of fusing raw point detections with visually 

detected objects. Points are projected onto the camera image, both horizontally and vertically this 

time. Some points within a bounding box are most likely from the detected object, though others 

may be above or to the side of the object. The closest LIDAR point can however be considered to 

come from the detected object—provided occlusion is accounted for when the bounding boxes are 

created. Thus, the minimum distance point within an image bounding box is used to assign a 

distance to that box. This method is highly computationally efficient, beyond the simple 

assignment of distance. However, it loses information about the angle and shape of the object that 

a more complex LIDAR algorithm could potentially derive. Thus, this method is most useful for 

small objects such as pedestrians. The pedestrian detection application adopts this method, using 
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YOLO for the visual object detection step. The diagram in Figure 5.5 illustrates the shallow 

camera-LIDAR fusion process. 

 

 

Figure 5.5: Diagram of shallow camera-LIDAR fusion process 

 

5.2.3 Deep Camera-LIDAR Fusion – SSD-Fusion 

The shallow fusion method is limited by the standalone performance and speed of a 

camera-based object detection. In practice, a visual system may fail to detect all relevant objects, 

for instance in areas with high lighting contrast. In addition to determining the distance of detected 

objects, radar or LIDAR could be used to improve the visual object detector. In Phase 1 of this 

project, we developed a method to improve the deep object detection network FRCNN by directly 

using LIDAR input [5.5]. The field of visual object detection has evolved in the last two years, 

and the current state-of-the-art networks cannot be modified in the same way. This fusion method 

was also limited to high-resolution LIDAR. We have since developed a fusion method called SSD-

Fusion that operates on newer networks and works with medium-resolution LIDARs (around 16 

lasers). 

SSD-Fusion directly modifies the structure of the Single Shot Detector network [5.6], as 

shown in Figure 5.6. LIDAR points are converted into an image-like format where the ‘brightness’ 

of each pixel corresponds to the distance of the point. The vertical gap between each LIDAR laser 

causes vertical bands of pixels with missing values, which are handled in two ways. Initial max 

pooling sets missing values to the nearest value. The convolutional operation linking two layers of 

the deep network is set to be longer vertically than horizontally, so that information from the 
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nearest lasers can be utilized for every pixel. Along with this new input, a distance output is added 

to the network. The form of this output is equivalent to that of [5.7], though they did not use 

LIDAR as an input. 

 

 

Figure 5.6: Framework of SSD-Fusion 

 

Because the network is modified, SSD-Fusion must be trained with new data that includes 

video, recorded LIDAR readings, and accurate ‘true’ pedestrian positions. All of these were 

collected as part of the pedestrian detection tests discussed in Chapter 14. 

The accuracy of different fusion methods is determined with test pedestrian data in Section 

14.3. Figure 5.7 and Figure 5.8 show a single time step of this data to demonstrate the discussed 

sensor measurements and fusion techniques. Figure 5.7 shows the camera’s view and results from 

two visual object detectors. Faster-RCNN with NAS is one of most powerful object detector 

networks [5.8], but is too slow for real-time applications. SSD is the faster detector used as the 

basis for SSD-FUSION. SSD only captures three of the pedestrians in this image, and the boxes 

that bound them are less exact than for FRCNN. Figure 5.8 shows measurements in a bird’s eye 

view grid where the host vehicle is at the bottom facing up, as denoted by the green icon. This grid 

covers 26.7 meters in the forward direction, and 20 meters to either side of the vehicle. The LIDAR 

measurements are shown as preprocessed line segments, as discussed in Section 4.4.3. All 

pedestrians except the furthest to the side have been captured by the LIDAR, but many other 

objects—such as the trees, benches, and fence—have been captured as well. The other 

measurements are shown as rectangles. The pedestrians detected by Faster-RCNN have their 

distance imputed by the method from Section 5.2.1. This overestimates the distance of the 

pedestrian directly ahead of the host vehicle, to the point where that measurement is off the grid. 

The shallow fusion with the slow but strong object detector detects all pedestrians and gives an 
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accurate measurement for all but one, who is far to the side of the vehicle. SSD-FUSION captures 

one more pedestrian that shallow fusion with SSD fails to detect. But it doesn’t detect all six 

pedestrians and seems to estimate distance with several meters error. It is worth noting that on a 

computer with a powerful graphics processor unit (GPU), SSD and SSD-Fusion can perform on 

25 images (and LIDAR rotations) per second, while Faster-RCNN can handle less than 10. 

 

Scenario 

 
 

Faster-RCNN Object Detection (slow) 

 
 

SSD Object Detection (fast) 

 

Figure 5.7: Measurements from different sensors/fusions at a single timestep, camera view 
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LIDAR 

 
 

Faster-RCNN Camera Detections - Distance 

Imputed 

 
 

Shallow Low-level Fusion, Camera (Faster-

RCNN) and LIDAR 

 
 

Shallow Low-level Fusion, Camera (SSD) 

and LIDAR 

 
 

SSD-Fusion 

 

Figure 5.8: Measurements from different sensors/fusions at a single timestep, top view 
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5.3 Camera-LIDAR Calibration 

Figure 5.9 shows an example of incorrect calibration between a camera and a LIDAR. The 

colored dots are points returned by LIDAR, with warmer colors corresponding to higher distances. 

The red car in front of the camera is also detected by the LIDAR, but the projected points are 

positioned to the upper left of the vehicle. This situation leads to a confusion in the overall CA/CW 

system because locations of surrounding objects cannot be accurately obtained. 

 

 

Figure 5.9: Example of bad calibration between a frontal camera and a rotational 64-layer 

LIDAR (KITTI dataset). Colored dots represent different distances measured by the 

LIDAR projected to the image’s coordinate system. 

 

5.3.1 Manual Sensor Calibration 

One of the most traditional sensor calibration methods is to surround the sensors with 

checkerboards as in Figure 5.10. Checkerboards are easy to detect from both camera and LIDAR 

data and thus can be used to match the two. For example, [5.9] provides a software with GUI so 

that a user can select a planar region from LIDAR’s detection. 

 

 

Figure 5.10: The room used to calibrate sensors to create the KITTI dataset [5.10] 

 

We created a similar graphic system that displays camera video with LIDAR points 

overlaid and allows the user to adjust the sensors’ positions and angles until a qualitatively good 

match is achieved (Figure 5.11). Checkerboards may be used, but an ordinary image, for instance 
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of several people standing in front of the vehicle, is sufficient to roughly calibrate with this tool. 

For best results, multiple pictures/measurements with different views are used. 

 

 

Figure 5.11: Screenshot of the project calibration tool 

 

The downsides of manual sensor calibration are listed as follows: 

 Takes time for physical preparation. 

 The process of finding the best rotation and position is difficult and time-consuming. 

 Cannot correct error during use. For instance, if external forces (such as a camera being 

bumped) cause a sensor to move slightly, the change would not be detected or fixed 

until another the checkerboard calibration is applied again. 

 

The first and third downsides were not fully appreciated when collecting some of the 

intersection data. Figure 5.12 shows the projection of LIDAR onto the image plane in our collected 

intersection dataset using hand-tuned calibration parameters based on recorded measurements and 

trial and error. The dots are points detected by LIDAR, with warmer colors corresponding to closer 

points. From the figure, objects like the small tree in (a) and vehicles in (b) can be inferred from 

the LIDAR measurements, but the calibration still retains some error. Later test and collection runs 

with more careful calibrations were performed, as documented in Section 4.4.3. 
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(a) 

 
(b) 

Figure 5.12: Example of calibration results from the collected data showing the limit of 

hand-tuned approach. Logitech Pro Webcam C920 is used for the frontal camera and 

Quanergy M8 with eight layers is equipped as a rotational LIDAR sensor. 

 

5.3.2 Automatic Sensor Calibration 

To overcome the drawbacks of target-based extrinsic calibration methods, online 

algorithms and calibration approaches without fixed targets have been developed. In these 

methods, raw measurements from both camera and laser sensors are used in the calibration process 

by aligning certain attributes [5.11, 5.12]. This can be applied in any situation during vehicle 

operation, meaning it can also be applied at regular intervals to detect accidental sensor movement. 

Recently, a deep-learning-based algorithm, RegNet, has been proposed that formulates the 

problem as a regression task for predicting calibration parameters [5.13]. Fusion of camera and 

LIDAR data is achieved by combining two neural networks in intermediate layers. [5.13] 

generated samples to train the network by randomly de-calibrating correctly calibrated data from 

the KITTI dataset. Figure 5.13 illustrates the overall architecture and flow of the RegNet algorithm. 
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Figure 5.13: Overall architecture and flow of the RegNet where inputs are images, depth 

point clouds, and initial calibration matrix 𝑯𝒊𝒏𝒊𝒕 [5.13]. 

 

We attempted to apply RegNet’s idea, which is trained on 64-layer LIDAR data, on our 8-

layer LIDAR data with lower resolution. Code for the RegNet is not publicly available, so we 

implemented a TensorFlow module based on the RegNet research with some slight modifications 

to fit our sensors. Our implementation performed well on the 64-laser data, as shown in Figure 

5.14, but poorly on 8-laser data. The manual method was considered more reliable and used for 

the demonstrations and tests. 
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(a) 

 
(b) 

 
(c) 

Figure 5.14: Example of calibration results using RegNet on KITTI dataset: (a) randomly 

de-calibrated sensors (b) true calibration (c) calibration using the output of RegNet. 
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Chapter 6 Application to CA/CW 

6.1 Prediction 

Predictive models for vehicles on urban roads was a focus of the first phase of this project. 

Physics-based prediction models that rely solely on values such as speed and acceleration were 

found to be less reliable than models that considered the road shape and context. This comparison 

will not hold for all applications, however. Wrong-lane overtaking occurs predominantly on 

single-lane rural roads, and vehicles merging onto a highway are only in danger from vehicles on 

the rightmost lane of the highway. These applications also consider potential collisions more than 

several seconds in the future, where any model will be inaccurate. Simple and pessimistic models 

of approaching vehicles are most appropriate for CW/CA tools for these applications. 

Pedestrians should also not be modeled based on road rules, as those rules are often broken. 

At least one high-profile autonomous vehicle crash involved a pedestrian crossing a road with no 

crosswalk [7.1]. Pedestrians are also difficult to predict because they can change direction much 

more freely than cars. We currently predict that pedestrians continue at their current speed, which 

is usually sufficient as pedestrians move much more slowly than cars. This fits with our current 

object representation from Section 3.2.2, which maintains object speed during tracking. We have 

also begun to study behavioral prediction that takes a more long-term view of the pedestrian’s 

motion. 

6.1.1 Long-term Prediction based on Behavior 

Without reliable situation-based rules with which to predict pedestrian motion, the 

alternative is to find patterns in collected data. Motion patterns for vehicles at an intersection were 

discovered in Phase 1 of this project, by clustering different collected paths. Clustering works well 

at an intersection because any one crossing vehicle takes exactly one path, and therefore should 

match one cluster. Pedestrians may instead follow one motion pattern for an uncertain amount of 

time then switch to another. A Bayesian model was designed to extract motion patterns from 

pedestrian data. Pedestrian motion at each timestep is modeled as a weighted sum of motion 

patterns, where the weight for each pattern varies across people and time. The model also specifies 

which motion patterns are likely to switch to other motion patterns and when. Once the motion 

patterns and their switching behavior are known, the pedestrians can be tracked with a method 

similar to interacting multiple models. Actually determining the motion patterns requires time-

intensive random sampling on a dataset of pedestrians. 

The motion pattern prediction method was tested on pedestrian data from the 2015 Multi-

Object Tracking Challenge (MOT Challenge) [7.2]. This data consists of natural (unscripted) video 

of a busy pedestrian walkway and annotated ground positions for each pedestrian at each time. 

Three significant motion patterns were derived, meaning only three were assigned high weights 

for any pedestrian. Example trajectories for a single pattern can be gathered by tracking pedestrians 

while assuming they follow this pattern. Figure 6.1 shows these example trajectories, which can 
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roughly be classified as large turns or loops, straight paths with sharp turns, and walking straight. 

The patterns are used for prediction in Figure 6.2. Six pedestrians are tracked using this method, 

and their future position 0.1 seconds ahead is predicted (red line) and compared to the truth (blue 

line). The x and y dimensions are split into separate plots, so that the true and predicted paths can 

be compared across time. Prediction with motion patterns matches extremely well with the ground 

truth. 

 

 

Figure 6.1: Example trajectories from each extracted motion pattern 
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Figure 6.2: Predictions on pedestrians using the extracted motion patterns 
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6.2 Collision Detection 

Section 2.3 of this project’s Phase 1 Report [7.3] discussed some of the challenges of 

advanced collision detection, given the uncertainty of predicting other vehicles’ future movements. 

Those results were expanded into a full study of the speed and accuracy of various approximations 

to collision detection, which was presented at the IEEE 2017 Intelligent Vehicles Symposium 

[7.4]. 

Figure 6.3 shows the results of this study. The quality of any method is determined by 

assigning a relative cost to False Negative errors (undetected collisions) as compared to False 

Positive errors (warnings in safe situations). The average overall cost added solely by inaccuracies 

in the collision detection stage—not including errors in the vehicle tracking and detection—forms 

the metric Expected Additional Cost. Runtime of each method is also calculated, as this task only 

comes into play after detection and tracking and therefore the system must operate very quickly to 

make real-time decisions. The principal conclusion of this paper was that Monte Carlo 

approximations, or the aggregate of several hundred random predictions forward in time, are the 

most reliable method to determine the probability of a collision in the near future. This method is 

easily combined with the particle-based tracking methods we have used. 

 

 

Figure 6.3: Results of the vehicular collision detection study, with relative False Negative 

costs of 1, 10, and 100 

 

Our prototype systems also issue collision warnings when there is a nontrivial probability 

of a collision—a far simpler task than actual collision avoidance, which is left to the human. 

Collision avoidance requires both prediction of a collision and a choice among the options 

available to the vehicle. The following section continues our study of a method for connected 

vehicles to cooperate and achieve their goals while avoiding collisions. 
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Chapter 7 Distributed Decision-Making for Cooperative 

Driving 

7.1 Previous Work and Goals 

Currently, self-driving vehicles follow human road rules and conventions well enough to 

ensure safety. Once most vehicles become autonomous and connected, it will be possible for them 

to follow more subtle human driving conventions or to ignore them entirely. The question is how 

each vehicle might make driving decisions that fulfill their own goal but also allow the surrounding 

vehicles to fulfill theirs. We used the Collective Intelligence (COIN) [7.1] framework to design an 

algorithm allowing fully automated and connected cars to each navigate to their destination 

through an intersection. Managing a multi-agent environment is often very labor-intensive, as it 

requires tuning the interaction between the agents to make sure that they are cooperative. These 

techniques normally result in non-robust systems with limited applicability. 

The COIN framework is designed to automatically learn cooperative strategies. It requires 

three specifications: states, actions, and rewards. A state is the information known to a vehicle at 

a single point in time. We assume autonomy, fully available road maps, and full V2V 

communication. Each vehicle’s state includes its position and destination as well as the position 

of all nearby vehicles. Each action is a motion a single vehicle can make in a short time, namely 

speed changes, lane changes, and decision of where to turn. The reward is a handmade score for a 

vehicle’s situation. Quick arrival at the destination has a high reward, for instance, while collision 

has a very low reward. COIN learns a function that takes the state and outputs the action of a single 

vehicle, such that these actions optimize the total reward of all vehicles. 

The previous phase used COIN and simulations to train vehicles to cross a four-way, four-

lane intersection [7.2]. In order of significance, the reward function penalized agents for collisions, 

exits in the wrong direction, and delay in crossing an intersection. Improvements to the learning 

technique are covered in Section 7.2. The robustness and generalizability of COIN are studied in 

Sections 7.3 and 7.4, and its performance on real driving examples in 7.5. Intersections and rural 

roads, both focuses of this project, are both used. COIN is not applicable to all focuses, such as 

pedestrian safety, because it only applies to agents in a communication network that can be 

expected to follow a set protocol. 

7.2  Model Improvements 

7.2.1 Function Approximation 

The previous work used a discrete but large set of states and actions. It is infeasible to 

simulate every possible state and action; we utilized function approximation to estimate the best 

action for states that were missed in training. Function approximation methods include ranking 

models such as Monotonic Retargeting [7.3], feature selection techniques such as Orthogonal 
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Matching Pursuit (OMP) [7.4], and Orthogonal Least-Squares (OLS) [7.5]. Results of the OMP-

based function approximator are reported in [7.2] and provided in Table 7.1, and results related to 

the generalized OLS function approximator are reported in Table 7.2. The improvement in 

generalized OLS is achieved by grouping the feature section at every step rather than one feature 

at a time. 

The max speed of each car at any point could vary between 0 to 60 km/h (37.6 mph). Note 

that the average speed in a two-way maneuver is lower than that of four-way maneuvers. In the 

two-way maneuvers, all cars in a certain street were set to turn left, while in four-way maneuvers 

all car destinations were randomly selected. It makes sense that straight and right-turn maneuvers 

are still faster on average to perform, as they have no conflict with cars on the opposite road. 

 

Table 7.1: Results of COIN simulations OMP 

Maneuver 

Average 

number of cars 

per episode 

Collision 

(%) 

Wrong path 

(%) 

Average time 

(seconds) 

Number of 

random episodes 

for testing 

2-ways 45 0.65 2.5 14.7 20 

4-ways 85 3.2 12.5 13.9 12 

 

Table 7.2: Results of COIN simulations OLS 

Maneuver 

Average 

number of cars 

per episode 

Collision 

(%) 

Wrong path 

(%) 

Average time 

(seconds) 

Number of 

random episodes 

for testing 

2-ways 40 0.73 2.1 12.3 10 

4-ways 80 4.5 9.8 13.5 10 

 

7.2.2 Deep Reinforcement Learning 

Continuous states and actions give the agent a more precise knowledge of the environment. 

As a simple example, if the speed of cars is discretized to 10mph, the difference between a car’s 

speed and the speed of the car directly ahead of it is either given as -10, 0, +10, etc. Continuous 

states can hypothetically utilize smaller differences in speed to smoothly approach or follow an 

ahead vehicle. However, these states must be fed into a model in order to apply reinforcement 

learning. 

Deep reinforcement learning—reinforcement learning with deep networks as the modeling 

tool—was first proposed in 2013 and has shown superior performance on many reinforcement 

learning problems [7.6, 7.7]. However, our multi-agent framework has some challenges that are 

not usually addressed with deep networks, namely a variable number of agents and partial 

observability—each agent uses information only on vehicles relevant to it, rather than using the 

entire state space of all vehicles. We implemented several deep architectures, with the first shown 

in Figure 7.1. The initial architecture has been inspired by Tampuu et al. [7.7] and Mnih et al. [7.6] 

with a few differences: 
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A fully connected network is used rather than a convolutional neural network (CNN) as 

each agent is communicating to its neighboring agents and each agent has partial observability of 

environment. The objective function is modified to accommodate the difference reward for each 

agent. The number of vehicles is variable at every time step, since cars enter and exit the simulated 

intersection. However, deep networks are trained on batches of fixed size. We used a fixed-size 

batch and collected enough samples, from different cars and different times, to fill the batch. 

 

 

Figure 7.1: The first architecture of the deep reinforcement learning model 

 

Another potential avenue for improvement is to give each agent more information at each 

time. This can be done by adding Recurrent Neural Network (RNN) or Long Short-Term Memory 

(LSTM) layers at the last layer of the fully connected network [7.8, 7.9]. By adding LSTM as the 

last layer of our model, features at every time step are used to provide each agent a sort of 

‘memory’. This memory may allow agents to avoid the deadlock scenarios [7.2] that occur with 

simultaneous four-way incoming traffic at intersections. 

Table 7.3 shows the results of both methods. The LSTM method performs better, but 

neither implementation of deep reinforcement learning outperforms the simpler models of Section 

7.2.1. 

Table 7.3: Results of COIN with deep Q-Learning on four-way intersection 

LSTM Average 
number of cars 

per episode 

Collision 
(%) 

Wrong path 
(%) 

Average time 
(seconds) 

Average speed 
(km/h) 

Number of 
random episodes 

for testing 

No 85 14.6% 2.1 14.3 50.3 20 

Yes 85 9.7% 3.2 14.9 48.3 20 

 

7.3 Robustness to Sensor Error   

Because of the noisy nature of sensor readings, it is possible that vehicles will have 

inaccurate knowledge of other vehicle’s positions even with fully communicative vehicles. In 

order to examine the performance of COIN under noise, we add noise to each vehicle’s position 



54 

at each timestep independently. This noise is Gaussian with 1 meter standard deviation. Three 

training methods are tested for performance under noise. 

 

1. The trained model of Section 7.2. 

2. The model of Section 7.2 retrained in the noisy environment. 

3. A retrained model using methods that are meant to handle noisy information. 

 

The first model is effectively tested in situations it has not been trained for, so poorer 

performance is expected. Retraining the model using Q-learning [7.10, 7.11] should compensate 

for noise. However, normal Q-learning is known to be at risk in noisy environments, as it may 

learn wrong concepts (due to noisy input) early on and fail to converge. Method 3 applies G-

learning [7.12], a recent modification to the Q-learning algorithm that regularizes the value 

estimates by penalizing deterministic policies in the beginning of the learning process. 

Table 7.4 gives results on the four-way maneuvers. G-Learning results in a safer if more 

conservative model, and traffic moves relatively slower as vehicles need to give bigger headspace 

and side space on average for each vehicle to move safely. 

 

Table 7.4: Results of COIN retrained model under described scenarios 

Method 
Average number 

of cars per episode 
Collision 

(%) 
Wrong path 

(%) 
Average time 

(seconds) 
Number of random 
episodes for testing 

1 65 11.3 8.5 14.3 10 

2 65 8.2 10.1 14.6 10 

3 65 6.5 10.9 15.8 10 

 

7.4 Cooperative Highway Driving 

An important question for a cooperative driving algorithm is whether it can be trained to 

work under any condition (one intersection vs other intersections vs highway vs rural road) or 

whether a new framework will be needed for driving under each of these conditions. Our chosen 

states and actions for each vehicle are flexible in meaning and easily expandable to other scenarios. 

We have run the model, as trained in Section 7.2.1, on a simulated two-lane highway and one-lane 

rural road scenarios. The traffic simulator used for COIN does not allow wrong-lane overtaking, 

as it only allows each vehicle to use lanes aligned with their direction of movement. However, 

overtaking should be unnecessary in cooperative autonomous systems as all vehicles should stay 

near the maximum allowed speed (here maximum possible speed assumed to be 60 km/h), slowing 

down only in unusual situations. Table 7.5 contains results for each road.  
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Table 7.5: Results of COIN simulations in different conditions 

Condition 
Average 

number of cars 

per episode 

Collision 

(%) 

Wrong path 

(%) 

Average time 

(seconds) 

Average Speed 

(km/h) 

Number of 
random episodes 

for testing 

Highway 65 0.0 0.0 14.3 50.3 10 

Rural road 65 0.0 0.0 13.0 55.4 10 

 

The lower average speed of the highway scenario, compared to the rural road, is due to 

vehicles heavily favoring the right lane as shown in the snapshot of Figure 7.2. This is most likely 

caused by poor generalization of the current training. In the intersection scenario, the left lane is 

used for left turns only and the right lane was used for straight or right-turn maneuvers. A single 

state variable, “correct lane” can be used to determine whether a lane change is desired, but other 

variables such as “lane number” and “adjacent lane free” have overlapping meanings and are 

probably replacing “correct lane” in the decision model. This simple example shows that even with 

a state space that is generalizable to all roads, a distributed decision-making model must be trained 

on a variety of simulations to generalize correctly. 

 

Figure 7.2: Snapshot of simulated highway scenario 

7.5 Applying COIN to Real Scenarios 

COIN’s decision-making capability can verified by comparing natural human driving 

behavior . If the two are compatible, distributed decision-making systems could be used pre-

autonomy (but with V2V) by recommending actions to the driver that are friendly to other cars, 

potentially resulting in a global speed improvement. 

Given that current driving is at least partially cooperative, it is tempting to learn a 

cooperative strategy from real traffic data. However, real driving behavior cannot be directly used 

to train COIN for several reasons. First, the state of a vehicle can only be fully calculated if the 

position of all relevant vehicles is known well. This may include vehicles that are not visible to 

human drivers, as COIN is expected to function in a fully V2V-equipped environment. Secondly, 

COIN learns by slowly reaching a consensus approach to driving among all cars. Human drivers 

have a consensus of sorts, but it is not always present and impossible to modify. Finally, 

reinforcement learning requires negative examples such as collisions, and these are rare events in 

reality. 

We ultimately decided that the only reasonable way to improve COIN with human data is 

to evaluate COIN’s decisions in real situations, then revisit the training simulations if a poor choice 

of some kind is detected. We located a few scenarios from the intersection tests of Chapter 12 in 

which only our test cars are significant from each other’s decision-making perspective. We have 

extracted all parties’ trajectories based on their GPS recordings. Future positions of each vehicle, 
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as returned by GPS, allow us to see what would have happened had one vehicle changed their 

action (assuming the other does not change theirs in response). This is how the safety of COIN’s 

recommended actions is assessed. 

Five scenarios are described and analyzed below (Table 7.6). Videos of these maneuvers 

are available with the full collected data, shared with TxDOT part of the project deliverables. 

Recommended actions are given by the OMP trained model from Section 7.2.1. 

 

Table 7.6: Time of selected scenarios 

Scenario Date Vehicle Location 
Time in 

Video 

1 May 21, 2017 Honda Accord Congress and Riverside 10:26 

2 Sept. 24, 2017 Honda Accord Farm to Market Rd 973 3:27 

3 Sept. 24, 2017 Honda Accord Farm to Market Rd 973 3:36 

4 May 21, 2017 Honda Accord Congress and Riverside 8:21, 8:26 

5 May 21, 2017 Honda Accord Congress and Riverside 13:12 

 

Scenario 1 

The Accord intends to turn left and the RAV4 to go straight. The RAV4 has stopped at the 

intersection but the Accord has not. COIN recommends the following action for the Accord: keep 

lane, increase speed by 10 km/h, and turn left at the intersection. The actual driver of the Accord 

hesitates for longer (probably to check for other crossing vehicles), but COIN’s decision is safe, 

as the trajectories of the RAV4 movement show no collision will happen as a result of that action. 

Figure 7.3 shows the Accord’s view at the moment the action is decided. 

 

 

Figure 7.3: Scenario 1 screenshot 



57 

Scenario 2 

The Ford F-150 is followed by the Accord, as depicted in Figure 7.4. The F-150 stops at a 

stop sign before turning onto the rural road. The Accord is moving towards the F-150, although 

the F-150 has completely stopped. COIN’s decision is to decrease speed. 

 

 

Figure 7.4: Scenario 2 screenshot 

Scenario 3 

This scenario, as seen in Figure 7.5, occurs a few seconds after scenario 2. The F-150 starts 

to move again while the Accord stays stationary. The COIN recommendation for the Accord is to 

keep its lane, speed up by 10 km/h, and turn right. All COIN vehicles assume that all other vehicles 

on the road follow the same collective intelligence model. This is not a dangerous decision, as the 

Accord can slow down again during the next turn if the truck stops again. However, the scenario 

is a good reminder of the strict V2V requirement of COIN, since the presence of an eighteen-

wheeler did not affect the Accord’s decision. 

 

 

Figure 7.5: Scenario 3 screenshot 
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Scenario 4 

The driver’s decision in this scenario again disagrees with COIN’s recommendation. The 

RAV4 is traveling at 28 km/h while the Accord is at 3 km/h and can be considered almost 

stationary at the intersection. The COIN decision for the RAV4 was to increase speed by 10 km/h, 

while the decision for the Accord was to keep its current speed. COIN recommends that cars cross 

in the reverse order, which would have been equally valid and would in fact route cars to their 

destinations faster. These videos were taken in data collection scenarios (Chapter 12) where right-

of-way was designated to the Accord. Five seconds from this point, COIN adapts and instead 

decides that Accord crosses first. A screenshot of the scenario can be seen in Figure 7.6 

 

 

Figure 7.6: Scenario 4 screenshot 

Scenario 5 

The Accord is passing straight through the intersection while the RAV4 turns right onto 

the same lane. COIN recommends that both vehicles increase speed, which is what both drivers 

choose to do. This scenario is depicted in Figure 7.7. 
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Figure 7.7: Scenario 5 screenshot 
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Chapter 8 DSRC-aided mmWave Vehicular Communication 

Multiple-input multiple-output (MIMO) communication at mmWave frequencies is one of 

the key technologies for 5G cellular networks [8.1]. It enables high data rate and low latency 

communications, required in several applications associated to the industry verticals that have 

driven the development of the recently released 5G New Radio standard [8.2, 8.3].  The automotive 

vertical is possibly the most novel and interesting one, with automakers, cellular operators and 

equipment vendors working together to make vehicular communications (V2X) operating at 

mmWave frequencies a reality. As illustrated in Figure 8.1, mmWave V2X is the only feasible 

approach to provide a solution to many 5G V2X use cases:  intelligent navigation, cloud assisted 

driving or cooperative collision avoidance to name a few. 

 

 

Figure 8.1: Illustration of the cellular infrastructure supporting several 5G V2X use cases 

enabled by mmWave communication 

 

The main difference between a conventional MIMO communication system operating at 

lower frequencies and a mmWave MIMO system is that the communication has to be directional 

(the antennas cannot radiate the power in all directions, but have to steer the energy towards the 

receiver), which requires the usage of antenna arrays with a large number of elements. Given the 

small wavelength, these large antenna arrays can be integrated, however, in a very small area. The 

greater challenge is how to configure/reconfigure the antenna arrays quickly, so the antenna beam 

steering works well even in high mobility scenarios. Steering the beam pattern in the right direction 

requires knowledge of the propagation environment, which changes very quickly in vehicular 

settings.  To overcome this difficulty, we have proposed the idea of using out-of-band information 
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obtained from other communication systems operating in parallel, or from other sensors, to provide 

prior information that can speed up the process of acquiring this knowledge about the environment.  

Beam alignment is the process of finding this good pointing direction to focus the signal 

energy. In a vehicular setting, the high mobility requires frequent beam realignment. In this 

chapter, we describe our work on using a standard low data rate vehicular communication 

technology, DSRC (dedicated short range communications), operating in parallel at the vehicles 

and the road infrastructure, to provide this prior knowledge about the environment and speed up 

the beam alignment process. DSRC is a mature standardized communication protocol for vehicular 

communications. It has been tested over a decade and is ready for deployment [8.4]. It enables the 

exchange of messages between DSRC-equipped entities, e.g., vehicles and roadside units (RSU). 

One of the most important message types in DSRC is the basic safety message (BSM). A BSM 

contains two parts: Part I includes critical state information and is mandatory, and Part II has 

customizable contents [8.4]. Part I contains information that is useful for mmWave beam 

alignment including position information (longitude, latitude, and elevation), positional accuracy, 

dynamics (heading, speed, acceleration), and the vehicle size. DSRC can also be used for system 

control, such as requesting mmWave beam alignment to establish a link.  

The research team initially considered an approach based on obtaining position information 

from cameras located at the RSU. Given the superior performance of the machine learning 

approach we developed recently, we chose to include in this final report only the DSRC-based 

approach. 

8.1 A Machine Learning Approach to DSRC-aided Beam Alignment 

8.1.1 System Model and Problem Description 

We assume a V2I urban street canyon environment. Our approach uses machine-learning 

methods that rely on the training data. Therefore, the training data must capture the important 

features of the information we want to extract, in our case the propagation environment that defines 

the communication channel. To generate a sufficient number of different propagation 

environment/communication channels, we use a commercial ray-tracing simulator, Wireless InSite 

[8.5]. A snapshot of the simulated environment is shown in Figure 8.2. The street has two lanes. 

We simulated two types of vehicles: cars and trucks. The trucks have larger dimensions than those 

of cars. The target communicating vehicle is a car in the left lane. The target car’s antenna is at 1.5 

m, and the RSU’s antenna is at 7 m. Depending on the location of the trucks on the right lane, the 

LOS path could be blocked. 
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Figure 8.2: Simulated urban street canyon environment. The target vehicle is on the left 

lane at a longitudinal distance 𝒅𝓵 from the RSU. The target vehicle has a roof-mounted 

antenna at 1.5 m high, and the RSU has its antenna at 7 m high. 

 

The ray-tracing output is used to parametrize a wideband geometric channel model for 

mmWave frequencies which is a widely accepted in the previous literature [8.6]. The obtained 

channels can be used to compute the received power and assess the strength of the mmWave link 

for a given pointing direction. We use uniform planar arrays (UPAs) in our simulations. The beam 

can be steered by controlling the phases of the antenna elements of the arrays. We quantized the 

pointing directions in the field of view of the array by the beamwidth of the beams. This provides 

us with a set of predefined beam directions, which is commonly called a beam codebook. We 

assume the array has a grounded backplane so that there is no radiation toward the back of the 

array (-z direction in Figure 8.3). The beam patterns of the entire codebook for an 8x8 UPA is 

shown in Figure 8.3 (Right).   

 

 

Figure 8.3: (Left) A UPA with 𝑵𝒙 by 𝑵𝒚 antenna elements. (Right) The beam codebook for 

an 8x8 UPA. The beams are separated by their half-power (or 3 dB) beamwidth. We 
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assume there is a grounded backplane so that there is no radiation toward the back (-z 

direction is this case). There are 87 beams to cover the entire field of view of this 8x8 UPA. 

 

Finally, we describe the beam alignment problem. The beam alignment comes down to the 

problem of selecting the pair of transmit and receive beam (one of the beams shown in Figure 8.3 

(Right)) that provides the highest received power. Without any prior knowledge, the alignment 

algorithm will need to test all the combinations of the transmit and receive beam pairs. If using the 

8x8 UPAs shown in Figure 8.3 (right) at both the transmitter and the receiver, there are 87 × 87 

combinations to be tested. Our proposed solution learns from past experience at a given location 

to determine which directions are likely to provide strong link connections. As will be shown later, 

our approach can achieve less than 1% misalignment probability by testing or training only 30 

beam pairs as compared to 872 when doing the search blindly.  

8.1.2 Overview of DSCR-aided Beam Alignment Framework 

Figure 8.4 illustrates the proposed beam alignment solution when operated in the uplink 

(i.e., when the car transmits to the RSU). The proposed framework has two phases. Phase 1 is the 

training request. The car sends the request along with its position (e.g., included in a BSM) to the 

RSU. The RSU inputs the information into the recommender system to produce a list of promising 

beam pairs. It then responds back to the car with an acknowledgment (ACK) along with a list of 

recommended beam indices. Because Phase 1 happens before mmWave beam alignment and 

mmWave cannot yet support a reliable link, DSRC should be used. In Phase 2, the beam pairs in 

the list are trained. Once completed, the RSU sends back to the car the beam index that provides 

the highest received power.  

 

 

Figure 8.4: An illustration of the DSRC-aided mmWave beam alignment framework 
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In the downlink, Phase 1 changes slightly. The training request is initiated by the RSU. The 

car then responds with an ACK and its position. The RSU will use the position to query the 

recommender system to get the list of beam pairs. It sends back the list, which signifies the start 

of the beam training. That is Phase 1 in the downlink, which will use three transmissions. This is 

needed because the recommender system resides at the RSU. Phase 2 is kept unchanged. By having 

the car transmit during the beam training, the RSU can collect the beam measurements without 

any feedback from the car. These measurements can be used to update the recommender systems 

and are necessary when the recommender is trained online, as will be shown in Section 8.1.4.  

The core of this beam alignment framework is the beam recommender system. The rest of 

this section, presents two types of beam recommender system. The first one is an offline learning 

approach. It provides a flexible and scalable framework that can take various types of information 

as the input beyond just the position as is currently the case. The second solution is an online 

learning method. It requires a minimal database (of beam measurements) for initialization. Its 

performance can be expected to improve over time since the online method keeps collecting new 

measurements and updates its learned parameters. This approach, however, can only use the 

position as the input and does not scale well when incorporated with various other types of 

information. Such an extension is an interesting future research direction.   

8.1.3 Learning-to-rank Beam Recommendation 

In this subsection, we present our offline learning for beam recommendation. We will start 

with a problem description, which is followed by some motivation. Then, we present the main idea 

of the solution. Next, we describe the proposed solution. Finally, we will show some numerical 

evaluation. 

Problem: This is an offline learning problem with the goal of producing a ranked list of 

beam pairs that maximizes the likelihood of finding the best beam pairs (i.e., having the highest 

received power). The training data is assumed already collected (i.e., offline learning). Table 8.1 

shows an example of the training data. Each row consists of the position of the car when conducting 

the beam measurements and the sorted beam pair indices and the received powers. 
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Table 8.1: An example of an offline training data for a LtR beam recommendation. 

Each row is a set of beam measurements conducted by a contributing vehicle. It has the position 

of the car, and the beam pair index (top of the cells) and the received power (bottom of the 

cells) sorted by the received power strengths. 

Position Best 2nd best . . . 𝒌-th best 

𝒙1 
5 

-64.5 dBm 

159 

-69.2 dBm 
. . . 

346 

-95.8 dBm 

𝒙2 
159 

-70.4 dBm 

263 

-72.6 dBm 
. . . 

354 

-97.1 dBm 

. . . . . . . . . . . . . . . 

𝒙𝑁 
5 

-66.4 dBm 

258 

-68.1 dBm 
. . . 

2 

-82.6 dBm 

 

Motivation for the proposed solution: With the given training data in Table 8.1, a 

solution could be to discretize the position in grids and then use measurements (rows) from the 

same grid for statistical estimation of the parameters of interest, such as the probability of being 

aligned or the average received power of a beam pair. Indeed, this is the approach of our prior 

work [8.7]. This approach performs well, but it does not scale well with increasing context 

information. Here, only the position is used as the context. If we have additional context 

information, such as time of the day and other sensor data, the number of context grids increases 

exponentially with the number of types of context. Also, if the system has access to accurate 

context information (e.g., up to cm-level position information), the grid size should be small. This 

means the number of grid points becomes large and is another source of a scalability issue. This 

scalability problem is the motivation for developing our LtR method, which does not require 

discretizing the context. While the developed solution can incorporate different types of context, 

due to limited training data, our numerical results only use position information.  

Solution idea: Here, we describe the main idea of the proposed solution. Common to most 

machine learning problems, choosing the model of the learning and the cost function are probably 

the two most important steps.  

We choose the kernel-based model for our solution for two main reasons. First, our context 

is low-dimensional and thus it does not make sense to use a complicated model such as neural 

networks. Deep neural networks can learn features in high dimensional input such as pixels of 

images, but this is not necessary for simple processed context information in our case. Second, 

while not too complicated, we do not expect the linear model to work well either. The kernel-based 

model allows the introduction of non-linearity by the choice of the kernel function. Indeed, our 

numerical results show poor performance when using a linear kernel.  

For the cost function for the learning problem, we choose a metric for assessing the 

accuracy of a ranked list. Note that common types of learning problems such as classification or 
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regression problems try to predict a scalar output. Here, the problem is to predict a structured 

output, specifically a ranked list. To evaluate the quality of a predicted ranked list, the metric needs 

to be aware of the ranks. One approach to reflect this is to introduce a discounting factor that has 

a low value for a low rank. This way, the metric will emphasize the correctness of the top-rank 

predictions. Our metric is designed along this idea.  

Once the model and the objective function are decided, we can apply a standard 

optimization technique such as the stochastic gradient descent to learning the model parameters. 

In our case, an approximation is needed to compute the derivative of the objective function because 

the original objective function is not continuous.  

LtR beam recommender solution: The proposed solution is illustrated in Figure 8.5. It 

shows how the recommender system works after the learning. The optimization for learning the 

parameters uses the model and the cost function as mentioned earlier. The output of the learning 

is the score predictor used in the second block (the green one) in Figure 8.5. The recommendation 

procedure takes the context information as the input (in this case, the position of the car). It then 

produces a set of query vectors corresponding to the pointing directions of interest. Each query 

vector (or feature vector) includes the transmit and receive pointing direction (azimuth and 

elevation) of a beam pair and the context. Additional context can be appended to this feature vector 

while using the same learning procedure. Therefore, the system is flexible for incorporating 

different context information. Next, for each feature vector, the system computes a score using the 

learned model. In the final part, the system sorts the predicted scores and outputs the beam pair 

indices that have the top-𝑁b highest scores.   

 

 

Figure 8.5: Top-𝑵𝒃 recommendation beam pair recommendation system 

 

Numerical evaluation: Here, we evaluate and compare the proposed LtR beam 

recommendation method with the baseline from our prior work in [8.7]. We perform a five-fold 

cross-validation on 500 channel samples generated following the description in Section 8.1.1. This 

means we divide the data into five subsets of 100 samples each and we select one of the subsets as 

the test set and use the other four subsets as the training set. This is repeated five times; each time 

a different subset is selected as the test set. Each channel sample corresponds to an independent 

placement of the vehicles in the environment. This also includes the location of the communicating 

car, which is drawn uniformly from the range 27.5 m to 32.5 m from the RSU (𝑑ℓ in Figure 8.2). 

The baseline method treats this 5-m range as a location bin, while in the proposed LtR approach 

the actual position is included in the feature vector when computing the prediction. We assume 
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16x16 UPAs at both the RSU and the car. The beam codebook has 271 beams, and an exhaustive 

search would need to train 2712 = 73441 beam pairs. Our methods only need to train around 30 

beam pairs to achieve the alignment with high probability. 

Figure 8.6 shows the misalignment probability of the proposed LtR method when using 

different kernel functions as compared to the baseline. We can see that the linear kernel does not 

work at all. The radial basis function (RBF) kernels perform well. We proposed a slight 

modification to the standard RBF kernel, which provides the best performance as shown in Figure 

8.6. With the modified RBF kernel, the proposed solution achieves <1% misalignment probability 

(i.e., >99% alignment probability) when training only 30 beam pairs. We can also see the 

performance gain over the baseline for a lower target misalignment probability at low target 

misalignment probability. For example, for a target misalignment probability of 0.1%, the training 

overhead reduction is >20% as compared to the baseline.  

  

Figure 8.6 Misalignment probability of the LtR beam recommendation method when using 

different kernels as compared to the baseline from [8.12] 

8.1.4 Online Learning for Beam Recommendation 

In this subsection, we present our online learning solution for beam pair recommendation. 

The structure of the presentation is the same as in the previous subsection. 

Problem: Our goal is to develop an online learning version of our prior approach from 

[8.7]. Here, we discretize the position as opposed to the LtR method in the previous subsection. 

The challenge here is that there is no full database up front as in the offline learning setting (as in 

[8.7] and the LtR method). The algorithm only uses a small initial database for initialization. In its 

canonical form, our problem is this: given a position, what beam pairs should be recommended 

based on the observations seen so far? In other words, this is a sequential decision-making 
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problem. Such problems can be solved using the MAB framework. Our beam alignment method 

(Figure 8.4) allows the training of 𝑁b ≥ 1 beam pairs, and so we can cast our problem as a 

multiple-play MAB problem (similar to betting on multiple numbers in a roulette game). The 

online learning algorithm has to exploit its current knowledge as well as enhance its knowledge of 

the learning model. This is known as the explore-exploit dilemma and is intrinsic to online learning 

problems. Note that exploration comes with the risk of poor performance since the algorithm tries 

uncertain actions to learn. Our goal is to design an algorithm that understands this risk and tries to 

minimize the risk during the learning.  

Motivation for the proposed solution: There are several advantages of learning online. 

First, offline solutions cannot be deployed until the database is collected. Furthermore, the 

performance of an offline learning solution depends entirely on the accuracy of the database that 

is not updated. Online approaches keep collecting new observations during operation, making it 

possible to improve the database. In addition, online learning approaches open up opportunities 

for tuning the system based on the observed response. For example, as opposed to using the same 

beam codebook in every environment, an online learning method can be designed to tune the 

codebook to fit the environment and maximize the beamforming gain (i.e., the received power).   

Solution idea: There are two main features in our solution. One is to solve the multiple-

play MAB with low complexity and the other is to minimize the risk during the learning.  

For solving the multiple-play MAB problem, it is important to select a good reward signal 

and exploit the structure of the reward signal. In our case, we use the alignment probability as the 

ideal average reward. There are two main reasons for this choice. First, we have shown in [8.7] 

that using the alignment probability for beam pair recommendation is optimal (in the sense of 

minimizing the misalignment probability). Thus, this is a natural choice to try to approach in the 

online approach. Second, the additivity of the alignment probability allows a low complexity 

solution when computing the recommendation. Additivity here means that the alignment 

probability of a set of beam pairs is equal to the sum of the alignment probability of each individual 

beam pair. This means that we can select one beam pair at a time when doing the recommendation 

(called greedy selection), which makes the problem much simpler. Note that such a subset 

selection problem is intractable in general. Our proposed solution uses the upper confidence bound 

(UCB) of the alignment probability as the selection metric. A UCB has two parts: the expected 

reward based on the observations so far and the uncertainty. ‘Uncertain’ means that the system has 

tried the beam pair only a few times, and it does not have enough information to reliably estimate 

the alignment probability. If a beam pair has a high UCB value, it means that the alignment 

probability of the beam pair either is known to be high or is uncertain. The former enforces 

exploitation, while the latter enforces exploration. We call this selection the greedy UCB selection. 

We now discuss the other main feature of the solution: risk-awareness. The greedy UCB 

selection is oblivious to the multiple-play setting. This means that it could select too many beam 

pairs whose expected rewards are highly uncertain (thus, large UCB values). This means that the 

risk of misalignment is high. Observing this, we introduce the notion of risk to each beam pair and 

make the algorithm reject beam pairs selected by the greedy UCB method with a probability 
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proportional to the risk. We define the risk of a beam pair as the probability that its received power 

is below a certain threshold as compared to the received power of the strongest beam pair. This 

allows us to use a binary signal to estimate the risk during the operation. Now, when a beam pair 

is rejected, we used the expected rewards (i.e., without the uncertainty terms) to select a 

replacement. We call this risk-aware selection the risk-aware greedy UCB algorithm.  

Online learning solution for beam pair recommendation: The proposed online solution 

operates as shown in Figure 8.7. The algorithm starts with a training request detection loop. When 

detecting a request, it decodes the car’s position and input to the beam recommendation algorithm. 

The algorithm reads the learning parameters corresponding to the position and produces a 

recommendation list. The list of beam pairs is then sent to the car and the beam pairs in the list are 

trained. The beam measurements are used to update the learning parameters and the algorithm 

returns to the training request detection loop. 

 

 

Figure 8.7: A flowchart of the proposed online learning for beam pair recommendation 

 

We now describe the risk-aware greedy UCB algorithm for producing the 

recommendation. Figure 8.8 illustrates the procedure for recommending 𝑁b beam pairs. First, it 

computes the UCB values of all beam pairs. Then, the algorithm enters a loop, where in each 

iteration it selects a beam pair and add it into the recommendation list. The loop starts by checking 

if 𝑁b beam pairs are already selected or not. If yes, it outputs the recommendation list and 

terminates. If no, it selects a beam pair with the largest UCB values among the pairs not yet in the 

current recommendation list (i.e., the greedy UCB selection procedure). Next, it estimates the risk 

of the selected beam pair using the parameters of the beam pair stored in the memory. It then makes 

a random rejection with the rejection probability proportional to the risk. This is done by drawing 

a Bernoulli random variable (i.e., tossing a coin) with the risk as its parameter. If rejected, a 

replacement beam pair is selected using the expected reward (as opposed to the UCBs, which 

contain uncertainty). The selected replacement is then included into the recommendation list. If 

not rejected, then the original greedy UCB selection is included into the recommendation list. The 

algorithm then returns to the start of the selection loop. The loop iterates until 𝑁b beam pairs are 

selected.  
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Figure 8.8: Flowchart illustrating the risk-aware greedy UCB algorithm 

 

Numerical evaluation: We show the learning behavior of the proposed online learning 

system over time. We again use the channels generated following the description in Section 8.1.1. 

We generated 10,000 channel samples for the evaluation here. To eliminate the dependence of the 

ordering of the channel samples during the online learning, we run the online learning algorithm 

100 times, where in each time we randomly permute the channel samples. As the performance 

metric, we use the 3 dB power loss probability averaged over the 100 simulation runs. The 3 dB 

power loss probability is the probability that the received power after conducting the proposed 

beam alignment is within 3 dB of the optimal alignment.  

Figure 8.9 shows the learning behavior of the proposed risk-aware greedy UCB algorithm. 

The algorithm has two main parameters: the training budget 𝑁b and the risk threshold Γrisk. We 

note that our algorithm does not require that 𝑁b be fixed, but for simplicity, we assume the same 

𝑁b during the learning here. Figure 8.9 (Left) shows the performance for 𝑁b = 10,30 with 

different Γrisk. We can confirm that using a larger training budget 𝑁b leads to a lower 3 dB power 

loss probability, i.e., more accurate beam alignment. The learning seems to have two phases: the 

fast improvement phase in the early time steps and the slower improvement phase after that. For 

𝑁b = 30 beam pairs and Γrisk = 5, this phase change happens at around time index 500. The 

slower learning phase starts when the algorithm has identified high-risk beam pairs (with some 

certainty) and learns those beam pairs at a slow pace using the rejection mechanism. For the risk 

threshold, the algorithm is not sensitive to the choice of Γrisk as long as it is not too large (e.g., 40 

dB). The main reason for this behavior is due to the effect of the replacement selection (see Figure 

8.8). Even if a good beam pair is rejected due to risk overestimation (when using a small Γrisk), it 
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will likely be picked up by the replacement selection. Using a too large Γrisk essentially reverts the 

algorithm back to not being risk-aware and results in poor performance.  

 

 

Figure 8.9: (Left) The effect of the two main parameters (𝑵𝒃 and 𝜞𝒓𝒊𝒔𝒌) of the risk-aware 

greedy UCB algorithm. (Right) Performance comparison of greedy UCB algorithm with 

and without risk-awareness. 

 

Figure 8.9 (Right) compares the performance of the online learning with and without risk-

awareness. The performance without risk-awareness is an order of magnitude worse than that of 

the risk-aware case. This is because, without risk-awareness, the algorithm aggressively samples 

uncertain beam pairs (large UCB values). The risk-awareness feature balances the selection of 

high-risk beam pairs and encourages the algorithm to exploit more. While the risk-awareness 

component slows the learning of those high-risk beam pairs (i.e., obtaining accurate their learning 

parameters), the instantaneous performance at each time index is much better. This means that the 

risk of large power loss is distributed more evenly among the cars at different learning stages (each 

time index corresponds to the beam alignment of a different car), and the algorithm does not place 

too much burden on cars during the early stage of the learning. 

8.2 Vehicular mmWave Reflection Measurements 

In this section, we present our measurement campaign aiming for assessing the usability of 

the reflection path via a neighbor vehicle. We start with the motivation. Then, we describe the 

measurement system and the setup of the measurement scenario. Finally, we report the results. 

8.2.1 Motivation 

The reflection path off a neighbor vehicle could be an alternative path to the LOS path 

under blockage situation, and it can help make mmWave link connection more reliable. Blockage 

is an important characteristic of mmWave propagation. When vehicles move together in the same 

direction on a highway, blockage by a neighbor vehicle can last for a long time (e.g., several 
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seconds). Under such a long blockage, it is crucial to find an alternative path to keep the mmWave 

link connection. Indeed, in our simulation studies using the ray-tracing simulator conducted so far 

for the beam alignment, we observed that reflection paths play an important role. Due to the 

complexity of the simulator, we cannot model all the details of the vehicles (we used boxes made 

of metal in our simulations), and so it is important to understand such reflective paths in actual 

measurements.  

Furthermore, such a reflection path could have an important implication for V2V mmWave 

communications. With DSRC, vehicles can obtain information about their neighboring vehicles, 

including their position and sizes. If the reflection path can serve as an alternative to the LOS path 

and the position information is accurate enough, a vehicle can determine if its LOS path is block 

and compute the pointing direction for the reflection path directly from the geometry.  

8.2.2 Reflection Measurement: Equipment and Setup 

In this subsection, we present the channel measurement equipment and the details of our 

measurement campaign.  

Measurement equipment: There are three main components in our channel sounder 

system: a National Instruments (NI) mmWave transceiver system, a Rubidium frequency standard, 

and a rotating table. The NI mmWave transceiver system supports all the processing from 

baseband, intermediate frequency (IF) to the radio frequency (RF) that radiates signals in the 

environment. The transceiver system is a wideband system with a symbol sampling rate of 1.536 

Giga-samples per second. This means it has a time resolution of 0.65 ns. Our system uses radio 

heads that support the frequency bands in between 71-76 GHz. The Rubidium frequency standard 

is used to provide the exact timing to the transmitter and the receiver so that they are tightly 

synchronized during the measurement. Such synchronization is needed for post-processing for 

identifying the different paths. Finally, the rotating table is used to obtain measurements at 

different pointing direction (we use directional antennae).  

We used two types of horn antennae in the measurement campaign: a wide-beam of ~40° 

antenna and a narrow-beam of ~10° antenna. The two antennae with the radio heads are shown in 

Figure 8.10. The wide-beam antenna is used at the transmitter to illuminate the whole car (the 

reflector) and we rotate the narrow-beam antenna (in the azimuth plane) to measure the channels 

in the angular domain. 

  

         

Figure 8.10: Horn antennae used in the measurement. (Left) 40° beamwidth horn antenna; 

(Right) 10° beamwidth horn antenna. 
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Measurement scenario: Since our goal is to measure reflection off a car, the 

measurements can be done in a static setting. The measurement setup is shown in Figure 8.11. The 

measurements were conducted on the top floor of a garage on campus. As mentioned earlier, we 

use a wide-beam antenna at the transmitter and its pointing direction is fixed. The receiver uses a 

narrow-beam antenna, and the receiver radio head is placed on the turntable, which we rotated to 

measure in the azimuth angular domain. The angular sweep starts from the LOS direction with a 

rotation step of 5° until it reached 70° away from the LOS. This sweep range covers the entire 

reflecting car.  

 

 

Figure 8.11: Reflection measurement setup. The measurements were conducted on the roof 

of a garage on campus. 

 

In the measurement campaign, we measured 14 configurations (as listed in Table 8.2) that 

cover different antenna heights and antenna polarizations. We used three heights: 0.5 m, 1.0 m, 

and 1.5 m. These three choices imitate the cases where the antenna is mounted on the bumper, the 

side mirror, and the roof of the car. The antenna polarization is the axis of oscillation of the electric 

field as the electromagnetic wave radiates from the antenna. It is well known that propagation at 

mmWave preserves the polarization more than propagation at a lower carrier frequency. This 

means that antenna polarization mismatch can result in a large loss in the received power. To 

measure this loss, we use two configurations for the antenna polarization: horizontal-horizontal 

(H-H) and horizontal-vertical (H-V). We also measured the case when there was no reflecting car. 

The purpose is to measure the background response of the environment. 
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Table 8.2: Measurement configurations 

Configurations Rx height Tx height Polarization (Rx-Tx) Note 

1 0.5 m 0.5 m H-H With car 

2 0.5 m 0.5 m H-V With car 

3 0.5 m 1.0 m H-H With car 

4 0.5 m 1.0 m H-V With car 

5 0.5 m 1.5 m H-H With car 

6 0.5 m 1.5 m H-V With car 

7 1.0 m 1.0 m H-H With car 

8 1.0 m 1.0 m H-V With car 

9 1.0 m 1.5 m H-H With car 

10 1.0 m 1.5 m H-V With car 

11 1.5 m 1.5 m H-H With car 

12 1.5 m 1.5 m H-V With car 

13 1.5 m  1.5 m H-H No car 

14 1.5 m 1.5 m H-V No car 

 

8.2.3 Measurement Results 

Before presenting the measurement results, we start with a description of how we identify 

the reflection path. We identify the reflection path using both the delay and the angular domain. 

For the delay domain, we can use the LOS path as the reference. The LOS path is the first peak in 

the power of the channel impulse response (CIR). Then, by computing the delay difference 

corresponding to the path length difference between the LOS and the reflection path, we can find 

the delay tap corresponding to the reflection path. Specifically, using the detailed geometry of the 

measurement setup shown in Figure 8.12, we can compute the path length difference to be about 

0.7 m. The sample period of the system is 0.65 ns, and so using the speed of light of 3 × 108 m/s, 

we can translate the path length difference to a delay of about 3.6 samples. Thus, we expect the 

tap corresponding to the reflection path at 3 to 4 samples away from the LOS tap. Similarly in the 
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angular domain, from the geometry, we expect the peak of the reflection (highest received power) 

when we rotate the receiver close to 13.5°.  

 

Figure 8.12: Detailed geometry of the measurement setup 

 

We now present the results. We start with the case where the transmitter and receiver are 

of the same heights (configurations 1-2, 7-8, and 11-12). Figure 8.13 shows the results when the 

height is 0.5 m. The dashed curves are those with matched polarization, and the solid curves are 

those with polarization mismatch. We can see that the loss due to polarization mismatch is large. 

It is up to about 20 dB for the LOS path and about 15 dB for the reflection path. The smaller loss 

for the reflection path is likely because the reflection changes the polarization of the incident 

waves. In the matched polarization case, we can see that the received power of the reflection path 

is about 5 dB below the LOS. Such a loss of this magnitude will reduce the data rate, but it likely 

will not enough to break the mmWave link. This means the reflection path can be used as a backup 

link. We observed a similar trend for the case of 1.0 m high. For the 1.5 m case, the trend is a bit 

different. The car reflection path is slightly stronger than the LOS received power when the 

polarization matches. One difference from the previous two cases is that the reflection point on the 

car is likely on the glass window area, which is made of different material than the car body. One 

hypothesis is that the material in this area provides a better reflection than the car body. Further 

measurements are needed to make a conclusive statement on this. 
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Figure 8.13: CIR tap power when rotating the receiver. Both the transmitter and receiver 

are at 0.5 m high. 

 

We next describe the cases when the transmit and receive antennae are of different heights. 

Figure 8.14 shows the measurement results for the case when the receiver is 0.5 m high, and the 

transmitter is 1.0 m high. We can see that while the trends are still the same, the gaps here are 

larger than the case when the transmitter and the receiver are of the same height. With matched 

polarization, the gap between the reflection path to the LOS path increases to about 10 dB. With 

mismatched polarization, the reflection path is about 10 dB stronger than the LOS path. In the 

difference cases measured, it seems that the cause of this increase in the gaps is mainly because 

the LOS received power changes by a large value for the different measurement configurations. 

The received powers of the reflection path seem to be of similar values for these configurations. 

One possible explanation for this behavior is that the LOS possesses a two-path effect while the 

reflection path does not. In the LOS direction, besides the direct LOS path, there is also the ground 

reflection path. The two paths can add constructively or destructively, depending on the exact 

phase difference between the two paths causing the received power fluctuation. Further 

measurements are needed to confirm the correctness of this explanation.  
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Figure 8.14: CIR tap power when rotating the receiver. The receiver is 0.5 m high, and the 

transmitter is 1.0 m high. 

8.2.4 Summary 

We first summarize the main results from the measurements. When the transmit and 

receive antennae are of the same height, the reflection loss is within about 5 dB as compared to 

the LOS path. This is a promising result showing that the reflection path is a viable alternative to 

maintain mmWave link connection in the LOS blockage situation. The loss due to polarization 

mismatch is large. The loss can be more than 20 dB for the LOS path and slightly less at around 

15 dB for the reflection path. For the case with different antenna heights, the gap between the LOS 

and the reflection increased up to around 10 dB for the matched polarization case. 

We now discuss several issues that are not fully explained by the current measurement 

results. The reflection path was slightly stronger than the LOS path when both the transmit and 

receive antennae are at a height of 1.5 m. The gaps in the received power between the LOS and 

the reflection path increased when the antenna heights are different. When both antennae are at 1.5 

m high, the increase could be due to the different material of the reflection point on the car. It can 

also be explained by the two-path effect on the LOS received power. The two-path causes the LOS 

received power to decrease (the LOS path and the ground reflection add destructively), leading the 

LOS received power to become smaller than the power of the reflection path. When the antennae 

are at different heights, the increase in gap could also be explained by the fluctuation in the 

received power of the LOS path due to the two-path effect. While qualitative explanations of the 

behavior are possible, further measurements are needed to confirm the correctness of these 

explanations. 
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Chapter 9 Radar-aided mmWave Infrastructure 

Communication 

9.1 Introduction 

Radar is one of the sensors typically mounted on a vehicle or an RSU that can be used to 

obtain the side information for in the communication system. This information can be the position 

and velocity that can help in configuring the mmWave beams. In this chapter we will introduce 

the concept of radar-aided vehicular communication, identifying how radar can be a useful source 

of information that helps configure the mmWave link.  

We start this chapter by showing radars mounted on BS can be a source of high precision 

positioning that can reduce the mmWave beam-training overhead. Then, in Section 9.2.2, we show 

the congruence in radar and communication spatial spectrum, and using the congruence configure 

the mmWave precoders/combiners without in band training. Subsequently, in Section 9.2.3, we 

outline a modification to the 5G NR based on eigenvectors of radar covariance, which can 

eliminate the initial access overhead.  

We outline the equipment bought for measurements and prototyping radar-aided mmWave 

communications in Section 9.3.1. In Section 9.3.2, this equipment is used to establish the 

congruence of radar and communication in real world settings. Further, in Section 9.3.3 we use 

the equipment to study the impact of radar radiations on mmWave communication. 

9.2 Radar-aided V2I mmWave Communication 

9.2.1 Positioning Using BS Mounted Radar 

One way to reduce the array configuration overhead is to exploit side-information about 

the mmWave channel. Vehicle location has been used as side-information in the past [9.1]. In 

light-of-sight (LOS) vehicle-to-infrastructure (V2I) communication links, the location of the 

vehicle can be used to reduce the beam-training overhead. Specifically, the beamforming 

codebook can be reduced to a few beams around the estimated vehicle location. The reduction in 

codebook depends on the accuracy of localization, i.e., more reduction with accurate localization.  

The location of a vehicle typically comes from the global navigation satellite system 

(GNSS). As an alternative, a BS-mounted radar—referred to in this report as the BS-radar—can 

determine the precise location of the vehicle. Based on the Cramer-Rao lower bound (CRB) on the 

angle estimation of an off-the-shelf radar [9.2] we show that a BS-radar can localize a vehicle 

better than GNSS. Specifically, we consider a V2I communication setup shown in Figure 9.1. The 

height of the roadside lamp i.e., BS is hBS, and the height of the vehicle is 1.6 m. Assuming that 

two BSs are separated by inter-site distance (ISD), and focusing only on the coverage area of a 

single BS, we consider a road segment of length ISD. The distance between the BS and the closest 

point on the road is d.  
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Figure 9.1 The V2I communication system with BS-mounted radar 

 

Typically, a vehicle obtains its location from GNSS. The GNSS receivers are relatively 

inexpensive and ubiquitous. The location information from GNSS, however, is erroneous. The 

error in the location information of the GNSS system is modeled as a disk of radius r. The GNSS 

error radius r is around 10 m [9.1]. The location of the vehicle can be shared with the BS using 

current vehicular communication standards. A basic safety message (BSM) is broadcasted every 

100 ms [9.3]. To understand the impact of erroneous information, we consider an example based 

on the setup in Figure 9.1 The V2I communication system with BS-mounted radarwith ISD 100 

m, hBS 5 m, and d 10 m. Assume that the vehicle is at the broadside of the BS array, and is moving 

with the speed of 140 kmh (i.e., the speed of vehicles on a highway), the true location and the 

reported location can have an offset of 10 m. Assuming 64 BS antennas, and DFT codebook, 10 

m uncertainty implies that we need to test 48 codewords out of the 64 codewords in the DFT 

codebook. The training overhead reduction using GNSS, therefore, is (1-48/64)%=25%. 

For radar based localization, we consider that the radar is colocated with the 

communication array at the BS. One example is the INRAS Radarbook, which can operate at 24 

GHz and 77 GHz. The transmit power of the Radarbook can go up to 11 dBm. The Radarbook has 

8 receive antennas and 4 transmit antennas. The transmit antennas are placed such that the overall 

aperture of the antenna array is that of a 29 antenna SIMO radar. Doing simple calculations based 

on the CRB of the radar, we can show that for radar, the AoA estimation uncertainty translates to 

2 codewords and training overhead reduction using radar is 1-2/64 %=97 %. A vehicle at the 

broadside of the BS-radar is an optimistic situation, and in practice the accuracy may not be this 

high. Thus, the savings may be less than 97%, but the example demonstrates the benefit of the BS-

radar for vehicle localization. 

We assume ISD=100 m, hBS = 5m, d=10m, and 73 GHz operating frequency. We generate 

1000 channels by randomly dropping the vehicles on the road and provide simulation results 

averaged over these random drops. For simulation results, we study the spectral efficiency (SE). 

The SE as a function of transmit power is shown in Figure 9.2. From the results, we can observe 

the radar location based beam-training can do better than exhaustive search beam-training and 
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GNSS based beam-training for both speeds of the vehicle. That said, as the speed increases the SE 

of the GoB decreases, as a larger fraction of the coherence time is spent training. In comparison, 

the SE of the radar location based beam-training is not sensitive to the coherence time as the 

coherence time is very large compared to the training time for even high vehicle speeds. 

 

 

Figure 9.2: The spectral efficiency vs transmit power, with 64 BS antennas and vehicle 

speeds of 140 kmh and 60 kmh 

 

9.2.2 Radar-communication Congruence and Radar-based Precoding 

To enable mmWave in vehicular communication systems, we propose using radar mounted 

on the road infrastructure to aid in configuring the mmWave communication link in a V2I scenario. 

In other words, we seek to exploit the information obtained from the radar operating in an 

mmWave band to extract the channel information of another mmWave band for communications. 

This approach goes beyond the downlink/uplink reciprocity that has been studied in the past for 

frequency division duplexing (FDD) communication systems, since this configuration works even 

when the carrier frequencies may be very different, and the environment, not the channel, is sensed.  

For our experiments, we consider an mmWave V2I communication system, where 

mmWave base stations serve as infrastructure for V2I communications. A radar operating in 

another mmWave band is mounted on the base station. In real-world environments, depending on 

the beam width and the distance between the vehicle and the BS, the mmWave beam (radar as well 

as communication) generated at the BS in a given direction might illuminate only a small fraction 

of the vehicle. To guarantee that the mmWave communication beam reaches the receiver module 

at the vehicle, we propose using a variety of antennas on board the vehicle. To achieve this 
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diversity, we assume that N phased arrays are placed at different points in the vehicle. This 

approach increases the probability that at least one path from the BS reaches one of the antenna 

arrays in the vehicle; it can also be used to prevent dramatic effects of blockages in the 

communications with the vehicle.  

The objective of the system is to steer the mmWave communication beams between some 

of the arrays in the vehicle from the BS, relying on information extracted from the radar mmWave 

signal. For the mmWave V2I communication system, we consider a hybrid MIMO (multiple input 

multiple output) architecture, since a multi-beam antenna pattern must be designed to support the 

multiple receivers. Additionally, since an analog beamforming architecture allows beam steering 

only in one direction and an all-digital solution requires too much power consumption, we 

implement a hybrid processing architecture. This hybrid architecture splits the MIMO processing 

between the analog and digital domains to operate with a number of transceivers smaller than the 

number of antennas and reduce power consumption. There are similarities with the multiuser 

communication problem in an mmWave cellular network when the different users (in our vehicular 

case the different antennas in the car) are located at nearby positions, and this is a commonly 

applied solution.  

Following the above we have designed two protocols for beam alignment in a vehicle-to-

infrastructure (V2I) scenario. These protocols are based on a blind design of the 

precoders/combiners, which does not require channel state information, only the covariance of the 

received signal. An mmWave radar signal is used to estimate the covariance of the received signal 

in a different frequency band. Wireless insite [9.4] based ray-tracing results confirm that the main 

DoAs for the radar and the communication signals are similar, as can be shown in Figure 9.3, for 

the antenna placed at the top of the car in a ray tracing simulation.  

 

 

Figure 9.3: Relative path gain in both communication and radar signals 

 

The spectral efficiency obtained for the uplink between two of the transceivers in the 

vehicle and the BS in a simple scenario is shown in Figure 9.4. The perfect covariance and the 

sample and compressed estimates provide similar results for the front left antenna, but there is still 
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a significant gap with the upper bound that could be further reduced with new designs of the 

combiners/precoders. Here, the upper bound refers to the achievable rate using the perfect channel 

state information (CSI), which can be obtained only when full beam training is available. However, 

as mentioned previously, the beam search over the entirety of surrounding space leads to severe 

training overhead, and so is practically unachievable. Our approach, leveraging the similarity of 

covariance between the radar and the communication channels, can achieve most of the achievable 

rate of perfect CSI at high SNR. This implies that our proposed radar-aided mmWave 

communication system can significantly reduce the overhead without a non-trivial loss of the 

achievable rate. We propose as future work to design the RF combiners using the maximization of 

the combined signal power, while finding an alternative criterion for the design of the baseband 

component. The compressive estimation of the covariance based on LS does not provide good 

results in some cases, like in the top antenna array, and a better estimator could also be designed.  

 

 

Figure 9.4: The performance result of the proposed beam alignments: (left) the case of left 

antenna array; (right) the case of top antenna array 

  

9.2.3 Radar-aided 5G NR 

In this section, we outline the idea of using radar information in the design of 5G new radio 

(NR) supporting V2X communication. In preparation for the approval of the first release of the 5G 

standard, we have been working to determine how to incorporate radar information to speed up 

beam training and make it feasible for high mobility applications. The main idea of the proposed 

work is to design the radar-aided mmWave communication from the NR standard point of view, 

i.e., its direct application in the 5G NR standard. To discuss the proposed ideas, we will first outline 

some preliminaries about the 5G NR beam-management. 

The 5G NR supports frequencies above 6 GHz, and as such, procedures for beamforming 

and beam management are included in the standard. The basic procedure for beam management in 

5G NR is based on an exhaustive search. The transmitter sweeps all the beams, and the receiver 

measures the received signal on all the transmitted beams and determines the best receive beam 
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based on the signal-to-noise ratio (SNR) [9.5]. The downside of the exhaustive search is that a 

significant fraction of time-frequency resources is utilized for link configuration. This implies that 

these resources are not used for data transmission, resulting in low spectral efficiency.  

A simple modification to this process is to aid the NR beam-configuration with position—

to restrict the set of transmit beams and receive beams based on the position of the transmitter and 

receiver. This can lead to significant gains in comparison with the exhaustive search, but even this 

modification has two limitations. 

i) The position information may not be entirely reliable, as the mechanisms to obtain 

the position information are inaccurate. This implies that the subset of the beams 

even after incorporating the position information may be large, not resulting in 

significant gains. This has been discussed in detail in an earlier section. 

ii) The restriction of beams based on the position assumes that the transmitter and 

receiver have an LOS. Therefore, directly restricting the beams based on position 

is not applicable to the non-LOS cases, i.e., a serious limitation. 

 

We propose an alternative way to incorporate radar information into the 5G NR standard. 

Specifically, we first perform the radar covariance estimation based on the ideas in [9.6], and then 

use the radar covariance to configure the mmWave link. We provide the details of the proposed 

procedure below: 

 

Step 1 (Spatial channel covariance estimation): First, the radar system operating at the 

mmWave band is used to estimate the spatial channel covariance. The spatial channel 

covariance is a second order statistic that is shown be useful in mmWave link configuration 

[9.6]. The reason that the spatial covariance is beneficial in mmWave link configuration is 

twofold. As the spatial covariance is a second order statistic, it varies relatively slowly in 

comparison with the channel state information. Thus, obtaining, and updating the channel 

covariance information requires considerably less overhead, which is critical for a 

successful link configuration strategy. Secondly, due to the relatively sparse nature of the 

mmWave channels, the use of spatial channel covariance instead of the instantaneous 

channel information does not incur significant penalty in terms of link configuration 

performance. Note that typically the spatial channel covariance estimation is performed in-

band, thus reducing the channel training overhead but not eliminating it. Our approach is 

different in the sense that we obtain the spatial channel covariance with a radar that is 

operating in an adjacent band. This is feasible as the channel’s spatial characteristic do not 

change considerably with frequency. Thus, from in-band training overhead point of view 

our approach completely eliminates any training overhead. 

 

Step 2 (Eigenvector-based precoding): The beamforming at the transmitter can be 

performed in several ways. The simplest way is to use a grid of beams, i.e., to point the 

transmit beam in several carefully chosen directions sequentially and measure the receive 



84 

signal at the receiver. There are, however, more sophisticated approaches to use the channel 

state information. One such approach is the eigenvector-based precoding. This precoding 

ensures that all the significant directions in the channel are illuminated. We propose to use 

the eigenvector-based precoding due to its superior performance in comparison with the 

grid of beams, especially in the channels with multipath. 

 

Step 3 (Exhaustive search at the receiver): Assuming that the radar is mounted on the RSU, 

it can help only the transmitter, and not the receiver, i.e., the user-equipment in this case. 

As such, at the user-equipment end an exhaustive search is still required. However, there 

are only a few antennas at the user-equipment end and as such the grid of beams’ exhaustive 

search is still feasible. 

 

We provide the simulation results for the three approaches: i) exhaustive search (i.e., the 

5G NR protocol), ii) position-aided search (i.e., the exhaustive search but the number of beams is 

restricted based on the position information), and iii) the proposed approach that we call the radar 

covariance-aided search. The position-aided search was discussed earlier. The simulation scenario 

is shown in Figure 9.5. 

 

 

Figure 9.5: Simulation scenario using a realistic mmWave channel model for V2I 

 

For simulations, we assume that the BS and the mobile terminal have 64 antennas each. 

We assume that there is a LOS channel between the mobile terminal and the base station. This can 

be considered a relatively favorable scenario for the 5G NR beam-search. We generate the 

channels according to 3GPP standard using Quadriga software [9.7]. 

The first metric used for simulations results is the misdetection probability. When the user 

terminal enters the cell or is turned on, it looks to be associated to a certain BS. If the signal 

received from a BS is above a threshold the receiver can successfully associate with the BS. As 

such the mis-detection probability means that the post-combining signal was not above the 

threshold. We provide the mis-detection probability results in Figure 9.6. We can see that the mis-
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detection probability of the proposed position-aided approach is sometimes better than the 

exhaustive search (saving a lot on the training overhead at the same time). The mis-detection 

probability of the proposed radar-aided approach is also comparable to the 5G NR exhaustive 

search protocol. 

 

 

Figure 9.6: Misdetection probability of the exhaustive search, position-aided search, and 

radar-aided covariance estimation search 

 

The second metric used to compare the proposed approach is the spectral efficiency. The 

spectral efficiency is defined as  

 

SE = μβE[log2(1 + SNR)], 

 

where μ = (1 − misdetection probability), which incorporates the fact that some devices are not 

detected in the spectral efficiency, β = (1 −
training overhead

channel coherence time
), is the fraction of the time left 

for data transmission. Note that the training time for the exhaustive search is 1.28 seconds, while 

for the position-aided approach it is 40 ms, and for the radar covariance-aided approach it is 20 

ms. The results are plotted in Figure 9.7, for three channel coherence times: 10, 3, and 2 seconds. 

We can see from the results that the impact of varying coherence times is clear only in the 

exhaustive search, as it takes a long time for completion. For the other two strategies, the training 

time is very small in comparison with the channel coherence time and as such the three plots for 

the other two approaches coincide. Finally, the position-aided approach provides better spectral 

efficiency than the exhaustive search in all the tested cases. The radar-aided covariance approach 

is further better than the position-aided approach, justifying the proposed design. 
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Figure 9.7: The spectral efficiency of the proposed radar-aided covariance approach, 

exhaustive search, and position-aided exhaustive search 

9.3 Radar Equipment and Measurements  

9.3.1 Equipment Purchases 

The research team has a software-defined mmWave radar test-set up, which consists of 

several pieces of equipment obtained from National Instruments, as described in Table 9.1. The 

radar target is simulated for the device-under-test (DUT) (e.g., Delphi radar) using vector signal 

transceiver (VST) and mmWave transceiver, as shown in Figure 9.8. First, the DUT transmit signal 

is received, down-converted, and digitized. Then, the digitized DUT signal is modified based on 

the input target parameters (e.g., radar cross section, range, and velocity) received from the 

controller PXIe-8133. Finally, the modified up-converted and analog DUT signal is transmitted 

from the mmWave transceiver, which is later received by the DUT. The target height and rotation 

angle are, however, simulated using a DUT position control device, which consists of two Ethernet 

integrated steppers, one electronic clinometer, and one tripod, as described in Table 9.1.  
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Figure 9.8: MmWave radar target simulator architecture 
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Table 9.1: National Instruments (NI) Test Equipment for mmWave Radar Prototyping 

Model Equipment # Capabilities 

PXIe-1078  

9-Slot 3U PXI 

Express Chassis with 

AC  

1 

It consists of 5 hybrid slots and 3 PXI Express 

slots with up to 250 MB/s per-slot bandwidth 

and 1.75 GB/s system bandwidth. It has a 4 slot-

wide system controller slot, which can accept 

either an embedded controller or remote 

controller, and eight peripheral slots.  

PXIe-8133  

1.73 GHz Quad-Core 

PXI Express 

Controller  

1 

It is a high-performance Intel Core i7-820QM 

processor-based embedded controller with the 

1.73 GHz base frequency, 3.06 GHz (single-

core Turbo Boost) quad-core processor, and 

dual-channel 1333 MHz DDR3 memory. This 

processor delivers up to 2 GB/s of dedicated slot 

bandwidth, with the overall system bandwidth 

of up to 8 GB/s.  

PXIe-5646R  
6 GHz Vector Signal 

Transceiver (VST)  
2 

It features the flexibility of a software defined 

radio architecture by combining a vector signal 

generator and vector signal analyzer with 

FPGA-based real-time signal processing and 

control.  

VRTT-77G-

M1 

77 GHz Vehicle Radar 

Test Transceiver  
1 

It is a phase-coherent millimeter-wave 

transceiver with 76-81 GHz frequency range 

and 3 GHz instantaneous bandwidth. It has 

extremely low noise performance. The 

equipment contains two horn antennas for 

transmit and receive.  

ISM 7411E  
Ethernet Integrated 

Stepper  
2 

It combines a stepper motor and a sophisticated 

stepper drive in a single device.  

DUT 

Position 

Control  

Custom made device 

under test (DUT) 

position control  

1 

It is a basic DUT position control device, which 

is used to set the rotation angle and height of the 

DUT, such as a Delphi radar. It consists of two 

ISM 7411E, one AccuStar electronic 

clinometer, and one Induro CLT203 Classic 

Series 2 Stealth Carbon Fiber Tripod  

 

To aid in our real-world testing, the research team purchased Radarbook and Radarlog [9.8, 

9.9], which are a state-of-the-art radar evaluation platform and a state-of-the-art data-capturing 

environment, respectively. The specifications of Radarbook and Radarlog are as follows: 
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 Radarbook (INRAS Radarbook n.d.) is a radar evaluation platform for rapid 

prototyping at 77 GHz band. Its baseband evaluation board contains eight analog 

channels, Altera Cyclon III FPGA, and USB module. Its 77 GHz frontend is a patch 

antenna array with four transmitter and eight receiver antennas that enables MIMO 

radar processing. Software support is provided for basic functionality to control front 

end using MATLAB along with Python GUI for raw data processing such as 

beamforming.  

 Radarlog is a radar data-capturing environment for complex data analysis and algorithm 

design with a fully configurable processing chain in Python and Matlab. Using 

Radarlog, as many as sixteen analog receiver channels can be sampled at 65 MSPS per 

channel, processed streamed, and stored via a USB 3.0 interface with a data rate up to 

1.6 GBit/s. Additionally, Radarlog can be operated with a USB server which enables to 

stream data to a HDF5 compatible file and simultaneously visualize the sampled or 

processed data. Software support is also provided for basic functionality to control the 

baseboard and raw data processing. The 77 GHz front end of Radarlog with two 

transmitter and sixteen receiver channels enables MIMO radar processing for frequency 

modulated continuous-wave (FMCW) waveforms.  

 

Radarbook and Radarlog (shown in Figure 9.9) are compatible with an existing 77 GHz NI 

radar target emulator already in the research lab. The Radarbook and Radarlog were implemented 

for further use. This equipment enables prototyping for a radar-aided mmWave communication 

system. Radarlog, for example, can create range-velocity map information of multiple targets 

operating in real-world testing scenarios, which can be exploited to help mmWave communication 

link configuration. Also, Radarbook, which uses RF-frontends at 77 GHz, supports different 

scenarios needed to investigate the performance of a radar system in different types of applications 

such as traffic monitoring, vehicle detection, and drone detection. These products are used to test 

joint communication and radar in Section 9.3.2, and can be used for other mmWave prototypes in 

the future. 

 

 

Figure 9.9: Radarbook (left) and Radarlog (right) 
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9.3.2 Radar-communication Congruence Measurements 

The objective of measurements is to observe the similarity in the radar information and the 

communication channel. Specifically, for precoding at the BS, the power azimuth spectrum of the 

radar and communication channel needs to be similar for radar information to be useful for the 

communication system. We had established the radar-communication congruence using ray-

tracing in an earlier section. Here, we demonstrate that the congruence can be observed in real 

world measurements. 

We mimic the V2I scenario where a RSU is equipped with communication systems’ BS 

and the radar. The car acts as a receiver for the communication signal and as a reflector for the 

radar signal. The setup we have considered is shown in Figure 9.10. The transmitter (and radar) 

and the receiver (and the reflector) are mounted on variable height tripods. The tripod itself is not 

a strong reflector in comparison with background and other reflectors in the scenarios. As such, 

we place a corner reflector on the tripod to have a strong reflection for the radar signal. We use the 

Radarbook to make the radar measurements. For the communication channel, we transmit using 

one Radarbook (acting as a RSU and is mounted on one tripod) and receive using the other 

Radarbook (that acts as a vehicle). The Radarbook is set to have a center frequency of 76 GHz for 

the communication channels’ measurements and 77 GHz for the radar measurements. With this, 

the frequency differences between the communication and the radar band are taken into account. 

 

 

Figure 9.10: The RSU (left), vehicle (center), and zoomed in corner reflector and 

Radarbook on the vehicle (right) 

 

It is not straightforward to have real-time measurements as the tripod is moving, but to 

show the congruence we make sets of measurements at different locations and observe the 
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variation in the radar and communication channels’ power azimuth spectrum. The four locations 

of the tripod are shown in Figure 9.11. Before discussing the results for the communication and 

radar congruence, we would like to highlight two signal processing strategies that are used to 

obtain the result. 

 

 

Figure 9.11: The radar-communication congruence measurements completed at four 

different locations on the vehicle (i.e., receiving tripod) 

 

Background subtraction: There is a strong background in the radar observations. This 

background is static, and is part of all the observations. As such, this background can be estimated 

easily by taking the mean of all the radar measurements. In V2I applications, the background can 

be obtained easily by taking measurements without traffic (e.g., late-night or other no activity 

periods). As such the knowledge of background can be assumed. Once the background is available, 

it is prudent to take out the background before observing the congruence between the radar and 

communication channels.  

Spatial spectrum estimation: The Radarbook has 4 transmit antennas and 8 receive 

antennas. The spacing of the transmit and receive antennas is such that the Radarbook acts as a 

SIMO radar with 29 antenna elements. The spatial spectral estimation with 29 antennas is easy 

and Fourier processing suffices to get a reasonable spatial spectrum estimate. The communication 

channels’ measurement at the receiver using Radarbook, however, are obtained using 8 antennas. 

Simple Fourier processing does not give a good estimate of the spatial spectrum. As such, to obtain 

the communication channels’ spatial spectrum, we use MUSIC algorithm [9.10]. 

The results for this spatial congruence experiment are shown in Figure 9.12. We can see 

from the result that as the receiving tripod (used as a surrogate for the vehicle) is moved, both the 

radar and communication spatial spectrum change. There, however, is always an agreement 

between the radar and communication spatial spectrum. This implies that the radar and 

communication spatial information is consistent, and radar information can be used to configure 

the mmWave communication links. 

Loc 1 Loc 2 Loc 3 Loc 4
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Figure 9.12: The radar and communication spatial spectrum 

9.4 Summary 

In this chapter, first, we established the BS-mounted radar can provide better positioning 

information in comparison with traditional GNSS-based positioning. This position information can 

reduce the training overhead of grid-of-beams beam-training by over 90%. Then, we established 

the spatial congruence of radar and communication using ray-tracing, and used radar covariance 

to obtain the mmWave communications’ precoders/combiners. We then outlined modifications to 

the initial access procedure of the 5G NR to highlight that radar covariance-based eigenvalue 

precoding has misdetection probability similar to exhaustive search with a much lower training 

overhead. 

We outlined the purchased equipment for prototyping and measurements, including 

Radarbook and Radarlog. Using the equipment, we performed measurements to establish the 

congruence of radar and communication spatial information.  

Comm.

Radar

Comm.

Radar

Comm.

Radar

Comm.

Radar
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Chapter 10 Advanced Techniques to Further Enhance Joint 

mmWave Radar and Communication System 

10.1.1 Introduction 

In this project, we developed an automotive joint communication-radar (JCR) system at 

the mmWave band. Millimeter-wave (mmWave) spectrum is a solution to realize high date rate 

communication and high resolution radar sensing. An mmWave joint communication-radar (JCR) 

system that leverages the same waveform for hardware reuse will enable significant advantages in 

terms of cost, size, power consumption, spectrum usage, and adoption of communication-capable 

vehicles. Traditional mmWave radars for consumer applications employ heavy analog pre-

processing due to the use of low-speed analog-to-digital converters (ADC) and frequency-

modulated continuous-wave (FMCW) technology [10.1]. An mmWave JCR system with fully 

digital time-domain processing can now be realized by leveraging mmWave communications 

hardware with high-speed ADCs and phase-coded waveforms. The mmWave JCR system, 

however, incurs trade-off between communication data rate and radar detection/estimation 

performance. 

Prior mmWave JCR waveforms that achieved high data rate were based on the IEEE 

802.11ad single-carrier physical layer (SC PHY) modulation frames [10.2]. Although the 

waveform proposed in [10.2] simultaneously achieved a cm-level range resolution and a Gbps data 

rate by exploiting the preamble of a single frame for radar, the velocity and angular estimation 

performance as well as the radar range of operation was limited.  

In this work, we developed several alternative techniques to enhance communication and 

radar system performance. In particular, we proposed novel waveform designs, beamforming 

algorithms, processing techniques, and a MIMO JCR architecture with low-resolution ADCs. To 

quantify the trade-off between radar and communication, we proposed both a rate-based metric 

and a minimum mean square-based metric. Additionally, we constructed different optimization 

problems for the JCR system design in different vehicular scenarios. The simulation results 

demonstrate that the alternative techniques achieved a significant improvement in the radar 

estimation performance with only a small degradation in communication data rate. 

Additionally, we developed an mmWave proof-of-concept test bed to demonstrate and 

evaluate the performance of our proposed joint communication and radar system at 71-76 GHz 

band with 2 GHz bandwidth. Our single-input-single-output software-defined JCR test bed 

leverages recently developed National Instruments (NI) mmWave communication platform that 

allows fully programmable interface. We also carry out indoor and outdoor measurements in 

different vehicle scenarios. The results suggest that mmWave communication system with 2 GHz 

bandwidth can achieve centimeter (cm)/ decimeter (dm)-level range accuracy using mmWave JCR 

test bed, which matches our theoretical analysis. 

This chapter is organized as follows: First, we summarize the modifications in the IEEE 

802.11ad-based radar as well as novel waveforms and signal processing algorithms for achieving 
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improved mmWave JCR performance. Then, we describe our mmWave test bed for the proposed 

joint communication and radar system at 71-76 GHz band. Lastly, we present our measurement 

results that demonstrates the validity of our theoretical results. 

10.1.2 Modify IEEE 802.11ad for Better Radar and Communication 

Performance  

In this project, we explored advanced processing and system design techniques to further 

optimize the performance of the IEEE 802.11ad-based radar developed in Phase 1. In particular, 

we explore alternative estimation techniques, waveform structure, and beamforming algorithms 

for improved target estimation performance and communication rate. 

Alternative Processing Techniques 

For achieving high range and velocity resolution in a multi-target scenario, we propose 

transmitting a super-frame with multiple fixed length frames in a coherent processing interval 

(CPI). Then, we the channel estimate can be extracted from the radar received signal by leveraging 

the conventional WLAN processing techniques. Lastly, we implement classic pulse-Doppler based 

radar processing algorithm on the obtained channel for enhanced velocity estimation in a multi-

target scenario [10.3].  

To demonstrate range and velocity resolutions of the joint system, we consider an example 

scenario with two scattering centers (either representing two different vehicles or belonging to the 

same vehicle) in different CPI duration. In this scenario, one of the target vehicles is a recipient 

vehicle, vehicle R. The second target vehicle, vehicle T, is considered within the beamwidth of the 

source vehicle and is separated in range, relative velocity, and angle-of-arrival (AoA)/angle-of-

departure (AoD) as compared with the recipient vehicle by  and v, and (, ) respectively, 

as shown in Figure 10.1. For vehicle R, we choose range as 14.31 m and velocity as 30 m/s, which 

falls in the typical operating span of LRR range and velocity specifications. We consider that the 

AoA/AoD corresponding to the vehicle R is (90o, 90o), which is likely to happen when the vehicle 

R is in the same lane as the source vehicle for applications such as cruise control. For vehicle T, 

we consider  = 4.26 m, v = 30 m/s, and (, ) = (100o, 90o), which also falls in the typical 

span of automotive long-range radar specifications [10.4]. 
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Figure 10.1: A multi-target scenario with two vehicles, namely vehicle R and vehicle T, 

within the mainlobe of the TX beam at the source vehicle. Both the vehicles are slightly 

separated in range, relative velocity, and direction with respect to the source vehicle. 

 

To illustrate the high-resolution performance as well as the extension of multi-target 

processing to the extended target scenario, we consider the scenario with two scattering centers 

corresponding to the recipient vehicle with 30 m/s velocity and (90o, 90o) AoA/AoD in a 4.2 ms 

CPI. We assume that the extended target model is 3-range cell wide with the first scattering center 

at 14.31 cm, i.e., 168th cell and the second at 170th cell. We assume that the energy is distributed 

uniformly among the two scattering centers. Figure 10.2 shows the 3D mesh plot of the estimated 

delay-Doppler map for the second scenario with 100 times interpolated discrete-Doppler bins. We 

infer that the range resolution is 8.52 cm, which is the same as the first scenario, whereas the 

velocity resolution and is 0.59 m/s with a 4.2 ms CPI. This example demonstrates that we can 

achieve high range resolution of less than 0.1 m and velocity resolution of less than 0.6 m/s in the 

multi-target scenario for a 4.2 ms CPI, as desired in the automotive long-range radar applications 

[10.4]. 

 

 

Figure 10.2: Mesh plot of the estimated 3D plot of the normalized-delay Doppler map 

shows that there are two dominant reflections from the recipient vehicle present at the 50th 

Doppler bin. Due to the fifty-eight times narrower mainlobe width in the Doppler domain 

as compared to the first scenario, the velocity resolution is 0.59 m/s in this simulation.  
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Adaptive Waveform Structure 

To enhance range and velocity estimation performance, we investigated an adaptive 

preamble design that permits a trade-off between target estimation accuracy and communication 

rate. In particular, we optimized the preamble duration to adapt the waveform, as shown in Figure 

10.3. The optimization is based on the weighted average sum of the radar Cramer Rao Bound 

(CRB) metric for range/velocity and a novel effective communication minimum mean square 

metric (MMSE) [10.5].  

 

 

Figure 10.3: Frame structure of an adaptive waveform design with variable preamble 

duration 

 

The simulation results in Figure 10.4 demonstrate that with an increase in the separation 

between the target and the source vehicles, the tradeoff between radar and communication gets 

tightened and the range/velocity CRB bounds per symbol get degraded more severely than the 

communication MMSE per symbol. The optimum for different weightings were explored, while 

maintaining Gbps communication data rate and cm-level range accuracy. At a vehicles separation 

distance of 270 m, the adaptive preamble design resulted in an improvement of the range MMSE 

by 3.2 cm2, while decreasing the spectral efficiency by 1.4 bits/s/Hz as compared to the IEEE 

802.11ad preamble. At 5 m distance, the spectral efficiency increased by 1.4 bits/s/Hz, while 

degrading the range MMSE by a factor of 1.4 dB and the velocity MMSE by 4.2 dB as compared 

to the IEEE 802.11ad preamble. This work can be extended to a large number of interesting time-

domain duplex frameworks for joint radar and communication. 
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                (a) Trade-off Curve                 (b) Range CRB versus Target distance 

Figure 10.4: Trade-off between radar CRB and communication MMSE with preamble 

duration 

Adaptive Beamforming Algorithm  

The IEEE 802.11ad millimeter-wave Wi-Fi waveform can be simultaneously used for high 

range/velocity resolution radar and Gbps data rate communication in vehicular applications. The 

angular field of view (FoV) for radar sensing, however, is limited by the employed directional 

analog beam. We proposed a sparsity-aware beamforming design that permits a trade-off between 

communication rate and radar detection/estimation performance in the angular domain. The 

proposed design uses random transmit antenna subsets to form a coherent beam towards a 

communication receiver while simultaneously perturbing the sidelobes of the resulting beam 

pattern. Sidelobe perturbation results in random grading lobes, which we exploit for compressed 

radar sensing, as shown in Figure 10.5. The system performance trade-off involved in the adaptive 

beamforming design is evaluated using a novel joint communication-radar rate metric [10.6]. 

 

 

Figure 10.5: An illustration of an IEEE 802.11ad-based joint system of SRR with a wide 

FoV and V2V communication with a narrow FoV 
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Numerical results in Figure 10.6 and Figure 10.7 for a multi-target radar channel and a 

frequency-flat communication channel demonstrate that subset size optimization enables the 

detection of short-range radar targets with high probability and angular resolution in a wide FoV 

at the expense of a slight hit in the communication data rate. 

 

 

Figure 10.6: Optimized communication rate decreases with target distance 

 

 

Figure 10.7: Optimized radar recovery rate decreases with target distance 

 

10.1.3 Designing New Joint Waveforms and Signal Processing Algorithms 

In this section, we consider the use of new JCR waveforms and multiple-input-multiple-

output radar system with low-resolution analog-to-digital converters (ADCs) to enable fully digital 

baseband processing with high sensing resolution. 

Virtual Pulse Design for mmWave WiFi-Based Joint Communication-Radar 

Although [10.2] simultaneously achieved a cm-level range resolution and a Gbps data rate 

by exploiting the preamble of a single frame for radar, the velocity estimation performance was 

limited. In this section, we explore a virtual pulse design approach for an adaptive joint 

communication-radar system in a multi-target scenario. In this approach, the frame lengths are 
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varied such that their preambles, which are exploited as radar pulses, are placed in a coprime 

fashion. A few non-uniformly placed pulses in a CPI are then used to construct a virtual block with 

several pulses, leveraging the sparsity inherent in the mmWave channel. This virtually increases 

the radar pulse integration time and enables an enhanced velocity estimation performance, a more 

flexible waveform design, and a relaxed trade-off with the communication rate as compared to 

[10.3]. 

The frames can be placed either with a constant distance between them, as shown in Figure 

10.8 or with varying distance, as shown in Figure 10.9. In either case, the location of the mth frame 

is assumed to be placed at integer multiple of the Doppler Nyquist sampling interval. Both the 

pulse approaches use a fixed IEEE 802.11ad preamble with 3328 symbols. For the uniform pulse 

approach in [10.3], the number of symbols per frame is constant and meets the Nyquist criterion, 

while for the virtual pulse approach, the frame spacing is varying and chosen in a sub-Nyquist. 

The virtual pulse approach is conceptually similar to the concepts of staggered pulse repetition 

intervals (PRI) used in the classical long range radar and sparse sampling/arrays used in the under-

sampled frequency/angle/channel estimation. For tractable analysis, we specifically use here the 

deterministic waveforms that can be represented in closed-form and contain no holes in their 

corresponding difference co-waveforms, for optimally selecting the locations and the number of 

frames in a given CPI. Among several redundancy waveforms with no holes [10.7], Wichmann 

and nested waveforms are especially relevant and interesting to consider. 

 

 

Figure 10.8: Uniform pulse approach, where a CPI consists of M equi-spaced frames 

placed at Nyquist rate. Here, each frame contains fixed preamble and data lengths.  

 

 

Figure 10.9: Virtual pulse approach, where a CPI consists of non-uniformly placed M = M1 

+ M2 frames  

 

The radar performance for the uniform waveform and the non-uniform waveform is 

evaluated based on the CRB for the target velocity estimation. The communication performance 

for the joint system is evaluated using a novel distortion MMSE (DMMSE) metric that relates one-

to-one with spectral efficiency. To evaluate the achievability of radar CRB, we consider MUSIC-
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type algorithms that generally achieves higher estimation accuracy than traditional discrete Fourier 

transform (DFT)-based radar processing algorithms. 

The JCR performance optimization is a multi-objective problem of simultaneously 

optimizing both the radar performance, and communication performance. Using the scalarization 

approach known to achieve a Pareto optimal point for multiple objectives, if they are convex, the 

joint optimization can be formulated as the weighted average of the two metrics. The positive 

normalizing and weighting factors assign the priorities for radar and communication tasks, which 

can be adjusted adaptively to meet the requirements imposed by different vehicular scenarios. For 

example, the weights can be assigned to ensure proportional fairness between two objectives. 

Alternatively, optimization can be modified as minimization of one of the objectives with second 

as a constraint that would guarantee an acceptable performance for one of the tasks. In our work, 

we have optimized waveforms for all three problem formulations.  

The simulation results show that the optimal virtual waveforms achieve a significant 

improvement in the radar CRB with only a small degradation in the communication DMMSE, as 

shown in Figures 10.10 and 10.11. For a weighted average optimization with a high number of 

targets, both the optimal radar CRB and the optimal communication DMMSE are minimized. For 

a radar CRB constrained optimization, the optimal radar range of operation and the optimal 

communication DMMSE are improved. For a communication DMMSE constrained optimization 

with a high DMMSE constraint, the optimal radar CRB is enhanced. Comparison of MMSE-based 

optimization with traditional degrees of freedom (DoF)-based optimization indicated that a DoF-

based solution converges to a MMSE-based one only for a small number of targets and a high 

signal-to-noise ratio. 

 

 

Figure 10.10: Optimized weighted average for different normalized communication 

weightings 
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Figure 10.11: Comparison between DoF-based optimization and CRB-based optimization 

for nested waveform 

Low Resolution Sampling for Joint Millimeter-Wave MIMO Communication-Radar 

In this work, we proposed the deployment of millimeter-wave MIMO for joint vehicular 

high speed communication and high resolution radar sensing. To cope with the significant 

hardware complexity, we considered the use of low resolution ADCs while maintaining a separate 

radio-frequency chain per antenna, as illustrated in Figure 10.12. 

The system performance is analyzed in terms of Cramer Rao lower bound and achievable 

data rate, and compared to the ideal case with infinite resolution ADCs. Additionally, we study the 

impact of quantization on the trade-off between these performance metrics.  

 

 

Figure 10.12: The source vehicle sends a waveform to the target communication receiver 

and use their echoes to estimate their locations. The TX front end (not shown) includes a 

single directional antenna with a notch in the direction of its receiver. 
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Numerical results in Figure 10.13 for a single-target scenario demonstrated that proposed 

mmWave MIMO joint communication-radar system with 1-bit ADC performs closely to the ideal 

case with infinite resolution. The loss of information due to 1-bit ADC impacted communication 

performance more than radar for a given vehicle separation distance. This work can be extended 

to a multiuser MIMO JCR system at the mmWave band. 

 

 

Figure 10.13: Optimized weighted average for different communication weightings 

 

10.1.4 Prototyping a Combined Communication and Radar Car-to-car Link 

The research team developed a software-defined mmWave tested to demonstrate and 

evaluate the performance of our proposed joint communication and radar system at 71-76 GHz 

band with 2 GHz bandwidth. This band is very close to the automotive radar band at 76-81 GHz. 

Due to the hardware limitations prototyping at mmWave have been difficult, especially for 

communications applications. Our proof-of-concept test bed for joint communication and radar 

leverages recently developed NI mmWave communication platform [10.8]. The NI platform 

supports fully programmable interface and is based on innovative compiling software on a field-

programmable gate array (FPGA) hardware platform that is easy to use as compared to the 

conventional hardware description language.  

Figures 10.14 and 10.15 illustrate our developed mmWave joint communication-radar test 

bed in a single-input-single-output (SISO) set-up with horn antennas. We consider the use case 

where a source vehicle transmits signal to a recipient vehicle receiver and uses the echoes from 

target vehicles and clutter to derive target range and velocity estimates at the source vehicle 

receiver. For this purpose, we use two chassis, one as the source vehicle that consists of 

communication transmitter and radar receiver and the other for the recipient vehicle that contains 

the communication receiver. The mmWave test bed consists of two chassis, housing the NI PXIe 

7902 for baseband transmit (TX)/receive (RX) processing, NI PXIe 3630 (IF and LO unit) with 

10.5–12 GHz IF frequency, ADC/DAC adapter modules, NI PXIe 3610 (14 bit DAC) and 3630 

(12-bit ADC) with sample rate 3.072 GS/s and 2-GHz bandwidth. Each chassis is connected to a 
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mmWave transceiver RF front-ends and horn antennas. The chassis can be connected using a 

Rubidium clock for time and frequency synchronization of the joint communication-radar system.  

 

 

Figure 10.14: Proposed mmWave test bed set-up for joint communication and radar 

prototyping.  

 

 

 

Figure 10.15: Joint radar and communication test bed with horn antennas. 
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Chapter 11 Data Collection and Analysis Methodology 

The performance of ADAS can be influenced by a wide range of variables, including the 

characteristics of the interacting vehicles, traffic infrastructure, built environment and urban 

design, weather conditions, human factors (for example, perception and reaction time, in the case 

of non-autonomous systems), and situational operating conditions (traffic composition, 

unexpected obstructions, and relative position of vehicles). In the case of intersections, there are 

different geometric roadway configurations with different approach gradients, lane configurations, 

lane widths, traffic control types, traffic approach volumes, divided versus undivided approaches, 

and different turning movements. In the context of passing maneuvers, factors such as vehicle 

types and associated kinematics, geometric configurations of roadway system and interplaying 

sight distances, operating speed, and driver behavior come into play. For operation of ADAS in 

areas with a significant proportion of non-motorized users, the pertinent factors include the number 

of pedestrians and bicyclists, the volume of motorized traffic flow, signal configurations, geometry 

of infrastructure, and the extent of interaction between the motorized and non-motorized flow. 

Because the number of possible combinations of variables in each scenario group can increase 

very rapidly, identifying the effect of each variable on the performance of the ADAS can be 

extremely challenging. Therefore, field data collection to test the performance of the proposed 

ADAS under different traffic scenarios must follow an experimental design approach.  

This chapter describes the general data collection methodology developed to (1) analyze 

and quantify the impact of different road geometry, built-environment, and traffic variables on the 

performance of each equipment, and (2) understand to what extent different sensors and 

communication equipment can complement each other under different traffic scenarios. In the 

remainder of this chapter, we provide details of equipment and vehicles utilized for data collection. 

Then, we discuss the system performance measures that are adopted as the outcome variables of 

the experimental design and we present the general procedure used to obtain the primary and 

secondary factors (explanatory variables) for all experiments. Further details of each specific 

scenario are provided in the following chapters.  

11.1 Equipment 

The equipment-suite installed on the vehicles for field data collection comprises sensing 

equipment, communication equipment, auxiliary equipment, and high-performance laptops. The 

laptops act as the backbone for controlling the operation of different equipment and, in conjunction 

with Python-based logging framework, store the feeds from different sensing and communication 

equipment in data structures conducive to future processing and fusion. The sensing equipment 

includes on-board camera, radar, and LIDAR (light detection and ranging). The communication 

equipment comprises a DSRC (dedicated short-range communication) unit capable of transmitting 

and receiving messages from other DSRC-equipped vehicles (mmWave communication units may 

be incorporated for future data collection). The vehicles are fitted with two auxiliary instruments 
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on-board: an inertial measurement unit (IMU) and a high precision GPS (antenna and anchor 

units). While the IMU provides movement information to help correct readings from different 

equipment, the high-precision GPS units record the exact locations (ground truth) of the vehicles 

during the maneuvers that form the benchmark to evaluate the performance of prediction 

algorithms.  

The sedan, SUV, and pickup truck used as prototype vehicles in this project are also used 

to collect data. The data feeds from different instruments are transmitted to on-board laptops and 

simultaneously stored in separate log files. For data collection where only two vehicles were 

needed, such as for intersection crossing, the pickup truck carried a stationary GNSS anchor for 

ground truth positioning. When all three vehicles were used, the stationary GNSS was kept on an 

elevated platform nearby. 

11.1.1 Equipment Specifications 

a) Radar: Delphi ESR  

 Detection range: 174 meters from long-range radar, 60 meters from short-range radar 

 Field of vision: 10 degrees from long-range radar, 45 degrees from short-range radar 

 Frequency of information: once per 50 milliseconds 

 

b) DSRC communication: Cohda Wireless DSRC Unit 

 Communication range: Values vary depending on the implementation, but at least 100 

meters is accepted as standard 

 Communication field of vision: 360 degrees 

  Frequency of information: once per 100 milliseconds 

 

c) LIDAR: Quanergy M8 

 Detection range: 200 meters 

 Field of view: 360 degrees in horizontal domain, 20 degrees in vertical domain 

 Frequency of information: once per 50 milliseconds 

 

d) Camera: Logitech c920 USB  

 Video resolution: 1920 x 1080 

 Field of view: 110 degrees 

 Frame rate: 30 frames per second 

 

e) High precision GPS (PPP-GNSS) and IMU: EMLID Reach and MPU9520 

 

f) In-vehicle laptops for data collection and real-time fusion: System76 Oryx Pro 2 
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The devices are installed as discussed in Section 2.1. 

11.2 System Performance Measures 

With traffic safety as the prime focus of the project, our research would ideally directly 

measure the performance of the ADAS in terms of safety improvements (reduction of crash rates, 

for example). However, we cannot test the operation of the system in actual, quasi-crash events. 

For this reason, the emphasis was on direct measures of performance that can be easily extracted 

from the data collected. These results were used later to derive indirect safety performance 

measures and statistics. Direct performance measures are based on the comparison between the 

trajectories (or positions) estimated by the system and the true trajectories of the vehicles. Since 

the experiments are held in real-world traffic environment where we cannot control for the true 

position of the vehicle, high-precision GPS equipment is used to capture true positions. 

For the urban intersection and overtaking-maneuver scenarios, two outcome variables are 

tested: the difference between the predicted location and the true location of the oncoming vehicle, 

and whether a trajectory prediction was correct or incorrect. The first variable is continuous and 

will be modeled through linear models, while the second is a binary variable and will be modeled 

through discrete choice models. In both cases, non-additive relationships between the explanatory 

factors are tested by the inclusion of interaction terms. For the scenario with a significant 

proportion of non-motorized road users (pedestrians and bicyclists), the performance measures 

adopted are the difference between predicted location and true location of the non-motorized road 

users (this test should be held in a controlled environment where pedestrians’ true positions are 

known) and the percentage of relevant objects (pedestrians and bicyclists) detected in a given 

situation (this variable can also be translated as the success/failure of detecting a given object). 

Again, linear and discrete models are used when appropriate (further details about the modeling 

framework will be presented separately for each group of scenarios). 

11.3 Experimental Design 

An experiment is a group of tests in which the input variables (also called factors) are 

changed based on a given rule in order to identify the reasons for the changes in the output 

response. Experiments can help determine which variables are most influential on the response 

and where to set the influential controllable variables so that the response is usually near the desired 

value [11.1]. In the case of testing ADAS in real-world traffic scenarios, the experimental design 

approach will serve to identify the situational factors and factor levels (number of different values 

a factor can assume according to its discretization) that most adversely affect the individual and 

joint performance of the sensing and communication equipment. Identifying factors that limit the 

performance of such equipment is crucial for enhancing the algorithms of ADAS to operate more 

effectively in critical scenarios. Additionally, the experimental design approach allows for 

estimated coefficients to be used to forecast the overall ADAS performance in untested scenarios, 



107 

facilitating a comprehensive analysis of the performance of the ADAS with parsimonious data 

collection.  

Experiments are usually held in very controlled environments in which researchers have 

the ability to freely manipulate the combination of factors and their levels in order to reach research 

objectives. In this project, the performance of the ADAS is estimated using data collected in real-

world transportation infrastructure, which include factors that cannot be controlled by researchers. 

In addition, the manner in which different factors are combined (for example, in an intersection, 

the number of lanes, horizontal alignment of approaches, and vertical gradient) is fixed and 

depends on the available infrastructure, limiting the flexibility of the research design. Therefore, 

the experimental design approach implemented in this project is an adaptation of traditional 

experimental design methods. Specifically, our approach clusters multiple small full factorial 

designs (with few factors and levels) and adds additional covariates to the analysis.  

The full factorial design is probably the most common and intuitive strategy of 

experimental design: Under this method, samples are taken under every possible combination of 

the factors’ values [11.2]. For example, in a full factorial design of three factors with three levels 

each, twenty-seven different combinations need to be measured. This design prevents the effect of 

each factor over the response variable from being confounded with the other factors. However, 

since the number of combinations grows rapidly as the number of factors and levels increases, full 

factorial designs may be infeasible when dealing with complex problems. Although literature on 

the design of experiments offers different solutions to reduce the number of observations required 

in studies with a large number of factors and levels (for example, fractional factorial designs and 

efficient designs), such methods are not easily applied to the current research. This is because these 

methods require the researcher to have the ability to select the exact combination of factor levels 

for each observation based on fixed rules. Since our data collection depends on existing traffic 

infrastructure, finding multiple locations that meet exact combinations of factor levels becomes 

nearly impossible when multiple factors are considered. A solution, therefore, is to identify critical 

factors and develop multiple full factorial designs based only in small groups of factors. Secondary 

factors, which cannot be controlled by the researchers, can then be added as additional covariates 

in the models. In other words, the proposed design contains six steps that should be performed for 

each of the scenario groups: 

1) Identification of primary factors and factor levels (factors that are most likely to have 

a significant impact on the performance of the ADAS). 

a. Identification of a comprehensive list of factors and factor levels relevant to each 

of the three groups of scenarios 

b. Evaluation of the performance sensitivity of each equipment (sensors and 

communication equipment) to the different scenario factors based on a priori 

knowledge about the equipment 

c. Selection of factors and factor levels that most critically affect the equipment 

performance  
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2) Identification of locations where each of the combinations between factors levels can 

be measured. 

3) Development of samples for multiple full factorial designs with a few primary factors 

each. 

4) Identification of secondary factors present in the selected locations. 

5) Development of separate models for each small design. 

6) Development of a final model that reunites all the small designs with primary and 

secondary factors. 

 

In the following section, the detailed description of each of the steps above is presented for 

the urban intersection set of scenarios.  

11.4 Overview of Modeling Approach 

After data was collected based on the experimental design, models were estimated to 

quantify the impacts of variables that describe the driving environment (traffic characteristics, 

weather, and roadway geometry) and the vehicle’s relative position to another vehicles and non-

motorized road users on the performance of the ADAS. Results from these models were used for 

multiple purposes. First, they provided guidance for improvement in the prediction algorithms 

developed earlier in the project. Second, they determined which variable (and under what 

environmental contexts) most affects the performance of each sensing and communication 

equipment component. Finally, the models were used to assess the overall gains (in terms of 

prediction quality) of combining communication and sensing for ADAS purposes. 

For the urban intersection and overtaking maneuver sets of scenarios, we adopted two types 

of measures of system performance: the absolute error of the prediction (a continuous variable 

measured in meters as the difference between the predicted location of the vehicle and the true 

location indicated by the high precision GPS system), and whether a prediction was successful 

(correct) or not (a binary variable). For the scenario with significant proportion of non-motorized 

road users (pedestrians and bicyclists), the performance measures adopted are the difference 

between predicted location and true location of the non-motorized road users (this test should be 

held in a controlled environment where the pedestrians’ true positions are known) and the 

percentage of relevant objects (pedestrians and bicyclists) detected in a given situation (this 

variable can also be translated as the success/failure of detecting a given object). The reason for 

adopting two prediction variable variants (both a continuous as well as a binary measure indicating 

success/failure) is to test different modeling approaches and then to identify which one allows for 

the extraction of more information. While the linear regression model with a continuous dependent 

variable offers the advantage of easy interpretability of coefficients, it is highly sensitive to outliers 

(which are frequent in the current stage of development of the ADAS software). Binary variable 

models, on the other hand, provide a probabilistic chance of successful prediction based on a pre-
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defined threshold, eliminating the model sensitivity to outliers. Although the use of thresholds 

provides advantages, defining the maximum error that a prediction can have and still be successful 

(and avoid a crash) can be challenging. Therefore, we tested multiple thresholds. Since the quality 

of the predictions prevenient from the algorithms developed shall improve gradually over the 

prototyping phase, thresholds to define whether a prediction was successful or failed became 

progressively more rigorous.  

We developed two types of models for each type of dependent variable: pooled and multi-

level models. Pooled models ignore possible dependency relationships between observations by 

assuming that the observations are independent and identically distributed (IID). Multi-level 

models relax this condition and account for dependency between observations that, in the present 

study, emerge from different sources depending on the scenario under analysis. Therefore, details 

of the modeling approaches are provided separately for each scenario type.  
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Chapter 12 Urban Intersections 

This chapter describes the design of the data collection and analysis for the urban 

intersection scenarios. We applied the six-step procedure developed in the previous chapter and 

collected data in seven selected intersections using two vehicles fitted with ADAS equipment (an 

additional vehicle was used to host the GPS antenna anchor).  

12.1 Identification of Primary Factors and Factor-levels and 

Identification of Test Bed Locations 

To identify the primary factors that should be considered in the urban intersection 

experiment, a comprehensive list of variables (and variable levels) that may impact the efficacy of 

the ADAS was created based on information from available literature ([12.1], [12.2], [12.3], 

[12.4]), professional judgement, and knowledge gained in the previous phase of this project. The 

strategy began with a comprehensive list of variables, including those that a priori seemed not to 

impact the performance of the system, and then narrow the list down to the most relevant ones, 

based on the analysis of the functionalities of each instrument. The variables were grouped into 

the functional categories shown below and are presented in Table 12.1: 

 Intersection characteristics, geometric design, and signal type  

 Driving conditions  

 Traffic volume and composition 

 Turning movements  

 

Because the data collection would be performed with two vehicles, all possible conflicting 

and non-conflicting movements between these two vehicles were also listed (considering the most 

common). Although conflicting movements are the main concern when trying to prevent crashes, 

ADAS should be able to identify whether two vehicles are in conflicting trajectories or not, 

therefore, non-conflicting movements should also be considered in the analysis of performance. 

Additionally, non-conflicting movements may become conflicting if one vehicle weaves out of its 

lane. Figure 12.1 presents the twelve possible combinations of maneuvers that two vehicles may 

undertake in an intersection with four approaches (two-way each). 
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Table 12.1: Exhaustive list of variables for urban intersection scenario 

Intersection Characteristics and Geometric Design 

Variable Variable level 

Pedestrian crossing types 1. None  

2. Uncontrolled crosswalks 

3. Fixed-phase signal crosswalks 

4. Pedestrian actuated crosswalks (e.g., HAWK, Puffin) 

Pedestrian crossing design elements 1. No curb  

2. Curb ramp 

3. Extended curb ramp 

4. Raised median  

5. Marked crosswalk 

6. Unmarked crosswalk 

Bike lane 1. None 

2. Conventional bike lane (exclusive lane adjacent to motor vehicle lane) 

3. Buffered bike lane (buffer space between motor vehicle lane and bike lane) 

4. Contra-flow bike lane (opposite direction flow–one-way street to two-way flow) 

5. Shared right-of-way 

Presence of construction activities in vicinity 1. Interaction of flow from site with regular traffic (disrupted flow) 

2. No interaction 

Location of intersection  1. CBD / high-traffic density zones 

2. Low-traffic density zones  

Type of intersection – based on intersecting road types 1. Major intersection (one or more approach roads are “major”) 

2. Minor intersection 

Type of intersection – based on traffic control  1. Uncontrolled 

2. Signal-controlled 

3. Yield-sign controlled 

4. Stop-sign controlled 

a. four-way stop control 

b. two-way stop control 
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Intersection Characteristics and Geometric Design 

Variable Variable level 

Type of intersection – based on geometric 

configuration (grade-level) 

1. Three-approach legs 

a. T intersection 

b. Y intersection 

2. Four-approach legs 

3. Multi-leg (five or more) 

4. Roundabout 

5. Skewed intersection  

a. Greater than seventy-five  

b. Less than seventy-five (needs special consideration) 

6. J-Turns 

Turn and conflict controls 1. Channelizing islands 

2. Median islands 

3. Corner islands (assist in turning) 

Number of ways in each approach 1. One-way 

2. Two-way 

Number of lanes in each approach 1. One 

2. Two 

3. Three 

4. Four or more 

Horizontal angle between approaches (horizontal 

alignment) 

1. Rectangular 

2. Acute 

3. Obtuse 

Lane size variations at intersection 1. Narrowing lanes 

2. Widening lanes 

Grade level of approach roads (vertical alignment) 1. Less than 3 percent 

2. Greater than 3 percent but less than 6 percent 

3. Greater than 6 percent 

Bus-stop locations with respect to intersection  1. Near side of intersection 

2. Far side of intersection 

3. Midblock 
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Intersection Characteristics and Geometric Design 

Variable Variable level 

Roadside parking 1. Parking on shoulder 

2. Parallel parking lane 

3. Angular parking lane (45 degree, 90 degree) 

4. Curb offset 

Rail crossing 1. Gated / barrier crossings 

2. Open crossings 

3. Open crossings with traffic signals 

Driving Conditions 

Variable Variable level 

Light conditions 1. Dawn 

2. Daylight 

3. Dusk 

4. Dark 

5. Dark artificial light 

Weather conditions 1. Clear 

2. Overcast 

3. Fog 

4. Light rain/snow 

5. Heavy rain 

6. Heavy snow  

Sight distance at intersection  

(vision obstructed by land use or vehicle ) 

1. Clear 

2. Blind turn 
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Driving Conditions 

Variable Variable level 

Types of urban canyons  On basis of aspect ratio (canyon height H to width W) 

1. No canyon 

2. Regular canyon (=1) 

3. Avenue canyon (<0.5) 

4. Deep canyon (=2) 

 

On basis of symmetry 

1. No canyon 

2. Symmetric canyon 

3. Asymmetric canyon 

Traffic Volume and Composition 

Variable Variable level 

Traffic composition 1. Predominantly cars 

2. Car + transit + pedestrians/bicyclists  

3. Pedestrians/bicyclists + few cars 

Traffic volume (qualitative) 1. Low (none) 

2. Medium 

3. High 

Vehicle Movements  

Variable Variable level 

Vehicle movements  1. Straight 

2. Right-turn 

3. Left-turn 
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1: Straight and opposite direction 2: Perpendicular from the left 3: Perpendicular from the right 

   

4: Left turn and opposite 

direction 

5: Left turn and perpendicular 

from the left 

6: Left turn and perpendicular 

from the right 

   

7: Left turn and left turn  

8: Right turn and perpendicular 

from the right 

9: Right turn and opposite 

direction 

   

10: Right turn and left turn 11: Right turn and left turn 

12: Right turn and perpendicular 

from the left 

   

Figure 12.1: Conflicting and non-conflicting maneuvers in four-way intersection  
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The next step in the process of narrowing down to the most relevant factors for the 

experiment involved the identification of variables and levels that can directly affect the 

performance of each equipment in ADAS (Table 12.2). The main attributes of the instrument that 

impact the sensitivity include range, field-of-view (line-of-sight), number of simultaneous 

detections, and operating conditions. The expected performance of equipment subjected to each 

variable was classified as:  

 F - Fail: Instrument fails to provide data 

 P – Partial: Instrument can provide data but is not reliable or does not accommodate all 

traffic users 

 R – Reliable: Instrument data is reliable for accurate predictions and accommodates all 

traffic users 

 

The expected performance was obtained based on (1) the equipment layout in our test 

vehicles; (2) the equipment specifications provided by the manufacturer; (3) an analysis of 

equipment performance reported by the USDOT [12.5]; and (4) technical knowledge and 

experience of the research group. Note that since the radar and camera are positioned inside and 

toward the front of the vehicle, these units are considered to have limited field-of view. On the 

other hand, the LIDAR is placed on the top of the vehicle and rotates on a fixed axis, providing a 

360-degree field-of-view. Although the GPS data is necessarily transmitted by the DSRC (e.g., 

V2V-DSRC and GPS could be considered as part of the same equipment), the variables that affect 

the former instrument are not the same that affect the later. For that reason, the limitations of these 

instruments are analyzed separately, and variables that do not affect the GPS antenna are 

considered not applicable for this equipment. Finally, while Table 12.2 provides only the expected 

individual performance of each instrument, models were used after the data collection to measure 

the joint performance of the equipment.  
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Table 12.2: Performance of instruments under different situations and conditions 
 Sensor Communication Absolute position 

Variable RADAR LIDAR Camera 
DSRC 

(V2V) 

DSRC 

(V2I) 
GPS 

Road Geometric Design  

Vertical alignment of approach: low 

upward 
P P P R R ** 

Vertical alignment of approach: high 

upward 
F P F R R ** 

Vertical alignment of approach: low 

downward 
P P P R R ** 

Vertical alignment of approach: high 

downward 
F P F R R ** 

Blind Intersection/merge limiting field 

of view 
F F F P R ** 

Horizontal alignment between 

oncoming vehicles: rectangular angle 
P R P R R ** 

Horizontal alignment between 

oncoming vehicles: obtuse angle 
R R R R R ** 

Horizontal alignment between 

oncoming vehicles: acute angle 
F R F R R ** 

Driving Conditions and Obstructions 

Low light conditions R R F R R R 

Snow, hail ,and heavy rain R R F P P P 

Smoke, fog R R F R R R 

Direct glare, shadows P R P R R R 

Urban canyons  R R R P P F 

Heavy foliage  R R R P P F 

Obstructed view due to larger vehicle  F F F R R R 

Road obstructions out of line-of-sight 

(e.g., crash or debris far ahead on 

vehicle route) 

F F F P R ** 

Traffic Speed, Volume and Composition 

High speed traffic P P P P P ** 

High traffic volumes  P P P R R ** 

Presence of pedestrians  P R P F F ** 

Presence of bicycles  P R P F F ** 

Presence of vehicles without 

communication technology in the 

vehicle line-of-sight 

R R R F F ** 

Parked vehicles  R R R F F ** 

Note: ** entries = not applicable 

 

In Table 12.2, we identify that the variables that may be most likely associated with 

detection/communication failure or partial reliability are vertical alignment, horizontal alignment 

(specifically acute angles), blind intersections, or situations with obstructed view, urban canyons, 

or heavy foliage, situations that involve high speed (less likely in urban intersections) or high 

density of traffic, and mixed traffic composition. Among these, researchers can control vertical 

and horizontal alignments, blind intersection, urban canyons, or heavy foliage by their choice of 

data collection locations. We identify that vertical and horizontal alignment should be primary 

factors in the experimental design, while the remaining variables should be secondary factors. 
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Additionally, we consider that road width largely influences the relative position of vehicles in 

intersections. Therefore, although road width does not seem to interfere directly with equipment 

performance, we select this variable as a third primary factor. Finally, the type of maneuver 

(relative movement between the two vehicles) is also added as a primary factor. In summary, the 

overall criteria for the selection of environment-related factors for the experimental design were:  

 Availability of roadway infrastructure with desired levels of variables  

 Line-of-sight/field-of-view affected 

 Compromised range-of-operation /signal blockage (for communication equipment) 

 Varying relative positions of vehicles  

 

The final list of primary factors selected for the data collection is: 

 Horizontal alignment of approach roads (three levels) 

o Rectangular 

o Acute 

o Obtuse 

 Vertical alignment (gradient) of approach roads (three levels) 

o At-grade 

o Upslope 

o Downslope 

 Road width: number of lanes on major approach road (three levels) 

o Two-lanes 

o Four-lanes 

o Six-lanes 

 Maneuver: relative movement between the two cars 

o Conflicting: both cars going straight 

o Conflicting: one car going straight and the other turning left 

o Conflicting: one car going straight and the other turning right 

o Conflicting: both cars turning, one left and the other right 

o Non-conflicting: both cars turning, one left and the other right (traffic control: 

stop sign) 

o Non-conflicting: one car going straight and the other turning right 

 

The secondary factors are: 

 Blind approach due to roadway geometry (example in Figure 12.2a) 

 Blind approach due to situation environment (example in Figure 12.2b) 

 Traffic control type (traffic signal, all-way stop sign, stop sign on minor road) 

 Presence of non-test vehicles influencing maneuvers of test vehicles 
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 Presence of non-test vehicles not influencing maneuvers of test vehicles 

 Presence of bike lane  

 Presence of two-way left turn lane 

 Presence of pedestrians 

 Presence of bicyclists 

 Protected left turn signal vs unprotected left turn signal 

 Curbside parking 

 Number of approaches (three versus four) 

 Weather conditions 

 Heavy foliage  

 

Seven locations (Figure 12.3, Figure 12.4, and Figure 12.5) were chosen to test the impacts 

of the primary and secondary factors on ADAS performance. The selection of locations was also 

an iterative process because, although some locations had the desired road geometric design and 

built environment, they presented unexpected challenges for the data collection (such as heavy 

traffic, high-speed vehicles, difficulty in resetting maneuvers).  

 Oltorf Street/South Congress Avenue and East Riverside Drive/South Congress 

Avenue were chosen to test the effects of horizontal alignment (Figure 12.3). The two 

intersections provide approaches with rectangular, acute, and obtuse angles and have a 

similar number of lanes, traffic control devices, and traffic composition. Additionally, 

different times of the day and days of the week offer different traffic volumes and 

compositions.  

 

    

Figure 12.2: Blind approaches: (a) due to roadway geometry, and (b) situational condition. 
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Oltorf Street and South Congress Avenue 

 

East Riverside Drive and South Congress Avenue 

 

Figure 12.3: Horizontal alignment of approach roads (orthogonal versus angled) 

 

 Cedar Street/West 34th Street, West 11th Street/Baylor Street, and East 27th 

Street/Speedway (Figure 12.4) were selected to test the effects of vertical alignment. 

All three intersections have a similar width, three approaches, and similar traffic 

conditions during the time of data collection. The Cedar Street intersection has 

approaches that are at grade; the West 11th Street intersection has an approach with 

upslope; and the East 27th Street intersection has downslope, in which the slopes are 

accentuated and cause reduced visibility. East 27th Street and Speedway features a large 

building one corner that can be used to test signal blockage. Cedar Street and West 34th 

Street has heavy foliage. The Cedar Street and West 34th Street intersection does not 

present stop signs in all three approaches, while the latter two intersections do. Curbside 

parking is allowed on the Cedar Street and West 34th Street and West 11th Street and 

Baylor Street.  

 
Cedar Street and W 34th Street 

 

W 11th Street and Baylor Street 

 

E 27th Street and Speedway 

 

Figure 12.4: Vertical alignment (gradient) of approach roads (at-grade, upslope, 

downslope) 
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 Cedar Street and West 34th Street, Harwood Place and Travis Heights Boulevard, and 

West Johanna Street and South Congress Avenue (Figure 12.5) were chosen to test 

differences in road width. In all three cases the approaching road has a similar width 

but the major approach road has varying widths, measured by the number of lanes in 

each direction of traffic flow. All three intersections allow for curbside parking in their 

proximities, but the Johanna and South Congress intersection has parking lines. South 

Congress Avenue presents a central two-way turn lane. All three intersections have a 

stop sign at the minor approach road, but situations in which the vehicle on the main 

approach road has to yield to the vehicle emerging from minor approach road were also 

tested. 

 

Cedar Street and W 34th Street 

 

Harwood Place and Travis Heights 

Boulevard 

 

W Johanna Street and S Congress 

Avenue 

 

Figure 12.5: Number of lanes on major approach road (two versus four versus six lanes) 

 

12.2 Planning and Execution of Data Collection 

Data was collected between February and June 2017, most often on Sunday mornings. The 

choice for Sunday mornings was based on traffic volumes. Sunday morning fieldwork allowed the 

researchers to capture scenarios with varied traffic volumes with almost no vehicles circulating at 

7am to a significant number of vehicles at 11am. Each data collection effort required five to six 

team members: three drivers and two to three equipment supervisors. Detailed plans, indicating 

start, end, and re-setting points for each vehicle were defined for each maneuver (see Figure 12.6 

for an example). The exact point in time for the start of each maneuver was coordinated by phone, 

but a real-time visualization of the location of the vehicles based on the position data exchanged 

through DSRC was created to help this coordination (Figure 12.7). A third vehicle was parked 

close to the intersections as an anchor for the high-precision GPS unit.  

Even though the final prototype (joint system of sensing and communication equipment) 

supports real-time data fusion, processing, and predictions, the current research exercise involves 

post-processing of data collected by the equipment that form the ADAS. Post-processing is 

advantageous for the experiment because it allows for data to be collected simultaneously by all 
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different communication and sensing equipment while predications can be made a posteriori using 

any desired combination of instruments. This allows the comparison of prediction results of 

different equipment configurations with parsimonious data collection.  

 

 

Figure 12.6: Example of maneuver plan indicating starting, ending, and waiting areas 

 

 

Figure 12.7: Real-time visualization of the position of the experimental vehicles based on 

data exchanged through DSRC 

 

The first three months of data collection served as learning period for the team, since some 

important pieces of equipment were still arriving (such as the LIDAR) and installation adjustments 
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had to be constantly made.1 The data collected during these months was not considered for analysis 

in the experimental design. The experimental design uses data collected in May and June. The total 

number of maneuvers and events measured is described below. A maneuver is considered as a 

combination of movements between the two vehicles (see Figure 12.8 for an example), while an 

event is a single measurement of a maneuver. While the same maneuver was repeated multiple 

times, each instance is considered an event.  

 Horizontal alignment 

o twelve different combinations between maneuvers and locations were measured 

(Figure 12.8 shows all twelve combinations which are formed by three types of 

approaches, creating four types of maneuvers) 

o seventy-six valid events  

 Vertical alignment  

o thirty-three different combinations of maneuvers and locations were measured 

o 162 valid events  

 Road width 

o thirty-three different combinations of maneuvers and locations were measured 

o 170 valid events 

 

  

                                                 
1 Data was also collected in an eighth intersection that is not included in the analysis (and was substituted by the 

intersection at Cedar Street and West 34th Street) because of problems with the high precision GPS system in that 

location. 
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Figure 12.8: Maneuvers considered when testing the effect of horizontal alignment 
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12.3 Modeling Framework 

For this experiment, the individual observations are locations of the target vehicle as 

predicted by the ADAS on the predictor vehicle. For example, in Figure 12.8, the vehicle 

represented by the red arrow is predicting the trajectory of the vehicle represented by the blue 

arrow and vice versa. Each event results in ten predictions, five for each vehicle (predications are 

made for five discrete points in time, relative to time at which the vehicles cross each other’s 

trajectories: -4s, -2s, 0s, 2s, and 4s). Each of these predictions were considered one observation.  

We develop two models for each type (continuous and binary) of dependent variable: a 

univariate pooled model and a univariate multi-level model. Pooled models ignore possible 

dependency relationships between observations. In other words, these models assume that the 

observations are independent and identically distributed (IID). Multi-level models relax this 

condition and account for dependency between observations. In the analysis presented in Section 

3.5, three sources of dependency are considered: dependency within a same event, dependency 

within a same maneuver type, and dependency within a same day. The last dependency is 

necessary because drivers (and their specific driving behavior) and specificities of the equipment 

assembling or environmental circumstances are the same for data collected in the same day but 

vary between different days of data collection. In the next sections, we provide the formulation of 

the pooled and multi-level models used to analyze the impact of the primary and secondary factors 

on the performance of the ADAS. For the initial analyses, all four types of models were tested for 

all scenarios. As the project advances, modeling approaches may be changed, replaced, or 

removed.  

12.3.1 Pooled Linear Model 

A pooled linear model treats individual observations (predicted locations) associated with 

each event, maneuver type, and day as independent and identically distributed random variables. 

The dependent variable for this model is the continuous measure for absolute error of prediction 

for a particular component or set of components in the ADAS. A linear regression framework 

captures the impact of primary and secondary factors on the performance and coefficients are 

estimated using ordinary least squares method. The nature and magnitude of influence of different 

primary and secondary factors (for example, equipment configuration, prevalent traffic conditions, 

etc.) are considered to be the same over all maneuver events and days of collection. The model for 

can thus be written as,  

𝑦𝑘 = 𝛽 + 𝜸′𝒙𝑘 
+ 𝜀𝑘 

where 𝑦𝑘 is the prediction error for observation 𝑘, 𝛽  is intercept coefficient, 𝜸  is a (𝑁 × 1) vector 

of coefficients for 𝒙𝑘 (𝑁 × 1) vector of exogenous covariates. Also, 𝜀𝑘 is the random error 

associated with observation 𝑘 and 𝜀𝑘 follows a normal distribution with mean 0 and variance 𝜎2. 

The errors are independently and identically distributed across observations. 
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12.3.2 Multi-level Linear Model 

In these models, we proceed with the same dependent variable as the pooled linear model. 

Additionally, we account for the interdependencies between observations (predicted locations) due 

to event, maneuver type, and day of data collection. Consider a four-level hierarchical framework 

with the continuous dependent variable (absolute error) and individual observations (predicted 

locations) at level 1, event at level 2, maneuver type at level 3, and day of collection at level 4. 

The primary and secondary factors (for example, equipment configuration, prevalent traffic 

conditions, etc.) at an observation level are included as level 1 variables and we assume these 

variables have fixed effects (same coefficients) across observations extracted from all maneuvers 

and all days. Factors capturing characteristics of day of collection (for example, weather and 

driver-related variables) are included in the level 4 equations. The effects of level 4 variables 

percolate to the level 1 dependent variable of interest through the hierarchical structure. The model 

can be thus formulated as,  

 

Level 1: yhijk = βhij + 𝛄′𝐱k 
+ εhijk 

Level 2: βhij = σhi + μhij 

Level 3: σhi = δh + ϑhi  

Level 4: δh =  α + 𝐠′𝐳h 
+ ξh 

Reduced Form Model:  yhijk = (α + 𝐠′ 𝐳h + ξh + ϑhi+ μhij) +  𝛄′𝐱k 
 +εhijk 

where 𝑦ℎ𝑖𝑗𝑘 is the prediction error for observation 𝑘 within event 𝑗 from maneuver type 𝑖 on day 

ℎ, 𝛽ℎ𝑖𝑗 is intercept coefficient of event 𝑗, 𝜸  is a (𝑁 × 1) vector of observation-specific slope 

coefficients for 𝒙𝑘 (𝑁 × 1) vector of exogenous covariates which explain variations at the 

observation level, and 𝜀ℎ𝑖𝑗𝑘 is the random error associated with observation 𝑘 nested within event 

𝑗, maneuver type 𝑖 and day ℎ. The effects of these exogenous variables are fixed across different 

events, maneuvers and days. 𝜀ℎ𝑖𝑗𝑘 follows a normal distribution with mean zero and variance 𝜎2. 

In level 2, the level 1 intercept coefficient is used as dependent variable and is expressed as a 

function of random intercept 𝜎ℎ𝑖 associated with maneuver type 𝑖 on day ℎ and level 2 error term 

𝜇ℎ𝑖𝑗 - random effects term for the 𝑗th event of type 𝑖 on ℎth day. 𝜇ℎ𝑖𝑗 follows a normal distribution 

with mean 0 and variance 𝜏2. In level 3, the level 2 intercept coefficient is used as dependent 

variable and is expressed as a function of random intercept 𝛿ℎ associated with day ℎ and level 3 

error term 𝜗ℎ𝑖 that follows a normal distribution with mean zero and variance 𝜌2. Finally, the 

variations in the intercept term at level 3 are explained by level 4 equations. Intercept for day ℎ 

represented by fixed effect 𝛼 , exogenous variable vector 𝒛ℎ  
 (𝑇 × 1) and associated coefficient 

vector 𝒈  (𝑇 × 1), and random error term 𝜉ℎ. 𝜉ℎ follows a normal distribution with mean 0 and 

variance 𝜐 
2. The error terms between different levels are uncorrelated. The model parameters are 

estimated using the maximum likelihood approach in STATA software.  



127 

 Ignoring the presence of the hierarchical structure in the data can affect the interpretation 

of the results (neglecting shared variance between observations within the same group) 

and underestimation of standard errors of regression coefficients. 

12.3.3 Pooled Discrete Model (Probit) 

The dependent variable in this model takes the form of a binary variable indicating success 

or failure in prediction by particular component or set of components of ADAS. Akin to a pooled 

linear model, the pooled probit model also ignores the error correlation between observations from 

same event, maneuver type, and day. A simple probit model models the probability of obtaining a 

binary outcome as a function of variable exogenous covariates and estimates the coefficient values 

using the maximum likelihood method, as follows: 

 

𝜋𝑘 = Pr (𝑦𝑘 = 1) 

Φ−1(𝜋𝑘) = 𝛽 + 𝜸′𝒙𝑘 
 

where, 𝑦𝑘 is the binary variable which takes the value 1 if the system makes a successful prediction 

of the test vehicle in observation 𝑘, Φ is the standard normal cumulative distribution function, 

whose inverse acts as the link function, 𝛽  is the intercept and 𝜸  is a (𝑁 × 1) vector of slope 

coefficients for 𝒙𝑘 (𝑁 × 1) vector of exogenous covariates which incorporates fixed effects of 

primary and secondary variables. 

12.3.4 Multi-level Discrete Model (Probit) 

With the same dependent variable as the pooled probit model, consider a four-level 

hierarchical model with the binary variable of interest (successful detection of test vehicle) at level 

1, event at level 2, maneuver type at level 3, and day of data collection at level 4. The primary 

variables and secondary variables (equipment configuration, ambient situational environment and 

prevalent traffic conditions), are included as level 1 variables with fixed effects (same coefficients 

across maneuvers and days of collection). Weather related variables are included in the level 4 

equations, which model the level 3 intercept as a random variable. The probit model is formulated 

as follows:  

 

Level 1: πhijk = 𝑃𝑟 (yhijk = 1) 

𝛷−1(πhijk) = βhij + 𝛄′𝐱k 
 

Level 2: βhij = σhi + μhij 

Level 3: σhi = δh + ϑhi  

Level 4:  δh =  α + 𝐠′𝐳h 
+ ξh 

Reduced Form Model:  𝛷−1(πhijk) = (α + 𝐠′ 𝐳h + ξh + ϑhi+ μhij) + 𝛄′𝐱k 
  

where, 𝑦ℎ𝑖𝑗𝑘 is the binary variable which takes the value 1 if the system makes a successful 

prediction of the test vehicle in observation 𝑘, event 𝑗 , maneuver type 𝑖 and day of collectionℎ. Φ 
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is the standard normal cumulative distribution function, whose inverse acts as the link 

function. 𝛽ℎ𝑖𝑗 is intercept coefficient of event 𝑗, 𝜸  is a (𝑁 × 1) vector of observation-specific slope 

coefficients for 𝒙𝑘 (𝑁 × 1) vector of exogenous covariates which explains fixed effects of the 

exogenous covariates. In level 2, the level 1 intercept coefficient is used as dependent variable and 

is expressed as a function of random intercept 𝜎ℎ𝑖 associated with maneuver type 𝑖 on day ℎ and 

level 2 error term 𝜇ℎ𝑖𝑗 - random effects term for the 𝑗th event of type 𝑖 on ℎth day. 𝜇ℎ𝑖𝑗 follows a 

normal distribution with mean 0 and variance 𝜏2. In level 3, the level 2 intercept coefficient is used 

as dependent variable and is expressed as a function of random intercept 𝛿ℎ associated with day ℎ 

and level 3 error term 𝜗ℎ𝑖 that follows a normal distribution with mean zero and variance 𝜌2. 

Finally, the variations in the intercept term at level 3 are explained by level 4 equations. Intercept 

for day ℎ represented by fixed effect 𝛼 , exogenous variable vector 𝒛 ℎ
 (𝑇 × 1) and associated 

coefficient vector 𝒈 (𝑇 × 1), and random error term 𝜉ℎ. 𝜉ℎ follows a normal distribution with mean 

0 and variance 𝜐 
2. The error terms between different levels are uncorrelated. The model parameters 

are estimated using the maximum likelihood approach in STATA software.  

12.3.5 Results 

The preliminary results suggested that both DSRC and radar performance deteriorates 

when vehicles approach each other in intersections with acute horizontal angles. The built 

environment in such approaches may also block communication signals. Based on DSRC data, left 

turns seemed to be the most difficult maneuvers to predict successfully. However, radar data 

seemed to serve this type of prediction well, indicating that the technologies may have an important 

complementarity effect.  

The expansion from preliminary to full results proved impossible due to the difficulty of 

obtaining accurate ground truth location information, which was likely a result of the large number 

of trees in the testing area. The usage of high-precision GPS mitigated this issue, but the errors 

were still too large and rendered the data unusable: after “correction” through the high-precision 

GPS, vehicles were still displayed “floating” on sidewalks or in other impossible locations, 

indicating the low quality of the corrections made.  

Upon presenting these results to TxDOT, instead of repeating the data collection effort with 

even higher GPS accuracy and precision, the research team was asked to instead focus their efforts 

on the three work-zone-related demonstrations (i.e., the “Construction Zone,” “Pedestrian 

Crossing,” and “Highway Merging” demonstrations), described in Chapter 15.  
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Chapter 13 Overtaking Maneuvers on Rural Roads 

This chapter describes the design of the data collection and analysis for investigating 

overtaking maneuvers on rural roads scenarios. Overtaking is the act of passing the vehicle in front 

of you by temporarily changing lanes. We specifically study overtaking maneuvers on two-lane 

two-way rural roads, where the lane used for passing may have traffic in the opposite direction. 

As discussed earlier, ADAS can use sensing and communication equipment to help drivers identify 

whether it is safe to execute an overtaking maneuver by detecting oncoming vehicles, assessing 

their speeds, and determining if the available gap between vehicles is sufficient for the overtaking 

to take place or not. In Phase 1 of this project, a V2V-based overtaking assistant was studied. This 

assistant determined whether an overtaking maneuver would be unsafe before the driver changed 

lanes. The performance of the overtaking ADAS was tested using simulated maneuvers that were 

defined based on information from existing literature that characterized typical overtaking 

variables and the capabilities of V2V communication. In this phase of the project, real tests were 

performed to assess whether the communication units in our prototype vehicles had the capability 

to provide timely information to assist on the choice to overtake. In addition to the communication 

capabilities, radar, LIDAR, and camera were also tested as potential oncoming-vehicle detectors 

for an overtaking ADAS. An experimental design was developed to create scenarios for the testing 

of the communication and sensing equipment. Data was collected in a FM road in Austin, Texas, 

using the three prototype vehicles, which emulated typical overtaking situations in two-lane two-

way rural roads. As depicted in Figure 13.1, Vehicle 1 was the overtaker (vehicle that wishes to 

perform the overtaking maneuver), Vehicle 2 was the vehicle to be overtaken, and Vehicle 3 was 

the oncoming vehicle (vehicle coming in the opposite direction) that is in the lane use for 

overtaking. To ensure a safe experiment in a real world rural road environment, no actual 

overtaking maneuvers were executed. Such restriction was not a limitation to the current study 

because the role of the ADAS is simply to identify safe overtaking gaps and not to perform the 

actual maneuver.  

13.1 Experimental Design 

The six main variables that may influence overtaking maneuver scenarios were: 

1) Speed of the overtaken vehicle (Vehicle 2) 

2) Speed of the oncoming vehicle (Vehicle 3) 

3) Acceleration of the overtaken vehicle (Vehicle 2) 

4) Acceleration of the oncoming vehicle (Vehicle 3) 

5) Gap between the overtaker (Vehicle 1) and overtaken vehicle (Vehicle 2).  

6) Acceleration of the overtaker vehicle (Vehicle 1) during the actual overtaking maneuver. 
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Since no overtaking actually took place, the experimental design only took the first five 

variables mentioned above into consideration. The levels tested were as follows: 

 

 Speed of the overtaken vehicle 

(Vehicle 2) 

o 40 mph 

o 50 mph 

o 60 mph 

 Speed of the oncoming vehicle 

(Vehicle 3) 

o 40 mph 

o 50 mph 

o 60 mph 

 Acceleration of the overtaken vehicle 

(Vehicle 2) 

o Decelerating 

o Constant speed 

o Accelerating 

 Acceleration of the oncoming vehicle 

(Vehicle 3) 

o Decelerating 

o Constant speed 

o Accelerating 

 Gap between the overtaker (Vehicle 1) 

and overtaken vehicle (Vehicle 2) 

o 3 seconds 

o 6 seconds 

 

 

The speeds used took into consideration the speed limits of the roadway used for testing. 

The drivers could not control for precise accelerations, therefore a less precise approach was used 

in which vehicles maintained a constant gap of either 3 or 6 seconds by means of synchronously 

accelerating or decelerating. The 3- and 6-second gaps were used because they are commonly used 

as guidelines and rules-of-thumb for safe roadway driving. 

The experiment consisted of a full factorial design with 162 runs.  

We did not consider areas where overtaking would have been illegal, such as curves or 

areas with significant gradient change. 
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Figure 13.1: Diagram for overtaking maneuver 

 

13.2 Data Collection 

The final prototype (joint system of sensing and communication equipment) supports real-

time data fusion, processing, and predictions. This analysis instead post-processed data collected 

by the equipment that form the ADAS. Post-processing is advantageous for the experiment 

because it allows for data to be collected simultaneously by all different communication and 

sensing equipment while predications can be made a posteriori using any desired combination of 

instruments. This allows the comparison of prediction results of different equipment 

configurations with parsimonious data collection.  

The main location used for data collection location was FM 973, close to Shumaker 

Enterprises Inc. The precise address is 2900 N FM 973, Austin, TX 78725 and can be seen in 

Figure 13.2. 
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Figure 13.2: Location of data collection for overtaking maneuvers 

 

Each of the three vehicles had an associated number and function: 

 Vehicle 1: Honda Accord – hypothetical overtaker 

 Vehicle 2: Truck F-150 – hypothetical overtaken 

 Vehicle 3: Toyota RAV4 – oncoming vehicle 

 

The maneuver was synchronized by following the script below: 

 Vehicle 2 left its starting point, then 5 seconds later vehicles 1 and 3 left their starting 

points (vehicles 1 and 2 had the same starting point). Note: the starting and ending 

points had area for safely maneuvering the vehicle. 
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 The vehicles reached the designated speed (defined in the experimental design) when 

passing the North or South Cone (placed approximately 300 m from each starting 

point)(Figures 13.3 and 13.4). 

 After passing the Cone, vehicles 2 and 3 followed the “acceleration instruction” of the 

experimental design. 

 Vehicle 1 kept a gap from vehicle 2 of either 3 or 6 seconds according to the 

experimental design. 

 Each vehicle stopped at the designated stopping point. 

 After finalizing each run, the vehicles were reset to start the next run in the opposite 

direction (e.g., if vehicle 1 was going south, it would go north in the following run).  

 

 

Figure 13.3: Location of South Cone for overtaking maneuver 

 

 

Figure 13.4: Location of North Cone for overtaking maneuver 
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13.3 Data Processing 

Advance prediction of the details of an overtaking maneuver, as studied in Phase 1 of this 

project, was not the focus of this task. Instead, we identified the hypothetical last safe maneuver—

or equivalently, first unsafe maneuver—each time the lead and oncoming vehicles drove past each 

other. First, we identified the ending time of the last safe maneuver by finding the last point in 

time where the gap between oncoming and lead vehicles was large enough to allow the overtaking 

vehicle to switch back to the right lane and still be 2 meters ahead of the overtaken vehicle. Then 

the hypothetical time at which the overtaking vehicle would have started overtaking was reversed 

engineered, using the vehicle’s positions and an assumed overtaking acceleration. Since this 

acceleration is unknown, we present results for four different assumed accelerations: 1.0, 1.5, 2.0, 

and 2.5 meters per second squared, which, translate to approximately 2.2, 3.6, 4.5, and 5.6 miles 

per hour per second, respectively. These values follow the findings of [13.1]. Table 13.1 shows 

the summary statistics of the hypothetical maneuvers. “Critical Gap” represents the physical 

distance between the locations where the last safe maneuver should start and end. “Detection 

Distance” represents the distance between the overtaking vehicle and the oncoming vehicle. 

Finally, “Maneuver Time” represents how much time the last safe overtaking maneuver would 

take considering the acceleration times on the left hand side of the table. The maximum distance 

at which detection is required is roughly 800 meters or 2500 feet, which is similar to the distances 

simulated in Phase 1. 

 

Table 13.1: Summary results for overtaking maneuvers 

Acceleration 
(m/s²) 

Critical Gap (m) Detection Distance (m) Maneuver Time (s) 

Max Mean Min Max Mean Min Max Mean Min 

1.0 821.5 392.2 131.5 1803.3 692.8 227.7 40.7 15.4 6.7 

1.5 797.1 333.5 117.1 1695.8 545.2 196.7 35.2 11.8 5.8 

2.0 779.5 298.3 105.9 1621.0 466.5 173.0 33.0 10.0 5.1 

2.5 749.2 275.3 98.0 1534.9 417.5 156.3 30.8 8.9 4.6 

 

13.4 Performance Evaluation 

To reliably warn against unsafe maneuvers, a sensor must detect the oncoming vehicle at 

or before the last safe maneuver’s starting time. Table 13.2 shows the number of hypothetical test 

maneuvers for which each sensor detected the oncoming vehicle in time. V2V communication 

from the oncoming vehicle was almost always received in time. Most of the maneuvers for which 

V2V communication failed fell in the lowest assumed acceleration. This is mostly because the 

lower acceleration rates require much larger maneuver times and therefore larger distances 

between the vehicles, making V2V communication less reliable. Of the runs where V2V failed, 

the Detection Distances were all above 700 meters. This finding supports the conclusion from 

Phase 1 that typical V2V devices may not function across a high enough distance to reliably assist 
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for overtaking maneuvers. However, the oncoming vehicle was detected more often in these tests 

than in Phase 1’s simulations, seeming to be very reliable for distances less than 700 meters. 

 

Table 13.2: Overall performance of camera, radar and V2V communication 

Acceleration 
(m/s²) 

Successful detections of oncoming vehicle Number of 
Maneuvers Camera Radar V2V Comm. 

1.0 2 0 118 153 

1.5 3 0 136 153 

2.0 5 0 145 153 

2.5 7 0 148 153 

 

The non-communicative sensors were entirely unsuccessful as overtaking assistants, as 

was expected. Two factors inhibit typical automotive sensors, first being the distance at which an 

oncoming vehicle must be detected. The radar and LIDAR devices used have advertised ranges of 

200 and 100 meters respectively. Secondly, all sensors were positioned at the center of the vehicle, 

as is common for Level 2 and 3 automated vehicles. A large lead vehicle, such as the pickup truck 

used in these tests, will block the view of the road ahead from sensors. Figure 13.5 shows an image 

taken from the camera at the starting time of last safe maneuver, where the oncoming vehicle is 

invisible due to either the high distance or the truck’s occlusion. Note that human drivers are much 

less affected by the second factor as they are positioned to the left of the car, nearer to the opposite 

side of the road. Sensors positioned to the side of the vehicle would be similarly capable of seeing 

past the lead vehicle. Figure 13.6 shows the percentage of overtaking maneuvers that could 

hypothetically be warned against by a line-of-sight sensor depending on its position. “Lateral 

Distance” represents the distance between the hypothetical sensor and the center of the vehicle. 

The hypothetical sensor in Figure 13.6 can detect objects at any distance, which is untrue for our 

current sensors. 
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Figure 13.5: Lead vehicle blocking view for overtaking maneuver 

 

 
(a) 

 
(b) 

Figure 13.6: Percentage of hypothetical detection of oncoming vehicle as a function of 

sensor position—(a) Low acceleration: 1.0 m/s², (b) High acceleration: 2.5 m/s² 

 

It can be assumed that vehicular sensors are usually laterally positioned near the center of 

vehicles, excepting highly autonomous vehicles with a large suite of sensors, because this position 

is the most useful for most applications. Thus, an overtaking warning assistant without V2V would 

require long-distance sensors equipped on the side of the vehicle solely for this application, at 

which point its benefits may not match its cost. On the other hand, an overtaking assistant with 

V2V is entirely achievable but may require a higher communication range. 

13.5 Conclusions 

The research team carried out a controlled experiment to evaluate the performance of 

ADAS during overtaking maneuvers in rural roads. In these tests, there no actual overtaking truly 
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took place. Such restriction was not a limitation to the current study because the role of the ADAS 

is simply to identify safe overtaking gaps and not to perform the actual maneuver. 

The experiment showed the research team that non-communication-based technology, such 

as camera and radar, performed very poorly and rarely (if ever) successfully detected the presence 

of the oncoming vehicle. The poor performance of the non-communication technology is due to 

two main factors. Firstly, the short detection range of each sensor compared to the true distance 

between vehicles. Secondly, the positioning of the sensors in the middle of the vehicle also 

negatively affected their ability to detect the oncoming vehicle. V2V technology, on the other 

hand, performed very well and was able to detect the oncoming vehicle in the vast majority of the 

runs. The situations in which V2V communications did not work were mainly low acceleration 

scenarios which generated large distances between the overtaking vehicle and the oncoming 

vehicle.  

These results indicate that an overtaking warning assistant is achievable in two ways:  

 with a V2V communication system with slightly higher communication range than 

what was used here and without sensing capabilities;  

 without a V2V communication system and with long-distance sensors equipped on the 

side of the vehicle solely for this application 

 

The safest alternative is likely to have long-distance sensors on the side of the vehicle as 

well as long-distance V2V communication system in place. This might, however, prove too costly 

to implement in real-scale applications. 
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Chapter 14 Pedestrian Detection 

This chapter describes the design of the data collection and analysis for the pedestrian 

detection scenario. In this scenario, we investigate the ADAS’ capability of detecting and 

accurately measuring the distance between pedestrians that are crossing a road and an approaching 

vehicle. For this particular scenario, since there is no other vehicle to communicate with, the ADAS 

can only use sensing equipment to help drivers identify if there are pedestrians, cyclists or any 

other entities crossing the road. For the sake of simplicity, instead of referring to “pedestrians, 

cyclists or any other entities crossing the road” multiple times, we will simply use the term 

“pedestrians” in this section as a catchall term.  

We used four different algorithms to determine pedestrian’s positions: camera only, 

LIDAR only, shallow fusion, and deep fusion. As the names suggest, “camera only” and “LIDAR 

only” relied solely on those respective sensors. The “shallow fusion” and “deep fusion” approaches 

relied on a combination of the data obtained by these two sensors.  

Besides looking at the overall performance, the research team evaluated how certain factors 

influenced the successful detection of pedestrians, such as the total number of pedestrians in the 

frame and the distance between the vehicle and the pedestrians. The research team also studied 

how these factors impacted the magnitude of the detection error as well.  

14.1 Experimental Design 

The two main variables that influence the pedestrian detection scenarios were: 

1) Number and type of elements crossing the road 

2) Speed of the vehicle 

 

The levels tested in the first data collection effort were as follows: 

 Number and type of elements 

crossing the road 

o Single pedestrian 

o Single cyclist 

o Two pedestrians 

o Two cyclists 

o Multiple pedestrians 

o Mix of pedestrians and 

cyclists 

 Speed of the vehicle 

o Stopped 

o 20 mph 

o 35 mph 

 Location 

o Location 1 

o Location 2 

o Location 3 

 

The levels tested in the second data collection effort were as follows:  
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 Number and type of elements 

crossing the road 

o Single pedestrian 

o Two pedestrians 

o Multiple pedestrians 

 

 Speed of the vehicle 

o 20 mph 

o 35 mph 

 Location 

o Location 1 

o Location 2 

o Location 3 

 

The speeds were kept low so that the research team could ensure the safety of the 

pedestrians crossing the road. The first two locations were on different sides of Innovation 

Boulevard on the J.J. Pickle Research Campus. One side was wide open and exposed to the sun. 

The other had trees on one side and a fence on the other, and thus was shaded and near a large 

number of non-pedestrian objects. The third location was the west end of Read Granberry Trail on 

the J.J. Pickle Research Campus. This third location had a single tree, as well as some nearby 

parked vehicles and objects such as a fire hydrant. These three locations were selected to test the 

pedestrian detection algorithms in visually different environments. 

14.2 Data Collection 

The original scope of project only considered one day of data collection. However, the 

research team encountered several difficulties to define ground truth for the data from the first 

date, rendering that effort’s data mostly unusable. This prompted the need for a second data 

collection effort. For this second data collection effort, a new and more precise LIDAR sensor was 

also used, further improving the quality of the data. 

The general setup for the data collection can be seen in Figure 14.1. 

 

 

Figure 14.1: Diagram of pedestrian detection scenario 

 

Vehicle
Forward distance

Lateral distance

Error

Pedestrian’s detected location

Pedestrian’s true location

Vehicle speed
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14.3 Performance Evaluation 

The overall performance of the pedestrian detection was evaluated using three metrics: the 

average successful detection rate, which indicates how often the sensors and algorithms correctly 

detected the presence of a pedestrian; average error, which represents the average Euclidian 

distance between the perceived and true positions of the pedestrian (as illustrated in Figure 14.1); 

and false positive count, which illustrates how many instances the sensors detected a pedestrian 

crossing the road when, in reality, there were none. The main results, summarized in Table 14.1, 

show us that the LIDAR only alternative performed rather poorly: it had the lowest successful 

detection rate and the highest false positive count. The shallow fusion algorithm showed 

surprisingly positive results with a high successful detection rate and considerably low false 

positive count. The average error was also quite small. Curiously, although the deep fusion 

algorithm is more complex, it displayed a lower successful detection rate than the shallow fusion 

algorithm. Conversely, though, it had fewer false positives and a smaller average error. 

 

Table 14.1: Overall performance measures for pedestrian detection 

Technology 
Avg. Successful 

Detection Rate 

Average 

Error (m) 

False positive 

count 

Camera Only 71% 2.0 2,045 

LIDAR Only 65% 1.7 10,265 

Shallow Fusion 96% 1.4 1,161 

Deep Fusion 75% 1.3 755 

14.3.1 Performance Models 

Besides the overall performance results presented above, the research team investigated 

what factors affected the successful detection and the magnitude of the error of each of the 

algorithms.  

For the investigation of the successful detection, we used a simple probit regression. In this 

case, consider 𝑞 as an index that uniquely identifies a pedestrian in time. Therefore, if there are 3 

pedestrians crossing the road and there are 100 frames (images), 𝑞 would range from 1 to 300. In 

this case, we have 

 𝑌𝑞
∗ = 𝑿𝑞

′ 𝜷 + 𝜖𝑞 ,   𝑌𝑞 = 𝐼(𝑌𝑞
∗ > 0) (1) 

where 𝑌𝑞
∗ is a continuous unobserved (latent) variable which indicates the propensity of being 

correctly detected by the algorithm, 𝑿𝑞 is a vector of covariates influencing the successful 

detection, 𝜷 is a vector of parameters to be estimated, 𝜖𝑞 is the error term which is assumed to be 

standard normally distributed (considered independent and identically distributed across all 𝑞), 𝑌𝑞 

is a binary variable that indicates whether or not the pedestrian was successfully detected in a 

particular frame, and 𝐼(⋅) is the indicator function. 
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For the investigation of the magnitude of the errors, we used a log-regression. Here too 

consider 𝑞 as an index that uniquely identifies a pedestrian in time. For the log-regression, we 

have: 

 𝑍𝑞 = exp(𝑾𝑞
′ 𝜸 + 𝜉𝑞) ⟹ ln(𝑍𝑞) = 𝑾𝑞

′ 𝜸 + 𝜉𝑞 (2) 

where 𝑍𝑞 represents the Euclidian distance between the pedestrian’s true and perceived positions 

(i.e., the error), 𝑾𝑞 represents a vector of covariates influencing the magnitude of the error, 𝜸 is a 

vector of parameters to be estimated and 𝜉𝑞 is error term, assumed to be normally distributed 

(considered independent and identically distributed across all 𝑞).  

14.3.2 Results 

The two models described above were estimated for all four algorithms resulting in eight 

models. The results of the detection (probit) and the error (log-regression) models for the camera 

only and LIDAR only algorithms can be found in Table 14.2, while the results for the shallow 

fusion and deep fusion can be found in Table 14.3.  

For the camera only algorithm, most variables behaved as expected: the propensity of 

successful detection is reduced when there are multiple pedestrians on screen, when the pedestrians 

bunch together and when the vehicle is travelling at higher speeds. Curiously, though, the camera 

only algorithm displayed better performance at larger distances. The error model also shows 

mostly expected results: errors are smaller at slower speeds and when there were fewer pedestrians 

on screen. But here too distance plays an unintuitive role: larger distances between the vehicles 

and the pedestrians are correlated with smaller errors. 

The LIDAR only algorithm is less effective at correctly detecting pedestrians when they 

are bunched together, especially in groups of five or more. Slower speeds and smaller distances 

between the vehicle and pedestrians improve correct detection rates. The distance between 

pedestrians did not have a significant effect on the average the error of the algorithm. Larger 

vehicle speeds were associated with larger errors while larger distances to the vehicle were 

correlated with smaller errors. This might be because very few “true” positives were observed. In 

addition, having multiple pedestrians in the frame increased the error when compared to the case 

with a single pedestrian, as already expected. 

The shallow fusion algorithm’s correct predictions were associated with smaller distances 

between pedestrians, lower vehicle speeds, fewer pedestrians in the frame and smaller distances 

between the vehicle and the pedestrians. The errors for the shallow fusion algorithm followed 

similar patterns: smaller distances between pedestrians, greater distances between the vehicle and 

the pedestrians, higher vehicle speeds, and the presence of multiple pedestrians in the frame 

increased the magnitude of the algorithm’s error. 

The deep fusion algorithm’s correct predictions did not seem to be statistically correlated 

with the distance to the vehicle. Greater distances between pedestrians and faster vehicle speeds, 

however, were associated with the algorithm’s lower accuracy. The presence of four or more 

pedestrians in the frame also reduced the probability of the deep fusion algorithm’s correct 
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prediction. Interestingly, the deep fusion algorithm’s error model shows that the errors increase as 

pedestrians are further from each other and when there. As expected, the errors decrease with lower 

speeds and smaller distances between the vehicle and the pedestrian. The errors also decrease when 

there is only one pedestrian in frame. The locations (i.e., visual surroundings) of the runs was 

controlled for and seemed to impact several of the models. These differences, however, were just 

taken into consideration for control purposes and have not yet been investigated in more detail. 

 

Table 14.2: Performance modeling for “camera only” and “LIDAR only” alternatives 

  Camera Only LIDAR Only 

  Detect (Probit) Error (Log-Reg) Detect (Probit) Error (Log-Reg) 

  Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Distance to nearest 

pedestrian 
-0.091 -3.615 -0.040 -1.970 -0.085 -3.327 --- --- 

Distance between 

pedestrian and vehicle 
0.290 5.287 -0.141 -2.861 -0.266 -5.041 -0.217 -4.911 

Vehicle speed -3.533 -16.630 0.806 4.846 -1.967 -9.853 1.238 9.494 

Total pedestrians in frame (base: 1 pedestrian) 

2 pedestrians --- --- 0.317 2.752 --- --- --- --- 

3 pedestrians -0.363 -4.022 0.317 2.752 --- --- 0.331 4.317 

4 pedestrians -0.363 -4.022 0.317 2.752 --- --- 0.331 4.317 

5 pedestrians -0.599 -5.711 0.317 2.752 -0.367 -5.479 0.331 4.317 

6 pedestrians -0.599 -5.711 0.317 2.752 -0.367 -5.479 0.331 4.317 

Location (base: Location 1) 

Location 2 --- --- --- --- --- --- --- --- 

Location 3 -0.624 -9.842 --- --- --- --- 0.253 6.507 

 

Table 14.3: Performance modeling for “shallow fusion” and “deep fusion” alternatives 

  Shallow Fusion Deep Fusion 

  Detect (Probit) Error (Log-Reg) Detect (Probit) Error (Log-Reg) 

  Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Distance to nearest 

pedestrian 
-0.075 -2.820 -0.076 -4.438 -0.140 -5.032 0.029 2.209 

Distance between 

pedestrian and vehicle 
-0.246 -4.357 0.277 7.355 --- --- -0.136 -4.137 

Vehicle speed -2.652 -11.569 0.331 2.340 -1.130 -7.292 0.676 6.041 

Total pedestrians in frame (base: 1 pedestrian)  
 

2 pedestrians --- --- 0.502 3.873 --- --- -0.363 -5.236 

3 pedestrians --- --- 0.502 3.873 --- --- -0.363 -5.236 

4 pedestrians -0.350 -5.270 0.502 3.873 -0.426 -5.216 -0.363 -5.236 

5 pedestrians -0.350 -5.270 0.502 3.873 -0.816 -8.407 -0.363 -5.236 

6 pedestrians -0.350 -5.270 0.502 3.873 -0.816 -8.407 -0.363 -5.236 

Location (base: Location 1) 
 

Location 2 0.228 2.859 -0.288 -6.018 -0.439 -4.317 --- --- 

Location 3 0.262 3.187 -0.255 -5.261 -1.609 -16.044 1.058 28.131 
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14.4 Conclusions 

The results from the pedestrian detection scenarios show that the sensors (and algorithms) 

are usually more prone to correctly detect the presence of pedestrians and to reduce the detection 

errors when the vehicle is at slower speeds and closer to the pedestrians. Having fewer pedestrians 

simultaneously in the frame also usually improves prediction, as do larger distances between the 

multiple pedestrians in the frame.   
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Chapter 15 ADAS Application Tests 

The intersection and overtaking applications were analyzed with simulations in Phase 1 of 

this project and with collected data in Phase 2, because real-time tests of a warning system would 

be difficult to safely perform. Three other applications were selected that allowed for safer 

demonstrations and tests of the full ADAS system. A demonstration of each of these applications 

was shown to TxDOT officials on September 5, 2018. They are each relevant to traffic construction 

safety, though this is not the only field that would potentially benefit. 

15.1 Application 1: Construction Zone 

15.1.1 Goals of the Demo 

Road construction areas are considered one of the more dangerous transportations 

environments. A driver or a passenger in a vehicle died in 85% of fatal work zone crashes (25,713 

crashes in Texas in 2016, with 172 fatalities). In this demo we tried to show the value of a bird’s 

eye view app based on sensing at the infrastructure to increase safety for both, construction workers 

and drivers or pedestrians, who accidentally enter the construction area. 

Bird’s eye view displays are one of the use cases considered for 5G supporting vehicular 

communication. This type of displays show a top view of a given area, expanding the sensing 

range that a pedestrian or a driver without additional resources might have. The bird’s eye view 

includes a map of the area and images that represent potential hazards. An example of a bird’s eye 

view display is shown in Figure 15.1 (taken from [15.1]). 

 

Figure 15.1: Example of an experimental bird’s eye view display 

 

The final goal of the demo is to show how sensing and communication at the infrastructure 

can provide the information necessary to warn pedestrians and drivers about possible hazardous 

situations. 
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15.1.2 Modules Developed for the Road Construction Demo 

Sensing Base Station 

We designed and developed the prototype sensing BS shown in Figure 15.2. It includes a 

pole, communication module, a radar, a camera, and a laptop in charge of processing the 

information obtained by the sensors. 

 

 

Figure 15.2: Prototype sensing base station developed for the demo 

 

Bird’s Eye View App 

We developed an app that can run on a smart phone or a tablet that receives the processed 

sensor data from the prototype sensing base station. The detected objects are sent to the smart 

phone or tablet in real time, and shown as images overlaid over the map of the area. The app also 

generates warning images and sounds when a pedestrian and a vehicle get close. A picture of the 

app is shown in Figure 15.3. 
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Figure 15.3: Image of the developed app showing a bird’s eye view of the demo area 

 

Road construction area 

We designed and developed a simulated road construction area, including vehicles, 

workers, barricades, barriers, cones, a big container acting as an obstacle limiting the FOV of both 

drivers and pedestrians, and other objects usually present in this type of environments. An 

illustration of the design and a picture of the final deployment can be seen in Figure 15.4 and 

Figure 15.5. 
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Figure 15.4: Designed simulated road construction area 
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Figure 15.5: Deployed road construction area 
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15.1.3 Presentation of the Demo 

The demo starts with two actors working between the barricades. A car ready to drive 

around the fake road work area and behind the container that blocks the view of any potential 

pedestrian or driver. One of the workers has an iPhone with the bird’s eye view app working. The 

driver has an iPad with the bird’s eye view app working.  

The images and sounds displayed in the bird’s eye view app are mirrored in a TV screen 

so that the people attending the demo can see and listen the warning images as they appear.  

1. The car goes for a first round and nothing happens. Workers keep working between the 

barricades. TV is mirroring the iPhone screen. Camera and radar data are shown. The app 

shows the car moving but no warning sign or sound.  

2.  Second round for the car. One of the workers gets out of the secure area between the 

barricades and walks with the wheelbarrow towards the large storage box, which blocks 

the field of view for him and for the car driver.  When the car and the worker are getting 

too close, the app starts beeping and showing in red the icons for the car and the worker. 

The worker stops, and the car slows down a lot. The worker crosses and then goes back 

quickly to the secure area. 

 

A video of the demo is available upon request. 

15.2 Application 2: Pedestrian Crossing 

The in-car pedestrian warning system (Figure 15.6) directly uses the detection methods 

tested in Chapter 14. Pedestrian collision warning is a simpler decision to make than many other 

safety warnings because pedestrians do not move at high speeds and are very unlikely to have 

injury-causing collisions with the side or rear of the host vehicle. Only pedestrians towards the 

front of the vehicle, and within 20 meters to either side, are detected tracked at any time. We 

specifically detect and track pedestrians and cyclists, and not other nearby objects. This warning 

system will be more valuable when the vehicle is expected to come near many stationary objects 

(for example, vehicles in a tight work zone). The current detection method is shallow 

camera/LIDAR fusion. A visual display is used to show the pedestrian detections while an audio 

display gives warnings. Warnings are given when moving at the current speed may result in a 

collision within 2 seconds. The vehicle’s GPS is used to determine current speed, though for 

simpler live demonstrations the vehicle may be kept stationary with an imaginary speed. 
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Figure 15.6: Image seen on computer screen during live demonstration of pedestrian 

crossing 

15.3 Application 3: Highway Merging  

In this application, a stopped vehicle is waiting to enter a high-speed road (for example, 

while exiting a construction zone). It uses V2V communication to detect oncoming vehicles and 

warns the driver when it not safe to merge. 

Merging onto a highway from a construction zone is dangerous because of the time 

required for a slow, large vehicle to reach highway speed from a standstill. A fast-moving car from 

over one hundred meters away at the start of the merge could collide with the large vehicle if it is 

inattentive. We designed a merge warning system for the merging vehicle based on V2V. All 

vehicles determine their own positions via GPS and broadcast them using the standard Basic Safety 

Message. This message can easily be received from high distances, and GPS’s possible positioning 

error of several meters is not critical when such large distances and speeds are considered. 

Warnings could be generated based on the approaching vehicle’s speed and the merging 

vehicle’s assumed merging acceleration, but this is dependent on said acceleration, which may 

vary per vehicle and doesn’t capture odder situations, such as where the approaching vehicle is 

slow but accelerating. Additionally, this warning criterion was found too lax by test users. Instead, 

the warning is based on the human driver’s limitations—it is assumed that humans have difficulty 

judging the distance, speed, and perhaps even presence of vehicles beyond one hundred meters. A 

vehicle that will be within 100 meters of the merging vehicle within 2 seconds generates a warning. 

The warning continues until the vehicle passes the driver—if the other vehicle stops or is somehow 

not a threat, the driver is assumed to be capable of judging this and ignoring the warning. It is also 
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possible that more than one vehicle is approaching. There is a unique sound every time a new 

vehicle reaches the warning zone, so that each approaching vehicle will be noticed by the driver. 

Two visual displays were created, one that simply alternates between several images and 

one that shows a bird’s eye view of the road with positions of the detected vehicles. The former is 

less distracting and ensures that the driver will check to see the approaching vehicle on his own, 

while the latter provides more information and so may be trusted more. Figure 15.7 shows the first 

visual display, while Figure 15.8 shows the second. 

 

   

Figure 15.7: Simplified images for highway merge demo 

 

 

Figure 15.8: More informative visual display that overlays approaching vehicles on the 

road 

 

The images shown in Figure 15.7 represent the simple visual display for a safe situation 

(no vehicle in danger zone yet), a warning situation (at least one vehicle is approaching), and a 

critical situation (the vehicle has started merging but another vehicle is close behind). The latter 

will not be shown in the demonstration because purposefully reaching such a situation is difficult 

without jeopardizing pedestrians’ safety. 

V2V functioned reliably for this demonstration during most tests, but failed in one 

demonstration when many audience members gathered around the merging vehicle. This coincides 

with a conclusion of the intersection data analysis: vehicular communication is more robust to 

occlusion than sensors are, but not immune to it. A designated merging zone on a highway should 

be designed so that no large objects are placed between a merging vehicle and the oncoming traffic.  
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Chapter 16 Conclusion 

The last twenty years have introduced many technologies for advanced driver assistant 

systems. This project used sensing technology from current ADAS, sensing technology common 

in self-driving vehicles, existing wireless communication, and next-generation communication. 

The relative strengths of these technologies were examined, in terms of their reliability in different 

applications and the cost or difficulty of implementing them. As was expected, each technology 

was found to have unique value in certain applications. Additionally, often a combination of 

several devices or techniques provided the best solution. 

In this project the CTR research team developed and installed ADAS software, completing 

proof-of-concept tests for each of the five ADAS applications covered. Actual deployment of these 

applications will require minor design considerations and more rigorous testing, but should start 

with the devices and software given. In addition to describing the ADAS systems, this report 

contains qualitative and quantitative analysis of technologies or techniques that were not 

considered as useful for specific applications. Both the current applications and the comparative 

analyses should be valuable to the development of new ADAS technology. 

Notable discoveries are briefly noted here. Accurate calibration of each sensor’s position 

is difficult when devices may be placed differently or imprecisely in each car. A satisfactory 

automated calibrator has not been found, so the recommended approach is to design software that 

enables quick manual calibration for each device installation. Finally, cameras are useful but rely 

on powerful computers. It is recommended that cameras are used primarily when different types 

of objects must be treated differently, as in the pedestrian application, or as downward-facing 

sensors on tall infrastructure where simpler visual detection techniques are reliable. Tests of the 

intersection application suggest that forward-facing sensors can’t detect vehicles from the side in 

enough time to prevent collisions. All-directional LIDAR can detect vehicles approaching from 

the side when the view is unobstructed. V2V communication is also affected by large obstructions 

between two vehicles, but not enough to fail to warn in the test locations. Tests of the overtaking 

application indicate that vehicular communication is the only appropriate tool for this purpose. 

Lastly, the results from the pedestrian detection application show that merging information from 

camera and LIDAR provides the most reliable solution. The algorithm is still imperfect but 

performs well on relatively slow-moving vehicles. 

This project explored mmWave communication as an emerging option for traffic safety 

applications, as it enables high data rate communication between vehicles and/or infrastructure. 

Most of the research focused on overcoming practical difficulties of implementing mmWave 

communication on vehicles and proving its viability with a real prototype, which leveraged 

equipment from a variety of sources. It was found that using sensor information, the overhead 

associated with setting up a millimeter-wave communication link could be reduced substantially 

making millimeter-wave more viable for transportation applications. The potential of a joint 

communicating and sensing device has also been demonstrated through simulations and physical 

tests. Measurements were made to establish how a millimeter wave communication waveform can 
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also be used for radar sensing, reducing the potential hardware required on vehicles. The 

prototypes created are not ready for public use but significantly advance the research of high-

bandwidth communication technologies for transportation applications. 

Following is a summary of the results for Phase 2 of this project: 

 Task: Real-time fusion of V2V communications and radar 

o Subtask – Creating a fusion prototype 

 Much of the material in this report falls under this subtask. 

o Subtask  – Exploring other types of information fusion 

 Both high-level and low-level fusion of sensors was performed in several ways. 

One application, the pedestrian-only collision warning, relies fundamentally on 

the combination of camera and radar/LIDAR information. Sensor calibration 

was an unanticipated but unavoidable subproblem of sensor fusion. 

o Subtask – Incorporating the presence/absence of measurements - imputation 

 This is performed whenever necessary, sometimes inherently by the perception 

framework and sometimes explicitly. Examples in our current V2V-based 

tracking include the multiple categories of tracking when communication has 

just been established, the long-term storage of vehicle heading when stopped 

at an intersection, the setup of occlusion for objects. 

 Task: Distributed decision-making in complex, realistic scenarios 

o Several modifications of the original distributed decision-making technique for 

cooperative driving are designed and tested. Further improvements are needed 

before kind of technology is user-safe, but in concept it has been shown to be 

robust to occasional input error and capable of making decisions that seem 

reasonable to a human driver. 

 Task: Exploring additional sources of information 

o Subtask – Storing and making use of driver history 

 Driver history was examined as part of the more complex prediction 

methods in Section 6.1.1. It was not considered necessary for any of the 

examined safety applications. 

o Subtask – Acquiring and using location context 

 Location context was ultimately considered an application-specific tool, 

given that different applications have very different requirements for 

location context. The degree of context for each application is discussed. 

o Subtask – Utilizing Non-BSM messaging in DSRC 

 We have implemented a version of V2V tracking in which each vehicle 

imputes its speed, acceleration, heading, and turning rate using self-

tracking algorithms and then communicates this information, along with 
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the standard position reading, to all other vehicles. The construction zone 

application uses infrastructure to communicate nearby object positions and 

a warning message. Details of non-BSM messaging such as standardization 

and security are not a focus of this project. 

 Task: DSRC-aided mmWave vehicular communication 

o Subtask – DSRC-aided mmWave communication between cars 

 Leveraging DSRC information, an efficient beam alignment method for 

mmWave vehicular communication was proposed. The developed 

algorithms use machine learning to help predict preferred mmWave 

communication beams. 

 An efficient method to estimate mmWave channels by using the similar 

property between sub-6GHz (DSRC) and mmWave channels is described. 

o Subtask – RSU-aided mmWave communication between cars 

 Using sensors on infrastructure, an algorithm for detecting and localizing 

the vehicle was tested. This information can be broadcast from an RSU to 

vehicles to configure mmWave communication links quickly. 

 Leveraging position information (extracted by the RSU), our proposed 

adaptive-beamforming algorithm outperforms other conventional methods 

in mmWave vehicular systems. 

o Subtask – DSRC-aided mmWave communication proof-of-concept prototype 

 A proof of concept prototype has been created and tested in simple 

environments. 

 Task: Radar-aided mmWave communication 

o Subtask – Using radar at the infrastructure to assist mmWave communication 

between cars 

 Exploiting the similarity of covariance between mmWave radar and 

mmWave communication channels, our proposed method can significantly 

reduce the overhead required for mmWave link configuration without a 

non-trivial loss compared to full beam search. 

o Subtask – Radar-aided mmWave proof-of-concept prototype with car-mounted 

radar & infrastructure-mounted radar 

 The radar returns of the mmWave prototype were examined and used to 

enable forward vehicle detection. In this way, the radar is able to provide 

important side information that can help the communication channel. 
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 Task: Advanced technique to further enhance joint mmWave radar and communication 

system 

o Subtask – Modify IEEE 802.11ad for better radar and communication 

performance 

 Several efficient mmWave channel acquisition methods have been 

described: 1) exploiting channel sparsity to reduce training overhead in 

frequency selective channels; 2) leveraging information extracted from 

sub-6 GHz communication systems to aid beam selection; and 3) using 

subspace estimation techniques to acquire information about channel main 

directions. These methods enhance the conventional approach of IEEE 

802.11ad to advance radar and communication systems. 

o Subtask – Designing new joint waveforms and signal processing algorithms 

o We developed new waveforms that enhance the waveforms used in IEEE 

802.11ad with improvements to allow more accurate velocity estimation. The key 

idea was to insert additional training signals into the communication waveform to 

better measure doppler shifts and thus velocity.Subtask – Prototyping a combined 

communication and radar car-to-car link 

 An mmWave automotive radar based on the mmWave WLAN standard to 

enable a joint vehicular communication-radar system at 60 GHz has been 

developed. This provides a suitable baseline for designing future vehicular 

communication standard that can be used for automotive radar 

applications. 

 A preliminary mmWave test bed to prototype mmWave joint 

communication and radar system was completed. Based on that platform, it 

was confirmed that the theoretical predictions of high data rate and 

accurate radar sensing match what is observed in practice, at least in simple 

laboratory settings. 

o Subtask – Field tests 

 Tests were performed for the mmWave joint communication and radar 

system outdoors in static settings, and in the lab in more dynamic 

configurations using a remotely controlled model car to move a target. The 

results confirm that the core theoretical principle is valid, and that this line 

of research is promising for future applications of mmWave to vehicles. 

 Task: Experimental design, prototype equipment installation and data collection, and 

optimizations of algorithms 

o Subtask – Prototype equipment installation and data collection 

 Two vehicles have been equipped with sensing and communication 

(DSRC) equipment, as well as computers for data processing. 
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 Data was collected and processed for the intersection, overtaking, and 

pedestrian applications. Each involved multiple locations and scenarios 

according to a predetermined experimental design. 

 Live tests were performed for the pedestrian, highway merge, and work 

zone applications. This involved designed test areas and test direct or 

indirect users. 

o Subtask – Optimization of ADAS algorithms for different scenarios 

 Results based on the data collected in urban intersections, overtaking 

maneuvers and pedestrian detection scenarios have been used to guide 

improvements in the ADAS. Live tests performed on mock work zones and 

highway merge points were also  

 Task: Performance evaluation of the ADAS and expansion of CONOPS 

o Subtask – Performance evaluation of the ADAS 

 Modeling of the system’s performance on specific applications or substeps 

was used to choose appropriate technologies or pinpoint improvements 

required by the system. The overall state of the system is described here 

and in the CONOPS document.  
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Appendix A – Vehicle Specifications 

All sensors are connected to a deep-cycle battery for power, and all sensors except for the 

Reach are connected to a computer to store data. The Reach can store GNSS and IMU readings on 

its own hard drive and can be controlled wirelessly. The battery and the majority of cables and 

adapters reside in the back left seat of the car, while the computer is held by a person in the front 

passenger seat. This design avoids any permanent alteration to the vehicle while still having a 

(mostly) dedicated space for the electronics. 

 

 

Figure A.1: Diagram of wire connections 

 

 

Figure A.2: Picture of car with sensors annotated 
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Figure A.3: Closer picture of camera attachment to front window 

 

 

Figure A.4: Picture of adapters and connections in the back seat 
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Appendix B – Pedestrian Ground Truth 

Certain values had to be determined to properly create ground truth: 

 The time lag for each computer 

 A rough elevation map of the ground 

 The position and orientation of the tower camera 

 

Inaccuracies in times reported by a computer can be significant when the computer is 

operating at high capacity, such as when it is storing large amounts of data, and when it does not 

have access to correcting information from internet servers. However, the Velodyne LIDAR has a 

GPS unit that reports precise time. First, the LIDAR and the car’s video time is matched manually 

using video with LIDAR detections overlaid. The car’s and tower’s video times are matched 

manually by comparing snapshots of pedestrians from each. Snapshots taken 0.1 seconds apart 

from each camera are shown in Figures B.1 and B.2. 

The elevation along each road is determined by averaging the car’s elevation, as reported 

by GPS, at various positions on the road. The highest elevation was 0.02 radians or 1.1 degrees. 

Additionally, roads are generally slightly curved to ensure water runoff. This curve was 

approximated with a planar slope of 0.05 radians. The grass to the side of the road was sometimes 

heavily sloped. This slope was approximated but not accurately determined—thus, pedestrian 

positions off the road were determined less accurately. 

The position and orientation of the tower camera were also determined using the car’s GPS. 

As the car approached and retreated from the pedestrian zone at least six times at each location, 

many car positions in the tower’s video and corresponding GPS readings were available. The 

object detection applied to the tower video also gave bounding boxes for the car, and the bottom 

corners of these boxes were matched to the GPS-determined corners of the car.  

The solvePnP function of OpenCV solves for the camera pose that creates the best match. 

Given the camera’s pose, the method for determining where a pedestrian is on the ground, using 

their position in an image, is described in Section 4.4.2. In that section it is used for on-vehicle 

detection, but the approach is the same—and in fact more accurate for a higher, downward-angled 

camera. 
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Figure B.1: Vehicle camera snapshots 0.1 seconds apart 

 

  



169 

 
 

 

Figure B.2: Tower camera snapshots 0.1 seconds apart 
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Appendix C – Demonstration Videos 

Video playlist 1: Radar tracking examples: 

1A: https://utexas.box.com/v/CarstopTM1vid1A 

1B: https://utexas.box.com/v/CarstopTM1Vid1B 

1C: https://utexas.box.com/v/CarstopTM1Vid1C 

Video playlist 2: Radar tracking examples, focusing on alternate test vehicle: 

2A: https://utexas.box.com/v/CarstopTM1Vid2A 

2B: https://utexas.box.com/v/CarstopTM1Vid2B 

2C: https://utexas.box.com/v/CarstopTM1Vid2C 

Video playlist 3: YOLO example:  

3A: https://utexas.box.com/v/CarstopTM1Vid3 

Video playlist 4: LIDAR tracking: 

4A: https://utexas.box.com/v/CarstopTM1Vid4A 

4B: https://utexas.box.com/v/CarstopTM1Vid4B 

Video playlist 5: Radar-vision fusion: 

5A: https://www.youtube.com/watch?v=KZxb20Gupx0 
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