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A new wave of technological innovation has brought new opportunities and a

new vocabulary into the world of transportation. Many useful and innovative

solutions emerge every day that rely on cutting-edge technology, and for many of

these promising solutions, the underlying technology is artificial intelligence, or

AI. Innovation in this area will maintain its rapid pace for the foreseeable future,

increasing both the difficulty and value of defining the impact of AI on the

transportation space. 

 

Recognizing that innovation will continue apace for the foreseeable future, this

paper focuses on highlighting the various types of AI and AI-related

transportation tools. Key findings from this perspective are the importance of

data management infrastructure—both hardware and software—and the rising

importance, bordering on need, of data scientist personnel. Many of these tools

promise to improve efficiency, reduce costs, or increase capabilities. Some of

these tools have delivered on this promise even in their infancy. Regardless of

what problem these tools help solve, all are best utilized when an agency has

resources and personnel dedicated to utilizing data insights. 



KEY  

TAKEAWAYS
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Use flexible, open architecture databases. 

In the era of big data, agencies will be well served by

proactively adopting flexible and open architecture

databases that will enable adaptation, scaling, and

continuous availability to data stores.  

 

Develop data governance across agencies. 

Data governance provides public agencies with

strategic guidance on the roles and responsibilities

that are needed to ensure clear processes for

collecting and reporting agency data and also helps

to ensure accountability for data quality and security. 

Extend data value via cross-sector applications. 

With the increased availability of data there is

increased opportunities to solve complex problems

that span multiple domains. Transportation agencies

can collaborate with agencies to look at

transportation data crossed with energy, public

health, and housing data, and more. 

 

Build and integrate data science expertise. 

Public sector organizations increasingly need to

extract actionable insights from data in various

formats from various sources. Although public

agencies consistently face resource and budget

constraints, it is important to hire and retain in-house

data science expertise for data-driven decision

making. 
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Transportation planning has traditionally taken a long view—on the scale of

decades—but the industry has recently been forced to turn its attention to

technologies and service models that continue to emerge ever more rapidly. In

the span of a few short years, private transportation network companies and

other shared mobility service providers have commanded a not-insignificant

mode share among the traveling public. Disruption from technology companies

and startups has demanded that transportation agencies adapt the ways they

plan for, regulate, and operate future infrastructure systems. 

 

Private transportation service providers have been successful by leveraging the

latest advances in information technology, such as AI, big data, and Internet of

things (IoT). Although public agencies have vastly different goals from private

companies, given the agencies are responsible for providing reliable and widely

available infrastructure and services, they can borrow tactics from the private

sector to deliver those public goods and services more efficiently or effectively.

For a public agency, being able to adopt or emulate certain principles that led to

private companies’ success, successfully collaborating with those companies, or

both, runs through understanding. Cultivating an awareness of emerging

technologies and how they work best positions transportation agencies to adapt

to the near constant changes in transportation technology occurring today.  

 

AI and ancillary technologies like cloud computing and IoT provide new ways to

use and generate information. For example, video data is now more available and

more valuable. The reduced cost of quality cameras and viability of signal

broadcasting equipment accounts for the greater availability; the greater value is

a result of machine learning’s ability to increasingly automate the task of

continuously counting and evaluating everything a camera sees. Another

example of leveraging traditional data sources through AI is in the area of surveys,

which are rendered more powerful through cloud computing-powered

algorithms and the ability to digitally merge many sources of data. These and

other examples of data gathering and processing promise to either increase

efficiency or lower the cost of transportation tasks.  

 

From this point on, private-sector innovators in the transportation sector will only  

 

 

10

Inform and help make decisions   

Describe challenges and outline paths to overcome

them   

Objective evaluation and presentation of options   

Introduce new concepts and distill technical

content   

Describe business advantages to implementing AI

solutions 

RESEARCH GOALS
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multiply: we can anticipate increasing numbers of technology demonstrations and deployments

that promise their machine learning algorithms can deliver improved data collection, processing,

and prediction paradigms or that their AI implementation will power novel transportation modes

or services. In the meantime, public agencies will need to train their focus on continuing to

provide access to transportation, essential services, and economic opportunity for all members of

their communities. In some instances, not all products marketed towards to the agencies will

necessarily be practical or useful. Instead, it is imperative that public agencies develop flexible

standards and technologies, leveraging technology solutions that will allow public agencies to

meet their responsibilities to the public more effectively or efficiently. Agencies must maintain an

awareness of the ever-evolving technology sphere so that that they can partner meaningfully with

private-sector innovators. 
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PROCESS

This paper aims to filter through some of the vast capabilities of

emerging technologies that use artificial intelligence or machine

learning, and provide a focused look at the applications relevant to

transportation agencies.  

OVERVIEW

12

This paper aims to filter through some of the vast capabilities of emerging

technologies that use AI or machine learning, and provide a focused look at the

applications relevant to transportation agencies.  

 

First, we define our vocabulary, and demystify technology buzzwords, such as big

data, edge computing, cloud computing, and AI, in the Technical Primer. This

contextual base will allow the reader to synthesize the more complex topic areas

to follow. The Technical Primer also outlines the historical trends that caused AI

and adjacent technologies to go from theory to best-in-class products in less than

a decade. 

 

Next, this paper considers five distinct application areas that are broadly relevant

to transportation agencies:  

● system and service planning  

● real-time system performance  

● public safety and enforcement 

● construction and asset management 

● public administration and information management  

 

These five areas represent distinct domains that help link different technological

tools to common, specific goals. This organizational choice highlights the

domains that AI most influences, as well as those domains in which AI plays a

lesser role. Some domains, such as public administration and information

management, have not been heavily influenced by AI. Others, like system and

service planning and real-time system performance, were so influenced by AI that

many companies now work in both. The Menu of Applications section will also

shed light on which companies and startups have already taken innovative

products to market, what types of data and analytics tools they used, and how

some public agencies have started deploying or incorporating them into existing

systems. 

 

A series of company case studies follows the Menu of Applications. These case

studies include information learned from deep dives on distinct technology

solutions, and offer a glimpse into a real-world implementation of each

technology. Regardless of whether the companies in this section solve the same

or similar problems, the underlying technology differs widely from case study to

case study. Graphics are provided at the end of this section in order to visually

represent the differences, and similarities, between companies and technologies. 

 

During each of the case study interviews, we asked each company what advice  
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they would give to transportation agencies. Every single company recommended investing in data

management as a whole, or some specific facet thereof. Our conclusion focuses heavily on this

finding. 
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TECHNICAL PRIMER

The objective of the Technical Primer is to demystify commonly used

artificial intelligence buzzwords to give the reader a more

contextualized view of the research being presented.

OVERVIEW

14

Artificial intelligence (AI) and big data along with cloud and edge computing

have developed so rapidly that their names signify many things, including hype,

hope, skepticism, and the promise of a more automated, efficient, and informed

future. AI consists of complex mathematical underpinnings that can initially be

difficult to digest for newcomers to the field of computing. Its capabilities and

applications have been unlocked by hardware and software advances in the past

two decades. This chapter explains how and why technology has developed so

quickly in the last twenty years, and explains why these new technologies are so

impactful. 

 

Big Data  

Big data’s possibility stems from a historical trend known as Moore’s Law (neither

a physical law nor a legal one), which predicts that computing power and storage

will double every two years. Moore’s Law is at best a reasonably accurate boast

from the computer processor industry. While the actual rate has fluctuated over

time, this self-enforced innovation standard in the computer processor industry

has transformed the way all parts of society store and interact with information. 

 

The image below illustrates the exponential growth of data storage capacity.  
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Note that the above graphic is quite dated. Over the last ten years data storage has grown further

—making even relatively new technologies like CDs inadequate for the current data environment.

The difference between the graph above and the graph below illustrates this change. Ten years

ago, it was possible to comprehend the amount of data in the world, and to interact with

physical objects that stored data. Now, it’s almost impossible to comprehend the amount of data

that one business generates monthly—let alone the amount of data in the world. 

The image below illustrates the exponential growth of data storage capacity.  

 

The sheer size of many organizations’ data pools makes previously simple tasks like querying and

summarization difficult. Almost paradoxically, it's difficult to identify and explore the insights that

lie within. Even when given enough servers and computers to store data, finding the relevant

information can still take a great deal of time and domain expertise.  

 

The method of data collection and generation often produces unstructured data, further

increasing computing and processing resources needed to process the data. Unstructured data is

unorganized and, even with computing advances, it typically cannot easily be converted to more

structured forms with human help. For most modern machine-learning algorithms, data must be

organized into rows and columns for model ingestions. What’s more, most conventional database

tools that use Structured Query Language (SQL) also require data in row and column format in

order to initialize and utilize. Another issue that arises with big data is that modern data often

enters databases at a tremendous rate. Data from smartphones and IoT (Internet of things)-type

sensors, and in the field (such as traffic cameras, or in-road sensors) comes in at a near-constant

flood. This is one of the main reasons data often enters a system without any organization; at the

time of collection, there simply isn’t time to organize it. 
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The sheer size of many organizations’ data pools makes previously simple tasks like querying and

summarization difficult. Almost paradoxically, it's difficult to identify and explore the insights that

lie within. Even when given enough servers and computers to store data, finding the relevant

information can still take a great deal of time and domain expertise.  

 

The method of data collection and generation often produces unstructured data, further

increasing computing and processing resources needed to process the data. Unstructured data is

unorganized and, even with computing advances, it typically cannot easily be converted to more

structured forms with human help. For most modern machine-learning algorithms, data must be

organized into rows and columns for model ingestions. What’s more, most conventional database

tools that use Structured Query Language (SQL) also require data in row and column format in

order to initialize and utilize. Another issue that arises with big data is that modern data often

enters databases at a tremendous rate. Data from smartphones and IoT (Internet of things)-type

sensors, and in the field (such as traffic cameras, or in-road sensors) comes in at a near-constant

flood. This is one of the main reasons data often enters a system without any organization; at the

time of collection, there simply isn’t time to organize it. 

 

These issues in modern data storage and processing can be summarized with a pithy bit of

alliteration: volume, variety (the types of data), velocity (how quickly data enter the system), veracity

(how noisy the data are), and value. 

 

To place this section in context, recall an old adage: knowledge is power. The more data, the more

potential knowledge; with more knowledge, the potential to make better decisions, and so forth.

Large information stores (big data) have the potential to increase efficiency and reduce cost—but

there is no such thing as a free lunch. 

 

Key Takeaway: Big data is data that have any of volume, variety, velocity, veracity, and value in

problematic amounts, requiring new and different tool to store, manage, clean, and analyze.  

 

The Cloud 

Data need a physical place to live. This place is often on computers, but it can also be on a six-foot-

tall server, or a flash drive smaller than a pinkie finger. Advances in technology have made even the

small devices, such as flash drives and smartphones, capable of housing dense data files, like

videos. But when video data comes in 24 hours a day from something like a traffic camera, even a

traditional desktop computer, with many times the storage capabilities of a smartphone, ends up

overflowing with data. 

 

In order to handle the data flow, more servers and technical personnel must be employed to

manage the data—but these servers and personnel need not be employed on location. The Internet

can provide a safe and efficient method for connecting clients to a large, off-site server farm

capable of handling as much data as the modern world can generate. The same companies that

provide the servers can also provide software and expertise to analyze and organize the big data

the servers store. 

 

Large software and hardware companies end up housing cloud computing infrastructure, because

often large-scale infrastructure is needed to run internal operations. Some of the major players

offering cloud services are Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform,

and Oracle Cloud. Many other companies offer similar services, but the aforementioned providers

often have more capacity, computing power, and a greater range of tools and services (analytics). 

 

Although most cloud services are as secure (and sometimes more secure) than hosting data on

local servers, using a cloud service means that another organization has access to the data stored

within their servers. The graphic below outlines the relationship. 
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Key Takeaway: Cloud computing is the act of employing remote computers—often managed by

another company—to solve problems or store data via the Internet. 

 

Note: Cloud computing often connotes big data, but the phrase “the cloud” can mean any size

enterprise. For instance, Google Drive is a cloud service, but generally handles personal data, the

type and content that would easily fit on a laptop. 

 

Internet of Things and Edge Computing 

The Internet of things (IoT) is a term that refers to putting small footprint computers in everything

from street lights to the wheels of a bus. Edge computing means that those tiny computers are fast

and powerful enough to clean data, i.e., they can help with the veracity and variety parts of big

data. Edge computing used to mean cloud computing, but its meaning has changed, and it will

most likely change again.  

 

That said, much of the data that teaches machine-learning algorithms comes from IoT

applications. Having the best computers in the right places deliver good results; a sensor in every

bus wheel that constantly monitors tire pressure and general wear and tear provides actionable

information that would otherwise not be accessible. It’s even better if that sensor in the bus wheel

has a tiny computer that emits only clean, easy-to-use data. 

 

However, it cannot be overstated that the IoT, or edge computing, are upgrades in physical

infrastructure. IoT means that actual tiny computers are installed and maintained inside all

manner of objects, and that these tiny computers are beaming data at a near constant rate. Such

data often requires immense data storage and data management capabilities, which is to say that

IoT often generates big data. As previously mentioned, big data requires a bevy of servers—either an

on-premise data center or cloud computing—in order to manage the sheer quantity. 

 

Key Takeaway: IoT promises to supply copious amounts of useful data, so long as the underlying

infrastructure is properly implemented and maintained. 
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Cloud Computing and Big Data: Enabling AI 

In the twentieth century, AI proved too rigid to be applicable to real-world problems and too reliant on

data and computing power to be feasible. However, both big data and the cloud have removed these

barriers and paved the way for AI to garner insights and increase performance across operations not only

within the private sector, but also in the public space. 

 

The best way to leverage big data is to utilize AI to glean constant, actionable insights from it. Combined

with access, via the Internet, to a whole host of servers, AI can distill large amounts of information into

meaningful facts. It can turn unending hours of video data into counts of every car, truck, and bicycle

that went through an intersection. 

 

Artificial Intelligence (AI) 

The next section, and the rest of the primer, outlines how and why AI transforms data and computing

power into useful knowledge about the world. 

 

Historically, there have been two major approaches to creating AI: expert knowledge systems and

machine learning. 

 

Expert knowledge systems are lists of rules written by an expert. The intuitive appeal of these systems

lies in their exactness; the computer knows exactly what to do, because the rules are explicitly written.

But their exactness freezes expert knowledge systems into a rigid position. Lists of rules leave no wiggle

room for navigating the unknown. For example, consider the game of chess.  

 

What then is machine learning and its relationship to modern AI? The magic comes from humility. We

do not know everything, but we do have a good idea how likely something is, thanks to experience.  

 

For example, consider darts, a game with a defined goal: hit the bullseye. On the first dart throw and

without prior skill, all players are equally likely to hit any part of the dart board—if they hit the board at

all. Given time to practice, players will become more accurate, which is to say, more likely to get closer

to the bullseye. Now, the goal does not have to be hitting the bullseye. The game can be made easier

(hit the board at all), or harder (professional dart throwers have to hit different parts of the dart board as

the game goes on), and still, given time to practice, a person will get better at the game—the darts will

get closer to the goal. 
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But where exactly is statistics, in all this dart throwing? Think about our game of darts in the following

manner: experience makes us more likely to hit our goal. Each throw yields a result (success or failure),

but it also provides data, information about what was tried. A person remembers how hard they threw

the dart, where they were looking, how they were holding the dart, etc. These different factors, or

variables, can be altered to improve performance. Statistical machine learning, or experience, tells us

how much to alter these variables. After throwing a dart 1000 times at a dart board, a person remembers

how to throw a dart in order for it to have the greatest chance of hitting a bullseye.  

 

Without practicing, that player does not know how hard to throw the dart. An expert was not born an

expert; they learned all their skills via experience. Likewise, without data, a statistical model does not

know how to solve a problem; given enough data, a model can achieve expert level accuracy. Whether

human or machine, expertise comes from having enough humility to learn from failure. 

 

Returning to the chess example, let’s again consider the humility necessary to learn. We will never know

the outcome of every (or even many) moves beforehand, but we know some things: 

 

These rules form a model, which needs only the ability to execute actions and remember how close

those actions brought it to its goal. In the beginning, this model isn’t very good, because it doesn’t know

that a queen is often more important than a pawn. But as this model plays more and more games, it

remembers what actions brought it closer to its goal, and begins to value a queen more than a pawn, a

rook more than a bishop, etc. After playing a million games, the model would have more chess playing

experience than any expert. 

 

Remember that humans determine what any machine-learning model’s goal is. Goals can range from

predicting the stock market, to generating funny recipes. Recall that people invented chess; machine-

learning algorithms only ever do what you ask them to do. In machine learning, we relinquish control

over how the model achieves its goal, giving it the ability to learn from experience. 

 

Supervised versus Unsupervised Learning 

Extend the humility learned in the chess example to an almost entirely different problem: labeling an

image as a cat or a dog. Instead of trying to list each possible way a cat is not dog, one could instead give

a computer a bunch of images labeled either dog or cat. Like in the chess game, it is only needed to give

the computer examples of what success looks like. The computer then tries to label an image as cat or

dog, and learns after it’s done whether it succeeded or not. As in in the chess game, it remembers what it

did, and whether what worked or not.  

 

Using human knowledge to define, or label, the solutions to a problem for an algorithm is called

supervised learning, since a person supervised—or had input—in the learning process. 

 

Another class of machine-learning algorithms, called unsupervised learning, does not need any human

input on what is right or wrong. This comes with a trade-off: these algorithms do not solve defined

problems. Instead, they summarize the data, often making it easier for the computer to run a supervised

algorithm. 

we have a goal: put a piece on the same square as the opposing king. 

we have a penalty: if an opposing piece lands on the same square as our king, then the game is over,

i.e., it becomes impossible to achieve the goal. 

actions, such as changes in piece position or elimination of pieces, alter the likelihood of achieving the

goal. 
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These rules form a model, which needs only the ability to execute actions and remember how close
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supervised learning, since a person supervised—or had input—in the learning process. 
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problems. Instead, they summarize the data, often making it easier for the computer to run a supervised

algorithm. 
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Consider the above picture. In the supervised setting, the points are labeled differently, as Xs and Os. An

unsupervised setting considers a scenario where we don’t know whether a point is an X or O, or maybe

we do not care. Either way, there are two groups of points in the above picture. Differentiating between

Xs and Os isn’t necessary to find this information. 

 

Think about unsupervised learning as a summary of data. For example, return to cats and dogs. A picture

of a cat can be summarized as a series of facts: four legs, one tail, flat face, pointy ears. These facts require

no prior knowledge about cats, but some of the facts, like pointy ears, can be useful for classifying cats in

general once given labels. In fact, just knowing that there were pointy ears in an image makes it far more

likely that that image contains a cat, rather than a dog.  

 

Different contexts require different summaries. Image summaries might outline objects within that

image, while a summary of text data might consist of word counts. Regardless, unsupervised learning

seeks to highlight information relevant to the problem at hand. 

 

Key Takeaway: Humans must label data in order for AI to learn how to solve a problem. 

 

Deep Learning and Artificial Neural Networks: The Power of Complexity 

A complicated model can do complex tasks, unlike binary setups that act like on and off buttons that

can only label simple categories like “yes or no”, “light or dark”, and “cat or dog.” A big panel of buttons

and mess of wires requires more maintenance and expertise to manage, but the buttons can now light

up in a fun fancy pattern. 

 

Until as recently as the last 20 years, complex algorithms like neural networks were, despite their

promise, infeasible due to computational difficulties. If running one chess game takes a computer an

hour, then it will take over one month for it to get even 1000 games’ worth of experience. 

 

Simpler options, like support vector machines (SVM) exist, but simple models underperform when asked

to execute complex tasks. An SVM algorithm tries a destination between sets of differently labeled

points, as in the picture below. The line marks the difference: one side of the line should have all black

points, the other side of the line should be only white points. Think of the line as a decision; if your eyes

cross the line, then your decision about what color the dots are changes from either black to white, or

white to black. A human can look at the below graph and immediately draw a line between the two

groups of points. How a person immediately knows this is not immediately apparent; people learn how

to do this task in the first year of life, so the task has become so optimized that the need to try different

lines (H1, then H2, then H3) seems silly and inane. Think about it this way: when first born, human infants

aren’t even sure if their arm is a part of them or not. Likewise, all algorithms, however complex, begin

with the same amount of knowledge: none. The difference is the algorithm’s learning potential, and how

fast it reaches that potential. A dog can learn over 200 words, but a human can learn upwards of 60,000

—even though the dog learns to walk before the human. 
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potential, and how fast it reaches that potential. A dog can learn over 200 words, but a human can learn

upwards 60,000--even though the dog learns to walk before the human. 

Back to the math: SVMs, when modified, can eventually learn to complete harder tasks, such as

classifying cats and dogs. However, their accuracy decreases with the complexity of the task. Even with

the aid of unsupervised learning, SVMs struggle to correctly identify dogs and cats 80% of the time. And

it is nearly impossible to even teach an SVM to play chess. 

 

On the other hand, an artificial neural network can be trained to identify a cat or dog correctly over 97%

of time, and its capabilities are diverse: they can beat grandmasters at chess and write text in the style of

Shakespeare. 

 

This power comes from neural networks’ complexity. Each of the circles in the previous artificial neural

network image contains an SVM-like model, and hundreds of these circles can be linked together into a

powerful web. Networks of this size have the potential to safely drive cars, but that same complexity

makes them hard to understand, and expensive to train (note: training is teaching/improving a model by

giving it data; the “expense” is how long that process takes). Often PhD-level expertise and extensive

infrastructure, such as access to a bevy of servers (“the cloud”), are required to design and train them.  
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Fortunately, neural networks require extensive time, computational resources, and mathematical

expertise only while training; once finished, they can make decisions in as little as less than a second. This

is as fast, or faster, than a human can process a problem and make a decision. For example, a neural

network can drive a car and avoid objects as fast, or faster, than a human driver.  

 

Use of larger neural networks is called deep learning (which refers to the “depth” in the number of layers

of circles), and the phrase signifies both computational difficulty, and exceptional performance. 

 

Key takeaway: Once fully trained, neural networks’ speed, power, and performance—in certain tasks—rivals

human intellect, but making them from scratch demands expertise, infrastructure, and time. 

 

Note: There are many different types of neural networks, such as convolutional neural networks (CNN,

often used in computer vision) and recurrent neural networks (RNN, often used in natural language

processing). Regardless of their many differences and abbreviations, all neural networks share the same

attributes outlined above. 

 

Computer Vision 

On a computer, an image/picture/video is just another form of data. If the data is labeled, i.e., you can

grade performance towards completing a goal, then that data can be fed into a neural network or other

algorithm. That algorithm, after processing enough data—seeing enough images—can identify objects

from an image or video it hasn’t seen yet.  

 

What separates computer vision from lidar and radar is the ability to classify, or recognize, objects. Radar

and lidar tell a computer where other objects are in relation to itself, but only computer vision can

accurately identify a car from a pedestrian, or spot the flat lines that delineate roadway lanes.  

 

Most algorithms for computer vision have two parts: feature selection (unsupervised learning), and

prediction (training the algorithm with the data). Neural networks, with the aid of cloud computing, do

both of these parts better than other any other algorithm.  

 

Process: one neural network makes a summary of the image or video—it finds all the relevant information.

The second, with the aid of human classified data, learns to classify the images. 

 

For a concrete example, consider a video of an intersection, and a goal: count people and count cars. The

first neural network summarizes the video. For each image that makes up the video, it finds the outline

of every object: the people, cars, stoplights, trees, etc. Armed with the outlines of each object, the second

neural network tries to find people and cars in images that have already been classified by humans. This

way, it can grade its success, and adjust its strategy based on how well its doing. 

 

Not all computer vision applications use this two-step process. It is a matter of debate and research as to

whether or not it is more powerful or more efficient to have a larger (deeper) neural network take in the

raw video data and spit out counts of people and cars. 

 

Regardless of which flavor of deep learning a data scientist chooses, the near consensus type of neural

network used in computer vision is the convolutional neural network (CNN). 

 

CNNs look at little square sections of an image at a time. Think about how humans see an image. When

looking a picture of a number, the entire image is not taken in all at once. Rather, the squares with

corners receive the most attention, followed by the sections with lines, etc. The background receives

almost no attention at all. While this mode of vision is automatic to humans, remember that our

computer is starting from scratch. Recall that our chess algorithm did not know whether a pawn or a

queen was more important when it first tried to play chess. Check out the image below. Here, a CNN

examines a random assortment of squares, and, through trial and error, learns where to expect a seven to

appear, and where to expect background. 
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Key Takeaway: Using an algorithm (often a convolutional neural network) to identify objects in an image

or video constitutes computer vision. 

 

Natural Language Processing (NLP) 

Just like images, text and audio recordings are just data to a computer. As with computer vision, if the

data is labeled, then that data can be fed into a neural network or other algorithm.  

 

For example, a neural network might be trained to identify tweets that call for help. If fed enough tweets

—or bits of regular text—labeled by a human as calls for help, then our algorithm could filter through

millions of tweets or other social media objects during a natural disaster to identify people in need. 

 

Unsupervised learning often plays a key role in modern NLP. Text is often summarized, or converted, into

counts (number of individual road occurrences), or more complex representations, such as vectors.

Turning a word into a vector involves calculating the probability of its occurrence based on the

surrounding words. Either way, unsupervised learning lets a computer know how similar words are best

on how close their vector summaries are. 

 

Examine the images below for a quick depicting of how the vector representation works. 
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Give these vector versions of word to a neural network, and you can expect it to write coherent

sentences, or more easily understand written text. 

 

Key Takeaway: NLP relies more heavily on unsupervised learning than computer vision or traditional

analysis, but neural networks still feature in most NLP applications. 

 

Conclusion 

Computers have been getting steadily smaller, and thus steadily faster, since they were invented. Small

computers, placed out in the field, can provide a constant supply of relevant data (IoT).This data teaches

machines to react to the present, and predict the future, with human-like intelligence (AI)—so long as

they are given access to a large amount of relevant data (big data), and they are powered with a suite of

computers (cloud computing). Whenever the terms AI, big data, cloud computing, edge computing, or

IoT appear, use this pipeline to sort out where their product falls in the digital landscape. 
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APPLICATIONS

The following chapter summarizes existing AI technologies, with an

emphasis on breadth and novelty of method. In order to tie

technologies to their use cases, the following chapter contains five

sections: Systems and Service Planning, Real-Time System Performance,

Public Safety and Enforcement, Construction and Asset Management,

and Public Administration and Information Management.

OVERVIEW

26

System and Service Planning 

Big idea: Travel demand models and transit service planning rely on data about

travelers and their travel patterns. Passive methods of collecting such data from

cell phone records, Bluetooth and Wi-Fi traces, and vehicle probes. Machine-

learning methods can process new and old forms of raw data into origin-

destinations, route choices, mode choices, and even trip purposes. Not only will

this source of big data supplement traditional household travel surveys, but the

machine-learning analysis process will also expand the capability and precision of

modeling predictions. 

 

A variety of new data streams are being created as transportation infrastructure

becomes increasingly digitized and smartphone adoption in the United States

has grown from 35% in 2011 to 77% in 2018. These data streams include vehicle

probe data, mobile phone call data records, and geo-coded social media records.

Because these data streams are collected passively, they offer the opportunity to

understand travel behavior at a much more granular level than traditional travel

diary surveys and population censuses can achieve. These data streams could

allow planners to observe, rather than infer, drivers’ route choices, create more

robust estimates of roadway link performance, and produce spatially and

temporally disaggregate origin-destination matrices. 

 

The sources of these big travel data vary. Some are owned by the private sector

and are strategically monetized. Some researchers have been able to build

partnerships with those private-sector companies, such as telecommunications

providers, and have preliminarily demonstrated the viability of these datasets for

application to transportation demand modeling and real-time operations.

Statewide and regional planning models based on this data are beginning to be

proven; for instance, the Illinois Department of Transportation has contracted

with Sidewalk Labs, a subsidiary of Google, to develop a statewide travel demand

model using GPS cellular data. 

 

Historical geo-coded social media records are owned by the respective social

media companies and historical record can be purchased from these companies,

but some is publicly available or can be obtained for free by web scraping. For

instance, open source tools such as AIDR utilize Twitter data but are free to

access. Finally, smart card data may either be owned by the transportation

authority that administers them or the private company that provides the fare   
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payment infrastructure. This data source has useful applications for transit service planning but has not

been substantially integrated with regional or statewide transportation demand models. 

 

Chart: https://www.streetlightdata.com/location-based-services-data-

transportation-rural-studies 
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Academics have been the first to demonstrate the powerful insights that can be derived from these

emerging passive data sources. For instance, in 2014, MIT researchers demonstrated that data mining call

detail records obtained from telecommunications providers can generate origin-destination trips of

different purposes (include home-based work, non-home-based, and so on) and time of day. They

sourced their data in Boston from AirSage. Each record in their datasets is a call detail record: it consists

of an anonymous user ID, the latitude and the longitude, and the time at the instance of the phone

activity, including calls and text messages. The coordinates of the records are estimated by the service

provider (AirSage) based on a standard triangulation algorithm, accurate to an average of 200 to 300

meters. They validated their results against traditional travel diaries collected in Boston, and with similar

results generated in Rio de Janeiro. 

 

A variety of companies have brought products to market that utilize rich cellular or location-based data

sources—or a synthesis of both—for transportation planning insight. 

 

Teralytics is one of a few technology companies that have built on the framework for inferring travel

flows from CDRs to bring a planning product to market. Their capabilities are featured in more depth in

in the Case Study section of this report. 

 

Another powerful data source that has been enabled by the digital revolution is location-based services

(LBS) data. LBS data, like CDRs, can be interpreted to understand an individual’s geolocation through

time. LBS may offer better coverage of the population than data from telecommunications companies

do because it is created by all smartphone applications that use LBS, which are typically available on all

smartphones across all telecommunications providers. Furthermore, it uses a combination of in-phone

GPS and Wi-Fi and Bluetooth sensors so that it is robust to gaps in cellular or Wi-Fi coverage, and thus

may offer more geographic coverage than CDR data alone. 

 

Sidewalk Labs utilized LBS data in tandem with a mix of other public and proprietary sources to produce

an agent-based, activity-based travel demand model called Replica. Their current and future product

offerings and methodology are examined in a case study later within this report. 
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Bluetooth and Wi-Fi sensing has proven to be a new source for big data in transit applications. Both have

been applied to estimate transit riders’ origins and destinations, estimate ridership, and evaluate service

quality metrics like station wait times with often more accuracy than fare payment system data can

provide. Researchers at the University of Washington “developed sensors which cost $60 per

instrumented bus that can detect a unique identifier called a Media Access Control (MAC) address

associated with a particular mobile device as it boards and leaves the bus to offer complete and real-

time travel data. The system only collects MAC addresses and the time and location they are detected

from Bluetooth or Wi-Fi signals, and each address is anonymized for privacy protection” [2]. They

demonstrated that although the data collected by these sensors is very noisy due to the proximity of

pedestrians and cyclists (who should not be counted in ridership estimates), it was possible to accurately

sense and identify transit riders. Following academic proofs of concept, some cities have begun testing

this technology and method of data collection at a larger scale in their transit networks. For instance,

Transport for London conducted a 29-day pilot at the end of 2016 to “collect these device MAC address

connections to better understand customer movements through and between stations, by seeing how

long it took for a device to travel between stations, the routes the device takes and waiting times at busy

periods” [3]. 

 

Machine-learning algorithms have been the primary tool for transforming these massive collections of

disparate geolocated records into trip origins, destinations, and route choices. These models are also

used to infer where an anonymized person may live or work, and thus the different trip purposes behind

individual trips. Machine-learning approaches are best suited for these tasks because of the noisy, sparse,

and intermittent nature of these passive datasets. 

 

Real-Time System Performance 

Big idea: The ability to near-instantaneously process mobility and transportation system data will enable

a host of real-time alerts and real-time predictive responses to congestion and incidents. These upgrades

are coming at the intersection and corridor-level thanks to computer vision, machine learning, and cloud

computing. Benefits will be had system-wide as well: machine learning can diagnose causes of

bottlenecks or high crash rates using a blend of real-time and historical data. 

 

Creative approaches to collecting and integrating real-time data will enable the application of machine

learning-based predictive analytics in infrastructure operations. Continuously improving machine-

learning models will enable public agencies to predict negative externalities such as congestion, traffic

incidents, or poor air quality with higher confidence or earlier. The insight could allow public agencies to

organize in advance to mitigate the root cause of these externalities, reducing the impact they would

have had on the public. 

 

The early pilots in innovative real-time data collection and application have been based in advances in

physical sensing and analytics. Networks of internet-connected sensors, often referred to as the Internet

of Things (IoT), and computer vision in lieu of physical sensors are the two most common approaches to

increasing the breadth and granularity of real-time data. The sheer quantity of raw data that these two

systems collect demand cloud-based computing and machine-learning approaches to process them into

useful information. Some companies have used novel combinations of many of these data streams in one

platform and data mining to observe new patterns and associations in congestion, incidents, and

pollution. 

 

The IoT and AI do not depend on each other but are highly complementary. IoT devices generate the rich

data that machine-learning algorithms are well-suited to turn into useful knowledge, such as monitoring

indicators in the physical environment, detecting and removing anomalous data points, and predicting

future outcomes. 

 

In Chicago, Illinois, the Array of Things is an urban sensing or IoT project. It is composed of a network of

interactive, modular sensor boxes that will be installed around Chicago to collect real-time data on the

city’s environment, infrastructure, and activity for research and public use. The project is the result of a

joint initiative between Argonne National Laboratory and the University of Chicago, with funding from

the National Science Foundation. The deployed sensor nodes can measure temperature, barometric

pressure, light, vibration, carbon monoxide, nitrogen dioxide, sulfur dioxide, ozone, ambient sound  



A WHITE PAPER ON ARTIFICIAL INTELLIGENCE &

BIG DATA IN TRANSPORTATION

2230

intensity, and surface temperature. The team is also working to monitor other urban factors of interest,

such as flooding and standing water, precipitation, wind, and pedestrian and vehicle counts, at intervals

of several minutes, creating a measure of pedestrian and vehicle flows over time. The project’s physical

vibration sensors and magnetic field sensors will be used to detect heavy vehicle flow, and cameras will

be used to detect traffic flow, including pedestrians and cyclists. In May 2018, the project team installed

their 100th sensor, and continue to expand their network and the types of data their sensors will collect.

The project team is currently still building out to a full network of 500 sensor-equipped sites and

exploring how historical data collected can be analyzed. The long-term vision for the project is geared

towards real-time alerts: they are looking to see how their system can provide notice of dangerous

weather conditions, safe walking routes, urban flooding detection, and air quality alerts to citizens, which

would likely require the use of cloud or edge computing and machine learning to rapidly process signal

data [4]. 

 

Cameras are often a component in a larger IoT network. However, because computer vision is a relatively

mature sub-field of AI, it has emerged as one of the most viable approaches to monitoring traffic without

in-ground or other physical sensors. A number of traffic management solutions have come to market

that rely solely on cameras to sense the traffic environment. Processing the massive quantity of video

data that is produced by one or more cameras has become computationally possible only recently, often

using cloud computing. Computer vision applications can be performed using traditional video data or

infrared video data, and their technical underpinnings are described in the Technical Primer section of

this report.   

 

Miovision and Flir are two companies taking an innovative approach to traffic management using

computer vision. 

 

Miovision’s traffic management solution, TrafficLink, uses a 360-degree camera to monitor traffic flow at

an intersection. They have implemented algorithms that can detect and classify vehicles, pedestrians,

and cyclists, enabling a variety of dynamic traffic signal control opportunities and new intersection

performance measures. Miovision’s technology is also featured in more detail in a case study in this

report. 

 

Flir was initially focused on offering high-performance, low-cost infrared (thermal) imaging systems for

airborne applications. As such, they are best known for their infrared or thermal imaging cameras.

However, they apply their camera technology to a host of markets and sectors, ranging from defense,

industrial, and public safety and transportation, to security. In the transportation sector, they offer traffic

management solutions based on video analytics. They use a combination of traditional and infrared

cameras to monitor an intersection. The infrared cameras are particularly useful for identifying

pedestrians and cyclists because patterns generated by humans’ body heat can be isolated and

identified. The applications they tout are therefore most focused towards V2X pedestrian and cyclist

safety applications, ranging from dynamic pedestrian countdown, pedestrian count data collection, and

automatic pedestrian green phases [5]. 

 

Computer vision can also serve as an unobtrusive solution for monitoring parking space availability,

including truck parking at public rest areas and commercial truck stops. Computer science researchers

at the University of Minnesota (UMN) recently demonstrated that this technology can detect real-time

truck parking availability at above 95% accuracy. Their system uses multiple cameras to construct a

three-dimensional (3D) representation of the parking lot, which is more reliable at filtering out false

signals than a single camera. They deployed their system at three public rest stops along I-94 in

Minnesota, a major freight corridor. The UMN team also disseminated real-time parking availability in real

time through three mediums: a commercial operator accessible web parking information portal, an in-

cab geolocation application that integrated within an existing onboard logistics device to support driver

and carrier trip operations, and roadside electronic message signs. This camera-based system is

continuing to be tested and deployed by the same research team in order to develop solutions to

provide 24/7 parking information without disturbing the existing pavement structures or substructures

[6]. 
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IoT implementations and new approaches to intersection monitoring provide the opportunity to utilize

new performance indicators at the intersection or corridor level. However, real-time data will also

improve system-wide traffic management. Traffic management center (TMC) operations will be

enhanced by the new integration of existing and emerging real-time data sources. Several platforms

entering the market offer improved traffic congestion and incident prediction by machine learning using

data sources such as navigation applications, traffic signal controllers, and weather monitoring.   

 

Waycare is an Israel-based startup that uses proprietary deep-learning algorithms and diverse data

sources to understand the causes of traffic congestion and incidents. They partner with more established

data sources for traffic incidents such as Waze. Waycare also taps into non-traditional sources like

TicketMaster to forecast the number of trips generated by sports events and concerts and estimate the

resulting traffic impacts. Some of the use cases that Waycare anticipates include the dynamic re-timing

of traffic signals in response to anticipated congestion, opening and closing roads, updating dynamic

message signs, and coordination with public safety agencies for faster incident response. Waycare’s

products will eventually offer integrated and cross-cutting solutions in historical data collection and

analysis, real-time traffic management, and public safety and enforcement [7]. 

 

INRIX is well-established in the transportation analytics market. Their variety of traffic data and analysis

offerings are driven by their use of over 100 separate data sources, including anonymous, real-time GPS

data from millions of connected vehicles and devices. Their data is ubiquitous, even collaborating with

Waze to inform Waze’s traffic estimations. Like Waycare, INRIX is analyzing real-time traffic data to

discover new ways to anticipate congestion and incidents. For instance, a feature that INRIX recently

launched within their traffic management platform detects unanticipated or unusual traffic slowdowns

based on real-time vehicle data. Their algorithm can infer where traffic incidents have occurred by

detecting an extreme change in travel speed between two adjacent segments of roadway. INRIX then

uses this insight to provide location-based alerts to active drivers in the area and the TMC. Both the Iowa

Department of Transportation and the Ohio Department of Transportation are early customers of this

new feature. The use cases for these real-time traffic data platforms in incident management and public

safety are also detailed in the Public Safety and Enforcement application area. 

 

Public Safety and Enforcement 

Big idea: Advances in AI and real-time data applications promise to reduce response times for almost all

first responders by alerting authorities of any issues on the ground as they happen. Many of the benefits

will be the result of increasingly integrated traffic data collection and cross-sector coordination. 

 

Real-time data offers many applications for public safety and enforcement. All the cameras and sensors

that IoT applications provide can be used to monitor public spaces, identify potential conflicts, and react

to incidents faster and more efficiently than before. Computer vision can visually recognize dangers,

while audio sensors use natural language processing (NLP) to identify threats—or calls for help—through

sound. 

 

Traffic light camera data, from a company like Miovision, can identify potential zones of conflict—areas

where cars are more likely to hit cyclists or pedestrians, due to either poor intersection construction or

non-compliance like jaywalking. Miovision’s intersection monitoring system can also immediately identify

a crash at an intersection and send an alert to the relevant public agencies. It can even analyze the traffic

patterns that occur around previous crashes and use that data to predict times and areas where future

incidents are likely. With that knowledge, the TMC can coordinate with police departments or emergency

responders to strategically position enforcement and responders in these areas, to anticipate or mitigate

incidents. 

 

Likewise, system-wide real-time data integrators like Waycare can decrease response time to accidents

on highways and other roadways. Also like Miovision, Waycare can predict times and areas where

potential accidents can occur, and station the appropriate personnel near those areas [8]. As a result, the

Nevada Highway Patrol is a prominent partner in a pilot project with Waycare in Las Vegas, along with

the Regional Transportation Commission of Southern Nevada and the Nevada Center for Advanced

Mobility. 
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Each of the above applications could form a part of a “smart” city—meaning that they provide real-time

data about a city via IoT technology. These technologies will eventually be able to work in concert with

one another. Waycare’s sensors can inform Miovision’s traffic lights about incoming traffic from a

highway, allowing the traffic lights to adjust accordingly. The system could work the other way around as

well, with the traffic lights letting highway patrol or an app like Waze know where to expect the most

traffic congestion around a city. 

 

Many other players are entering the smart-city niche, and many of these companies are combining many

features and applications into a single technology. City IQ is a consortium including AT&T, Intel, and

Current by GE. They have deployed 200 smart streetlights on the three roads with highest crash rates in

Portland, Oregon, under the Traffic Sensor Safety Project. The system combines cameras, microphones,

and environmental sensors, which can identify pedestrians, cars, and cyclists; help pinpoint the location

of gunshots; and sniff for pollutants (the implementation is primarily in support of Portland’s Vision Zero

plan to reduce traffic fatalities). This same consortium has also begun deploying over 3,000 sensors, plus

14,000 LED lights, in San Diego, California; some of the initial applications in this deployment will include

real-time parking information and the ShotSpotter technology, which detects and locates gunshots [9]. 

 

Gunshot detection works in the same way a smart phone recognizes a voice; the underlying algorithm is

trained on bits of audio labeled as gunshot or non-gunshot. The problem itself is simpler than speech

recognition, even if real-world data on gunshot audio tends to be nosier (the street light is often farther

away from a gunshot source than a phone is from a speech source). ShotSpotter, a fully operational

gunshot detector, uses machine learning to not only detect gunshots, but also triangulate their location.

As with the other technologies mentioned, the advantage gained is reduced response time for police,

EMTs, and other relevant parties. 

 

Other AI applications reduce response time as well. Some proof-of-concept work has involved combing

through social media posts to identify calls for help during disasters. The Artificial Intelligence for

Disaster Response (AIDR) platform has created several NLP implementations that can, among other

things, filter out tweets that ask for assistance during a disaster, and then show the relevant tweets to the

relevant response teams [10]. 

 

Construction and Asset Management 

Big idea: AI can inform decision-making on a construction project site or by maintenance planners. The

outcome will be improved efficiency and safety for construction workers and maintenance crews.

Platforms that integrate various forms of data enable much of this new insight. 

 

The oversight of all stages of a transportation project lifecycle is becoming data-driven to improve safety

and find efficiencies, not just system planning and operations. Work zones and maintenance operations

and planning are becoming increasingly digitized; with this comes new types of data collection and

analytics. 

 

Construction management software platforms consolidate a variety of project metadata, such as

drawings, markups, issues, checklists, RFIs, submittals, clashes, and project and business profile project

metadata. Even the use of drones or the ubiquity of smartphone digital cameras at work zones is adding

to the explosion of data collected at a job site. Machine learning and AI can be used on this wealth of

data to manage construction site risk, improve safety, and eventually optimize the scheduling of project

tasks. 

 

Autodesk’s project delivery and construction management software BIM360 provides solutions along

multiple phases and aspects of the project delivery process, from design, contracting, and construction,

to project management. Some of the functionalities of this software include using the cloud-based

platform to share design and other files to streamline stakeholder coordination, building checklists and

tracking issues, and tracking deliverables. Autodesk is extending the functionality of this platform with

AI-based deep-learning techniques with the Project IQ suite of applications. Project IQ will be built into

BIM 360 and will use project data to analyze past and current projects for safety and efficiency and

provide targeted warning about delays and threats to workers’ safety. Using the data already stored in  
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the BIM 360 platform, Project IQ will automatically scan all safety issues reported on a job site and

attach a tag to them indicating whether they could lead to potential fatalities. The algorithm will

identify linkages between hazards, dangerous behaviors, and job site injuries or fatalities to inform job

site managers as to where they should target safety training efforts. Project IQ is still in the pilot phase

and is being tested among current users of the BIM360 platform who have already collected multiple

projects’ worth of data. 

 

Smartvid.io, a technology startup, is also applying AI to work zone safety. They extend the integration of

work zone data through project management platforms such as Autodesk’s BIM 360 by identifying

unsafe construction behaviors. They apply computer vision to digital photographs taken on job sites in

order to classify different worker behaviors captured in an image, and tag unsafe behaviors. As files from

digital cameras, GoPros, and cell phone cameras are uploaded to the Smartvid.io media management

platform, they are automatically tagged by their visual and audio content based on what the AI engine

sees and hears in the content. Their technology is capable of identifying hazardous conditions based on

similarities with previously identified hazards, such as misplaced hole coverings, improperly used

ladders, and incorrectly installed barriers. It can also identify individual people in photos and videos, and

analyze the presence or absence of safety protocol, including whether they are wearing appropriate

PPE. Their engine processed 1,080 images in less than 10 minutes (while a human team required over

4.5 hours) and with greater accuracy than the human team. The engine also flagged 32 images

containing personnel missing hard hats, and 106 images with workers missing safety-colored clothing.

Smartvid.io’s technology will make it possible for human supervisors to review flagged safety hazards

and then target work zone safety education to those project- and staff-specific issues. 

 

Figure: Smartvid.io (https://medium.com/autodesk-university/the-rise-of-ai-and-

machine-learning-in-construction-219f95342f5c)

Maintenance and operations functions are also evolving with the introduction of technologies that use AI,

automation, and analytics. Currently in development are automated machines that assess pavement

conditions faster and with greater accuracy and coverage than human teams of surveyors can. Analysts

envision using this newly comprehensive and more frequent data to enable predictive maintenance,

optimizing preventive maintenance efforts on highways and transit systems. 

 

Automated systems for pavement condition detection have been the subject of academic research since

the 1990s. The most mature technology in this space uses scanning lasers to construct and analyze a 3D   
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profile of a roadway. Pavemetrics’ Laser Crack Measurement System (LCMS) has been implemented by

many agencies worldwide. Outfitted on a moving van, LCMS records 5,600 4-meter-wide transverse

profiles per second and combines them together to create a very high resolution 3D profile of the road.

Then, the system uses algorithms to process the road profile and identify potential road defects. Typical

outputs of the LCMS include crack detection, rut detection, macro-texture evaluation, ravelling

evaluation, pothole detection, and more. The Texas Department of Transportation conducted a study

with the Texas A&M Transportation Institute in 2016 to evaluate two automated visual distress data

collection vendors compared to human-generated or manual Pavement Management Information

System ratings in the Austin, Bryan, and Waco districts. The research team found mixed success using the

automated data collection methods. The automated results were reasonably comparable to manual ones

for asphalt distress surveys but were inconsistent across different distress types in jointed concrete

pavement. Additionally, one vendor had more accurate rut depth measurements than the other based

on the reference measurements obtained by the research team. 

 

As these laser-based technologies continue to mature, their usefulness will increase and their

implementation costs will inevitably lower. However, other solutions are entering the market that

propose pavement condition monitoring methods at lower resolution but also substantially lower up-

front cost. One such vendor is RoadBotics, which outfits fleet vehicles with smartphone cameras and

processes video frames to identify various road defects; because their implementation costs far less than

traditional laser monitoring systems, an agency can automatically gather pavement condition data with

higher frequency and on more of their road network. RoadBotics is also the subject of a case study in this

report. 

 

The pavement data that will one day be collected by automated systems is integrated into state

pavement management systems. Pavement management is becoming increasingly data-driven,

generating outcomes such as assessing performance trends, calibrating design models, evaluating the

cost-effectiveness of different treatment strategies, and recommending candidate projects for a

preservation program. However, pavement preservation programs still face barriers to integrating

preventive maintenance activities into their systems, primarily due to lack of useful data at a network

level. As highway programs in the United States continue working towards properly implementing

preventive maintenance, leading transit agencies or service providers have begun advancing from

preventive to predictive maintenance models. 

 

Predictive maintenance is made possible by predictive models that can forecast damage and

deterioration in detail over long time frames. By being able to accurately predict infrastructure

conditions over time, maintenance teams can intelligently coordinate maintenance activities to

minimize the total cost of operations. This is accomplished by optimizing the scheduling of such

activities so that no maintenance activities are repeated more often than necessary and so that

preventive maintenance or replacement occurs far before catastrophic failure, both of which save

agencies time and money. Machine-learning algorithms in forecasting and optimization can take the

increasing quantity of collected data (such as from automated pavement condition monitoring systems)

into consideration in intelligent maintenance planning. Academic researchers have begun developing

neural network and kernel methods to provide more accurate forecasting results for infrastructure

condition models, so predictive maintenance enabled by AI has become conceptually feasible for

highway pavement programs.   

 

On the other hand, predictive maintenance is not a new idea in other spheres. IBM’s asset management

and maintenance business line, called Maximo, has many established working partnerships with private

and public customers. Furthermore, the private sector in particular has been familiar with the idea of

“smart” asset management since before the turn of the century. Although it was first applied in industrial

settings, public agencies like transit operators and water and energy utilities have also begun exploring

predictive maintenance schemes. Looking ahead, there are ways in which AI and deep learning are

poised to improve the efficacy of predictive maintenance, and they are discussed in an IBM Maximo case

study. The case study will also highlight some of that team’s work with Yarra Trams, a tram system

operator in Melbourne, Australia.  
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Big idea: Machine learning and AI could automate various administrative or time-consuming tasks. Early

examples lean on NLP to support human resources processes, and it is expected that increasingly

complex tasks will become subject to attempts at automation. 

 

Given a cloud computing data management architecture, AI has the power to streamline and even

automate certain administrative tasks. Many cloud computing solutions also offer repositories for the

unstructured data streaming in from IoT devices. These database solutions often have built-in machine-

learning implementations that can automatically organize data, draft documents, and suggest different

types of analysis. 

 

As IoT devices become more widely implemented, and other data sources and collection methods are

digitized, many organizational tasks can be put under the purview of machine learning. Data collection

and organization of road survey data can be left almost completely to machines: as the data from the IoT

devices enters the cloud system, machine-learning algorithms will organize and classify the data. The

algorithms can even suggest useful analyses, or helpful ways to reorganize the data. 

 

These helpful suggestions extend to the realm of human capital management (HCM). Oracle’s upcoming

adaptive intelligence HCM product can suggest the best candidates for a position by automatically

reading digitized resumes using NLP techniques, thus reducing the number of employees needed to

process new hires. UtiliPro, a different HCM tool, can even read and summarize open ended questions

from consumer or employee surveys. Other services use NLP to draft documents. Companies like Thought

River and Luminance can write legal documents, or other pieces of writing with rigid structures. 

 

It should be noted that cloud computing technologies all offer the same or similar services. Informatica,

Oracle, Amazon Web Services, Microsoft Azure, etc., are all working on dynamic databases that self-

organize, and offer suggestions about how to manage the data. Most of the machine-learning

augmented services are currently in their beta phase, but most companies predict offering these services

within 1 to 2 years. 

 

________________________________________ 

[1] From phone conversation 

[2] http://www.washington.edu/news/2016/01/20/bluetooth-and-wi-fi-sensing-from-mobile-devices-may-

help-improve-bus-service/ 

[3] https://tfl.gov.uk/corporate/privacy-and-cookies/wifi-data-collection-pilot 

[4] https://arrayofthings.github.io/ 

[5] https://www.flir.com/products/trafione/ 

[6] https://conservancy.umn.edu/handle/11299/185538 

[7] https://www.haaretz.com/israel-news/business/waycare-an-israeli-startup-takes-charge-of-las-vegas-

roads-1.5790998 

[8] http://www.govtech.com/Las-Vegas-to-Pilot-WayCares-Accident-Prediction-Artificial-Intelligence-

Software.html 

[9] http://fortune.com/2018/06/18/portland-sensors-smart-cities-traffic-death-att-intel-ge/ 

[10] http://aidr.qcri.org/ 
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To complement the breath of the Menu of Applications chapter, this

paper provides in depth case studies into a select group of companies.

Few of the selected companies solve the same problems, and all use

different methods and technologies from each other. Use to find

concrete examples of transportation specific AI implementations. 
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IBM Maximo
Case Study

COMPANY OVERVIEW
The Maximo arm of IBM has traditionally been focused on

maintenance and asset management. Maximo’s original scope of

work entailed ensuring that infrastructure systems remain

operational in the short term by identifying parts and equipment

that are most likely the fail in the next few days and then

scheduling preventative maintenance or replacement. However,

in their work with various public agencies and private companies,

and with the proliferation of real-time data sources, the Maximo

team has observed that their products have become useful for

operations, maintenance, and longer-term capital planning and

personnel alike.

37

CURRENT CAPBILITIES

Currently, IBM Maximo maps sensor outputs to the piece of equipment that sensor is installed

on, such as a track rail or a train wheel. They consolidate these mapped sensor data in a

platform, which allows a platform user to manage and observe the asset health of every

outfitted part.  

 

With the help of subject matter experts (such as a maintenance manager who can identify on

sight a part that is about to fail) and data scientists, the Maximo team guides the development

of a predictive maintenance framework customized to their customers’ needs. They work with

customers to first understand what their critical assets are, how they evaluate their health, and

how they maintain them. Then, they work together to devise a way to measure an asset’s health

quantitatively, and determine how to use sensors and analytics to score those assets. This last

step requires that they derive the patterns in sensor outputs that are associated with parts and

equipment requiring attention. For instance, a certain part may display a unique vibration

pattern or an extreme temperature when it is approaching the end of its lifecycle, relative to

how it behaves when it is in good working condition. Then, the next time such a pattern is

detected, Maximo can raise an alert to maintenance personnel.  
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FUTURE CAPBILITIES

For Maximo’s future, the focus is on improving the predictive powers of the system, and even

working the implementations into a real-time data analytics role. For example, IBM will be able

to project the lifetime of different pieces of equipment—and adjust that lifetime as unforeseen

bouts of wear and tear occur. IBM can then coordinate that lifetime with all the other lifetimes

of the objects in the system, and generate a projected maintenance schedule over time. That

schedule will be optimized such that the fewest equipment failures occur using the fewest

parts with the least amount of labor over time. This will evoke a shift from shorter-term insight

and maintenance action on the order of days to a monthly or yearly asset management

perspective.  

 

Another capability IBM Maximo is aiming towards is being able to not only identify the

presence of a general maintenance need, but diagnose it. From there they can make longer-

term recommendations on the next best step to take. For instance, they could determine

whether it would be more efficient to either repair or replace a part. 

 

HOW IT WORKS

Detection and tracking are made possible by computer vision algorithms. These algorithms are

fed with over a decade’s worth of human-labeled intersection data, and with human-labeled

data from Miovision’s current smart intersections. Miovision processes this data, and trains their

algorithms, on the Amazon Web Services cloud computing platform.  

 

While detection is done with a traditional computer vision pipeline outlined in the technical

primer, tracking involves more human intervention upon hardware installation. Once Miovision’s

camera/computer outfit is placed at an intersection, a human operator views video feed of that

intersection on a normal day, and highlights areas of interest. These areas of interest contain the

common paths of cars, cyclists, and pedestrians. The below image illustrates what these areas of

interest look like for cars. 

 

Because these predictive maintenance implementations usually encompass an entire

infrastructure system, once each unique pattern has been associated with a part and encoded

into the platform, it can prioritize the order in which maintenance crews should schedule in-

person inspections and decide whether to repair or replace a part.  

 

USE CASE

Yarra Trams, the tram service operator in Melbourne, Australia, is a prominent example of the

IBM Maximo asset management solution at work. Yarra Trams outfitted its tram network with

91,000 data sensor points on separate pieces of tram equipment.  
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These sensors range from automated wheel-measuring machines to track sensors that detect

signs of track wear or breakage. The IoT approach to inform asset management has enabled

Yarra Trams to implement predictive maintenance scheduling [11]. 

 

 [11]  https://www.igi-global.com/chapter/application-of-artificial-neural-networks-in-predicting-the-degradation-of-tram-tracks-using-maintenance-data/167562 

 

 

IBM echoed other case study subjects’ emphasis on the importance of starting any machine

learning or predictive analytics application with high quality data. They highlighted the

critical role that the data scientist will play in deriving as much insight as possible from large

datasets. They also observed that public agencies can tend to be siloed across different

departments, which can pose a challenge to addressing cross-functional needs efficiently

with a single product or data source. Recognizing such existing organizational barriers is the

first step to overcoming them and identifying shared opportunities. 



Miovision
Case Study

COMPANY OVERVIEW
Miovision is a traffic solution company founded in 2005 and

headquartered in Canada. The company collects data on multiple

modes (using their proprietary traffic signal hardware), analyzes

that data in near-real time and real time, and integrates

information into a collection of smart intersections. Deep-dive

interviews with the Miovision team on computer vision-based

hardware for real-time traffic operations, intersection safety

analysis, and data collection as well as their data platforms were

conducted.
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CURRENT CAPBILITIES

The Miovision TrafficLink solution suite combines a camera, and a compact, edge computer to

process video data, and traffic signal cabinet hardware with a real-time portal for traffic

management and data collection. Presently, the TrafficLink system can detect vehicles,

pedestrians, and cyclists in an outfitted intersection. This enables the system to implement real-

time signal extensions that can ensure that cyclists and pedestrians have adequate time to exit

the intersection. Miovision’s approach to the detection of pedestrians is novel because it doesn’t

require that agencies carry a beacon across the intersection in order to be detected in the way

that previous V2X approaches to pedestrian intersection safety applications have proposed.

TrafficLink can also detect vehicles in almost all weather conditions, further enabling real-time

signal actuation; for instance, once stopped or approaching vehicles are detected, the system

can make a call to the signal’s server to request to hold or shorten a certain phase. Furthermore,

being able to detect all agents that enter and exit the intersection provides them the ability to

generate traffic counts on roads in all directions of the intersection.   
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FUTURE CAPBILITIES

The next technical challenge that Miovision faces concerns the tracking of vehicles, cyclists, and

pedestrians through an intersection. Differentiating between pedestrians, cyclists, and vehicles

is particularly exciting, because computer vision software has, up until now, been unable to

make these distinctions. This will enable Miovision to provide turning movement counts

through an intersection, which has been particularly challenging for traffic engineers to collect

beyond traditional manual counting efforts. Miovision promises to count how many vehicles

turned right, left, went straight, etc. The ability to track vehicles and people through an

intersection opens up a host of novel, data-driven intersection safety analyses. For instance,

Miovision will be able to identify and classify “near-miss crashes” in the zones of an intersection.

This has not been measured empirically before. With this information Miovision can bolster

currently sparse crash data with more potential conflicts, and inform the selection and

implementation of safety countermeasures. These new insights could potentially reduce the

risk for cyclists and pedestrians.  

 

Furthermore, because the company is developing the capability for multimodal detection and

tracking, these analyses can be tailored to the most vulnerable road users such as cyclists and

pedestrians.  

HOW IT WORKS

Detection and tracking are made possible by computer vision algorithms. These algorithms are

fed with over a decade’s worth of human-labeled intersection data, and with human-labeled

data from Miovision’s current smart intersections. Miovision processes this data, and trains their

algorithms, on the Amazon Web Services cloud computing platform.  

 

While detection is done with a traditional computer vision pipeline outlined in the technical

primer, tracking involves more human intervention upon hardware installation. Once Miovision’s

camera/computer outfit is placed at an intersection, a human operator views video feed of that

intersection on a normal day, and highlights areas of interest. These areas of interest contain the

common paths of cars, cyclists, and pedestrians. The below image illustrates what these areas of

interest look like for cars. 
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Miovision and the City of Detroit worked together to launch “The World’s Smartest Intersection,”

where Miovision is currently piloting a version of their tracking software. This partnership

provided marked advancements in the connectivity of Detroit’s traffic infrastructure, while

allowing Miovision to test and refine their upcoming capabilities in vehicle tracking. Together,

five intersections in a corridor were upgraded with Miovision’s complete TrafficLink platform. A

notable aspect of this pilot was that because the City of Detroit had previously instrumented

those intersections with Miovision’s hardware, Miovision was able to remotely update the

software to contain the new packages capable of collecting more intersection data and

actuating real-time signal phase adjustments.

Prioritize open architecture data management so that the structure of the platform and

databases can be easily adapted to meet evolving needs within a changing digital

landscape. This will enable a public agency to integrate many data streams from a number

of third-party providers. 

Consider how technology asset investments can be synergistic across multiple agencies,

such as with operators in other sectors such as emergency response and public safety. 

Choose technology solutions that put the ownership of the platforms and the raw data

generated in the hands of the public agency. 

Given this information, Miovision’s beta testing has proven to be adept at tracking which cars

 turn right, which go through an intersection, and which make left or U-turns,  and other

movements.   

 

Gaps in their computer vision algorithms’ capabilities exist for less common weather conditions,

such as hurricanes, but Miovision’s technology will improve with the collection of more data. 



RoadBotics
Case Study

COMPANY OVERVIEW
RoadBotics originated from research conducted at Carnegie

Mellon University’s Robotics Institute. Although the company’s use

of computer vision to classify pavement defects began as a purely

academic pursuit, the research team quickly realized the broad

usefulness of its technology, and formed the company RoadBotics

in late 2016. Since then, its technology has been deployed in 56

cities and counties in the US and Canada, primarily with public

works departments.  
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CURRENT CAPBILITIES

RoadBotics uses cameras, currently from smartphones, to scan pavement from a moving

vehicle, then feeds data into computer vision algorithms to identify various defects and provide

a pavement condition map. Currently, their platform serves as an intermediary between manual

pavement inspections (which are labor- and time-intensive, subjective, and dangerous to

conduct from the roadside) and automated laser-based scanning systems (which are incredibly

precise but generally too costly to use on an entire network). RoadBotics can diagnose road

defects more objectively than a human inspector can, and also collect data passively at a low

cost by outfitting fleet vehicles from industry partners of public agencies. The level of precision

that RoadBotics can achieve using a smartphone camera is sufficient to inform maintenance

decisions that can mitigate costly defects like cracking, rutting, and potholes before a road is

irreparable. Therefore, their technology complements the existing but much more expensive

technologies such as laser-based scanning and 3-D profiling by informing where such detailed

monitoring may be most critical. 
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44

FUTURE CAPBILITIES

Describing themselves as a software company, RoadBotics is currently working on identifying

other infrastructure visible from the road, such as guardrails and signage. Another next push will

be identifying damage in power lines from their existing video feed, and potentially sharing that

information with the relevant utilities or operators. Additionally, they are looking into upgrading

their recording technology, in order to improve their data and classification quality. 

 

Beyond upgrades and diversification, RoadBotics is currently attracting interest from various

automated vehicle technology companies and automobile manufacturers, some of which have

already invested in RoadBotics, and Tier 1 automotive suppliers. RoadBotics anticipates the

profound value that could be generated by the integration of their pavement monitoring

software with automated vehicle providers, especially as more miles on roads are driven by

fleets or transportation network companies. 

HOW IT WORKS

RoadBotics relies on several years of research, done by one of its founding members, to identify

different types of road damage via computer vision. Expert staff has trained a series of neural

networks to identify four dozen features (different types of cracks, etc.) on labeled video of

roads. Their recording equipment of choice is still currently low tech: a modified smart phone.

Despite the relatively primitive data collection device, RoadBotics’ algorithms provide an

accurate and consistent classification of roads into five groupings. Combined with the GPS

information collected by the modified phone, RoadBotics produces a heat map of a city’s roads,

highlighting areas that warrant more attention, and distinguishing between roads in good

condition and roads with a moderate degree of wear. 

 

This lowbudget approach means RoadBotics can quickly outfit a fleet of vehicles with their

modified smart phones, and thus map out an entire city’s roads in only a few days. The

company does have plans to upgrade their hardware, but it's important to keep in mind that

their primary wares are the software and the data it generates. The road-condition-identifying

software can be applied to any video recording device; RoadBotics is currently leasing their

technology to several autonomous vehicle manufacturers. 

 

The product is almost entirely derived from computer vision and statistical analysis. The

underlying math does not differ greatly from that outlined in the computer vision section of the

technical primer; the neural networks and analysis are powered by cloud computing, and the

video data is stored in the cloud as well. 
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In South Bend, IN, RoadBotics conducted video of 100 miles of roads in partnership with the

public works department. Their detection algorithms are calibrated to the Pavement Surface

Evaluation and Rating (PASER) standard, which the South Bend Public Works Department uses.

[1]   

 

Below is a RoadBotics assessment map of a roadway section near Pittsburgh, PA, as an example

of their roadway scans’ output. 

Digitize data collection (such as across highway maintenance programs) so that data can be

processed easily and that information can be used for many different applications.

To enable data-driven decision making, start by ensuring that data collection processes are

not only digitized but well-designed. Collecting good data through automated, planned, or

routine processes consistently through time will allow analysts to derive far more insights

from data. 

  [1] https://www.abc57.com/news/south-bend-tests-new-technology-to-assess-road-conditions 



Oracle
Case Study

COMPANY OVERVIEW
Compared to many modern AI achievements, database technology

and theory has been around for a long time. Likewise, Oracle, a

database technology company, is more mature and established

than most of the other companies featured in this whitepaper.

Advances in machine learning have changed and enhanced

database systems, but not nearly as much as advances in database

systems—i.e., cloud technology and the continued exponential

increase in computing power—have enhanced machine learning.

Thus, Oracle offers state-of-the-art data management systems that

can self-organize data and make recommendations based on

machine learning, but the bulk of their operations focuses on data

management software and cloud computing services.
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CURRENT CAPBILITIES

Oracle offers data management services (such as software tools, system integration, and

training for those tools), cloud computing, and a limited number of smart databases. For

maximum data security, a company like Oracle can offer consulting on how to upgrade

hardware and software to handle large data streams and complex computing problems.

Oracle, like all cloud service providers, can offer via cloud computing all the same state-of-the-

art capabilities without requiring a client to upgrade any of their existing hardware. Either way,

the extra storage space can house the data from IoT implementations, such as 24-hour traffic

cameras, and power computationally expensive machine-learning operations, like processing

24-hour traffic camera footage into useful information, such as traffic counts or travel speeds. 

 

 

FUTURE CAPBILITIES

FUTURE CAPBILITIES

In addition to general power and storage increases, future databases look to incorporate an AI

component to provide users with virtual assistance. Many of Oracle’s upcoming smart databases

offer recommendations to the user about how to structure and use the data. In some use cases,

the data will be able to self-structure, or self-organize, for easier future querying. 



Oracle
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HOW IT WORKS

Smart databases look at the current structure of the database, remember what each database

manager did with past data, and then guess what to do with new data. The guesses are then

communicated to the database manager as suggestions or recommendations. 

 

Some smart databases can work with text data, as well as the more numerical data from

sensors or cameras. For instance, a smart database can read resumes, and then, based on

criteria outlined by the human resources department, identify the best potential candidates.  

USE CASE

Marseille FR use case: “Safe” City using Oracle Big Data platform 

https://www.forbes.com/sites/oracle/2017/12/12/marseille-turns-to-data-to-plan-a-safer-

city/#7f6230211095 

 

The Oracle Consulting solution for Marseille’s plan to radically improve public safety by using big

data analytics and machine learning is their Big Data Appliance platform, which is geared

towards employing social intelligence for public safety. The machine-learning algorithms will

analyze disparate data sources—including data from sound sensors, social media streams,

weather patterns, and automobile and pedestrian traffic flow—to predict potential instances of

civil unrest and prevent terrorist attacks. The platform encompasses a data acquisition engine

from social media platforms, a data pool that integrates variety of data, a semantics analytics

toolkit to process social data, a “discovery lab” or analytical environment that aids data scientists

in discovering patterns and relationships within data, and a reporting and visualizing tool for

analysts to convey information to public safety decision-makers such as police officers and

dispatch staff. 

 

ADVICE TO TXDOT

 

What is the problem(s) to be solved or priority use cases and applications? 

What are current internal data science capabilities? 

What data science tools area available to helps solve the problems? 

What resources do those tools require? These can include IoT hardware, cloud computing, a slew

of data scientists, etc. 

Oracle offered some focusing questions as their advice to TxDoT: 



Teralytics
Case Study

COMPANY OVERVIEW
Teralytics is a transportation analytics company that uses

telecommunications companies’ data to infer origin-destination

matrices, travel times, and other useful planning metrics. It is an

international start-up, founded by researchers at ETH Zurich in

Switzerland based on a research collaboration with a Swiss

telecommunications company. Since then Teralytics has

expanded to work with various agencies in Germany, Hong Kong,

and the United States, developing partnerships with more

telecommunications companies along the way.

48

CURRENT CAPBILITIES

Oracle offers data management services (such as software tools, system integration, and

training for those tools), cloud computing, and a limited number of smart databases. For

maximum data security, a company like Oracle can offer consulting on how to upgrade

hardware and software to handle large data streams and complex computing problems.

Oracle, like all cloud service providers, can offer via cloud computing all the same state-of-the-

art capabilities without requiring a client to upgrade any of their existing hardware. Either way,

the extra storage space can house the data from IoT implementations, such as 24-hour traffic

cameras, and power computationally expensive machine-learning operations, like processing

24-hour traffic camera footage into useful information, such as traffic counts or travel speeds. 

 

 

FUTURE CAPBILITIES

Although Teralytics has demonstrated that call detail records in themselves provide a great deal

of potential insight into mobility patterns, they are looking to integrate more data sources into

their platform. One of those potential data sources is Wi-Fi network data which would provide

even better coverage of the traveling public.  
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Although Teralytics has demonstrated that call detail records in themselves provide a great deal

of potential insight into mobility patterns, they are looking to integrate more data sources into

their platform. One of those potential data sources is Wi-Fi network data which would provide

even better coverage of the traveling public.  

 

The Teralytics data team is flexible with designing a data visualization or compiling metrics that

addressing the specific needs of an agency. Because they have telecommunications data

coverage over the entire United States, they are able to quickly put together metrics at

appropriate granularity and scope to answer novel questions posed by agencies. 

 

 

HOW IT WORKS

Teralytics primarily sources their data from the CDRs created by 60 million devices in the United

States, which amounts to roughly 25% of the US cell-phone user population. They use machine-

learning algorithms to analyze the CDRs. They are also able to access clickstream data from

mobile devices so they can infer mode choice based on the phone applications in use and the

user’s travel speed. For instance, they might conclude that the most likely travel mode of a

person who at one point was going 65 mph down a highway while using a navigation app is a

personal vehicle, and then they can attribute that flow to a personal vehicle on all the roadway

segments they were recorded on. Likewise, if a person is using a TNC’s app while in motion, they

can infer that it was a ride-hail trip. Because they can also infer a person’s home and work

location, they can combine that knowledge with public datasets such as the American

Community Survey to estimate the distributions of travelers’ socioeconomic characteristics,

such as their income, age, and race.  

USE CASE

Below is a screen capture of Teralytics’ demo platform, based on CDRs in the northeastern U.S.

A user can examine the distributions of travel duration, income, travel distance, ride hail and

carshare mode split, travel mode, trip volumes, and incoming and outgoing flows from every

county in the region.  
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Develop a data governance policy and have personnel who are responsible for actively managing

and updating that policy. 

Prepare for common data formatting or even data standards and define workflows that would

make it easier for a public agency to distribute their data for useful applications. This is especially

salient for statewide agencies like TxDOT which have far-reaching jurisdiction and whose data

could be useful for many agencies and applications. 

Teralytics also discussed some of the other use cases they have addressed with their customers.

For instance, in Los Angeles they were able to estimate the volume of traffic attributed to a

baseball game at Dodger Stadium, helping the MPO understand the reach and distribution of

trips that were attracted by the stadium at the zip code level. Teralytics was also able to pull out

the time of day of travel and travel time.  

Figure: Demonstration of the Teralytics Online Dashboard



Replica
Case Study

COMPANY OVERVIEW
Sidewalk Lab’s primary project is the redevelopment of a Toronto,

Ontario waterfront neighborhood. Their activity travel model,

Replica, is the first of potentially several tools to be

commercialized as a result of their Toronto project. There, the

team will design and populate a mixed-use neighborhood that

uses the latest in digital technology to demonstrate innovative

approaches to providing an energy-efficient, livable community.

Their research or lab-oriented approach to urban design means

that as they develop planning tools and models oriented towards

their Toronto project, they discover solutions to shared challenges

that could be commercialized, such as Replica. Sidewalk Labs is a

subsidiary of Alphabet, which also owns Google.
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CURRENT CAPBILITIES

The agent-based Replica model uses person-level trip origin, destinations, route choices, and

mode choices to construct a travel demand projection that can be fully segmented by mode,

trip purpose, sociodemographic factors (such as income), and down to any minute of any

weekday. Replica uses over 30 proprietary and public data sources to generate a synthetic

population (synthetic proxies of each individual in the community of study). The proprietary

data includes location-based services data from sources like Streetlight Data and vehicle probe

data from sources like INRIX. They use local data such as transit, traffic, cyclist, and pedestrian

counts to calibrate the ultimate model. Replica’s model team works with the partner agency to

calibrate the model within an acceptance criteria, such as being within a 15% margin of error at

all intersection counts in a city.  

 

So far, seven regions or states have begun work with Replica to build a regional or statewide

model. The early use cases are diverse. Some agencies that don’t already have robust real-time

traffic data plan to use Replica as a source for operations data. Other agencies plan to use

Replica for short-range planning (3 to 5 years) or for the evaluation of newly implemented

transportation policies or projects. Finally, because many cities, counties, and MPOs do not have

well-estimated origin-destination information for all the travelers in their  
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region, the Replica model serves as a much more detailed origin-destination matrix than ever

before. They also make available interesting metrics that are not often shared from typically

obscure travel models, such as an individual’s probability of making each mode choice—this

type of metric could be used to examine which travelers would be most likely to shift to an

alternate mode given certain transportation policies or improvements. 

 

Replica has an interesting pricing structure: the final cost of the model amounts to 20 cents per

person in each jurisdiction per year. Sidewalk Labs offers the model on a subscription service, in

which the year’s subscription begins once the contracting agency and the model team reach

an acceptable model calibration. However, in an effort to make detailed travel models more

accessible, any jurisdiction within a regional or statewide model will be able to access the

Replica model during the subscription period.  

 

 

FUTURE CAPBILITIES

The model team is developing another product, called Scenario, that will be able to provide

insight to policy analyses and scenario planning with high granularity. Because the Replica

model is re-calibrated to account for short-term changes in travel behavior and seasonality

every 3 months, it can theoretically already be used to estimate the effect on travel behavior

that a change to the transportation network had by comparing to previous calibrations of the

model. On the other hand, Scenario will be able to model questions at a micro-level, such as the

effect that a new bicycle lane will have or what segment of the population would use a new

transit stop. The team estimates Scenario will be available for integration with the Replica

model within 6 months.  

 

The Replica model team is also developing a common data standard for public agency data

such as transit, traffic, cyclist, and pedestrian counts akin to Google’s General Transit Feed

Specification (GTFS). This is a result of the efforts their team has made to integrate multiple

public datasets into the calibration of their model, but with its adoption could also ease many

of the existing data silos amongst disparate transportation operators in a region. 

 

 

HOW IT WORKS

Replica uses a statistical technique known as Bayes networks to create precise, yet anonymized,

populations. Bayesian networks are directed probability graphs; to see what that means,

consider the following graph.  
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This toy example uses the probability of rain and the sprinkler turning on to calculate whether

or not the grass is wet. Both rain and the sprinkler influence the likelihood of the grass’s

wetness, but the rain also influences whether the sprinkler turns on or not. The Bayes network

provides both a visual interpretation for this series of interconnected probabilities, and a

numeric-based definition. People can easily interpret the interconnected nodes, while

computers can process the tables that represent those nodes. 

 

The next image depicts how this idea generalizes to populations. The graph models a

household. Each household has a different number of people, and that number of people

influences the number of vehicles and the income of the household. However, the household

income also influences the number of vehicles. A graph communicates the definition of a

household much better than those last two sentences. More importantly, the graph provides a

template for generating a synthetic household. 

Adding more nodes to the graph, such as number of children/dependents, job types held, and

maybe race/ethnicity, strengthens the similarities between a real household and the synthetic

one. These synthetic households can then be placed in synthetic representation of a

metropolitan area. That means adding more nodes, which denote how far the household is

from their places of employment, as well as their access to different roadways, bus lines, and

other means of transportation. 

 

The final step requires survey data about the households in a metropolitan area, in order to

guess at the probability in each node. For example, the only way to find out the distribution of

people per household in a neighborhood is to look at a survey that asked households for  
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Replica’s model team has observed that inconsistent data practices among public agencies pose

a significant barrier to building increasingly granular and comprehensive travel models. This

obscures many of the analyses and insights that could be performed even without the use of a

sophisticated model like Replica. Transportation agencies such as TxDOT should continue to

emphasize the importance of adopting thoughtful, common data standards.   

Create consistent data practices. 

Recognize the power of clean data, and robust data pipelining. 

USE CASE

Although there is no full implementation of the Replica model in place yet, several regional and

statewide models are in the development pipeline. They range in scale: from mid-sized regions

such as the Portland, OR or Denver, CO; to mega-regions such as a Northern California swath

that stretches from Sacramento to San Jose; to statewide applications in New York and Illinois.

Kansas City will receive the first full implementation in late August 2018. 

 

Because Sidewalk Labs provides open access to the model for all contained jurisdictions, this

presents an opportunity for strategic investment at the state level. For instance, the state of

Illinois has commissioned a statewide model from Replica, but they are using a planning grant

to pay for a model of only the Chicago region initially. Ultimately when the model is available

statewide, the coordination will provide substantial benefits to all transportation and planning

agencies in the state. 

 

that asked households for that information. With that information, Replica can say that each

household in that area has a 20% chance of having 5 people, 40% chance of having 3, etc. This

is how all the other nodes’ base probabilities are found as well. 

 

A final note: because the Bayes network uses probabilities to calculate the size and complexion

of households, the synthetic population it generates is totally anonymized.  
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It is useful for public agencies to be able to assess the maturity of a particular

technology, analytics technique, or data platform. This allows them to understand

the level of risk that they may take on when implementing a new technology. A

more risk-averse agency may only wish to invest in a product or service once it

has been proven out by multiple other public sector customers and once a great

need for it is identified. As a result, the risk of a lackluster solution and a

perceived inefficient use of public dollars is minimized. On the other hand, an

innovation-forward agency may be willing to assume more investment or

resource risk by being an early adopter of a technology. These agencies may use

creative or collaborative funding models to implement small-scale deployments

of emerging technologies. At these agencies, even a small deployment has great

value because it serves as a learning experience not just for the agency but for the

industry at large. 

 

Here, a simplified scale for risk and maturity assessment is demonstrated using

some of the featured technology products in this paper. There are three tiers:

beta, pilot, and scale implementation.  

 

Beta implementation represents the lowest maturity and highest risk products -

in this stage, an idea may still be an advanced research product or only have a

handful of test implementations in a lab setting. The concept is established, but

there is no formal product on market. Pilot implementation represents a medium

level of maturity and risk: a near or fully operational product is tested on private

and eventually public right-of-way. 

When partnering, a private sector partner may assume a greater share of risk in a

pilot project with a public agency. Finally, scale implementation represents the

highest maturity and lowest risk: multiple agencies have already procured and

deployed a technology, and can share their lessons learned and best practices to

guide following agencies.  
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Stakeholder Map 

As the digital revolution in transportation takes hold, it is sometimes unclear how different companies fit

into the technology marketplace. Here they are characterized as either software, hardware, hybrid, or

cloud computing (services?). The type of product that they sell or the pricing model they use may have

implications for procurement and contracting.  
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When asked about what advice to give TxDoT in order to prepare for current and coming

technology innovations, the interviewed companies chose focus on data. Some emphasized making

data compatible across different platforms, others mentioned the importance of valid and

appropriately sourced data, and others simply advised standardizing data practices. All the

companies suggested having completely digital data stores, and highlighted the importance of

making all of the data consistently formatted and easy to access. 

 

AI and IoT work best with a clean and consistent digital ecosystem to function. That ecosystem is

even more important in order for AI and IoT’s results to be actionable. These emerging and

emergent technologies may not require a thorough investment in data architecture, but a well

maintained data environment magnifies their potential. 

 

The best practices gathered include: 

 

 digitize the collection of what data is not already digitized 

flexible, open architecture of databases 

extend value of data collected by sharing across agencies and considering cross-sector

applications 

similarly, consider developing data standards across agencies 

take advantage of access/ownership to raw/disaggregate data collected within private sector

solutions/platforms in addition to prepared dashboards/statistics 

consider efficiencies/opportunities to coordinate data collection at a higher authority level (like

state or region-wide) to share down with all jurisdictional agencies 

Have personnel dedicated to managing data 
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When asked about what advice to give TxDoT in order to prepare for current

and coming technology innovations, the interviewed companies chose focus on

data. Some emphasized making data compatible across different platforms,

others mentioned the importance of valid and appropriately sourced data, and

others simply advised standardizing data practices. All the companies

suggested having completely digital data stores, and highlighted the

importance of making all of the data consistently formatted and easy to access. 
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RECOMMENDATIONS

AI and IoT work best with a clean and consistent digital ecosystem to function.

That ecosystem is even more important in order for AI and IoT’s results to be

actionable. These emerging and emergent technologies may not require a

thorough investment in data architecture, but a well maintained data

environment magnifies their potential. 

 

The best practices gathered include: 

digitize the collection of what data is not already digitized 

flexible, open architecture of databases 

extend value of data collected by sharing across agencies and considering

cross-sector applications 

similarly, consider developing data standards across agencies 

take advantage of access/ownership to raw/disaggregate data collected within

private sector solutions/platforms in addition to prepared dashboards/statistics 

consider efficiencies/opportunities to coordinate data collection at a higher

authority level (like state or region-wide) to share down with all jurisdictional

agencies 

Have personnel dedicated to managing data 

 


