

Truck-Rail Intermodal Toolkit: User Manual

0-6692-P2

http://library.ctr.utexas.edu/ctr-publications/0-6692-P2.pdf

0-6692-P2

Truck-Rail Intermodal Toolkit: User Manual

Dan P. K. Seedah Travis D. Owens Robert Harrison

TxDOT Project 0-6692: Truck-Rail Intermodal Flows: A Corridor Toolkit

JUNE 2013; PUBLISHED SEPTEMBER 2014

Performing Organization:	Sponsoring Organization:
Center for Transportation Research	Texas Department of Transportation
The University of Texas at Austin	Research and Technology Implementation Office
1616 Guadalupe, Suite 4.202	P.O. Box 5080
Austin, Texas 78701	Austin, Texas 78763-5080

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.

Table of Contents

Introduc	tion and Installation1
1.	System Requirements
2.	Installation1
CT-Rail	
1.	Upload Track Data
2.	Select Equipment and Cargo
3.	Run Pre-Process
4.	Select Locomotives and Specify Horsepower per Trailing Ton Ratio7
5.	Specify Travel Time, Rail Capacity, and Delay Calculations
6.	Fill in the Cost Modules
7.	View the Cost Summary Sheet
8.	Guide to Rail Capacity and Delay Estimation
Rail Lin	e Comparison17
1.	Input Operating Parameters
2.	Upload Track Data
3.	Select Equipment and Locomotives
4.	View Model Output
CT-Vco	st Lite
1.	Input Vehicle Information
2.	Specify Route Information
3.	Run Simulation
4.	View CT-Vcost Model Output
Highway	y Improvement
Support	

List of Figures

Figure 1: CT-TRIT.xlsx file	1
Figure 2: Home Screen	2
Figure 3: CT-Rail Screen	3
Figure 4: CT-Rail Track File Format	4
Figure 5: Sample Track Data Files	4
Figure 6: "Upload Track Data" Button, "Show Graph" Button, and Start/End Fields	4
Figure 7: Sample Track Speed and Elevation Profile	5
Figure 8: Equipment Selection and Cargo	6
Figure 9: Rolling Stock Statistics	6
Figure 10: Locomotive and HPTT Ratio Selection	7
Figure 11: Travel Time, Rail Capacity, and Delay Calculations	8
Figure 12: Overview of CT-Rail Cost Modules	9
Figure 13: Labor Cost Module	9
Figure 14: Fuel Cost Module	10
Figure 15: Loading and Unloading Cost Module	10
Figure 16: Emissions Module	11
Figure 17: Maintenance Costs Module	11
Figure 18: Capital Costs Module	12
Figure 19: Cost Summary Sheet	12
Figure 20: Rail Capacity and Delay Module	13
Figure 21: Delay Volume Curve	16
Figure 22: Rail Line Comparison Model	18
Figure 23: Rail Line Comparison Output	19
Figure 24: CT-Vcost in TRIT	20
Figure 25: Route Information Sheet	22
Figure 26: "Run CT-Vcost Lite" button	22
Figure 27: CT-Vcost Operating Cost Output by Time Step	23
Figure 28: Highway Improvement Interface	25
Figure 29: Sample Input Data Showing Roadway Geometry (HCM, 2010)	26
Figure 30: Sample Traffic Demand Data in 15-Minute Increments	26
Figure 31: Highway Improvement Model Output	27

Introduction and Installation

The truck-rail intermodal toolkit (TRIT) was developed to help planners equally compare truck and rail freight movements for specific corridors and to give insight into some of the variables associated with each mode. The rail component of the model (CT-Rail) is designed to help planners and policy makers understand rail corridor operations and examine the opportunities and challenges for modal shifts from truck to rail. CT-Rail uses a mechanistic approach that adequately captures the effects of cargo weight, running speeds, network capacity, and route characteristics—key factors that are essential in any logistical analysis. The truck component of TRIT, CT-Vcost, developed from an earlier TxDOT study, allows planners to simulate truck movements over a specified corridor given factors such as truck speed, equipment depreciation, financing, insurance, maintenance costs, fuel cost, driver costs, road use fees (e.g., tolls), and other fixed costs—factors that influence truck operating costs and delivery time. Comparative variables used in both models include roadway and track characteristics (elevations and grades), travel speeds, changes in fuel prices, maintenance costs, labor costs, and tonnage. The truck corridor model also accounts for toll rates and vehicle insurance costs; drayage costs are included only in the rail corridor model. Outputs from both models include fuel consumption and cost, travel time, and payload cost per ton-mile.

The final report of TxDOT study 0-6692, "Truck-Rail Intermodal Flows: A Corridor Toolkit," will provide a detailed explanation of the methodologies discussed in this user manual. Following its publication, that report (0-6692-1) will be posted online courtesy of the CTR library.

1. System Requirements

Microsoft Excel 2007 or 2010

2. Installation

- 1. Insert the provided CD into your CD-ROM drive.
- 2. Select your CD drive in "My Computer" (XP) or "Computer" (Vista/7).
- 3. Double-click on **TRIT.exe** to extract files to preferred location.
- 4. Locate the Microsoft Excel File **CT-TRIT.xlsx**—this is the application (see Figure 1 for the file icon).

Figure 1: CT-TRIT.xlsx file

5. Click on that file to reach the home screen, shown in Figure 2.

Figure 2: Home Screen

CT-Rail

CT-Rail is the rail component of the toolkit. It enables planners and analysts to examine how operational changes, freight demand, and route characteristics influence operating costs, travel time, fuel consumption, and emissions. Clicking on the "CT-Rail" button found on the home screen will take you to the screen shown in Figure 3.

To return to the home screen, simply click the Home icon on the right of the screen.

	Start End	Governing Grade for Direction B = 0
ecify Starting and Ending Mile Post for Analysis	0 320	Maximum Horsepower Required for Direction B = 0
ecify Type of Container 40 ft Dry		Select Track Direction A
tare weight of one 40 ft Dry container is 4.2 tons		Enter HPTT ratio 2
ecify Number of Containers	110	Select Locomotive HP 4000 HP -
		Enter Number of Locomotives 2
ecity Weight of Cargo per Container	25 tons	Total Maximum HP available = 8,000 HP
ontainers are double stacked		Total Horsepower Required = 0
ecifiy Utilization Ratio (% of full containers)	100 percent	
elect Car Type Container Carriers	(5-unit) +	
tare weight of one Container Carriers (5-unit) ca	r is 17.6 tons	Begin Train In Motion
ar Properties:		Lise Solution Sten Method
length of one car = 53 ft		Estimated Average Speed = 0 mph
k-value = 0.0935		Estimated Average Speed – Unipri
kadj-value = 0.95		
umber of Cars = 55		
olling Stock Weight = 4180 tons		
olling Stock Length = 2915 ft.		Account for Rail Capacity
pecify Engine Efficiency	0.85	
Regin Pre-Process	ecify Solution Step (delta train movement)	
Deginine nocess	0.1	

Figure 3: CT-Rail Screen

1. Upload Track Data

CT-Rail requires track data to be in the form of a CSV file, formatted with the fields shown in Figure 4. Distance (in miles), Y-coordinate (Ycoord), X-coordinate (Xcoord), Elevation (in feet), Speed (in miles per hour), and Curvature (in degrees) are the fields available; however, Ycoord, Xcoord, and Curvature are not required to run the model.

Distance	Ycoord	Xcoord	Elevation	Speed	Curvature
0	0	0	602.7	40	0
0.02799	0	0	601.5	40	0
0.22803	0	0	592.6	40	0
0.52696	0	0	597.2	40	0
0.90597	0	0	605.2	40	0
0.99702	0	0	603.8	40	0
1.04999	0	0	605.5	40	0
1.26503	0	0	612.3	40	0
1.45391	0	0	619.2	40	0
1.65492	0	0	628.7	40	0
1.83097	0	0	634	40	0
2.021	0	0	640	40	0
2.28796	0	0	652.6	40	0
2.51607	0	0	662.2	40	0
2.89595	0	0	679.6	40	0

Figure 4: CT-Rail Track File Format

Four sample track data files are supplied in the folder "Sample Track Data," as Figure 5 shows.

Name	Date modified	Туре	Size
🔊 cajon_pass_east.csv	6/6/2013 2:11 PM	Microsoft Excel C	2 KB
🔊 cajon_pass_west.csv	6/6/2013 2:12 PM	Microsoft Excel C	2 KB
dfw_houston_route_1a.csv	6/6/2013 8:05 AM	Microsoft Excel C	22 KB
louston_dfw_route_1a.csv	6/6/2013 8:05 AM	Microsoft Excel C	21 KB

Figure 5: Sample Track Data Files

Clicking on the "Upload Track Data" button will open a window from which you can select the desired track data file. After the data uploads, the "Show Graph" icon will appear to the right of the "Upload Track Data" button (Figure 6); clicking the graph icon will display the speed and elevation profile of the track as shown in Figure 7. If you'd like to work with only a section of the uploaded track data file, specify the starting and ending mile posts using the "Start" and "End" text fields (labeled with the phrase "Specify Starting and Ending Mile Post for Analysis").

Figure 6: "Upload Track Data" Button, "Show Graph" Button, and Start/End Fields.

Figure 7: Sample Track Speed and Elevation Profile

2. Select Equipment and Cargo

After the desired route data file is uploaded, select equipment type and cargo weight using the controls shown in Figure 8. You can choose from these options:

• Type of Container:

-20 ft. Dry, 20 ft. Reefer, 40 ft. Dry, 45 ft. H. Cube, 40 ft. Reefer, No containers

- **Number of Containers** (which is the also equivalent to number of cars for non-container movements)
- Weight of Cargo per Container (in tons)
- **Double Stacked:** Check this option box if containers are double stacked; otherwise uncheck. Checking this box will increase the cargo weight per rail car and influence the total number of cars, train length, and rolling stock weight, as shown in Figure 9.
- Utilization ratio (in percentages), i.e., percentage of containers that are full
- **Car Type**: This dropdown menu becomes available only when the container type chosen is "No Container," presenting the following options:
 - Auto Transporters, Boxcars, Center Partition Railcars, Container Carriers (5-unit), Gondolas, High Cube Box Cars, Hoppers, Intermodal Flatcars, Other Flatcars, Tankers

Specify Type of Container	40 ft Dry	-	
tare weight of one 40 ft Dry cor	ntainer is 4.2 tons		
Specify Number of Containers		220	
Specify Weight of Cargo per Cont	ainer	25	tons
Containers are double stacked			
Specifiy Utilization Ratio (% of ful	Il containers)	100	percent
Select Car Type	Container Carriers (5-unit)		- I
tare weight of one Container C	Carriers (5-unit) car is 17.6 ton	S	

Figure 8: Equipment Selection and Cargo

Car Properties:	
length of one car = 53 ft	
number of axles = 4	
k-value = 0.0935	
kadj-value = 0.95	
Number of Cars = 110	
Rolling Stock Weight = 8360 tons	
Rolling Stock Length = 5830 ft.	
Specify Engine Efficiency	0.85
Specify Engine Efficiency Begin Pre-Process	0.85 Specify Solution Step (delta train movement)

Figure 9: Rolling Stock Statistics

3. Run Pre-Process

The Pre-Process module performs calculations prior to simulating train movement along the route to determine the necessary constraints and number of locomotives required to move rail cars. The calculations involve determining the maximum (governing or ruling) grade, the maximum resistance encountered, and the minimum horsepower required for the train to traverse the track.

Average engine efficiency for the locomotives can also be specified at this point (see Figure 9). The most important parameter is the Solution Step input. Ruling grade, maximum resistance, and required horsepower are calculated at a specified incremental distance (the "solution step") along the uploaded track. Increasing or decreasing this value influences the calculating time of the model and slightly influences the model's accuracy. For example, total fuel consumed may vary from 1% to 5% depending on whether the solution step is 1 mile per iteration or 0.1 mile per iteration. The recommended solution step for most Pre-Process simulation runs is 0.1 miles.

Click on "Begin Pre-Process" to complete Pre-Process module calculations.

4. Select Locomotives and Specify Horsepower per Trailing Ton Ratio

The total number of locomotives required is dependent on the horsepower of each locomotive and the desired horsepower per trailing ton (HPTT) ratio. The HPTT ratio is determined by the railroads, and varies by route and service type. It dictates the desired maximum speed of the train. The typical HPTT ratios used by Class I railroads vary between 2.5 to 3.5 for intermodal movements, but decrease for other heavier cargo such as coal.

You need to specify both the HPTT ratio and the size of locomotives (as shown in Figure 10). Properties associated with different sizes of locomotives such as the weight, length, and numbers of axles are incorporated into the model. The selected locomotive's horsepower governs the total horsepower available to the train; thus, the train's required horsepower for each solution step cannot exceed the available train horsepower.

Once the number of locomotives is specified, click on the "Begin Train in Motion" button.

aximum Horsepower Rec	uired for Direction	B = 28,427 H	ΗP
Select Track Direction	Direction A	•	
Enter HPTT ratio		2.5	
Select Locomotive HP	4000 HP	•	
Enter Number of Locomoti	/es	3	
Total Maximum HP availat the horsepower required vailable), the horsepower	ble = 12,000 HP	horsepower	selected (i.e.

Figure 10: Locomotive and HPTT Ratio Selection

5. Specify Travel Time, Rail Capacity, and Delay Calculations

Estimated travel time and average speeds are calculated during the simulation. However, you can add additional delay parameters such as "Idle Time Accumulated Over Route" and "Delay Time Accumulated Over Route" (both in hours) as shown in Figure 11. After you check the "Account for Rail Capacity" box, the accompanying button will appear, allowing you to set an array of delay-related variables. See the *Guide to Rail Capacity and Delay Estimation* section of this manual for further details on the input values required to calculate rail capacity delay.

Estimated Average Speed = 2	6.9 mph
Estimated Travel Time based on Avg. Ve	elocities = 12.38 hr
Specify Route Information:	
Idle Time Accumulated Over Route	1 hours
Account for Rail Capacity	or Rail Capacity
Delay Time Accumulated Over Route	0 hours
Number of Crew Changes Over Route/Refueling	0
Length of Stop	0 hours
Estimated Total Trip Time = 13.	38 hours

Figure 11: Travel Time, Rail Capacity, and Delay Calculations

After specifying these variables, click the "Begin Costs Calculations" button to move to the next step.

6. Fill in the Cost Modules

The cost modules estimate the costs for labor, capital and investment, maintenance, fuel, and loading and unloading (see Figure 12). These costs are then aggregated to find the total cost, costs per mile, costs per payload ton-mile, and costs per trailing ton-mile.

14	A B	С	D	Е	F	G		н	J	K	L	M	N	C
1														
2			labor	Cos	sts									
3	Specify Crew Inf	ormation:	Labor	000	1.5									
5		Number of C	rew Members	ĩ		2				Fue	Cos	ts		
6	1000			1		-			Estimated	Fuel Consum	ption for Trip	= 3,554.91 g	allons	
7	Wage Ra	te per mile for	first 100 miles	5		1.5300		Specify Fuel	Information:					
8	Wage Rate pe	er mile AFTER	first 100 miles	S		1.5300		Fuel Co	ost Per Gallon				3.00	S/gallon
9	Daily Service Hours					0.0								avgunon
10		Daily .	Service nours			0.0	iours		Operati	ngFuel Cost	for Trip = \$	10,664.73		
11	System	Average Freigh	ht Train Speed			12.5 r	mph							
12	Maximum po	ssible distance	travelled durin	a 8 hour	period at ave	rage freig	tht					- ded -		
13	train speed of	f 12.5 mph is 1	00 miles						E	missic	ons Mo	odule		
14	Total	Operating A	verage Labor	Cost fo	r Trip = \$97	74.30			Estimated	Fuel Consum	ption for Trip	= 3,554.91 g	allons	
15								Select Emis	sions TIER			TICD 2	_	
17												HER 2	•	
18	Load	ting ar	nd Unio	adi	ng Co	sts		Polluta	nts					
19	Specify Loading a	and Unloading	Information:						HC emissions	= 0.02 metric	tons			
20	Londing Cost	Per Container				75.00			NOx emission	s = 0.11 metric	c tons			
21	Liploading Cost	et Per Container		•		75.00			PM emissions	= 0.01 metric	tons			
22	Onioading Co	ist rei contain	CI	S		/5.00								
23	Total L	oading and I	Unloading Cos	st for Tr	ip = \$33.00	0.00								
24		-	-											
25										Canit	tal Co	ete		
26		Mai	ntenan	CO (Coste					Capi		313		
27		IAIGI	menan	Ce (50313			Specify Capi	ital Information	1:		-	20.000	
28	Specify Maintena	ance Informatio	n:					Cost o	f one car		5		33,000	
29	Track Maintenar	nce System Av	erage Rate		0.0020 \$	s/gross to	n-mile	Cost o	f one locomoti	ve	5	2	2,000,000	
30	Car Maintenance	e System Aver	age Rate		0	.13 S/r	mile	Rail eq	quipment life				30	years
32	Locomotive Main	ntenance Syste	em Average Rat	te	2	.21 S/r	mile	Salvag	e Value				10	%
33	Total	Operating M	aintenance Co	ost for T	rin = \$6.66	5 18			T-1	-10		00.00		
34	, July	opondung Mit			p - 40,000				lot	al Capital Co	st for Trip	= \$0.20		

Figure 12: Overview of CT-Rail Cost Modules

Labor Cost Module: As Figure 13 shows, labor cost is determined on an hourly basis, using these inputs: the number of crew members, each crew member's wage rate per mile for the first 100 miles and then the wage rate per mile after the first 100 miles, the daily service hours, and the average freight train speed (default 12.5 mph). This module calculates the maximum possible distance travelled during an 8-hour period at average freight train speed; the default is 100 miles.

2		2	2	
\$ 1.5300		5300	00	
\$ 1.5300		5300	00	
8.0 H		8.0	.0	hou
12.5		12.5	.5	mph
hour period at average freig	8 ho	ge fre	freig	ght

Figure 13: Labor Cost Module

Fuel Cost Module: Fuel cost is calculated by multiplying a per-gallon cost of fuel by the total number of gallons consumed during the trip (see Figure 14).

Fuel Costs					
Estimated Fuel Consumption for Trip = 3,554.91 gallons					
Specify Fuel Information:					
Fuel Cost Per Gallon	3.00	\$/gallon			
OperatingFuel Cost for Trip = \$	\$10,664.73				

Figure 14: Fuel Cost Module

Loading and Unloading Cost Module: This module tries to capture the cost of loading and unloading containers or rail cars at the terminal. The user specifies an average cost for loading and unloading (see Figure 15), which is multiplied by the number of containers (or cars for non-intermodal trains).

ecify Loading and Unloading Informatio	n:	
Loading Cost Per Container	s	75.00
Unloading Cost Per Container	s	75.00

Figure 15: Loading and Unloading Cost Module

Emissions: Emissions are calculated using line-haul locomotive emission standards developed by the Environmental Protection Agency (EPA). The applicability of the standards depends on the date a locomotive is first manufactured (see Table 1). Users can select a desired tier using the dropdown menu shown in Figure 16.

Tier	Manufactured Year	Date	HC	CO	NOx	PM
Tier 0 ^a	1973–1992 ^c	2010^{d}	1.00	5.0	9.5	0.22
Tier 1 ^a	1993 ^c -2004	2010 ^d	0.55	2.2	7.4	0.22
Tier 2 ^a	2005-2011	2010^{d}	0.30	1.5	5.5	$0.10^{\rm e}$
Tier 3 ^b	2012–2014	2012	0.30	1.5	5.5	0.10
Tier 4	2015 or later	2015	0.14^{f}	1.5	1.3 ^f	0.03

Standards presented in grams per brake-horsepower-hour (g/bhp.hr).

a - Tier 0–2 line-haul locomotives must also meet switch standards of the same tier.

b - Tier 3 line-haul locomotives must also meet Tier 2 switch standards.

c - 1993–2001 locomotive that were not equipped with an intake air coolant system are subject to Tier 0 rather than Tier 1 standards.

d - As early as 2008 if approved engine upgrade kits become available.

e - 0.20 g/bhp-hr until January 1, 2013 (with some exceptions).

f - Manufacturers may elect to meet a combined NOx+HC standard of 1.4 g/bhp-hr.

Emissions Module Estimated Fuel Consumption for Trip = 3,554.91 gallons						
Select Emissions TIER	TIER 2	•				
Pollutants						
HC emissions = 0.02 metric tons						
CO emissions = 0.11 metric tons						
NOx emissions = 0.41 metric tons						
PM emissions = 0.01 metric tons						

Figure 16: Emissions Module

Maintenance Cost Module: The maintenance cost module includes track, car, and locomotive maintenance (see Figure 17). These costs are calculated using a per-mile system average rate. Users can change the default per mile costs for each of these maintenance categories.

Specify Maintenance Information:			
Track Maintenance System Average Rate	0.0020	\$/gros	ss ton-mile
Car Maintenance System Average Rate		0.13	\$/mile
Locomotive Maintenance System Average Rate		2.21	\$/mile

Figure 17: Maintenance Costs Module

Capital Cost Module: The default capital cost values for each equipment type can also be changed from the default values using the input controls shown in Figure 18.

39,000	
2,000,000	
30	years
10	%
)	10

Figure 18: Capital Costs Module

7. View the Cost Summary Sheet

The cost summary sheet summarizes all the calculated cost values as well as travel speed and trip time. Also shown are the payload operating costs per ton-mile, trailing ton-miles per gallon, and payload-ton-miles per gallon (see Figure 19). Clicking the "View Costs Breakdown" button displays the cost data as a pie chart.

	Cost Summary					
Operating Labor Cost Per Mile = \$	3.06					
Operating Fuel Cost Per Mile = \$3	3.49	View Costs				
Capital Cost Per Mile = \$0.00	Capital Cost Per Mile = \$0.00					
Operating Maintenance Cost Per M	/ile = \$20.93					
Loading and Unloading Cost Per N	file = \$103.63					
Store Scenario Data	Average Travel Speed = 26.0 mph					
Store Scenario Sata	Total Trip Time = 13.84 hours					
	Total Operating Cost = \$51,304.42					
	Total Operating Cost Per Mile = \$161.11					
	Payload Operating Cost Per Ton-Mile = \$0.0293					
	Trailing Ton-Miles-Per-Gallon = 803.34 ton-miles/	gallon				
	Payload Ton-Miles-Per Gallon = 492.69 ton-miles/	gallon				

Figure 19: Cost Summary Sheet

If you click the button labeled "Store Scenario Data," TRIT will create a folder containing the data, storing it in the Saved Scenarios folder. Clicking the blue "Back to Main Sheet" button returns you to the main CT-Rail screen.

8. Guide to Rail Capacity and Delay Estimation

TRIT's rail capacity and delay model estimates rail traffic delay based on the available capacity on a section of rail track. The model is based on the Parametric Analysis of Railway Line Capacity model developed by Prokopy and Rubin (1975)¹. Step 5 of the CT-Rail process, *Specify Travel Time, Rail Capacity, and Delay Calculations*, allows users to set an array of delay-related variables. After you check the "Account for Rail Capacity" box, the accompanying button will appear, as was shown in Figure 11. Upon clicking that button, you'll see the list of variables, as shown in Figure 20. You can change the default variables either through a textbox or a dropdown menu. Note the column of boxes to the right of the variables, with the heading "Check Desired Modifications." If you want a variable to be included in the determination of rail capacity and delays, click in that box to make a check mark appear; "unchecked" variables will not be included in the analysis.

M	А	В	С	D	E	F	G	н	1	J	K	L	М			
1 2				S	ubdivisio	n Length	318.478	91 miles		Check Desired Modifications						
3		Average Block Size 1				1.6 mile	S									
5					Train Priority No priority: 3/2				•	•						
7	A	verage Seg	Segment Size (Average Siding Spacing) 11 miles													
8 9				Train	Speed U	niformity	rmity Base speeds by class: 1/2 -			2 🕶 🔲						
10 11				Un	iform Trai	Train Speed 32.8 mph										
12	Average Train Speed				d 32.8 mph											
13	Siding Capacity				Base ca	pacity: 1/2	-									
15 16		Segment Uniformity Non-unifo		orm: 1/2	-											
17			Dispat	ch Peakin	ng or Non-	peaking	1									
19				Presen	ice of Rar	e Events	Rare eve	ents: 1/2	•							
20 21		Tra	ain Length	as Fractio	on of Base	e Length	1									
22 23	Directional Imbalance 1															
24				Base Bl	ock Confi	guration	Base Blo	ck Configu	uration: -							
26		Gener	al Double	Track Cr	ossover F	lexibility	Full: 1/2		•							
27 28		Fracti	on of Line	Mileage	with Doub	le Track	Single: 0		•							

Figure 20: Rail Capacity and Delay Module

Subdivision Length: The length of the section of rail line under consideration, which is equal to the distance of the route being analyzed.

¹ Prokopy, J. C., and Rubin, R.B. Parametric Analysis of Railway Line Capacity, DOT-FR-5014-2, Federal Railroad Association, U.S. Department of Transportation, Washington, DC, 1975.

Average Block Size (in miles): This section of track may be occupied by only one train at a time. Blocks are used to control train separation, and occupancy is regulated either by the dispatcher, an operator at a station², or an automatic signal system.

Train Priority: This is the preference given to a train based on its class³. A low-priority train gives way to a high-priority train when they meet. The options include

- No priority: Priorities for all train classes in both directions of movement are the same.
- Base priorities: Priorities are assigned by train class, e.g., intermodal trains have a higher priority than manifest or mixed trains.

Average Segment Size (in miles): This is the section of track between two stations; it may contain one or more parallel tracks and must contain at least one signal or train separation block.

Train Speed Uniformity:

- Base speeds by class: Train speeds are assigned based on train class.
- Uniform speeds: All trains are assigned the same speed irrespective of class.
 - **Uniform Train Speed** (in miles per hour)—This figure is specified by the user if the Uniform Train Speed option is selected by checking the option box next to the dropdown menu for this variable.

Average Train Speed (in miles per hour): This is the average train speed of all trains within the segment.

Siding Capacity: A siding is a track at a station (or within a segment) used for trains to meet, overtake one another, or perform switching. Options include

- Base capacity the number of trains of a given length that could be held by sidings at a station.
- Double capacity an increase in the number of sidings so that the number of trains at the station can be doubled.

Segment Uniformity: Segment uniformity is a measure of the segment lengths relative to one other.

- o Non-uniform segments have varying segment lengths.
- Uniform segment assumes all segments are of the same length.

Dispatch Peaking or Non-peaking: This is a measure of the concentration of traffic during a short time frame. This variable is equivalent to the maximum number of trains dispatched in a 4-hour period divided by the average number of trains dispatched during that period.

² Station—This refers to any point on a rail line where track configuration changes.

³ Class—This is the type of train as defined by its performance characteristics. Train classes include intermodal, manifest or mixed freight, unit trains, and local or road switching.

Presence of Rare Events: The Rare Events variable simulates train and track failures and track maintenance interruptions. The options for users include

- Consideration for rare events.
- No consideration for rare events.

Train Length as Fraction of Base Length: This variable addresses the length of the sidings. In the base case, all trains can fit into all sidings. By increasing this figure (such as from 1.0 to 1.2), the user specifies that some of the trains cannot fit into a shorter siding.

Directional Imbalance: This variable measures the impact of dispatching more trains in one direction (i.e., heavier direction) over the other (i.e., lighter direction) during the course of the day. It equals the number of trains in heavy direction divided by the number of trains in light direction.

Base Block Configuration: This variable measures the impact of signal block spacing on rail capacity. The "Base Block Configuration" option assumes no additional signals between blocks and the "1 Block Between Station" option assumes one additional signal block between adjacent stations on a single track.

General Double Track Crossover Flexibility: A crossover is a pair of switches that connects two parallel rail tracks, allowing a train on one track to cross over to the other. Options include full crossover and alternate crossover.

Fraction of Line Mileage with Double Track: This is a ratio of single track segments to the total number of segments. Options include 1-in-2 single, 1-in-3 single, 2-in-3 single, double, and single.

Once the necessary parameters have been modified, click on the "Run Model" button to get the estimated trip delay (see Figure 21). Click on the "Copy Delay to CT-Rail" button to copy estimated delay to CT-Rail and return to the CT-Rail screen.

Figure 21: Delay Volume Curve

Rail Line Comparison

The rail line comparison model was developed using Hay's location process methodology. It determines the rate of return for any given railroad route as a measure of its economic benefit, 1982)⁴. It is not intended to provide precise answers but can be used as a comparative tool of multiple routes for planning purposes, for example, determining traffic combinations and route characteristics which give the best economic outcome.

1. Input Operating Parameters

As shown in Figure 22, following are the operating parameters required by the rail route comparison model:

- Annual gross and net tonnage (in each direction)
- Net revenue per ton mile (in cents)
- Rail line construction cost per mile (in dollars)
- Operating cost per ton-mile
- Total central angle (the angle formed by the beginning and end points of the rail route)
- "Solution step" (the incremental distance for each iteration)

These operating parameters provide an estimate of operating cost and expected revenue to be associated with each line.

2. Upload Track Data

As in CT-Rail, the rail line comparison model requires track data to be in the form of a CSV file, formatted with the fields shown in Figure 4. Distance (in miles), Y-coordinate (Ycoord), X-coordinate (Xcoord), Elevation (in feet), Speed (in miles per hour), and Curvature (in degrees) are the fields available; however, Ycoord, Xcoord, and Curvature are not required to run the model.

Clicking on the "Upload Line 1 Data" button will open a window from which you can select the desired track data file. Repeat this for "Upload Line 2 Data." Once track data is uploaded, additional information such as distance and ruling grade will be displayed as shown in Figure 22.

3. Select Equipment and Locomotives

Specify the railcar type, locomotive type, and number of locomotives to be used in the analysis.

Click on the "Begin Calculations" button to run the simulation.

⁴ Hay, William Walter, "Railroad Engineering." (1982)

Specify the following information for each route:		Line 1			Line 2			
Annual Gross Tonnage:								
Direction A		15,000,000	ton	15	15,000,000	tons		
Direction B	1	12,000,000	tor	IS	12,000,000	tons		
Net Annual Tonnage:								
Direction A		10,000,000	ton	s	10,000,000	tons		
Direction B		7,000,000	ton	s	7,000,000	tons		
Net revenue per ton mile	Î	3.76	cer	nts	3.76	cents		
Construction cost per mile	s	5,000,000	1	s	5,000,000			
Operating cost per mile	s	12.50	í I	s	12.50			
Total central angle	Ì	2,600	deg	j .	1,100	deg.		
Specify Solution Step (delta train movement	t)				1 miles			
	Up	oload Line 1 Da	ata	L	Jpload Line 2 D	ata		
Distance: Dis Ruling Grade:	star	nce of Line 1 = 318.48	3 mil	les Dist	ance of Line 2 = 318.4	8 miles		
Direction A	G	Grade of Line 1 = 0.91	%		Grade of Line 2 = 1.18 %			
Direction B	C	Grade of Line 1 = 1.18	3 %		Grade of Line 2 = 0.9	1 %		
Select Car Type	Int	ermodal Flatcars		▼ In	termodal Flatcars	•		
Maximum payload per axle		50000 lbs.			50000 lbs.			
Select Locomotive HP		4000 HP	•		4000 HP	•		
Enter Number of Locomotives		2			2			
	B	Begin Calculati	on	S]			

Figure 22: Rail Line Comparison Model

4. View Model Output

Following are the final model outputs as shown in Figure 23:

- Total revenues generated for each rail line
- Construction costs associated with each rail line
- Operating costs broken down by distance and curvature for each rail line
- Drawbar pull (amount of power required by the locomotives to move the rail cars along the rail line)
- Number of trains required to move the specified annual gross tonnage
- Train tonnage (amount of cargo [in tons] carried by each train along the rail line)
- Cost of additional trains (comparison of cost associated with moving additional number of trains as a result of the difference in rail lines)

- Total operating cost of each rail line
- Rate of return for each rail line

	Line 2				
Revenues					
Т	otal Revenue of Line 1 = \$203,571,719.27	Total Revenue of Line 2 = \$203,571,719			
Constructio	on Cost				
	Cost of Line 1 = \$1,592,394,550.00	Cost of Line 2 = \$1,592,394,550.00			
Operating	Cost - Distance				
	Cost of Line 1 = \$107,486,632.13	Cost of Line 2 = \$107,486,632.13			
Operating	Cost - Curvature				
	Cost of Line 1 = \$448,721.59	Cost of Line 2 = \$189,843.75			
Drawbar Pu	III				
Direction A:	Drawbar Pull of Line 1 = 217,841.03 lbs	Drawbar Pull of Line 2 = 215,671.75 lbs			
Direction B:	Drawbar Pull of Line 1 = 215,671.75 lbs	Drawbar Pull of Line 2 = 217,841.03 lbs			
Number of	Irains				
Direction A:	Number of Trains = 2,170 (5.9 per day)	Number of Trains = 2,777 (7.6 per day)			
Direction B:	Number of Trains = 2,221 (6.1 per day)	Number of Trains = 1,736 (4.8 per day)			
	Total Number of Trains on Line 1 = 4,391	Total Number of Trains on Line 2 = 4,513			
	Traffic Density Difference =	= 122 more trains on Line 2			
Train Tonna	ages				
Direction A:	Tonnage of Line 1 = 6,913.88 tons	onnage of Line 2 = 5,403.44 tons			
Direction B:	Tonnage of Line 1 = 5,403.44 tons	onnage of Line 2 = 6,913.88 tons			
Cost of Add	itional Trains				
C	ost of Line 1 = \$0.00	Cost of Line 2 = \$617,591.12			
Total Opera	ting Cost				
O	perating Cost for Line 1 = \$107,935,353.	Operating Cost for Line 2 = \$108,294,066			
Rate of Retu	m				
R	ate of Return for Line 1 = 6.0 %	Rate of Return for Line 2 = 6.0 $\%$			

Figure 23: Rail Line Comparison Output

CT-Vcost Lite

The CT-Vcost version included in TRIT is a lightweight truck-only version of the original CT-Vcost model⁵ (see Figure 24). Data is stored in TRIT's spreadsheet interface and transmitted to a CT-Vcost Lite executable file, and the output retransmitted back to the spreadsheet. Various components that make up the lightweight version of CT-Vcost are listed in the following sections.

VEHICLE IN	FORMATION
Vehicle Specifications	
City MPG	4.0
Highway MPG	7.0
Optimum Speed	55 mph
Average Annual Miles Driven	120,000
Fleet Size	4200
Estimated Vehicle Life	5 years
Commercial Driver Per Mile Cost New Vehicle Price	\$1.50
Operating Cost Information	
Cost	\$1.50
New Vehicle Price	\$120,000
Down Payment	10%
Finance Term	48 months
Interest Rate	5.5%
Insurance	\$5,500
First Year Depreciation	15%
Subsequent Year Depreciation	15%
Average Annual Maintenance Cost	14,600
Other Fixed Costs	\$2,300
Fuel Prices	
Diesel Cost	\$3.75
Diesel Tax	\$0.85

Figure 24: CT-Vcost in TRIT

⁵ Harrison, Robert, Garrett Anderson, Murat Ates, Dimitrios Dardalis, Kyung Jin Kim, Hao Lijun, Dan Seedah, James Vaughn, and Ronald D. Matthews (2011), "Estimating Texas Motor Vehicle Operating Costs," Report 0-5974-2, Center for Transportation Research and Texas Department of Transportation (TxDOT)—Research and Technology Implementation, Austin, Texas.

1. Input Vehicle Information

Vehicle Specifications

City MPG: Average fuel economy during congested traffic conditions

Highway MPG: Average fuel economy during free-flow traffic conditions

Optimum Speed: Estimate of speed at which fuel consumption is equal to highway MPG.

Average Annual Miles Driven: Estimate of miles driven by the vehicle each year. This figure is used in calculating annual operating costs based on the estimated vehicle life.

Fleet Size: Number of vehicles involved in moving a certain amount of tonnage

Estimated Vehicle Life: Expected life of vehicle at which the annual miles driven is equivalent to the average annual miles driven value

Operating Cost Information

Commercial Driver Per-Mile Cost: Per mile cost estimate for a single driver

New Vehicle Price: Estimate of purchasing cost of the new vehicle. This figure is used in calculating the financing cost of truck as a percentage of the overall truck operating cost.

Down Payment: Percentage given is an estimate of down payment most commercial truck owners pay when purchasing a vehicle

Finance Term: Time period to complete loan payment of loan

Interest Rate: Average auto loan interest rates for loan payment over specified finance term

Insurance: Estimated cost depending on the vehicle type, age, and insurance company

First Year Depreciation: Immediate decline in value of a vehicle once it is labeled as "used"

Subsequent Years Depreciation: Annual decline in the vehicle's re-sale value after first year

Average Annual Maintenance Cost: An estimated annual maintenance cost value

Other Fixed Costs: Annual fixed costs such as annual registration and inspection fees

Fuel Prices

Diesel Cost: Price per gallon of fuel

Diesel Tax: Price per gallon of fuel allocated to taxes

2. Specify Route Information

Input route information using the route input sheet as shown in Figure 25. For each route segment (SEG-01, SEG-02, etc.), input the distance in miles, condition of the highway, and a toll fee if applicable.

For each desired 15-minute time step (i.e., 1 to 8) input the average speed of the roadway segment for only that time segment.

Note: You don't have to fill data for all time steps. This step is required only if multiple speed scenarios are being tested simultaneously.

					DISTANCE
SEGMENT	SEG-01	SEG-02 SEG-03		SEG-04	SEG-05
Distance (miles)	20	180	40		
Condition	Congested	FreeFlow	Moderate	Congested	Congested
Toll Fee (\$) (if applicable)	0	0	0		
Total Miles Driven	240.00				
				SEG	MENT SPEEDS (m
TIME STEP/ SEGMENT	SEG-01	SEG-02	SEG-03	SEG-04	SEG-05
1	40.00	65.00	50.00		
2					
3					
4					
5					
6					
7					
8					

Figure 25: Route Information Sheet

3. Run Simulation

Upon completion of the route information sheet, click on the "Run CT-Vcost Lite" button shown in Figure 26 (found at the top of the sheet, spanning the input cells for route information).

RUN CT-VCost Lite

Figure 26: "Run CT-Vcost Lite" button

4. View CT-Vcost Model Output

Model output is provided for each time step as illustrated in Figure 27, appearing below the input cells. For the route distances specified, vehicle operating cost is calculated based on the speeds indicated for a time step. Different segment speeds for different time steps will have different vehicle operating cost values.

			VEHICLE OPE
COST/TIME STEP	1	2	3
Per Mile Cost			
Depreciation	\$ 0.11		
Finance	\$ 0.20		
Fixed Cost	\$ 0.02		
Insurance	\$ 0.05		
Maintenance	\$ 0.12		
Commercial Truck Driver Cost	\$ 1.50		
Fuel Cost	\$ 0.58		
POV Value of Time	\$ -		
Toll Cost	\$ -		
Total Per Mile Cost	\$ 2.58		
Total Route Cost	\$ 618.73		
Total Fuel Consumed (gallons)	37.07		
Total Miles Driven	240.00		
Total Travel Time	4.07		
Cargo Weight (in tons)	20.00		
Cost per ton-mile	0.1289		

Figure 27: CT-Vcost Operating Cost Output by Time Step

Model outputs include per-mile cost for depreciation, finance, fixed (i.e., registration, permit fees), insurance, maintenance, and fuel costs. Total per mile cost, total route costs, and total gallons of fuel are also shown. When the cargo weight is also specified, cost per ton-mile is also calculated.

Highway Improvement

The highway improvement model is based on the *Highway Capacity Manual*'s FREEVAL 2010 model. This base model was chosen because of its simplicity and straightforward methodology for evaluating the impact of roadway traffic on vehicle speeds. It cannot be used as the final decision-maker for roadway planning, but does provide an opportunity for preliminary comparison of truck and rail intermodal flows.

TRIT provides a graphical user interface that enables the user to specify the roadway geometry (segment type), segment length, number of lanes, entering and exiting flow rates, and expected traffic demand in 15-minute time intervals. Available segment types include basic freeway segment, on-ramp segment, off-ramp segment, and weaving segments. The initial data that need to be specified by the user (see the orange-shaded cells in Figure 28) include the following:

- Percentage of heavy vehicles: trucks and recreational vehicles (all movements)
- Unfamiliar driver populations (f_p)
- Free-flow speed (FFS) (in mph): all mainline segments
- Ramp FFS (in mph): all ramps
- Jam density (D_{jam}) (in passenger cars per miles per lane)
- Length of weaving segment (Ls) (in feet)
- Total ramp density (TRD) (in ramps per mile)
- Terrain type: level, mountainous, rolling
- fHV: Heavy-vehicle adjustment factor(
- c_{IFL} : capacity of a basic freeway segment at FFS under equivalent ideal conditions (in passenger car, per hour, per lane): for FFS = 60 mphDuration of analysis (in minutes): Divided into a number of 15-minute intervals.

1 1 2 3 3 Unfamiliar Driver Population 5:0% 5:0% 5:60 L SEG 02 SEG 03 4 Freeflow Speed - FFS (mpt) 0	4	А	В	С	D	E	F	G
2 Heavy Vehicles (%) 5.0% 5.0% 1 2 3 3 Urfamiliar Driver Population 1.00 556 01 556 02 556 02 4 Freeflow Speed - FFS (mph) 40 10 5280 1500 2280 5 bjan (pc/ml/n) 190 1.640 1.640 1.640 1.640 1 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1							
3 Unfamiliar Driver Population 1.00 SEG 01 SEG 02 SEG 03 5 Freeflow Speed -FFS (mph) 40 10 Type (B, OIR, OFR, R, or W) B ONR B 6 Jama (pc/mi/ln) 190 10 Number of Lanes 3 3 3 7 Ls for Weaving Segment (ft) 1,640 FF Speed (Minn) 60 <t< td=""><td>2</td><td>Heavy Vehicles (%)</td><td>5.0%</td><td></td><td>SECTION NUMBER :</td><td>1</td><td>2</td><td>3</td></t<>	2	Heavy Vehicles (%)	5.0%		SECTION NUMBER :	1	2	3
4 Freeflow Speed - FFS (mph) 60 Image FS (mph) 60 Image FS (mph) 60 100 6 Bamp FS (mph) 100 Length (ft) 5280 1500 2280 7 Ls for Weaving Segment (ft) 1,640 Segment Demand (vph) 60 60 60 9 Terrain Level FS Speed (likhn) 60 60 60 10 fHV Capacity Adjustment Factor 1 1 1 1 10 fHV Capacity Adjustment Factor 1 1 1 1 11 Clear All Segment Destination Demand Adjustment Factor 1 1 1 12 Add Segment Kerve S% 5% 5% 5% 13 Copy to CT-Vcost Some of Car Equivalent ET 1.5 1.5 1.5 14 Ki V. Passenger Car Equivalent ET 0 0 0 0 16 Copy to CT-Vcost Go to CT-Vcost Off-Ramp % Nrvs 2 0 0 0 17 Go to CT-Vcost Off-Ramp % Nrvs 2	3	Unfamiliar Driver Population	1.00		SEGMENT LABEL :	SEG 01	SEG 02	SEG 03
S Ramp FFS (mph) 40 1500 2280 0 Djam (pc/mi/n) 190 190 Number of Lanes 3 3 3 8 Is for Weaving Segment (It) 1.640 10 F Speed (Min) 60 60 60 9 Terrain Level 10 Hv 11 1	4	Freeflow Speed - FFS (mph)	60		Type (B, ONR, OFR, R, or W)	В	ONR	В
6 Djam (pc/m/l/m) 190 8 TR0 (ramp/m) 1,640 9 TR0 (ramp/m) 1.00 10 FF Speed (Milhin) 60 60 11 TR0 (ramp/m) 1.00 Level 1 1 10 fHV Capacity Adjustment Factor 1 1 1 12 Analysis Duration 1 1 1 1 12 Analysis Duration Image: Capacity Adjustment Factor 1 1 1 13 Clear All Segment Destination Demand Adjustment Factor 1 1 1 14 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 14 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 13 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 14 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 15 Clear All Segments Image: Capacity Ad	5	Ramp FFS (mph)	40		Length (ft)	5280	1500	2280
7 Ls for Weaving Segment (ft) 1,640 60 60 60 8 TRD (ramp/mi) 1.00	6	Djam (pc/mi/ln)	190		Number of Lanes	3	3	3
8 TRD (ramp/m) 1.00 Segment Demand (vph)	7	Ls for Weaving Segment (ft)	1,640		FF Speed (Mi/hr)	60	60	60
9 Terrain fiv (FK) Level (FK) Vehicle Occupancy (passiveh) 1 1 1 10 fiv (rt, Analysis Duration fiv (rt, Analysis Duration fit (Capacity Adjustment Factor 1 1 1 12 Analysis Duration fit (Capacity Adjustment Factor 1 1 1 13 Basic Image: Capacity Adjustment Factor 1 1 1 13 Clear All Segment Image: Capacity Adjustment Factor 1 1 1 14 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 15 RUN Image: Capacity Adjustment Factor 1 1 1 14 Image: Capacity Adjustment Factor 1 1 1 1 15 RUN Image: Capacity Adjustment Factor 1 1 1 16 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 16 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 1 1 <td>8</td> <td>TRD (ramp/mi)</td> <td>1.00</td> <td></td> <td>Segment Demand (vph)</td> <td></td> <td></td> <td></td>	8	TRD (ramp/mi)	1.00		Segment Demand (vph)			
10 fHV 1 1 1 11 capacity Adjustment Factor 1 1 1 12 Analysis Duration 1 1 1 1 13 Basic Image: Capacity Adjustment Factor 1 1 1 1 13 Clear All Segment Image: Capacity Adjustment Factor 1 1 1 1 14 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 1 14 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 1 14 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 1 14 Clear All Segments Image: Capacity Adjustment Factor 1 1 1 1 1 15 RUN Lane Width (th) 12 12 12 12 16 RUN % Trucks 5% 5% 5% 5% 5% 1 1 1 1 1 1 1 1 1 1 1 1	9	Terrain	Level		Vehicle Occupancy (pass/veh)	1	1	1
11 dFL 1 1 1 12 Analysis Duration Image: Segment Type Image: Segment Type Image: Segment Type 3 Basic Image: Segment Type Image: Segment Type Image: Segment Type Image: Segment Type 13 Clear All Segments Image: Segment Type Image: Segment Type Image: Segment Type 14 Clear All Segments Image: Segment Type Image: Segment Type Image: Segment Type 14 Clear All Segments Image: Segment Type Image: Segment Type Image: Segment Type 14 Clear All Segments Image: Segment Type Image: Segment Type Image: Segment Type 14 Clear All Segments Image: Segment Type Image: Segment Type Image: Segment Type 14 Clear All Segments Image: Segment Type Image: Segment Type Image: Segment Type 14 Clear All Segments Image: Segment Type Image: Segme: S	10	fHV			Capacity Adjustment Factor	1	1	1
12 Analysis Duration Destination Demand Adjustment Factor 1 1 1 3 Basic Image: Comparison of Compa	11	cIFL			Origin Demand Adjustment Factor	1	1	1
Inter Number of Lanes and Segment Type 3 Basic Add Segment Id	12	Analysis Duration]	Destination Demand Adjustment Factor	1	1	1
3 Basic Add Segment 14 15 RUN 16 RUN 17 18 19 20 Copy to CT-Vcost Cot CT-Vcost		Enter Number of Lanes and S	egment Type					
Add Segment I3 Clear All Segments I4 I5 I6 RUN I7 I8 I7 I8 I7 I8 I7 I8 I7 I8 I7 I8 I8 I9 I9 I19 I19 I19 I10 I11 I12 Copy to CT-vost I13 I14 I15 I16 I17 I18 I19 I19 I11		3 - F	Basic -	1	-			
Add Segment 13 Clear All Segments 14 Lane Width (ft) 12 12 15 RUN 16 RUN % Trucks 5% 5% 17 % Trucks 5% 5% 5% 18 % Trucks 5% 5% 5% 19 Copy to CT- VCost % Truck Passenger Car Equivalent ET 1.5 1.5 20 Copy to CT- VCost On-Ramp Strucks 2 0 21 Oon-Ramp % Trucks 2 0 0 22 Go to CT-Vcost Off-Ramp % RV's 2 0 23 On-Ramp to Off-Ramp % RV's 2 0 0 24 Go to CT-Vcost Off-Ramp % RV's 2 0 27 Acc/ Dec Lane Length (ft) 500 1 28 Number of Lanes on Ramp 1 1 30 Ramp FFS (mi/hr) 40 40 40					-			
13 Clear All Segments 14 Lane Width (tt) 12 12 12 15 RUN % Trucks 5% 5% 5% 16 RUN % RV's 0% 0% 0% 18 Copy to CT- VCost % RV's 0% 0% 0% 19 Copy to CT- VCost R.V. Passenger Car Equivalent ET 1.5 1.5 1.5 20 On-Ramp % Trucks 2 0 0 0 0 21 Go to CT-Vcost Off-Ramp % Trucks 2 0 0 0 23 Go to CT-Vcost Off-Ramp % RV's 2 0 0 0 0 24 Copy to CT-Vcost Off-Ramp % RV's 2 0 </td <td></td> <td>Add Seg</td> <td>mont</td> <td>]</td> <td></td> <td></td> <td><u> </u></td> <td></td>		Add Seg	mont]			<u> </u>	
13 Clear All Segments 14 Lane Width (ft) 12 12 12 16 RUN % Trucks 5% 5% 5% 17 % Trucks 5% 5% 5% 5% 18 % Trucks 5% 5% 5% 5% 19 Copy to CT- VCost Truck Passenger Car Equivalent ET 1.5 1.5 1.5 20 Copy to CT- VCost On-Ramp Demand (vph) 0 0 0 21 Go to CT-Vcost On-Ramp % RV's 2 0 0 0 22 On-Ramp % RV's 2 0		Add Segi	nenc				//	
Image: Segments Clear All Segments 14 Lane Width (ft) 12 12 12 15 Lateral Clearance (ft) 4 4 4 16 % Trucks 5% 5% 5% 17 % RV's 0% 0% 0% 18 Copy to CT- VCost Truck Passenger Car Equivalent ET 1.5 1.5 20 Copy to CT- VCost On-Ramp Demand (vph) — — 21 Go to CT-Vcost On-Ramp % Trucks 2 — 22 On-Ramp trucks 2 — — 23 On-Ramp % RV's 2 — — 24 Co to CT-Vcost Off-Ramp % Trucks 2 — 26 On-Ramp to Off-Ramp % RV's 2 — — 27 Acc/ Dec Lane Length (ft) 500 _ 28 Number of Lanes on Ramp 1 _ 30 Ramp on Left or Right (L / R) Right _				1				
14 15 12 12 12 16 RUN 12 12 12 16 % Trucks 5% 5% 5% 17 % Trucks 5% 5% 5% 18 % Trucks 5% 5% 5% 19 0 0% 0% 0% 20 Copy to CT- VCost 1.5 1.5 1.5 21 Copy to CT- VCost 0.0 0 0 22 On-Ramp Permand (vph)	13	Clear All Se	gments	J				
IS RUN 16 % Trucks 5% 5% 5% 17 % Trucks 5% 5% 5% 5% 18 % RV's 0% 0% 0% 0% 19 Copy to CT- VCost Truck Passenger Car Equivalent ET 1.5 1.5 1.5 20 Copy to CT- VCost R.V. Passenger Car Equivalent ER 0 0 0 21 Copy to CT- VCost On-Ramp Pemand (vph)	14				Lane Width (ft)	12	12	12
16 RUN 17 % Trucks 5% 5% 5% 18 % RV's 0% 0% 0% 19 Copy to CT- VCost Truck Passenger Car Equivalent ET 1.5 1.5 1.5 20 Copy to CT- VCost RV. Passenger Car Equivalent ER 0 0 0 21 VCost On-Ramp Demand (vph)	15				Lateral Clearance (ft)	4	4	4
17 % RV's 0% 0% 0% 18 Terrain Level Level Level 19 Copy to CT- VCost Truck Passenger Car Equivalent ET 1.5 1.5 1.5 20 Copy to CT- VCost R.V. Passenger Car Equivalent ER 0 0 0 21 VCost On-Ramp Demand (vph)	16	I RU	N		% Trucks	5%	5%	5%
18 Terrain Level Level 19 19 19 10 10 20 Copy to CT-VCost R.V. Passenger Car Equivalent ET 1.5 1.5 1.5 21 Copy to CT-VCost 0 0 0 0 21 Copy to CT-VCost 0n-Ramp Demand (vph) 0 0 23 0 0 0 0 0 24 0 0 0 0 0 25 Go to CT-Vcost 0 0 0 0 26 0 0 0 0 0 0 27 Go to CT-Vcost 0ff-Ramp % Trucks 2 0 0 0 28 Number of Lanes on Ramp 1 <td< td=""><td>17</td><td></td><td></td><td></td><td>% RV's</td><td>0%</td><td>0%</td><td>0%</td></td<>	17				% RV's	0%	0%	0%
In Truck Passenger Car Equivalent ET 1.5 1.5 20 Copy to CT-VCost R.V. Passenger Car Equivalent ER 0 0 0 21 VCost On-Ramp Demand (vph) 0 0 22 On-Ramp M Trucks 2 0 0 0 23 Go to CT-Vcost On-Ramp M Trucks 2 0	18				Terrain	Level	Level	Level
20 21 22Copy to CT- VCostR.V. Passenger Car Equivalent ER 00021 22On-Ramp Demand (vph)23On-Ramp % Trucks224 25Go to CT-VcostOn-Ramp % RV's226On-Ramp % Trucks27Off-Ramp % RV's28Off-Ramp % RV's29Number of Lanes on Ramp130Ramp on Left or Right (L / R)Right	19				Truck Passenger Car Equivalent ET	1.5	1.5	1.5
21 On-Ramp Demand (vph) Image: Complex of the second	20	Convito	CT-		R.V. Passenger Car Equivalent ER	0	0	0
22VCostOn-Ramp % Trucks223On-Ramp % RV's224On-Ramp to Off-Ramp (Weaving Sections)025Go to CT-VcostOff-Ramp % Trucks026Off-Ramp % RV's027Acc/ Dec Lane Length (ft)50028Number of Lanes on Ramp129Ramp on Left or Right (L / R)Right30Acc/ Dec Sight (L / R)4040	21	Copy to			On-Ramp Demand (vph)			
23 On-Ramp % RV's 2 24 On-Ramp to Off-Ramp (Weaving Sections) 25 Go to CT-Vcost Off-Ramp % Trucks 26 Off-Ramp % RV's 27 Acc/ Dec Lane Length (ft) 500 28 Number of Lanes on Ramp 1 29 Ramp on Left or Right (L / R) Right 30 40 40	22	VCo:	st		On-Ramp % Trucks		2	
24 On-Ramp to Off-Ramp (Weaving Sections) Image: Constant of the section of the sect	23				On-Ramp % RV's		2	
25 Go to CT-Vcost Off-Ramp % Trucks Image: Content of the state of the sta	24	ſ			On-Ramp to Off-Ramp (Weaving Sections)			
26 Off-Ramp % RV's Image: Constraint of the state of	25	Go to CT-	Vcost		Off-Ramp % Trucks			
27 Acc/ Dec Lane Length (ft) 500 28 Number of Lanes on Ramp 1 29 Ramp on Left or Right (L / R) Right 30 Ramp FFS (mi/hr) 40 40	26				Off-Ramp % RV's			
28 Number of Lanes on Ramp 1 29 Ramp on Left or Right (L / R) Right 30 Ramp FFS (mi/hr) 40 40	27				Acc/ Dec Lane Length (ft)		500	0
Ramp on Left or Right (L / R) Right 30 Ramp FFS (mi/hr) 40 40 40	28				Number of Lanes on Ramp		1	
30 Ramp FFS (mi/hr) 40 40 40	29				Ramp on Left or Right (L / R)	1	Right	0
	30				Ramp FFS (mi/hr)	40	40	40

Figure 28: Highway Improvement Interface

Using the dropdown menus (found under the text "Enter Number of Lanes and Segment Type"), the user selects the number of lanes and segment type to add to the analysis. Figure 28 presents samples of a three-lane roadway with basic, merging, and diverging segments.

The new segment will appear after you click the "Add Segment" button. After the segment is added, additional parameters such as length, FFS, vehicle occupancy, lane width, lateral clearance, percentage of trucks, on-ramp percentage of trucks (if diverging or merging section), etc., are then automatically specified on the spreadsheet as shown in Figure 29.

Figure 29: Sample Input Data Showing Roadway Geometry (HCM, 2010)⁶

Caution: Clicking on the "Clear All Segments" button will reset the application.

After completing the roadway segment information, traffic flow rates must be specified for the 15-minute time increments (see Figure 30). The user then clicks the "RUN" button to compute volumes served, roadway capacity, demand-to-capacity ratios, and segment speeds (Figure 31). The output appears below the "Input Demand" section.

Finally, click on the "Copy to CT-Vcost" button to copy the roadway segments configuration and speed data into CT-Vcost's "Route Information Sheet" for vehicle operating cost analysis.

INPUT DEMAND							
15 min. Time Steps	Entering Flow Rates	SEG 02	SEG 03				
	В	ONR	В				
1	4,505	540					
2	4,955	720					
3	5,225	810					
4	4,685	360					
5	3,785	270					
6							
7							
8							

Figure 30: Sample Traffic Demand Data in 15-Minute Increments

⁶ Highway Capacity Manual, Published by the Transportation Research Board of the National Research Council, Washington, DC 113 (2010).

	VOLUMES SERVED (veh/h)						
15 min. Time Steps	1	2	3				
1	4,505	5,045	5,045				
2	4,955	5,675	5,675				
3	5,225	6,035	6,035				
4	4,685	5,045	5,045				
5	3,785	4,055	4,055				
6							
7							
8							

COMPUTED CAPACITIES						
15 min. Time Steps	1	2	3			
1	6,732	6,732	6,732			
2	6,732	6,732	6,732			
3	6,732	6,732	6,732			
4	6,732	6,732	6,732			
5	6,732	6,732	6,732			
6						
7						
8						

				DEMAND-TO-CAPACITY RATIOS			
15 min. Time Steps	1	2	3				
1	0.67	0.75	0.75				
2	0.74	0.84	0.84				
3	0.78	0.90	0.90				
4	0.70	0.75	0.75				
5	0.56	0.60	0.60				
6							
7							
8							

				MENT SPEEDS (n	nph)
15 min. Time Steps	1	2	3		
1	60.00	54.66	59.72		
2	59.84	54.23	57.91		
3	59.38	53.89	56.12		
4	60.00	54.65	59.72		
5	60.00	55.23	60.00		
6					
7					
8					

Figure 31: Highway Improvement Model Output

Support

For further assistance with using the model, please contact any of the authors:

Dan P. K. Seedah The University of Texas at Austin Center for Transportation Research 1616 Guadalupe Street, Suite 4.202, Austin, Texas, 78701 Phone: (512) 232.3143 Email: dseedah@mail.utexas.edu

Robert Harrison The University of Texas at Austin Center for Transportation Research 1616 Guadalupe Street, Suite 4.202, Austin, Texas, 78701 Phone: (512) 232.3114 Email: <u>harrison@mail.utexas.edu</u>