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CHAPTER 1: INTRODUCTION 

1.1:  Introduction 

The design of drilled shaft retaining walls in non-expansive soils is well established. In 
expansive soils, however, there is no consensus on the correct way to model the effects of soil 
expansion on wall behavior during cycles of wetting and drying. Based on the range of design 
assumptions currently in practice, existing walls could be substantially over- or under-designed. 
The purpose of this research is to advance the understanding of the behavior of drilled shaft 
retaining walls installed through expansive clay. The primary source of information for this study 
will be data from a full-scale instrumented test wall, which was installed through highly 
overconsolidated, expansive clay in Manor, Texas, and monitored for a period of 4 years. This 
study includes a summary of existing research, technical information on the design and 
construction of the instrumented test wall, an analysis of the relationship between soil behavior 
and wall deformation during the 3-year monitoring period, and recommendations on how to 
account for the effects of expansive soil in design. The analysis of test wall response includes 
summaries of behavior before excavation, during excavation, during long-term moisture 
fluctuations that included an extreme drought, and during controlled inundation testing that 
provided the retained soil unlimited access to water until the wall deflections reached 
equilibrium. 

1.2:  Research Objectives 

The goal of this research is to advance our understanding of the long-term behavior of 
retaining structures in expansive clays. The observed performance and instrumentation data from 
our test wall will be used to address the following objectives: 

1. Identify and analyze the processes responsible for wall loading and deformation. 

2. Evaluate how these processes change with time and moisture cycles. 

3. Provide guidance for design practice to account for these processes and ensure adequate 
wall performance. 

1.3:  Research Methodology 

The objectives of this research study will be accomplished according to the following 
methodology: 

1. Design and construct a full-scale instrumented test wall through expansive clay. 

2. Monitor the performance of the test wall during construction, excavation, natural 
seasonal moisture fluctuations, and controlled inundation testing that provides the 
expansive clay with unlimited access to water. 

3. Analyze test wall performance data using standard of practice design methods. 

4. Develop guidance for design practice based on results of analyses. 
 

This study is primarily based on data from the Lymon C. Reese research wall in Manor. 
While the Taylor clay at the research site is typical of an overconsolidated, high plasticity, stiff-
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fissured clay in Texas, the behavior of other expansive soil deposits may deviate from the 
behavior presented in this study. 

1.4:  Organization of Report 

This report is organized into six chapters and ten appendices. Chapter 1 presents the 
introduction material. Chapter 2 presents the background information. An assessment of three 
existing TxDOT walls is discussed in Chapter 3. The design and construction of the full-scale 
instrumented test wall and the test wall performance and data analysis are presented in Chapters 
4 and 5, respectively. Chapter 6 discusses the development of design guidelines and the 
conclusions and recommendations are presented in Chapter 7.  

The wall design memo, site piezometric data, site moisture content data, the site and 
vicinity meteorological data, wall construction and installation of instrumentation, field 
inclinometer data, strain gauge data, p-y curves, finite element analysis, and the finite difference 
analysis are presented in Appendices A, B, C, D, E, F, G, H, I, and J respectively. Appendix K 
presents the student M.S. theses and Ph.D. dissertation associated with this project.  
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CHAPTER 2: BACKGROUND INFORMATION 

2.1:  The Design and Use of Drilled Shaft Retaining Walls in Texas 

2.1.1:  DRILLED SHAFT WALLS IN TEXAS 

Cantilever drilled shaft retaining walls are common earth-retaining structures in Texas. 
They are well suited for use in urban environments where noise, space, and damage to adjacent 
structures are major considerations (Wang and Reese 1986). Additionally, because of the 
prevalence of drilled shaft foundations in Texas, experienced contractors are readily available. 
The design of drilled shaft retaining walls has changed over time. While initial design methods 
were based on limit equilibrium calculations, more refined p-y analyses based on soil-structure 
interaction have been developed and are currently in use by TxDOT (Wang and Reese 1986; 
TxDOT 2009). 

2.1.2:  ESTIMATION OF LATERAL EARTH PRESSURES 

There is uncertainty in how to account for lateral earth pressures acting on drilled shaft 
walls installed through expansive clay. In Texas, some of the most problematic expansive clay 
deposits are also highly overconsolidated. For this reason, an examination of retaining wall 
design procedures for stiff, overconsolidated clay can provide a reference point for the design of 
walls in expansive clay deposits. 

Commonly, the earth pressure on walls in stiff, overconsolidated clay is estimated using 
Coulomb active earth pressures with drained properties (Wang and Reese 1986). The TxDOT 
design procedure for cantilever drilled shaft walls employs this method with a recommended 
friction angle of 30° for “medium to stiff clays” (TxDOT 2009). For clays common in Texas, 
this approach results in earth pressures that correspond to an equivalent fluid unit weight of 
approximately 35 to 40 pounds per cubic foot (pcf). 

2.1.3:  SUMMARY OF CURRENT TXDOT DESIGN PROCEDURE FOR STIFF CLAYS (AFTER 

TXDOT, 2009) 

In the current TxDOT design procedure, drilled shaft size and spacing is based on 
moment capacity. The following section presents a shortened version of the procedure that 
appears in TxDOT (2009). More detailed design information can be found in TxDOT (2012). 

1. Determine earth pressures to be applied as loads using a Coulomb analysis with cohesion 
equal to zero. 

a. For stiff clays, use a friction angle of 30°. Assume angle of wall friction is equal 
to two-thirds the soil friction angle. 

b. Assume no water behind the wall. 
c. Include soil or traffic surcharge loads where appropriate. 

2. Estimate maximum moment in shaft. 
a. Compute groundline moment from earth pressure distribution. 
b. Increase groundline moment by 50 percent to estimate the maximum earth 

pressure below the excavation line, i.e., Mmax = 1.5·MGL (Figure 2.1). 

3. Choose trial drilled shaft size and spacing based on moment capacity. 
a. Use load factor of 1.7 for earth pressure to compute ultimate moment (Mu) 
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b. Use nominal moment (Mn) from shaft properties, then check that the factored 
moment capacity (ϕ·Mn) exceeds Mu with ϕ = 0.9. 

4. Determine properties of the soil below the finished groundline. 
a. Use ultimate soil strengths for p-y curves. 
b. Reduce soil strengths from 0 to 5 feet below the excavation line by 50 percent to 

account for loss of strength after excavation. 

5. Run p-y analysis using COM624 or LPILE. 
a. Reduce soil strengths to account for close shaft spacing based on Figure 2.2.  
b. Use uncracked section properties for the shaft. 
c. Ensure bending moments and deflections are within allowable values. Limit 

deflections to 1 percent of the cantilever height. 

6. Determine depth of shaft fixity based on several embedment values. 
a. Determine depth of fixity where top-of-wall deflection is no longer affected by 

embedment depth. 
b. Determine final embedment depth by multiplying depth of fixity by 1.33. 

 

 
Figure 2.1: Initial estimation of maximum moment using TxDOT design procedure. 
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Figure 2.2: Ultimate load ratio vs. clear spacing/drilled shaft diameter (after TxDOT, 2012). 

2.2:  The Effects of Expansive Clay on Retaining Structures 

2.2.1:  SWELL PRESSURES, OVERCONSOLIDATION, AND OTHER CONCERNS 

There have been concerns raised over the potential effects of expansive soils on retaining 
structures. The most common of these concerns is the magnitude of horizontal swelling pressures 
exerted on the wall by the expansive soil. Lytton (2007) summarizes some relevant studies that 
seek to quantify this effect. Variously, the potential lateral pressures acting on a wall in 
expansive clay have been estimated to be four times the overburden pressure, 6000 psf at 3 feet 
of depth in a lab study, 8000 psf at 3feet of depth in another lab study, and 1700 psf at 3 feet of 
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depth in a field study—any of these scenarios are significantly higher than the currently accepted 
values used for retaining wall design. These studies are described in more detail in Lytton 
(2007). In general, the expansive soil pressure exerted on a wall is considered to be limited by 
the passive resistance of the retained soil (Pufahl et al. 1983 and Hong 2008). 

In addition to the potential for high lateral pressures, other potential concerns have been 
identified for retaining walls in expansive clay. Pufahl et al. (1983) describe a hypothetical 
structure “ratcheting” out with wetting and drying cycles. During dry seasons, the soil could pull 
back from the wall, incompressible debris could fill the gap, and soil expansion could push the 
wall and debris further out with each new rewetting cycle. Puppala et al. (2011) describe that 
cracks near drilled shafts could create zones for moisture infiltration, increasing the depth of the 
active zone near the shafts. 

In Texas, many expansive soil deposits are also heavily overconsolidated. In 
overconsolidated clay, in-situ horizontal stresses can be very large. When the unloading 
associated with retaining wall excavation takes place, these large horizontal stresses can impact 
wall performance. Furthermore, the residual strength of overconsolidated clay can be very low—
residual friction angles of 18° or less have been widely reported. The transition from peak-
drained strength to residual-drained strength could influence the increase in lateral earth 
pressures with time (Wang and Reese 1986). The lateral swell pressures from moisture changes 
in overconsolidated clay have been reported to be higher than those in normally consolidated 
clay (Ellis 2011). 

2.2.2:  RECENT FAILURES IN OVERCONSOLIDATED, EXPANSIVE CLAY 

Because the potential for expansion and a high degree of overconsolidation coexist in 
expansive clays in Texas, it is difficult to separate the effects of swelling from the effects of 
overconsolidation when considering wall failures. Smith et al. (2009) examine the failure of a 
bridge deck completed using top down construction in the overconsolidated, expansive Eagle 
Ford shale near Dallas, Texas. In this case, the bridge deck was installed before complete 
excavation of the underpass and installation of tiebacks. Ultimately, an estimated 4 inches of 
inward movement caused the failure of the bridge deck. The authors concluded that the major 
issue was the use of a design at-rest earth pressure coefficient (Ko) value of approximately 0.7; 
actual values of Ko for the Eagle Ford shale and other overconsolidated clays are often reported 
to be between 2 and 3. Expansive soil movement was cited as a “likely” contributing factor 
(Smith et al. 2009).  

Another wall failure in the Eagle Ford shale, this time of a Vertically Earth Reinforced 
Technology (VERT) wall system, is detailed by Adil Haque and Bryant (2011). This paper 
indicates that the high Ko values and low residual strengths of overconsolidated clay, as well as 
expansion from moisture changes, should have been considered in design. The paper also states 
that “the swell pressure due to unloading could also exert a significant pressure on the wall, 
much greater than the swell pressure on the walls from moisture changes” (Adil Haque and 
Bryant 2011). 

2.3:  Field Performance of Existing TxDOT Walls 

2.3.1:  EXPANSIVE CLAY CONCERNS VERSUS REAL-WORLD MITIGATING FACTORS 

Despite the numerous problems potentially associated with the expansive soils in Texas, 
relatively few failures of drilled shaft retaining walls have been observed. There are several 
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possible explanations for the general lack of problems associated with drilled shaft retaining 
walls in expansive clays in Texas. 

First, the load factors and deflection requirements used by the TxDOT design procedure 
will result in drilled shafts that can withstand higher pressures than the nominal values used in 
design. After calculating the maximum moment in the shaft, a load factor of 1.7 is applied to 
estimate the design moment. If the differences in active Coulomb earth pressures induced by 
residual soil strength and/or soil swell are within the range encompassed by this load factor, it is 
possible that the potential increases in soil pressures are not causing visible distress on walls (for 
reference, a Coulomb analysis using a residual friction angle of 18° results in an equivalent fluid 
pressure of approximately 60 psf/ft, about 50 percent higher than the nominal value of 40 psf/ft). 
While the top-of-shaft deflections might exceed 1 percent of the wall height, the structural 
integrity of the shafts may be preserved. Furthermore, the final as-built drilled shafts may have 
greater capacity than the minimum allowed by design due to other factors such as 
constructability (although the risk for lower-than-design capacities due to poor construction 
exists as well). 

Additionally, pavement and drainage systems behind drilled shaft walls may limit the 
severity of moisture changes causing shrinking and swelling. In pavements with expansive 
subgrades, moisture contents tend to increase from their natural moisture content to a “steady 
state” value after the installation of pavement (Snethen et al. 1975, Wise et al. 1971). While the 
subgrade is still subject to moisture changes, the magnitude of these changes may be smaller than 
those of exposed soil. The presence of pavement near the shaft can also prevent the problems 
associated with water and/or debris entering the gap between the shaft and the soil (Puppala et al. 
2011). 

Finally, despite the potential to generate very large swell pressures under confinement, 
swell pressures can be reduced by allowing relatively small wall deformations to take place 
(Thomas et al. 2009). For projects as large as the typical TxDOT drilled shaft retaining wall, it is 
possible that expansive soil pressures are being accommodated by small wall deformations that 
would not be noticed without careful instrumentation. 

2.4:  Analyses Programs 

Two commercially available finite difference programs commonly used in the analysis of 
drilled shaft retaining walls are LPILE (Isenhower and Wang 2013) and PYWALL (Reese et al. 
2013). The standard of practice for TxDOT is to use LPILE as part of the design procedure 
(Section 2.1.3).  

LPILE was developed by Ensoft, Inc. and is commonly used to analyze a laterally loaded 
drilled shaft using the p-y method. LPILE calculates the deflection, bending moment, shear 
force, and soil response along the length of the shaft by solving the differential equations of 
static equilibrium for a beam column using soil-reaction springs represented by p-y curves. 
LPILE was not developed explicitly to analyze a retaining wall with retained soil on one side of 
the shafts and with shafts spaced closely enough to interact with one another. In practice, LPILE 
is adapted to analyzing a retaining wall by (1) applying an earth pressure distribution on one side 
of the shaft to represent the loading from the retained soil; (2) neglecting the difference in 
vertical and lateral overburden stress on the retained and excavated sides of the shaft; and (3) 
adjusting the input parameters for the p-y curves to account for the interaction with adjacent 
shafts. 
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PYWALL was also developed by Ensoft to specifically analyze a retaining wall. It uses 
the same theory as LPILE for a single shaft but implicitly accounts for the loading, the 
differences in overburden stresses, and the effects of shaft interactions on p-y curves. 

2.5:  Models for Lateral Earth Pressure Loading 

Long-term conditions generally govern retaining wall design in high plasticity clays. 
Often, for embankments and retaining walls, the development of drained, fully softened strengths 
is a suitable ultimate condition for design (Wright 2005). A variety of models have been 
proposed for representing the long-term earth pressures induced by expansive soil. For clays in 
the Taylor formation, where the Lymon C. Reese research wall is constructed, peak drained 
friction angles are approximately 37° (Long 1983 and Ellis 2011), and average fully softened 
friction angles in the upper 15 feet are estimated to be approximately 24° based on liquid limit 
relationships (e.g., Wright 2007) and laboratory test data discussed in Chapter 7. The resulting 
earth pressure envelopes using the fully softened strengths of the Taylor clay, assuming both no 
water behind the wall and hydrostatic conditions behind the wall, are pictured in Figure 2.3, 
along with TxDOT’s typical design earth pressure envelope and a hypothetical model of 
expansive soil swelling pressures similar to that presented in Hong (2008). 

 

 
Figure 2.3: Examples of proposed long-term earth pressure envelopes for expansive clay 

(pressures are acting on a 2.5-foot shaft width). 
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2.6:  P-y Models of Foundation Soil Response 

In addition to the uncertainty associated with the behavior of the retained soil, several p-y 
models have been proposed to model the response of the foundation soil in expansive clay. Some 
of these curves are briefly explained below; illustrations of the calculated curves at a depth of 16 
feet below the original ground surface (1 foot below the design excavation base) for the Lymon 
C. Reese research wall are provided for comparison in Figure 2.7. 

2.6.1:  STIFF CLAY WITHOUT FREE WATER 

Typically, the TxDOT design procedure for stiff clays uses p-y curves for “stiff clay 
without free water,” developed from tests in Houston, Texas (TxDOT 2009, Reese et al. 2006, 
Reese and Welch 1972). To account for strength reductions due to the removal of overburden 
pressures during excavation, a common procedure for excavations in stiff-fissured clay is to 
reduce strengths by 50 percent in the upper 10 feet and/or translate the profile of undrained 
strengths from the original ground surface down to the excavation line. Additionally, soil 
strengths are reduced to account for the effect of close pile spacing as shown in Figure 2.2 
(TxDOT 2012; Wang and Reese 1986). For the Lymon C. Reese wall, average undrained 
strengths used for the development of representative p-y curves shown in Figure 2.7 were 
approximately 1600 to 2000 psf (before strength reductions). Total soil unit weights are used for 
these curves. 

2.6.2:  STIFF CLAY WITH FREE WATER 

It is possible that if water stays in the excavation base, the use of curves developed for 
“stiff clay in the presence of free water” may be appropriate. These curves were developed from 
load tests in the Taylor formation in Manor, Texas (Reese et al. 1975). Strength reductions to 
account for the removal of overburden pressures and close pile spacing are applied before 
calculating the curves as shown in Reese et al. 2006. Curves developed for clays in the presence 
of free water use effective unit weights. 

2.6.3:  DRAINED P-Y CURVES FOR COHESIONLESS SOIL 

If the long-term conditions of drilled shaft walls in expansive clays are governed by the 
development of drained conditions, the use of drained p-y curves developed for cohesionless 
soils may be appropriate. Because the initial stiffness of the clay in response to loading at small 
strains is governed by undrained behavior, the initial stiffness value kpy for the p-y curves is 
selected according to the undrained properties of the clay as shown in Figure 2.4. The use of 
default kpy values for modeling curves at low friction angles associated with expansive clay soils 
results in unrealistically low values of initial stiffness (Figure 2.5). The selection of unit weight 
is based on the expected hydrologic conditions on the project site to represent effective stresses. 
Strength reduction to account for close pile spacing is accounted for by reducing the p-y curve by 
a reduction factor (Figure 2.6) that is applied to all points along the curve. 
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Figure 2.4: Typical kpy values for clays (after Dodds and Martin 2007). 
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Figure 2.5: Typical kpy values for sands (after Dodds and Martin 2007). 
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Figure 2.6: Curves giving group reduction factors for piles in a row (Reese et al. 2006). 

2.6.4:  SUMMARY OF PROPOSED P-Y CURVES FOR COMPARISON 

A summary of the proposed p-y curves discussed in the previous sections, calculated for 
the test wall at a depth of 16 feet below the original ground surface (1 foot below the excavation 
line) is shown in Figure 2.7 for comparison. For this research study, p-y curves estimated from 
test wall data will be compared with the family of curves discussed in this section. 
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Figure 2.7: Summary of proposed p-y curves, calculated for the test wall at a depth of 16 feet 

below the original ground surface (1 foot below excavation line). 
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CHAPTER 3: ASSESSMENT OF EXISTING TXDOT WALLS 

3.1:  Candidate Walls 

Three existing walls were selected for assessment with the cooperation of TxDOT 
managers. While there may be additional walls throughout Texas that warrant further study, the 
following three walls from the Houston district were the only candidates that could be identified 
with the information provided by TxDOT. 

1. FM 1960 at Kuykendahl (CSJ # 1685-01-082) 

2. US 59 at Hazard Street (CSJ # 0027-13-165) 

3. IH 45 at GREENS ROAD (CSJ # 0110-06-102) 
 

3.1.1:  FM 1960 AT KUYKENDAHL (CSJ # 1685-01-082) 

This retaining wall is located in north Houston, Texas, where Kuykendahl Road passes 
under FM 1960 (Figure 3.1). The underpass was built to relieve congestion at the intersection. 
Based on TxDOT’s payment records and satellite imagery, excavation was likely completed in 
late 2008 (Ozuna 2011). The area had been developed prior to construction, and the project 
represents a change to an existing roadway that was already covered with pavement (Figure 3.2 
and Figure 3.3). The wall is a hybrid structure consisting of a cantilever drilled shaft wall over 
the middle depths and a tieback wall over the deeper depths. As of June 30, 2011, no obvious 
signs of distress have been observed. 
 

 
Figure 3.1: View of wall location within greater Houston (Google Inc., 2011). 
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Figure 3.2: Aerial view of project area before excavation (image date: January 2008) (Google 

Inc., 2011). 
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Figure 3.3: Aerial view of project area after completion (image date: March 2011) (Google, 

Inc., 2011). 

3.1.2:  US 59 AT HAZARD STREET (CSJ # 0027-13-165) 

This retaining wall is located in Houston on US Highway 59 between South Shepherd 
Street and Mandell Street (Figure 3.4 and Figure 3.5). Based on satellite imagery and available 
information from TxDOT, excavation was likely completed in mid-2002 (Figure 3.6 and Figure 
3.7). The wall consists of several sections of similar cantilever drilled shaft walls, interrupted by 
bridge abutments at regular intervals. During an assessment performed June 30, 2011, some gaps 
between the retained soil and the wall were observed, but no signs of wall distress were clearly 
present. 
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Figure 3.4: View of wall location within Houston (Google Inc., 2011). 

 

 
Figure 3.5: View of project area along US 59. 
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Figure 3.6: Aerial view of the project area before construction (image date: January 1995) 

(Google Inc., 2011). 

 
Figure 3.7: Aerial view of the project area after completion (image date: March 2011) (Google 

Inc., 2011). 

3.1.3:  IH 45 AT GREENS ROAD (CSJ # 0110-06-102) 

The retaining wall is located in north Houston, where Greens Road passes under the 
Interstate Highway 45 frontage road (Figure 3.8). A highway overpass existed prior to 
construction. Based on satellite imagery and correspondence with TxDOT, excavation was likely 
completed in mid-1997. Aerial images of the site before and after wall construction are shown in 
Figure 3.9 and Figure 3.10. The wall is a hybrid structure consisting of a cantilever drilled shaft 
wall at shallow depths and a tieback wall at higher design heights. As of June 30, 2011, no 
obvious signs of distress have been observed. 
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Figure 3.8: View of wall location within greater Houston (Google Inc., 2011). 

 
Figure 3.9: Aerial view of the project area before construction (image date: January 1995) 

(Google Inc., 2011). 
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Figure 3.10: Aerial view of the project area after completion (image date: March 2011) (Google 

Inc., 2011). 

3.2:  Climate Information 

In order to identify the potential for expansive soil movement, climatic cycles between 
wet and dry seasons need to be examined. Because the three candidate walls are located in 
Houston, the climate data for all three should be sufficiently similar. Additionally, no 
construction records were available for the candidate walls. To estimate construction dates, 
TxDOT suggested that we go back 1 year from the final payment date from TxDOT to the 
contractor (Ozuna 2011). Because we lack precise information about when the shafts were 
installed and the excavations completed, conclusions drawn from site-specific climate data 
should be qualified.  

Vipulanandan and Joseph (2011) examined moisture fluctuations in the active zone for 
the city of Houston from the years 2000 through 2007. While this information is not directly 
applicable to the candidate walls, it does indicate that Houston experienced a range of climate-
related soil moisture fluctuations that could potentially lead to expansive soil movement. During 
the month of January (lowest average temperature), the average moisture content in the upper 10 
feet of soil was approximately 16 percent. During the month of July (highest average 
temperature), the average moisture content in the upper 10 feet was approximately 18 percent. 
Year-to-year fluctuations were much greater. The highest fluctuations occurred at depths from 0 
to 5 feet. While temperature effects on soil moisture were seen immediately, the effects of 
rainfall did not appear until “the following months” (Vipulanandan and Joseph 2011). A graph of 
monthly rainfall and temperature in Houston from 2000–2011 is provided in Figure 3.11. A 
comparison of yearly precipitation with the historical average yearly precipitation is provided in 
Figure 3.12. 
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Figure 3.11: Average monthly precipitation and temperature for Houston (2000–2011). Data 

from Weather Underground (2011). 

 
Figure 3.12: Yearly precipitation totals since 2000. 

The dashed red line denotes the yearly historic average. The 2011 total is of the end of July. The 
historic average from January through July is 19.2 inches of precipitation. Data from Weather 

Underground (2011). 
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3.3:  Design Information  

This section presents the geotechnical and design information for the candidate walls. 
This information is based on design documents provided by TxDOT. 

3.3.1:  FM 1960 AT KUYKENDAHL  

3.3.1.1:  Geotechnical Information 

Nine geotechnical borings were drilled near the project site between April 26, 2001, and 
May 7, 2001. Boring logs indicate the soil profile consists of very stiff clay to a depth of 
approximately 10 feet, which is underlain by approximately 10 feet of dense sand to a depth of 
about 20 feet. Below 20 feet, there are alternating layers of dense sand and stiff clay that show 
some variability across the project site (boring locations are not indicated in the available 
documents). 

The very stiff clay in the upper 10 feet is of particular interest because it may be 
subjected to moisture changes causing shrinking and swelling. The plasticity index of this layer 
ranged from 11 to 39, but is typically in the mid 20s, indicating marginal swell potential 
(Department of Army 1983). Liquid limits ranged from 24 to 54 percent. Moisture contents in 
the upper 20 feet ranged from 11 to 23 percent. A water table location was not reported in any of 
the boring logs. The average undrained shear strength reported in the boring logs ranges from 
approximately 2000 to 4000 psf, based on the results of pocket penetrometer and unconsolidated-
undrained (UU) testing. 

3.3.1.2:  Design Information 

The retaining wall at FM 1960 and Kuykendahl Road consists of a combination of 
cantilever drilled shaft walls and tieback walls (Figure 3.13). For this investigation, only the 
cantilever drilled shaft wall is considered. 
 

 
Figure 3.13: Composite sketch of northbound side of underpass. Shaded areas indicate locations 

of cantilever drilled shaft wall. 

The drilled shaft wall consists of 36-inch diameter shafts that are 31 to 52 feet in length. 
Design heights range from 14 to 23 feet. As shaft length increases, more steel reinforcement is 
used (Figure 3.14 and Figure 3.15). The center-to-center spacing of the shafts is approximately 
47 inches (Figure 3.16). Wall facing consists of 8.5 inches of cast-in-place concrete and 5.5 inch 
precast panels (Figure 3.17). 
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Figure 3.14: Design heights, reinforcement type, and shaft length for cantilever drilled shaft 

wall. 

 
Figure 3.15: Reinforcement types for cantilever drilled shaft wall. 
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Figure 3.16: Shaft spacing. 

 
Figure 3.17: Detail of wall facing. 

3.3.2:  US 59 AT HAZARD STREET 

3.3.2.1:  Geotechnical Information 

Across the project area, several geotechnical borings are present in the available 
documents. The soil profile consists primarily of stiff clay. At depths of 0 to 30 feet, the average 
plasticity index is approximately 40, indicating high swell potential (Department of Army 1983). 
Measured moisture contents in the upper 10 feet were generally between 15 and 30 percent. 
Based on the results of UU testing, undrained shear strengths ranged from approximately 2000 
psf to 4500 psf over the depth of the wall. 
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3.3.2.2:  Design Information 

A secant wall consisting of alternating 48-inch and 18-inch shafts is the primary retaining 
structure for this project. In two locations, 48-inch shafts are used by themselves. At varying 
distances behind the wall, a sound wall is installed using 36-inch shafts on 5-foot center-to-
center spacing (Figure 3.18). In some cases, these 36-inch shafts contribute to the strength of the 
main retaining structure. Details on internal shaft geometry are provided in Figure 3.19. Facing 
consists of precast concrete panels. The wall height across the project site is approximately 15 
feet (Figure 3.20). 
 

 
Figure 3.18: Details of drilled shafts for secant wall and sound wall foundation. 
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Figure 3.19: Reinforcement and internal dimensions of drilled shafts. 

 

 
Figure 3.20: Typical cross section showing wall geometry. 
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3.3.3:  IH 45 AT GREENS ROAD 

3.3.3.1:  Geotechnical Information 

Two boring logs are available for the project site, drilled on November 2, 1987 and 
November 4, 1987. The soil profile consists of stiff to very stiff clay. At depths of 0 to 30 feet, 
the average liquid limit is approximately 40 and the average plasticity index is approximately 23, 
indicating low swell potential (Department of Army 1983). Measured moisture contents in the 
upper 30 feet were generally between 20 and 30 percent. The results of several unconfined and 
UU tests, run at confining pressures up to 5000 psf, indicate shear strengths of between 1500 and 
3000 psf over the depth of the wall. 

3.3.3.2:  Design Information 

The retaining wall at Greens Road and IH 45 consists of a combination of cantilever 
drilled shaft walls and tieback walls (Figure 3.21). For this investigation, only the cantilever 
drilled shaft wall is considered. 
 

 
Figure 3.21: Composite sketch of project area. Shaded areas indicate locations of cantilever 

drilled shaft wall. 

The cantilever drilled shaft wall consists of 18- to 36-inch diameter shafts with a spacing 
of 7 feet on center (Figure 3.22). Design heights range from approximately 3 to 10 feet, and shaft 
lengths range from approximately 15 to approximately 35 feet (Figure 3.23). Reinforcement 
details are provided in Figure 3.24. Wall facing consists of either cast-in-place concrete or 
precast concrete panels (Figure 3.25). 
 

 
Figure 3.22: Plan view of typical drilled shaft layout. 
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Figure 3.23: Profiles of two typical drilled shaft walls. 

 
Figure 3.24: Drilled shaft reinforcement table. 
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Figure 3.25: Details of precast and cast in place facing. 

3.4:  Performance Assessment 

On June 30, 2011, an assessment was conducted at the wall site. This was limited to what 
could be safely conducted on foot without disrupting traffic flow. As a result, most insights into 
wall performance are qualitative. 

3.4.1:  FM 1960 AT KUYKENDAHL 

From a distance, the wall appears to be in excellent condition (Figure 3.26). No obvious 
signs of distress were observed when walking along the top and base of the wall. A four-foot 
carpenter’s level showed the panels to be vertical (Figure 3.27). This is consistent with the 
overall condition of the wall. 

At all cantilever drilled shaft wall locations, the retained soil is covered with pavement 
for at least three traffic lanes (Figure 3.28). This could limit the potential for large moisture 
fluctuations near the wall. There are a few grass medians in the area with widths of 
approximately 4 feet. The nearest location for larger scale moisture infiltration is at the southeast 
corner of the intersection, at least 40 feet from the nearest shafts (Figure 3.29). A closer 
inspection of this unpaved area shows that some potential for water ponding exists, but offers no 
clear evidence that it has occurred near the wall (Figure 3.30). An inspection of the wall showed 
no indication of differential movements in the shafts nearest to the unpaved area. 

 



 31

 
Figure 3.26: View of north and southbound walls from FM 1960 bridge (facing southeast). 

 
Figure 3.27: Wall facing was observed to be vertical and in good condition throughout the 

project area. 
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Figure 3.28: Paved area behind the wall. In all locations, pavement extends at least 30 feet 

behind the wall. 

 
Figure 3.29: View of nearest location for moisture infiltration, at southeast corner of 

intersection. 
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Figure 3.30: Unpaved area near southeast corner of intersection. 

3.4.2:  US 59 AT HAZARD STREET 

A large scale view of the project area is presented in Figure 3.31. Because the facing was 
installed at an angle and is currently covered with dense vegetation, very little information about 
the shafts can be obtained from road level (Figure 3.32). 

 

 
Figure 3.31: Large-scale view of project area (facing east). Sound wall is located above the 

main retaining structure. 
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Figure 3.32: Dense vegetation and batter angle on concrete facing panels. Sound wall is located 

above main retaining structure. 

An inspection of the area behind the north wall near Hazard Street showed approximately 
40 feet of exposed soil between the drilled shaft wall and the sound wall (Figure 3.33). Along the 
length of the project site, the distance between the drilled shaft wall and the sound wall can range 
from 0 to approximately 50 feet. At several locations, gaps were observed between the retained 
soil and the shafts (Figure 3.34). Some of these gaps were up to 8 feet deep and 1 foot back from 
the wall. The potential for water to drain into these gaps during heavy rainfall seems high. 

The soil behind the wall is well vegetated and water flow is directed to large grates 
leading to an underdrain system. Of the walls we studied, this wall appears to have the largest 
potential for moisture change. Despite this, every measurement that could be made indicated that 
the wall is vertical and no major red flags were observed (apart from the gaps between the soil 
and the wall). 
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Figure 3.33: Approximately 40 feet of exposed soil behind the wall near Hazard Street (facing 

west). 

 
Figure 3.34: Several gaps were observed between the shafts and the soil behind the wall. 
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3.4.3:  IH 45 AT GREENS ROAD 

From a distance, the wall appears to be in good condition (Figure 3.35). No obvious signs 
of structural distress were observed when walking along the top and base of the wall, but some 
superficial facing damage was observed. Most of this damage appears to be age-related and not 
caused by any structural distress on the wall. Some imperfections in the white concrete facing 
appear to be caused by seams in the concrete formwork (Figure 3.36). Some cracking and 
differential settlement is present in the sidewalks near the wall, but no signs of corresponding 
wall distress were observed at these locations (Figure 3.37). Some concrete cracking was seen at 
the connection between two facing elements (Figure 3.38). 
 

 
Figure 3.35: View of current wall conditions, facing west. 

 
Figure 3.36: Example of imperfection in white concrete facing, possibly caused by a seam in the 

plywood formwork. 
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Figure 3.37: View of sidewalk damage along the base of the wall. 
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Figure 3.38: Some cracking was seen at the connection between two facing panels on the 

southwestern portion of the wall. 

At least 30 feet of pavement covers the soil behind the wall in all directions (Figure 3.39). 
This could limit the potential for large moisture fluctuations near the wall. There are a few grass 
medians in the area, and runoff is directed into a system of storm drains. The extent of pavement 
near the wall is shown in Figure 3.40 and Figure 3.41. 
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Figure 3.39: View of pavement coverage along southwestern side of intersection (facing west). 

 
Figure 3.40: Aerial view of western portion of wall (Google Inc., 2011). 
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Figure 3.41: Aerial view of eastern portion of wall (Google Inc., 2011). 

3.5:  LPILE Analyses 

An LPILE analysis was performed for each wall in order to predict the effects of different 
loads applied to the walls. These analyses were done on the portions of the walls that were just 
cantilever drilled shafts. For clay layers within 5 feet below the excavation line, the undrained 
shear strength was reduced by 50 percent to account for the reduction in strength from the 
reduction in vertical stress due to the excavation of soil above. This reduction in strength is 
consistent with the TxDOT Manual. Loading scenarios considered were equivalent fluid 
pressures of 40, 60, and 80 psf/ft, each with a surcharge load directly behind the wall equivalent 
to two feet of 120-pcf soil.  

3.5.1:  FM 1960 AT KUYKENDAHL 

Seven different shaft layouts were used for this analysis. Soil, shaft, and loading 
properties used in this analysis are presented in Table 3.1 and Table 3.2. Results show that the 
shaft layout that deflected the most relative to the height of the wall was the wall layout with 
shaft lengths of 52 feet and a height of 23 feet. At an equivalent fluid pressure of 40 psf/ft with 
two feet of soil surcharge, the top-of-wall deflection was 1.22 percent of the wall height (3.36 
inches). At an equivalent fluid pressure of 80 psf/ft with two feet of surcharge, the wall deflected 
2.96 percent (8.17 inches) of the wall height. The shortest shafts analyzed (L=31 ft, H=12 ft), 
deflected 0.16 percent of the wall height at an equivalent fluid pressure of 40 psf/ft. Results from 
the LPILE analysis are summarized in Figure 3.42 through Figure 3.48.  
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Table 3.1: Input Soil Properties for FM 1960 at Kuykendahl 

 

Table 3.2: Shaft and loading properties used in LPILE analysis for FM 1960 and 
Kuykendahl 
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Figure 3.42: Results of LPILE analysis for FM 1960 at Kuykendahl; shaft length = 31 feet; wall 

height = 12 feet. 
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Figure 3.43: Results of LPILE analysis for FM 1960 at Kuykendahl; shaft length = 36 feet; wall 

height = 14 feet. 
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Figure 3.44: Results of LPILE analysis for FM 1960 at Kuykendahl; shaft length = 39 feet; wall 

height = 16 feet. 
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Figure 3.45: Results of LPILE analysis for FM 1960 at Kuykendahl; shaft length = 43 feet; wall 

height = 18 feet. 
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Figure 3.46: Results of LPILE analysis for FM 1960 at Kuykendahl; shaft length = 46 feet; wall 

height = 20 feet. 



 47

 
Figure 3.47: Results of LPILE analysis for FM 1960 at Kuykendahl; shaft length = 49 feet; wall 

height = 22 feet. 
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Figure 3.48: Results of LPILE analysis for FM 1960 at Kuykendahl; shaft length = 52 feet; wall 

height = 23 feet. 

3.5.2:  US 59 AT HAZARD STREET 

Because of the large size of the shafts and potential for moisture changes on the project 
site, the wall layout was analyzed using one additional loading scenario consisting of an 
equivalent fluid pressure of 100 psf/ft with two feet of surcharge. Soil, shaft, and loading 
properties used in this analysis are presented in Table 3.3 and Table 3.4. Results show that the 
wall will not deflect more than 1 percent of the wall height for any of the loading conditions. 
Even at an equivalent fluid pressure of 100 psf/ft with two feet of surcharge, the wall deflects 
just 0.3 percent of the wall height (0.55 inches). Results from the LPILE analysis are 
summarized in Figure 3.49.  
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Table 3.3: Soil properties used in LPILE analysis for US 59 and Hazard St. 

 
 

Table 3.4: Shaft and loading properties used in LPILE analysis for US 59 and Hazard St. 
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Figure 3.49: Results of LPILE analysis for US 59 and Hazard Street; shaft length = 47.5 feet, 

wall height = 15 feet. Dashed line indicates excavation depth. 

3.5.3:  IH 45 AT GREENS ROAD 

Four different shaft layouts were used for this analysis. Soil, shaft, and loading properties 
are presented in Table 3.5 and Table 3.6. Results show that for the 40 psf/ft loading scenario, the 
top-of-wall deflections are less than 1 percent of the wall height for each of the four different 
layouts. For wall heights of 5, 7, and 9 feet (total shaft lengths of 18, 19, and 25 feet, 
respectively), the top-of-wall deflections did not exceed 1 percent of the wall height until the 80 
psf/ft loading scenario. For a wall height of 11 feet (total shaft length of 34 feet), the maximum 
top-of-wall deflection was 0.9 percent of the wall height for the 80 psf/ft loading scenario. 

It should be noted that determining the shaft lengths and wall heights were estimated 
based on the design files provided by TxDOT. This estimation was due to the lack of clear 
documentation in the design files. The analysis of the wall with a height of 7 feet and a total shaft 
length of 19 feet shows that embedment depth is not sufficient to reach fixity for all the loading 
scenarios. It is likely that either the as-built wall height was smaller than reported, or the as-built 
shaft length was larger than reported, but without supporting documents that clearly indicate the 
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layout of the shafts, this cannot be determined with certainty. Results from the LPILE analysis 
are summarized in Figure 3.50 through Figure 3.53. 

Table 3.5: Soil properties used in LPILE analysis for IH 45 at Greens Rd. 

 
 

Table 3.6: Shaft and loading properties used in LPILE analysis for IH 45 at Greens Rd. 
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Figure 3.50: Results of LPILE analysis for Greens Rd at IH 45; shaft length = 18 feet, wall 

height = 5 feet. 
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Figure 3.51: Results of LPILE analysis for Greens Rd at IH 45; shaft length = 19 feet, wall 

height = 7 feet. 
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Figure 3.52: Results of LPILE analysis for Greens Rd at IH 45; shaft length = 25 feet, wall 

height = 9 feet. 
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Figure 3.53: Results of LPILE analysis for Greens Rd at IH 45; shaft length = 25 feet, wall 

height = 11 feet. 

3.6:  Conclusions 

The walls we have assessed in this study are generally representative of typical drilled 
shaft walls in Texas. The three walls have been in service for 14, 9, and 2 years, respectively, 
and have cantilevered heights ranging from 5 to 23 feet. A field inspection of each wall revealed 
no obvious signs of significant distress. Based on LPILE analyses of these walls, earth pressures 
greater than a linear increase of 80 psf/ft would likely be required to produce significant distress 
that could be readily observed. 
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CHAPTER 4: DESIGN AND CONSTRUCTION OF INSTRUMENTED 
TEST WALL 

4.1:  Location of Test Wall 

To allow for complete control of project scheduling and access to the test site, a full-scale 
test wall was constructed specifically for this project. The Lymon C. Reese research wall is 
located in Manor, Texas, on the property of R&L Transfer & Storage Co., Inc. (Figure 4.1). The 
site plan in Figure 4.2 shows the location of the test wall. 

 

 
Figure 4.1: Location of full-scale test wall (Google, Inc.). 
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Figure 4.2: Detailed site plan with location of test wall. 

4.2:  Subsurface Conditions 

4.2.1:  OVERVIEW 

The test wall is underlain by approximately 50 feet of the Taylor Formation, a highly 
plastic, stiff, fissured clay. A sample of the Taylor Formation from the project site is pictured in 
Figure 4.3.  
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Figure 4.3: Unweathered Taylor Clay from the project site in Manor. 

4.2.2:  PRELIMINARY GEOTECHNICAL INVESTIGATION (JANUARY 2010) 

Three 50-foot deep soil borings were drilled in January 2010, a relatively wet season. 
Both Texas Cone Penetrometer (TCP) testing and Standard Penetration Testing were performed 
to provide information consistent with the standard of practice in Texas. An inclinometer was 
installed in one boring and a piezometer in another. The details for this investigation are 
provided in Ellis (2011), which is included in Appendix K. 

The subsurface to a depth of 50 feet is a stiff-to-hard, highly plastic clay. The upper 6 feet 
of clay is weathered and dark brown, while underlying unweathered clay is yellow (Figure 4.3). 
The water table is approximately 8 feet below the ground surface based on the piezometer (note 
that it took several months for the piezometer to reach equilibrium with the formation after it was 
installed). 

TCP blow counts are shown in Figure 4.4 and Atterberg limits and natural moisture 
contents are shown in Figure 4.5. The liquid limit in the weathered zone ranges from about 50 to 
70 percent, while it is generally greater than 100 percent in the unweathered zone. The plastic 
limit ranges from about 20 to 30 percent. Natural water contents at the time of investigation 
ranged from 20 to 40 percent (Figure 4.5). The total unit weight in the upper 15 feet averaged 
about 125 pcf. 
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Figure 4.4: TCP blow counts versus depth. 
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Figure 4.5: Results of Atterberg Limit and UU testing from January 2010 (3 months before shaft 

construction; 7 months before excavation). 

Samples of the formation for laboratory testing were obtained using seamless pushed 
tubes, the standard of practice in this region. Laboratory testing included conventional one-
dimensional consolidation tests, cyclic shrink-swell tests on horizontally oriented specimens, UU 
triaxial compression tests, and direct shear tests. Details for these tests and their results are 
provided in Ellis (2011), which is included in Appendix K. 

Information for the undrained shear strength measured at the time of the preliminary 
investigation is summarized in Figure 4.5. These tests were conducted on 2.8-inch diameter 
specimens that were trimmed on the ends but not the circumference, which is the standard of 
practice in this region. Trimming the circumference in these stiff fissured clays is very difficult 
and tends to cause more damage to the specimen than the original sampling. 
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Information for the drained shear strength is summarized in Figure 4.6 and Figure 4.7. 
Long (1983) conducted triaxial compression tests with pore water pressure measurements to 
measure the effective stress failure envelope for the Taylor Formation (Figure 4.6). These 
samples were obtained from a location several miles from the project site. Ellis (2011) conducted 
direct shear tests on samples from the preliminary site investigation at the project site. One set of 
tests was intended to measure the peak, drained shear strength of intact (undisturbed) clay. A 
second set of tests was conducted with repeated shearing in an attempt to measure the large-
displacement shear, drained shear strength. These direct shear tests were conducted using the 
slowest constant shear rate possible with our direct shear equipment, about 0.0001 inches per 
minute, which required 4 days per test. However, even at this slow rate it is unlikely that the tests 
were fully drained based on the consolidation data. Therefore, the data points from Ellis (2011) 
in Figure 4.7 may overestimate both the peak and the large-displacement strengths. 

Additional direct tests were conducted using samples from the project site to measure the 
fully softened, drained shear strength. The fully softened, drained shear strength is the strength 
recommended for the design of slopes and retaining walls in highly plastic clays by many 
practitioners (e.g., Skempton 1970; Stark and Eid 1997; Duncan et al. 2011 and Gregory and 
Bumpas 2013), including several TxDOT research reports (Wright 2005 and Wright et al. 2007). 
The fully softened, drained shear strength is measured in the laboratory by conducting direct 
shear tests on reconstituted, normally consolidated specimens. Since these specimens are 
prepared to be close to their critical state, shear-induced pore water pressures are relatively small 
and the test results are relatively insensitive to the shear rate. For this project, the fully softened 
shear strength for the clay was measured on samples from the unweathered and weathered zones 
(Figure 4.7). These measurements compare very favorably to empirical correlations based on 
liquid limit that were developed by Wright et al. (2007) (Figure 4.7). 

Based on these data, the peak, drained shear strength is approximately represented by a 
friction angle of 37º and the fully softened, drained shear strength is approximately represented 
by a friction angle of 24º (Figure 4.7). 
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Figure 4.6: Results of triaxial testing to measure drained shear strength (figure from Ellis 2011 

based on test results by Long 1983). 
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Figure 4.7: Results of direct shear testing to measure drained shear strength for Taylor Clay 

compared with empirical correlations and previous triaxial testing. 

4.3:  Design of Test Wall 

The design for the test wall was developed using a procedure similar to the existing 
TxDOT design procedure for cantilever drilled shaft walls (TxDOT 2009). The goal was to 
create a structure that would be structurally sound and consistent with typical TxDOT walls, but 
would produce enough deformations to infer the earth pressures acting on the wall. A summary 
of design assumptions and shaft geometry for the test wall provided in Table 4.1 shows the 
baseline design assumptions for the initial analyses. Figure 4.8 shows the deflection and moment 
profiles for the baseline design. The top-of-wall deflection is approximately 0.8 inches. 
Sensitivity checks were included for the earth pressures from the retained soil and the undrained 
shear strength in the foundation soil. Details for the design analyses are presented in Appendix 
A. 

The final wall design is pictured in Figure 4.9 and Figure 4.10. The test wall consists of 
25 drilled shafts embedded to depths from 18 to 35 feet below ground surface (Figure 4.9). The 
shafts have a diameter of 24 inches and a center-to-center spacing of 30 inches. The reinforcing 
bar cage consists of 12 #7 bars. The cantilevered height is 15 feet, the penetration depth is 20 
feet, and the shafts end 4 feet above ground surface. The shaft stickup allows the project team to 
run a lateral load test if desired; it also allows the site owner to use the wall as a loading dock 
upon completion of the project. 
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Table 4.1: Baseline assumptions and design parameters for test wall 

Parameter Value 

Total Unit Weight of Soil, γt 130 pcf 

Equivalent Fluid Pressure Loading, γEF 40 psf/ft* 

Coefficient of Active Earth Pressure, ka 0.31 (from γEF / γt) 

Undrained Shear Strength, SU 3,000 psf** 

Foundation Soil p-y Curves Stiff Clay Without Free Water 

Cracking Moment, MCr 680 k-in. 

Yielding Moment, My 3,200 k-in. 

Uncracked Bending Stiffness, EIuc 67 x 106 k-in2 

Cracked Bending Stiffness, EIcr 18 x 106 k-in2 

c-c Spacing Between Shafts, B 30 in. 

Shaft Diameter 24 in. 

Height of Retained Soil, H 180 in. 

Reinforcement 12 #7 bars (1.6% of gross area) 
*Sensitivity checked with equivalent fluid pressure of 80 psf/ft. 
**Sensitivity checked with undrained shear strength of 1,500 psf 
. 
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Figure 4.8: LPILE deflection and moment profile outputs for baseline design. 



 67

 
Figure 4.9: Cross section of wall and excavation at center shaft, facing east (not to scale). 

 
Figure 4.10: Plan view of wall and excavation. 

4.4:  Design of Instrumentation Program 

The primary objectives of the instrumentation program are to accurately monitor 
deformations in the test wall, and to estimate the lateral earth pressures applied to the shaft over a 
period of 3 years. Three shafts in the test wall are instrumented (shaded in Figure 4.10). In each 
of these shafts, there are 30 fiber optic strain gauges and one inclinometer casing. Additionally, 
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one inclinometer casing was installed 5.5 feet behind the wall, and thermocouples were installed 
in the center shaft at depths of 3, 15, and 29 feet below ground surface for temperature 
monitoring. In the soil surrounding the wall, 20 time domain reflectometry (TDR) moisture 
sensors were installed after excavation. Figure 4.11 shows an instrumented cage as it is lowered 
into the ground, and Figure 4.12 shows the distribution of sensors within each instrumented 
shaft. 

 

 
Figure 4.11: Plan view of instrumented rebar cage before concrete placement. 
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Figure 4.12: Distribution of sensors within an instrumented shaft. 

4.4.1:  STRAIN GAUGES 

Because of their reputation for stability with time and relative insensitivity to moisture 
and temperature changes, optical strain gauges (Fabry-Perot type) were selected for strain 
monitoring. Optical gauges provide higher resolution than conventional electrical resistance or 
vibrating wire gauges, and are less susceptible to zero-drift over time. Additionally, because their 
strain measurements are generated using a light source, optical strain gauges are less affected by 
moisture and temperature changes than conventional gauges. The optical strain gauges were 
purchased from OPSENS in Canada, and the sister bars were fabricated by Lymon C. Reese and 
Associates of Austin, Texas. Prior to installation, each sister bar was calibrated to ensure 
linearity in the readings within the operating strain range of 1,000 microstrains and to establish a 
response curve. There are a total of 90 optical strain gauges installed in the test wall; in each 
instrumented shaft, there are 15 gauges on either side of the neutral axis (Figure 4.12). 
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Large temperature fluctuations occurred at the project site, and thermal expansion of the 
shafts produced significant strains. Additionally, the potential for errors in measurements due to 
rapid changes in temperature of the optical light source and datalogger was a design 
consideration. To minimize these errors, temperature resistant dataloggers were designed and 
installed in enclosures that limit rapid temperature change (Figure 4.13).  

4.4.2:  INCLINOMETERS 

The rotation profile along the length of the drilled shaft was measured directly with an 
inclinometer, and integrated to yield a profile of deflected shape. Three inclinometer casings 
were attached to the reinforcing bar cage and cast into the shaft during construction. Readings 
were taken every 2 feet over the length of the shaft using a readout unit manufactured by Slope 
Indicator. 

4.4.3:  ADDITIONAL INSTRUMENTATION 

To provide redundancy in top-of-wall deflections measured by the inclinometers, a linear 
potentiometer was installed on the project site prior to excavation and anchored to the wall near 
the ground surface. It was attached to shaft #16, adjacent to the west instrumented shaft (shaft 
#15). The linear potentiometer provides continuous data on top-of-wall deflection and 
redundancy with the inclinometer data. To provide information on the moisture conditions in the 
retained soil, a total of 20 TDR moisture probes were installed in behind the wall. Because of the 
high spatial variability of rainfall across the region, an electronic tipping bucket rain gauge was 
installed at the test wall to augment measurements from nearby weather stations. The linear 
potentiometer, TDR moisture probes, and rain gauge were monitored continuously. Figure 4.13 
shows some of the instrumentation installed on the project site. 
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Figure 4.13: Instrumentation on the project site.  

Clockwise from top left: temperature resistant datalogger and enclosure for continuous strain 
readings; signal conditioner for individual strain readings; linear potentiometer; TDR probe 

installed through facing. 

4.5:  Construction Activities on Project Site 

4.5.1:  CONSTRUCTION OF FULL-SCALE INSTRUMENTED TEST WALL 

The drilled shafts and instrumentation were installed in early April 2010 by McKinney 
Drilling Company (Figure 4.14). In order to prevent excessive bending of the rebar cage and 
damage to the instrumentation, the instrumented cages were lifted with two cranes (Figure 4.15). 
To prevent sensor damage during concrete placement, cables were protected within slotted PVC 
pipes and concrete was directed down the center of the rebar cage with shovels. Initial sensor 
survivability was excellent, with 88 of 90 strain gauges and all inclinometer casings functional 
after rebar cage placement and concrete installation. A summary of wall construction activities 
and concrete strength data is provided in Table 4.2. 
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Figure 4.14: Construction of test wall, April 2010. 

 
Figure 4.15: Lifting an instrumented cage with two cranes. 

Table 4.2: Summary of wall construction activities and measured concrete strengths 

Date Notes ( * = Instrumented Shaft) 
7-Day 

Concrete 
Strength (psi) 

28-Day 
Concrete 

Strength (psi) 

March 30, 2010 
Mobilize Equipment, Assembled Instrument 

Cages, Constructed Shafts 1 and 4 
6055 7955 

March 31, 2010 Constructed Shafts 7, 10, 13*, 22, and 25 4970 7000 

April 1, 2010 Constructed Shafts 2, 5, 8, 11*, 15*, and 17 4480 6065 

April 2, 2010 Constructed Shafts 3, 6, 9, 16, 19, and 23 4410 5875 

Apr. 3 - 4, 2010 Weekend N/A N/A 

April 5, 2010 Constructed Shafts 18, 21, and 24 4000 5950 

April 6, 2010 Constructed Shafts 12, 16, and 14 4400 6800 

April 7, 2010 Demobilize Equipment N/A N/A 
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4.5.2:  INSTALLATION OF SHOTCRETE FACING 

To prevent soil erosion from between the shafts and provide consistency with design 
practice, shotcrete facing material was installed on October 1, 2010 (Figure 4.16). 

 

 
Figure 4.16: Installation of shotcrete facing on October 1, 2010. 

4.5.3:  INSTALLATION OF TIME-DOMAIN REFLECTOMETRY PROBES 

Prior to the application of shotcrete facing, time-domain reflectometry probes were 
installed. A total of 10 probes were installed through the wall facing on September 30–October 
1, 2010 (as shown in Figure 4.17), and 10 were installed through the ground surface on October 
14 (as shown in Figure 4.18). The approximate locations of all installed TDR probes are shown 
in Figure 4.19. Additional discussion of TDR probe installation, calibration, and data analysis 
can be found in Dellinger (2011). 

 

 
Figure 4.17: Installation of TDR moisture probes behind wall facing. 
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Figure 4.18: Installation of TDR moisture probes through ground surface. 

 
Figure 4.19: Approximate locations of TDR moisture probes. 
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4.5.4:  EXCAVATION SLOPE REPAIR AND EROSION CONTROL 

On August 17, 2011, the slopes were reshaped to reduce erosion and prevent surface 
water from draining into the excavation (Figure 4.20). On October 8, 2011, erosion control 
material was installed (Figure 4.21). 

 

 
Figure 4.20: Excavation slopes are reshaped on August 17, 2011. 

 
Figure 4.21: Erosion control material is installed on October 18, 2011. 

4.5.5:  PIEZOMETER INSTALLATION 

Five piezometers were installed on site; Table 4.3 and Figure 4.22 provide the locations. 
On January 12, 2010, a piezometer screened 5 to 15 feet was installed in a boring from the site 
investigation by Fugro, Inc. (Figures 4.23–4.25). This piezometer was used to monitor the local 
water level conditions. On February 23, 2012, four more piezometers were installed in boring 
holes for a site investigation by Fugro, Inc. (Figure 4.26). These piezometers were used to 
monitor the water levels in the inundation test area. The piezometers were surrounded with a 
permeable sand and gravel interface between the piezometer and the walls of the borehole. 
Readings were taken using a buzzing water level indicator and a tape measure. 
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Table 4.3: Location, installation date, and screen location for the piezometers 

Piezometer 
Installation 

date 
Diameter 

Screen 
location 

Location 

Distance perpendicular from 
the wall 

Distance from wall center-
line 

B-3 12-Jan-10 2 inches 5 to 15 feet 16 feet 54 feet east 

A 23-Feb-12 2 inches 5 to 15 feet 9 feet 9 feet west 

B  23-Feb-12 1 inch 3.4 to 4.6 feet 15.1 feet 5.5 feet west 

C 23-Feb-12 2 inches 5 to 15 feet 15.5 feet 3 feet east 

D 23-Feb-12 1 inch 3.6 to 4.8 feet 7.3 feet 7.5 feet east 

 

 
Figure 4.22: Plan view of piezometer locations. 
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Figure 4.23: The piezometer installed in borehole B-3 being lowered into position. 

 
Figure 4.24: The piezometer installed and covered in borehole B-3. 
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Figure 4.25: Piezometer being installed in borehole A. 

 
Figure 4.26: The four standpipe piezometers installed behind the wall in the inundation berm. 

4.5.6:  INUNDATION BERM CONSTRUCTION 

The inundation berm encloses an area approximately 40 feet wide and 20 feet behind the 
test wall (Figure 4.27). A cross section of the berm design is shown in Figure 4.28. The berm is 
keyed into the native soil with a 2-foot deep trench and is lined with a geomembrane to minimize 
the lateral loss of water (Figure 4.29). 

The inundation berm was constructed by Ranger Excavating on April 26, 2012. A 
backhoe was used to excavate the trench (Figure 4.30). After excavation of the trench, the 
geomembrane was installed (Figure 4.31). The soil was replaced and compacted, along with 
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stockpiled soil from the project site, using the backhoe bucket (Figure 4.32). After the 
installation of the geomembrane and compacted soil (Figure 4.33), the seams were joined 
together with duct tape (Figure 4.33). The completed inundation berm is shown in Figure 4.34. 
Initial filling of the berm occurred on May 2, 2012 (Figure 4.35). While some leakage of the 
seams occurred, the leakage rate was slow enough that the water level could be maintained with 
water from the on-site supply (Figure 4.36–Figure 4.37). 

 

 
Figure 4.27: Plan view of inundation zone. 
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Figure 4.28: Cross section of inundation berm design. 

 

 
Figure 4.29: Excavation of trench for inundation berm. 
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Figure 4.30: Installation of geomembrane in trench. 

 

 
Figure 4.31: Compacting soil with backhoe bucket. 
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Figure 4.32: Compacting soil with backhoe bucket. 

 

 
Figure 4.33: Detail of geomembrane seam. 
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Figure 4.34: Completed inundation berm. 

 

 
Figure 4.35: Filling the inundation zone. 
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Figure 4.36: Leakage from southeast corner of inundation zone. 

 

 
Figure 4.37: Leakage from west side of inundation zone. 
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4.6:  Monitoring Plan 

Since installation of instrumentation, the activity of the test wall has been closely 
monitored. An automated datalogger records strain readings from the center shaft at 6-minute 
intervals. The linear potentiometer, rain gauge, thermocouples, and TDR moisture probes are 
measured by another datalogger at 15-minute intervals. Inclinometer profiles, piezometer water 
levels, and strain readings from the east and west shafts are recorded, on average, once per week. 
The frequency of these measurements has changed according to the amount of activity at the 
wall site, ranging from several readings per day to once per month. Additionally, meteorological 
data from nearby weather stations and observational information from the test wall supplement 
our instrumentation data. 

4.7:  Data Reduction and Analysis 

 Because assessing the magnitude and distribution of earth pressures acting on the test 
wall is a primary goal of this research, methods of using strain gauge and inclinometer data from 
the test wall to estimate earth pressures must be developed. A summary of the mathematical 
relationship between deflection, slope, bending moment, shear, and earth pressures for a typical 
pile is shown in Figure 4.38. The methods described in the following section are applicable to 
data from the Manor test wall only, and should not be used for other projects or data sets without 
careful validation. 
 

 
Figure 4.38: Mathematical relationship between deflection (y), slope (S), bending moment (M), 

shear force (V), and soil reaction force (p) for a laterally loaded pile (after Reese and Van Impe, 
2001). 

4.7.1:  STRAIN GAUGE DATA REDUCTION 

The strain gauges placed on either side of the shaft’s neutral axis measure axial strains in 
the tensile and compressive direction (εt and εc, respectively). The difference in tensile and 
compressive strains on either side of the neutral axis is divided by the horizontal distance 
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between the gauges to obtain a value of bending curvature at a given depth. The calculated value 
of bending curvature is converted to a value of bending moment according to the moment-
curvature relationship defined by the structural properties of the shaft. Following this procedure 
at each depth where strain gauges are installed yields a profile of bending moment in the shaft 
versus depth, which can be differentiated once to obtain a profile of shear force versus depth, or 
differentiated twice to obtain a profile of soil resistance versus depth. This process is 
summarized in Figure 4.39. A more detailed explanation of strain gauge data reduction for the 
Lymon C. Reese research wall can be found in Koutrouvelis (2012). 

 

 
Figure 4.39: Strain gauge data reduction (after Koutrouvelis 2012). 

For this research study, strain gauge nomenclature indicates which instrumented shaft the 
gauge is installed in (east, center, or west), the depth of the strain gauge below original ground 
surface (1–29 feet), and which side of the neutral axis the gauge is installed on (Tension or 
Compression; tensile strains are positive). Using this nomenclature, gauge E.17.T is located in 
the east instrumented shaft, 17 feet below ground surface, on the tensile side of the neutral axis. 

4.7.2:  INCLINOMETER DATA REDUCTION 

4.7.2.1:  Rotation Profiles Recorded in the Field 

While inclinometer data is most commonly presented as a displacement profile, the 
instrument itself records rotation data; these data are then integrated to calculate displacement. 
By extracting the raw rotation data from the instrument, a profile of bending curvature can be 
obtained with just one derivative. Sample rotation data from the three instrumented shafts on 
May 28, 2013, when the wall was near its maximum deflection, is presented in Figure 4.40. It is 
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important to note that the last data point is at a depth of 32 feet for the center and west shafts, and 
30 feet for the east shaft (shaft base is at 35 feet).  

The inclinometer probe measures the shaft rotation in two directions: the A-axis (in the 
direction of the wheels) and the B-axis (in the direction perpendicular to the wheels). This allows 
for the lateral deflection to be determined in any direction. For the purposes of this analysis, all 
deflections are assumed to be perpendicular to the wall, and the cumulative deflection is 
calculated by combining the rotation profiles from the A-axis and B-axis using the distance 
formula: ݕ௧௢௧௔௟ = ඥy஺ଶ + y஻ଶ 

 
This method of estimating deflections can slightly overestimate deflections in the case of 

very noisy data set, since it interprets any small amount of instrument error to be a positive 
deflection perpendicular to the wall. However, the method is reliable, slightly conservative, and 
is much more straightforward to apply to the data set than more advanced correction methods. 

 

 
Figure 4.40: Sample rotation data from May 28, 2013. Reference survey is July 27, 2010, 

immediately before excavation. 
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4.7.2.2:  Combining and Smoothing Rotation Profiles 

While there are small differences in the behavior of the instrumented shafts, combining 
the three slope profiles into an average slope profile results in values that are similar to those 
obtained from the center instrumented shaft, and provides a much smoother curve for 
differentiation. To account for the presence of base rotation, the final rotation measurement is 
extended vertically down from the last measurement to the shaft base. In a typical analysis, the 
shaft base is assumed to be a fixed point—zero deflection, zero rotation. However, based on the 
instrumentation data from the test wall, it is clear that some base rotation occurred (rotation 
measurements near the shaft base were consistently above zero throughout the life of the test 
wall; unrealistic loads would need to be present to return the shaft base rotation to zero in the 
remaining few feet). Mathematically, extending the final slope measurement to the shaft base 
indicates that the shaft base has rotated, but is not experiencing a bending moment. 

A smoothing algorithm was applied to the data from each shaft before averaging the three 
profiles. The final averaged profile was smoothed again, although after averaging, the effects of 
smoothing are minimal. The smoothing algorithms are summarized in Tukey (1977), and are 
adapted for use in Excel by Quantdec (2004). To smooth each shaft’s rotation profile, a “3RH” 
smooth with re-roughing is applied to the original data set. The process is summarized below; 
more detailed explanations of the individual smoothing processes are explained in the subsequent 
paragraphs, Figure 4.41 to Figure 4.44, and in Tukey (1977).  

1. Apply a repeated medians-of-three smooth (3R) to each rotation profile. 

a. Each point in the data set is replaced by the median of the original point and the 
two adjacent data points: ߠ௜,ଷ	௦௠௢௢௧௛௘ௗ = ,௜ିଵߠ)݊ܽ݅݀݁݉ ,௜ߠ  (௜ାଵߠ

b. Repeat the process until there are no further changes in the data: ߠ௜,ଷோ	௦௠௢௢௧௛௘ௗ = ௦௠௢௢௧௛௘ௗ	௜,ଷߠ = ,௜ିଵߠ)݊ܽ݅݀݁݉ ,௜ߠ   (௜ାଵߠ

2. Hann the 3R smoothed data to create a 3RH smooth (end values are not Hanned): ߠ௜,௛௔௡௡	௦௠௢௢௧௛௘ௗ = ௜ିଵߠ0.25 + ௜ߠ0.50 +  ௜ାଵߠ0.25

3. “Re-rough” the smooth.  

a. Calculate a profile of residuals: ߠ௜,௥௘௦௜ௗ௨௔௟ = ௜,௢௥௜௚௜௡௔௟ߠ −  ௜,௦௠௢௢௧௛௘ௗߠ

b. Smooth the profile of residuals using a 3RH smooth as described above. 

c. Add the profile of smoothed residuals to the original smoothed data set: ߠ௜,௦௠௢௢௧௛௘ௗ,௥௘ି௥௢௨௚௛௘ௗ = ௜,௦௠௢௢௧௛௘ௗߠ +  ௜,௥௘௦௜ௗ௨௔௟ߠ
 

End values are smoothed after the application of the 3R smooth (before Hanning) by 
calculating the median of the previous two points on the smoothed curve and a point extrapolated 
one unit beyond the end of the smoothed curve (e.g., (θ32’) is the median of (θ28’), (θ30’), and 
(3·θ28’–2·θ30’), after Quantdec (2004)). In the author’s opinion, while the method developed by 
Quantdec (2004) is simple and easy to apply to a large data set, it is less accurate than the 
original method described by Tukey (1977), which also incorporates the original raw data into 
the final end value (Figure 4.41). For this research study, however, because the most important 
conclusions are drawn from the middle portions of the data set, the method of end value 
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smoothing does not greatly affect the final results and the simple method developed by Quantdec 
(2004) is adequate. 

To “re-rough” the smooth, a profile of residuals is calculated as the difference between 
the original raw data and the smoothed data. A 3RH smooth is then applied to the profile of 
residuals, and the smoothed residuals are added to the original smoothed data set. An illustration 
of the 3RH smooth with re-roughing is provided in Figure 4.42 for depths of 0 to 14 feet in the 
center shaft, with the entire profile shown in Figure 4.43. Re-roughing ensures that the smoothed 
data points remain reasonably close to the original values. This smoothing method kept the 
maximum bending moments and top-of-wall deflections consistent with the original raw data 
values, but provided a curve more suitable for piecewise differentiation. Other combinations of 
smoothing methods (e.g., medians-of-three smoothing only, 3RH smoothing without re-
roughing, etc.) provide similar results when applied to the measured rotation data, but change the 
final data points slightly more than the re-roughed 3RH smooth that was selected for subsequent 
analysis. A comparison of the original raw data from the three instrumented shafts with the final 
smoothed slope profile for differentiation is provided in Figure 4.44. 
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Figure 4.41: Tukey's method of end value smoothing (after Tukey 1977). 
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Figure 4.42: Illustration of the 3RH smooth with re-roughing applied to the center shaft rotation 

data between 0 and 14 feet. 
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Figure 4.43: Comparison of original and smoothed rotation data from the center shaft on 

5/28/2013. 



 93

 
Figure 4.44: Comparison of raw rotation data from the three instrumented shafts with the final 

smoothed rotation profile for differentiation. 

4.7.2.3:  Obtaining Bending Moment Profiles from Rotation Data 

Ooi and Ramsey (2003) detail a variety of methods for obtaining bending moments and 
curvatures from inclinometer data. Of the methods surveyed, the most favorable was found to be 
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fitting a third-order polynomial to a moving window of five points along the deflection profile, 
then analytically taking the second derivative of this curve to obtain a profile of bending 
curvature. For inclinometer data recorded at the test wall, a third-order polynomial was fit to a 
moving window of five points along the smoothed rotation profile, and the first derivative was 
taken numerically at the center point (using a central difference approximation at depths +/- 0.5 
feet from the center point). This process is illustrated in Figure 4.45 at a depth of 14 feet. 

 

 
Figure 4.45: Illustration of piecewise third-order polynomial fitting to a moving window of five 

points at a depth of 14 feet.  
First derivative at 14 feet is estimated numerically using a central difference approximation 

between polynomial values at 13.5 and 14.5 feet. 

Repeating the piecewise polynomial fitting process for each depth yields a profile of 
bending curvature. The profile of bending curvature is smoothed using a 3RH smooth with 
reroughing. To provide consistency with standard of practice methods, the values of bending 
curvature are converted into bending moments using the M-Φ relationship generated by the 
computer program LPILE (Figure 4.46). Figure 4.47 shows the resulting bending moment 
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profile, calculated by converting values of bending curvature to the corresponding values of 
bending moment as shown in Figure 4.46. Using cracked section properties in the M-Φ 
relationship generates a smoother profile of bending moment versus depth (there is no “hitch” 
near the cracking moment), but analysis of the test wall data for this project indicates that the 
earth pressures estimated at locations with small bending curvatures are unrealistically small 
when using cracked section properties. This may be a function of the heterogeneous nature of the 
concrete itself, which inherently produces variations in local stress-strain behavior at different 
locations within the shaft. If structural stresses are concentrated in the stiff (i.e., uncracked) 
sections of the shaft, and deformations are primarily located in the more flexible (i.e., cracked) 
sections, some difficulty in data interpretation can be encountered in the range of small strains. 
Despite this difficulty, because bending moments in the range of interest are larger than the 
cracking moment, the interpretation of maximum bending moment in the shaft is relatively 
unaffected by the choice of cracked or uncracked properties. The influence of concrete cracking 
on data interpretation is discussed in more detail in subsequent chapters. 

 

 
Figure 4.46: Relationship between bending curvature and bending moment (M-Φ relationship) 

used for LPILE and field instrumentation data analysis. 
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Figure 4.47: Bending moment profile generated from piecewise polynomial fitting of smoothed 

rotation profile and M-Φ relationship from LPILE. 

4.7.2.4:  Obtaining Net Earth Pressures from Moment Profiles 

To generate profiles of shear forces in the shaft, the same procedure used to differentiate 
the smoothed rotation profile is applied to the bending moment profile. Because the bending 
moment profile was generated from a smoothed profile of bending curvature, and to preserve the 
nonlinear moment-curvature behavior displayed in Figure 4.46, no smoothing is applied to the 
bending moment profile. To differentiate the profile of bending moment, piecewise third-order 
polynomials are fit to a window of five points along the depth of the shaft. The resulting shear 
force profile is smoothed using a 3RH smooth with re-roughing, then differentiated using 
piecewise polynomials to obtain a profile of soil resistance, which is smoothed again with a re-
roughed 3RH smooth. The resulting soil resistance values for the 5/28/13 profile are shown in 
Figure 4.48, along with comparison values calculated using only the averaged rotation profile 
with piecewise polynomial differentiation (no smoothing used). In Figure 4.48, the large values 
of soil resistance in the non-smoothed data above the excavation line are the result of small 
errors in the original raw rotation data. Small jumps in the original data set become larger with 
each successive differentiation; after three differentiations, small errors can become large, 
unrealistic spikes. The judicious use of data smoothing during differentiation can minimize the 
effects of random errors on the final result. 
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Figure 4.48: Soil resistance profiles generated using piecewise polynomial differentiation of 

averaged rotation profiles (with and without data smoothing applied during the differentiation 
process). 

On inspection, the differentiation process produces reasonable results when the data 
smoothing algorithm is used throughout the differentiation process. The profile of net soil 
resistance reaches zero value close to the excavation depth of 15 feet, and reaches zero again 
near the shaft’s center of rotation at approximately 27 feet. While the soil pressures between 30 
and 35 feet must be inferred due to the lack of inclinometer data at those depths, the earth 
pressures above 30 feet are consistent with those obtained from LPILE results. 

4.7.2.5:  Generating p-y Curves from Inclinometer Data 

With the procedure described above, values of soil resistance (p) and horizontal 
deflection (y) are obtained for each depth. With readings for a variety of dates, corresponding to 
a variety of deflections, p and y can be plotted against each other at each depth to create a family 
of p-y curves.  
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4.7.2.5.1:  Discussion of “Net” Soil Resistance 
In the following sections, it should be noted that the driving earth pressures acting toward 

the excavation are defined as (w), and the earth pressures resisting this motion are defined as (p). 
The profile of net soil resistance generated using the differentiation process is actually a profile 
of (w – p). Above the excavation line, p is zero and (w – p) = w. At large depths below the 
excavation line, w is generally assumed to be negligible relative to p, and (w – p) = p. However, 
near the excavation line, both w and p are acting on the shaft, and their effects can be difficult to 
separate from one another. For the purposes of this analysis, w is assumed to reach zero at the 
excavation line.  

4.7.2.5.2:  Correcting Soil Resistance for Excavation Location 
Because the soil resistance values near the excavation line are influenced by points above 

the excavation line, and the influence of driving earth pressures extending slightly beyond the 
shaft base, the soil resistance at the excavation line obtained from point-by-point differentiation 
is often a negative value. Because this is not physically possible with a positive deflection, 
polynomial curve fitting is applied to ensure net soil resistance values are not negative at the 
excavation line. To provide consistency with design practice, which often assumes a value of 
zero soil resistance at the excavation line, a third-order polynomial fit using least-squares 
regression was used to represent the profile of soil resistance versus depth. This maintains the 
general magnitude and shape of the soil resistance profile, but allows every profile to reach zero 
at the excavation line (Figure 4.49). 
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Figure 4.49: Using a third-order polynomial to adjust values of net soil resistance for p-y 

curves. 

4.7.2.5.3:  Correcting Horizontal Deflections 
In limit equilibrium and numerical models such as LPILE, the shaft rotates about a center 

of rotation (at approximately 26 feet in Figure 4.1). Above the center of rotation, deflections are 
positive, and below, the deflections are negative. In a standard deflected shape generated from 
inclinometer data, however, the shaft base is assumed to be fixed, and all deflections appear to be 
positive. This can provide misleading results for p-y curves; if the raw inclinometer deflections 
are used, at the center of rotation, the shaft appears to have moved without any corresponding 
increase in earth pressure. Similarly, without corrections to deflection data, at the shaft base, 
nonzero soil forces appear to be present without any shaft deflections. To prevent unrealistic 
results such as these in data interpretation, and to allow for pile conditions closer to force 
equilibrium, the inclinometer data is adjusted to allow the shaft to rotate about the center of 
rotation (defined for the purposes of this analysis as the depth at which the soil resistance below 
the excavation is equal to zero) as shown in Figure 4.50. 
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Figure 4.50: Correction of deflected shape about center of rotation for p-y curves 

4.7.2.5.4:  Example p-y Curves from Inclinometer Data 
By plotting corrected values of soil resistance (p) against corrected values of deflection 

(y), p-y curves comparable to those used for analysis in programs such as LPILE can be 
generated. An example family of curves for depths between 16 and 24 feet below the original 
ground surface, zeroed on October 8, 2010, and consisting of all measurements through May 28, 
2013, is shown in Figure 4.51. 
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Figure 4.51: Example p-y curves generated from inclinometer data at the test wall. Reference 

survey is October 8, 2010. 

4.8:  Summary and Conclusions 

The Lymon C. Reese research wall is constructed through expansive clay in Manor. The 
wall was designed according to standard of practice methods, and is instrumented with 
inclinometers, strain gauges, and TDR moisture probes. Highlights of the data gathering include 
the following: 

• The drilled shafts and instrumentation were installed during early April 2010. The 
design goal was to provide a wall that was structurally sound and consistent with 
design practice, but would produce enough deformations to infer the earth pressures 
acting on the wall. 

• Strain gauges record values of axial strain on either side of the shaft’s neutral axis. 
By dividing the difference in axial strain at a given depth by the horizontal distance 
between gauges, axial strains can be converted to values of bending curvature. 
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Values of bending curvature can be converted to values of bending moment using 
standard nonlinear moment-curvature relationships for reinforced concrete. 

• Inclinometers record values of rotation along the length of the shaft. The rotation 
profile can be integrated to calculate a profile of lateral deflections, or differentiated 
to calculate a profile of bending curvature. 

 
A method of developing p-y curves from inclinometer data is presented. Rotation profiles 

from the three instrumented shafts are combined and differentiated using a combination of 
piecewise polynomial differentiation and numerical smoothing techniques. To achieve force 
equilibrium conditions consistent with existing design practice, corrections are applied to the 
calculated values of soil resistance to ensure soil resistance reaches zero at the excavation line, 
and to ensure the shaft deflection is zero where the net soil resistance reaches zero at depth. The 
resulting values of net soil resistance (pnet) are compared with calculated horizontal deflections 
(y) to develop a model of nonlinear soil response at each depth below the excavation line. 
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CHAPTER 5: TEST WALL PERFORMANCE AND DATA ANALYSIS 

5.1:  Behavior before Excavation (April 2010–August 2010) 

5.1.1:  OVERVIEW 

Between installation of the drilled shafts and instrumentation in early April 2010, and test 
wall excavation in August 2010, strain measurements shed light on the processes that take place 
within the concrete of a drilled shaft retaining wall prior to excavation. In order to fully 
understand these measurements, excavation was delayed until early August 2010. This section 
explains the deformations observed in the wall prior to excavation. 

5.1.2:  CLIMATIC INFORMATION 

Monthly rainfall totals for Austin, Texas between January 2009 and July 2010 are 
presented in Figure 5.1. For approximately 8 months prior to shaft construction in early April  
2010, the test wall site experienced average to above average rainfall. Rainfall totals were 
significant enough that surface water was frequently present at the test wall site beginning in 
November 2009, softening the surface soils and delaying initial site investigation until January 
2010. After shaft construction, the wall site experienced 2 months of below average rainfall in 
April and May, followed by 2 months of above average rainfall in June and July. 
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Figure 5.1: Monthly rainfall totals for Austin, Texas (Jan. 2009–Jul. 2010; data from 

www.wunderground.com). Drilled shafts were installed in early April 2010. 

5.1.3:  DATA INTERPRETATION 

5.1.3.1:  Concrete Curing 

After successful installation of the strain gauges and field enclosure, strain measurements 
were taken at least once per day for several weeks. Initial strain measurements behaved similarly 
as other published data from concrete curing (e.g., Fellenius et al. 2009). As the concrete heated 
after placement, tensile strains tended to rise sharply and then decrease gradually as the concrete 
cooled (Figure 5.2). Heating from adjacent shafts also caused less pronounced spikes in tension 
(Figure 5.2). Because the gauges were zeroed in the lab to a value of zero force and no drift has 
been observed, nonzero initial strains are assumed to represent forces picked up during 
installation and concrete placement prior to the first reading. 
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Figure 5.2: Three weeks of strain measurements during concrete curing.  

Concrete placed on April 1; concrete in adjacent shafts placed on April 6. Positive strain 
indicates tension. 

5.1.3.2:  Shrinkage Cracking in Concrete 

Beginning approximately 1 week after concrete placement, and continuing over the next 
several weeks, about 20 percent of the strain gauges exhibited large and sudden jumps into 
tension. These jumps occurred between 1 and 4 weeks after concrete placement, were most 
frequent in the second and third weeks, and have no clear relationship with depth. Figure 5.3 
shows measurements recorded for one gauge as an example.  

These jumps are likely the result of small tension cracks forming in the concrete due to 
shrinkage. For example, at 7 days, the concrete compressive strength was approximately 4 
kips/in2, giving an average tensile strength of about 0.4 kips/in2. Distributed throughout the shaft, 
this represents a tensile load of about 180 kips. If this tensile load is released as a crack extends 
across the shaft, the load will be redistributed to the 12 #7 bars. A tensile force of 180 kips 
corresponds to a strain of about 900 microstrains in the bars, which is consistent with the 
magnitude of tensile strains associated with these jumps (Figure 5.3).  
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Figure 5.3: Illustration of tension crack formation in concrete near gauge. 

Another issue with concrete cracking is the risk of breaking the strain gauge. If a tension 
crack forms very close to the exposed optical fiber, the fiber can be damaged and the gauge can 
be lost (Fuhr et al., 1993). Soon after cracking in the concrete began, two gauges jumped to over 
3,000 microstrains, which was outside their range of measurement and likely indicated damage 
to the gauge. Over the course of the project, gauges that suddenly register measurements in this 
range have usually malfunctioned shortly thereafter. 

5.1.3.3:  Expansive Soil Movement 

After the influence of concrete curing and tension cracks diminished, approximately 10 
percent of gauges showed steady increases in tension over the remaining 3 months between 
concrete placement and excavation. The increases in tension occurred most commonly in gauges 
located between 0 and 10 feet below the ground surface. Figure 5.4 shows a gauge located 7 feet 
below ground surface exhibiting this behavior. A gauge at 23 feet showed similar strain behavior 
early on, but did not exhibit the same increase in tension with time. Qualitatively, the increase in 
tension begins at a similar time as the transition from below average rainfall in April and May to 
above average rainfall in June and July. A pre-excavation strain value of approximately 700 
microstrains also suggests that a tension crack may also be present near the gauge. The shaft may 
be experiencing changes in side shear stresses due to moisture content changes in high plasticity 
clay (e.g., Kim and O’Neill, 1998), along with the effects of tension cracking in the concrete. 
This behavior is most pronounced in gauges located between 5 and 9 feet below ground surface, 
above the water table where the natural moisture content fluctuates in response to weather 
patterns. 
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Figure 5.4: Strains occurring between concrete curing and excavation.  

The gauge at a depth of 7 feet may be experiencing changes in side shear due to moisture 
fluctuations in the active zone (e.g., Kim & O’Neill, 1998). 

5.2:  Behavior during Excavation (August 2010–September 2010) 

5.2.1:  OVERVIEW AND SUMMARY OF EXCAVATION PROGRESS 

Excavation of the test wall began on July 29, 2010, and took place over a period of 
approximately 4 weeks. The full cantilever height of 14 to 15 feet was reached on August 13, 
2010, and the preliminary slopes were completed on August 19, 2010. The slopes were improved 
on September 30, 2010, and facing was installed on October 8, 2010. Photos of the excavation 
progress are provided in Figure 5.5–Figure 5.6. 
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Figure 5.5: Photos of initial excavation progress (7/29/2010–8/5/2010). 

 
Figure 5.6: Photos of later excavation progress (8/23/2010 - 10/1/2010). 

5.2.2:  CLIMATIC INFORMATION 

Prior to the start of excavation, the project site had experienced a relatively dry spring, 
followed by a summer with above average rainfall. During excavation, the hot, dry weather of 
August was followed by above average rainfall during the month of September (Figure 5.7), 
punctuated by approximately 1.9 inches of rain on September 7 (Figure 5.8). Average daily 
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temperatures decreased from about 85° Fahrenheit at the start of excavation to about 65° at the 
installation of facing, a decrease of approximately 20° (Figure 5.9). 

 

 
Figure 5.7: Monthly rainfall totals for Austin, Texas (Jul. 2010–Oct. 2010; data from 

www.wunderground.com). 

 
Figure 5.8: Daily precipitation for Manor, Texas (Jul. 2010–Oct. 2010; data from 

www.wunderground.com). 
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Figure 5.9: Daily temperature data for Manor, Texas (Jul. 2010–Oct. 2010; data from 

www.wunderground.com). 

5.2.3:  SUMMARY OF FIELD INSTRUMENTATION DATA 

5.2.3.1:  Inclinometer Data 

Beginning on July 27, 2010, inclinometer data from the east instrumented shaft was 
recorded at regular intervals throughout the excavation process. Lateral deflections at ground 
surface and a depth of 14 feet, along with a summary of key excavation events, are shown in 
Figure 5.10. Deflected shapes at various points during excavation are provided in Figure 5.11, 
and cumulative deflections in the soil 5.5 feet behind the centerline of the wall are provided in 
Figure 5.12. 
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Figure 5.10: Progression of lateral deflections and key events during excavation. 
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Figure 5.11: Deflected shape of east instrumented shaft at various dates during excavation. 

Design Excavation Depth 



 113

 
Figure 5.12: Cumulative deflections recorded in inclinometer installed through the soil 5.5 feet 

behind the center instrumented shaft. 

5.2.3.2:  Linear Potentiometer Data 

A linear potentiometer was installed prior to excavation. It was attached to shaft #16, 
adjacent to the west instrumented shaft (shaft #15). It provides continuous data on top-of-wall 

Base of Excavation 

Base of Drilled Shafts 
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deflection and redundancy with the inclinometer data. Linear potentiometer data recorded during 
the first month of excavation, along with top-of-wall deflections for the three instrumented 
shafts, is provided in Figure 5.13. 

 

 
Figure 5.13: Deflection measured at top of wall during excavation. 

Excavation began on July 29 and continued through August 27. 

5.2.4:  DATA INTERPRETATION 

During excavation, the wall responded almost immediately to the relief of stress. The 
deflection at the top of the wall, measured directly with a linear potentiometer and in three 
inclinometers, is shown on Figure 5.13. The top-of-wall deflections developed more quickly on 
the east versus the west side because a larger volume of soil was initially removed from the east 
side (Figure 5.14). The final excavation dimensions at the centerline of the wall were, on 
average, reasonably close to the design values (Figure 5.15). The final deflections immediately 
after the excavation was completed were similar between the three shafts (Figure 5.13). 

Between depths of 20 and 30 feet below the original ground surface (5 to 15 feet below 
the cantilever), the shafts developed a bending moment. Figure 5.16 shows axial strains from a 
pair of strain gauges on either side of the shaft’s neutral axis at the approximate location of the 
maximum bending moment. The strains are nearly equal and opposite, and their development is 
qualitatively similar to the increase in deflection with time at the top of the wall (Figure 5.13). 
Additionally, bending strains interpreted from strain gauge data are consistent with those 
interpreted from inclinometer data (Figure 5.17). 
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Figure 5.14: Progression of excavation depth along wall face. 

 
Figure 5.15: Contour plot of final surveyed excavation dimensions (all units in feet). 
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Figure 5.16: Development of bending strains in a pair of strain gauges located 23 feet below 

ground surface in the center shaft. 

 
Figure 5.17: Comparison of bending strains interpreted from inclinometer and strain gauge data 

at a depth of 23 feet. 
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5.3:  Behavior during Natural Moisture Cycles 

5.3.1:  OVERVIEW 

After the completion of excavation in September 2010, shotcrete facing material was 
installed on October 1, 2010. Between October 2010 and April 2012, the wall experienced a 
range of climatic conditions, which were reflected in the observed wall movements. Because the 
application of facing represents a practical “zero” value for field measurements, subsequent test 
wall measurements are referenced to the October 8, 2010, survey (the most recent survey after 
facing installation). 

5.3.2:  CLIMATIC INFORMATION 

After facing installation was completed in October 2010, the test wall experienced 
approximately 3 months of below-average rainfall, followed by a series of storms in January 
2011. During the spring and summer of 2011, the test wall experienced an extended period of 
below average rainfall, widely reported to be the most severe drought ever recorded in Austin. 
During the fall and winter of 2011 and early 2012, rainfall totals were above average, and the 
project site was frequently flooded by heavy rains. By the time controlled inundation testing had 
begun in early May 2012, the project site had seen several weeks with high temperatures and 
minimal rainfall. Rainfall patterns are summarized in Figure 5.18; daily temperature data is 
presented in Figure 5.19. 
 

 
Figure 5.18: Monthly Rainfall Totals for Austin, Texas (Oct. 2010–Apr. 2012; data from 

www.wunderground.com). 
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Figure 5.19: Daily Temperature Data for Manor, Texas (Oct. 2010–Apr. 2012; data from 

www.wunderground.com). 

5.3.3:  DATA INTERPRETATION 

At the time of facing installation, the total top-of-wall deflection was approximately 0.97 
inches relative to the beginning of excavation. In practice, the application of facing often 
represents the de facto “zero” date for a wall in service, because any deformations that have 
occurred during excavation will be visually obscured by the facing material. Without any internal 
instrumentation, subsequent wall assessments will rely largely on observed deformations and 
distress in the facing. For this reason, test wall deformations in response to natural soil moisture 
fluctuations are referenced to our facing installation date of October 8, 2010. The influence of 
natural moisture cycles on the measured top-of-wall deflection is illustrated in Figure 5.20. In 
general, top-of-wall deflections tend to increase with increased rainfall, and stabilize or decrease 
during periods of drought (rainfall data is presented in Figure 5.18). 
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Figure 5.20: Variation of top-of-wall deflection with natural moisture cycles. Deflections are 

referenced to installation of facing on October 8, 2010. 

Between March 2011 and November 2011, a record-breaking drought caused the soil on 
the project to dry and shrink significantly. In response, the top-of-wall deflections decreased by 
approximately 0.29 inches over 8 months. As an indication of drying-related soil shrinkage on 
the project site, noticeable differential settlement between the inclinometer casing (installed to a 
depth of 50 feet) and its surrounding concrete pad (connected to the ground surface 
independently of the casing) was observed. While this is far from a perfect measurement, it does 
indicate significant shrinkage of the retained soil occurred (Figure 5.21). The top-of-wall 
deflections reach a minimum during this phase. 
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Figure 5.21: The use of a deep inclinometer casing and concrete pad as a qualitative indicator 

of soil shrinkage near the test wall (not to scale). 

During each of the phases of wall motion illustrated in Figure 5.20, the deflected shape of 
the shaft varied in ways that cannot be easily modeled using a typical p-y analysis. In Figure 
5.22, the deflected shape of the shaft at the conclusion of each phase of motion is plotted. When 
these are compared with the deflected shape predicted by the original design p-y analysis using a 
commonly assumed earth pressure of 40 psf/ft and stiff clay curves for the foundation soil, the 
qualitative differences in the predicted and measured values are similar to the differences 
observed during excavation. Throughout both wetting and drying cycles, the observed 
foundation soil response is softer than the response predicted by the stiff clay curves. More 
complex loading mechanisms, the influence of shaft base rotation, weakening of the soil in the 
base of the excavation, and various other factors may all influence these discrepancies. 

 

Wet Conditions: Top of 
Casing Below Pad Level 

Dry Conditions: Top of 
Casing Above Pad Level 

Depth of Casing ~50 feet 

Depth of Active Zone ~10 feet 

Shrinkage 
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Figure 5.22: Deflected shapes of test wall at key dates, referenced to the installation of facing on 

October 8, 2010, compared with the initial p-y design analysis. 
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5.4:  Behavior during Controlled Inundation Testing 

5.4.1:  OVERVIEW 

During the extremely dry summer of 2011, the research plan was modified to include 
cycles of artificial inundation of the retained soil. Based on climatic history and the available 
long-term weather forecasting, it was deemed unlikely that the soil on the project site would ever 
sustain the high moisture contents necessary to investigate the effects of soil expansion on wall 
behavior. By increasing soil moisture content behind the wall to an upper-bound condition, the 
influence of soil wetting and expansion on the earth pressures can be more readily estimated. 
Beginning in May 2012, the retained soil was provided unlimited access to water for 2 months, 
followed by a 7-month drying cycle. In February 2013, the retained soil was inundated until the 
top-of-wall deflections reached equilibrium, a period of approximately 4 additional months. 

5.4.2:  SUMMARY OF KEY EVENTS 

5.4.2.1:  Site Investigation and Installation of Inundation Berm and Piezometers 

On February 23, 2012, a site investigation was conducted and four stand pipe 
piezometers were installed as shown in Figure 5.23. On April 26, 2012, the inundation berm was 
constructed as shown in Figure 5.24–Figure 5.25.  

 

 
Figure 5.23: Location of inundation zone and stand pipe piezometers. 

Piezometers A and C are screened from 5 to 15 feet; piezometer B is screened between 3.4 and 
4.6 feet; piezometer D is screened between 3.6 and 4.8 feet. 
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Figure 5.24: Schematic of inundation berm. 

 
Figure 5.25: Inundation berm and stand pipe piezometers (April 26, 2012). 

5.4.2.2:  Summary of Inundation Cycles 

5.4.2.2.1:  First Inundation Cycle (May 2012–July 2012) 
Beginning on May 3, 2012, the inundation zone was filled. Wall deflections increased 

steadily for approximately 2 months until July 2, 2012, when the water supply to the pond was 
stopped and the wall was allowed to return to its natural state. 

A  

B  
C  D 
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5.4.2.2.2:  First Drying Cycle (July 2012–February 2013) 
 From July 2012 to February 2013, the wall was not provided access to moisture beyond 
naturally occurring rainfall on the project site. Over this time period, deflections fluctuated 
slightly, but did not increase or decrease to a degree consistent with a significant change in 
loading conditions. 

5.4.2.2.3:  Second Inundation Cycle (February 2013–June 2013) 
 Beginning on February 5, 2013, the inundation zone was filled a second time. After 
approximately 4 months of inundation, the wall deflections and piezometer water levels 
stabilized. In response to a large storm event, a major flood occurred in which the water level in 
the excavation reached the ground surface prior to the inclinometer and strain gauge data surveys 
recorded on May 6, 2013 (Figure 5.26). During this flood event, significant erosion of the 
excavation slopes occurred; due to additional soil transported to the excavation base, the 
excavation depth had decreased to approximately 13.5 feet below ground surface. 
 

 
Figure 5.26: Flooding in response to a large storm before the May 6, 2013, data surveys. Water 

level in the excavation reached ground surface. 

5.4.2.2.4:  Second Drying Cycle (June 2013–July 2013) 
 On June 3, 2013, a second drying cycle began. Water moved out of the soil quickly, and 
shrinkage cracks appeared in the surface soil (Figure 5.27). As water moved out of the soil, top-
of-wall deflections began to decrease fairly quickly. At the time of this writing, the wall 
deflections had been monitored during drying for a period of approximately 2 months. At the 
conclusion of data recording in July 2013, top-of-wall deflections and stand pipe piezometer 
levels had nearly stabilized, but had not completely reached equilibrium. Based on previous 
observations, it is likely that when water levels return to their natural values of approximately 8 
feet below ground surface, the top-of-wall deflections will stabilize. 
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Figure 5.27: Inundation zone on June 17, 2013, 2 weeks into second drying cycle. Stand pipe 

piezometer casing is 4” across. 

5.4.3:  CLIMATIC INFORMATION 

Monthly rainfall totals for Austin during controlled inundation testing are presented in 
Figure 5.28. Daily temperature measurements for Manor, Texas, are presented in Figure 5.29. 
While rainfall data during periods of wall inundation is useful to get a sense of the soil 
conditions outside the influence of the inundation zone, rainfall data during the drying cycle 
from July 2012 to February 2013 is of most interest. For the first 3 months of the drying cycle 
during July through September 2012, rainfall totals were above average, followed by 4 months of 
below average rainfall between October and December 2012. During January 2013, rainfall 
totals began to increase before the beginning of the second inundation cycle in February 2013. 
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Figure 5.28: Monthly rainfall totals for Austin, Texas (May 2012–Jun. 2013; data from 

www.wunderground.com). 
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Figure 5.29: Daily average temperature data for Manor, Texas (May 2012–Jul. 2013; data from 

www.wunderground.com). 

5.4.4:  SUMMARY OF FIELD INSTRUMENTATION DATA 

5.4.4.1:  Inclinometer Data 

 Inclinometer data is referenced to the installation of facing in October 2010. Average 
deflected shapes are presented in Figure 5.30, and top-of-wall deflections are presented in Figure 
5.31. 
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Figure 5.30: Average deflected shapes at key dates during inundation testing. Data is referenced 

to installation of facing in October, 2010. 

Excavation Line 
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Figure 5.31: Top-of-wall deflections during inundation testing (key dates indicated by vertical 

dashed lines). Reference survey is facing installation in October 2010. 

5.4.5:  SOIL MOISTURE CONTENT DATA 

A summary of measured soil moisture contents during controlled inundation testing is 
provided in Figure 5.32. Data from samples obtained using a hand auger, as well as data from 
geotechnical investigations conducted by Fugro Consultants, Inc., is provided. While a wide 
range of moisture contents were measured throughout the testing, in general, measured moisture 
contents ranged from approximately 15 to 35 percent in the zone above the natural groundwater 
table. At the conclusion of the second inundation cycle, moisture contents had increased to 
approximately 30 percent over the entire depth of the active zone (above the natural groundwater 
table at 8 feet below ground surface). While the final values of moisture content were similar at 
the conclusion of the first and second inundation cycles between 0 and 4 feet below ground 
surface, the second inundation cycle resulted in additional wetting of the soil between 4 and 8 
feet below ground surface. Below the groundwater table at a depth of 8 feet, the soil transitions 
from dark brown Taylor clay to tan Taylor clay, and the natural moisture contents increase to 
between approximately 34 and 40 percent.  
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Figure 5.32: Summary of measured soil moisture contents during controlled inundation testing. 

5.4.6:  STAND PIPE PIEZOMETER DATA 

Data from the stand pipe piezometers were recorded at regular intervals for the duration 
of inundation testing. Piezometer B-3 was installed and developed in 2010; consequently, water 
levels can be plotted for all inundation cycles (Figure 5.33). Piezometers A, B, C, and D were not 
properly developed after installation and did not show reliable data until the second inundation 
cycle. Data from the second cycle is presented in Figure 5.34 (piezometers with shallow screen 
intervals) and Figure 5.35 (piezometers with deeper screen intervals). 

The water level in Piezometer B-3 was relatively unaffected by the presence of water in 
the inundation zone. The increased values in May, 2012 were associated with flooding on the 
project site that infiltrated the piezometer casing, and most likely do not represent the actual 
groundwater conditions. At the conclusion of inundation testing in July 2013, the water level had 
stabilized at approximately 8.5 to 9 feet below ground surface. 
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The water levels in the piezometers with shallow screen intervals stabilized at 
approximately 0.5 and 1.3 feet below ground surface during the second inundation cycle, before 
increasing during a large flood in May 2013 by approximately 0.3 feet. After the flood, water 
levels returned to values slightly higher than their original equilibrium values. The discrepancy 
in equilibrium water heights may be due to the development of steady-state seepage conditions, 
in which a cone of depression near the wall face leads to lowered water levels in stand pipe 
piezometers close to the wall (Figure 5.34). In piezometers with deeper screen intervals, water 
levels showed a similar trend, with equilibrium water levels increasing slightly after flooding in 
May 2013. Water levels were similarly lowered in the piezometer closer to the wall face. At the 
conclusion of inundation testing, despite the small cone of depression near the wall facing drains, 
conditions close to hydrostatic pressures had likely developed in much of the retained soil. After 
the water supply was stopped in June 2013, water levels in all piezometers immediately began to 
decrease toward their pre-inundation values. 

 

 
Figure 5.33: Water level in Piezometer B-3 (outside inundation zone) during inundation testing. 
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Figure 5.34: Data from shallow-screened stand pipe piezometers during second inundation 

cycle. 

 
Figure 5.35: Data from deeper-screened stand pipe piezometers during second inundation cycle. 
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5.4.7:  DATA INTERPRETATION 

5.4.7.1:  Immediate Response to Water 

The inundation test began on May 3, 2012, and the wall and soil responded nearly 
immediately to the presence of water (Figure 5.36). Within minutes, the TDR probes installed 
throughout the retained soil registered the presence of free water (Figure 5.37), and within hours, 
water had begun to infiltrate through the wall drainage system into the excavation (Figure 5.38). 
This immediate response is consistent with the response observed at the test wall during large 
rainfall events, and suggests that the fissures present in the expansive clay provide preferential 
pathways for moisture flow. 

 

 
Figure 5.36: The inundation zone is filled on May 3, 2012. 
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Figure 5.37: Electrical conductivity data from one TDR probe shows a response within minutes 

of beginning the inundation test. Probe is located 1.5 feet below ground surface. 

 
Figure 5.38: Water infiltration into the excavation was first observed 90 minutes from the start 

of inundation. 

 The top-of-wall deflection began to increase almost immediately in response to 
inundation, and continued at a slightly decreasing rate for the duration of the test (Figure 5.31). 
Based on the daily rate of deflection, it was inferred that the inundation test would likely need to 
continue for several additional months before an equilibrium condition was reached. Because of 
this, and in order to allow the soil time to dry out before the next scheduled inundation cycle in 
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January 2013, the first inundation cycle was stopped on July 2, 2012. After the water supply to 
the inundation area was cut off, the wall deflection stabilized within 1 day, again suggesting that 
fissures in the soil mass provide fairly direct access to moisture. Over the 2-month inundation 
cycle, the top-of-wall deflections had increased by approximately 2 inches. Had the test not been 
stopped, it is likely that deflections would have increased beyond this point. After 2 months of 
inundation, in the soil above the groundwater table, moisture contents had increased by 
approximately 5 to 10 percentage points in the active zone above the natural groundwater table 
(Figure 5.32). 

5.5:  Summary and Conclusions 

5.5.1:  BEHAVIOR BEFORE EXCAVATION 

An examination of test wall behavior between shaft construction and excavation has shed 
light on the processes that occur in drilled shaft retaining walls prior to excavation. Key findings 
include the following: 

• Prior to shaft construction, the test site experienced approximately 8 months of 
above average rainfall. Between shaft construction and excavation, the wall 
experienced 2 months of below average rainfall, followed by 2 months of above 
average rainfall. 

• Axial strains developed in the shafts prior to construction due to a combination of 
concrete curing and expansive soil movement. In many cases, the development of 
axial strains suggests that tension cracks developed throughout the shaft. 

• Residual stresses and strains are present in the shafts prior to excavation. The 
distribution of residual stresses and strains is highly variable within each shaft. 

5.5.2:  BEHAVIOR DURING EXCAVATION 

 The behavior of the Lymon C. Reese wall suggests that standard of practice design 
methods may not accurately account for what occurs during excavation. Based on the results of 
the instrumentation and data analysis program, several conclusions can be drawn: 

• The standard design procedure for stiff clay predicts top-of-wall deflections fairly 
well for the test wall. However, it does not accurately predict the deflected shape at 
depth, and significantly overestimates the bending stresses in the shaft. 

• A significant amount of the measured test wall deflection was due to a combination 
of global movement of the soil-shaft system and shaft base rotation, neither of 
which directly stress the wall. These motions are not accounted for in the design 
analysis, and because they are visually obscured by the application of facing 
material, they may not be noticed without careful monitoring. While estimates of 
global movements for the test wall are provided, additional data from other drilled 
shaft walls in expansive soils are required to formulate reliable recommendations 
for design. 

• Deformations prior to the application of facing accounted for approximately 50 
percent of the test wall’s allowable top-of-wall deflections. Because deflection 
requirements often govern design in practice, an understanding of the soil and shaft 
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deformations during excavation may be important in some cases to ensure adequate 
wall performance. 

5.5.3:  BEHAVIOR DURING NATURAL MOISTURE CYCLES 

Data recorded at the Lymon C. Reese research wall during natural moisture cycles has 
provided some insight into the behavior of drilled shaft retaining walls during cycles of wetting 
and drying. Conclusions include the following: 

• During cycles of drying, wall deflections decreased. This is primarily due to 
volumetric shrinkage of the soil, which leads to an equivalent reduction in earth 
pressures. After 8 months of extreme drought, deflections at the test wall decreased 
by approximately 0.3 inches, and the earth pressure reduction corresponds to a 
decrease in equivalent fluid pressure of approximately 20 psf/ft.  

• During cycles of wetting, wall deflections increased. This is primarily due to a 
combination of soil swelling and the dissipation of negative pore pressures. The 
presence of water contributes to both increased earth pressures (softening of the 
retained soil) and decreased resistance (softening of the foundation soil). There is 
little evidence at the test wall to suggest that high lateral earth pressures due to soil 
expansion are imposed. 

5.5.4:  BEHAVIOR DURING CONTROLLED INUNDATION TESTING 

The data recorded at the Lymon C. Reese research wall during cycles of controlled 
inundation testing has provided insights into the behavior of drilled shaft walls in expansive clay. 
Following are some of these insights: 

• Fissures in the clay provide preferential pathways for drainage and moisture flow. 
Drainage through these fissures occurs very quickly, within minutes, when surface 
water is present. This is supported by first-hand observations and data from TDR 
moisture probes and stand pipe piezometers.  

• In the 6 total months of controlled inundation, and 8 total months of drying cycles, 
top-of-wall deflections stabilized at 5.2 inches since shaft installation, and 4.2 
inches since the installation of facing. Maximum bending moments in the shaft 
since installation were approximately 2,100 in-kip, approximately two-thirds of the 
yield moment. 

• Wall deflections stabilized at the same time the water levels in stand pipe 
piezometers stabilized. As water levels decreased after the conclusion of 
inundation, top-of-wall deflections decreased accordingly. This result suggests the 
presence of water behind the wall contributes to the development of deflections. 

• Even with continued access to water, there is limited evidence to suggest that large 
earth pressures due to soil expansion are sustained at the test wall. No evidence of 
earth pressures exceeding the pressure envelope defined by drained, fully softened 
strengths with additional hydrostatic pressures was observed. 
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CHAPTER 6: TEST WALL ANALYSIS 

Detailed numerical analyses have been conducted for two conditions the wall 
experienced: the immediate response of the wall due to the excavation and the long-term 
response of the wall when it reached equilibrium under full inundation. 

6.1:  Excavation Loading 

6.1.1:  OBSERVED BEHAVIOR 

The measured response of the wall at the end of excavation is shown in Figure 6.1, Figure 
6.2 and Figure 6.3. For comparison, the calculated deflected shape from the baseline design 
analysis is also shown. While the design calculations are not intended to represent this condition, 
they are shown in Figure 6.1 to Figure 6.3 to illustrate the important features of how the wall 
responded during excavation. First, the wall deflected about 0.9 inches at the top during 
excavation, which is similar to the deflection predicted in design under long-term loading (Figure 
6.1) after the excavation is wished into place. Second, the wall tilted as a rigid body rather than 
bent during excavation (Figure 6.1 and Figure 6.2). This behavior indicates that the wall was 
moving with the soil rather than retaining the soil (Figure 6.3), which is not surprising since the 
clay is stable on a vertical face as high as 15 feet in the short term after excavation without any 
support from a wall. 
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Figure 6.1: Measured deflected shape of wall at end of excavation. 
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Figure 6.2: Comparison of shaft rotation profile predicted by standard design procedure with 

rotation profile measured during excavation. 
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Figure 6.3: Comparison of bending moments predicted by standard design procedure with 

moments measured during excavation. 

6.1.2:  FINITE ELEMENT METHOD ANALYSIS 

A simplified finite element method (FEM) analysis was conducted to better understand 
the response of the wall during excavation. The commercially available ABAQUS® software 
was used for this analysis. This FEM model had the following attributes: 

• plane strain (two-dimensional) conditions; 

• isotropic, linear elastic soil characterized by a Young’s modulus, E, that varies with 
depth and by a Poisson’s ratio assumed equal to 0.45 for undrained conditions; 

• anisotropic initial state of stress before excavation; 

• linear elastic wall with a constant bending stiffness; and 

• rough interface between the wall and soil. 
 
Three stages were used in this modeling. First, the initial state of stress due to the weight 

of the soil and the input ratio of horizontal to vertical stress (K0) was imposed. Second, the wall 
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is wished into place. Third, the excavation is simulated by reducing to near zero the unit weight 
and stiffness of the soil elements within the excavation cross section. 

The input for the modeling was based on available information from the preliminary site 
investigation. The soil unit weight was assumed to be 125 pcf. The Young’s modulus values 
versus depth were estimated based on a design profile of undrained shear strength (su) versus 
depth (Figure 6.4) and a ratio of E/su. An E/su value of 1000 was first assumed based on 
laboratory UU triaxial tests and based on in situ Spectral Analysis of Surface Wave (SASW) 
testing conducted at the project site just prior to the excavation (Figure 6.5 and Figure 6.6).  
 

 
Figure 6.4: Assumed profile of undrained shear strength versus depth for FEM analysis of 

excavation. 
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Figure 6.5: SASW testing at the test wall prior to excavation, June 2010. 
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Figure 6.6: Interpreted shear modulus profiles from SASW testing (Ellis 2011). 

Results from the FEM analysis are shown in Figure 6.7, Figure 6.8, and Figure 6.9. The 
first analysis assumed an isotropic initial state of stress (K0 = 1) and a ratio of E/su = 1000 at all 
depths. This analysis produces a deflected shape for the wall that is similar to the measurements 
(i.e., the wall rotating rather than bending); however, the absolute displacements are smaller than 
the measured displacements (Figure 6.7). In order to obtain a more realistic representation, the 
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possibility of large in situ lateral stresses caused by overconsolidation was considered. Values for 
K0 of 2 to 3 have been measured in these highly plastic, overconsolidated clays in Central Texas 
(e.g., Smith et al. 2009). These larger in situ lateral stresses increase the absolute displacement 
(Figure 6.7), but the total calculated displacement is still less than one-half the measured 
displacement. The possibility of the soil mass stiffness being less during unloading than loading 
(as it was measured in both the laboratory UU tests and in the SASW tests) was also considered. 
Based on trial and error, a profile of stiffness with E/su equal to 180 above the excavation depth, 
where the unloading is most significant, and E/su equal to 400 below the excavation depth 
produces a calculated displacement profile that is very similar to the measured one (Figure 6.7). 
This stiffness reduction in unloading is consistent with observations in other stiff fissured clays, 
such as the London Clay (e.g., Cripps and Taylor, 1981). 

The global displacements of the soil (Figure 6.8) and the shear strains in the soil (Figure 
6.9) show how the soil is essentially carrying the wall with it in response to the stress relief from 
the excavation. The displacements in the soil extend well below the depth of the wall (Figure 
6.8). To illustrate this behavior further, a sensitivity study was conducted by lengthening the 
drilled shafts in the FEM analysis. These calculated results predict that even if the shafts had 
been 50 feet long, embedded below the excavation more than twice the depth of the excavation, 
the deflected shape would have been similar to the 35-foot long shafts and the deflection at the 
top of the wall would have been only about 0.1 inches smaller (Figure 6.10). 
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Figure 6.7: Comparison of linear elastic FEM predictions with measured field data. 

Excavation Line 
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Figure 6.8: Global displacement of soil in response to excavation in linear elastic FEM (K0 = 3, 

E/su = 180 for depths from 0 to 15 feet and E/su = 400 for depths greater than 400 feet). 

 
Figure 6.9: Global shear strains in soil in response to excavation in linear elastic FEM (K0 = 3, 

E/su = 180 for depths from 0 to 15 feet and E/su = 400 for depths greater than 400 feet). 
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Figure 6.10: Effect of shaft length on results from linear elastic FEM (K0 = 3, E/su = 180 for 

depths from 0 to 15 feet and E/su = 400 for depths greater than 400 feet). 

6.2:  Long-Term Loading 

6.2.1:  OBSERVED BEHAVIOR 

The deflection of the wall under long-term loading with the inundation pond reached 
equilibrium on about June 3, 2013 (Figure 6.11); measurements from the site on this date will be 
used to represent the long-term loading condition. Note the depth of the excavation when the 
wall reached long-term equilibrium was about 13.5 feet versus 15 feet due to erosion into the 
excavation in the spring of 2013 (see Section 5.4.2.2.3). 

The measured response of the wall at equilibrium under long-term loading is shown in 
Figure 6.12, Figure 6.13, and Figure 6.14. Since design calculations for the wall are not intended 
to account for the immediate response of the soil around the wall caused by stress relief from 
excavation (Figure 6.7), the inclinometer, linear potentiometer, and strain gauge measurements 
for the long-term condition are all referenced to the measurements at the end of excavation and 
facing installation (defined as 10/8/10). For comparison, the calculated deflected shape from the 
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baseline design analysis is also shown in Figure 6.12 to Figure 6.14. While the design 
calculations are not intended to represent this long-term condition with the inundation pond, they 
are shown in Figure 6.12 to Figure 6.14 to illustrate the important features of how the wall 
responded under the long-term loading. First, the wall deflected about 4 inches at the top, which 
is greater than the deflection predicted in design (Figure 6.12) because the active earth pressures 
in the retained soil are greater due to raising the water table in the retained soil to the top of the 
ground with the inundation pond. Second, the stiffness of the lateral soil resistance against the 
wall below the excavation is less than predicted (Figure 6.12 and Figure 6.13) since the soil 
presumably reached drained conditions under this long-term loading condition, dissipating 
negative pore water pressures and decreasing the effective stress in the foundation soil. Third, 
there is a curvature in the wall above the excavation back toward the retained side caused by the 
higher temperature on the exposed face of the wall in June; this curvature is reflected as an 
apparent negative bending moment above the excavation (Figure 6.14). A detailed discussion 
and analysis of this thermal effect is presented in Brown (2013), which is located in Appendix K. 

 

 
Figure 6.11: Lateral deflection at top of wall after first and second inundation cycles. 

First 
Inundation 

Cycle 

Second
Inundation 

Cycle 
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Figure 6.12: Measured deflected shape of wall at equilibrium condition under long-term loading 

with full inundation. 

Note: Measurements 
zeroed at end of 
excavation, 10/8/10. 



 150

 
Figure 6.13: Comparison of shaft rotation profile predicted by standard design procedure with 

rotation profile measured at equilibrium condition under long-term loading with full inundation. 

Note: Measurements 
zeroed at end of 
excavation, 10/8/10. 
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Figure 6.14: Comparison of bending moments predicted by standard design procedure with 

moments measured during excavation. 

6.2.2:  PORE WATER PRESSURES 

A simplified FEM analysis was conducted to better understand the pore water pressures, 
and therefore the effective stresses, in the soil under the long-term equilibrium condition. 
ABAQUS® software was used for this analysis. This FEM model had the following attributes: 

• two-dimensional flow conditions; 

• isotropic soil characterized by a hydraulic conductivity equal to 3.28x10-8 ft/s based 
on information from rising head tests conducted in the piezometer and laboratory 
consolidation tests on samples from the soil borings (note that the soil is assumed 
saturated above and below the water table and the hydraulic conductivity is 
assumed the same above and below the water table); 

• anisotropic wall with a horizontal hydraulic conductivity equal to 1/5 that for the 
soil (accounting for the shafts occupying 4/5 or 24 inches/30 inches of the wall 
face) and a vertical hydraulic conductivity equal to 1,000 times the horizontal 
hydraulic conductivity to model a freely draining surface due to the geocomposite 
drains behind the wall facing; 

• a constant hydraulic head boundary condition equal to the ground elevation at the 
surface of the retained soil extending 23 feet back from the wall to represent the 
inundation pond; 

Note: Measurements 
zeroed at end of 
excavation, 10/8/10. 
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• a constant hydraulic head boundary condition equal to the ground elevation at the 
surface of the excavation bottom extending the 10-foot width of the excavation 
away from the toe of the wall to represent the steady pumping to maintain a dry 
excavation; and 

• freely draining boundaries along the edges of the finite element mesh, which are 
located 100 feet from the wall to represent the free-field conditions far away from 
the inundation pond and the pumped excavation (this distance was established to be 
far enough away so that there was approximately no flow at these boundaries), and 
have an imposed constant head of zero at the elevation of the free-field water table 
equal to 7.5 feet below the ground surface. 

 
Three stages were used in this modeling. First, the initial flow conditions without the 

inundation pond and the pumped excavation were established with a water table at the depth of 
the excavation, 15 feet below the ground surface. Second, the constant head boundary conditions 
for the inundation pond and the pumped excavation and the constant head at the free-field 
boundaries were all imposed. Third, the simulation was progressed with time until a steady-state 
condition was reached. 

The results of this FEM analysis are shown in Figure 6.15. The local flow conditions in 
the vicinity of the wall consist of horizontal flow toward the wall drain in the retained soil, 
vertical downward flow in the retained soil, vertical flow downward in the drain behind the wall, 
horizontal flow from the drain behind the wall into the excavation, vertical upward flow in the 
soil below the excavation, and horizontal flow toward the wall in the soil on the excavated side. 
Profiles of pore water pressure versus depth from the FEM results are shown in Figure 6.16 and 
Figure 6.17. The FEM results match very well with the piezometer measurements (Figure 6.16). 
While the flow is vertically downward in the retained soil (Figure 6.16) and vertically upward in 
the soil below the excavation (Figure 6.17), the pore water pressures are reasonably close to 
hydrostatic conditions for practical purposes. The simplified assumption of hydrostatic 
conditions will slightly overestimate the active earth pressures loading the soil on the retained 
side and slightly underestimate the passive earth pressures supporting the wall on the excavated 
side. 
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Figure 6.15: Pore-water pressure field for steady-state flow conditions under long-term 

inundation from FEM analysis. 
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Figure 6.16: Profiles of pore water pressure versus depth in the retained soil behind the wall 

from FEM analysis compared with hydrostatic conditions and piezometer measurements. 
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Figure 6.17: Profiles of pore water pressure versus depth in the excavated soil in front of the 

wall from FEM analysis compared with hydrostatic conditions. 

6.2.3:  ACTIVE EARTH PRESSURES 

The active earth pressures applied to the wall by the retained soil were estimated for the 
long-term equilibrium assuming (1) hydrostatic conditions with the water table at the ground 
surface in the retained soil (Figure 6.16), (2) an interface friction angle between the wall and the 
retained soil equal to 2/3 the friction angle for the retained soil, and (3) a friction angle for the 
retained soil equal to the fully softened, drained shear strength (Figure 4.7). The fully softened, 
drained shear strength is recommended for the design of slopes and retaining walls in highly 
plastic clays under long-term conditions by many practitioners (e.g., Skempton 1970; Stark and 
Eid 1997; Duncan et al. 2011 and Gregory and Bumpas 2013), including several TxDOT 
research reports (Wright 2005 and Wright et al. 2007).  

A comparison of calculated and measured earth pressures is shown in Figure 6.18. The 
assumption of a fully softened, drained shear strength and hydrostatic conditions matches the 
measurements reasonably well. The measured soil reactions based on the inclinometer and strain 
gauge measurements in the upper 6 feet are suspect because there is little bending in the shaft 
here and its curvature is lessened further by thermal effects. The calculated earth pressures in this 
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case are not very sensitive to the friction angle of the retained soil due to the high water table in 
the retained soil when it reached long-term equilibrium with the inundation pond. 

For reference, a hypothesized envelope of earth pressures based on swell pressures is also 
shown in Figure 6.18. There is no evidence with this wall that the earth pressures in the retained 
soil ever exceeded the active earth pressures for a fully drained condition. 

 

 
Figure 6.18: Comparison of calculated and measured active earth pressures on wall in retained 

soil. 

6.2.4:  PASSIVE EARTH PRESSURES (P-Y CURVES) 

The passive soil resistance against the shafts was estimated for long-term loading 
conditions assuming drained conditions in the clay. Lateral soil springs were modeled using 
“sand” or “cohesionless” p-y curves with an initial stiffness, kpy, determined by the undrained 
stiffness and a group reduction factor of 0.62 to account for the close shaft spacing, as described 
in Section 2.6.3. 

One approach to account for a group reduction is to use a p-y multiplier in LPILE, which 
reduces every p-value along each p-y curve. A second approach to account for the group 
reduction is to establish an equivalent drained friction angle that produces p-y curves similar to 
what would be obtained if the group reduction factor were applied directly. This approach is 

Possible Swell 
Pressure (Hong 2008) 

Active Earth Pressure (φ’ = 18o) 

Active Earth Pressure (φ’ = 24o) 

Active Earth Pressure 
(φ’ = 37o) 

Inferred from Inclinometer and 
Strain Gauge Measurements on 
6/3/13 (zeroed on 10/8/10) 

Depth of Excavation on 6/3/13
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similar to the practice of accounting for group effects for short-term loading by adjusting the 
undrained shear strength. A practical way to implement this approach is to determine an 
equivalent friction angle that gives the same ultimate p value, pult, as the actual friction angle 
with the group reduction factor. This approach is illustrated in Figure 6.19. For a drained friction 
angle of 30°, an equivalent friction angle of 24° produces a pult versus depth that is close to the 
desired profile (Figure 6.19). The resulting p-y curves are compared in Figure 6.20, showing that 
this approach produces p-y curves that are close to appropriate curves for the close shaft spacing. 

 

 
Figure 6.19: Comparison of the ultimate p for p-y curves with φ=300 with a group reduction 

factor to the ultimate p for φ=240, 250, and 230 without a group reduction factor. 
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Figure 6.20: Comparison of the p-y curves with φ=300 with a group reduction factor (GRF) to 

the p-y curves for φ=240 without a group reduction factor. 

Trial and error was used to find a drained soil strength that gives p-y curves similar to the 
measured lateral response of the wall. The result of this analysis is shown in Figure 6.21. A 
drained friction angle of 30° produces a reasonable match to the measured relationships between 
lateral soil pressure and lateral displacement at different depths, particularly at the shallowest 
depths that are the most important for the behavior of the wall (Figure 6.21). A drained friction 
angle of 30° is between the peak, drained friction angle of 37° and the fully softened, drained 
friction angle of 24° for this soil (Figure 4.7). 
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Figure 6.21: Comparison of long-term p-y curves predicted by modified LPILE analysis with p-y 

curves estimated from field data (reference survey is after installation of shotcrete facing on 
October 8, 2010). 

6.2.5:  LPILE ANALYSES 

LPILE analyses were performed to calculate the predicted wall response in the long-term 
loading condition. Input parameters for these analyses are summarized in Table 6.1, and the 
results are shown in Figure 6.22. The deflected shape below the excavation (13.5 feet below the 
original ground surface) is fit best using a drained friction angle of 30° for the foundation soil 
(Figure 6.23). For comparison purposes, Figure 6.3 presents the results from an LPILE analysis 
with the conventional p-y curves used in TxDOT design practice, which are based on the profile 
of undrained shear strength versus depth (Figure 4.5) reduced by 50 percent in the upper 10 feet 

φ’ = 30°, γ’ = 63 pcf, 
kpy = 375 pci 
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to account for stress relief from the excavation; the measured response is softer than these 
undrained p-y curves predict. 

The measured displacement profile above the excavation is reduced by the thermal 
effects causing a reduced curvature (the apparent negative bending moments in Figure 6.22). In 
order to represent these thermal effects in the analysis, a negative bending moment of 300 in-kips 
was imposed at the top of the wall (see Brown 2013 in Appendix K for a detailed analysis of 
these thermal effects). The calculated response of the wall using a drained friction angle of 30° 
for the foundation soil now matches the measured behavior well both above and below the 
excavation (Figure 6.24). Note that the friction between the wall and the soil also applies a small 
negative moment to the shafts above the excavation line; however, this moment is orders of 
magnitude smaller than the apparent negative moment due to thermal effects. 

Table 6.1: Baseline assumptions and design parameters for LPILE analysis 

Parameter Value 

Effective Unit Weight of Soil, γ’ 62.6 pcf 

Earth Pressure Loading Above Excavation Fully Softened (ϕ = 24) + Hydrostatic 

Friction Angle of Foundation Soil 24, 30, and 37° 

Foundation Soil p-y Curves Sand (Reese) 

Non-Default Initial Stiffness, kpy 375 lb/in3 

Cracking Moment, MCr 680 k-in. 

Yielding Moment, My 3,200 k-in. 

Uncracked Bending Stiffness, EIuc 67 x 106 k-in2 

Cracked Bending Stiffness, EIcr 18 x 106 k-in2 

Shaft Diameter 24 in. 

Height of Retained Soil, H 162 in. 

Reinforcement 12 #7 bars (1.6% of gross area) 
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Figure 6.22: Calculated wall response from LPILE with different drained shear strengths for the 

foundation soil compared with measurements for long-term loading condition. 
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Figure 6.23: Calculated deflected shape from LPILE with different p-y curves for the foundation 

soil compared with measurements for long-term loading condition. 
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Figure 6.24: Calculated wall response from LPILE with apparent moment applied to account for 

thermal effects for long-term loading condition. 

An analysis was performed to compare the results from PYWALL and LPILE (Figure 
6.25) to explore whether the differences in these two methods (see Section 2.4) affect the 
calculation results. The two primary differences are that PYWALL implicitly accounts for the 
group reduction factor due to the close shaft spacing and accounts for the difference in 
overburden pressure between the back (retained) side and the front (foundation) side of the 
shafts. Two secondary differences are that the earth pressures in PYWALL on the active are 
slightly greater because it does not account for friction between the retained soil and wall and 
PYWALL assumes a constant bending stiffness for the shafts rather than satisfying the bending 
moment versus bending curvature relationship. Due to the significant bending associated with 
the long-term loading conditions with the water table up at the surface of the retained soil, a 
cracked bending stiffness was assumed in the PYWALL calculations. The LPILE and PYWALL 
results are very similar, with a slightly larger deflection predicted by PYWALL due to the 
slightly larger active earth pressures (Figure 6.25).  
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Figure 6.25: Comparison of LPILE and PYWALL for an active loading of hydrostatic conditions 
with a drained strength equal to 24° and passive strengths from a drained friction angle of 30°. 

6.3:  Summary and Conclusions 
Detailed numerical analyses have been conducted for two conditions the wall 

experienced: the immediate response of the wall due to the excavation and the long-term 
response of the wall when it reached equilibrium under full inundation.  

A simplified finite element method (FEM) analysis was conducted to better understand 
the response of the wall in the short-term. The global displacements of the soil and the shear 
strains in the soil show how the soil is essentially carrying the wall with it in response to the 
stress relief from the excavation. In order to get a more realistic representation of the soil 
conditions on site, the anisotropy of the soil from the large in situ lateral stresses caused by 
overconsolidation was considered in the analyses. Also, the stiffness estimated from small-scale 
and large-scale but small strain measurements was reduced based on trial and error until the 
calculated deflection matched the measured one. 

For the long-term loading condition, the measured response of the wall was reproduced 
using LPILE with active earth pressures estimated from the fully softened, drained shear strength 
of the retained soil and passive earth pressure p-y curves estimated from a drained shear strength 
for the foundation soil between the peak and fully softened strengths. In addition, a numerical 
analysis of steady-state flow conditions shows that near hydrostatic conditions existed in the 
retained soil and the foundation soil under long-term loading.  
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CHAPTER 7: PRELIMINARY DESIGN GUIDANCE 

7.1:  Long-Term Design 

A summary of the preliminary long-term design guidance is provided in Figure 7.1.  
 

 
Figure 7.1: Summary of long-term design guidance 

7.1.1:  ACTIVE EARTH PRESSURES 

An active earth pressure envelope based on the fully softened, drained shear strength of 
the retained soil (e.g., Wright 2005, Stark et al. 2005, Wright et al. 2007) with hydrostatic pore 
water pressures provides a reasonably conservative estimate of the maximum earth pressures 
over the long term in typical cases. A residual, drained strength may be warranted in cases where 
a historical slope failure is being retained. Smaller pore water pressures may be warranted if a 
horizontal drain system is installed into the retained soil along the potential slip surface. 

7.1.2:  PASSIVE EARTH PRESSURES 

To model the behavior of the foundation soil, drained p-y curves based on a friction angle 
between the peak and fully softened drained shear strength of the soil are recommended. These 
curves can be obtained using the Reese et al. (1974) p-y curves developed for drained conditions 
(Section 2.6.3) with non-default initial stiffness values (kpy) defined by the undrained shear 
strength of the clay (Figure 7.2).  
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Figure 7.2: Typical kpy values for clays (after Dodds and Martin 2007). 

7.1.3:  ILLUSTRATIVE DESIGN EXAMPLES 

To illustrate the preliminary design guidance for long-term conditions, the test wall and 
the existing wall at US59 and Hazard Street, discussed in Chapter 3, are redesigned using 
appropriate site properties. The purpose of these analyses is to show the changes in design that 
would be needed to meet TxDOT requirements. 

7.1.3.1:  Test Wall Redesign 

To illustrate the preliminary design guidance for long-term conditions, the test wall was 
re-designed using a maximum water table at the ground surface to model the conditions the test 
wall observed. Input parameters for this analysis are summarized in Table 7.1, and the results are 
shown in Figure 7.3. In order to reach fixity and keep the top-of-wall deflection to 1 percent of 
the wall height, the diameter of the shafts was increased to 36 inches with 12 #9 reinforcement 
bars and the length of the shafts were increased to 50 feet (36.5 foot embedment depth below the 
excavation).  
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Table 7.1: Comparison of the baseline assumptions and design parameters for LPILE 
analysis between the as-built wall and the redesigned test wall. 

Parameter Redesign 

Effective Unit Weight of Soil, γ’ 62.6 pcf 

Earth Pressure Loading Above Excavation
Fully Softened (ϕ = 24) + 

Hydrostatic Conditions with 
Water Table at Ground Surface 

Friction Angle of Foundation Soil 30º 

Foundation Soil p-y Curves Sand (Reese) 

Non-Default Initial Stiffness, kpy 375 lb/in3 

Concrete Strength 4000 psi 

Height of Retained Soil, H 13.5 feet 

Shaft Diameter 36 in. 

Shaft Clear Spacing 0 in 

Reinforcement 12 #9 bars 

Shaft Length 50 ft 
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Figure 7.3: Calculated wall response from LPILE for the long-term loading condition of the 

redesigned wall. 

7.1.3.1:  US59 and Hazard Street Wall Redesign 

To illustrate the preliminary design guidance for long-term conditions, the existing wall at 
US59 and Hazard Street was re-designed using a maximum water table at a depth of 8 feet below 
ground surface to model natural conditions. The design of the Hazard Street wall is described in 
more detail in Section 3.3.2. To simplify, the 12-inch diameter secant drilled shafts between the 
larger 48 inch diameter drilled shafts are neglected. The input parameters for this analysis are 
summarized in Table 7.2, and the results are shown in Figure 7.4. The new design still has 48-
inch diameter shafts but is able to accommodate an increased clear spacing to 36 inches edge-to-
edge. The shaft length is increased to 57.5 feet in order to maintain fixity.  
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Table 7.2: Comparison of the baseline assumptions and design parameters for LPILE 
analysis between the designed wall and the redesigned wall at Hazard Street. 

Parameter Redesign 

Effective Unit Weight of Soil, γ’ 
125 pcf above water table and 62.6 

pcf below water table 

Earth Pressure Loading Above Excavation
Fully Softened (ϕ’ = 26º) + 

Hydrostatic Conditions with Water 
Table 8 ft below Ground Surface 

Friction Angle of Foundation Soil 30º 

Foundation Soil p-y Curves Sand (Reese) 

Non-Default Initial Stiffness, kpy 700 lb/in3 

Concrete Strength 4000 psi 

Height of Retained Soil, H 15 feet 

Shaft Diameter 48 in. 

Shaft Clear Spacing 36 in 

Reinforcement 12 #11 bars 

Shaft Length 57.5 ft 
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Figure 7.4: Calculated wall response from LPILE for the long-term loading condition of the 

redesigned wall at US59 and Hazard Street. 

7.2:  Short-Term Design Guidelines 

The short-term behavior of the wall in response to excavation is dominated by global 
deformations of the soil-shaft system in response to stress relief. These global deformations 
cannot be easily represented with a p-y analysis. To check short-term response when the soil is 
excavated, the use of two-dimensional finite element modeling is recommended. At small 
strains, the use of simple linear elastic constitutive models is sufficient to gain an understanding 
of the nature of the expected global deformations. 

The choice of finite element model parameters is highly dependent on local soil 
conditions and experience, but it is recommended that anisotropy due to high in-situ lateral 
stresses and stiffness reductions due to unloading be incorporated. In highly overconsolidated, 
stiff-fissured clays, values of Ko between 2 and 3 are commonly reported (e.g., Cripps and 
Taylor 1981, Smith et al. 2009). To account for the high ratio of horizontal to vertical stress, it is 
recommended that finite element models incorporate anisotropic conditions consistent with the 
expected field values of Ko. During excavation, stiffness reductions due to unloading may occur 
(e.g., Cripps and Taylor 1981). While in-situ values of Young’s Modulus (E) are commonly 
estimated to be 1000 times the measured undrained shear strength, stiffness reductions of 60 to 
90 percent, corresponding to E/Su ratios of between 100 and 400, were required to approximate 
the behavior of the test wall. 
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7.3:  Summary and Conclusions 

The following preliminary design guidance for long-term conditions in drilled shaft 
retaining walls in high plasticity clays is developed based on the results of this research: 

• Active earth pressures estimated from the fully softened, drained shear strength of 
the retained soil. 

• Passive earth pressures represented by p-y curves based on the drained shear 
strength of the foundation soil. 

 
With this preliminary design guidance, the predicted top-of-wall deflection and 

maximum bending moment are both slightly greater than what were measured in the test wall 
under the most extreme condition of full inundation. Because of the influence of pavement and 
drainage systems, this preliminary long-term design guidance represents a worst-case scenario 
that is unlikely to exist for an extended time in the field. The predicted top-of-wall deflections 
with this guidance are sensitive to small changes in unit weight, shear strength, pore water 
pressures, but the predicted maximum bending moments are not overly sensitive to these input 
parameters. 

If immediate deflections in response to excavation during construction are a concern, 
then finite element method analyses that account for anisotropic in situ stresses for 
overconsolidated clays and stiffness reduction due to unloading are recommended. 
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

8.1:  Overview 

This chapter presents brief summaries of the key findings from each chapter of this 
research study. The original objectives of the research study are revisited, along with summaries 
of the research findings for each item. Finally, brief recommendations for future research and 
similar projects are provided. 

8.2:  Conclusions 

8.2.1:  INSTRUMENTATION PROGRAM 

8.2.1.1:  Structural Performance of Drilled Shafts 

 In general, for monitoring the long-term effects of soil moisture on the test wall, 
inclinometer data was a more consistent indicator of wall behavior than strain gauge data. The 
direct use of strain gauge data for the determination of bending curvature generally requires more 
advanced data interpretation than simply taking the first derivative of rotation profiles measured 
from inclinometer data. Although the precision and resolution of strain gauges is vastly superior 
to that of an inclinometer, the strain gauges represent the behavior of individual, discrete 
locations in the shaft. While extrapolating the behavior of individual strain gauges to the entire 
pile is relatively simple for a short-term lateral load test, for long-term monitoring, inclinometer 
data provides a more consistent and reliable picture of what is going on in the shaft without the 
need for subjective data interpretation. After combining rotation profiles from the three 
instrumented shafts, piecewise polynomial differentiation was used with numerical smoothing 
methods to approximate p-y curves from inclinometer data at the test wall.  
 For future studies, or larger-scale studies involving several walls, inclinometer data 
provides a relatively inexpensive, effective, and robust method of performance monitoring. In 
the test wall, strain gauge data was affected by a number of factors beyond simple lateral loading 
of the structure, making data interpretation a complex and subjective task. While strain gauges 
are useful for short-term monitoring, they may not have the long-term stability and consistency 
of inclinometer data. 

8.2.2:  BEHAVIOR BEFORE EXCAVATION 

Between shaft construction and excavation, a combination of concrete curing and 
expansive soil movement led to the development of residual stresses and strains, and evidence of 
tension cracks developed throughout the shafts. While no lateral loads were placed on the shafts 
prior to excavation, the residual stresses and strains developed during this time affected strain 
gauge data interpretation and the shafts’ response to excavation. 

8.2.3:  BEHAVIOR DURING EXCAVATION 

During excavation of the Lymon C. Reese research wall, the soil and wall responded 
immediately to the relief of stress, leading to wall deformations without the development of large 
earth pressures. This immediate response was a global movement of the soil-shaft system that 
extended beyond the shaft base. In the test wall, these global movements resulted in a top-of-wall 
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deflection of approximately 0.5 percent of the cantilever height. Because these movements 
represent large-scale strains in response to stress relief, they cannot be easily modeled with a 
traditional lateral earth pressure envelope. The use of more advanced prediction methods, such as 
finite element modeling, can provide estimates of the quality of these deformations. 

8.2.4:  BEHAVIOR DURING NATURAL MOISTURE CYCLES 

8.2.4.1:  Response to Moisture Fluctuations 

Deformations and structural loads in the test wall were affected by moisture conditions 
on the project site. The test wall’s deflection and structural loads were clearly affected by 
moisture conditions on the project site. During wetting, water infiltrated quickly through the clay 
fissures; as the retained soil and excavation base had access to moisture, top-of-wall deflections 
increased. Similarly, during prolonged periods of drying, top-of-wall deflections decreased. 
While this suggests volume change in expansive soil does play a part in wall deformations, no 
evidence of extremely high earth pressures or excessive structural loads on the shaft was 
observed. More importantly, access to moisture allowed negative pore pressures in the soil to 
dissipate, and volume change allowed the soil to approach a fully softened condition. At the 
conclusion of approximately 22 months of natural moisture cycles, total top-of-wall deflections 
since shaft construction had increased to approximately 0.09 percent of the wall height 
(approximately 0.04 percent since the installation of shotcrete facing in October 2010). 

8.2.5:  BEHAVIOR DURING CONTROLLED INUNDATION TESTING 

During controlled inundation testing of the test wall, wall behavior was governed by the 
development of fully softened, drained conditions in both the retained soil and foundation soil. 
As inundation testing began, water infiltrated quickly into the soil fissures, first appearing in the 
excavation 30 minutes after the test began. As inundation testing continued over a period of 
approximately 14 months (6 months with water impounded, 8 months without), total top-of-wall 
deflections increased to a maximum of approximately 2.9 percent of the wall height. As wall 
deflections reached their maximum value, water levels in stand pipe piezometers throughout the 
inundation zone had stabilized near the ground surface. Moisture contents had increased by an 
average of 5 to 10 percentage points in the active zone above the groundwater table. Despite 
continued access to moisture, no evidence was observed of expansive soil damage or earth 
pressures greater than the envelope defined by the soil’s fully softened strength with hydrostatic 
pressures. 

The soil conditions at the conclusion of the inundation test can be approximated with a 
simple p-y analysis. The earth pressure envelope is defined using fully softened, drained strength 
parameters for the retained soil, and hydrostatic conditions with the water table at ground 
surface. For the foundation soil, p-y curves are defined using drained strength parameters, with 
initial stiffness defined by the original measured profile of undrained strength (this implicitly 
accounts for the transition from undrained to drained behavior with time and moisture cycles). 
The long-term behavior of the Manor test wall can be reasonably approximated in LPILE using 
these parameters with the final as-built dimensions of the wall and excavation. Predicted values 
of deflections, bending moments, and p-y curves are consistent with those measured in the field. 
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8.2.6:  PRELIMINARY DESIGN GUIDANCE 

The following preliminary design guidance for long-term conditions in drilled shaft 
retaining walls in high plasticity clays is developed based on the results of this research: 

• Active earth pressures estimated from the fully softened, drained shear strength of 
the retained soil. 

• Passive earth pressures represented by p-y curves based on the drained shear 
strength of the foundation soil. 

 
If immediate deflections in response to excavation during construction are a concern, 

then finite element method analyses that account for anisotropic in situ stresses for 
overconsolidated clays and stiffness reduction due to unloading are recommended. 

8.3:  Recommendations for Future Work 

The Lymon C. Reese research wall has provided insight into the behavior of a single 
drilled shaft retaining wall constructed through expansive clay. While some generalizations can 
be made, more thorough study of real-world walls is necessary to develop a complete 
understanding and framework for design. Inclinometer casings installed in future walls, with 
deflection profiles recorded at key dates or automated readings from an in-place unit, would 
provide an inexpensive and effective way to both verify the performance of existing walls and 
enhance the theoretical understanding of wall behavior. Additionally, a study of the behavior of a 
wall constructed during an extremely dry period would be of interest, to assess if initial soil 
moisture content at construction has any impact on wall behavior. To minimize the local effects 
of concrete heterogeneity and tension cracking, future instrumented walls using strain gauges 
could consider further isolating the gauges from direct contact with the concrete or using wall 
elements, like steel pipes, that respond linearly and elastically to bending. 

Additional studies on the immediate response of cantilevered retaining walls in heavily 
overconsolidated clays and on the drained p-y curves for clays are needed. 
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