

Longer Combination Vehicles & Road Trains for Texas?

TxDOT Project 0-6095

August 18, 2010

Objective

- consider the impact that larger, productive trucks would have if permitted on Texas highways
- trucks range from a heavier tridem semi-trailer to a variety of combination trucks, including road trains, i.e. LCVs

TxDOT Project Monitoring Committee

- Maria Burke
- Dar Hao Chen
- Raymond Hutchinson
- Don Lewis
- Jianming Ma
- Sylvia Medina
- Melisa Montemayor

- Jim Randall
- Emad Shahin
- Duncan Stewart
- Robert Stuard
- Jefferey Tomkins
- Charon Williams

Research and Advisory Teams

Research Team:

- C. Michael Walton
- Robert Harrison
- Khali Persad
- Jolanda Prozzi
- Kara Kockelman
- José Weissmann
- Alejandra Cruz
- Melissa Thompson
- Bridget Bienkowski
- Jason Lemp
- Zhanmin Zhang

Advisory Team:

- John Esparza, President/CEO, Texas Motor Transportation Association
- Les Findeisen, Director of Policy and Governmental Affairs, Texas Motor Transportation Association
- Tim Lynch, Senior Vice President, American Trucking Association
- Peter Sweatman, Director, University of Michigan Transportation Research Institute
- John Woodrooffe, Director, Transportation Safety Analysis Division, University of Michigan Transportation Research Institute

		FY 2009								FY 2010															
	Research Activity	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug
Task 1	LCV Background and Issues																								
Task 2	Representative Vehicle Classes, Demensions, and Specifications																								
Task 3	Highway Infrastructure for Larger Trucks																								
Task 4	First Project Advisory Meeting																								
Task 5	Bridge Impacts from LCV Operations																								
Task 6	Pavement Consumption and LCV Operations																								
Task 7	Larger Truck Operations																								
Task 8	Policy Implications of LCV Operations																								
Task 9	Summary of First Year Activities and Second Project Advisory Meeting																								
Task 10	LCV Case Study 1. An Existing Interstate Highway																								
Task 11	LCV Case Study 2. An Existing State Corridor																								
Task 12	LCV Case Study 3. Trans-Texas Corridor - TTC-35																								
Task 13	LCV Case Study 4. Truck Only Toll Road																								
Task 14	Final Report and Third Project Advisory Meeting																								

Agenda

1.	Introduction	All
	11111000001011	/ 111

2. Structure of Project Michael Walton

3. Safety Kara Kockelman

4. Vehicle Types and Chosen Corridors Rob Harrison

5. Pavement Analysis: Methodology and Angela Weissmann

Case Studies

6. Bridge Analysis: Methodology and Case José Weissmann

Studies

7. Cost / Benefit Tradeoffs Rob Harrison /

José Weissmann

8. Recommendations Research Team

Pilot test(s)

9. Feedback / Final Report All

Safety

Kara Kockelman

Vehicle Types and Chosen Corridors

Rob Harrison

Pavement Analysis: Methodology and Case Studies

Angela Weissmann

Bridge Analysis: Methodology and Case Studies

José Weissmann

Cost / Benefit Tradeoffs

Rob Harrison José Weissmann

Open Discussion including recommendations and pilot test(s)

Contact Information

C. Michael Walton 512-471-1414 cmwalton@mail.utexas.edu

Robert Harrison 232-3113 harrison@mail.utexas.edu

Khali Persad 232-3080 kpersad@mail.utexas.edu

Vehicle Types and Chosen Corridors

Rob Harrison

Global interest in LCVs continues based on productivity and social costs

- Australia can be considered a mature LCV region.
- EU is growing

Nation Heavy Vehicle Accreditation Scheme

- Mass
- Maintenance
- Keeping accreditation/compliance

- ■EU exploring various LCV types
 - > 40 MT
 - Some reach 60 tons

EU Gigaliners

EU Gigaliners

EU Gigaliners

LCVs in Europe

- Project considered a variety of highway/ LCV classes
- A single LCV scenario was applied to several key highway corridors used by truckers
 - 97 k tridem semi
 - 138 K Double 53'

Routes

Pavement applied a factor which captivated an estimate of cube out and weigh out commodities

Analysis of Truck Crash Severity: Comparing LCVs to other HDTs

Jason Lemp Kara Kockelman Avinash Unnikrishnan

Current Approach vs. Last Year's Work

- **Previous** Analysis: *y* = **Police-reported** injury severity for all LTCCS observations
- Current: y = Actual severity, for injurious crashes only
- Crash-level maximum injury severity statistics...

Crash's Maximum	Previous	Analysis	New Analysis					
Severity Outcome	Wtd. Freq.	Wtd. %	Wtd. Freq.	Wtd. %				
No Injury	12	1.3%	n/a	n/a				
Possible Injury	117	12.7%	n/a	n/a				
Non-Incap. Injury	308	33.4%	501	54.3%				
Incapacitating Injury	308	33.4%	343	37.2%				
Killed	177	19.2%	78	8.5%				

Max. Injury Severity (Crash Records)

- Likelihood of **fatal crash** (probability of fatality for average crash is about 0.085) **increases**...
 - With each additional truck (by 0.057), passenger vehicle (by 0.048), & non-motorist (by 0.32);
 - With each added truck & passenger vehicle occupant (by 0.038 & 0.027);
 - Under any non-bright lighting conditions (0.067 to 0.084);
 - On rural non-freeways (by 0.054);
 - On snowy/icy surfaces (by 0.188) & when fog is present (by 0.379);
 - For each additional 10 mph speed limit (by 0.019), &
 - For each trailer on the largest truck (by 0.058) & if the largest truck is a single unit (by 0.050).

Max. Injury Severity (2)

- Likelihood of a fatal crash decreases...
 - On curved roads (by 0.037) & at road crests & sags (by 0.026 & 0.048);
 - On wet surfaces (by 0.045) & when other weather conditions are present (by 0.078);
 - When any involved truck is overweight (by 0.035);
 - When any driver is exhibiting aggressive behavior other than speeding (by 0.065); &
 - With each meter of the largest truck's length (by 0.003) & each 10,000 kg of its GVWR (by 0.015).

Maximum Injury Severity by Truck Type

Incapacitating Injury

Exposure Risk & Cost

- Zaloshnja and Miller (2007) estimated crash costs by severity.
- GES 2002 data provides share of no-injury crashes, & overall crash counts by truck type.
- VIUS 2002 data offers VMT by truck type.

Conclusions

- 2-trailer LCVs appear to enjoy significantly lower crash rates, but higher crash costs. In all, they offer lowest crash costs per mile driven.
- These results + interviews + literature suggest we can recommend LCV use on freeways for long hauls (with proper speed & other enforcement).

Model Specification

Standard Ordered Probit (OP)

$$\begin{split} &U_i = X_i'\beta + \varepsilon_i \quad \forall \ i = 1, \dots, N \qquad \varepsilon_i \sim N(0, \sigma^2) \\ &y_i = s \quad \text{if} \quad \mu_{s-1} < U_i < \mu_s \qquad s = 1, \dots, S \\ &P(y_t = s) = \Phi\left(\frac{\mu_s - X_t'\beta}{\sigma}\right) - \Phi\left(\frac{\mu_{s-1} - X_t'\beta}{\sigma}\right) \end{split}$$

Heteroskedastic Ordered Probit (HOP)

$$\sigma_i^2 = [\exp(Z_i{'}\gamma)]^2$$

$$P(y_t = s) = \Phi\left(\frac{\mu_s - X_t^t \beta}{\sigma_t}\right) - \Phi\left(\frac{\mu_{s-1} - X_t^t \beta}{\sigma_t}\right)$$

Bayesian Model Estimation

- Draw each set of parameters from conditional posterior distributions:
 - $\beta \sim N(C, D)$, $C = D(X'WU + \Sigma_{\beta}^{-1}\bar{\beta})$ $D = (X'WX + \Sigma_{\beta}^{-1})^{-1}$
 - U_i ~ Truncated N(X_i ' β , σ_i^2),
 - $\mu_s \sim \mathrm{U}(\max_{t \in Q_{s-1}}(U_t), \min_{t \in Q_s}(U_t)),$

$$p(\gamma \mid U_t\beta,\mu,X,Y) \propto \left[\prod_{t=1}^N \left(\frac{1}{\sigma_t}\right)^{w_t}\right] \exp\left[-\frac{1}{2}\left(\sum_t \frac{w_t[U_t-X_t'\beta]^2}{\exp\left[2Z_t'\gamma\right]} + [\gamma-\gamma]^t \Sigma_{\gamma}^{-1}[\gamma-\gamma]\right)\right]$$

- Metropolis-Hastings (MH) step used to draw γ .

THANK YOU!

Pavement Analysis

Presentation Outline

- Pavement Analysis Objective
- Methodology
 - Data Treatment
 - LCV Scenario
 - Measures of LCV Impacts
- Results and Findings
- Conclusions and Recommendations

Data Treatment

Objective: prepare input files for the pavement analysis.

- Divide each corridor into segments with uniform truck traffic, same pavement and same subgrade type;
- Develop load spectra for existing and LCV scenarios; and
- 3. Obtain subgrade and material properties, tire pressures, detailed axle configuration.

Data Overview

_	Data Type		Main Sources	
	TRAFFIC	Average daily truck traffic	PMIS/RHiNo databases	
		Vehicle classification Axle load distribution	TP&P / FHWA WIM data reports	
		Tire pressures	FHWA's ME-PDG	
		Axle configurations	-FHWA's vehicle classes -This project's LCV scenario	
		Pavement cross sections	CSJ database	
	PAVEMENT	Subgrade types	PMIS database	
		Pavement layers' properties	Miscellaneous references	
		Pavement rehabilitation costs	-TxDOT Expressway- 6/2010 -Construction Division -2030 project data	

152 Analysis Segments

Weigh-in-Motion Locations

Load Spectra Analysis

Presentation Outline

- Pavement Analysis Objective
- Methodology
 - Data Treatment
 - LCV Scenario
 - Measures of LCV Impacts
- Results and Findings
 - Conclusions and Recommendations

LCV Scenario

Total cargo remains unchanged

What does the LCV scenario entail?

Tandem & single weight limits =

Single and tandem axle repetitions $lacktrel{\downarrow}$

Number of overweight single axles

Number of overweight tandem axles

Tridem axle weight

Example

Single axles

Axle weight (kips)

Axles/Day

Total

17,769

>20kips

173

Scenario

Tandem axles

Axle weight (kips)

Tridem axles

Axle weight (kips)

Axles/day

Presentation Outline

- Pavement Analysis Objective
- Methodology
 - Data Treatment
 - LCV Scenario
 - Measures of LCV Impacts
- Results and Findings
 - Conclusions and Recommendations

Measures of LCV Impacts

 $\Delta_{\text{life}} = \text{Pvt. Life w/LCV} - \text{Pvt. Life w/o LCV}$

|∆life|≥1 or Life<50yrs

 $\Delta_{\rm cost}$ = Annual. cost w/ LCV – Annual. cost w/o LCV

$$\Delta_{\text{life}} < 1 \rightarrow \Delta_{\text{cost}} > 0 \rightarrow \text{LCV scenario worse}$$

$$\Delta_{\text{life}} > 1 \rightarrow \Delta_{\text{cost}} < 0 \rightarrow \text{LCV scenario better}$$

How did we obtain Δ_{life} ?

For the 152 analysis segments

How did we obtain Δ_{cost} ?

How did we annualize the costs?

What are the costs?

What costs did we use?

Percent Projects	Costing up to (\$1000/lane*mile)	TI SO
50%	\$390	
50.5%	\$400	
60%	\$607	
75%	\$1,219	

Presentation Outline

- Pavement Analysis Objective
- Methodology
 - Data Treatment
 - ■LCV Scenario
 - Measures of LCV Impacts
- Results and findings
 - Conclusions and Recommendations

Rigid Pavements

LCV scenario had no impact

- Overweight single axles had more impact on rigid pavement life than heavy tridems or heavy tandems.
- LCV scenario decreases overweight singles.
- Rigid pavement life very large without overweight singles.
- Stress ratios fall into fatigue equation region that is most sensitive to small variations in stresses.

Flexible Pavements

LCV scenario improved expected life in all corridors except San Antonio-McAllen

- In flexible pavements with 14" HMAC over strong bases and subbases, fatigue was due to rutting and LCVs decreased pavement life.
- In segments with overweight axles, LCV scenario improved pavement lives; generally, the thicker the HMAC layer the greater the Δ_{life}
- Heavy tridems appeared to do very little additional damage to the pavement.

Results

	Length	Overlay Δ_{cost} (\$millions/year)			
	(mi) \$0.4m		\$0.6m	\$1.2m	
Dallas El Paso	667	\$(15.00)	\$(22.77)	\$(45.76)	
Dallas Laredo	446	\$(2.54)	\$(3.85)	\$(7.75)	
Dallas Houston	261	\$ -	\$ -	\$ -	
San Antonio McAllen	243	\$0.14	\$0.22	\$0.44	
TOTAL	1,617	\$(17.40)	\$(26.40)	\$(53.07)	

Why the differences?

LCV Impact		Reasons			
	on Annual Overlay Costs	% Rigid Pavement	% Singles >20K	%Tandems >34K	
Dallas El Paso	decrease	52.3%	3.99%	31.29%	
Dallas Laredo	decrease	19.8%	0.38%	6.85%	
San Antonio McAllen	small increase	6.6%	0.28%	2.87%	
Dallas Houston	(none)	100%			

Dallas—Laredo

		Average	Lane	Overla	y Cost (r	nillions)
		∆ life	miles	\$0.4m	\$0.6m	\$1.2m
Dallas	Rigid	0	413	\$0	\$0	\$0
San Antonio	Flexible	-0.5	1,180	\$0.94	\$1.43	\$2.87
	Sub-total		1,594	\$0.94	\$1.43	\$2.87
	Rigid	0	29	\$0	\$0	\$0
San Antonio	Flexible	2.6≥1	447	(\$3.89)	(\$5.90)	(\$11.86)
Laredo	Flex 14" HMAC	-3.6 ≤-1	159	\$0.41	\$0.62	\$1.24
	Sub-total		635	(\$3.48)	(\$5.28)	(\$10.62)
Dallas Laredo Total			2,229	(\$2.54)	(\$3.85)	(\$7.75)

Dallas—El Paso

HMAC	Average Δlife (yrs)	% Overweight	
		Singles	Tandem
12"	12.6	4%	31%
10"	6.0	4%	31%
9"	7.0	4%	31%
<8"	3.3	~0	~0

Study Limitations

- Only one LCV scenario
- LCVs may not substitute overweight Class 9's
- Calculations limited to strains and stresses due to axle loads
- Pavement treatments limited to HMAC overlays
- Traffic data uncertainties and WIM data extrapolations
- Large variation in overlay unit price

Recommendations

- Best pavement type for future LCV corridors: CRCP
- If flexible, analysis suggests 8" as minimum HMAC thickness to prevent premature alligator cracking.
- Evaluate the Dallas-Houston corridor for possible LCV operations serving the Port of Houston.
- Evaluate other LCV scenarios before cost allocation.
- Develop sensitivity analysis combining load spectra variations and different LCV scenarios for cost alloction.

Thank you!

Bridge Analysis

Bridge Statistics (1713 Bridges)

Bridge Statistics – Year built

Bridge Statistics – Structure Type

Traditional Methodology Live Load Bending Moments Proposed/Rating Ratios

Traditional Methodology- MOANSTR

M O A N S T R Moment Analysis of Structures

BASIC Batch Processor Menu

- (1) Enter or Edit Future Traffic Loads.
- (2) Include Dead Load Moments?: NO
- (3) Perform Batch Moment Analysis.
- (4) Save or Load Future Traffic Loads.
- (5) Moment Analysis Interrupt Criteria (% Overload): 50
- (6) Enter Inventory Rating Multipliers.

Select a Number (1-6) or <ESC> to Return to BASIC

Live Load Moment Ratios

Inventory Rating

	3	14	35	6846.0000000	00000		
-34000.	.0000000000	-56	065.000000	0000		1	
ID #	M O+	M O- M	X.RAT +OR-	M 1+	M 1-	MX.RAT	+OR-
36959, 0	.312E+07,	0.000E+00,	1.000,N/A,	0.505E+07,	0.000E+0	0,1.617,	(+),
36960, 0).312E+07,	0.000E+00,	1.000,N/A,	0.505E+07,	0.000E+0	0,1.617,	(+),
36961, 0).312E+07,	0.000E+00,	1.000,N/A,	0.505E+07,	O.000E+0	0,1.617,	(+),
36962, 0	.312E+07,	0.000E+00,	1.000,N/A,	0.505E+07,	0.000E+0	0,1.617,	(+),
36963, 0).528E+07,	0.000E+00,	1.000,N/A,	0.673E+07,	O.000E+0	0,1.274,	(+),
36964, 0).528E+07,	0.000E+00,	1.000,N/A,	0.673E+07,	0.000E+0	0,1.274,	(+),
36965, 0).312E+07,	0.000E+00,	1.000,N/A,	0.505E+07,	0.000E+0	0,1.617,	(+),
36966, 0).312E+07,	0.000E+00,	1.000,N/A,	0.505E+07,	0.000E+0	0,1.617,	(+),
36967, 0).312E+07,	0.000E+00,	1.000,N/A,	0.505E+07,	0.000E+0	0,1.617,	(+),
36968, 0).312E+07,	0.000E+00,	1.000,N/A,	0.505E+07,	0.000E+0	0,1.617,	(+),
36969, 0).528E+07,	0.000E+00,	1.000,N/A,	0.673E+07,	0.000E+0	0,1.274,	(+),
-		-		0.673E+07,		************	
36971, 0).528E+07,	0.000E+00,	1.000,N/A,	0.673E+07,	O.000E+0	0,1.274,	(+),
				0.673E+07,		44444444444444444444444444444444444444	
				0.420E+07,		~~~~~~~~~	
				0.437E+07,		***********	
				0.437E+07,		***********	
				0.420E+07,		***************	
-	-	-		0.420E+07,		************	
				0.420E+07,		***********	
36979, 0).200E+07,	0.000E+00,	1.000,N/A,	0.420E+07,	0.000E+0	0,2.102,	(+),

Axle	Axle Loads
Steering	6,846
Tractor	34,089
Trailer	56,065
TOTAL	97,000

Case Study Configurations- 97K Tridem

- Axle Spacing: 14ft 35ft
- Axle Loads: 7K 34K 56K

Case Study Configurations- Double 53'

138k double 53'

- Axle Spacing: 18ft 41ft 19ft 41ft
- Axle Loads: 12K 31.5K 31.5K 31.5K
- Axle Loads: 12K 19.5K 19.5K 19.5K 19.5K

Overstress Ratios from Literature

- Recent designs (80s) can support 20% weight increase.
- Older designs susceptible to 10% weight increases.

Essentially all prestressed girders, modern steel girders, and most bridge decks could tolerate a 20% increase in truck weight with no reduction in life. Unfortunately, most Minnesota steel girder bridges were designed before fatigue-design specifications were improved in the 1970's and 1980's. Typically, an increase in truck weight of 20% would lead to a reduction in the remaining life in these older steel bridges of up to 42% (a 10% increase would lead to a 25% reduction in fatigue life).

Moment Ratio Statistics All Routes Legal 18 Wheeler

Moment Ratio Statistics All Routes 97K Tridem

Moment Ratio Statistics All Routes Double 53' Maxed out

Moment Ratio Statistics All Routes Double 53' Cubed out

Analysis Methodology

Results 97K Tridem

97k tridem

1.1 Moment Ratio Criteria

Highway	Count	Area (sqft)	ADT	PV Cost \$
IH10	145	1,092,520	3,822,520	207,578,743
IH20	255	2,694,798	3,657,001	512,011,639
IH35	289	7,097,868	10,091,459	1,348,594,958
IH45	89	1,954,679	4,962,040	371,388,953
IH37	42	793,428	1,258,670	150,751,358
US281	60	999,060	617,330	189,821,457
Total	880	14,632,353	24,409,020	2,780,147,108

1.2 Moment Ratio Criteria

Highway	Count	Area (sqft)	ADT	PV Cost \$
IH10	126	836,570	3,300,400	158,948,357
IH20	189	1,274,125	1,886,420	242,083,712
IH35	183	2,938,770	6,130,009	558,366,357
IH45	47	643,122	1,324,970	122,193,237
IH37	14	137,679	433,460	26,158,972
US281	23	164,369	113,730	31,230,015
Total	582	5,994,635	13,188,989	1,138,980,650

Results Double 53' Maxed Out

1.1 Moment Ratio Criteria

Highway	Count Area (sqft)		ADT	PV Cost \$
IH10	7	148,468	427,660	28,208,844
IH20	35	487,417	728,060	92,609,192
IH35	116	4,632,500	4,904,869	880,174,981
IH37	30	642,587	1,053,110	122,091,568
IH45	13	312,459	989,500	59,367,134
Total	201	6,223,430	8,103,199	1,182,451,719

138k double 53'

1.2 Moment Ratio Criteria

Highway	Count	Area (sqft)	ADT	PV Cost \$	
IH10	7	148,468	427,660	28,208,844	
IH20	27	370,349	419,150	70,366,348	
IH35	95	3,772,940	4,812,269	716,858,562	
IH37	30	644,855	1,091,850	122,522,488	
IH45	14	316,820	1,015,160	60,195,876	
Total	173	5,253,432	7,766,089	998,152,118	

Results Double 53' Cubed Out

NO IMPACT!

Results Mixing All Configurations

1.1 Moment Ratio Criteria

Highway	Count	Area (sqft)	ADT	PV Cost \$
IH10	145	1,092,520	3,822,520	207,578,743
IH20	257	2,709,810	3,678,501	514,863,919
IH35	293	7,169,479	10,346,609	1,362,201,010
IH45	89	1,954,679	4,962,040	371,388,953
IH37	42	793,428	1,258,670	150,751,358
US281	60	999,060	617,330	189,821,457
Total	886	14,718,976	24,685,670	2,796,605,440

1.2 Moment Ratio Criteria

Highway	Count	Area (sqft)	ADT	PV Cost \$
IH10	130	914,899	3,403,570	173,830,753
IH20	202	1,449,063	2,090,690	275,322,008
IH35	246	6,023,241	8,770,989	1,144,415,828
IH37	36	694,103	1,225,590	131,879,608
IH45	53	837,670	1,879,790	159,157,262
US281	23	164,369	113,730	31,230,015
Total	690	10,083,345	17,484,359	1,915,835,474

Using Fatigue Concepts

NSm=C

Log N = C - m Log S

- N number of cycles
- S Stress Range
- m Constant Material dependent
- C Constant
- AASHTO specifies 75 year design life
- This achievable with inventory rating stress levels.

Using Fatigue Concepts

Assuming no influence of load spectra (equal number of passages of the proposed load):

BRINSAP Bridge Type	m
Prestress conrete girder 502	3.5 ^[2]
Prestress concrete box 505	3.5 ^[2]

$$F' = F / (\frac{M_{AS}}{M_{BC}})^m$$

2. Altry, A.K., Arabbo, D.S., Crowin, E.B., Dexter, R.J. and French, C.E., (2003). "Effects of increasing truck weight on steel and prestressed bridges", Mn/DOT final report (2003-16), Minnesota Department of Transportation

- F' Calculated bridge life due to proposed load
- F Current bridge life= 75-Bridge Age
- m material constant
- MAS/MBC Moment ratio from MOANSTR analysis

Results Using Fatigue Concepts

97k tridem

Discount rate 5%

Hghway	Total # Bridges	# Bridges	# Bridges	PV Cost Bridges	PV Cost Bridges ratio	Total PV	Total PV W/O Fatigue
		ratio > 1.4	ratio <= 1.4	ratio>1.4	<=1.4		
IH10	145	93	52	95,652,327	49,340,578	144,992,905	207,578,743
IH20	255	29	225	29,743,816	188,538,999	218,282,815	512,011,639
IH35	289	39	250	73,419,591	369,055,608	442,475,199	1,348,594,958
IH45	89	8	81	7,345,514	109,020,049	116,365,563	371,388,953
IH37	42	0	42	-	51,468,909	51,468,909	150,751,358
US281	60	18	40	23,967,778	29,241,925	53,209,703	189,821,457
Totals	880	187	690	230,129,026	796,666,067	1,026,795,093	2,780,147,108

Results Using Fatigue Concepts

138k double 53'

Discount rate 5%

Hghway	Total # Bridges	# Bridges ratio > 1.4	# Bridges ratio <= 1.4	PV Cost Bridges ratio>1.4	PV Cost Bridges ratio <=1.4	Total PV	Total PV W/O Fatigue
IH10	7	2	5	4,089,408	12,510,994	16,600,402	28,208,844
IH20	35	5	30	19,798,798	31,217,358	51,016,156	92,609,192
IH35	116	33	83	477,864,573	139,248,361	617,112,934	880,174,981
IH37	30	5	25	15,094,987	51,400,797	66,495,784	122,091,568
IH45	13	6	7	19,991,515	22,200,123	42,191,638	59,367,134
Totals	201	51	150	536,839,281	256,577,633	793,416,914	1,182,451,719

Conclusions and Recommendations

- 97 K Tridem has significant bridge impacts
- Double 53' maxed-out impacts are mostly due to negative moments
- Double 53' cubed out has no bridge impacts
- Project developed new methodology based on fatigue that needs better calibration of m factors
- Fatigue approach demands WIM data to generate reliable load spectra.
- Bridges screened by the analysis can be evaluated using a more detailed manual methodology for the high ticket high ADT bridges.

Combined recommendations

Cubed-out double 53'

- FINDING: "cubed-out" double 53' has no impacts on bridges or pavements.
 - Related recommendations
 - Strictly enforce the 19.5K tandem weight limit (to prevent bridge impacts).
 - Estimate and allocate the (external) cost of this enforcement in the candidate corridors.

and

- FINDING: "weighed-out" double 53' and 97K tridem have impacts on bridges but not on pavements. 97K tridem bridge impacts are more significant.
 - Related recommendations
 - Develop cost-allocation / cost-recovery procedure of bridge costs.
 - Pavement cost reductions estimated in this study too sensitive to input data variations and are not accurate enough for cost allocation. Sensitivity analysis and additional traffic mix scenarios needed.

Cost/Benefit Tradeoffs

Rob Harrison
Jose Weissmann

Truck size and weight regulations need both an economic (C-B) and financial analysis (FA)

Integral but not central features of most previous TSW studies

Case studies of key routes support more accurate and equitable C-B and FA work

Cost Allocation

■ Pilot-Test Contributions

0-6095 Final Report

- Cost picture is emerging
- Advisory panel members participation is critical productivity
- Multi-year pilot tests monitoring infrastructure and operating costs (R)
- Develop a basic structure for the more refined C-B

■ Take what others know—Australia and the EU

National Heavy Vehicle Accreditation Scheme (NHVAS)

- A guide for operators to the National Heavy Vehicle Accreditation Scheme (NHVAS).
- The NHVAS can help all operators whether they are big or small.

■ Further Discussion

