

Longer Combination Vehicles & Road Trains for Texas?

TxDOT Project 0-6095

August 21, 2009

Objective

- consider the impact that larger, productive trucks would have if permitted on Texas highways
- trucks range from a heavier tridem semi-trailer to a variety of combination trucks, including road trains, i.e. LCVs

TxDOT Project Monitoring Committee

- Randy Anderson
- Maria Burke
- Dar Hao Chen
- Jack Heiss
- Raymond Hutchinson
- Don Lewis
- Jianming Ma

- Sylvia Medina
- Melisa Montemayor
- Jim Randall
- Duncan Stewart
- Robert Stuard
- Jefferey Tomkins

Research and Advisory Teams

Research Team:

- C. Michael Walton
- Robert Harrison
- Jolanda Prozzi
- Kara Kockelman
- José Weissmann
- Khali Persad
- Alejandra Cruz
- Melissa Thompson
- Zhanmin Zhang

Advisory Team:

- John Esparza, President/CEO, Texas Motor Transportation Association
- Les Findeisen, Director of Policy and Governmental Affairs, Texas Motor Transportation Association
- Tim Lynch, Senior Vice President, American Trucking Association
- Peter Sweatman, Director, University of Michigan Transportation Research Institute
- John Woodrooffe, Director, Transportation Safety Analysis Division, University of Michigan Transportation Research Institute

		FY 2009					FY 2010																		
	Research Activity	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug
Task 1	LCV Background and Issues																								
Task 2	Representative Vehicle Classes, Demensions, and Specifications																								
Task 3	Highway Infrastructure for Larger Trucks																								
Task 4	First Project Advisory Meeting																								
Task 5	Bridge Impacts from LCV Operations																								
Task 6	Pavement Consumption and LCV Operations																								
Task 7	Larger Truck Operations																								
Task 8	Policy Implications of LCV Operations																								
Task 9	Summary of First Year Activities and Second Project Advisory Meeting																								
Task 10	LCV Case Study 1. An Existing Interstate Highway																								
Task 11	LCV Case Study 2. An Existing State Corridor																								
Task 12	LCV Case Study 3. Trans-Texas Corridor - TTC-35																								
Task 13	LCV Case Study 4. Truck Only Toll Road																								
Task 14	Final Report and Third Project Advisory Meeting																								

Agenda

- 1. Introductions
- 2. Overview of Project
- 3. Project Progress-to-Date
 - a. U.S. LCV Operations and Regulations
 - b. Harmonization
 - C. Operational Characteristics
 - d. Safety Issues
 - e. Large Truck Operations
 - f. Environmental and Energy Issues
 - g. Industry Perspectives
 - h. Bridge Impacts
 - Pavement Consumption
 - j. Response
- 4. Next Stage of Research
 - a. Case Studies
 - b. Evaluation Approach

U.S. Long Combination Vehicle Operations and Regulations

Size and Vehicle Weight Focus

- Historically, changes in motor vehicle size and weight regulations were driven by external factors
- Legal limits changed throughout development of highway system
 - System expansion
 - Improvements to vehicles and roads
 - Economic pressures to reduce costs

Size and Vehicle Weight Focus

- Governments enforce maximum weight limitations
 - Likely pay cost of road improvements and maintenance
- Concerns about incremental increase in truck size and weight limitations without corresponding increase in user fees and infrastructure investment

LCV Freeze

- ISTEA (1991) includes most recent revisions in federal truck size and weight limits
- ISTEA thus limits or "freezes" LCV operation on Interstate System to configurations authorized by state officials on or before June 1, 1991
- Allows certain exemptions (grandfather clauses: State must show higher weights would have been allowed before federal limits came into effect)

U.S. Regulatory Framework

LCVs may continue to operate only if the LCV type was authorized by State officials (pursuant to State statute or regulation) and in actual lawful operation on a regular or periodic basis on or before June 1, 1991

U.S. LCV Configurations

Rocky Mountain Double

Max GVW = 90 - 117 kips

Turnpike Double

Max GVW = 90 - 147 kips

Triple

Max GVW = 80 - 131 kips

U.S. LCV Operations

Major Truck Corridors

- States near Texas currently allowing LCV operations include Oklahoma, Kansas, Nebraska, Colorado, and Missouri
- Important tuck routes traverse Texas to North East, Great Lakes area, and eventually Canada or Mexico
- Texas, Arkansas, Tennessee, and Kentucky do not permit any type of LCV operations

U.S. LCV Operations

- Other U.S. states allow operation according to configuration
 - Oregon
 - 6,000 miles open to RMDs
 - Only 3,500 miles open to Triples

U.S. Regulatory Prohibitions

- Proposals for changes in federal regulation governing vehicle size and weight are always controversial
 - Increased highway construction/ maintenance costs
 - Divert freight from railroads to highways
 - Safety concerns

NAFTA Regional Issues

Truck size and weight regulations important in region

> 2/3 of all merchandise traded between three

economies moved by truck

NAFTA Region: Canada

- LCVs usually defined as tractor/trailer combinations using
 - Two/ three semitrailers or
 - Trailers with a total vehicle length exceeding normal limit of 82 feet
- In Canada 10 provinces and 2 territories have authority to establish weight and dimensions
- LCVs currently operate in AB, SK, MB, QC, and Northwest Territories

NAFTA Region: Canada

- National MOU
 - All provinces allow vehicles complying with national weight and dimension standards
- LCVs not covered by MOU
 - Each province has own regulations
- LCVs operate under special permits
 - Specific safety requirements
 - Other restrictions: only certain routes, at certain times or seasons, and speed restrictions

NAFTA Region: Canada

^{*} Varies by Number-of-Axles

NAFTA Region: Mexico

- Federal government set truck size, weight, and dimension limits
 - Apply to federal highways
- 31 state governments
 - Can establish truck size and weight limits on roads under their jurisdiction
 - No state has exercised authority to date

NAFTA Region: Mexico

- In April 2008 after 14 years of resistance from trucking and industrial organizations new Mexican Official Norm (NOM-012-SCT-2-2008) enacted
- New NOM encompasses 25 configurations of commercial vehicles
 - Half can be considered LCVs with 6, 7, 8 or 9 axles

NAFTA Region: Mexico

New NOM presents major changes to LCV usage, operational issues, and extensive restrictions on 9 axle LCVs - commonly known as fulls (T3-S2-R4)

Harmonization Challenges

- Lack of political will
 - History of disputes between U.S. and Mexico regarding cross border trucking
- Technical and stakeholder issues
 - Railroad lobby
 - Safety advocacy groups
 - Engineering assumptions about heavy truck impacts on bridges and pavements

Harmonization Challenges

- Jurisdictional complexity
 - U.S. western states want to maintain "grandfather" rights
 - Others wanted the LCV freeze lifted
- Mexican trucks having to adapt to lower weights

Operational Characteristics

Operational Issues

- Roadway geometric design changes may be required to accommodate LCVs
- LCV characteristics (e.g., stability and acceleration speed) may impact traffic operations and safety
- Vehicle weights, dimensions, and connection types may impact basic traffic maneuvers

Effects of Vehicle Features

Vehicle Features		Traffic	ı	icle icking	Traffic Operations						
		Congestion	Low Speed	High Speed	Passing	Acceleration (merging and hill climbing)	Lane Changing	Intersection Require- ments			
	Length	- e	- E	+ e	- E	_	- F.				
Size	Width	_	- e	+ e	- e	_	- e	_			
	Height	_	_	- e	_	_	_	_			
	Number of units	_	+ E	- E	-	_	- e	_			
Design	Type of hitching	_	+ e	+ E	_	_	+ E	_			
	Number of Axles	_	+ e	+ e	_	_	+ e	_			
T - 1	Gross vehicle weight	- e	_	- E	- E	- E	- e	- E			
Loading	Center of gravity height	_	_	- e	_	_	- e	_			
	Speed	+ E	+ E	- E	- E	_	+ e	+ E			
Operation	Steering input	_	- E	- E	_	_	- E	_			

Source: FHWA, 2000

+/- As parameter increases, the effect is positive or negative.

E = Relatively large effect. e = relatively small effect. -- = no effect.

Roadway Geometric Design Impacts

- Lane width
- Turning radius
- Primary vehicle characteristics
 - Wheel base length
 - Number of articulation points

	5 Axle Semi- Trailer	Turnpike Double	Triple Trailer
Minimum Turning			
Radius (ft)	45	60	45
Center-line Turning			
Radius (ft)	41	56	41
Minimum Inside			
Radius (ft)	4.4	19.3	9.9

Source: AASHTO, 2004

Offtracking

- Low-speed offtracking
- High speed offtracking
- Dynamic high speed offtracking

	Maximum C		Maximum Sw Width	•		
Turn Radius (ft)	100	150	100	150		
Vehicle Type						
48 ft Semi-Trailer	10.1	6.9	18.4	15.1		
53 ft Semi-Trailer	12.1	8.3	20.3	16.6		
STAA Double	6.3	4.2	14.6	12.5		
RMD	12.7	8.7	21.0	17.0		
TPD – 48 ft	17.1	12.0	25.3	19.2		
TPD – 53 ft	17.9	12.6	26.1	20.8		

Acceleration

- Require more power to accelerate
- Intersections
 - Decreased capacity
 - Increased exposure
- Passing
 - Larger gaps to change lanes
 - Longer passing sight distances (8% on 2-lane)
 - Increased exposure
- Larger speed differentials (accident severity)

Braking and Traction

- Braking performance should not be affected
- Heavier trucks may experience traction problems in slippery conditions
 - Can be mitigated through tandem drive axles, automated traction control

Stability

- Steady state induced rollover
 - Centrifugal force exceeds truck's ability to counteract
 - Static roll stability
 - Primary factors
 - Height of cargo center of gravity
 - Vehicle track width
 - Suspension
 - Tire properties

Stability

- Evasive maneuver induced rollover
 - Truck traveling at high speed must abruptly steer side to side
 - Lateral acceleration amplified at each trailer
 - Rearward amplification and load transfer ratio
 - Primary factors
 - Number of articulation points
 - Length of wheelbase
 - Static roll stability of trailers

Connection Types

A Dolly

 Tandem-axle dolly connected to preceding semi-trailer by single drawbar; drawbar connected by "hook" and "eye" can pivot on transverse horizontal axis and on longitudinal axis

B Train

 Second trailer connected directly to first at fifth-wheel mount; better dynamic roll stability; higher payload

C Train

 Dolly connected by two drawbars; prevents rotation about vertical axis; better dynamic roll stability

Safety Issues

by Avinash Unnikrishnan & Kara Kockelman

LCV Safety Studies

Operational Attributes

- Studies compare LCV operational needs to roadway designs & speeds.
- Crash Data Analysis
 - Comparisons of actual crash rates (per VMT & by outcome) to identify general trends, across vehicle classes.

Operational Attributes

(Harkey et al. 1996)

- **Speed & Acceleration**: Induce speed differentials which may create unsafe conditions.
- Off-tracking & Encroachment: 12' lanes allow for high-speed (high-radius) off-tracking.
- Trailer Sway: Not expected to pose significant hazard as long as AASHTO lane width guidance met.
- Rollover tendencies: Reduced by decreasing number of articulation points & using longer trailers.
- Rearward Amplification: A problem for triple-trailer LCVs.

Operational Characteristics (2)

(Knight et al., 2008)

- LCV safety from perspective of maneuverability, field of view, braking & stability.
- Recommend technology to improve safety:
 - Mirror configurations & camera technology to identify blind spots;
 - ABS & electronically-controlled braking systems (EBS) to prevent wheel locking;
 - Steered axles & electronic stability controls to reduce stability risks.

Note: Many have concluded that LCVs do **not** result in additional maneuverability issues, as compared to other combination vehicles.

Operational Characteristics (3)

Overall Conclusions, across multiple studies:

- Do not recommend LCV use on routes with multiple at-grade intersections, railway crossings or single lanes.
- Recommend LCV usage on motorways & freeways with strict enforcement of speed limits & load distribution rules.

Crash Involvement

- Difficult to identify trends from LCV crashes due to a lack of data involving LCVs.
- Longer trucks do not increase accident risk (Vierth et al., 2008), but result in **higher casualty ratios** (Vierth et al., 2008; Zaloshnja et al. 2004).
- Combination-trucks have significantly lower crash rates, as compared to passenger vehicles & single-unit trucks (Wang et al., 1999, Woodrooffe, 2001; Montufar et al. 2007, Abdel-Rahim 2006).

Crash Involvement (2)

- Under difficult driving conditions multiple unit trucks have a higher likelihood of crash involvement (Forkenbrock et al., 2003).
- Crash rates are lower for multiple trailer trucks (vs. single-trailer trucks) on interstates & urban roads, but higher on rural roads (USDOT 2004).

Data Analysis

- Large Truck Crash Causation Study (LTCCS) Data, 2001-2003
- 785 crashes with 1+ truck over 10,000 lbs (GVWR)
- Regression analyses using ordered probit & heteroscedastic ordered probit models.
- Y = 0 to 4 (no injury, no visible injury/only pain reported, non-incapacitating injury, incapacitating injury, & death)

Two Models...

- Y = maximum injury severity in a crash
- **Y** = injury severity (for each involved person)

Outcome	Max Injury Severity		Injury Severity	
	Count	%	Count	%
No Injury (Y =0)	10	1.3%	917	39.3%
No visible injury (1)	100	12.7	367	15.7
Non-Incapacitating Injury (2)	262	33.4	490	21.0
Incapacitating Injury (3)	262	33.4	360	15.4
Death (4)	151	19.2	202	8.6

Maximum Injury Severity

- Likelihood of death rises...
 - as the number of lanes falls (by 28%),
 - when (largest) involved truck is **not an LCV** (by 46%),
 - when roadway is **not a** rural **freeway** (53%) or not an urban freeway (57%),
 - when driver unaware of his speeding (94%),
 - under non-bright lighting conditions (151%).

Maximum Injury Severity (2)

- Likelihood of death rises...
 - with # trailers on the largest truck,
 - when drugs are involved (by 82%),
 - when driver of largest truck is "emotionally stressed" (48%),
 - on undivided two-way facilities (52%),
 - in presence of sag or crest curve (54%), &
 - under non-bright lighting conditions (by 151%).

Maximum Injury Severity (3)

- Greater uncertainty in crash outcome with...
 - Non-bright conditions,
 - Freeway crash locations,
 - More lanes,
 - Higher truck counts,
 - Fewer trailers,
 - Unstressed driver, &
 - No vertical curvature in alignment.

Model 2: Injury Severity

(all involved parties)

- Likelihood of fatal & severe injury reduced significantly with use of **ITS equipment** (32%) & for males (66%), **but increases when** largest truck is an **LCV**.
- Presence of flow restrictions & wet conditions reduce likelihood of severe injuries by 52% & 38%, respectively.
- As in the max-severity model, likelihood of death increases on vertical curves, under inadequate lighting, with more involved HDTs, & off freeways.

Injury Severity (2)

- Greater uncertainty in crash outcome with...
 - Male drivers,
 - More ITS equipment on board,
 - Largest truck is not an LCV, &
 - Non-freeway crash location.

Conclusions

- LCVs appear to enjoy significantly lower crash rates, but higher crash costs.
- LCVs are less likely to be involved in fatal crashes, but involve more persons (& more fatal injuries, for severe crashes).
- Can recommend LCV use on freeways (with proper speed & other enforcement), but not on roadways with at-grade intersections.

Large Truck Operations

LCV Operator Surveys

- Objective
 - Insight into LCV use in the U.S. (operator perspective)
- Questions
 - Operations
 - Vehicles
 - Drivers
 - Vehicle Performance/Safety

LCV Operator Surveys

- Conducted telephone surveys
 - Summer 2009
- FMCSA database
 - Separate operators by LCV type
 - Include range of operators
 - Owner operators and larger companies
 - Commodities (harvesters, concrete companies, etc.)
- 65 completed telephone surveys

LCV Operator Surveys

- LCV operators in nine states
 - Northeast
 - Northwest
 - Midwest
 - Southeast

Significant Benefits

Major Costs

Major Commodities

Percentage of Fleet (LCV)

Percentage Reduction in Truck Loads

Major Challenges

Number of Responses = 82

LCV Driver Training

- 58% of respondents provided additional training
 - Written test
 - Driving test with experienced driver
 - Equipment "walk-thru" check
 - Refresher courses
 - Combination of above
- Larger companies had safety instructors/ directors

LCV Driver Compensation

LCV Driver Compensation

Number of Accidents

Preliminary Conclusions

- Major benefit
 - Potential for increased payload, yielding productivity gains, and higher revenues
- Major costs
 - Fuel and tires
 - Initial equipment investment
- Commodities varied by region
 - Tend to be bulk commodities
 - "Weigh out" rather than "cube out"

Preliminary Conclusions

- Major challenges
 - Qualified drivers
 - Varying LCV regulations by state
- Major costs
 - Tires and brakes
 - Fuel (initially)
 - Equipment investment
- Driver training varied
 - Function of company size

Preliminary Conclusions

- Compensation structures varied
 - Per mile
 - Per hour
 - Per ton/%
- 62% of respondents pay LCV drivers more
- ~ 50% of respondents LCVs not involved in accidents
 - Cause of accidents varied
 - Weather, driver error, other road users

Environmental and Energy Issues

Increased Congestion

- Congestion increased substantially from 1982 to 2003
 - While largest cities are most congested, congestion occurs (and has increased) in cities of every size
- Liberalizing limits and authorizing LCVs could reduce congestion
 - Fewer truck trips could possibly reduce traffic congestion

Fuel Efficiency

- After driver compensation, fuel costs are typically largest expenditure for heavy-duty vehicle operators
- At first glance
 - LCVs and trucks operating at heavier GVWs have lower fuel economy than regular 5 axle trucks at 60,000 and 80,000 lbs
 - However, LCVs carry heavier loads
 - More fuel efficient when loading capacity of LCV well utilized

ATRI Scenario

- ATRI (2008) compares energy and emissions of RMD with conventional 5 axle truck
- Scenario 1,000 ton shipment moved 500 miles:

Type of Vehicle	Load (GVW in lbs)	No. of Trips	Fuel Economy (mpg)	Gallons Required for the Delivery	CO2 emissions (tons)	PM emissions (lbs)	NOx emissions (lbs)
5 Axle	80,000	42	5.4	3,889			
RMD	120,000	27	4.2	3,215	- 7.5	- 34	- 0.16

Source: ATRI, 2008

Anheuser-Busch Scenario

Anheuser-Busch evaluated potential benefits of using 97,000 lbs (6 axle) truck instead of 80,000 lbs (5 axle) truck

Route	Trucks per week at 80,000 lbs	Trucks per week at 97,000 lbs	Increase in cargo/ truck (lbs)	Reduction in diesel fuel/ week (gallons)	Reduction inCO2 emissions/ week (lbs)	Reduction on roads and bridges per week (lbs)
Houston to San Antonio (198 miles)	128	96	15,000	807	17,996	1,120,000
Houston to Waco (219 miles)	1,126	845	15,000	7,824	174,475	9,835,000

Source: Jacoby, 2008

Industry Perspectives

Bridge Cost Allocation

- Bridge Replacement, Maintenance/Rehabilitation and New Construction
 - Load related: Axle loads and configuration and GVW
 - Non-load related: Age and Environment
- Allocators
 - Load-related: Live-load bending moments
 - Non-load related: VMT,PCE
- Costs
 - TxDOT
 - 2030 Study
 - User Costs?
 - Analysis period
- Traffic
 - Forecasts
 - Economic Analysis

Live-load Bending Moments

Route Moment Analysis

M O A N S T R Moment Analysis of Structures

BASIC Batch Processor Menu

- (1) Enter or Edit Future Traffic Loads.
- (2) Include Dead Load Moments?: NO
- (3) Perform Batch Moment Analysis.
- (4) Save or Load Future Traffic Loads.
- (5) Moment Analysis Interrupt Criteria (% Overload): 50
- (6) Enter Inventory Rating Multipliers.

Select a Number (1-6) or <ESC> to Return to BASIC

Moment Ratios

	3	14 35	_6846.000000	00000	
-3400	0.000000000	0 -56065.000 + M 0- MX.RAT	0000000	1	
ID #	M O+	M O- MX.RAT +	OR- M 1+	M 1- MX	.RAT +OR-
36959,	0.312E+07,	0.000E+00,1.000,N	/A, 0.505E+07,	0.000E+ <mark>0</mark> 0,1	617,(+),
36960,	0.312E+07,	0.000E+00,1.000,N	/A, 0.505E+07,	0.000E+00,1	.617,(+),
36961,	0.312E+07,	0.000E+00,1.000,N	/A, 0.505E+07,	0.000E+00,1	.617,(+),
36962,	0.312E+07,	0.000E+00,1.000,N	/A, 0.505E+07,	0.000E+00,1	.617,(+),
36963,	0.528E+07,	0.000E+00,1.000,N	/A, 0.673E+07,	0.000E+00,1	.274,(+),
36964,	0.528E+07,	0.000E+00,1.000,N	/A, 0.673E+07,	0.000E+00,1	.274, (+),
36965,	0.312E+07,	0.000E+00,1.000,N	/A, 0.505E+07,	0.000E+ <mark> </mark> 0,1	617, (+),
36966,	0.312E+07,	0.000E+00,1.000,N	/A, 0.505E+07,	0.000E+ <mark>0</mark> 0,1	617,(+),
36967,	0.312E+07,	0.000E+00,1.000,N	/A, 0.505E+07,	0.000E+ <mark>0</mark> 0,1	617,(+),
36968,	0.312E+07,	0.000E+00,1.000,N	/A, 0.505E+07,	0.000E+ <mark>0</mark> 0,1	. 617, (+),
36969,	0.528E+07,	0.000E+00,1.000,N	/A, 0.673E+07,	0.000E+ <mark>0</mark> 0,1	274,(+),
36970,	0.528E+07,	0.000E+00,1.000,N	/A, 0.673E+07,	0.000E+00,1	.274,(+),
36971,	0.528E+07,	0.000E+00,1.000,N	/A, 0.673E+07,	0.000E+00,1	.274,(+),
36972,	0.528E+07,	0.000E+00,1.000,N	/A, 0.673E+07,	0.000E+00,1	.274,(+),
36973,	0.240E+07,	0.000E+00,1.000,N	/A, 0.420E+07,	0.000E+00,1	.752,(+),
36974,	0.229E+07,	0.000E+00,1.000,N	/A, 0.437E+07,	0.000E+00,1	.911,(+),
36975,	0.229E+07,	0.000E+00,1.000,N	/A, 0.437E+07,	0.000E+00,1	.911,(+),
36976,	0.240E+07,	0.000E+00,1.000,N	/A, 0.420E+07,	0.000E+00,1	752,(+),
36977,	0.200E+07,	0.000E+00,1.000,N	/A, 0.420E+07,	0.000E+00,2	.102,(+),
36978,	0.220E+07,	0.000E+00,1.000,N	/A, 0.420E+07,	0.000E+00,1	.911,(+),
36979,	0.200E+07,	0.000E+00,1.000,N	/A, 0.420E+07,	0.000E+00,2	.102,(+),

Axle	Axle Loads
Steering	6,846
Tractor	34,089
Trailer	56,065
TOTAL	97,000

Level I analysis

NCHRP REPORT 495

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Effect of Truck Weight on Bridge Network Costs

 $RF_{AS} = RF_{BC}(M_{BC, rating vehicle}/M_{AS, rating vehicle})/AF_{rating}$ (3.5.1.1)

2003-16
Final Report

Bridge Fatigue

Effects of Increasing Truck Weight on Steel and Prestressed Bridges

GIS Data Bridges (BRINSAP/NBI)

Case Study Framework Bridge Costs Methodology

- Identify candidate vehicle, route and planning horizon.
- Retrieve bridge data with GIS.
- Forecast traffic based on economic inputs (volumes, classification and axle weights).
- Forecast bridge costs for route over planning horizon for LCV and no LCV and annualize.
- Allocate costs based on Cost Allocation methodologies.

Pavement Consumption

Pavement Cost Allocation

- Pavement Reconstruction, Rehabilitation and Resurfacing (3R) costs
 - Load-related: Axle loads
 - Nonload-related: Pavement age and climate
- Allocators
 - Load related: ESALs
 - Non-load related: VMT
- Costs
 - TxDOT
 - 2030 Study
 - User Costs?
 - Analysis period
- Traffic
 - Forecasts
 - Economic Analysis

Pavement Load Related ESALs Flexible Empirical

$$\log\left(\frac{W_{tx}}{W_{t18}}\right) = 4.79\log(18+1) - 4.79\log(L_x + L_2) + 4.33\log(L_2) + \frac{G_t}{\beta_x} - \frac{G_t}{\beta_{18}}$$
 (Eq. 1)

$$G_{t} = \log \left(\frac{4.2 - p_{t}}{4.2 - 1.5} \right)$$

$$\beta_x = 0.40 + \frac{0.081(L_x + L_2)^{3.23}}{(SN + 1)^{5.19}L_2^{-3.23}}$$

AC (Eq. 2)

GB (Eq. 3)

where

 W_{tx} = number of applications of given axle

 W_{t18} = number of standard axle passes (single 18 kip axle)

 $L_x = load$ in kips of axle group

 L_2 = axle code (1 for single axle, 2 for tandem axles, 3 for tridem axles, and 4 for quad axles)

 β_{18} = value of β_x when $L_x = 18$ and $L_2 = 1$

 p_t = terminal serviceability

SN = structural number.

Pavement Load Related ESALs Flexible Mechanistic

Original ESAL definition: $ESAL_{x} = \frac{\rho_{18}}{\rho_{x}} \leftarrow \text{axle cycles to terminal PSI from } 18 \text{ kips}$ axle cycles to terminal PSI from x kips

Fatigue life N_f as a fn of tensile strain ε_f :

$$N_f = 0.0795 \ \varepsilon_t^{-3.291} E^{-0.854}$$

- Rutting life N_r as a fn of compressive strain ε_v : $N_r = 1.365 \, 10^{-9} \, \varepsilon_v$
- Strains are computed with layered elastic analysis (e.g., Everstress).

Pavement Load Related ESALs Flexible Mechanistic

Pavement Load Related ESALs Rigid Empirical

$$\log\left(\frac{W_{tx}}{W_{t18}}\right) = 4.62\log(18+1) - 4.62\log(L_x + L_2) + 3.28\log(L_2) + \frac{G_t}{\beta_x} - \frac{G_t}{\beta_{18}}$$

$$G_t = \log \left(\frac{4.5 - p_t}{4.5 - 1.5} \right)$$

$$\beta_x = 1.00 + \frac{3.63(L_x + L_2)^{5.20}}{(D+1)^{8.46}L_2^{-3.52}}$$

where

 W_{tx} = number of applications of given axle

 W_{t18} = number of standard axle passes (single 18 kip axle)

 $L_x = load$ in kips of axle group

 L_2 = axle code (1 for single axle, 2 for tandem axles, 3 for tridem axles, and 4 for quad axles)

 β_{18} = value of β_x when $L_x = 18$ and $L_2 = 1$

 p_t = terminal serviceability

D = slab thickness in inches.

Pavement Load Related ESALs Rigid Mechanistic

$$ESAL_{x} = \frac{\rho_{18}}{\rho_{x}} = \frac{10^{2.0 \left(\frac{MR}{\sigma_{18}}\right)^{1.22} + 0.4371}}{10^{2.0 \left(\frac{MR}{\sigma_{x}}\right)^{1.22} + 0.4371}} = 10^{2.0 \left[\left(\frac{MR}{\sigma_{18}}\right)^{1.22} - \left(\frac{MR}{\sigma_{1x}}\right)^{1.22}\right]}$$

Where MR is the Modulus of Rupture of the PC, (ASTM C 78)

Pavement Costs

District	Route	Lane-miles	Treatment	Trtmt Cost	Summary
Paris	IH 30	140.0	Nothing	\$0	\$0
Paris	IH 30	40.0	PM	\$20,000	\$8,000,000
Paris	IH 30	20.0	Light Rb	\$80,000	\$16,000,000
Paris	IH 30	20.0	Medium Rb	\$200,000	\$4,000,000
Paris	IH 30	20.0	Heavy Rb	\$400,000	\$8,000,000
		240.0	Т	otal Need = \$	36,000,000

Costs Attributable to Non-Load Factors

Ta	Table V-8. 2000 Proportion of Federal 3R Pavement Costs Attributable to Non-Load Factors												
Fun	ctional Highway Class	Flexible Pavements (percent)	Rigid Pavements (percent)										
	Interstate	11.0	9.3										
	Other Principal Arterials	12.1	15.7										
Rumal	Minor Arterials	12.2	13.7										
	Major Collectors	14.7	14.5										
	Minor Collectors	14.7	14.5										
	Local	14.7	14.5										
	Interstate	10.1	7.9										
	Other Freeways/ Expressways	10.6	11.0										
Urban	Major Arterials	11.5	12.8										
	Minor Arterials	12.7	16.3										
	Collectors	13.9	20.5										
	Local	13.9	20.5										

Pavement Costs Traffic

Traffic

VMT

Load Spectra

GIS Data (PMIS, Research Data, LTPP)

Case Study Framework Pavement Costs Methodology

- Identify candidate vehicle, route and planning horizon.
- Retrieve pavement data with GIS.
- Forecast traffic based on economic inputs (volumes, classification and axle weights).
- Forecast pavement costs for route over planning horizon for LCV and no LCV and annualize.
- Allocate costs based on Cost Allocation methodologies.

Next Stage of Research

Case Studies

- Existing Interstate Regional Corridor
 - NAFTA
 - Segment
 - LCV Types

- Existing State Corridor (IH and State)
 - IH-45/IH-37/SH 281
 - Segment
 - LCV Types

- Toll Road (all vehicles)
 - TTC
 - NAFTA (San Antonio)
 - LCV Types

- Truck-only Toll Road
 - Laredo-Corpus Christi
 - ICF Study
 - LCV Types

Evaluation Approach

Draft Evaluation Model

Evaluation Model

- Demand loads and trips will vary between the case studies operational benefits.
- Vehicle Operating Costs current vehicle types/LCV selected model(s)
- Infrastructure Costs focus on bridges and pavement use factors for geometry and ramps
- Social Costs emissions, noise for current vehicle types/LCV selected model(s)
- Economic Analysis

Schedule

Original Schedule			Revi	islon	Date																																
	Work Completed		<u> </u>	Note: A Tech Memo will be subr											rit	ted	to t					t the	e en	d of	fea	ch r	non	-del	iver								
R/M				FY 2009										_				FY 2	2010)					Щ,					FY:	2011	_				!	
Re	esearch Activity	Estimated % of Total Project Budget	Sept	Oat	Nov	Dec	Jan Fr	o Me	r Ao	r Miry	June	July	Aug	Sept	bet	Nov	Dec	Jan	Feb	Mac	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mer	Apr	Mity	June	July	Aug
Task 1	LCV Background and Issues	4%					7		t	+			\exists	\dashv	F																						
Task 2	Representative Vehicle Classes, Demensions, and Specifications	2%					+		F					\exists	E																						
Task 3	Highway Infrastructure for Larger Trucks	4%							F					\exists	E																						
Task 4	First Project Advisory Meeting	2%					\mp		F	F				\exists	F																						
Task 5	Bridge Impacts from LCV Operations	10%												\exists	F																					F	
Task 6	Pavement Consumption and LCV Operations	12%												\exists	F																					F	
Task 7	Larger Truck Operations	10%												\exists	E																						
Task 8	Policy implications of LCV Operations	10%												\exists	E																						
Task 9	Summary of First Year Activities and Second Project Advisory Meeting	3%					\mp	+	F						Y																					F	
Task 10	LCV Case Study 1. An Existing Interstate Highway	10%																																			
Task 11	LCV Case Study 2. An Existing State Comidor	10%					\pm							\exists																							
Task 12	LCV Case Study 3. Trans-Texas Corridor - TTC-35	10%												\exists																							
Task 13	LCV Case Study 4. Truck Only Toll Road	10%												\exists																							
Task 14	Final Report and Third Project Advisory Meeting	3%							\pm					\exists																							
Total	(should = 100%)	100%																																			

THANK YOU!

