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1.  Introduction 

1.1 Project Overview 
With ever-increasing congestion levels throughout the nation, it comes as no surprise that 

huge amounts of research, political, and technical effort have been invested in alleviating its 
negative impacts. A substantial amount of freeway congestion, if not the majority, is due to 
nonrecurring events such as incidents [1], which has spurred significant innovation in incident 
management techniques and practices designed to minimize the impact of these unexpected 
events.  

A large variety of incident management strategies have been developed, with different 
aims: for instance, information dissemination with variable message signs (VMSs) or highway 
advisory radio, reducing the clearance time of incidents with dedicated incident-response 
vehicles or policy guidelines for emergency responders, and operational strategies such as 
temporary opening of high-occupancy vehicle lanes to general traffic have all been proposed to 
mitigate the impact of incidents. These efforts typically focus on freeway incidents, because 
these facilities carry higher volumes of traffic, and because their limited-access nature restricts 
motorists’ opportunities to detour when encountering congestion.  

One recently proposed strategy for severe or extended incidents is to close selected 
freeway onramps in the vicinity of the incident. This strategy is logical, given that access to 
freeways is completely controlled by these ramps, and that ramp treatment strategies have shown 
success in reducing recurring congestion. Ramp metering is widely used to this end, but even 
complete ramp closure has been employed as a regular tool for congestion management.  

The idea of closing onramps to improve traffic flow dates back at least four decades to 
Miesse [2], who conducted basic microsimulation analysis to study the improvement attained 
from ramp closure, and to experiments conducted by the Michigan Department of Transportation 
in the early 1960s on peak-hour ramp closure in Detroit, finding substantial increases in freeway 
throughput (up to 13.7%) and freeway speed (typically 10 mph) without creating excessive 
problems on arterials [3]. The Federal Highway Administration’s Freeway Management 
Handbook [4] lists several other successful deployments of ramp closure for this purpose (for 
instance, in Houston, Los Angeles, San Antonio, and Fort Worth, as well as in Osaka and Tokyo, 
Japan). In the literature, ramp closure has not been specifically tested as an incident management 
strategy, although it is sometimes performed on an ad hoc basis by on-site emergency 
responders.  

Both common sense and experience indicate that closing onramps does not always lead to 
a net system benefit: a study conducted by Prevedorous in Hawaii showed only modest increases 
in travel speeds at some locations, with decreases in travel speed being observed at other 
locations [5]. Although this may have been due to specific experimental factors (such as the two-
week study period being insufficient for motorists to adapt to the ramp closure, or only 
considering travel speed as a measure of effectiveness), this nevertheless suggests that a rigorous 
analysis framework for evaluating the impact of ramp closure is needed, especially in the context 
of incident management where the closed onramps will probably be unexpected by motorists.  
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1.2 Ramp Closure Framework 
In this project, making a decision about ramp closure is formulated as a three-step 

process:  

1. Is the incident severe enough to consider ramp closure?  

2. If so, which ramps (if any) should be closed?  

3. If any ramps are closed, for how long should they remain closed?  
 
This division is based on several practical considerations. First, from an operational 

standpoint, closing a ramp is not an easy task. Regardless of the specific type of access control 
(automatic gates, manual barriers, etc.), safely closing an onramp requires time and diversion of 
resources away from the incident itself. Thus, some sort of pre-screening should be available 
before any ramp closure policy is seriously considered. Secondly, dividing the questions of 
which ramps and for how long carries a major implementation advantage: answering the latter 
question requires dynamic models, which require more computation time than is needed to 
answer the former. Because time is of the essence in any incident management application, and 
because the question of how long does not need to be answered immediately, it makes sense to 
answer the two questions separately.  

Thus, we propose a Phase I model to first answer the question of which ramps should be 
closed (leaving open the possibility that the best option is not to close any ramps at all). This 
model runs quickly (in a matter of seconds) and allows the ramp closure to begin with minimal 
delay. Following this, a Phase II model is run to determine when these ramps should be 
reopened. Of course, the judgment and experience of human operators and responders should be 
included as well throughout the entire process, as they interpret the results of these models.  

Returning to the first step of pre-screening incidents, our goal was to develop a process of 
quickly identifying how severe an incident is, so that only sufficiently severe incidents would be 
further examined for ramp closure. Incident severity can be measured in many ways, based on 
operational factors (total delay caused to motorists or the number of lanes blocked), safety 
factors (the amount of property damage or the severity of human injuries), the incident clearance 
time, and so on.  

Because the goal of ramp treatment strategies is inherently based in improving system 
operations (or at least corridor operations), rather than affecting the actual incident itself, the 
total delay caused by the incident is the most apt measure of incident severity for this research. 
By measuring the amount of delay caused by an incident relative to base conditions, in addition 
to providing a prescreening tool, we simultaneously establish a benchmark for measuring 
different possible ramp closure strategies.  

Incident delay is most affected by the incident’s duration (clearance time), and by the 
prevailing traffic volumes. Naturally, incidents that last longer, or that occur during periods of 
heavier traffic flow, will cause more delay. Traffic flow characteristics can be inferred from 
historical information, or from intelligent transportation systems (ITS) devices, such as inductive 
loops; however, the task of estimating incident duration while an incident is in progress is 
considerably more difficult. Thus, we develop two models to predict incident severity; the first 
makes a prediction about the incident duration, which in turn is used to estimate the delay which 
the incident will cause. This delay figure will then be used to see if the incident is severe enough 
to warrant further examination regarding ramp closure. The specific threshold should be 
determined based on the specific corridor where the incident occurs, characteristics of onramps 
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in its vicinity, availability of agency resources for ramp closure analysis, and the judgment of the 
agency implementing such a procedure.  

1.3 Research Tools 
The previous section outlines the models that were developed and used in this project. In 

particular, four distinct tasks need to be accomplished: estimating incident duration, estimating 
incident delay, deciding which ramps to close, and deciding how long they should remain closed.  

We develop a novel incident duration prediction model based on the naive Bayesian 
classifier; Chapter 2 explains this model in full detail. As part of this project, we created NBIDS 
(Naive Bayesian Incident Duration Software), a software program which can be applied for this 
purpose. This program and its documentation are provided as deliverable P2 for this project.  

Our survey of the incident delay prediction literature revealed that none of the models 
account for the inherent uncertainty in incident management. This turns out to be a significant 
deficiency (Chapter 3 includes a simple example where this leads to inefficient dispatching of an 
incident response vehicle), so we modify an existing delay prediction model to account for this. 
This also allows us to fully take advantage of the results of the Bayesian incident duration 
prediction model, which is stochastic in nature. We develop analytic formulae, and also develop 
a mesoscopic simulation evaluation technique for scenarios too complex for exact analysis; these 
simulations are based on the Cell Transmission Model, explained in more detail in Appendix B.  

The Phase I (“which ramps”) model is based on the principles of macroscopic traffic 
assignment, allowing us to examine the system-wide effects of a ramp closure policy. This is 
needed because closing onramps will result in re-routing and changes in flows throughout the 
entire system — for instance, some vehicles may choose to follow an alternate arterial path to 
their destinations, rather than simply merging onto the freeway at the next opportunity. This 
choice of Phase I model also allows us to build on the significant body of research in traffic 
assignment, which includes a number of very efficient algorithms for large-scale networks.  

The Phase II (“how long”) model is based on microsimulation, as a detailed analysis of 
queuing and other dynamic phenomena is needed to answer this question with any degree of 
realism. In this project, we use the commercial microsimulator VISSIM (developed by PTV), 
although any microsimulator can be used in its place.  

1.4 Outline 
The remainder of this report is organized as follows: Chapter 2 describes a naive 

Bayesian classifier model for predicting incident duration, and explains its advantages over 
existing models. Chapter 3 presents a delay prediction model, using the input from the Bayesian 
duration prediction model. Chapters 4 and 5 are concerned with developing an ideal ramp 
closure policy, respectively describing models for where and when ramps should be closed. 
Chapter 6 then discusses some issues related to the practical deployment of this modeling 
framework for real-time incident management. Finally, Chapter 7 summarizes the document and 
reiterates the key conclusions.  
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2.  Incident Duration Prediction 

2.1 Introduction 
Chapter 1 explains how predicting the duration of an incident is the first step in the pre-

screening process in identifying incidents which may warrant closing onramps. A variety of such 
models exist in the literature to make this prediction based on observable characteristics. Linear 
regression models are common, using characteristics such as incident type, weather condition, 
and number of vehicles and lanes involved as independent variables; Khattak et al. [6], Garib et 
al. [7], and Ozbay and Kachroo [8] use variations of this approach. Jones et al. [9] apply a 
Poisson regression on similar variables to incidents in the Seattle area. Giuliano [10] aggregates 
incidents into broad categories and estimates models for each category. Golob [11] and 
Sullivan [12] both fit lognormal distributions to incident data, and Nam and Mannering [13] use 
hazard-based models which provide information not only on the total incident duration, but also 
on the probability that an incident, known to have already existed for a certain period of time, 
will be cleared in the next small time interval. Ozbay and Kachroo [8] construct decision trees 
which do not require knowledge of all observable incident characteristics. Smith and Smith [14] 
also suggest the use of nonparametric regression, where incident duration is estimated based on 
similar incidents in the past.  

Implementation of most of these models is often difficult, as almost all incident duration 
prediction models, with the exception of decision trees, nominally require complete knowledge 
of all incident characteristics to make a prediction. In practice, this knowledge is often 
incomplete and obtained sequentially; for instance, as emergency vehicles arrive, they can report 
additional information that may not have been apparent when the incident was first reported, 
such as the number of injured persons. Although techniques exist to make predictions based on 
interpolated values of unknown independent variables [6], this reduces accuracy and complicates 
the prediction process. Decision tree models do not suffer from the limitation of needing 
observation of all independent variables, but these are deterministic and give no information on 
the reliability or variability in the prediction. Probabilistic predictions give more information on 
this uncertainty and can be more useful in deciding whether or not a particular incident 
management strategy should be adopted.  

Thus, we develop a probabilistic model based on a naïve Bayesian classifier which gives 
useful predictions regardless of the amount of information known about the incident. To our 
knowledge, this is the first application of this type of model to incident duration prediction.  

The prime advantages of the naïve Bayesian classifier, which we elaborate on in the 
following section, are as follows:  

1. Its operation is simple and intuitive, relying only on basic laws of probability.  

2. It accommodates limited information, as seen in real-world incident management.  

2a. As a corollary, this allows a broader set of model parameters to be used, as the model 
does not require observations for all independent variables.  

3. Being explicitly probabilistic, it reports results in a form better suited for incident 
management policy.  
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4. It is robust to outliers.  

5. It can account for information received at varying points in time.  
 
To our knowledge, no current incident duration model contains all of these features. The 

Bayesian networks approach (applied by Ozbay and Noyan [15]) is most similar, but requires 
additional calibration to characterize the dependencies in the model; doing this correctly requires 
some sophistication in statistical techniques and incident management. In contrast, the naive 
Bayesian approach requires only a basic understanding of probability to use correctly.  

The next section describes the naïve Bayesian classifier, and the development of the 
incident duration model in greater detail. Section 2.3 describes the NBIDS software developed in 
this research.  

2.2 Model Development 
This section briefly describes the naïve Bayesian classifier (NBC) and its adaptation for 

incident duration prediction. The aim of the NBC, as with other classifiers, is to assign an object 
I  to one of a discrete set of categories 1 2 mC C … C, , ,  based on its observable attributes 

1 2 nX X … X, , , . The NBC calculates the probability that I  belongs to each category, conditioning 
on the observed attributes; I  is typically assigned to the category with the greatest such 
probability. This classifier is naïve in the sense that it makes the strong assumption that the 
attributes are mutually conditionally independent; that is, the conditional probability that I  
belongs to a particular class given the value of some attribute is independent of the values of all 
other attributes. Despite this unrealistic assumption, empirical studies demonstrate that this 
assumption need not significantly compromise the accuracy of the prediction, and NBCs are used 
in a variety of applications, including document classification [16], medical diagnosis [17], 
systems performance management [18], and other fields. Domingos and Pazzani [19] prove 
optimality of the NBC under certain conditions even when the conditional independence 
assumption is violated.  

This probability calculation is straightforward; conditioning on the observed attributes, 
we want to find the probability that I  belongs to each category, that is, 

1 2Pr( )i nI C X X … X∈ | , , , . Applying Bayes’ Theorem, this is rewritten as  

1 2
1 2

1 2

Pr( ) Pr( )Pr( )
Pr( )

i n i
i n

n

I C X X … X CI C X X … X
X X … X

∈ , , , |∈ | , , , =
, , ,

 (2.1) 

Under the mutual conditional independence assumption, this reduces to  

1
1 2

1 2

Pr( ) Pr( )
Pr( )

Pr( )

m
i j ij

i n
n

I C X I C
I C X X … X

X X … X
=

∈ | ∈
∈ | , , , =

, , ,
∏

 (2.2) 

for each category iC . Because the denominator will be the same for all categories, we 
need only calculate the numerator for each category i , choosing  

1

argmaxPr( ) Pr( )
m

i j i
j

i I C X I C∗

=

∈ ∈ | ∈∏  (2.3) 

and assigning I  to category 
i

C ∗ .  
In the context of incident duration prediction, the attributes X  correspond to observable 

incident characteristics, such as the number of injured persons, the number of blocked lanes, the 
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location of the incident, weather conditions, and so on. It is also necessary to define discrete 
categories of incident duration to classify the incidents; these might coincide with local incident 
management policy. For the sake of example, say a particular agency has decided that a highway 
advisory radio (HAR) message should be recorded if an incident is expected to last more than 
half an hour, and that a ramp closure policy should be enacted if the incident is expected to last 
more than an hour. For this agency, it would be appropriate to designate three classes of 
incidents: those lasting less than half an hour, those lasting at least half an hour but less than an 
hour, and those lasting more than an hour. When an incident occurs, the NBC would calculate 
the probability that the incident’s duration will fall into each of these three intervals, and the 
appropriate policy could be chosen based on what is most likely.  

Reporting the probability for each duration category also provides useful information 
about the certainty of the prediction to incident management staff in an intuitive manner; this 
contrasts with non-probabilistic models which only report a single “expected” duration. 
Additionally, by classifying all incidents into broad categories, the resulting model is robust with 
respect to outliers, which abound in incident duration data sets because of high variability in 
response times and incident severity.  

Table 2.1 shows selected parameters for the NBC model estimated in this work, which 
are used here to illustrate the application of the NBC. The first row of "base" probabilities 
contains the values which give the probability that an incident falls into these three intervals 
without any additional knowledge. The next two rows give the conditional probabilities showing 
the likelihood of that particular attribute, given that the interval falls into a particular class. (The 
values in each row need not sum to unity as they condition on different events.) Thus, if we are 
given an incident involving one vehicle and one fatality, the maximand in (2.3) can be calculated 
for each of the three categories by multiplying the relevant entries in each column, yielding 
values of 0, 0.000316, and 0.000183, respectively; thus, Category 2 (30 to 60 minutes) is the 
most likely duration for this incident.  

Table 2.1: Selected NBC parameters for example 

Attribute 30<  mins. 30–60 mins. 60>  mins. 
Base probability 0.36 0.25 0.39 

One passenger car involved 0.251 0.421 0.156 
One or more fatalities 0 0.003 0.003 

 
This probability calculation has the advantage of using whatever information is available 

to make the prediction; regardless of how much or how little is known about the incident, a valid 
prediction will be made based on what is provided, although certainly more information leads to 
better prediction. One interesting and important side benefit of this property is the ability to use 
more independent variables, as, unlike traditional models, one does not need an observed value 
of all variables. Thus, parameter selection is limited only by what is present in a calibration set, 
not by what is likely to be observed in most incidents. The parameters in this model (that is, the 
probabilities Pr( )iI C∈  and Pr( )j iX I C| ∈ ) may be calibrated from records of past incidents.  

It may also be desirable to update these probability calculations as more information 
becomes available, or if the incident has lasted long enough that it is useful to restrict attention to 
incidents of this duration or greater. For instance, in the previous example, if a given incident has 
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already lasted forty minutes, the probability that its total duration is less than thirty minutes is 
clearly zero, and the model should yield the same result. This can be done by conditioning on an 
additional event T  which occurs if an incident’s total duration is at least t , where t  is the 
amount of time since the beginning of the current incident. Then we can write the probability 
calculation as  

1

argmaxPr( ) Pr( )
m

i j i
j

i I C T X T I C∗

=

∈ ∈ | | , ∈∏  (2.4) 

 
This formulation is flexible in that it can update the most probable category at any time 

(such as when new information is received); however, it is not without its drawbacks. First, the 
number of parameters needed grows substantially (multiplied by the number of possible values 
of T ). Although this is not a major obstacle, if a computer program is used to calculate and store 
these parameters from a large database of incidents, the previous formulation can be completely 
and succinctly summarized in a single table, which is useful if one wishes to make qualitative 
statements about the impact of various attributes. Second, if the current time is large, there may 
be few incidents where duration is greater than t, and the accuracy of the conditional 
probabilities in (2.4) may suffer due to a small sample size. Nevertheless, the ability to 
accommodate new information is of importance, and completely absent in nearly all current 
incident duration models.  

One difficulty occurs if any of the conditional probabilities in (2.3) or (2.4) are zero, as 
the category corresponding to the resulting product will have zero probability regardless of the 
other factors. It may be undesirable for one zero quantity to invalidate a number of other factors 
that may strongly suggest one category; for this reason, zero probabilities are replaced by a small 
positive number when calculating these products. The sensitivity of the classifier to the choice of 
this number was not examined in this work.  

2.3 NBIDS  
As part of this project (deliverable 0-5422-P1), a software program was created to assist 

TxDOT with using the Bayesian classifier to predict incident duration. This software, titled 
Naive Bayesian Incident Duration Software (NBIDS), was coded using FreeBASIC, and 
accompanying documentation, including a guided tutorial and source code, is also provided in 
Appendix A.  

Predicting incident duration with NBIDS is a three-step process:  

1. Create a historical incident database  

2. Initialize the incident database  

3. Predict incident durations  
 
Creating the database can be done by obtaining past incident records, organizing them 

with a spreadsheet program, and saving in a comma-separated value (CSV) text format. 
Depending on the format in which the data is initially received, little to no actual processing may 
be required in this step.  

Initializing the database is the process of letting NBIDS know which fields in the 
database are the ones to use for predicting incident duration (e.g., you might select the number of 
vehicles and a location field, while ignoring a general comments field),defining the categories of 
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incident length, and defining the attributes used in the classifier, as described earlier in this 
chapter. This is the most labor-intensive part of the process, but the tutorial and documentation 
explain this step in detail, and this step only needs to be performed once when setting up the 
database.  

Once initialized, predicting incident duration can be accomplished in a matter of seconds. 
NBIDS prompts the operator for all of the information known about the incident; any unknown 
information is simply skipped, and the Bayesian prediction is calculated and output to the user. A 
screenshot of the NBIDS menu is seen in Figure 2.1. 

 

 
Figure 2.1: NBIDS title menu. 
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3.  Incident Delay Prediction 

3.1 Introduction 
There are models that can predict incident delay when provided the duration of closure. 

Although described more fully in the next section, this suggests a natural incident management 
framework. Incident management personnel learn characteristics of an incident, such as the 
number of vehicles involved or the weather conditions, through a variety of means. This 
information is then used to estimate incident duration, which in turn is used to predict delay 
caused by this incident, using models described in Section 3.2.  

However, incident duration can never be predicted with absolute certainty, and failure to 
account for this can lead to inefficient incident response. Particularly, using only the expected 
incident duration as input to the delay model will always give a wrong prediction and 
systematically underestimate expected incident delay. In essence, it is impossible to obtain an 
accurate prediction without considering the full range of possible incident durations.  

The following sections give mathematical proof of this fact, but here we present a small 
motivating example which, while admittedly simplistic, illustrates this principle. A traffic 
management center learns of two incidents, A and B (see Table 3.1), but there is only one 
available incident response vehicle, so they decide to dispatch it to the incident which will cause 
the greater delay.  

Table 3.1: Small example to demonstrate importance of modeling uncertainty. 
 Incident A  Incident B  

Duration 5 or 25  17  
Expected duration 15  17  

Delay using expected duration 225  289  
True expected delay 325  289  

 
Based on the information they have about these incidents, they predict that Incident A 

will either last for 5 minutes, or for 25 minutes (with equal probability); thus the incident 
duration model reports an expected duration of 15 minutes. Incident B, on the other hand, will 
last exactly 17 minutes with absolute certainty. Typically, total incident delay is proportional to 
the square of incident duration. So, if the expected duration is used, one predicts a delay of 225 
and 289 units for Incidents A and B, respectively; thus, the vehicle is sent to assist with Incident 
B.  

Instead of using the average duration, let’s calculate the delay for both scenarios. If 
Incident A only lasts 5 minutes, it will create a delay of 25 units, but if it lasts 25 minutes, it will 
create a delay of 625 units. Because these are equally likely, the true expected delay due to 
Incident A is the average of these, or 325 units. Because there is no uncertainty with Incident B, 
it will still have a delay of 289 units. Thus, when estimating delay in this manner, we conclude 
that the vehicle should be dispatched to Incident A instead.  
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This inconsistency is not the result of the simplifications made here; rather, in the next 
section, we show that this is due to fundamental principles of probability. Thus, it is incorrect to 
use the average duration to predict delay, and one must consider the underlying probability 
distribution. Surprisingly, to the authors’ knowledge, this phenomenon has not been described in 
the incident management literature. Thus, this paper attempts to remedy this situation by 
proposing a stochastic incident delay prediction model.  

In the next section, we describe past work on incident delay prediction. In section 2 we 
define the stochastic delay prediction problem more precisely, and derive exact formulae to 
account for incident duration probability distributions that have been encountered in the 
literature.  

3.2 Background 
A variety of models have been proposed in the literature to predict delay caused by an 

incident: Wirasinghe [20] and Morales [21] develop analytical formulae based on the classical 
shockwave theory of Lighthill and Whitham [22]; given a predicted incident duration, one can 
estimate the resulting delay. Al-Deek et al. [23] propose an online prediction model using loop 
detectors to calculate delay a posteriori; while practical and useful in the case of multiple 
incidents (a property few incident delay prediction models share), this method as presented is not 
suited for real-time prediction, but rather post-incident analysis. However, Garib et al. [7] 
combine this work with a linear regression model that can predict delay while an incident is in 
progress.  

However, while linear regression models have the advantage of simplicity, they carry 
several major disadvantages. In the context of incident management, the most serious is that they 
require an input value for each independent variable, at least nominally. While techniques exist 
to interpolate missing data from other observations (see, for instance, Bhat [24]), this reduces 
accuracy and complicates the prediction process. Because information about incidents is often 
incomplete and obtained sequentially (rather than all at once), this suggests another method is 
more appropriate.  

Generally speaking, the models based on traffic flow theory are more transferable and 
flexible as they are founded on fundamental principles. In fact, the models of Wirasinghe [20] 
and Morales [21] can be applied off-the-shelf when combined with an incident duration 
prediction model.  

Many models exist to estimate incident duration, as seen in the previous chapter. 
However, as demonstrated in the above example, using a single, expected value of incident 
duration always underestimates delay in the presence of uncertainty. This effect can be traced to 
an inequality of Jensen [25] regarding convex functions: if f  is convex, and X  is a random 
variable, we must have [ ( )] ( [ ])E f X f E X≥ . Specifically, let f  represent incident delay, and 
X  represent the uncertain incident duration. Because f  is proportional to the square of X , 

( )f X  is strictly convex, and thus the expected value of f  must be greater than the delay that 
would result from the expected value of X : [ ( )] ( [ ])E f X f E X≥ . This result applies no matter 
what the distribution of incident duration is. Therefore, we prefer incident duration models that 
give information about the entire distribution of possible incident durations to those which only 
report single values. This is another reason why the naive Bayesian classifier presented in the 
previous chapter is useful. In the next section, we develop analytical formulae for total incident 
delay based on both the Bayesian models and the lognormal regression.  
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3.3 Analytical Stochastic Delay Formulae 
The analysis in this section is based on Wirasinghe’s [20] delay formula. The other 

commonly-used formula is that of Morales [21] which is based on the same principles, but 
involves considerably more parameters. Thus, the approach demonstrated here is equally 
applicable to this formula as well, although a parallel derivation is omitted for brevity. In 
particular, Wirasinghe’s formula for total delay due to a stationary incident is  

2 1 4 3 4

3 1

( )( )1
2u

q q q qD
q q

τ − −=
−

 

where uD  is total delay, τ  is the incident duration, and 1q , 3q , and 4q  are the initial, recovery, 
and metered vehicle flow rates (see Figure 3.1 for identification of these regions on a shockwave 
diagram). Real-time values of 1q , 3q , and 4q  can be estimated from loop detectors in the area.  

 
Figure 3.1: Idealized shockwave diagram for a stationary incident. 

Assuming some probability distribution ( )f τ  for incident duration, we can express the 
expected delay as  

2 21 4 3 4 1 4 3 4
0

3 1 3 1

( )( ) ( )( )[ ] [ ] ( )
2( ) 2( )u

q q q q q q q qE D E f d
q q q q

τ τ τ τ
∞− − − −= =

− − ∫  

which, depending on f  can be evaluated analytically or numerically. Therefore, the remainder 
of this section considers different probability distributions for incident duration which have been 
proposed in the literature, and derives corresponding formulae. In particular, we consider various 
probability distributions implied by Bayesian classification, and the lognormal distribution, both 
of which are repeatedly seen in the incident duration prediction literature.  

Bayesian methods classify incidents into categories based on incident duration; for 
instance, reporting the probability that an incident will last between 0 and 15 minutes, between 
15 and 25 minutes, between 25 and 35 minutes, and so on. (see Table 3.2 for an example); 
however, to calculate expected delay, we need to specify the distribution more precisely. The 
simplest approach is to assume a uniform distribution within each category, as in Figure 3.2, 
such that the area under the distribution in each category is equal to the probability that the 
incident lasts that duration.  
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Table 3.2: Example output from a Bayesian incident duration model. 
Incident duration range (0,15) (15, 25) (25,35) (35, 50) (50, 75) 

Probability 0.05 0.13 0.37 0.34 0.11 
 

 
Figure 3.2: Probability density function corresponding to Bayesian example. 

Mathematically, let there be n  categories of incident duration where each category i  
contains incidents lasting longer than 1iξ −  but no longer than iξ  units of time; the probability that 
an incident’s duration is of category i  is ip . Thus these categories form the intervals 
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and  
2 21 4 3 4

1 1
13 1

( )( )[ ]
2( ) 3

n
i

u i i i i
i

q q q q pE D
q q

ξ ξ ξ ξ⎛ ⎞
⎜ ⎟− −⎝ ⎠

=

− −= + +
− ∑  

 
Alternately, in some cases, the n -th interval may be unbounded; that is, it contains all 

incidents which have length greater than 1nξ − , and has the form 1( )nξ − ,∞ . In this case, a uniform 
distribution cannot be used for this last category. A suitable substitute is the exponential 
distribution, because (1) it has unbounded support, (2) the probability of longer and longer 
incidents approaches zero asymptotically, (3) long duration incidents may be characterized by a 
relatively constant hazard rate, and (4) it is tractable and amenable to analysis.  
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Figure 3.3: Choices of λ  resulting in (a) continuous and (b) discontinuous densities. 

We must choose an appropriate rate parameter λ  for the exponential distribution; here 
we choose this such that the density function is continuous at 1nξ −  to avoid a sudden jump at this 
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point (see Figure 3.3). Let { }1max 0nτ τ ξ −= − ,  represent the additional duration past 1nξ − , so τ  
has an exponential distribution, given 1nτ ξ −> . To preserve continuity, we must choose 
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To evaluate the latter term, realize that  
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using linearity of expected value, and well-known formulas for the first two moments of 
the exponential distribution. Substituting for λ  and back into the previous equation, we obtain 
the final formula  
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Another common assumption is a lognormal distribution fitted using regression. Recall 

that the lognormal distribution is characterized by two parameters μ  and 2σ , and its density 
function is  
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using well-known values for the mean and variance of the lognormal distribution. 
Simplifying, we obtain  
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4.  Phase I: Which ramps should be closed? 

Currently, decisions about ramp closure in the context of incident management are made 
on-site by emergency responders who are present, generally with safety as the primary goal. 
However, ramp closure can also be used to serve broader mobility improvement goals at the 
same time. A traffic management center (TMC) or similar facility is best suited to making 
decisions of the latter type due to their real-time knowledge of facility conditions across a larger 
area. This section describes the first part of a two-phase model for indicating how ramp closure 
should best be utilized in response to an incident (which has already been pre-screened using the 
methods in Chapters 2 and 3).  

Using two distinct phases carries multiple advantages for incident response. First, closing 
ramps results in vehicles changing routes, which has impacts well beyond the immediate vicinity 
of the incident - the benefit to the freeway must be traded off against additional traffic on 
arterials and alternate routes. Each phase has a different geographic focus and uses different 
measures of effectiveness, ensuring that both freeway and arterial performance is accounted for. 
Second, time is of critical importance when managing incidents, and the sooner a response can 
be made, the more effective it will be. Therefore, the first phase, which selects the best ramps to 
close, is designed to run very quickly. The best times to reopen these ramps, which is given by 
the second phase, are not needed until somewhat later, so this phase chooses more detailed 
simulations than is possible within the strict time limit for the first.  

The next section describes the assumptions we make about user behavior with ramp 
closure, followed by presentation of the first modeling phase.  

4.1 Behavioral Assumptions 
Currently, decisions about ramp closure in the context of incident management are made 

on-site by emergency responders who are present, generally with safety as the primary goal. 
However, ramp closure can also be used to serve broader mobility improvement goals at the 
same time. A traffic management center (TMC) or similar facility is best suited to making 
decisions of the latter type due to their real-time knowledge of facility conditions across a larger 
area. There are several ways to close access to ramps, including mechanized gates, VMSs, 
temporary barriers, and on-site personnel, but this is not the focus of this research. Rather, our 
intent here is to develop a methodological framework for quantifying the effects of ramp closure, 
to the end of deciding which ramps (if any) should be closed, and for how long. However, we do 
assume a "candidate list" of ramps where closure is feasible; the specific mechanism by which 
this closure occurs is not explicitly considered in this research. Still, one implementation-specific 
consideration is of prime relevance to this analysis, namely, the manner, locations, and time at 
which motorists are informed of the ramp closures, because this will determine where re-routing 
will occur. For instance, if motorists only learn of the ramp closure when approaching the 
onramp, such as from a VMS, they will follow their original route until reaching the ramp, at 
which point they must choose another, new route for the remainder of the journey. Alternately, if 
motorists learn of the ramp closure before departing on their trip, perhaps through an Internet 
site, entirely different routes may be chosen from the beginning of the trip. A still different route 
will be chosen if motorists learn of the closure after departing, but before reaching the onramp, 
as from a radio traffic report. For our analysis, we assume the first of these scenarios, that drivers 
are unaware of the ramp closure until arriving at the upstream end of the onramp. At this point, 
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they learn of all of the ramps that are closed (so there is no chance of finding one’s alternate 
route closed as well). One possible implementation that could convey such information is a VMS 
with a message such as that in Figure 4.1. Furthermore, all other drivers are unaware of the 
presence of the incident, so they will continue on their regular route unless they encounter one of 
these VMS signs when approaching an onramp (see Figure 4.2).  

 
Figure 4.1: Example of two-phase VMS conveying the information assumed in this project. 

 
Figure 4.2: Diagram of rerouting behavior under information provision. 

From a modeling standpoint, this information scenario was chosen because it minimizes 
the number of additional assumptions that need to be made. Allowing information to be learned 
at an earlier point in time requires describing driver behavior and individual preferences with far 
greater specificity, regarding response to information and online rerouting behavior. By 
restricting the information to a point at which there is no option - upon reaching the closed 
onramp, it is simply impossible to continue along the original route, and a new one must be 
chosen - we eliminate the need to introduce additional, poorly-understood behavioral parameters.  

4.2 Macroscopic Model 
In this section we describe the first phase, based on static traffic assignment methods 

used in transportation planning. This step is best directed towards the question of which ramps 
should be closed in response to an incident, because it can evaluate a large number of scenarios 
in a reasonable amount of time. As a result, this method proceeds by evaluating all possible 
combinations of open and closed ramps from a given candidate list (perhaps the four or five 
ramps upstream of the incident), allowing the best scenario to be chosen.  

The general traffic assignment problem, on which this model is based, constitutes the 
final step of the canonical four-step planning process, and is concerned with identifying the 
routes chosen by all drivers in a large network, perhaps representing an entire metropolitan area. 
The underlying behavioral assumption, dating to Wardrop [26], is that all motorists are seeking 
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the quickest route from the origin to the destination, accounting for congestion due to the 
anticipated behavior of others and for roadway properties such as capacity and speed limits. This 
mutually anticipatory behavior can be described as "user equilibrium" and typically assumes 
perfect information and deterministic conditions.  

A solution to the static traffic assignment problem provides an "initial condition" 
describing equilibrium traffic flows, which will be modified by the presence of an incident and 
possible ramp closures. Specifically, an incident is modeled by adjusting the capacity parameter 
of the affected freeway segment (resulting in an increase in its travel time), and closing a ramp is 
modeled by deleting the ramp from the network.  

As mentioned in Section 4.1, we assume that drivers are unaware of any ramp closures 
until they arrive at the upstream end of one of the closed ramps, at which point they learn of all 
of the closures. Note that the incident and the resulting ramp closure are unanticipated events, the 
equilibrium assumptions of determinism and complete information are violated: the resulting 
network state will not be an equilibrium.  

With this information provision scenario, any driver whose regular route does not involve 
one of the closed ramps will keep the same route choice, as such drivers never even learn of the 
closure. On the other hand, any driver whose regular route includes one of the closed ramps must 
necessarily change routes. Because they learn of the closure only upon arriving at the ramp, the 
first part of their trip is the same. Once the closed ramps are learned, a new path must be chosen 
from their current location (the upstream end of a closed ramp) to the destination. In keeping 
with the assumptions that users are trying to minimize their travel times and have perfect 
information about the equilibrium (non-incident) conditions, we assume that they follow the 
shortest available path given the prevailing travel times from the equilibrium state. Finding these 
new paths can be performed efficiently using a one-to-all implementation of a shortest path 
algorithm, such as Dijkstra’s [27]. Once this rerouting is accomplished, the resulting state can be 
analyzed to see the impact of closing a particular set of ramps.  

To evaluate the performance of these scenarios, the most appropriate measure of 
effectiveness is total system travel time (TSTT), which is the total time spent by all motorists, 
regardless of origin or destination, traveling in the metropolitan area during the analysis period. 
Even though the ramp closure policy is enacted in a geographically small area, a global measure 
is the only way to fully account for all of the interdependencies and "ripple effects" generated by 
such a policy. TSTT accounts for any and all re-routing that occurs in response to ramp closure 
without having to specify the alternate routes a priori, and also accounts for the impact of these 
re-routed drivers on the alternate routes they traverse.  

Thus, Phase I proceeds as follows: each possible ramp closure scenario (including closing 
no ramps) is considered; for each scenario, flows are rerouted as above, allowing that scenario’s 
TSTT to be calculated. After evaluating all possible ramp closure scenarios, enact the one with 
the least TSTT, as this scenario leads to the lowest total travel time (or equivalently, the lowest 
average travel time). One possible implementation of this procedure is shown in Figure 4.3.  

This method is efficient, because only one user equilibrium assignment needs to be 
performed to find a "base case." The rerouting procedure consumes comparatively little 
processor time, even when many scenarios are evaluated. Exact computation times can be found 
in Appendix C, where we apply this method to a sample network.  

There are numerous static traffic assignment algorithms that have been developed. The 
first widespread solution method was based on the Frank-Wolfe convex programming 
algorithm [28]. Several more efficient algorithms have been created since then; those of 
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Jayakrishnan et al. [29], Bar-Gera [30], and Dial [31] are particularly noteworthy. For this 
application, the critical requirement is that the path flows are needed; that is, the number of 
motorists using every route in the network. Not all algorithms accomplish this directly: the 
Frank-Wolfe algorithm, for example, only returns the link flows (the number of motorists on 
each road segment), and the mapping between path and link flows is not one-to-one. Still, 
methods exist to infer path flows from link flows using the concept of entropy maximization 
(see, for instance, [32], [33], and [34]). Alternately, simple averaging of the path flows from each 
iteration of Frank-Wolfe can be used, although the resulting path flows do not maximize entropy 
in general.  

 

I. Initialize. Find the user equilibrium link flows. Then, for each link L , each ramp r  which is a 
candidate for closure, and for each destination d  find the number of vehicles ( )x L d r, ,  en route 
to d  which have previously used r . 

II. Iteration. For each possible combination of opened and closed ramps:  

1.Find new paths for rerouted vehicles. For each onramp r  which is to be closed and 
for each destination d , find the shortest path from the upstream end of r  to d .  

2.Remove rerouted vehicles from old paths. For each arc L , if ramp r  is closed, 
subtract ( )

d
x L r d, ,∑  vehicles from the flow on L .  

3.Add rerouted vehicles to new paths. For every destination d , and for every arc on the 
shortest paths to d  found in Step 1, add ( )

r
x r r d, ,∑  vehicles.  

4.Evaluation. Calculate TSTT for new link flows.  

III. Output. Report combination of closed ramps that minimizes TSTT.  

Figure 4.3: Summary of Phase I. 

4.3 Implementation Guidance 
To summarize, the general framework for using a Phase I model is the following:  

1. Perform a user equilibrium traffic assignment offline, noting the path flows and 
the usage of each candidate ramp by each destination.  

2. When an incident occurs, perform the rerouting procedure described above for 
each combination of open and closed ramps.  

3. Calculate total system travel time for each scenario, and choose the one 
minimizing total delay.  

In implementing a Phase I model, the following should also be kept in mind:  

• One needs the path flows from the traffic assignment results; either a path-based 
algorithm should be used for the assignment, or a most-likely path flows algorithm 
should be applied separately.  

• Because accurate path flows are important, one should ensure that the traffic 
assignment is sufficiently converged (for further guidance on this, see [8]). The 
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time requirement for this should not be prohibitive because this assignment is done 
offline and the results stored for when an incident actually occurs.  

• The number of combinations of open and closed ramps (and hence the number of 
scenarios that need to be tested) grows exponentially with the number of ramps that 
are candidates for closure. In our experience with a moderately large network 
(representing the city of El Paso), using four candidate ramps creates sixteen 
scenarios; evaluating these requires less than four seconds. However, using twice 
this many ramps would increase the computation time to approximately a minute, 
which is about as much as is practical (see Appendix C).  

 
It may be that the model recommends a ramp closure which is counterintuitive (for 

instance, recommending closure of a ramp downstream of the incident). In this case, the model 
has simply identified an instance where ramp closure would be beneficial even in the absence of 
any incident, as a typical congestion relief measure. A specific policy to address such matters 
should be developed before implementation.  



 

 24



 

 25

 

5.  Phase II: How long should ramps be closed? 

The first phase identifies the best combination of onramp to be closed in response to an 
incident on a freeway section, using TSTT as a measure of effectiveness. While this part runs 
quickly, it is unable to answer the question of how long ramps should be closed to optimize 
system performance.  

Thus, we propose a second phase, using a dynamic model based on microsimulation. 
When beginning this phase, we take the set of ramps that should be closed as given, having been 
obtained from the first phase. Because Phase I is macroscopic and explicitly considers the impact 
of ramp closure on the entire network, and because Phase II takes the results of the Phase I as 
input, we restrict the scope of analysis to “zoom in” on the specific area of interest, as the 
broader impacts have already been accounted for.  

Additionally, we assume that the incident duration is known, or can at least be estimated. 
Although there is a large amount of uncertainty in such predictions, a number of models exist to 
predict the clearance times of incidents (see Chapter 2). Still, these require some knowledge of 
incident characteristics (such as the number of vehicles involved, and whether emergency 
responders are present), which might be obtained from police dispatch reports, closed-circuit 
television cameras, or other sources. Because some time will be needed for a TMC to learn of the 
incident, and to enact the ramp closure strategy, we assume that it is desirable to close the 
onramps as soon as possible.  

5.1 Duration Vector Search Procedure 
With this information, the algorithm attempts to find the best length of time to close the 

ramps. Mathematically, if there are r  ramps to be closed, we can express the closure durations as 
an r -dimensional vector T, and we seek the vector that optimizes facility performance. Note that 
the reduced geographic scope requires a different, less global measure of effectiveness than 
Phase I; several options are discussed below.  

As there are infinitely many r-dimensional vectors, and as traffic systems lack provably 
“nice” mathematical properties such as linearity or continuity, we opt to discretize the possible 
ramp closure durations — for instance, by restricting our attention to ramp closure durations that 
are a multiple of 10 minutes — and search as many of these points as time allows. Graphically, 
we are reducing the search to a lattice of points, which we wish to traverse in an effective order 
(see Figure 5.1). We base this search on the following two principles:  

• We anticipate that the ideal duration for all ramp closures is approximately the 
remaining incident duration.  

• There is only a limited amount of time available for analysis before a decision must 
be made.  

 
With these in mind, we begin the search by simulating the case where all ramps are 

closed for the entire duration of the incident; for instance, if the incident will be blocking lanes 
for 60 more minutes, we start by simulating all ramps being closed for 60 minutes. From here, 
the search “fans out” to nearby lattice points for additional simulations, as shown in Figure 5.1. 
This search continues for as long as is feasible, at which point the best set of durations is chosen 
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and enacted. One way to implement this type of search is by using a FIFO queue data structure 
(see Figure 5.2 for pseudocode illustrating this procedure).  

As mentioned above, TSTT cannot be used to evaluate a particular ramp closure scenario 
for Phase II, as it only models a small portion of the region. However, microsimulation allows 
more detailed measures of effectiveness based on fundamental traffic properties such as freeway 
speed and density. By using these, one can more fully predict the effect of ramp closure on the 
specific facility which is affected by the incident; the first phase can only do so approximately by 
reporting link volumes.  

Microsimulation models typically require vehicle trajectories to be specified a priori; 
these should be obtained from Phase I above for consistency. If the choice of microsimulator 
makes this difficult, one may utilize a heuristic for rerouting vehicles, for instance, assuming all 
vehicles follow a frontage road or parallel facility and merge onto the freeway at the first open 
onramp, or by running one or two iterations of a built-in route finding feature of the simulator.  

Additionally, because this phase is based on microsimulation, one can also evaluate a 
variety of other ramp treatment and incident management options, such as allowing HOV vehicle 
access to the closed ramps, or ramp metering.  

 
(a) One ramp 

  
(b) Two ramps 

  
Figure 5.1: Possible duration vector search patterns 



 

 27

Input:  

T : Maximum amount of time that can be used for analysis  

D : Anticipated incident duration  

Algorithm:  

0. Create a new queue [Trial mode] and add the vector [Trial mode] to [Trial mode]  

1. Remove the front element v from [Trial mode].  

2. Microsimulate the ramp closure for the durations v.  

3. Consider every vector w which is adjacent to v (see note below). If w has never been in 
[Trial mode], then add w to the end of [Trial mode].  

4. If elapsed time is less than [Trial mode], return to step 1. Otherwise, terminate and 
output best duration vector.  

Note: For example, if we are considering closure durations which are a multiple of 10 minutes, the vectors adjacent to [60 60] are [50 60], [70 
60], [60 50], and [60 70].  

Figure 5.2: Pseudocode for Phase II search procedure 

5.2 VISSIM Implementation 
The procedure described in the previous section is general in that any microsimulator can 

be used (assuming, of course, that it is capable of modeling incidents and temporary ramp 
closures). In our tests, we used the microsimulator VISSIM, developed by PTV. This choice was 
motivated by a desire to be consistent with the Phase I model by basing both on traffic 
assignment results. VISSIM readily interfaces with the planning software VISUM, which is 
capable of performing traffic assignment, allowing the incident corridor to be extracted easily 
and in a manner consistent with the macroscopic route flows.  

Still, extracting a subnetwork requires more time than is available while an incident is in 
progress. Thus, in locations where ramp closure is being considered, appropriate subnetworks 
should be created and stored offline. The remainder of this section describes this network 
creation and simulation process in VISSIM.  

5.2.1 Input Network 
In order to dynamically model a ramp closure strategy we will use the VISSIM 

microsimulation software. In order to use the software we first must have a VISSIM network of 
the focus area. We can obtain this in a variety of ways:  

From a VISUM network  

One of the advantages of obtaining our VISSIM network from a VISUM network is that 
we can choose any subnetwork i.e. any possible incident could be modeled to any degree of 
focus. Another advantage of this method is that vehicles can be exported as both static routes or 
OD demands.  

The disadvantage of this method, however, is that transforming a VISUM subnetwork to 
model the rerouting procedure (particularly the demands) is very time consuming, and very labor 
intensive task. As such, it becomes very difficult to do this on an incident by incident basis in 
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real time. Furthermore, testing of every individual scenario, due to the amount of information 
included in each network, can take upwards of 15 minutes, which is unacceptable considering 
that we will usually have to test many different ramp closure scenarios.  

Using VISSIM to create a network  

The VISSIM package includes an easy to use graphic user interface (GUI), which can be 
used to create any particular network. Because creating a subnetwork for every possible focus 
area that one may need to analyze is infeasible, this method alone is also not appropriate. 
However, as it will be discussed in the implementation section, this method can be used for the 
creation of network "templates."  

Using VISUM to create network and VISSIM to input routes  

This is the option which we have determined to be the most efficient. In order to generate 
the full model, we use the VISUM network to generate the network, and using the VISSIM 
interface to generate the vehicle inputs and vehicle routes.  

5.2.2 Generating Vehicle Inputs and Vehicle Routes 
In order to appropriately load vehicles onto the network we need to define vehicle inputs 

and the routes that those vehicles will follow.  
The reader is directed to the VISSIM manual for information on how to use the software 

package. The explanation that follows is meant for a person with VISSIM experience.  
The objective of this step is to generate traffic on the network that matches that which 

you expect in real life. To achieve this, one can control the number of vehicles entering the 
network through each link (Vehicle Inputs), and the routing decisions that these vehicles make at 
different stages (Vehicle Routes). Both of these variables can be easily deduced from OD data. It 
is important to note that the information required should match the present state of the network to 
be useful. Generating the vehicle inputs in VISSIM is fairly straight forward. One can use the 
GUI to create different vehicle inputs, and assign any amount of flow to each one.  

Generating the vehicle routes, on the other hand, is slightly more complicated. We will 
first need to define routes between every entry point and every exit point of the network (under 
the assumption that there are vehicles coming from every link going to every link). This is done 
in the form of a “routing decision” immediately following the vehicle input, and several routes 
that can be defined from the routing decision point. The vehicles will arrive at the decision point 
and will be divided according to the fractions assigned to each route, which are defined by the 
user. The fractions can be represented in any desired proportion, and need not add up to any 
particular number.  

It is at this stage that we must choose the ratios appropriately in order to obtain as 
accurate of an approximation as possible to the real circumstances of the incident. Engineering 
judgment will probably have to be used to obtain appropriate results, as traffic conditions on a 
day to day, and more importantly, on an hour to hour basis can change radically.  

Once the routing decision points and related routes have been defined, we will have to 
create a separate routing decision for each route that includes a ramp that will be closed. Because 
the fractions allocated to each route can be changed by time intervals, we can then change these 
fractions for the time interval in which the ramp will be closed by transferring flow from the 
route using the ramp to the route through which vehicles are expected to reroute themselves. 
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Changing the time intervals for which vehicles will be rerouted will represent the different 
durations for which the ramps will be closed.  

5.2.3 Generating an Incident 
Incidents in VISSIM are modeled as traffic signals, where the red cycle is the duration of 

the incident. We must make the overall cycle long enough so that the red cycle doesn’t repeat.  
An optional feature that can be included in order to make the model more realistic, are 

low speed areas. By defining low speed areas we can model the behavior of drivers approaching 
an incident area. If low speed areas are not defined, vehicles will be allowed to drive through the 
incident region at full speed, which is not desirable. Low speed areas can be created of any size 
and with any desired speed.  

5.2.4 Evaluation 
VISSIM has a wide variety of tools that can be used for obtaining information about any 

particular simulation. Three of these tools are of particular interest to planers:  

• Travel Time Measurements Travel time segments can be defined in VISSIM 
between any two connected points in the network. The program will measure the 
travel time in every such segment during a defined time period, in regular intervals 
defined by the user. Both the compiled data (by time period) and the raw data 
(vehicle) can be obtained.  

• Flow Measurements Using the sensors tool, the user can measure the number of 
vehicles that cross any such sensors. Like the travel time measurements, the flow 
measurements can be taken over a defined period of time in defined time intervals. 
This tool in combination with the travel time measurements allows us to estimate 
the overall effect of a ramp closure strategy, by estimating the total travel time of all 
vehicles of interest.  

• Link Evaluation The link evaluation tool allows us to measure an extensive set of 
characteristics of a particular link. Of particular interest are density, average speed 
and flow. These measurements are very helpful in understanding the development 
of the incident.  

 
What is particularly useful is that the link being evaluated can be subdivided into 

segments of equal length. By doing this we can track, for example, at what rate the queue is 
growing upstream of the incident, as well as quickly it is dissipating, and also in which way it is 
dissipating.  

In order for VISSIM to calculate the measurements, they must be selected from the 
Evaluation/Files menu.  

5.2.5 Practical Implementation 
Because of the time and labor involved with creating the input network, generating the 

demands and routes, and testing the different ramp closure durations, it may be desired by the 
planner to have an easier way of determining the right strategy.  

One possible way of simplifying the process is to create different network “templates.” 
The idea is to have common highway setups stored as different VISSIM networks with routes 
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and demands already set up. This eliminates the time involved in creating the network, which is 
significant, and provided that enough templates are created, a very wide array of incident 
locations can be modeled. One cannot expect, however, for a template to create as good of an 
approximation as the actual network, so there is an obvious tradeoff.  

Another option for practical implementation is the use of a decision tree, in which 
different factors can be accounted for in order to determine the ramp closure strategy. Factors 
that will affect the decision include:  

• Position of the incident with respect to adjacent on and off ramps  

• LOS of the highway  

• LOS of the adjacent arterials  

• Capacity of adjacent arterials  

• Expected duration of incident  

• Severity of incident  
 
As with the template approach, accuracy will be sacrificed (and thus VISUM-generated 

networks should be used for high-incident corridors), but increased simplicity makes it much 
easier to apply in any location.  
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6.  Implementation Considerations 

6.1 Introduction 
While previous chapters focused on the modeling component of ramp closure for incident 

management, this section discusses several practical issues that will arise in any attempt to 
implement these models. In particular, we discuss specific means of closing a gate, and how this 
procedure might interface with TMC and on-site operations. 

6.2 Access Control Options 
Any sort of ramp closure policy, whether for incident management, congestion relief, 

reversing lanes, or inclement weather, requires some means to inform drivers of the closure and, 
ideally, to physically prevent entry onto the facility. A variety of means exist to accomplish this, 
but the most common is some type of gate that can be opened or closed as needed, although 
certainly other methods exist as well. Unsurprisingly, these methods vary in their cost, 
crashworthiness, effectiveness in preventing ramp entry, speed of response when it is decided 
that a ramp should be closed, and convenience and safety for the operations personnel who must 
open and close the ramps.  

While a considerable amount of research has been performed in this area already, to our 
knowledge no study has considered what types of barrier is most effective for ramp closure as an 
incident management policy. Almost certainly, the best barriers for this purpose are different 
from those which best suit, say, closure due to poor weather conditions, for a variety of reasons. 
First, incident management is an inherently time-sensitive domain, and a speedy response can be 
critical for minimizing freeway delay. Second, some incident response personnel (either 
emergency responders or dedicated incident management teams) will probably be in the vicinity 
of the closed ramps. Third, this closure will generally be unexpected by the traveling public, no 
matter what efforts are expended to inform them in advance. Thus, this differs from regular ramp 
closure used for congestion management. Finally, it is not critical to prevent ramp entry for 
safety reasons, as it is in the case of reversible lanes where violators would drive into opposing 
traffic.  

Thus, there is a need to consider the variety of options available specifically in the 
context of ramp closure due to incidents. This section first describes some of the many options 
available, along with cost estimates, and factors that either suggests that a particular ramp closure 
device is favorable or unfavorable for this project. Following this, a few case studies are 
described in detail, and a list of firms that manufacture barrier devices is given. Finally, we 
summarize the section by reiterating the key results.  

6.2.1 Types of Barriers 
Experience has shown that some type of physical barrier is necessary to prevent vehicles 

from entering a freeway; simply providing a sign is not enough to discourage violation. Physical 
barriers can be classified according to whether their operation is manual or automated; manual 
barriers can further be classified into portable and fixed categories. Finally, as a last resort, 
personnel can be used to block the ramp by performing on-site traffic control, although this is 
undesirable for a number of reasons described below.  
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Each of these types of barrier is discussed in turn, along with cost estimates; much of the 
information in this section is derived from the FHWA Ramp Management and Control 
Handbook [35], and two technical reports written for the South Dakota Department of 
Transportation (SDDOT) [36] and the Minnesota Department of Transportation (MnDOT) [37].  

Portable Manual Barriers 

Several types of portable barriers exist, including traffic cones, rods, barrels, or other 
movable gates, often made of plastic and anchored using some ballast material such as sand or 
gravel. Cones and rods are perhaps the easiest to move, although they are less visible and do not 
present as formidable a barrier as barrels or larger plastic gates. Common to all of these is the 
need to unload them from a truck or other vehicle and then install them, which may be time or 
labor-intensive. This is especially significant if one anticipates that a particular ramp will be 
closed frequently. Nevertheless, this is the least expensive method of closing a ramp. SDDOT 
estimates that the cost of the equipment necessary to close a ramp is roughly $2,500, and 
certainly this can be moved from ramp to ramp as necessary. However, this estimate excludes the 
labor and transportation costs needed to put these barriers in place. One type of portable manual 
barrier is depicted in Figure 6.1.  

 
Figure 6.1: A portable manual barrier. 

 Fixed Manual Barriers 
These barriers often take the form of gates which can swing either horizontally or 

vertically. This type of barrier is often used in cases of weather closures. As might be expected, 
this type of barrier is more practical to use if routine closures are expected for a particular ramp. 
Still, their operation requires personnel to drive to the ramp site and open or close the gate 
manually. This may be particularly difficult with horizontal swing gates during times of 
inclement weather, as snow may obstruct the path of the gate, or heavy wind may make it 
difficult to open or close. Also, there are generally greater safety risks involved, as these 
personnel may be exposed to high-speed traffic while operating these gates. An additional safety 
consideration is that this type of gate presents a permanent fixed-object safety hazard near this 
ramp, although this can be mitigated by proper placement and warning devices. At the same 
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time, there are certain advantages to manual operation, as having a person on-site to open or 
close the gate provides greater assurance that the gate is properly opened or closed, and that 
malfunctions can be easier diagnosed on the spot.  

A basic vertical swing gate costs approximately $15,000, although the total installation 
cost (including labor) is roughly twice this.  

 

 
Figure 6.2: An automatic manual barrier. 

 Automatic Barriers 
Automated barriers are similar to those described in the previous section, in that they 

usually take the form of horizontal or vertical swing gates which are permanently installed at a 
fixed location. The prime difference is seen in their ease of operation, as they can be controlled 
remotely. The most sophisticated (and most expensive) systems allow operation from a distant 
TMC using Internet-based communication protocols. Simpler installations allow operation from 
a remote-control device; with a good line of sight, some remote control devices can function up 
to distances of two or three miles. Although automatic gates are typically safer because gate 
operators are not as exposed to traffic, diagnosis and repair of a malfunctioning gate may take 
additional time as the appropriate personnel must be dispatched to that location. Alternately, 
successful operation of the gate can be confirmed by closed-circuit television (CCTV) cameras 
in the area.  

There is a wide range in price estimates for automatic gates, depending on the desired 
degree of automation, type of control, and existing long-range communications infrastructure; 
SDDOT identified the cost of various installations as ranging from $34,000 to $200,000. 
MnDOT estimates the cost of the gate itself as between $8,000 and $16,000, with the supporting 
communication equipment costing an additional $6,000 to $45,000.  

On-Site Personnel 
As a stopgap measure, ramps can be closed by physically placing police or agency 

personnel in the ramp and guiding traffic to alternate routes. Although this method requires no 
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fixed gate installation or prior investment in ramp closure mechanisms, using personnel in this 
manner should only be done as a last resort or as a stopgap measure, for several reasons.  

First, it is unsafe and exposes personnel to great risks, especially at high-speed ramps. 
Second, it is an inefficient use of these personnel, whose specific training can almost certainly be 
put to better use, especially when there is a major incident in the vicinity. Third, dispatching 
personnel to each location that needs to be closed requires considerable time compared to 
automated gate operation.  

Nevertheless, this option always remains, for instance, if a severe incident occurs in an 
area where no fixed gates are installed, and there are no available portable gates.  

6.2.2 Case Studies 
Multiple agencies have installed gates to close ramps in their jurisdictions. These 

installations represent a variety of gate types and a variety of purposes for ramp closure. 
Particular attention is paid to studies performed by MnDOT and SDDOT, as these agencies have 
performed detailed evaluations of the available options, and fully documented their decision-
making process in several technical reports [36] [37] [38] [39]. Following these, a brief 
description of current ramp closure operations in the Seattle metropolitan area is discussed as a 
third case study.  

Minnesota 
In 2001, the Minnesota Department of Transportation investigated options to replace a 

fixed manual gate with some type of automated barrier at the I-90/US-71 interchange near 
Jackson, Minnesota, ideally controllable from an MnDOT office eighteen miles away. The 
primary function of this gate is to close this onramp in cases of inclement weather.  

Several options were considered, including a conventional automated swing gate; a series 
of signs which informed drivers of the closure but provide no physical barrier to entry; a 
“virtual” gate using laser or holographic technology to project an image of a barrier without 
physically preventing entry; inflatable gates or nets that present a lesser safety risk should a 
driver collide with the barrier; and on-site personnel. Of these, the latter was immediately ruled 
out as infeasible. Virtual gates were also ruled out as cost-prohibitive and inflatable gates were 
found to be unreliable in the poor weather conditions when the ramp would be closed.  

After further considerations, a conventional automated gate was selected as the preferred 
alternative, with communication provided by wireless technology. Several other communication 
options were discussed, including fiber optic cable, conventional telephone lines, and long-haul 
microwave transmission. A secondary recommendation was a “soft closure” strategy where 
variable message signs announce the ramp closure and violation penalties without presenting a 
physical obstruction to drivers.  

South Dakota 
Like Minnesota, South Dakota can experience winter weather severe enough to warrant 

freeway closure, and a system of freeway gates is in place to control access in these cases. On 
average, each gate is operated once every two to three years; thus they do not anticipate that 
these gates will be used frequently.  

As SDDOT was considering the replacement of manual swing gates with automated 
ones, safety was a prime consideration. In particular, SDDOT was interested in the 
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crashworthiness of different gate types, and specific recommendations were also made to 
improve safety for existing manual gate operation.  

In the end, SDDOT decided to pursue a policy of replacing manual gates on a case-by-
case basis, stating that the variety of gate types and the variability in the associated costs 
prohibits drawing any conclusions that can be applied statewide.  

Seattle 
The Washington State Department of Transportation operates gates on reversible lanes 

located on I-5 and I-90 in the Seattle metropolitan area. These gates control access to the 
reversible lanes from both the mainline and several on- and offramps depending on the direction 
of flow. Horizontal swing gates are used in all cases, augmented by variable message signs 
(VMS) announcing whether a particular ramp is open or closed.  

These gates must be operated by an on-site employee, although limited automation 
eliminates the need for this employee to step into the roadway to close the gate. When an 
operator opens or closes a gate, the appropriate VMSs are contacted and switch messages to 
represent the new state. When possible, the Seattle traffic management center verifies that the 
VMSs have successfully changed using closed circuit television cameras.  

In this case, verification is extremely important because a vehicle entering a closed ramp 
would enter a traffic stream moving in the opposite direction. Thus, multiple barriers are often 
employed in combination with a net at the highest-volume ramps, and a one-hour closure of the 
reversible lanes is provided whenever the direction changes. This hour allows time for the 
operator to change all of the gates and verify that the lanes are vacated before opening them in 
the opposite direction.  

6.2.3 List of Firms Providing Gate Technology 
This section provides a partial list of companies that provide barrier gate technologies to 

state agencies, or have done so in the past. Some agencies also choose to manufacture gates in-
house. This list is not exclusive, and no recommendation is made to TxDOT as to the merits of 
any firm on this list.  

• AMTECH  

• B&B Gates & Barriers  

• Eagle Traffic Control Systems  

• Hy-Security Gate & Barriers  

• Magnetic Automation Corp.  

• New York Gate Manufacturing  

• Roadway Manufacturing  

• SAFETRAN Systems  

• WAECorp  

• Winter/Alpine Engineering Corp.  
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6.2.4 Summary of Gate Operation Requirements 

The variety of methods for closing a gate indicates that any particular installation must be 
tailored to the specific application. In the context of ramp closure as an incident management 
strategy, several factors are apparent. First, for this purpose, the primary intent ramp closure is to 
improve operations, not to prevent entry due to safety reasons. Unlike ramp closure for inclement 
weather or for reversible lanes, an errant vehicle entering the freeway does not pose a significant 
safety risk. Second, incident management requires a swift response for maximum effectiveness. 
Third, it is impossible to predict when and where an incident is going to occur. Thus any ramp 
closure decision will likely be unexpected by the public. Successful implementation of ramp 
closure for incident management should take all of these into account when choosing the best 
method for closing the ramp.  

6.3 Interaction with TMC and On-Site Operations 
While the focus of this project has been on the methodological development needed to 

enact effective ramp closure policies, this can only be done by considering the context in which 
implementation may eventually occur. As with any incident management policy, this will require 
the cooperation of TMC staff and on-site responders. In particular, as these on-site responders 
are currently responsible for making all ramp closure decisions, it is important to incorporate 
them and their experience into any policies which are developed. This section describes one 
possible framework for putting these models into use.  

Recall that the very first step is to prescreen incidents by predicting their severity to see if 
closure is warranted at all. This requires information about the incident; fortunately, this 
information is already collected by many TMCs as part of their routine operations (obtained from 
dispatchers or visually from CCTV cameras), and some TMCs train operators to enter this data 
into computer systems as it is received or updated. This information could then be input into 
NBIDS or a similar system very easily, possibly even completely transparently so that operators 
do not need to perform any additional tasks to do this. Once the incident duration has been 
predicted, it would again be a simple matter to combine this result with real-time traffic counts 
from loop detectors to predict incident delay.  

If the incident delay estimate indicates that ramp closure should be considered, the Phase 
I/Phase II models should be run. (An alternate form of prescreening can occur if an on-site 
responder feels that ramp closure would be beneficial; such a call to the TMC could also trigger 
execution of these models.) At this point, an operator would run a computer program to conduct 
the Phase I analysis, selecting several ramps in the vicinity of the incident for possible closure. 
This phase should require less than ten seconds for networks of typical size, allowing a swift 
response. Typically, a response is needed within approximately sixty seconds for the result to be 
of much use, especially if this analysis is performed at the request of an on-site responder. 

If closure is warranted, it should begin immediately. The specific details of closure 
depend on the method of access control (Section 1) — automated gates should be supervised by 
CCTV to ensure safety, and manual gates will temporarily require diversion of an on-site 
responder from the incident scene itself, or the dispatching of another responder to close the 
ramp. These considerations should be accounted for when enacting any ramp closures.  

Simultaneously, operators will begin the Phase II analysis. Depending on the level of 
automation of this phase and the availability of a suitable subnetwork, this may be as simple as 
entering the incident’s duration, and allowing an algorithm to perform the simulations 
automatically. Several simulations will be run (the exact number depending on the available time 
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for this phase and the time required for the simulator to evaluate a given scenario), and the 
optimal closure durations relayed to the on-site responders. At the same time, this latter decision 
of when to reopen the ramps should ultimately be controlled by the on-site responders, who have 
the best indication of when the incident will actually clear.  

One additional caveat bears mentioning, namely, that ramp closure may make it more 
difficult for emergency vehicles to access the incident site, especially if a large number of ramps 
are being closed. While this may be offset somewhat by improved freeway operations, this 
consideration should be kept in mind when choosing the optimal ramp closure policy and the 
type of gate or barriers that will actually control ramp access. 

6.4 Combination with Other Ramp Treatment Strategies 
Certainly complete ramp closure is not the only ramp treatment strategy that can be 

applied in incident management. In particular, ramp metering can be considered as a milder form 
of closure: instead of closing the ramp entirely, metering restricts the flow of vehicles merging 
onto the freeway through the use of a signalization device. Ramp metering has been applied in 
many areas throughout the country. 

The interaction between ramp closure and ramp metering has not been explicitly 
considered in previous literature; however, many adaptive ramp metering algorithms (such as 
FUZY [40], used by the Washington State Department of Transportation in the Seattle area) are 
designed to respond to changing conditions in real time without requiring the constant oversight 
of an operator, and will adjust access rates based on freeway conditions and queue length. 

Another option is to allow freeway access to certain vehicles, such as high occupancy 
vehicles (HOVs), transit, or emergency vehicles. The advantages of allowing transit vehicles to 
follow the predetermined route, or of allowing emergency access, should be clear. Allowing 
HOV access is less clear; in particular, because these drivers know that there is an accident 
downstream, many of these may choose a different route even if not denied access explicitly. 
Additionally, allowing some vehicles access may create enforcement difficulties with 
unauthorized vehicles bypassing the gate in the restricted lane. 

Evaluating these options should be performed in Phase II in conjunction with the 
dynamic analysis, as microsimulators can typically model these features. For instance, in 
VISSIM, a traffic signal can be used to represent a ramp meter, and to control access to the 
freeway dynamically. 

Several of these options were tested in combination, applied to a fictitious hour-long 
incident on a ten-lane freeway facility. A three-hour analysis period was used, with the first hour 
a “warm up” intended to allow the network to reach a steady-state condition. At this point, a 
severe incident occurs, blocking three of the five lanes in one direction, which lasts for an 
additional hour. Freeway density was compared for each of these scenarios, as shown in Figure 
6.3. 

From these simulations, it appears that ramp metering does not substantially affect 
freeway density while the incident is in progress, but leads to a significant reduction in 
congestion after the incident clears, effectively speeding the recovery process. This is logical, 
because ramp metering is most effective when merging traffic, and not a downstream bottleneck, 
is the primary cause of congestion.  

Even allowing a generous proportion of HOVs (15%), allowing HOV access does not 
appear to affect freeway density; thus, based on this initial analysis, any benefit from allowing 
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HOV access would probably be outweighed by the additional enforcement difficulties such a 
policy would create. 

 

Average Freeway Density (All Vehicle Types)

0

10

20

30

40

50

60

Status quo Base case:
incident

Scen 1: close
ramp

Scen 2: close
ramp & HOV

Scen 3: close
ramp & HOV &

ramp meter

Scen 4: close
ramp +10 min

Scen 5: close
ramp -10 min

A
vg

 D
en

si
ty

 (v
eh

/m
ile

)

Avg density 2nd hour (all vehicle types)
Avg density 3rd hour (all vehicle types)

 
Figure 6.3: Comparing ramp metering and HOV ramp treatment strategies. 
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7.  Summary and Conclusions 

In this research, we have developed a three-step process for answering the basic questions 
related to ramp closure as an incident management policy:  

1. Is the incident severe enough to consider ramp closure?  

2. If so, which ramps (if any) should be closed?  

3. If any ramps are closed, for how long should they remain closed?  
 
Towards the first end, we developed novel incident duration and delay prediction models 

that can account for the inherent uncertainty and limited information in incident management; 
towards the second, we developed a Phase I model built on traffic equilibrium principles. 
Combined, these first two steps require less than thirty seconds, allowing a rapid response. The 
last question is addressed by a Phase II model employing microsimulation. We also discuss 
several options for actually closing the gates, and propose a method of integrating these models 
into an actual incident management plan.  

Throughout this process, it is important to include the judgment and experience of trained 
TMC operators and on-site responders in this process, because no computer model or formula is 
sophisticated enough to replace this. Nevertheless, these models can supplement human 
knowledge and experience, leading to improved incident management and, in the end, to 
improved freeway performance.  
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Appendix A: NBIDS Documentation 

A.1 Introduction 
Incidents cause tremendous delay in urban areas throughout the nation. In fact, some 

studies indicate that this type of non-recurring event creates the majority of congestion on 
freeways [1]. As such, effective incident management is crucial for mitigating the impact of 
these unanticipated events, and for reducing congestion and its associated personal, economic, 
and environmental costs.  

Accordingly, effective incident management techniques have the potential to 
substantially reduce congestion. Some of these techniques, such as dedicated incident response 
vehicles to assist disabled vehicles, or the use of variable message signs and highway advisory 
radio to inform travelers of incidents, can be used in response to nearly all incidents, regardless 
of severity. However, other techniques, such as the temporary lifting of high-occupancy vehicle 
restrictions on lanes to increase capacity, or the closing of upstream freeway onramps, involve 
more operational overhead and are only appropriate for incidents which are expected to have a 
severe impact on the system.  

The key to deciding when to enact this latter class of strategies is to predict how severe 
an incident is while it is still in progress. Ideally, this is done as soon as possible. However, two 
complicating factors make this somewhat more difficult: first, the incident management process 
is characterized by uncertainty, and may behave unexpectedly. Second, new or updated 
information is received at different points in time (such as by updated dispatch information when 
an emergency responder arrives). This latter fact is in direct conflict with the goal of making a 
decision as early as possible.  

Existing methods for predicting incident severity in real time tend to either ignore both of 
these factors for the sake of modeling simplicity, or account for them at the cost of extensive 
calibration and additional assumptions (for a review of such methods, see Section A.3). By using 
a naive Bayesian classifier, described in Section A.2, NBIDS incorporates uncertainty and 
limited information into the prediction process while eschewing unnecessary complications 
sometimes seen in other classifiers.  

NBIDS is designed to predict incident duration (one common measure of severity) in 
real-time, using historical incident data with a minimum of calibration effort. Section A.2 guides 
the reader through the process of creating and initializing an incident database and then using 
this to predict incident durations, using a small example data set. Section A.3 describes the naive 
Bayesian classifier, starting with a brief review of relevant concepts from probability. Sections 
A.4, A.5, and A.6 respectively describe the three steps of creating a database, initializing the 
database, and predicting incident duration in greater detail.  

NBIDS was written using FreeBASIC, an open-source BASIC compiler. All source code 
for this software is provided in Section A.7. 

A.2 Tutorial 
This section guides the reader through the entire process of using this software. 

Predicting incident duration using NBIDS consists of three steps:  

Step 1. Create comma-separated incident database.  
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Step 2. Use NBIDS to initialize the database.  

Step 3. Predict incident duration.  
 
Steps 1 and 2 only need to be performed when using a new incident database. Once the 

database has been created and initialized, incident duration prediction (Step 3) can be performed 
without repeating the first two steps. However, Steps 1 and 2 do need to be repeated whenever 
the database is updated or changes.  

In this example, we consider a small database of only ten incidents. This is far too small 
to use for real prediction, but illustrates the operation of this software nevertheless. Specific 
instructions for the tutorial are printed in boldface, interspersed with brief descriptions of how 
the program works.  

To begin, NBIDS must be installed on the computer. This process is very easy: simply 
create a folder for NBIDS, and copy the nbids.exe file from the CD-ROM. All incident 
databases and related files described in this manual (or a copy of them) should be stored in this 
folder for NBIDS to use.  

Step 1: Create comma-separated incident database 
The initial step involves creating the text file containing the historical incident data which 

will be used to calibrate the Bayesian classifier. For NBIDS, this data consists of a table of 
incidents, their durations, and their characteristics, along with a header row to identify each 
column. The easiest way to prepare this data is to use a spreadsheet or database program; in this 
example, we use Microsoft Excel®.  

For actual applications, there should be a large number of incidents included in the 
database, but for this tutorial, we will only use ten. For each incident, the information we have is 
the incident’s duration, the total number of vehicles involved, the number of heavy trucks 
involved, a numeric code representing the lane that was blocked, and an identification number of 
the emergency responder who arrived on scene.  

Load Excel®, create a new spreadsheet, and enter the data shown in Figure A.1:  
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Figure A.1. Incident data for tutorial. 

For NBIDS to read the data, it must be saved in a comma-separated text format. In this 
format, the above data looks like this:  
 
ID,INC DUR,NUMVEHS,NUMTRX,LANECODE,RESPONDER ID 
1,14,1,0,6,20938471 
2,28,2,0,6,20934578 
3,103,5,1,8,20934578 
4,83,6,0,7,20934578 
5,14,2,0,7,20934112 
6,34,1,1,6,20938471 
7,56,3,1,6,20938101 
8,88,1,0,7,20934578 
9,15,2,0,6,20934112 
10,25,5,1,6,20938471 
 

To convert the data into this form, choose ‘Save As...’ from the ‘File’ menu. In the ‘Save 
as type’ drop-down menu at the bottom of the dialog box, scroll down to ‘CSV (comma-
delimited) (*.csv)’, about one third of the way down. In the ‘File name’ box, type ‘incidents.csv’ 
(Figure A.2). This saves the data in the proper format.  
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Figure A.2. Saving the data as a comma-separated text file. 

Step 2: Use NBIDS to initialize the database 
Once we’ve successfully created the database, the next step is to use NBIDS to generate 

the additional information needed to start predicting incident duration. First, we need to identify 
which column contains the incident durations (in this case, INC DUR). Second, not all of the 
information in the database is relevant; for instance, the incident ID does not affect how long a 
particular incident lasts. Likewise, the ID of the emergency responder probably has only slight 
relation to the incident’s length. In this tutorial, we assume that we’re only interested in using the 
number of vehicles (NUMVEHS) and the number of semitrailer trucks (NUMTRX) to predict 
incident duration. Selecting these fields is the first step in the initialization process.  

Start NBIDS by double-clicking its icon. At the menu, press ‘1’ and type the name of 
the incident database (‘incidents.csv’). (Figure A.3). NBIDS will now display all of the 
column titles, according to the header row, and prompt you to select the column representing 
incident duration. Enter ‘INC DUR’ when asked to enter the title of the duration field. Now, 
you enter the names of the columns which will be used to predict incident duration. Type 
‘NUMVEHS’ and press [ENTER]; type ‘NUMTRX’ and press [ENTER]; and press 
[ENTER] again (a blank entry) to indicate that you’re done. (Figure A.4).  
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Figure A.3. Selecting the incident database for initialization. 

 
Figure A.4. Selecting the relevant columns in the database. 

The second step is to identify the ranges of incident duration we’re interested in. A 
Bayesian classifier works by estimating the probability that the duration of a given incident will 
fall into each of several categories; for instance, 0 to 30 minutes, 31 to 60 minutes, or more than 
60 minutes. In NBIDS, this is done by entering the highest value in each category (called a 
breakpoint), in order: in this case, 30 and 60. The uppermost category is assumed to encompass 
everything greater than the last breakpoint, so even though there are three categories, we only 
need to enter two breakpoints.  
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Enter ‘30’ and ‘60’ when prompted for the duration breakpoints, followed by a 
blank line to indicate that you’re done.  

Finally, we need to specify the breakpoints for each of the data fields we selected — in 
this case, NUMVEHS and NUMTRX. These work in the same way as the duration breakpoints: 
the Bayesian classifier needs to know how values for these fields need to be “grouped.” At one 
extreme, almost all of the values can be treated the same (e.g., for number of vehicles involved, 
one could choose only to differentiate between incidents involving more than one vehicle, and 
those only involving one). At the other extreme, one could choose to distinguish between all 
different numbers of vehicles. In practice, this decision will depend on how much data is 
available, how detailed it is, and on engineering judgment.  

For this example, we will distinguish between incidents involving 1 vehicle, 2 vehicles, 
and more than 2 vehicles; and between those involving no trucks, and those involving at least 
one truck. As with duration, one enters this information into NBIDS by reporting the upper 
breakpoint for each category, and an additional category will be created for everything greater 
than the last entered breakpoint. NBIDS will first prompt you for the breakpoints for 
NUMVEHS. Enter 1, 2, and a blank line. NBIDS will then prompt for the breakpoints for 
NUMTRX. Enter 0, and a blank line.  

At this point, the initialization process is complete (Figure A.5), and NBIDS creates an 
initialization file to save this information. Thus, this process only needs to be done when using a 
database for the first time, or when changing a database’s configuration (for instance, if the 
names of the data fields change, or if you wish to change the breakpoints).  

 

 
Figure A.5. Initialization is complete! 

Step 3: Predict incident duration in real-time 
After finishing the initialization process, NBIDS returns to its menu after waiting for a 

key press. The incident database must now be loaded before predicting incident durations. At the 
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menu, press ‘2’ and type ‘incidents.csv’ to load the database into memory, then press a key 
to return to the menu.  

Now we are ready to predict the duration of an incident whenever one is detected — 
although the process of creating and initializing the database takes some time, this can be done 
offline and ahead of time. The actual prediction itself requires only seconds once the database is 
loaded. Let’s say that we learn of an incident involving one semitrailer truck, perhaps through a 
computer-aided dispatch system. Thus, we know that NUMVEHS and NUMTRX are both equal 
to one.  

Press ‘3’ to predict the duration of this incident. NBIDS will prompt you for the 
values of NUMVEHS and NUMTRX; enter ‘1’ for both of these.  

At this point, NBIDS will ask for the time since the incident occurred. This is an optional 
input that can be used to refine the prediction and account for the time at which our information 
about the incident was learned; however, for this tutorial, we choose not to use this option. Press 
[ENTER] to generate the prediction.  

At this point, NBIDS returns the probability that the incident duration falls into the three 
categories defined in Step 2 (Figure A.6); we see that, based on the historical data, the most 
likely outcome is that the incident lasts between 30 and 60 minutes. Notice that the probabilities 
are positive for all three categories: this reflects the uncertainty involved in the prediction 
process, and the impossibility of calculating incident duration exactly.  

 

 
Figure A.6. Predicted incident duration 

A.3 Prediction Methodology 

This chapter explains the mathematics underlying the prediction model in NBIDS, first 
providing a brief review of the relevant concepts from probability, followed by descriptions of 
the naive Bayesian classifier and its application to incident duration prediction. 

For predicting incident duration, the advantages of the naive Bayesian classifier are 
several; in particular,  
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1. Its operation is simple and intuitive, relying only on basic laws of probability.  

2. It accommodates limited information, as seen in real-world incident management.  

2a. As a corollary, this allows a broader set of model parameters to be used, as the model 
does not require observations for all independent variables.  

3. Being explicitly probabilistic, it reports results in a form better suited for incident 
management policy.  

4. It is robust to outliers.  

5. It can account for information received at varying points in time.  
 
Among the many models that have been proposed for modeling incident duration, the 

Bayesian models are the only ones that have all of these properties. In the research literature, two 
types of Bayesian models—Bayesian networks and naive Bayesian classifiers—have been 
formulated for this purpose. In developing NBIDS, the naive Bayesian classifier was selected 
because it is most straightforward to calibrate and use, and does not require sophisticated 
knowledge of probability on the part of the user.  

Probability Review 
Traditionally, incident duration prediction models attempt to predict the clearance time 

exactly, for instance, using a decision tree or regression analysis. The major disadvantage with 
this approach is that doing this is nearly impossible, and the model outputs are unnecessarily 
precise (a regression model, for example, might predict the clearance time for a particular 
incident to be 25.3 minutes). The reasons why this is difficult are obvious: incident management 
is a very unpredictable process, characterized by limited information, human behavior, and a host 
of other complications.  

This is why probabilistic models are useful: instead of trying to explain away all of the 
uncertain factors to yield a single predicted duration, better results can be obtained by directly 
incorporating the uncertainty into the prediction. Bayesian models do this by estimating the 
probability that an incident’s duration falls into one of several categories (such as “less than 30 
minutes”, “between 30 and 60 minutes”, and “more than 60 minutes.”)  

A probability space is a mathematical construct which includes a set of events, and a 
probability measure indicating how likely each event is. For instance, an event might be “the 
incident lasts less than 30 minutes.” Mathematically, if there are n  different categories of 
incident duration, we can imagine a set of events 1 2 nC C … C, , ,  that, together, contain all possible 
durations for an incident. What we are hoping to find are the probabilities 

1 2Pr( ) Pr( ) ( )nC C …Pr C, ,  which indicate the chance that each of these occurs.  
There are other possible events, too, describing characteristics of the incident other than 

duration: “the incident involves two vehicles”, “the incident blocks the leftmost lane”, and so on. 
These types of events are unknown before the incident starts, but can be observed while the 
incident is still in progress. This is in contrast to duration, which is not observed until the 
incident clears. Thus, the goal of the naive Bayesian classifier is to use these observable events to 
infer the probabilities for the duration events, which cannot be known with certainty while the 
incident is still in progress.  
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Two other notions of probability that are needed for understanding naive Bayesian 
classifiers are independence and conditional probabilities. Independence has an intuitive 
interpretation: two events are independent if the outcome of one has no bearing on the likelihood 
of the other. As examples, two coin flips are independent, because the first flip does not 
influence the second; the high temperature on two successive days is not independent, as one 
day’s weather certainly influences the next. From a mathematical standpoint, if A  and B  are 
independent events, it turns out that the probabilities “multiply”: Pr( ) Pr( ) Pr( )A B A B∩ = , where 
A B∩  means that both A  and B  occur. In the context of incident management, imagine that A  
is the event “the incident involves two vehicles”, and B  is the event “the incident blocks the 
leftmost lane.” If A  and B  are independent, the probability of A B∩  (“the incident involves 
two vehicles and blocks the leftmost lane”) is the product of the probability that the incident 
involves two vehicles, and the probability that the incident blocks the leftmost lane.  

As mentioned above, some events can be observed while the incident is still in progress 
(“the incident blocks the leftmost lane”), while others cannot (the duration is unknown until the 
incident is over). However, the observable events still provide valuable information in helping to 
predict the duration — it is extremely unlikely that an incident involving over a dozen vehicles 
will last less than 15 minutes, for instance. Conditional probabilities are based on exactly this 
principle: some knowledge can provide additional information on other, unknown knowledge. 
This is written in expressions such as 1Pr( )C A| , which is read as “the probability of 1C  given 
B ”, and is interpreted as the likelihood that event 1C  happens, having the additional knowledge 
that B  happens. Keeping with the same example, where A  is “the incident involves two 
vehicles” and 1C  is “the incident lasts less than 30 minutes”, 1Pr( )C A|  is the answer to the 
question “If that two vehicles are involved, what is the probability that the incident lasts less than 
30 minutes.” This is exactly the question that the naive Bayesian classifier seeks to answer.  

A fundamental law of probability relates the conditional probability of two events to the 
probabilities of the events separately:  

Pr( )Pr( )
Pr( )
X YX Y

Y
∩| =  

Another basic relation for conditional probabilities is Bayes’ Theorem  
Pr( ) Pr( )Pr( )

Pr( )
Y Y XX Y

X
|| =  

As described in the next section, this is the basic relationship that underlies the naive 
Bayesian classifier.  

Introduction to Naive Bayesian Classifiers 
In this section, we present the naive Bayesian classifier in its general form, that is, outside 

of the incident duration prediction context. The following section discusses how the classifier 
specifically functions in an incident management framework.  

Like other classifiers, the naive Bayesian classifier attempts to determine which category 
(from a set 1 2 nC C … C, , ,  of n  categories) best suits a particular object. Bayesian classifiers have 
been applied in many domains: one common use is as an e-mail spam filter (where the classifier 
tries to guess whether an e-mail is spam or not), or in other document classification problems. 
Still other uses include medical diagnosis and systems performance management.  
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In all of these cases, the categorization is based on observable attributes of the object in 
question (such as words in an email, or symptoms in a patient), which are denoted 1 2 mX X … X, , , . 
Thus, we want to calculate the conditional probability that the object belongs to each of the 
different categories, given the attributes; that is, the probabilities 1 2Pr( )i mC X X … X| , , ,  for each 
category i . Using Bayes’ Theorem as presented in Section 1, this probability can be written as  

1 2
1 2

1 2

Pr( ) Pr( )Pr( )
Pr( )

i m i
i m

m

C X X … X CC X X … X
X X … X

, , , || , , , =
, , ,

 

 
This classifier is naive in the sense that it makes the strong assumption that the attributes 

are mutually conditionally independent; that is, the conditional probabilities of 1 2C C, , etc. given 
the value of some attribute is independent of the values of all other attributes. Under this 
assumption, the previous equation simplifies to  

1
1 2

1 2

Pr( ) Pr( )
Pr( )

Pr( )

m
i j ij

i m
m

C X C
C X X … X

X X … X
=

|
| , , , =

, , ,
∏

 

for each category iC . Because the denominator will be the same for all categories, we 
only need to calculate the numerator for each category, choosing the optimal category 

1
argmaxPr( ) Pr( )m

i j ij
C C X C∗

=
∈ |∏ .  

Thus, the only information we need to calculate the necessary probabilities are (1) the 
unconditional or a priori probability that the object belongs to each category and (2) the 
conditional probability of observing the attributes we saw, given that the object belongs to each 
category. Notice how the conditional expression is reversed: we are interested in the probability 
of the object belonging to a particular category, given a set of observable attributes. Bayes’ 
Theorem relates this to the probability of observing particular attributes, given that the object 
belongs to a certain category. Because of the mutual conditional independence assumption, 
gathering this data becomes an almost trivial problem, given enough historical data to estimate 
these probabilities. In fact, NBIDS calculates these probabilities automatically when loading a 
file, reducing the time needed to evaluate the Bayesian expressions to almost zero when an 
incident is in progress.  

Application to Incident Duration Prediction 
As might be inferred from the previous two sections, in incident duration, the categories 

iC  represent different ranges of incident duration, and the attributes X represent observable 
incident characteristics, such as the number of vehicles involved or the number of emergency 
responders present. It is important to distinguish that these X  values are events, not just specific 
numbers. For instance, although the set of potential attributes could be “one vehicle is involved,” 
“two vehicles are involved,” and so on, it is also possible to aggregate some of these together: 
“one or two vehicles are involved,” “more than two vehicles are involved.”  

In practice, some aggregation is desirable, because the accuracy of the classifier depends 
on the amount of data available to estimate the probabilities Pr( )j iX C| . As an example, 
incidents involving thirty or thirty-one vehicles are quite rare; in fact, there may not even be any 
incidents involving exactly these numbers of incidents in the entire database. However, in 
practical terms, the difference between an incident involving thirty vehicles, and another 
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involving thirty-one, is small, so it makes sense to combine them to increase the amount of data 
for calibration. In fact, using this logic it probably makes sense to group all incidents involving 
sufficiently many vehicles (perhaps seven or eight) into one attribute. Of course, taken to an 
extreme, aggregation renders the classifier useless, as it will be difficult to distinguish one 
incident from any other if the attributes are too broad. This issue is discussed in greater detail in 
Section A.6.  

Thus, a reasonable middle ground must be found, with enough aggregation to ensure a 
useful amount of data for each attribute, but not enough to restrict the predictive power of the 
classifier. This is the main task in setting up a Bayesian classifier for incident duration 
prediction, and depends on the quantity of data available, engineering judgment, and many other 
factors.  

Unlike some of the other applications of Bayesian classifiers, the incident management 
process is “dynamic” in that information is received at different points in time. Presumably, this 
should be accounted for in some way. For instance, if we know that the incident has already 
lasted 40 minutes, the probability that it will last, say, less than 30 minutes should be zero.  

This can easily be done by adding an additional attribute T , indicating that the incident 
has lasted at least T  minutes. T  should be treated differently than the other attributes, because 
applying the mutual conditional independence assumption here is meaningless. Still, it is an easy 
matter to incorporate it into the classifier, by calculating the conditional probability of an 
incident’s duration belonging to a certain category as  

1
1 2

1 2

Pr( ) Pr( )
Pr( )
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This formulation is flexible in that it can update the most probable category at any time 

(such as when new information is received); however, it is not without its drawbacks. First, the 
number of parameters needed grows substantially (multiplied by the number of possible values 
of T ). Although this is not a major obstacle for NBIDS, the previous formulation can be 
completely and succinctly summarized in a single table, which is useful if one wishes to make 
qualitative statements about the impact of various attributes. Second, if the current time is large, 
there may be few incidents whose duration is greater than T , and the accuracy of the conditional 
probabilities may suffer due to a small sample size. Nevertheless, the ability to accommodate 
new information is of importance, and Boyles et al. [41] found that including the current time 
generally improves the predictive ability of the classifier.  

As mentioned at the start of this chapter, one of the biggest advantages of the naive 
Bayesian classifier for incident duration prediction is the ability to account for incomplete 
information: if an attribute is not observed, it plays no role in the probability calculations. For 
example, if the number of vehicles is unknown, the attributes representing “X number of 
vehicles” will simply be ignored. Other types of models (such as those based on linear 
regression), require some input for every variable used for calibration, which is a severe 
restriction for this particular application.  

Creating an Incident Database 
This chapter describes the file format that the incident database needs to be stored in. For 

the example in the tutorial (see Section A.2), the data was prepared in Microsoft Excel®, 
although most spreadsheet software can also be used. The specific requirement is that the 
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program be able to save a spreadsheet as a comma-separated value (CSV) text file, as described 
below. It is also possible to create this file directly, if the data is already in CSV format, or by 
typing the file directly using a text editor (although this latter option is usually too tedious for 
large data sets).  

Incident Database File Format 
In NBIDS, the incident database consists of a large table, with one row for each historical 

incident, and a header row at the top to indicate the title of each of the columns. Typically a 
spreadsheet program is the most efficient way to manage these files.  

Often, the data set will be obtained from another source, and contain irrelevant columns. 
For example, the data may include columns indicating the geographic location of the incident, 
the operator responsible for logging the incident, a general comment field, and so on. It is 
perfectly fine to leave these in the database; during the initialization process (see Sections A.2 
and A.6), you select which columns to use.  

This table or spreadsheet must satisfy the following conditions:  

• The spreadsheet must solely consist of the incident table  

• Every row in the table must have the same number of columns  

• The first row in the table must be the header, indicating the title of each column.  

• No column name can be left blank or duplicated. (Blank columns should be deleted 
before converting to CSV format).  

• No rows can be left blank.  

• One column must indicate the duration of each incident.  
 
Depending on the data set, some preprocessing may be necessary to satisfy the above 

conditions. Two additional qualifications apply to any columns which will be used to predict 
incident duration.  

• Every data cell must consist of an integer (whole number) between 0 and 65,535.  

• Any blank cell will be treated as if it were 0.  
 
Non-integer numbers need to be rounded to an integer, and text entries are not allowable. 

For cases where the column represents an alphabetic code (e.g., “RS” for Right Shoulder, “RL” 
for Right Lane, and so on), one should replace this with numeric values (“0” for Right Shoulder, 
“1” for Right Lane, etc.). Most spreadsheet programs have find-and-replace functions that enable 
this to be done with relatively little effort. Note that this restriction only applies to columns 
which are to be used in the classifier. A comment field, for instance, which will not be used to 
predict incident duration is not subject to this requirement.  

CSV Files 
Any spreadsheet program can be used to enter or import the historical incident data, as 

long as it can then export the data in CSV format. A CSV file is essentially a table stored in text 
format, where the commas indicate the division between columns. For instance,  
TITLE 1 TITLE 2 TITLE 3 Data 1 Data 2 Result 1 Data 3 Data 4 Result 2  
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is expressed in CSV format as  
TITLE 1,TITLE 2,TITLE 3 Data 1,Data 2,Result 1 Data 3,Data 4,Result 2  

Note that there is no space following the commas: the text in each cell consists of every 
character between successive commas. Because commas define the column breaks, one cannot 
include a comma in a cell without enclosing it in quotes "like,this". Entering the text 
like,this will count like and this as separate entries. Most spreadsheet programs do this 
automatically, but you need to be aware of this if editing or entering data manually.  

A.4 Initializing an Incident Database 

This chapter describes the steps necessary to initialize the database in greater detail (item 
‘1’ on the main menu of NBIDS). This is the process in which you specify what information the 
classifier will use to predict incident duration. There are two main steps involved here:  

1. Identify the fields you want NBIDS to use  

2. Choose the appropriate breakpoints to define the attributes  
 
After accomplishing these, NBIDS creates an initialization file with the same name as the 

database, with the .ini extension. This saves the configuration, so you do not need to repeat 
this process every time you load the database. You only need to re-initialize the database if there 
is a change in the fields you are using, or in your definitions of the attributes. You may update 
the data in the database itself (for instance, adding new incidents to the spreadsheet over time), 
while continuing to use the existing configuration.  

NBIDS needs to know which column in the database represents incident duration, and 
which columns define the observable attributes (number of vehicles, location of incident, etc.) As 
mentioned in Section A.3, only numeric data can be used for this purpose; if you wish to include 
a text field, you must convert it to a numeric form.  

The next, slightly more complicated, step is to define the attributes. To do this, you need 
to decide how the numeric fields should be “grouped.” For instance, you might want to 
distinguish between incidents involving one vehicle, two vehicles, and three vehicles; but the 
difference between incidents involving four, five, or six vehicles is small enough that you want 
to treat them the same. The advantage of careful grouping is that the classifier works best when 
there are a substantial number of incidents showing each attribute. Even though there may be few 
incidents involving four, five, and six vehicles, by combining these into one category the sample 
size is increased.  

Other possible groupings are shown in Figure A.7, where the parentheses indicate how 
the number of vehicles are grouped. The topmost row indicates that the exact number of vehicles 
involved is always important. This may be feasible if there’s a large body of historical incidents 
to draw from, but also runs the risk of overcalibration — especially for severe incidents 
involving when more than ten or fifteen vehicles, the impact of one more vehicle is probably 
slight, and it might be better to combine them. The second row describes the scenario in the 
previous paragraph, in which four possible attributes are derived from the number of vehicles: 
“one vehicle involved,” “two vehicles involved,” “three vehicles involved,” and “four or more 
vehicles involved.” The third row simplifies still further: “one vehicle involved,” “two or three 
vehicles involved”, “four or more vehicles involved.” The fourth row only distinguishes between 
two cases: “one or two vehicles involved,” “three or more vehicles involved.” The latter is 
probably too broad, and too much detail is lost in the aggregation. Other fields might suggest 
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different aggregation. For instance, “number of semitrailer trucks involved” might be grouped 
(0) (12345...), distinguishing “no trucks involved” from “at least one truck involved.”  

 
(1) (2) (3) (4) (5) (6) (7) (8) ... (1) (2) (3) (45678 ... (1) (23) (45678 ... (12) (345678 ...  

Figure A.7. Possible groupings for number of vehicles involved 

NBIDS identifies these groupings by the highest number within each group. So, (12) 
(345678...) is identified by 2; (1) (23) (45678...) is identified by 1, 3, and so on. The grouping in 
the to prow of Figure A.7 is identified by 1, 2, 3, .... These numbers are called breakpoints. Note 
that no number is specified for the highest group; it is assumed that all values of the field above 
the largest breakpoint are grouped together.  

This same system of identification works even when the values of the field do not have a 
direct physical interpretation. For instance, it is common to see numeric codes indicate the lanes 
blocked by the incident, where each number represents a different lane or combination of lanes. 
In such cases, every number indicates a different situation, so each group should consist of a 
single number, as in the top row of Figure A.7.  

It is these breakpoints which are entered into NBIDS during the initialization process. For 
each field selected for the database (including the incident duration field), you will be prompted 
for the breakpoints. When finished entering the breakpoints for a field, enter a blank line to move 
to the next field.  

A.5 Predicting Incident Duration 

Once a database has been initialized, actually predicting the duration of incidents is 
extremely simple. Upon starting NBIDS, you must load an initialized database before predicting 
incident durations. (An error message is printed if no initialization file is found.) After loading 
the database, press ‘3’ at the main menu to predict the duration of an incident.  

You will be prompted for each of the fields in turn; any unknown information should be 
left blank. Finally, if you wish to use the current time to refine the prediction, you will be 
prompted to enter the time since the incident occurred after entering information for each field. 
You may choose not to use this feature by simply pressing [ENTER] when prompted for the 
time.  

After obtaining this information, NBIDS will display the calculated probabilities for each 
of the different categories of incident duration.  

A.6 Source Code 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
'NBIDS: Naive Bayesian Incident Duration Prediction Software' 
'                              ' 
'   Prepared for Texas Department of Transportation   ' 
'    Research Project 0-5422, Deliverabable P2      ' 
'                              ' 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
 
' ---------------------------- 
' Definitions and declarations 
' ---------------------------- 
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const ERRCODE_FILENOTFOUND = 2 
const UINTEGERINFINITY = 4294967295 
 
dim shared NumIncidents as uinteger 
dim shared NumIncidentFields as ushort 
dim shared NumFields as ushort 
dim shared MaxBreaks as ushort 
 
const Duration = 0  'field index for incident duration 
const BLANK = 255  'value used for unknown data 
 
dim shared DBFile as string 
dim shared INIFile as string 
 
declare sub ReadIncidentDatabase(DBFile as string, FieldName() as 
  string, NumBreaks() as ushort, IncidentDB() as ushort, FieldBreaks() 
  as uinteger, BayesianProb() as double, BaseProb() as double) 
declare sub IncidentPredict(FieldName() as string, NumBreaks() as ushort, 
  IncidentDB() as ushort, FieldBreaks() as uinteger, BayesianProb() as double, 
  BaseProb() as double) 
declare sub InitializeIncidentDatabase(DBFile as string) 
declare sub FatalError(Message as string) 
 
 
 
' --------- 
' Main Loop 
' --------- 
 
redim FieldName(1) as string, NumBreaks(1) as ushort, IncidentDB(1, 1) as 
ushort, 
  FieldBreaks(1, 1) as uinteger, BayesianProb(1, 1, 1) as double, BaseProb(1) 
  as double 
dim as string a, InpStr 
dim as string Loaded = "" 
do 
  cls 
  a = inkey$ 'clear keyboard buffer 
  do 
   print "Naive Bayesian Incident Duration Prediction" 
   print "----- -------- -------- -------- ----------" 
   print 
   print "1. Initialize incident database." 
   print "2. Load incident database." 
   print "3. Predict incident duration." 
   print 
   print "Q. Quit." 
   print 
   if len(Loaded) > 0 then print "File loaded: "; Loaded 
   a = input$(1) 
  loop until len(a) > 0 
  select case a 
  case "1" 
   print 
   print 
   input "Enter name of incident database: ", InpStr 
   InitializeIncidentDatabase InpStr 
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  case "2" 
   print 
   print 
   input "Enter name of incident database: ", InpStr 
   ReadIncidentDatabase InpStr, FieldName(), NumBreaks(), IncidentDB(), 
     FieldBreaks(), BayesianProb(), BaseProb() 
   Loaded = InpStr 
  case "3" 
   if len(Loaded) > 0 then  
     IncidentPredict FieldName(), NumBreaks(), IncidentDB(), FieldBreaks(), 
      BayesianProb(), BaseProb() 
   else 
     print 
     print 
     print "You must load a file first!" 
   end if 
  case "q", "Q" 
   end 
  end select 
loop 
    
    
    
 
'-------------------------------------------------------------- 
'ReadIncidentDatabase: Loads and processes an incident database 
'-------------------------------------------------------------- 
 
sub ReadIncidentDatabase(DBFile as string, FieldName() as string, NumBreaks() 
as 
  ushort, IncidentDB() as ushort, FieldBreaks() as uinteger, BayesianProb() 
  as double, BaseProb() as double) 
   
  dim INIFile as string 
  INIFile = left$(DBFile, instr(DBFile,".") - 1) + ".ini" 
   
  '****** STEP 1. Open initialization file 
  print "Opening initialization file..."; 
  if open(INIFile for input as #1) = ERRCODE_FILENOTFOUND then 
   print "No initialization file exists for this database!" 
   sleep 
   exit sub 
  end if 
  dim i as uinteger, j as uinteger, k as uinteger 
      
  input #1, NumIncidents, NumFields, NumIncidentFields, MaxBreaks 
   
  'Read field names & numbers of breaks for processing incident database 
  redim FieldName(0 to NumIncidentFields) as string 
  redim FieldNumber(0 to NumIncidentFields) as uinteger 
  redim IncidentDB(1 to NumIncidents, 0 to NumIncidentFields) as ushort 
  redim NumBreaks(0 to NumIncidentFields) as ushort 
  redim FieldBreaks(0 to NumIncidentFields, 1 to MaxBreaks) as uinteger 
  for i = 0 to NumIncidentFields 
   input #1, FieldName(i), NumBreaks(i) 
  next 
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  'Finally read the breaks themselves 
  for i = 0 to NumIncidentFields 
   for j = 1 to NumBreaks(i) 
     input #1, FieldBreaks(i, j) 
   next 
  next 
   
  close #1 
  print "Done." 
   
   
  '***** STEP 2. Read incident database 
 
   
  print "Processing incident database..."; 
  if open(DBFile for input as #1) = ERRCODE_FILENOTFOUND then 
   print "Incident file not found!" 
   sleep 
   exit sub 
  end if   
  dim Dummy as string 
 
  'First process header 
  for i = 1 to NumFields 
   input #1, Dummy 
   for j = 0 to NumIncidentFields 
     if FieldName(j) = Dummy then FieldNumber(j) = i 
   next 
  next 
  'Now process file one field at a time 
  for i = 1 to NumIncidents 
   for j = 1 to NumFields 
     input #1, Dummy 
     for k = 0 to NumIncidentFields 
      if FieldNumber(k) = j then IncidentDB(i, k) = val(Dummy) 
     next 
   next 
  next 
  close #1 
  print "Done." 
   
   
  '***** STEP 3. Calculate Bayesian probabilities 
  print "Calculating Bayesian parameters..."; 
  redim BayesianProb(1 to NumBreaks(0), 1 to NumIncidentFields, 1 to 
MaxBreaks) 
   as double 
  redim BaseProb(1 to NumBreaks(0)) as double 
  redim IncidentCount(1 to NumBreaks(0)) as uinteger 
  dim DurationBin as ushort, FieldBin as ushort 
  for i = 1 to NumIncidents 
   'Find the right bin for incident duration 
   DurationBin = 0 
   do 
     DurationBin += 1 
   loop until FieldBreaks(Duration, DurationBin) >= IncidentDB(i, Duration) 
   IncidentCount(DurationBin) += 1 
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   'Now go through each field, and increment the correct BayesianProb 
   for j = 1 to NumIncidentFields 
     FieldBin = 0 
     do 
      FieldBin += 1 
     loop until FieldBreaks(j, FieldBin) >= IncidentDB(i, j) 
     BayesianProb(DurationBin, j, FieldBin) += 1 
   next 
  next 
  ' Normalize 
  for i = 1 to NumBreaks(Duration) 
   BaseProb(i) = IncidentCount(i) / NumIncidents 
   for j = 1 to NumIncidentFields 
     for k = 1 to MaxBreaks 
      BayesianProb(i, j, k) /= IncidentCount(i) 
     next 
   next 
  next 
  print "Done." 
  print "File loaded successfully! Press a key to return to menu." 
  sleep 
   
end sub 
 
 
 
 
'----------------------------------------------------------------------- 
'IncidentPredict: Prompts for incident information and predicts duration 
'----------------------------------------------------------------------- 
 
sub IncidentPredict(FieldName() as string, NumBreaks() as ushort, 
  IncidentDB() as ushort, FieldBreaks() as uinteger, BayesianProb() as 
  double, BaseProb() as double) 
   
  '***** STEP 1. Input information about incident 
  dim i as uinteger, Entry as string, CurTime as uinteger 
  redim Incident(1 to NumIncidentFields) as ushort 
  print "Enter all known information about incident (if any field is 
   unknown, simply press [ENTER])." 
  for i = 1 to NumIncidentFields 
   print FieldName(i); ": "; 
   input Entry 
   if Entry = "" then Incident(i) = BLANK else Incident(i) = Val(Entry) 
  next 
  input "Time since incident occurred (press [ENTER] if unknown 
   or to ignore): ",CurTime 
   
  '***** STEP 2. Calculate probabilities 
  redim DurationProb(1 to NumBreaks(Duration)) as double 
  dim j as uinteger, FieldBin as ushort 
  for i = 1 to NumBreaks(Duration) 
   DurationProb(i) = BaseProb(i) 
  next 
 
  if CurTime = 0 then 'ignore "current time" 
   for j = 1 to NumIncidentFields 
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     if Incident(j) <> BLANK then  
      FieldBin = 0 
      do 
        FieldBin += 1 
      loop until FieldBreaks(j, FieldBin) >= Incident(j) 
      for i = 1 to NumBreaks(Duration) 
        DurationProb(i) *= BayesianProb(i, j, FieldBin) 
      next 
     end if 
   next 
  else 'recalculate Bayesian probabilities to account for "current time" 
   redim CTBaseProb(1 to ubound(BaseProb)) as double 
   redim CTBayesianProb(1 to ubound(BayesianProb, 1), 1 to 
     ubound(BayesianProb, 2), 1 to ubound(BayesianProb, 3)) as double 
   redim CTIncidentCount(1 to NumBreaks(0)) as uinteger 
   dim CTDurationBin as ushort, CTNumIncidents as uinteger, k as uinteger 
   for i = 1 to NumIncidents 
     if IncidentDB(i, Duration) >= CurTime then 
      CTNumIncidents += 1 
      'Find the right bin for incident duration 
      CTDurationBin = 0 
      do 
        CTDurationBin += 1 
      loop until FieldBreaks(Duration, CTDurationBin) >= IncidentDB(i, 
        Duration) 
      CTIncidentCount(CTDurationBin) += 1 
      'Now go through each field, and increment the correct BayesianProb 
      for j = 1 to NumIncidentFields 
        FieldBin = 0 
        do 
         FieldBin += 1 
        loop until FieldBreaks(j, FieldBin) >= IncidentDB(i, j) 
        CTBayesianProb(CTDurationBin, j, FieldBin) += 1 
      next 
     end if 
   next 
   ' Normalize 
   for i = 1 to NumBreaks(Duration) 
     CTBaseProb(i) = CTIncidentCount(i) / CTNumIncidents 
     for j = 1 to NumIncidentFields 
      for k = 1 to MaxBreaks 
        CTBayesianProb(i, j, k) /= CTIncidentCount(i) 
      next 
     next 
   next   
   for j = 1 to NumIncidentFields 
     if Incident(j) <> BLANK then  
      FieldBin = 0 
      do 
        FieldBin += 1 
      loop until FieldBreaks(j, FieldBin) >= Incident(j) 
      for i = 1 to NumBreaks(Duration) 
        DurationProb(i) *= CTBayesianProb(i, j, FieldBin) 
      next 
     end if 
   next 
  end if 
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  'Normalize 
  dim Total as double 
  for i = 1 to NumBreaks(Duration) 
   Total += DurationProb(i) 
  next 
  for i = 1 to NumBreaks(Duration) 
   DurationProb(i) /= Total 
  next 
   
  '***** STEP 3. Output 
  print "Probability incident will last..." 
  print "...less than "; FieldBreaks(Duration, 1) ; " minutes: "; tab (35); 
  print using "#.###"; DurationProb(1) 
  for i = 2 to NumBreaks(Duration) - 1 
   print "...between "; FieldBreaks(Duration, i - 1); " and ";  
   print FieldBreaks(Duration, i); " minutes: "; tab(35); 
   print using "#.###"; DurationProb(i) 
  next 
  print "...more than "; FieldBreaks(Duration, NumBreaks(Duration) - 1); 
   " minutes: "; tab(35); 
  print using "#.###"; DurationProb(NumBreaks(Duration)) 
  print 
  print "Prediction complete; press a key to return to menu." 
  sleep 
   
end sub 
 
 
 
'-------------------------------------------------------------------- 
'InitializeIncidentDatabase: Prompts user to set up incident database 
'-------------------------------------------------------------------- 
 
sub InitializeIncidentDatabase(DBFile as string) 
  if open (DBFile for input as #1) = ERRCODE_FILENOTFOUND then 
   print "File not found!" 
   sleep 
   exit sub 
  end if 
  dim INIFile as string 
  INIFile = left$(DBFile, instr(DBFile,".") - 1) + ".ini" 
   
  dim Header as string, TempHeader as string 
  dim InpStr as string 
  line input #1, Header 
   
  dim as uinteger NumIncidents = 0, i = 0, j = 0 
  do 
   line input #1, InpStr 
   NumIncidents += 1 
  loop until eof(1) 
  close #1 
   
  'parse for commas 
  dim FieldEndPos as ushort 
  dim as ushort NumFields = 0 
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  TempHeader = Header 
  do 
   'Found a new field... 
   NumFields += 1 
    
   'now trim the header 
   select case left$(TempHeader, 1) 
   case chr$(34) 'quotation mark 
      
     FieldEndPos = instr(2, TempHeader, chr$(34)) 
     if FieldEndPos = 0 then 
      FatalError "Quotes do not match in header row!" 
     end if 
     if FieldEndPos = len(TempHeader) then exit do 
     TempHeader = mid$(TempHeader, FieldEndPos + 2) 
   case else 
     FieldEndPos = instr(TempHeader, ",") 
     if FieldEndPos = 0 then exit do 
     TempHeader = mid$(TempHeader, FieldEndPos + 1) 
   end select 
    
  loop 
   
  redim FieldName(1 to NumFields) as string, DatabaseFields(1 to 
   NumFields) as string 
   
  'now read in the field names 
  TempHeader = Header 
  do 
   i += 1 
   select case left$(TempHeader, 1) 
   case chr$(34) 'quotation mark 
     FieldEndPos = instr(2, TempHeader, chr$(34)) 
     if FieldEndPos = 0 then 
      FatalError "Quotes do not match in header row!" 
     end if 
     FieldName(i) = ltrim$(rtrim$(mid$(left$(TempHeader, 
      FieldEndPos - 1), 2))) 
     if FieldEndPos = len(TempHeader) then exit do 
     TempHeader = mid$(TempHeader, FieldEndPos + 2) 
   case else 
     FieldEndPos = instr(TempHeader, ",") 
     FieldName(i) = ltrim$(rtrim$(left$(TempHeader, 
      FieldEndPos - 1))) 
     if FieldEndPos = 0 then exit do 
     TempHeader = mid$(TempHeader, FieldEndPos + 1) 
   end select 
  loop 
 
  print "Field names are: " 
  for i = 1 to NumFields 
   print FieldName(i),  
  next 
  print 
   
  'Now ask user to identify fields 
  dim DurationField as ushort 
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  input "Enter title of duration field: ", InpStr 
   
  do 
   for i = 1 to NumFields 
     if InpStr = FieldName(i) then 
      if DurationField = 0 then 
        DurationField = i 
      else 
        FatalError "More than one field with that name!" 
      end if 
     end if 
   next 
  loop while DurationField = 0 
   
  dim NumDataFields as ushort = 0 
  redim DatabaseField(1 to NumFields) as string 
  do 
   input "Enter a data field (press [ENTER] when done): ", InpStr 
   if len(InpStr) = 0 then exit do 
   for i = 1 to NumFields 
     if InpStr = FieldName(i) then 
      if DatabaseField(i) = "" then 
        for j = 1 to NumDataFields 
         if DatabaseField(j) = InpStr then 
           print InpStr; " is already included in the database." 
           exit for, for 
         end if 
        next 
        if j > NumDataFields then 
         NumDataFields += 1 
         DatabaseField(NumDataFields) = FieldName(i) 
         exit for 
        end if 
      else 
        FatalError "More than one field with that name!" 
      end if 
     end if 
   next    
   if i = NumFields + 1 then print "Field not found!" 
  loop 
   
  for i = 1 to NumDataFields 
   print i, DatabaseField(i) 
  next 
    
  dim BreakPointString as string, MaxBreakPoints as integer 
  redim NumBreakPoints(0 to NumDataFields) as integer 
  MaxBreakPoints = 0 
  for i = 0 to NumDataFields 
   NumBreakPoints(i) = 0 
   if i > 0 then 
     print "Now entering breakpoints for field "; DatabaseField(i) 
   else 
     print "Now entering breakpoints for duration (determines Bayesian 
      categories)." 
   end if 
   print "Type each upper breakpoint, followed by [ENTER]. Enter a blank 
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     line when done." 
   do 
     input "Enter next breakpoint: ", InpStr 
     if len(InpStr) = 0 then exit do 
     NumBreakPoints(i) += 1 
     BreakPointString += str$(val(InpStr)) + chr$(255) 
     print BreakPointString 
   loop 
   if NumBreakPoints(i) > MaxBreakPoints then MaxBreakPoints = 
     NumBreakPoints(i) 
  next 
  'Account for upper buffer 
  MaxBreakPoints += 1 
   
  redim BreakPoints(0 to NumDataFields, 1 to MaxBreakPoints) as uinteger 
  for i = 0 to NumDataFields 
   for j = 1 to NumBreakPoints(i) 
     print BreakPointString 
     BreakPoints(i, j) = val(left$(BreakPointString, 
      instr(BreakPointString, chr$(255)) - 1)) 
     print BreakPoints(i,j) 
     BreakPointString = mid$(BreakPointString, instr(BreakPointString, 
      chr$(255)) + 1) 
   next 
   BreakPoints(i, NumBreakPoints(i) + 1) = UINTEGERINFINITY 
  next 
    
  'Write to .INI file 
  open INIFile for output as #1 
  write #1, NumIncidents, NumFields, NumDataFields, MaxBreakPoints 
  write #1, FieldName(DurationField), NumBreakPoints(0) + 1 
   
  for i = 1 to NumDataFields 
   write #1, DatabaseField(i), NumBreakPoints(i) + 1 
  next 
   
  for i = 0 to NumDataFields 
   for j = 1 to NumBreakPoints(i) + 1 
     write #1, BreakPoints(i, j) 
   next 
  next 
   
  close #1 
  print INIFile; " created successfully! Press a key to return to menu." 
  sleep 
end sub 
 
'------------------------------------------------------------- 
'FatalError: Displays an error message and terminates program. 
'------------------------------------------------------------- 
 
sub FatalError(Message as string) 
  print Message 
  end 
end sub 
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Appendix B: Incident Delay Prediction Simulation Results 

B.1 Introduction 
While the previous section presents analytical extensions of traditional delay formulas to 

account for uncertain incident duration, these formulas are not necessarily applicable in practice 
without further refinement, due to several assumptions made in the derivation. In particular, 
having a uniform non-congested region in a space-time diagram (see Figure 3.1) requires the 
assumption of constant vehicle demand. While this may be applicable for incidents of short 
duration, or those that occur during off-peak periods, this assumption becomes problematic when 
considering extended incidents during periods of heavy congestion – which is precisely when 
these models are most useful.  

Thus, we employ a simulation approach to both validate the theoretical results for the 
case of uniform demand, and investigate the impacts of varying demand. These simulations are 
based on the cell transmission model developed by Daganzo [42], a mesoscopic simulator which 
is consistent with basic shockwave theory, yet well suited to efficient computer implementation. 
We consider the impact of an incident on a generic freeway segment, whose duration is obtained 
from a truncated lognormal distribution with parameters 3μ =  and 1 6σ = . , with a maximum 
incident duration of approximately 50 minutes. This choice of distribution results in an average 
incident length of approximately 15 minutes, with a standard deviation of 9 minutes.  

The incident is assumed to occur on an isolated three-lane freeway segment, with initial 
capacity of 6600 vehicles per hour. For the duration of the incident, freeway capacity is reduced 
to 3000 vehicles per hour, perhaps representing complete blockage of one lane, with additional 
capacity reduction due to the presence of emergency vehicles and merging requirements.  
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Figure B-1. Four demand profiles used for simulation. 

Four different demand profiles are considered, four of which are shown in Figure B-1. 
Figure B-1(a) shows a uniform profile, where demand is constant over the analysis period. As 
mentioned above, this is the assumption in the Wirasinghe and Morales formulae. Figure B-1(b) 
indicates “rising” demand where the number of travelers is increasing (as at the beginning of a 
peak period), while Figure B-1(c) indicates “falling” demand, as would occur at the end of a 
peak period. Figure B-1(d) shows a “peaking” profile where demand first rises, then falls. 
Regardless of the profile, the average demand during the incident is 5000 vehicles per hour, 
indicating heavy (but uncongested) flow prior to the incident, but a congested state exceeding the 
freeway capacity while the incident is occurring.  

For each of these demand profiles, we simulate 1000 incidents by applying Monte Carlo 
sampling to the lognormal distribution for incident duration; these are attained by applying the 
Box-Muller transform [43] to generate samples from a normal distribution, then exponentiating 
these to generate lognormal samples. To determine the delay caused by an incident, the travel 
time corresponding to each demand profile without any incidents was determined through 
simulation; this was subtracted from the total travel time when incidents occurred, leading to the 
additional delay due to the incident. Table B-1 summarizes these results. 
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Table B-1. Total delay results from Monte Carlo simulation (all values in vehicle-hours). 
Profile  Average delay  Standard deviation  Skewness  

Uniform  179.60  247.93  1.69  
Rising  122.30  137.07  1.04  
Falling  343.58  524.22  1.95  
Peak  206.67  281.69  1.65  

 
Clearly, the average delay differs substantially according to how demand is changing 

while the incident occurs. Compared to the uniform profile, delay was lower when demand was 
rising during the incident, and higher when demand was falling. This makes intuitive sense: 
when demand is falling, more vehicles encounter the incident while it is in progress, and thus 
must face a long queue. When demand is rising, the majority of vehicles encounter the incident 
after it has cleared, and encounter the queue in a recovery state, instead of a lengthening state. 
All of the profiles exhibit positive skewness, indicating asymmetry: when an incident is worse 
than average, its effects are likely to be much worse than average; when an incident is better than 
average, its effects are only slightly less than average.  

As shown in the previous section, for the case of uniform demand, incident delay is 
directly proportional to the square of incident duration. For other demand profiles, the 
relationship will not be exact, but the ratio of delay to squared duration still gives an indication 
of the rate at which incident delay increases with duration. Table B-2 shows the average and 
standard deviations of this ratio for the different demand profiles. The zero value of standard 
deviation for the uniform profile indicates that the proportionality relationship is exact; for the 
other profiles, the larger the standard deviation, the more the delay-duration relationship differed 
from quadratic. Combining this result with the skewness results from Table B-1, it is evident that 
even when accounting for uncertainty, the uniform demand assumption may introduce additional 
underprediction in delay estimation, depending on the actual demand profile.  

Table B-2. Proportionality results from simulation. 
Profile  Average ratio  Standard deviation  

Uniform  0.50  0.00  
Rising  0.45  0.08  
Falling  0.75  0.18  
Peak  0.56  0.04  

 
Finally, we seek to quantify the benefit of accounting for uncertainty, by comparing the 

prediction yielded by this model to what would have been predicted by simulating a single 
incident whose duration was equal to the average (15 minutes). These results are shown in 
Table B-3, and show that, depending on the profile, only using a single average duration value 
underestimates true average delay by 20-50%, certainly a significant amount. Using the average 
value with a falling demand profile results in particularly bad underestimation.  
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Table B-3. The degree of underestimation from ignoring stochasticity. 
Profile  True average delay  Estimated delay  Underestimation  

Uniform  179.60  106.22  41%  
Rising  122.30  95.49  22%  
Falling  343.58  159.04  54%  
Peak  206.67  119.63  42%  
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Appendix C: Example of Prediction Method 

In this section, we demonstrate the application of the two-phase ramp closure model to a 
hypothetical incident on a freeway in El Paso. As the intent here is simply to show how the 
procedure works, several practical issues (such as exact signal timing plans) are simplified or 
ignored, and as such these results should not be taken as engineering or policy recommendations. 

In particular, we focus on a 2.6 mile segment of eastbound I-10 that passes through 
downtown, as shown in Figure C-1, during the evening peak period (3-6 PM). For Phase I, we 
use a planning network for the entire El Paso metropolitan area, comprising 681 zones, 2437 
nodes, and 5233 links. Travel times on each of these links is assumed to follow the standard 
Bureau of Public Roads formula with α = 0.15 and β = 4. The Frank-Wolfe algorithm was used 
to solve for the initial user equilibrium; path flows were calculated by simple averaging, and no 
entropy maximization method was applied.  

For Phase II, the VISUM and VISSIM software packages were used. The microsimulator 
VISSIM was used to microsimulate and evaluate the ramp closure scenarios; for each of these, 
one iteration of VISSIM’s dynamic equilibrium procedure was applied to reroute vehicles. 
VISUM was used to perform the traffic assignment needed to identify initial vehicle trajectories. 
Because both VISUM and VISSIM share the same developer (PTV), they interface readily, 
allowing the incident corridor to be directly extracted from the macroscopic model (see Figure 
C-2). 

In our example, the incident occurs just upstream of the Cotton St onramp (see Figure C-
1), and is severe enough to block three out of five travel lanes, reducing the freeway’s capacity to 
2000 vehicles per hour due to the merging that accompanies the lane blockage, and to the 
presence of emergency vehicles which may further disrupt flow. (When no incident is present, 
this facility has a capacity of 11,000 vehicles per hour.) We assume that this incident is predicted 
to last for one hour, and that there are four candidate onramps that can be closed: those from 
Porfirio Diaz St, Wyoming Ave, Franklin Ave, and Cotton St. 

With this setup, we begin Phase I to determine which ramps should be closed. At the time 
the incident occurs, the initial equilibrium flows are already known and available, because these 
are found in the absence of an incident, and can be determined offline. Thus, the algorithm 
proceeds to test all sixteen possible combinations of open and closed ramps (including closing no 
ramps at all), evaluating TSTT for each of these, as shown in Table C-1. This entire analysis 
requires less than four seconds of computation time on a 3.40 GHz Pentium 4 machine, running 
Windows XP with 2 GB of RAM. 
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Figure C-1. Schematic of freeway used in example (not to scale).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-2. El Paso network for Phase I, and zoom on incident corridor for Phase II 

Of all the combinations, the best system performance occurs when only the Wyoming 
Ave onramp is closed. At first glance this may be surprising, as it is not the ramp closest to the 
incident, and it is possible for drivers to merge onto the freeway at the Franklin Ave ramp just 
downstream. However, closer examination of the before-and-after link flows show that most 
drivers choose to reroute on parallel arterials which are relatively uncongested, even after the 
entire ramp’s volume is distributed among them. Further, closing the Franklin Ave ramp as well 
is not recommended because its volume is somewhat higher than that on the Wyoming Ave ramp 
– while closing this ramp would improve freeway performance more, in this case the negative 
impact of increased traffic on arterials outweighs the improvement seen on the freeway. Thus, 
while this policy seems counterintuitive when only considering the immediate vicinity of the 
incident, the macroscopic perspective afforded by Phase I shows that the best tradeoff between 
freeway and arterial performance is seen by closing only the Wyoming Ave ramp. 

I-10 Eastbound  

from Cotton St 

to Dallas St 

from Franklin Ave from Wyoming Ave 

to Wyoming Ave 

from Porfirio 
Diaz St 

Incident Location  
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Table C-1. Phase I Results (O = Ramp Open, X = Ramp Closed) 
     Time (s) Cumulative (s) 

Initialization and Shortest Paths 1.01 1.01 
Porfirio 
Diaz St 

Wyoming 
Ave 

Franklin 
Ave 

Cotton 
Ave 

TSTT 
(veh-hrx106)   

O O O O 4.46 0.02 1.02 
X O O O 4.48 0.11 1.13 
O X O O 3.44 0.12 1.25 
X X O O 3.45 0.16 1.42 
O O X O 3.63 0.13 1.55 
X O X O 3.63 0.26 1.81 
O X X O 3.78 0.20 2.01 
X X X O 3.79 0.24 2.25 
O O O X 9.44 0.12 2.36 
X O O X 9.48 0.16 2.52 
O X O X 5.15 0.17 2.69 
X X O X 5.16 0.24 2.93 
O O X X 3.97 0.17 3.09 
X O X X 3.97 0.24 3.33 
O X X X 4.14 0.25 3.59 
X X X X 4.15 0.32 3.90 

 
Because this analysis only requires four seconds, the procedures to close the Wyoming 

Ave ramp can begin almost immediately after the incident is detected and deemed severe enough 
to warrant ramp closure. At this point, Phase II simulations should commence to determine the 
appropriate length of time that this ramp should remain closed. Because the anticipated incident 
length is 60 minutes, we begin by simulating a 60-minute ramp closure, followed by 50- and 70-
minute closures, 40- and 80-minute closures, and so on, as time permits. For this case, assume 
that we wish to allow 15 minutes for Phase II. On the same machine, each microsimulation 
requires approximately five minutes, so we will simulate three scenarios: closing the ramp for 
50, 60, and 70 minutes. 

The results of these simulations is shown below, in Table C-2, compared using average 
freeway density as the measure of effectiveness (certainly, there are many other measures that 
could have been used as well). Considering density averaged over the two-hour time period from 
the beginning of the incident to the end of the peak period, the best freeway performance is seen 
when the ramp is closed for 50 minutes.  

At this point, having completed the two-phase ramp closure model, the incident should 
continue to be monitored. Because incidents are constantly evolving, the remaining blockage 
time predictions need to be updated as more information is received, and additional Phase II 
simulations run if necessary. 

Finally, although not specifically a step of Phase II, for the purpose of comparison we 
show the average freeway density if no ramp closure was to be enacted. Clearly, freeway 
operations are improved by closing the Wyoming Ave ramp during the incident. 
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Table C-2. Phase II Results  
 Average freeway density (veh/mi) 
Closure Duration 4-5 PM 5-6 PM 4-6 PM 

60 min 32.02 28.93 30.48 
70 min 32.02 28.11 30.06 
50 min 31.76 23.04 27.40 

0 min (no closure) 35.43 51.27 43.35 
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